
EDP ANALYZER
© 1979 by Canning Publications, Inc.

FEBRUARY, 1979
VOL 17, NO. 2

THE PRODUCTION OF BETTER SOFTWARE

As we have indicated in recent issues, we think you will be
hearing a lot more about improved system development method
ologies in the months ahead. Numerous new methods are in field
use, and their benefits and deficiencies are becoming apparent.
In our review of what is emerging, we discussed (in last month's
report) two methods for analyzing user needs. In this report, we
discuss some other methodologies that support the analysis phase
as well as system design. And next month, we will address pro
gram design. We believe that you should be familiar with the
similarities and the differences among these leading methodolo
gies. Here is what we see happening.

The goal in software development is to
create software that performs reliably, meets
user requirements, and does nothing that it is
not supposed to do. But this goal is still not be
ing realized in much of today's software, we
gather. The problem centers around system
complexity and the difficulties that arise be
cause of this complexity.

We have addressed the question of how new
methodologies attack this problem of system
complexity-in our November 1977, February
and March 1978, and in last month's reports.
As we see it, the methodologies typically have
the following components for handling com
plexity.

Disciplined approach. Complexity seems to
be best handled by adopting a top-down ap
proach to analysis, design, and construction,
using successive decomposition. (Other names
often used for this are functional decomposi
tion and levels of abstraction.) Coupled with

this top-down methodology is a set of prefer
red practices for conducting analysis, design,
and construction. The term 'structured' is often
applied to currently popular practices.

Recognition of tendency to err. This view
point recognizes that mistakes of both omis
sion and commission are sure to occur at all
stages of system building. One of the main
tools used is inspections, performed at every
stage of the project and at every level of sys
tem decomposition. The goal is to catch the
errors as early as possible. The other part of
this viewpoint is the realization that iterittion
will be required, to re-do parts of the system as
the mistakes are uncovered. So the practices of
design and construction that are preferred are
those that allow for fairly easy correction.

More efficient use of resources. The method
ologies recognize that individual differences ex
ist among staff members. So specialization is
often advocated, in one form or another, to

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; or-
ders for copies filled promptly; prices listed on last page. .

take advantage of these differences. Chief pro
grammer teams are one form of specialization;
Weinberg's unstructured teams are another.
Then, too, mechanized aids are being advo
cated to help in the analysis, design, and con
struction stages. These include automated doc
umentation tools, analysis tools, and interac
tive programming facilities.

As an example, in our November 1977 re
port we discussed the set of improved pro
gramming technolgies (IPTs) that IBM has de
veloped and is marketing; see Reference 5.
This is an assemblage of stand-alone methods.
Users may choose almost any combination of
the methods.

IBM's disciplined approach includes top
down design, HIPO charts, pseudo code, struc
tured programming, and top-down program
ming. The recognition of the tendency to err is
handled by structured walk-throughs. And the
more efficient use of resources is accomplished
by chief programmer teams, development sup
port library, and an interactive debugging and
testing facility using TSO. The development
support library stores successive versions of
programs and test data.

It will be helpful, we think, to keep these
IPTs in mind when reading the description of
the other methods we will discuss shortly.
There are some significant differences between
the IPTs and these other methods.

We will discuss Chase Manhattan Bank's use
of data flow diagrams and PSL/PSA, Armco
Inc.' s use of PRIDE, and Placoplatre' s use of
W arnier' s LCS.

Chase Manhattan Bank

Chase Manhattan Bank, with headquarters in
New York City, is the third largest U.S. bank,
according to Fortune magazine. It has over $53
billion in assets and more than 30,000 employ
ees.

In late 1977, Chase reorganized its head
quarters operations functions into groups or di
visions, structured along banking product lines.
Together with this reorganization, the data
processing responsibility was decentralized
into the groups or divisions-including the ap
plication system development function. We
talked to a data processing manager in the

EDP ANALYZER, FEBRUARY, 1979

processing utility group, which handles check
processing and payment systems.

In 1975, when he was a programmer, this
manager was exposed to structured program
ming and, some months later, to structured
program design and other development meth
odologies. He began using some of these meth
odologies in his own programming. Partially
because of this, he was put in charge of the
bank's programmer productivity program. He
started to apply these techniques more widely.
With the reorganization, he has adopted a set
of methodologies as 'standard' within his
group.

The methodologies used within his develop
ment staff include functional decomposition,
data flow analysis, requirements specification
language, structured design, pseudo code, de
velopment support library, interactive program
development, structured coding, prototyping,
inspections, and a data dictionary.

The more powerful of these methodologies
were learned and applied almost in a bottom
up manner, he told us. That is, the first one
learned was structured coding. Then came
structured design, followed by structured anal
ysis (data flow diagrams). Finally, he and his
people learned how to perform functional de
composition. In practice, these techniques are
used in the other order, starting with func
tional decomposition.

With functional decompostion, what one is
really decomposing is the data, we were told.
After the data is defined at each level, the
processes for operating on the data are defined.

We visited Chase to learn about their use of
two of the methodologies-data flow analysis
and a problem statement language and ana
lyzer.

Data flow analysis

In 1976, Chris Gane, then a vice president at
Yourdon, Inc., presented a seminar at Chase on
data flow analysis, which triggered the bank's
use of this methodology. It has been derived
from ideas originally developed by Larry Con
stantine, which we will discuss briefly later in
this report and in more detail next month.
Gane and Trish Sarson have since written a
book about data flow analysis (Reference 1).

2

This is a very readable book upon which the
following discussion is based.

Data flow analysis is a graphical method
that uses four symbols-one for a source or
destination of data, another for a flow of data,
a third for a process which transforms flows of
data, and one for a store of data. The mecha
nisms employed (computer, manual proce
dures, etc.) and the time or volume of data
flow are not diagrammed.

