
EDP ANALYZER
© 1979 by Canning Publications, Inc.

MARCH, 1979
VOL. 17, NO. 3

PROGRAM DESIGN TECHNIQUES

For the past two months we have been discussing some rela
tively new software development techniques, some for improv
ing the analysis of user needs and others for improving the de
sign of software systems. This month we move along the soft
ware development life cycle a bit more by discussing some tools
for improving the design of computer programs. We will con
centrate on three of the more popular methods, ones conceived
by Jean-Dominique Warnier, Larry Constantine, and Michael
Jackson. And we will speculate on the future mechanization of
the program design process.

The Office of the Administrator for the
Courts for the State of Washington, in Olym
pia, Washington, was established in 1957 to
study the operations of the state courts and to
make recommendations for their improvement.
The judicial system of the state consists of one
supreme court at the top, three divisions of the
court of appeals, 28 superior courts, 73 district

. courts and justices of the peace, and 238 mu
nicipal/police courts.

In 1975 the information systems division
(ISD) of the Administrator for the Courts was
formed. Its function is to develop judicial in
formation systems for the entire state court sys
tem. The first system that ISD began work on
was the Superior Court Management Informa
tion System (SCOMIS). This system will au
tomate and integrate the indexing, docketing,
case tracking, calendaring, accounting, jury
management, warrant control, and reporting
functions of the state's 28 superior courts.

The SCOMIS project began in June 1976, with
development slated to continue well into the

1980s. A target date of February 15, 1977 was
given for implementation of Phase 1 at one
site. Phase 1 was the automation of the cas.e
indexing sub-system for the superior courts. Up
to this time, superior court filing indexes had
been kept in huge books. Any changes, addi
tions or answers to queries were made manu
ally after a county clerk had located the perti
nent name in one of a multitude of these
books. Using SCOMIS the books are replaced
with an on-line, interactive system accessed us
ing CRT terminals.

Initial research for Phase 1 occurred during
July 1976. During August, the six members of
ISD on the SCOMIS project took a three-day
course on ADABAS, the database management

'.system to be used in the system, and a four-day
course on the Warnier/Orr (W 10) structured
systems method.

ISD decided to standardize on the W 10
method for the design of computer systems, so
all new projects are now cJeveloped using it.
Jean-Dominique Warnier and his colleagues at

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; or
ders for copies filled promptly; prices listed on last page.

Honeywell Bull (now CH-Honeywell Bull) in
France developed LCP (Logical Construction
of Programs) and LCS (Logical Construction of
Systems). We discussed LCP in the December
197 4 issue, and we discussed LCS last month.
Subsequently, Kenneth Orr, of Langston, Kitch
and Associates, added to the LCP notation,
making it applicable to designing systems, pro
grams, data files, and manual procedures. We
shall discuss the methodology later in the re
port.

Following the August 1976 training, the
team began work on the sub-system require
ments, which were completed and approved in
September. From September through Novem
ber the team created the external system de
sign. Following the W 10 methodology, the in
put and output requirements of the case index
ing sub-system were developed. Some 36
screen formats were proposed, for use by the
county clerks. These were presented to the
clerks at the pilot site fa simulated on-line ses
sions using a CRT. Several iterations of refining
these screen formats followed. When these
users were finally satisfied with the display for
mats, ISD felt it had the design of a system that
would be used, not circumvented or ignored,
by the clerks.

During December the internal design of the
sub-system and the definition of the data ele
ments took place. The team approach was con
tinued and structured walk-throughs were em
phasized. (A structured walk-through is a de
sign or code review meeting in which the au
thor of the work leads the attendees through
the design or program in search of errors.) At
the end of the month, seven months after the
project had begun, the system design was com
pleted. Coding began in January, with the pro
grammers extending the WI 0 diagrams to the
point where they could code directly from
them. (For subroutines with complex logic,
they went to the program statement level.)
Some of the programmers used pseudo code
rather than extend the diagrams totally. And all
entered their code into the computer on CRT

terminals using a text editing system. They also
tested the 34 programs in the sub-system on
line.

By mid February, 1977 Phase 1 had been
completed, with the case indexing sub-system

EDP ANALYZER, MARCH, 1979

installed at the test site. Only two program
ming errors have been found since the installa
tion. And no adaptive maintenance has been
requested by the users.

As is quite obvious from the above timeta
ble, the SCOMIS case-indexing sub-system pro
ject followed a dramatically different schedule
from the typical software project (at least the
ones we are familiar with). They spent seven
months on requirements analysis and system
design, and only one and a half months on pro
gramming and system testing. Most develop
ment efforts devote much less time to design
and much more time to coding.

The people at ISD told us that they never
could have met their deadline without the use
of both a good design methodology and orga
nizational structure. The WI 0 diagrams are
surprisingly easy to learn to read and clearly
show the hierarchy of the system, we were
told. And this immensely enhanced communi
cation among the various people involved
managers, users, programmers and designer I
analysts. During design walk-throughs, the hi
erarchical nature of the W 10 charts made
logic errors easy to spot. If, for example, a
function had been placed on the wrong level in
the hierarchy, this point showed up, because
the chart would lose its symmetry later on. The
diagrams allowed the designers to see a com
plete design and to see when a design was
complete.

The ease of extending the system design
charts for use during program design was a key
to the speed in coding. The notation naturally
grouped functions into sub-routines, so struc
tured programs resulted. Without this type of
a program design methodology, coding would
have taken much longer, they told us.

lSD also stressed to us that their use of the
life cycle development approach (including
walk-throughs and teams) complimented the
W 10 method and contibuted equally to the
success of the project.