Data flow analysis starts simply, by drawing
the main data flows for the application under
consideration. For instance, consider an order
shipping-billing application. The initial dia
gram might just show the flow of customer or
der data. Orders are received, credit is checked
by reference to a customer file, and inventory
is checked by reference to an inventory file.
The diagram is then expanded to include the
inventory replenishment function. As inventory
falls below a specified point, a purchase order
must be issued, which goes both to a supplier
and to the open order file. Then the accounts
payable and accounts receivable functions are
added to the diagram. Eventually, a rather
complex, convoluted data flow diagram of the
whole application results; this is sometimes
called a 'bubble chart.'

The experience at Chase indicates that such
a high level diagram is very useful for describ
ing an application system to user department
management. The diagram is quite understand
able by these people, we were told. No com
puter jargon is used on the diagrams. The man
agers can grasp what is, or is proposed to be,
done and can indicate where they want
changes to be made.

The next step is to start decomposing this
overall diagram into departmental data flows,
identifying organizational units that generate
or receive data. The people at Chase who are
using this method apply Constantine's ideas of
cohesion and coupling for forming logical
groupings of data flows. The next step is to
identify blocks of data associated with jobs,
tasks, or work stations. The blocks are then de
composed into logical records and data struc
ture diagrams. The data structure of a report,
for instance, might show a header, a body, and
a summary, each with one or more levels of
sub-division.

EDP ANALYZER, FEBRUARY, 1979

In a presentation given at the GUIDE 46

meeting in May of last year, three members of
the processing utility group at Chase made the
point that their functional decomposition deals
mainly with data structures rather than with
processes. Most analytic methods emphasize
the hierarchical decomposition of processes.
Hierarchy is not a meaningful feature of their
decomposition, however. Instead, at Chase
they use data flow diagrams, data structure dia
grams, procedures written in structured Eng
lish, and well defined attributes to describe the
network of primitive functions which consti
tute the functional specifications of the system.

The next step is to start using pseudo code
to describe the operations involved in each
step, which operate on groups of data ele
ments. The final decomposition step is to ex
press the operations that are performed on ele
mentary data items, in a manner most suited to
the logic-pseudo code, decision tables, or de
cision trees.

As mentioned, the highest level data flow di
agram is complex and convoluted. However,
by the time it has been decomposed to the
lowest level, the diagrams are fairly straight
forward, they told us.

To support this decomposition process,
Chase uses a problem statement language (psL)
and a problem statement analyzer (PSA).

PSL/PSA

These two tools were developed under the
ISDOS project at the University of Michigan,
led by Dr. Daniel' Teichroew. Our first discus
sion of these technologies was in our Novem
ber 1971 report. Since that time, PSL and PSA

have graduated from the research and develop
ment stage and are now in everyday use at a
number of large organizations such as Chase.
For more information on these technologies,
see Reference 6.

PSL is a language for describing systems; it is
not a procedural programming language. It
can name up to 20 types of objects (such as IN

PUT, OUTPUT, and PROCESS), can describe prop
erties of those objects (such as synonyms and
key words), and can describe relationships be
tween objects.

PSA is a software package that is used to
check the data as it is entered, store it, analyze

3

it, and produce up to 20 different reports. PSA
is somewhat like a data dictionary in that it
stores data definitions in human-readable for
mat. But it goes much further; it also stores
system and process definitions, and performs a
variety of types of checks on these definitions.
PsA runs on a number of large systems, includ
ing IBM, Univac, CDC, Honeywell, Amdahl,
DEC, Siemens, and Fujitsu.

Chase begins using PSL when they decom
pose the departmental data flows into blocks
of data. They enter the PSL statements into
PSA, for validation, storage, and analysis. In
subsequent decomposition steps, the lower
level data flows and processes are defined in
PSL. PSA can be used for drawing the data flow
diagrams, making the updating of those dia
grams much easier. Also, at each step, PSA pro
duces reports that show inputs that have not
been used, outputs for which no input exists,
processes that have outputs but no inputs, and
so on. Using these reports, the system analysts
are able to spot many of the errors of omission
and commission, well before programming be
gins.

The end result of using these methodologies,
the people at Chase told us, has been better
engineered software-software that is easier to
maintain, easier to enhance, and with fewer
aborts due to programming errors.

Armco, Inc.

Armco, Inc., with headquarters in Middle
town, Ohio, is a major manufacturer of steel,
metal drainage, and building products. Annual
sales are in excess of $3 billion and the com
pany employs more than 50,000 people. The
corporate computer center uses twin IBM
370/168s, and a variety of other computing
equipment is used at the divisions and subsidi
ary companies.

The metal products division in Middletown,
with sales of about $350 million and about
5,000 employees, obtained the PRIDE system
development methodology in 1976, to aid
them with their system development. They se
lected PRIDE because it covers project manage
ment, data management, documentation, ad
ministrative procedures, and user involvement.
Since acquiring PRIDE, the division has used it
on all new development efforts. The division

EDP ANALYZER, FEBRUARY, 1979

has a development staff of 15 people, and uses
outside consultants as needed.

The division has used PRIDE in varying de
grees on a wide variety of projects. For exam
ple, in connection with purchased software,
they have used it to design the installation plan
and to create all descriptive documentation.
With this approach, they have obtained a bet
ter installation of purchased software than they
had ever had before. Also, they have used
PRIDE for small pro;ects, such as enhancements
to existing systems as well as for small, stand
alone systems. Perhaps the main use of PRIDE,
though, is in connection with ma;or pro;ects,
which can require up to three years to imple
ment. These very large, complex, or very long
projects remain a difficult problem to resolve.
But PRIDE does provide them with a workable
methodology (called 'chronological decomposi
tion') for structuring the design of the new sys
tem.

PRIDE is a set of 'standard' practices for de
veloping computer-based application systems,
based on this structured method. It includes
both the design and construction methods to
be used plus the project management methods
for controlling a project. PRIDE uses nine well
defined phases that relate to the structured
components of the system. The first three
cover the system study, system design, and sub
system design, the next three cover the design
of the manual system, program design, and
program test, and the final three cover system
testing, system operation, and system audit.
There are numerous check points and user
sign-off points in these nine phases.

As the people at Armco say, a methodology
does not cause successful system development
projects-people do! But PRIDE does increase
the probability of success almost regardless of
who uses it. As compared with the methods
they used previously, it provides more compre
hensive documentation at earlier stages of a
project, it provides better communication
among the involved parties, it encourages
greater user involvement at all levels and all
stages of a project, and it leads to better defi
nition and planning of requirements and re
sources.

They cited one interesting example of the
use of PRIDE-their first major use of it, as a

4

matter of fact. The purpose of the project was
to develop a manufacturing order entry system
for a steel plant. The project was initiated us
ing PRIDE, for determining the user needs and
for designing the overall system and its sub-sys- ,
terns. In the course of the project, a minor cri
sis occurred-one that is not uncommon in
data processing: a number of people associated
with the project moved on to other responsi
bilities. Rather than hire and train new people,
management decided to utilize contract pro
grammers for that phase of the project.

So proposals were obtained from several
software and consulting firms. Some of these
firms proposed the use of their senior people
(at consequent high daily rates) but Armco felt
that the specifications were well-enough docu
mented that the programming could be done
by less experienced people. And, in fact, one
firm agreed with this; it bid the services of two
experienced programmers to work on Armco
premises. The contract was given to that firm.

The results of that project still impress the
people at Armco. In about three months, these
two people wrote some 120 modules, 75 of
which were in PL/I, that constituted the manu
facturing order entry system. It was an out
standing example of productivity, they still
feel. Looking back at this project, the systems
department can see how they could have made
the specifications for the system even more
complete than they were. But even with this
first major use of PRIDE, the specifications were
quite satisfactory and provided the basis on
which the programming was done.

PRIDE and Logik

PRIDE and PRIDE-Logik were developed and
are marketed by M. Bryce and Associates, Inc.,
of Cincinnati, Ohio. We discussed PRIDE in our
December 1974 issue, and Logik in our Janu
ary 1978 issue.

As discussed above, PRIDE is the underlying
project management and system development
methodology, for developing computer-based
systems. It includes a comprehensive 'data
management' function that initially was han
dled manually during the development cycle.

Logik has mechanized that data manage
ment function, as the term is used by Bryce.

EDP ANALYZER, FEBRUARY, 1979

That is, all system definitions, process defini
tions, and data definitions that fall within the
scope of the system being built are captured,
stored, and analyzed. As these definitions are
developed during the various stages of PRIDE,
they are entered into the Logik dictionary and
analyses are performed on them. Processes that
have no inputs or that produce no outputs are
identified. Data fields in outputs that have not
been inputted or computed are flagged. And so
on.

Milt Bryce, the originator of PRIDE, believes
that these two methodologies cover the engi
neering and building of complete application
systems, including the management of the pro
jects. Further, they also produce the documen
tation of the results as byproducts.

M. Bryce and Associates, Inc. are now mar
keting the combination of PRIDE and Logik un
der the name 'Automated System Design Meth
odology' (ASDM). This combination has been
mechanized (in COBOL) to run on many existing
maxi computers and is being made available
on mini computers (any computer with ANS
COBOL, 128K, and relative input-output, they
tell us).

In using ASDM, analysts would retrieve from
the Logik dictionary as many definitions (of
both system and data components) as exist
there that apply to the system under study.
Such information helps the analysts determine
user requirements.

The design phase use of ASDM begins with
identifying the 'regular' outputs that are de
sired from the new overall system. The de
signer enters the definition of these outputs
into ASDM, including any known procedures
(such as 'gross pay = rate x hours'). The de
signer also enters the definition of inputs and,
as required, of the files. Then the designer in
vestigates a series of questions. Is the output
data supported by data in the files? If not, is it
supported by input? Is each output produced
in time cycles or on request? And so on.

Then comes 'chronological decomposition.'
The overall system is divided into sub-systems,
in terms of time cycles, offsets within time cy
cles, response time requirements, etc. Those
outputs which must be produced interactively
are identified, as well as those which must be
produced daily, weekly, monthly, and so on.

5

When the timing of the outputs has been es
tablished, the designers then determine when
the inputs must be made available in order to
support the outputs.

When this time cycle design has been com
pleted, then the designers use ASDM to check
all data flows in all sub-systems. Gradually, all
inconsistencies and missing elements should be
identified and corrected.

A point to make here is that ASDM incorpo
rates the three elements we listed at the begin
ning of this report. There is a disciplined ap
proach using a set of preferred practices.
There is a recognition of the tendency to err,
by providing inspection points in the several
stages and by the checking that is done by
Logik. And the methodology seeks to make
more efficient use of resouces by mechanizing
many of the routine functions that analysts and
designers must perform.

For more information on ASDM, see Refer
ence 7.

Societe Placoplatre

Societe Placoplatre, headquartered in Rueil,
France, near Paris, is a manufacturer of
plasterboard products for the construction in
dustry. The company has four geographically
dispersed plants in France plus seven district
sales offices, and employs some 1200 people.
For its data processing, Placoplatre uses a
Honeywell H2050, plus a Datanet 2000 for
serving terminals at the 11 remote sites. The
data processing staff totals 25, of which seven
are in system development.