Since February 1977, .ISD has installed
SCOMIS at five additional locations and has de
veloped the docketing and case-tracking sub
systems. Both of these new sub-systems were
developed using the W 10 methodology, both
followed the same development timetable we
described for the case indexing system, and

2

both have been virtually error-free since imple
mentation.

All in all, ISD is very pleased with their se
lection of the Warnier/Orr method for design
ing systems, programs and data bases. In Au
gust 1978 they began using STRUCTURE(S), an
automated documentation package from Lang
ston, Kitch and Associates. It produces W 10
diagrams, cross reference tables, and data ele
ment indexes from input statements. ISD sees
their use of STRUCTURE(S) as a first step toward
the use of more automated software design
tools.

Exxon Corporation

Exxon Corporation, with headquarters in
New York City, is an international integrated
petroleum company. Its revenues of over $54
billion per year rank it as number two on the
1978 Fortune directory of the 500 largest U.S.
indusrial corporations.

In the early 1970s, Exxon had become in
creasingly concerned about the rising cost of
application system development and mainte
nance, particularly the manpower component
of these costs. In addition, software reliability
was becoming more critical to them; there was
real concern about the possible effect that soft
ware errors could have on Exxon and its busi
ness operations.

So, in 1973, a project team was organized to
focus on ways to improve the software devel
opment process. The main objectives were to
reduce the cost of developing and maintaining
systems, and at the same time to increase the
quality and reliability of the software products.

The project team decided that the key to ef
fective software development, enhancement,
and future support is the structure of the com
puter programs themselves. Reliable program
structures would be a first step toward greater
software reliability.

After a thorough investigation, the project
team recommended that the methodology de
veloped by Michael Jackson of England be
adopted for program design. This methodol
ogy, with several minor modifications, has
been coupled with structured walk-throughs
and top-down testing to form what Exxon calls
'program systems technology' (PST).

EDP ANALYZER, MARCH, 1979

The Jackson program design methodology is
based upon the concept that a program's con
trol structure should reflect the structure of
the data it will process. Jackson's outlook thus
has points of similarity with that of W arnier.

At this point, Exxon had to address the ques
tion: "How do we teach this methodology to
our programmer I analysts in Exxon installa
tions around the world?" In 1973, there were
some 1,200 people in Exxon operations world
wide working on system development; since
then, this number has grown to about 1, 700
people.

As a first step, Michael Jackson himself was
brought in to teach the first three training
courses on program design at headquarters.
During this same period, the project team de
veloped a four and one-half day workshop-type
course covering all of the PST methodology. In
the five years since this course was developed,
it has been used to train over 1,300 program
mer I analysts within Exxon, including many in
other countries who do not speak English.

In order for the PST methodology to be suc
cessfully adopted at an installation, Exxon has
found that several steps are necesssary. First,
the corporate project team must gain the man
agement support for the methodology at that
installation. Then the initial training in PST is
presented by the corporate project team. Then
an on-going training program must be set up at
the installation, for training the remaining pro
grammer I analysts. And, just as important, con
sulting services must be provided, to help the
new users during their first uses of PST.

For the on-going training, key programmer/
analysts at the various sites, who were inter
ested in teaching future PST classes, were as
signed to assist with the courses. Then they be
came primary instructors on a part-of-their
time basis. This has resulted in a network of
part-time instructors at the Exxon locations
around the world.

Exxon has found that follow-on assistance is
an essential part of the training process. To
provided the needed assistance, Exxon has
called upon these in-house course instructors
to provide consulting services, supported by
the corporate project team. Experience has
shown, though, that the users actually need less .
follow-on help than they think they need. Once

3

they have been reassured that they are using
PST correctly, their requests for help drop off
quickly.

Exxon has evaluated five projects that used
the PST methodology and has found important
and encouraging results. These projects ranged
in size from one-half workyear to over 25
workyears of effort, and included batch, inter
active, data processing, and simulation systems.
As compared with industry averages of 2,000
to 4,000 lines of code produced per workyear,
these five projects averaged over 7,000 lines of
code-and, on the largest of the five, the pro
ductivity was some 8,500 lines per workyear.

But increased productivity has not been the
only benefit; program maintenance time has
also been reduced. Exxon sees several reasons
for this improvement. The original code has
fewer errors in it; for instance, in one of the
five systems evaluated, less than one error per
program was found during the first year of use.
The design of a program is now less complex
than it was under former methods, so the pro
gram is easier to modify. And the code is more
readable, so a change is more likely to be made
correctly.

In fact, Exxon has found enough benefits
from the use of PST that it has become the cat
alyst for formalizing other methodologies. One
of these is for designing the logical structure of
a database. Another is for better defining user
needs for application systems. And still another
is PSTAIDS.

PSTAIDS is a prototype graphic software
package that has been developed at one Exxon
affiliate and enhanced by the corporate staff.
The intent of this package is to automate part
of the PST process. In use, the programmer I an
alyst first inputs the Jackson data structure and
program structure hierarchy diagrams, for the
program under development. The program
mer/ analyst creates these structures interact
ively, at a graphics terminal. Then PSTAIDS val
idates the hierarchy diagrams, allowing only se
quence, selection, and iteration (per Jackson).
Hard copy output of the diagrams is available
within seconds. And, if the programmer/ana
lyst has used PL/l conventions, compiled PL/l

code can be generated.
Exxon has found that standardizing on one

program design method has indeed improved

EDP ANALYZER, MARCH, 1979

software production and reliability. They view
this as a foundation for formalizing other por
tions of the system development cycle.

Wells Fargo Bank

Wells Fargo Bank is an international bank
ing company with headquarters in San Fran
cisco, California. It has 366 offices around the
world and provides a full range of banking
services to corporations and consumers. It is
ranked twelfth on the 1978 Fortune listing of
the top commercial banking companies.

In 1975 the vice president of systems devel
opment became interested in the structured
methodologies, in the hope of reducing the
number of systems personnel then doing soft
ware maintenance. He calculated that 75% of
the 200 people within the department were in
volved in maintenance work. (We gather that
this is a very typical percentage in systems de
partments). With a three-year flat budget cycle
and several new development projects on the
horizon, he felt they needed to institute a more
effective methodology for developing software
systems. He wanted maintenance to drop to
50% of the systems work in the long run.

In early 1976 the people at Wells Fargo
heard about the Constantine/Yourdon (C/Y)
structured design method. After some investi
gation, they decided to standardize on it for
the development of new software and for the
maintenance of current systems, where possi
ble.

The original concepts of the Constantine/
Yourdon method were developed by Larry A.
Constantine in the mid-1960s. Drawing on that
work, Glenford J. Myers of IBM wrote about
composite design in 1973. More recently, Ed
ward Yourdon has refined the more abstract
ideas in Constantine's work, translating them
for more practical use. The method is also
known as structured design.

Wells Fargo assigned a group of four people
to (1) co-ordinate the training of the entire de
partment, (2) assist in the use of the new tech
nique, (3) develop new standards, (4) monitor
the initial projects for adherence to the new
standards, and (5) pass along practical sugges
tions learned from project team to project
team.

4

During 1976 all 200 members of systems de
velopment were given a one-week in-house
training course on the C/Y design method. It
concentrated on structured design for three
days and on structured programming for two
days. All managers within the department took
the class along with the programmers and ana
lysts. Wells Fargo believes that this approach
to management training has given the manag
ers an appreciation for the difficulty of intro
ducing the new technique, as well as an under
standing of the new concepts.

One of the first projects to be developed us
ing the C/Y method was a very large, techni
cally complex, and highly visible system called
CYCLESORT. It contains 25 COBOL programs,
some of which are very large, containing over
5000 lines of code each.

The CYCLESORT project began in early 1976,
with the project team estimating a completion
date of February 1, 1977. For two months, two
analysts performed the analysis of user require
ments. Due to the high visibility of the project,
and their unfamiliarity with the new develop
ment techniques, the designers went so far as
to write many of the specifications in detailed
pseudo code.

During the next five months, four analysts
performed the system design, using the C/Y
conventions. First, data flow diagrams were
created and reviewed during design walk
throughs. From these, structure charts and a
data dictionary were created.

Finally, seven months into the twelve month
project, programming began. As could be ex
pected, being over half way through the
elapsed time for the project, and having no
code yet written, people became very
nervous-analysts and managers, as well as the
users. But project leaders and management
held firm to seeing the new method through by
completing the design before beginning cod
ing. It even took some 'wrist slapping' to ac
complish this, we were told.

Six programmers spent the next five months
coding the programs in COBOL from the struc
ture charts and pseudo code created by the an
alysts. Structured walk-throughs were held to
review all coded programs. These walk
throughs provided excellent cross-training,
Wells Fargo found. Good coding techniques

EDP ANALYZER, MARCH, 1979

were recognized by team members and were
imitated, so many of the programs had the
same style.

Testing by the programmers consisted only
of on-line testing for abnormal terminations.
System testing went rapidly, with the system
ready for implementation on schedule. Since
then, few errors have been found in the system.
Wells Fargo has performed a lot of tuning on
it, such as re-coding high use modules to
achieve more efficient run times. But the origi
nal integrity of the design has not been
changed.

Management and project staff at Wells
Fargo were very impressed with the results of
the CYCLESORT project. They were particularly
pleased at making the deadline for two rea
sons, one being that this was their first use of
the new technique. Secondly, the users had re
quested many enhancements throughout the
system design phase, adding to both project
complexity and system size. Even with these
problems, they were pleased to find that no
huge gaps in the design became apparent dur
ing programming. Major flaws in design had
been caught earlier in the development cycle,
and the requested enhancements had been in
corporated properly.

After two years of using the C/Y technique,
Wells Fargo system management is. committed
to this approach. They feel that taking a firm
stand, as they did in 1976 by training all of
their people, is the correct approach. "Do not
let the practice spread by word of mouth, or
conduct several experiments with various tech
niques," they told us. "Getting systems people
to change their habits takes a lot of work."
Now, after a number of successful projects,
they feel that their efforts have been worth it.
Their percentage of maintenance work has not
yet dropped to the desired 50% level, but it is
dropping. And they expect the drop to con
tinue, as new structured systems replace their
older unstructured ones.

The three design techniques
To illustrate how these techniques are used

to design programs, we shall simply give the
gist of each method, rather than state the step
by-step procedures presented by the develop
ers. And we have taken the liberty of using our

5

own terms rather than theirs. For illustration,
we use a simple payroll program that has two
inputs-timecards and a payroll master file
and yields four outputs-a payroll register and
an updated master file for each company divi
sion and a paycheck and a deduction slip for
each employee.

Although we are only talking about program
design in this issue, both the W /0 and C/Y
methods can be used for system design also.

Programs are made up of two types of state
ments-control statements and action state
ments. Structured programs are limited to
three kinds of control statements-sequences,
iterations and selections-but they are not lim
ited to certain kinds of action statements.

The basic differences among the methods we
are discussing are: (1) the order in which the
program logic is developed, either beginning
with the control portion and moving to the ac
tion portion, or vice versa, and (2) the method
then used to put the two together.

The Warnier/Orr technique

The Wamier/Orr (W /O) technique is based
on the work of Jean-Dominique W amier, in
his book Logical Construction of Programs
(Reference 1). Wamier originally developed
this technique for designing programs, and he
used flowcharts as an intermediate step be
tween his design diagrams and coding. Kenneth
Orr (Reference 2) added ideas for designing
systems, data files and manual procedures. He
eliminated the flowcharting step, and he gave
special emphasis to data design. (Orr's ideas
are not the same as W amier' s LCS discussed
last month.)