In 1971, Placoplatre became one of the first
users of W arnier' s logic for constructing pro
grams (LeP), developed by Jean-Dominique
Warnier of CU-Honeywell Bull in France. We
described Placoplatre's experiences with LeP in
our December 1974 issue. They continue to
use LeP and, for example, developed a tele
processing monitor with it that worked so well
they sold copies to other users.

In 1974, Placoplatre began using Warnier's
logic for constructing systems (Les); again,
they were one of the first users of this tech
nique. As with any new method, the company
had some problems with it at first, but they
stayed with it. Placoplatre is now using Les

EDP ANALYZER, FEBRUARY, 1979

(together with LeP) for all new application sys
tem development.

What did Placoplatre seek when it first con
sidered Les? They sought a methodology for
developing application systems that would sup
port flexible, reliable system development and
that would meet the needs of their company.
They wanted to be able to identify all of the
data and data relationships that the company
could foresee for its future data processing, so
that they would not continue to be surprised
by 'new' data requirements. They felt-and
they still feel-that Les meets these needs.

Let us consider briefly what Les is. It is a
fairly complex system and we cannot do justice
to it in a brief write up. For more information,
see Reference 8.

LCS

At the heart of Les is W arnier' s philosophy:
"Do not try to copy your present system," he
says. "This just leads to undesirable redundancy
of data and programs. Instead, concentrate on
what data the users really need."

Les is primarily concerned with finding all
elementary data items that are needed by the
organization. These data items are then
grouped into logical files and eventually into
physical files.

To help flush out all of the data that users
will need, Les imposes a good deal of structure
on the analysis process. Here are the main ele
ments of W amier' s structure.

An organizational entity-which can be a
section, a department, or a whole organiza
tion-has relations with 'customers' and 'sup
pliers.' Further, these customers and suppliers
can be both internal (to the organization) and
external. For example, an employee might re
quest that a book he needs for his work be pur
chased by the company; the company thus be
comes the employee's (internal) supplier. The
company, in tum, orders the book from a book
store; the company is the customer and the
book store is the (external) supplier.

The customer is the person or organizational
entity that initiates a transaction.

A base defines the relationship between a
customer (or a supplier) and a 'product.' A pro
duct, in tum, can include services, such as the

6

services that an employee performs for the em
ployer. The data incorporated in a base in
cludes (a) general data about that type of rela
tionship, such as pertaining to all employees,
(b) specific customer or supplier data, such as
name and address, (c) data about the specific
product or service, such as the type of employ
ment agreement for that employee, and (d)
transaction data such as pertaining to the spe
cific pay period.

The organization's bases are the aggregate
of these individual bases. This aggregate is or
ganized in terms of customer-internal, cus
tomer-external, supplier-internal, and supplier
extemal.

For practicality, it is not necessary to iden
tify the complete set of bases at the outset. In
stead, identify the ones of interest at the mo
ment and lump the rest under 'other,' to be
sub-divided later.

A transaction is the record of an action. Fur
ther, Wamier sees an action (whether involv
ing internal or external entities) as consisting
of four parts (although all four need not be
present in every case). These are: (a) an order
from the customer to the supplier for a specific
product, (b) the delivery of that order, (c) an
invoice for the delivery of the order, and (d) a
payment for the delivery.

The needed data consists of two main types,
each of which sub-divides into two parts. Pri
mary data must be inputted and stored. In
tum, it is either used for output or for compu
tations. Computed data, as its name implies, is
derived from primary data. In turn, it is either
stored or is re-computed whenever needed.

"If you will look at the organization's data
from this point of view-customers, suppliers,
relationships, transactions, primary data, and
so on," says Wamier, "you will be better able
to identify what data users really need. You
will minimize redundancy in your data files
and you will be less likely to discover impor
tant gaps in your data, as new applications are
developed."

Using the methodology

As Placoplatre has used Les, the first step
has been to look at the overall organization
and identify the bases-the customer/product

EDP ANALYZER, FEBRUARY, 1979

and supplier/product relationships. The com
pany feels that it has identified all such rela
tionships.

Then, for the application area under consid
eration, they start collecting the 'output' data
of the present system. They identify the pri
mary data and the computed data, along with
the formulas of computation.

Next, they sub-divide the bases into logical
base files-logical groupings of customer/pro
duct and supplier/product relationships.
Placoplatre has identified some llO logical
base files.

The next step is to define the physical files,
looking for data items that serve more than
one function. Placoplatre has, so far, defined
22 physical files.

Then they identify 'logical programs,' con
sidering the sources and destinations of the
data. Following this, they identify the 'physical
programs.' At this point, the use of LeP can be
started, for constructing the physical programs.

Les includes a variety of cross-reference re
ports, for analyzing these definitions for con
sistency, gaps, and redundancies. These reports
include primary data versus outputs, primary
data versus logical base files, and so on.
Placoplatre has found that the use of these Les
reports have greatly reduced the 'errors' that
used to occur in the data definitions. It is now
known just where each data item is used, for
instance. Maintenance is easier because the
programmer knows just where the change is to
be made.

With Les, there are no big data files; rather,
there are many small ones. Some files are only
tables. New applications generally can make
use of one or more existing files because the
data is so fundamental. Redundancy has been
reduced and new applications integrate quite
easily with existing Les applications. (It will
take Placoplatre some time, however, to inte
grate their pre-Les applications with the Les
data structures.)

Les allows all development people to know
the whole Les application area. The impact of
a new system can be seen, as can a change to
an existing system. Also, programming cannot
begin until the computer operations people
can see that a new application integrates ·well
with the existing applications. The people at

7

Placoplatre are pleased with the benefits that
they are getting from LCS.