The W 10 technique starts with an output
definition phase. The user, with the help of the
systems person, sketches the desired outputs,
including all of the necessary data fields. These
may include paper reports, documents, screen
displays, etc.-anything the user will work
with-plus the updated master files.

From these outputs, •the programmer uses
the W amier diagramming technique to decom
pose the outputs into individual input data
items, either captured or computed. For exam
ple, a paycheck as output would require em
ployee name, date, and dollar amount as input.
When all outputs have been thus decomposed,

EDP ANALYZER, MARCH, 1979

a list of the necessary input data items is made,
with all of the redundancies removed.

The data diagram consists of columns sepa
rated by brackets. It shows the hierarchy of the
data. And it contains symbols for the three
control types, showing how the various data
items are related to each other. So the W arnier
approach begins with the development of a
data control structure from which the program
control statements will be derived.

At this point the basic design of the program
is pretty well established. The next few steps
have been introduced by Orr to refine and ver
ify the design.

For the next step, Orr introduces the study
of time sequencing. The user-defined outputs
are 'scheduled' into the normal processing cy
cles of the company. A W arnier-type diagram
is also used in this analysis. Such normal
processing cycles as year, quarter, month,
week, and day are listed on the diagram; in our
example, the payroll program outputs are asso
ciated with their proper cycles. The purpose of
this analysis is to assure that all needed inputs,
those obtained directly and those from other
programs, will be available at the right time in
each processing cycle.

The next phase is Orr's 'change analysis.' For
every input item, the question is asked: "What
real world event could cause this item to
change?" For example, in our payroll program,
we could ask, "What event would cause the
organization codes on the payroll register to be
changed?" One answer could be, "By a
merger." In this case we might need new divi
sion codes, requiring changing the field lengths
for certain organization codes. If this type of
change can be accomodated on the existing
W arnier diagram, then the design is sufficient.
If not, then the new requirement (to accomo
date the change) means that the entire analysis
must be redone up to this point. Orr states that
it is changes in data that tend to be forgotten
in design, and these cause the bulk of design
errors.

Also in this phase, changes in the processing
cycles are considered. For example, what types
of events could cause the payroll to be resch
eduled? Some possibilities are holidays, disas
ters, and vacations. So perhaps a new 'mid
week' cycle must be added.

6

Finally, program design is performed. Using
the W amier data diagram already developed,
the control structure of that diagram is trans
lated into an identical control structure for the
program. And the data items on the diagram
are translated into program action statements.
One way to achieve this one-for-one translation
is simply to write 'process' before each .data
item on the data diagram.

Using our payroll example, let's assume that
we have D divisions in the company and each
division has E employees. The top of the pro
gram hierarchy, on the left in the W arnier dia
gram, would be the division level. This level
would include: start the payroll program, per
form the division payroll (for each of the D di
visions), and end the payroll program. The next
lower level decomposes the division processing
into employee level processing: start division
processing, perform employee processing (for E

employees), and end division processing. Divi
sion outputs, such as the payroll register,
would be produced at this level. The third
level decomposes the employee processing into
its parts: start employee processing, print pay
check, print deduction slip, store line for pay
roll register, create updated master record, and
end employee processing. This type of decom
position continues until all data elements and
their sources (input or computation) are deter
mined. The result is a program structure that
matches the data structure.

The program's procedures are then pseudo
coded from the program diagram. Each
bracket on the diagram becomes a module;
therefore, says Orr, the technique creates a
structured program "without really trying."
Users tell us that this pseudo coding step fol
lows quite naturally from the diagram. The ac
tion statements come from the words on the
diagram and the control statements come from
the symbols. From the pseudo code, the pro
gram is coded in the appropriate language.

Orr's company offers a course on structured
system development (Reference 3) in which
they concentrate on the use of the W 10 nota
tion. But they also encourage the use of deci
sion tables and design walk-throughs. In addi
tion, the company offers an automated docu
mentation tool, STRUCTURE(S), for creating
W /0 diagrams. And they are developing an

EDP ANALYZER, MARCH, 1979

on-line version to aid programmers in design
ing programs, systems, and data files, while
working at graphic terminals.

The Jackson method

The Jackson method is based on the writings
of Michael Jackson in England (Reference 4).
Jackson's premise is that a program's control
structure should look like its data structure.
His method is aimed onlyat program design
and coding, after the inputs and outputs have
been determined; it does not begin with an in
put or output determination phase.

The Jackson method is marketed by Infotech
International in both North America and Eu
rope (Reference 5).

The Jackson method begins by developing
data structure diagrams, using pre-defined in
puts and outputs. A separate hierarchical dia
gram is drawn for each input and each output.
Jackson uses boxes and lines in his data struc
ture diagrams, with the three control types (se
quence, iteration, selection) designated by sym
bols within the boxes. As an example, a payroll
register could have the following data hierar
chy: register, report, line, field, and sub-field.
All involve iterations, i.e. several reports form
the register, several lines form a report, etc.

In the next phase a comparison of these dia
grams is made. The diagram of an input is
compared to the diagram of the output it will
support. If the two diagrams correspond at ev
ery level, then one program can be written to
process the input into the output. If, however,
the two diagrams do not correspond, then, says
Jackson, there is a structure clash. In order to
resolve a structure clash the input is written
into an intermediate file from which it can be
processed into the output form. Thus, two pro
grams need to be written, one to process the
input and one to process the output. One of
these programs is then made a sub-routine to
the other, without changing its design struc
ture. If creating an intermediate file reduces
run time efficiency, the subroutine probably
can be tuned.