Two other sources

There are two other sources of relevant in
formation that we would like to mention.

Structured anarysis and system specification,
by Tom De Marco (Reference 2), is a quite
comprehensive discussion of the system devel
opment methodology offered by Yourdon, Inc.
Much of the original thinking of this method
ology is credited to Larry Constantine, but Ed
ward Yourdon and his colleagues (including
Tom De Marco) have done a lot to extend and
refine the concepts for field use.

Constantine's ideas originally were applied
mainly to the design of modular programs. But
the people at Yourdon, Inc. have extended
them into the areas of system analysis and sys
tem design.

As P. J. Plauger says in the foreward of this
book, "What I like most about this book is
how well it teaches the construction and evalu
ation of Data Flow Diagrams. Larry Constan
tine encouraged the use of such graphic aids
over a dozen years ago as a way to analyze a
restricted class of systems known as transform
centers. Transform Analysis, however, seemed
to get lost among the myriad innovations of
Structured Design. It is only with 20-20 hind
sight that we can see that the transform center
is but the simplest non-trivial Data Flow Dia
gram, and that an understanding of data flow is
vital to the success of any system design."

The heart of the book might be considered
to be the structured analysis of system require
ments through the development of data flow
diagrams. But the important role of the data
dictionary is also emphasized. And eventually
the system developers get to the processes,
which are handled (at this level) by structured
English, decision tables, or decision trees.

The book is very readable and abounds with
examples.

User experiences with new software methods, a
technical session at the 1978 National Com
puter Conference (Reference 3), was filled with
practical user experiences with some of the
methods we have discussed this month and last
month.

EDP ANALYZER, FEBRUARY, 1979

The conference proceedings contain rather
brief position papers by the panel members.
But, in addition, a cassette recording of the ac
tual session can be obtained; it includes infor
mation not found in the position papers.

We would encourage readers who are inter
ested in the methodologies that we are discuss
ing in this series of reports to obtain the sev
eral source materials listed in the references.

An emerging pattern
As the above discussion has indicated, it ap

pears that a number of common characteristics
are emerging for a system development meth
odology.

One might ask, of course, whether it is rea
sonable to expect one methodology to win out.
Will one methodology adequately serve both
large and small organizations, for systems that
range from simple to complex, and for applica
tions that range from business to scientific to
air traffic control? We suspect that, while dif
ferent methodologies might be used in these
several environments, they will have many
points in common. It is those points in com
mon that we are talking about.

Following are the common characteristics
that are emerging, in our opinion.

A disciplined approach

As mentioned, a disciplined approach is one
of the common characteristics of the method
ologies. It, in turn, has several attributes.

An integrated methodology. It seems to us
that, for any particular organization, the devel
opment staff should be concerned with only
one methodology, consistently applied from
project initiation to operation. We do not see
a series of techniques, which the development
staff may or may not use as they choose, as the
right answer. True, the one methodology may
consist of a number of elements for handling
analysis, design, construction, and testing. But
these should all be part of the whole, not
stand-alone techniques.

Of the methodologies discussed in this re
port, probably ASDM comes closest to meeting
this goal.

Handle complexity by successive decomposi
tion, starting with the analysis of requirements.

8

This same concept is used for design and con
struction, and should lead naturally from analy
sis to design to construction.

Of the methods discussed, ASDM, LCS/LCP,

and data flow diagrams seem to come closest
to meeting this ideal. Some might argue that
IBM's HIPO charts also should be included
here. While they do provide for successive de
composition, users have reported to us that
HIPO does not lead naturally to program code.

More emphasis on the data. Conventional sys
tem development tends to look first at the
processes (the programs), and eventually gets
around to considering the data definitions. It
seems to us that this sequence should be re
versed. Start with the data definitions; as they
begin to crystallize, consider the processes.
Consider the processes as 'black boxes' at first,
and decide (as W amier suggests) what outputs
they must provide to meet user needs. And as
noted at Chase Manhattan Bank, successive de
composition is really a matter of decomposing
the data.

Constrain the tdfect of errors. Another charac
teristic of the ideal methodology is that it
tends to constrain the effects of errors on the
part of the development staff. Two methodolo
gies stand out in this regard.

One is Constantine's ideas on modular de
sign, incorporated in IBM's top-down methods
and also discussed in References 1 and 2; we
will have more to say about these methods
next month. Constantine seeks minimum cou
pling between modules so that each module is
as free standing as possible. He also seeks max
imum functional cohesion within a module,
where the elements of the module perform
only one function. With such a design, the im
pact of errors is constrained.

The other method is Wamier's LCS, which
modularizes data into many small files. These
'logical base files' are logically developed, not
defined haphazardly. So an error in data defi
nition is likely to be constrained to one such
file.

These four characteristics-an integrated
methodology, the ability to handle complexity
by successive decomposition, giving more em
phasis to the data, and constraining the impact

EDP ANALYZER, FEBRUARY, 1979

of errors by modularization-should apply to a
set of preferred practices.

Set of preferred practices covering analysis,
design, construction, and testing that all devel
opment staff members use.

Here is the crux of the matter, it seems to
us. The overall methodology, consisting of this
set of preferred practices, must be so good that
data processing management can mandate its
use. The development staff generally will resist
'standards' being imposed, because such stan
dards probably mean that the people must
change their thinking habits and job methods.
If those standards can be shown to be deficient
by the staff members, management will have a
hard time demanding their use. So the method
ology must be good enough to stand up under
such attacks.

The methodology must provide a set of us
able, effective, appropriate practices that are
part of an integrated whole and that are used
for analysis, design, construction, and testing.
It seems to us that the state of the art probably
has not reached this point yet, but it is getting
close.