After the data structure diagrams have been
developed, then comes the program structure.
Jackson uses the same box, line and control no
tation for the program structure diagrams. In
the case of an input/ output match, each level

7

of the corresponding data diagrams is trans
lated into a program level. For example, an
updated master file would have the same data
hierarchy as the original masterfile, so the top
level on the program diagram would be
'process master file giving updated master file.'
Lower levels would be similarly translated
from the data diagrams.

So, at this point we have the control struc
ture of the program. Next we need to add the
action statements to that structure. To do this
the programmer lists all of the operations that
he thinks need to be performed. Infotech has a
checklist of the various types of action state
ments to help the programmer completely de
termine all of those needed. These are then
numbered, and each number is written on the
program diagram at all appropriate places, to
determine that the operation will be per
formed the correct number of times and at the
correct processing time. For example, 'calcu
late division totals' would be placed at 'process
division ending,' where it would be performed
once per division following all other calcula
tions. It would not be appropriate to place this
action statement number at 'process division
heading' or at 'process employee body' because
either the processing placement or the number
of times executed would be wrong.

If all of the numbers (representing the action
statements) can be placed on the program dia
gram, then the design is complete. If not, then
it is deficient and must be redone.

The resulting diagram shows the sequence in
which the operations will be performed. The
control statements and action statements are
then jointly pseudo coded. Users tell us that
this step follows quite naturally. Finally the
program is coded in the appropriate language
from the pseudo code.

Using the Jackson method, the people at In
fotech estimate that the program development
cycle typically consists of: 40% of the time
spent on developing the data structure dia
grams, 35% spend on translating these into
program structure diagrams, 15% on pseudo
coding, 5% on coding, and 5% on testing.

Infotech International Limited in England
(Reference 5) recently announced a pre-proces
sor for converting pseudo code into PL/ 1 and

EDP ANALYZER, MARCH, 1979

COBOL. They say this is the first phase of their
development of an automated 'diagrammer.'

The Constantine/Yourdon method

The concepts of the Constantine/Yourdon
method (C/Y) first appeared in a 1965 article
by Larry A. Constantine. A 1974 article by Ste
vens, Constantine and Myers (Reference 6)
gives the best overview of the method. Later,
Edward Yourdon and Constantine wrote a
book, Structured Design (Reference 7), which
has become the reference text for the Yourdon
courses on structured design. More recently, a
number of other consulting firms have begun
teaching courses using these same concepts.
We originally based our discussion on the
Yourdon/Constantine book, as we understood
it. The several reviewers of our writeup gave
us other interpretations, from which we have
selected the following description.

The C/Y method is quite different from the
other two methods discussed, because it first
develops action modules and then places them
into a control structure. It begins with pre-de
fined inputs and outputs-that is, one or more
given inputs that have to be processed to pro
duce one or more given outputs. The first step
is to discover all of the changes that must oc
cur in the data to create the output from the
input. These changes represent the actions to
be taken on the data. The diagramming tech
nique that the C/Y method uses for this step is
the 'data flow diagram' or 'bubble chart.' It
contains circles (the changes to be made) and
lines (the changed data). It does not contain
symbols for the three control types.

For our payroll example, we can list the fol
lowing changes that turn timecard data into
paycheck data: the timecard data must first be
validated and then matched to a payroll master
record. From that combination we calculate
the pay and update the year-to-date fields.
With that data in hand, we format the pay
checks and then print them. This represents a
single stream of data in a very simple problem.
In most situations there are numerous inputs,
outputs, circles (bubbles) and lines. Ideally the
data flow diagram is constructed beginning
with a few 'high level' bubbles. Then these
bubbles are expanded into their component
parts on separate sheets of paper.

8

The next step is to translate the lower level
bubble charts into a hierarchical chart of func
tional modules, called a structure chart. This
represents putting the action items into a con
trol structure. The structure chart contains
boxes, lines, control symbols, and data refer
ences. The top level of the chart c0ntains the
controlling module(s); we would call it 'pay
roll' for our example.

The most difficult part of this translation
from data flow diagram to structure chart is
determining which modules belong at the top
levels, we are told. If these are not chosen cor
rectly, the design will be difficult to maintain.
One method for choosing the top modules,
called transform analysis, involves tracking the
input and output data streams inward on the
data flow diagram. The inner-most bubbles dis
covered from this analysis form the top level
modules on the structure chart.

For our payroll example, we can use the
transform analysis technique to find four cen
tral bubbles-matched timecard, calculate pay,
update year-to-date, and format paychecks.
These four functions would form the second
level on our structure chart; the top level
would be 'payroll.'

Following this initial pass at creating the
structure chart, the C/Y method recommends
studying and revising it (I) to determine if the
module hierarchy is suitable, and (2) to sim
plify the connections between modules. The
connections are the parameters (either data or
control flags) passed from one module to an
other. Bugs in programs, especially bugs
caused by changes during maintenance, are
transferred through, as well as caused by, these
connections. So keeping interfaces simple will
do much to isolate errors and ease mainte
nance. Proponents of the C/Y method say that
this interface study is very important for good
program design, and that it is totally missing in
other methods.

The C/Y method offers a number of aids for
this module study. These include studying
module cohesion, coupling, span of control,
and scope of effect/ scope of control. We do
not have space to describe these concepts here.
Theoretically they aim to help the programmer
determine if the interfaces are indeed simple, if
the modules each perform only one function,

EDP ANALYZER, MARCH, 1979

and if the control hierarchy of the program is
too complex. In practice, the concepts are
rather difficult to grasp and then use, we
gather. Programmers are not able to keep the
connections or modules as simple as they
would like. On the other hand, programmers
who use the methodology feel the concepts do
lead to good designs.