Recognition of tendency to err

The disciplined approach, while it may seek
to help the system designers and builders 'do
the job right,' must recognize that it must also
help them to 'do the job over' when errors are
detected. A fundamental proposition is that er
rors will be injected into the work products at
all stages of a project. So the methodology
must help detect those errors and then facili
tate the changes to correct for the errors.

Inspections. As we discussed last February, a
good amount of research is going on in 'proof
of correctness' methods for insuring the cor
rectness of programs as they are being devel
oped. In a sense, inspections occur continually
as a program is being designed and written, so
that inspections by someone other than the au
thor may not be needed.

But the proof of correctness method is not
yet a part the technology that most system
builders can use. For them, inspections of their

9

work products by qualified people are essen
tial. The inspection procedure should be inher
ent in the system building methodology that is
used.

Of the methodologies that we have dis
cussed, in both this report and the one last
month, we were most impressed by the inspec
tion approach used with SADT. In this case,
each diagram document is studied by a person
with the most knowledge of the area under
consideration. This 'commentor' notes ques
tions, errors, etc. right on the diagram. The au
thor must respond to all such notations, either
making the changes or indicating why they are
not being made. The inspection process is
clearly 'built in' for SADT.

The other methodologies provide for inspec
tions, but not to the same degree, in our opin
ion. Also, in the cases of ASDM, PSA, and LCS,
the mechanized processing results in diagnostic
(inspection) messages. The IPTs include struc
tured walk-throughs which are inspections, but
their use is not 'built in' or mandatory.

Iterations. The inspection procedures should
flush out errors at all stages of the project
analysis, design, construction, and test. Once
the errors have been detected, the methodol
ogy should make the correction of the errors as
easy as possible. (We are including changes in
design, due to any of a variety of reasons, with
the correction of errors.)

The graphical methods-SADT, IA, and data
flow diagrams-can be corrected fairly easily,
we gather from talking to users. It is no big
task to redraw a diagram to incorporate
changes. We understand that the wordiness of
HIPO diagrams make the task more cumber
some, however.

The mechanized documentation methods
such as ASDM and PSA-provide for the easy up
dating of the documents. Changes are enter~
into the computer and the new documentation
can then be printed out.

None of the methodologies have included,
as an integral part of their approaches, meth
ods for easily changing programs. Nothing like
the incremental development approach of Ba
sili and Turner (to be described below) has
been included, to our knowledge. This is one

EDP ANALYZER, FEBRUARY, 1979

of the major missing elements of the methodol
ogies, we think.

Also, none of them have incorporated on
line program development as an integral part
of the methodology. IBM's TSO might be con
sidered part of the IPTs, bu,t its use is optional.
On the same basis, any on-line programming
system could be used with any of the method
ologies. In addition to on-line services, though,
this approach also requires a variety of soft
ware development tools.

For changes in data definitions, PRIDE-Logik
and PSA provide data dictionary functions.
However, we understand that neither provides
a direct interface with a DBMS, for feeding the
data definitions and changes to those defini
tions to the DBMS, for productive use.

Efficient use of resources

As mentioned, the more efficient use of de
velopment resources can come about by staff
specialization and by the use of mechanized
aids.

Staff specialization. Only IBM's IPTs empha
size this point, via the chief programmer team
concept. However, this concept has received
its share of criticism, because the demands
made on the chief programmer are such that
many installations may have no one that quali
fies as a chief programmer.

Perhaps more could be done along the lines
of Gerald Weinberg's unstructured teams,
where the team member with the greatest ca
pability for the current phase becomes the
team leader for that phase.

Not all development staff people can cope
with top-down development; it demands a new
way of thinking, as contrasted with the more
conventional bottom-up approaches. If a meth
odology of the type we are discussing is
adopted-one where top-down development is
fundamental-then these staff members will
have to transfer to other jobs.

Mechanized aids. We see five main types of
mechanized aids being part of the overall
methodology.

One is a development 'data' dictionary. Ac
tually, the dictionary should be able to store
much more than just data definitions. It should
store process definitions, for both manual and

10

computer processes. It should store system
definitions, including data volumes, timing re
quirements, and so on. We discussed the devel
opment dictionary function in our January
1978 issue.

Another is an analysis program, to be used
with the dictionary. It can be used to check for
consistency, for instance, to make sure that all
inputs are used, that all outputs are supported
either by inputs or computations, that all
processes have both inputs and outputs, and so
on.

ASDM and PSA both provide development
dictionary and analysis capabilities.

A third aid is a program and test data li
brary. It should be able to store both the cur
rent and the immediate past version of each
program under development; further, the
printouts should provide an audit trail of all
changes to all programs. Versions of the test
data and test results also should be stored.
IBM's development support library provides
these functions.

A fourth aid is an interactive programming
facility, mentioned above.

Finally, we think that an incremental devel
opment facility, designed to make it easier to
modify and enhance programs and data defini
tions, should be a basic component of the
methodologies.

The ideas of Basili and Turner (Reference 4),
which we discussed in our February and March
issues last year, are of interest here. Their ap
proach starts with the construction of a simple
skeletal subset of the system under develop
ment. It includes a sampling of the key aspects
of the system and ones that will deliver useful
outputs to the users. This skeletal solution is
only an initial guess at the structure of the final
solution.

Build this skeletal solution and give the out
puts to the users, they say. Find out how the
design must be changed, and then change it.
Since only a part of the total system has been
constructed, the complexity should not be too
great and the changes should not pose much of
a problem.

Then add more aspects of the overall system
to the skeletal solution and repeat the process.
As the system evolves, analyze it for structure,
modularity, reliability, and so on. As the need

EDP ANALYZER, FEBRUARY, 1979

for changes becomes apparent, make them.
Most of the significant changes will occur early
in the process, say the authors, when it is not
too difficult to make them.