Next, the procedures to perform each mod
ule are pseudo coded from the structure chart.
Some say this pseudo coding does not fo1low
naturally from the structure chart. Others say
that if the specifications for the lowest level
bubbles in the data flow diagram have been ex
pressed in structured English or decision ta
bles, the pseudo coding step is not difficult.
Yourdon told us that recent work at his com
pany indicates that the W 10 or Jackson
method can be used at this point to design the
inside of the modules.

Finally, the program is coded in the appro
priate language from the pseudo coded mod
ules.

From our talks with users, it appears that
the C/Y method is the most challenging of the
three techniques. While the steps are well de
fined, the procedures to use in each step ap
pear to be difficult to grasp and then use. De
spite these apparent difficulties, it is a popular
design method.

We do not know of any available products
for automating this methodology, but we sus
pect that such products are coming and will be
of assistance in assuring the completeness and
consistency of the designs.

Choosing a technique

In this report, plus the previous two reports,
we have described a number of analysis and
design techniques. What criteria should you
use to choose the most appropriate ones for
your company from among these?

Stevens (Reference 8) reports on a compara
tive analysis of several design techniques per
formed at the National Bank of Detroit. Their
objective was to find a technique that would
cause the least 'upheaval' within the bank. His
brief summary of the study includes the follow
ing list of selection criteria. It is the most com
plete list we have seen in the literature.

9

Looking at the user interface of each tech
nique, Stevens asks, "How good is this tech
nique for communicating with users?" He
points out that not all of the methods recom
mend user design reviews. Those that do in
clude this phase are better, he feels. Also, the
various diagrams differ in how easily they can
be read and understood. Diagrams that include
sequencing, hierarchy and are symmetrical are
the most useful for talking to users, he says.
And design errors tend to stand out more read
ily. Stevens emphasizes the user interface-and
we agree that it is important, for an interesting
reason.

We found in our discussions at companies
that the users picked up the particular graphic
technique of the design method and used it for
totally unrelated purposes, such as for work as
signment scheduling. So a good graphic tech
nique can become more than a design and
communication tool. It can evolve into a de
facto standard method for decomposing com
plexity, which many people in a company can
come to understand and use.

Related to the readability of the diagrams
are the criteria of controlling accuracy, com
pleteness and quality of the design. Stevens
notes that control often depends on the num
ber of people capable of reviewing the design.
If users can understand and change the dia
grams, the design is more likely to reflect their
needs, and more likely to lead to high quality
software.

Stevens also feels that it is best for a tech
nique to be consistent. For one thing, does it
use only one type of diagram or several? Sec
ondly, does the technique tend to lead to simi
lar good solutions when used by different peo
ple? Methods that concentrate on the sequence
of events within the problem and the data
structure tend to lead to consistent designs
more than methods that rely on insight and in
spiration, says Stevens.

Related to consistency, Stevens asks if the
technique is a good programming aid as well as
a design aid. All of the techniques are top
down and support successively refining a prob
lem level by level. But not all lead naturally
from designed modules to compilable code.
Here again he asks, "Does the method leave a

EDP ANALYZER, MARCH, 1979

part of the process up to intuition and judg
ment?" Successive decomposition is best when
it leads to a level very close to code or pseudo
code.

Looking to the future, we suspect that those
techniques that naturally lead to code will be
the first to have automated code translators
available, since the translators will be easier to
develop. So we would add suitability for au
tomated aids to Steven's list of criteria.

One question about any graphic technique is
its maintainability during design. Is it easily
modified, or does it need to be substantially re
drawn when changes occur? The further along
in the design process, the more likely a high
level specification change will require numer
ous 'rippled' changes in a diagram. None of
the techniques preclude this problem, but
some make it easier to handle. Also, how easy
is it to spot where these changes need to be
made? A change in function or data may be
easier to track on one type of diagram than on
another.

Additionally there is the advantage of using
these design diagrams to document the system
for future maintenance purposes. For this use,
Stevens again asks, "Are the diagrams easy to
draft, comprehend, and update?"

With the advent of automated design tools,
which we shall discuss further on, we see the
system maintaining the diagrams. So the man
ual drawing procedure will disappear, but the
need to track the rippling effect of a change
will not.

Stevens next asks: "How teachable is the
method and how readily will it be accepted by
systems people?" He favors methods that are
easily learned, all else being equal. These re
quire shorter training periods and less follow
on consulting.

Finally, Stevens asks, "Is the technique hard
ware and software independent?" He found
those that he studied to work with all types of
applications and equipment.

A successful introduction
Once a method has been selected, how can it

be introduced successfully? We define a suc
cessful use of a design method as one that is
still in widespread use within a company after
two years. You may ask, why two years? And

10

why not a more gradual introduction? The rea
son is that if the company does not make a
concerted effort to tum the technique into a
programming standard, then its use will die
out. And its benefits will not have been real
ized. Programmers prefer to spend their time
coding, not designing. It takes a real effort to
reverse this natural desire. As we discussed
above, that is what must be done. With these
techniques, programmers will spend the bulk
of their time designing, not coding.

The companies we talked with have met this
two year criterion, so we would call them suc
cessful users. How did they achieve this suc
cess? Well, from our discussions with them, we
see a pattern for successfully implementing a
standard design methodology. It has the fol
lowing stages.

Obtain management commitment. Getting
programmers to alter the way they approach a
problem requires getting them to use a new
method to find out for themselves that it does
improve program quality. They need to be
'converted.' This conversion cannot be taught
nor proven to them; they must experience it.
And very likely they will resist the new tech
nique at first. Therefore, the first step is to gain
management commitment. Management
should be sold on the method-for committing
the money for training and follow-on consult
ing and for the needed patience to see the first
few projects through. Without management
commitment, use of the methodology will be
spotty. Management must continually say,
"This is our programming standard now; you
will use it and it only."

Initial training. Once management is con
vinced that the standard is worthwhile, then
there needs to be training, and a lot of it. Train
everyone in sight seemed to be the motto of
the companies we visited. Train not only the
analysts and programmers but also systems
management and users. While users do not
need to learn the technical aspects of the new
method, they do need to know the new proce
dures. As we mentioned, the development life
cycle is dramatically changed using any of the
new methods. Over one-half of the develop
ment time will be spent creating only design

EDP ANALYZER, MARCH, 1979

diagrams, not code. This is not what users ex
pect, so they need to be forewarned that this
does not mean that things are going poorly.
Actually it should mean that the project is go
ing well, and the resulting system will be more
to their liking.

So system development management needs
to spend money to train its personnel, either by
contracting for the training services or by send
ing people to outside classes. Live classes are
necessary. Books and video taped courses are
useful but not sufficient, we were warned; they
just do not provide the interaction that is
needed by the technicians.

Follow-on consulting. While one training
course will give the basics of a new technique,
it does not assure usage. Programmers will
need some 'reassurance' help during their ini
tial use of the technique. Someone very knowl
edgeable needs to be around to review design
diagrams on a person-to-person basis and in
structured walk-throughs. This can be a com
pany employee or a consultant; the companies
we talked with used both.

After the programmers have used the meth
odology on a project, they request little help.
But answering the initial requests is essential,
we were told. Using the C/Y method, where it
is difficult to move from one stage to another,
consulting help is particularly crucial.

So acquiring on-going help facilitates the
correct use of the new techniques.

Expect mid-project panic. The people we
talked with said that in some cases there was
initial programmer resistance to the use of the
new techniques. But the real panic occurred
about half way through the project, when the
team was still working on design diagrams.
Users, management and even project members
were used to seeing some code quite early in a
typical project. This does not occur when using
the new methods. And no matter how much
warning has been given, when the length of the
design phase actually does double, panic sets
in. The fear, of course, is that the design will
not be that much better to make the coding go
that much faster than in the past. So the team
members begin to think about cutting the de
sign phase short. "Let's go with what we have,

11

it's pretty good" or "We could at least start
coding these sections," they say.

It is at this point that management and pro
ject leaders need to remain firm about com
pleting the design phase before beginning cod
ing. This takes a lot of determination, we were
told. But when the project is over, everyone
will then say, "Yes, the design is a whole lot
better than in the past, and yes, the coding did
go a whole lot faster. So, yes, we were right to
force the team to follow the methodology's life
cycle."

Perform an audit. The first few projects us
ing the new method probably will not go as
smoothly as desired, and the teams may not ac
tually be using the methodology quite prop
erly. For these reasons, and to reassure the staff
of management's commitment to the use of the
new technique, we recommend an audit. It
should be performed by outsiders who know
the technique and can assess whether it is be
ing used correctly.

Those then are the stages to successfully in
troducing a new standard program design
method. Now we need to ask, "Is it worth it?"

Is standardization worth it?

Our discussion illustrates that standardizing
on a program design methodology can be
done, but it is difficult and expensive. Is it
worth it? Well, the people we talked to think
it is. The benefits they are receiving practically
speak for themselves. Their development cycle
is more predictable, their designs are more
complete, their maintenance is greatly re
duced, their software is more reliable, and
their documentation is created during develop
ment, not as an after-thought.

In addition to these benefits, we see one fur
ther reason for standardizing. We expect the
expanded use of these more popular methods
to lead to the development of automated pro
gram design tools. Where there is a market,
someone will surely create a product to sell.
The automated documentation tools already
mentioned are the first step. Let's see what fu
ture products might look like.

Indicative of what will be offered, we think,
are two interactive development systems al
ready on the market. The first of these is the

EDP ANALYZER, MARCH, 1979

Bell Labs' 'programmer's workbench' system,
which runs on DEC PDP-11 computers under
Bell Labs' UNIX time-sharing operating system
(Reference 9). It is used to develop software
not only for DEC equipment but also for other
computers, such as IBM and Univac. Bell Labs
has licensed some organizations (such as Inter
active Systems Corporation of Santa Monica,
California) to sell and maintain UNIX. The sec
ond is the Maestro Programming System,
which is offered in the U.S. by Itel Corporation
(Reference IO). It differs from the Bell Labs'
system in that it is stand-alone, with its own
processor. It can handle up to ten programmer
work-stations, which are graphic CRT termi
nals.

We expect announcements of similar system
development work-stations (and their enhance
ments) to become commonplace in the 1980s.
So we plan to discuss this topic in more depth
in a near-future issue.

All of the methods we have discussed use di
agrams of one kind or another to help the pro
grammer put some structure to the problem at
hand. The drawing of these diagrams certainly
can be (and has been) mechanized. We also see
aids in future work-stations providing valuable
help to programmers in four design areas:
checking, translation, routine aspects of design,
and documentation.

Checking. Some types of completeness of de
signs can be checked by a computer. The
batch-run documentation tools now in use do
have some checking capabilities; for example,
they check to see that each selection operation
has at least two output paths. We expect this
checking function to become much more so
phisticated in future products.

Translation. A design method that takes a
programmer naturally into pseudo code can be
automated to perform this diagram-to-pseudo
code translation. It can also do the pseudo
code-to-code translation. It is not too difficult
to imagine a programmer performing the deci
sion tasks in program design and letting the
computer perform these code translations. This
is analogous to our moving further and further
away from machine language coding through
the use of higher level languages.