The system designers can, and should, take
steps to make the initial design reasonably
good. But this approach recognizes that user
requirements errors and system design errors
are sure to creep in. When the errors are de
tected, work has to be done over. Mechanized
aids are needed to make this process as effi
cient as possible.

System development 'workbenches'

As we discussed in our November 1978 re
port, we expect the new computer systems of
the early 1980s to emphasize system develop
ment modules. There are two main reasons for
this belief. For one thing, the state of the art
does, in fact, support many mechanized aids
for system development. Secondly, we see
these modules as strong sales points for the
mainframe manufacturers, as they seek to
counter the plug-compatible competition.

The term 'workbench' is being applied to
these modules, in that they would provide soft
ware tools for use by software developers. The
first use of the term, to our knowledge, was for
the 'programmer's workbench,' developed at
Bell Laboratories. This workbench was created
to run on larger DEC PDP-11 systems, under
Bell Labs' UNIX operating system. It has been
used by Bell Labs for developing application
programs for IBM 370, Univac 1108, and
Xerox Sigma 5 computers.

As conceived by Bell Labs, the workbench
concept applies to the programming function
in its broadest sense-that is, the complete de
velopment and maintenance cycle. The work
bench tools apply to the generation of system
specifications (based on system requirements),
and cover program development, test, moni
toring, evaluation, maintenance, conversion of
data files, and so on. It is our understanding
that the tools included to date have applied
mainly to the conventional programming func
tion.

We suspect that what will be marketed,
however, will be several workbenches-an ana
lyst's workbench, a designer's workbench, a

11

data administrator's workbench, and a pro
grammer's workbench. At first, these probably
will be available only on maxi and mini com
puters. For instance, users can now purchase
the Bell Labs' programmer's workbench by
buying the UNIX operating system from compa
nies that Bell Labs has licensed to sell and
maintain it. In this environment, the work
bench services would be provided on a time
sharing basis, and each programmer might
have his/her own terminal.

Not too far in the future, however, we fore
see workbenches being made available on mi
cro computers, on a hardware/software pack
age basis. Further, the price of such packages
might well be low enough to be economically
attractive to a large number of companies.

Last month, we discussed some ideas related
to the analyst's workbench. The analyst would
draw system diagrams on a graphics terminal,
and the workbench would make easier the re
vising of diagrams, checking for completeness,
numbering them, retaining prior generations of
diagrams, etc.

How about a designer's workbench? As we
see it, this workbench should accept the results
of the analyst's work-the graphic diagrams,
data definitions, etc. It should help the de
signer perform at least the routine aspects of
the design function: help create system dia
grams and revise them as necessary, check in
puts and outputs for consistency and complete
ness, and such. It might also help in the system
decomposition function, although this is still
largely a judgmental process. And it should
have a library of standard application system
software components from which the designer
can select.

We also see a programmer's workbench,
which we will discuss briefly next month, and a
data administrator's workbench, which we will
describe month after next. These several work
benches, among them, should provide the
mechanized aids that we discussed above in
this report.

Yes, the concepts of system development
workbenches are well along toward realization.
Many of the tools are in use today. But it
would he very desirable if the workbenches
could be based on a 'common' approach to sys
tem development.

EDP ANALYZER, FEBRUARY, 1979

The search for fundamentals

As we see it, none of today's methodologies
contain all of the elements that we believe will
become part of the common approach to sys
tem development. But it also appears that to
day's methodologies, among them, contain al
most all of those elements. So it may not be
long before a 'complete' methodology appears.

This common methodology, when it evolves,
probably will incorporate basic ideas that have
been contributed by a number of the original
thinkers in our field.

For instance, Edsger Dijkstra has advocated
the concept of successive decompostion ('lev
els of abstraction') for handling complexity.
Further, he has urged that the use of co TO be
(essentially) eliminated in order to reduce pro
gram complexity. Harlan Mills has proposed
the use of three basic control structures-se
quence, iteration, and choice-to reduce pro
gram complexity. Larry Constantine has devel
oped the ideas of coupling and cohesion for
module design. Jean-Dominique Warnier has
pointed out that data is the 'driving force' that
should shape both system and program design.
Michael Jackson concurs that the program
structure should be based on the data struc
ture, and seeks to find the data structure that
fits a given problem most naturally.

It is not yet clear just what are the true fun
damentals of system and program design and
construction. Each of the above doctrines has
it adherents. Each has had its share of suc
cesses in field use. Each is certainly non-trivial
to learn to use. Each requires a change in 'con
ventional' thinking habits. And so far, each has
its own terminology, rules of use, and view
point. As yet, they are not too compatible with
each other.

Hopefully, as each is exposed to more field
use and as researchers begin to make compara
tive studies of them, certain fundamental prin
ciples will begin to emerge from these doc
trines.

What is the best next step?

In the meantime, what is the best approach
to use, for producing better quality application
software?

12

The group at Chase Manhattan Bank that we
interviewed made a point worth repeating.

Their 'learning sequence' was, first, structured
coding, then structured design, then structured

analysis, and finally successive decomposition.

Their 'using sequence' is the opposite. It starts
with successive decomposition and continues

through analysis and design to coding.

It might be wise to think of installing the
methodology in this manner. Start with the

coding aspect and then work up toward succes
sive decomposition. This is a controversial
point, of course. Some methodologies, such as

SADT (discussed last month), require starting
with successive decomposition.

But which of the doctrines should one

choose? Eventually (hopefully) there will be a
common doctrine, or perhaps a family of doc

trines. But at present, as mentioned, they are
not compatible. You will have to assemble

your own package. And that is going to take a
bit of study.