12

Routine aspects of design. We see the au
tomated tools significantly helping program
mers perform the routine aspects of design. In
teractive versions will allow programmers to
design on-line, much as they program on-line
today. Cheap micro work-stations will replace
pencil and paper, and significantly speed up
the design process. ·

The argument against on-line programming
initially was that programmers could not think
at terminals. Well, this argument has proven
to be untrue; programmers do sit and think at
terminals. And we expect the same to become
true of on-line design. They will not worry
about letting inexpensive terminals tied to mi
cro-computers stand idle while they think.

We also expect the computer to store nu
merous design aids, such as lists of common
operations used in the Jackson method, deci
sion table routines, commonly used modules,
and, of course, the ability to produce the
graphics of the program design method.

Maintenance. Finally we see automated pro
ducts maintaining the entire design process:
updating diagrams, keeping project statistics,
providing electronic work areas, linking the
programmer work-stations to other systems,
etc. The ease with which these facilities can be
used, as well as the features themselves, will
need to be considered in future selections.

So, to the question, "Is it worth standardiz
ing on a program design method?" we answer,
"Yes, because it will very likely provide bene
fits in software development today and lead to
automated program design tools in the future."
Automated products are in the offing, we feel,

and instituting the use of one df the more pop
ular methods will place a company in a better
position to evaluate and take advantage of
these new developments when they become
available.

REFERENCES
1. Wamier, J-D. Logical Construction of Programs, Mar

tinus Nijhoff, Social Sciences Division (for U.S.: 160
Old Derby St., Hingham, Mass. 02043; for Europe: Pi
eterskerkhof 38, Leiden, The Netherlands).

2. Orr, Kenneth T. Structured Systems Development,
Yourdon Press (1133 Avenue of the Americas, New
York, NY 10036), 1977; price $12.50.

3. For more information on the structured systems de
sign course, contact Langston, Kitch and Associates,
715 East 8th St., Topeka, Kansas 66607.

4. Jackson, Michael A. Principles of Program Design, Ac
ademic Press (111 Fifth Avenue, New York, NY
10003), 1975; price $22.75.

5. For more information on the Infotech Programming
Technology method, contact Infotech International:
(1) in the United States at 234 East Colorado Blvd.,
Pasadena, California 91101, and (2) in Europe at
Nicholson House, Maidenhead, Berkshire, England.

6. Stevens, W. P., G. J. Myers and L. A. Constantine,
"Structured design," IBM Systems Journal (IBM, Ar
monk, New York, NY 10504), Vol. 13, No. 2 1974;
pp. 115-139; price $1.75.

7. Yourdon, Edward and Larry A. Constantine. Struc
tured Design, Yourdon Press (address above), 1975;
price $25.00.

8. Stevens, Bruce M., "Structured techniques: Compara
tive analysis," available from Langston, Kitch and As
sociates (address above), 1976.

9. Ivie, E. L., "The programmer's workbench-A ma
chine for software development," Communications of
the ACM (1133 Avenue of the Americas, New York,
N.Y. 10036), October 1977, p. 746-753; price $5 pre
paid.

10. For more information on the Maestro Programming
System, contact Itel Corp. (One Embarcadero Center,
San Francisco, Calif. 94lll).

Prepared by:
Barbara C. McNurlin

Associate Editor

EDP ANALYZER published monthly and Copyright© 1979 by Canning Publications, Inc., 925 Anza Avenue,
Vista, Calif. 92083. All rights reserved. While the contents of each report are based on the best information available to
us, we cannot guarantee them. This report may not be reproduced in whole or in part, including photocopy repro
duction, without the written permission of the publisher. Richard G. Canning, Editor and Publisher. Subscription
rates and back issue prices on last page. Please report non-receipt of an issue within one month of normal receiving
date. Missing issues requested after this time will be supplied at regular rate.

EDP ANALYZER, MARCH, 1979 13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1976 (Volume 14)

Number
1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number
1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
11. Using Some New Programming Techniques
12. Progress in Project Management

1978 (Volume 16)

Number
1. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1
3. Progress in Software Engineering: Part 2
4. The Debate on Trans-border Data Flows
5. Planning for DBMS Conversions
6. "Personal" Computers in Business
7. Planning to Use Public Packet Networks
8. The Challenges of Distributed Systems
9. The Automated Office: Part l

10. The Automated Office: Part 2
11. Get Ready for Major Changes
12. Data Encryption: Is It for You?

1979 (Volume 171

Number
1. The Analysis of User Needs
2. The Production of Better Software
3. Program Design Techniques

(List of subjects prior to 1976 sent upon request)

PRICE SCHEDULE (all prices in u.s. dollars)

Subscriptions (see notes 1,2,4,5)

1 year
2 years
3 years

Back issues (see notes 1,2,3)
First copy
Additional copies

Binders, each (see notes 2,5,6)
(in California

NOTES

U.S., Canada, Mexico
(surface delivery)

$48
88

120

$6
5

$6.25
6.63, including tax)

Other countries
(via air mail)

$60
112
156

$7
6

$9.75

1. Reduced prices are in effect for multiple copy subscriptions and for larger quantities of a back issue. Write for
details. ·

2. Subscription agency orders are limited to single copy subscriptions for one-, two-, and three-years only.
3. Because of the continuing demand for back issues, all previous reports are available. All back issues, at above

prices, are sent air mail.
4. Optional air mail delivery is available for Canada and Mexico.
5. We strongly recommend AIR MAIL delivery to "other countries" of the world, and have included the added cost

in these prices.
6. The attractive binders, for holding 12 issues of EDP ANALYZER, require no punching or special equipment.

Send your order and check to:
EDP ANALYZER
Subscription Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-3233

Send editorial correspondence to:
EDP ANALYZER
Editorial Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-5900

Company~-------------------------------------~

Addre~~---------------------------------------
City, State, ZIP Code ___________________________________ _