We suggest that you study the methodolo
gies and tools that we have discussed in these

reports-SADT, IA, PSL/PSA, LCS/LCP, ASDM, and

data flow diagrams, plus the IBM IPTs we dis
cussed in our November 1977 report.

Then study the concepts of Dijkstra, Mills,
Constantine, Wamier, and Jackson, plus oth

ers. Next month, we will continue our discus
sion of better development methods by de

scribing user experiences with some program
development methodologies. We suggest that

you not make a selection of a program design

and construction methodology too quickly.
Study these different approaches and talk to
some users of each.

Then decide what methods best fit your

needs and your resources.

We wish we had a shortcut to suggest. A
few years from now, maybe there will be a

good, common approach for developing better
quality software. It seems imminent, most of

the technology has been developed, but it is
not yet here. Until then, you will have to as

semble your own approach, to fit your own sit
uation.

REFERENCES
1. Gane, C. and T. Sarson, Structured systems analysis:

tools and techniques, Improved System Technologies,
Inc. (888 Seventh Avenue, New York, N.Y. 10019),
1977, 373 pages; price $33 ($30 if prepaid).

2. De Marco, T., Structured analysis and system speci
fication, Yourdon Press (1133 Avenue of the Ameri
cas, New York, N.Y. 10036), 1978, 352 pages; price
$25.

3. Proceedings of 1978 National Computer Conference,
AFIPS Press (210 Summit Avenue, Montvale, N.J.
07645), price $60. The position papers referred to are
on pages 629 to 639. In addition, a cassette recording
of the session "1978 NCC, Th98, User experience
with new software methods" can be obtained from
On-the-Spot Duplicators, Inc., 7309 Fort Hunt Road,
Alexandria, VA 22307; price $5.50 plus billing and
shipping charges.

4. Basili, V.R. and A. J. Turner, "Iterative enhancement:
a practical technique for software development", Soft
ware Engineering (IEEE Computer Society, 5855 Na
ples Plaza, Suite 301, Long Beach, Calif. 90803); De
cember 1975, p. 390-396; price $10.

5. For more information about IBM's IPTs, contact your
local IBM office. They are described in a number of
general information manuals. See GE 19-5086 for an
overview (price $2.70).

6. For more information about PSL/PSA, write ISDOS
Project, Department of Industrial Engineering, 231
West Engineering Building, University of Michigan,
Ann Arbor, Mich. 48109.

7. For more information about PRIDE and ASDM, write
M. Bryce and Associates, Inc., 1248 Springfield Pike,
Cincinnati, Ohio 45215.

8. For more information on J.-D. Warnier's LCP and
LCS: in U.S., contact Van Nostrand Reinhold (450
West 33rd Street, New York, N.Y. 10001); as we go
to press, the book on LCS is still being negotiated; in
Europe, contact Martinius NijhoH, Social Sciences Di
vision, Pieterskerkhof 38, Leiden, The Netherlands.

EDP ANALYZER published monthly and Copyright© 1979 by Canning Publications, Inc., 925 Anza Avenue,
Vista, Calif. 92083. All rights reserved. While the contents of each report are based on the best information available to
us, we cannot guarantee them. This report may not be reproduced in whole or in part, including photocopy repro
duction, without the written permission of the publisher. Richard G. Canning, Editor and Publisher. Subscription
rates and back issue prices on last page. Please report non-receipt of an issue within one month of normal receiving
date. Missing issues requested after this time will be supplied at regular rate.

EDP ANALYZER, FEBRUARY, 1979 13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1976 (Volume 14)

Number
1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number
1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Requirements Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
11. Using Some New Programming Techniques
12. Progress in Project Management

1978 (Volume 16)

Number
1. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1
3. Progress in Software Engineering: Part 2
4. The Debate on Trans-border Data Flows
5. Planning for DBMS Conversions
6. "Personal" Computers in Business
7. Planning to Use Public Packet Networks
8. The Challenges of Distributed Systems
9. The Automated Office: Part 1

10. The Automated Office: Part 2
11. Get Ready for Major Changes
12. Data Encryption: Is It for You?

1979 (Volume 17)

Number
I. The Analysis of User Needs
2. The Production of Better Software

(List of subjects prior to 1976 sent upon request)

PRICE SCHEDULE (all prices in u.s. dollars)

Subscriptions (see notes 1,2,4,5)

1 year
2 years
3 years

Back issues (see notes 1,2,3)
First copy
Additional copies

Binders, each (see notes 2,5 ,6)
(in California

NOTES

U.S., Canada, Mexico
(surface delivery)

$48
88

120

$6
5

$6.25
6.63, including tax)

Other countries
(via air mail)

$60
112
156

$7

6
$9.75

I. Reduced prices are in effect for multiple copy subscriptions and for larger quantities of a back issue. Write for
details.

2. Subscription agency orders are limited to single copy subscriptions for one-, two-, and three-years only.
3. Because of the continuing demand for back issues, all previous reports are available. All back issues, at above

prices, are sent air mail.

4. Optional air mail delivery is available for Canada and Mexico.
5. We strongly recommend AIR MAIL delivery to "other countries" of the world, and have included the added cost

in these prices.
6. The attractive binders, for holding 12 issues of EDP ANALYZER, require no punching or special equipment.

Send your order and check to:
EDP ANALYZER
Subscription Office
925 Anza A venue
Vista, California 92083
Phone: (714) 724-3233

Send editorial correspondence to:
EDP ANALYZER
Editorial Office
925 Anza A venue
Vista, California 92083
Phone: (714) 724-5900

Name~~~~~~~~---~--~---------~-·~~--~-~~-~------~

Company ~------------------~--~~~~-~-~-~~--------~

Addre~~-~-------~------------~---~-~--~---~--~-~--

City, State, ZIP Code _______ _

