
"

EDP ANALYZER
© 1979 by Canning Publications, Inc.

JANUARY, 1979
VOL. 17, NO. 1

THE ANALYSIS OF USER NEEDS

We continue the discussion of our ideas on what the computer
environment will be like in the early 1980s. As we mentioned two
months ago, we expect that automated methods to aid system devel
opment will be key features of a new generation of computers. And
note: these automated methods should become available on mini
and micro computers, not just on maxis. And what will these au
tomated methods be like? To illustrate, we will consider two pow
erful methodologies in this report that we think represent the direc
tion that automated system development methods will take. Both
aid analysts in making more complete, accurate definitions of user
needs. While not yet automated, both can be-and, we expect, will
be. Now is a good time to become familiar with them.

In this report, we will discuss the char
acteristics of two new methodologies-IA (Infor
mation Analysis) and the SA portion of SADT
(Structured Analysis and. Design Technique)
that seek to aid analysts in developing better
definitions of user needs. In addition, we will
briefly describe some of their user experiences.

To set the stage for this discussion, though, we
will briefly review IBM's HIPO (Hierarchy plus
Input, Process, Output). As with most IBM pro
ducts, HIPO is quite widely known. Because it is
widely known, it provides a basis for compari
son. Both IA and SA have points of similarity and
points of difference with HIPO; it will be helpful,
we think, to point out those similarities and dif
ferences.

The hierarchy part of HIPO is provided by the
hierarchical chart of functions of the system be
ing studied, developed by a 'functional decompo
sition' of the system. Each box on the chart is

named with a verb-noun combination, such as
'compute net pay.' The functions are sub-divided
into lower level boxes; thus 'compute net pay'
might be sub-divided into 'compute gross pay'
and 'compute deductions.' By the numbering
scheme used, the chart can also be used as a 'vi
sual table of contents' for the IPO charts that fol
low.

For each box on the hierarchy chart, an IPO
(input, process, output) diagram is developed.
An IPO diagram has three rectangles drawn on
it. In the left rectangle are listed the various in
puts to the process. In the center rectangle, the
process is described in almost pseudo-code style.
In the right rectangle, the outputs from the
process are listed.

The lowest level IPO charts tend to have the
straight forward, detailed procedures, such as
how the gross pay for regular hours worked is
computed. The higher level charts tend to have

Reproduction prohibited; copying or photocopying this report i's a violation of the copyright law; orders for copies
filled promptly; prices listed on last page.

flow of control procedures, such as PERFORM,
CALL and IF statements.

The only attention that is paid to data is
through the naming of the records related to the
input and output of a process.

Jones (Reference 1) points out that there can
be several .levels of IPO charts-requirements
IPOs, design IPOs, programming IPOs, and docu
mentation IPOs. By implication, the requirements
hierarchy is carried over, in which case the gen
eral structure of the solution would be the same
as the strycture of the requirements functional
breakdown.

Benefits. Users of HIPO have noted several
benefits that they have obtained. It encourages a
functional breakdown of the problem area, in a
top-down fashion. The charts are relatively sim
ple to comprehend and (if little or no jargon is
used) can provide good communications with
users. And when combined with structured
walk-throughs (which we discussed in our No
vember 1977 report), they tend to assure users
that all requirements have been defined.

Complaints. But HIPO has been the target of a
good number of complaints. For one thing, HIPO
is primarily a documentation technique, it is
claimed, with no prescribed method of use. It is
up to the user of HIPO to decide how to get user
requirements. There is no 'configuration man
agement' for the different generations of IPO dia
grams, as they are corrected and modified. The
IPO charts do not lead naturally to code; they are
weak as logic tools, so they often must be supple
mented with flow charts. Top-down data analy
sis of data is not provided, to go along with the
functional analysis. It is annoying to have to
write the process logic on each IPO chart. The
charts tend to be large and cumbersome, and it is
hard to trace the flow of data through a set of
charts. So say the critics.

HJPO is a disciplined approach to functional
analysis, and most disciplines seem to draw the
wrath of analysts and programmers. So perhaps
some of the above complaints can be traced to
this natural resistance to discipline.

But it is also possible that HIPO has some in
herent weaknesses which make it vulnerable to
such attacks. Later in this report, we will give
our ideas of why HIPO has been so criticized.

EDP ANALYZER, JANUARY, 1979

Before discussing SADT and IA, we should
make a point about them. Both are aimed at
helping the analyst create the definition of user
needs, not just documenting the needs once they
have been defined. Both methods seek to support
the analyst's mental processes. Now let us see
how SADT does this.

SA-Structured Analysis
SADT (Structured Analysis and Design Tech

nique) is a proprietary methodology that has
been developed by (and the acronym trade
marked by) SoITech, Inc., of Waltham, Mass.
Work on the methodology began in the 197 3-7 4
time period, and has been continuing since that
time.

We attended a seminar on SADT, presented by
SofTech at the 1978 National Computer Confer
ence, and we have studied some of the SofTech
material on the methodology. In addition, we
have drawn upon papers by Ross (Reference 2),
Combelic (Reference 3) and Combelic's presen
tation at the 1978 National Computer Confer
ence.

Although we have referred to SADT, it is only
the SA portion-structured analysis-with which
we will be concerned in this report.

The methodology includes (a) a graphical lan
guage for building models, (b) a method for de
veloping those models, and (c) management
practices for controlling the development of the
models. The idea here is that the analyst (the
'author,' in SADT terminology) gains a deeper
understanding of the system by developing these
graphical models. than is true of conventional
system study methods.

There are several characteristics of the meth
odology to note. For one thing, it seeks a top
down decomposition of the problem area by way
of modelling the area in the graphical language.
(True, it is almost impossible to do strictly top
down decompostion; some bottom-up work al
most always occurs-but the top-down philoso
phy prevails.) Further, a number of different
models may be used in the development of a sys
tem-functional models to define what the sys
tem must do, implementation models to tell how,
conversion models, and so on. Also, SA deals with
the dual aspects of activities and data. Both are
modelled top-down, using the same graphic lan
guage.

2

The inspection of intermediate work products
(primarily, the SA diagrams) occurs almost con
tinually. Each diagram is inspected by a 'com
mentor,' who is a person with substantial knowl
edge of the particular subject matter. The com
mentor must wn"te the comments on the diagram,
and the author must reply in writing on the doc
ument. So each diagram has an audit trail of its
inspections, decisions, and revisions.

We were told that SA is most appropriate for
larger projects, those involving at least 4 to 6
people for at least 6 to 9 months, and that the re
sults become more impressive as project size and
complexity increase. But once learned, it often is
used on smaller projects. There is a substantial
cost for acquiring the methodology and training
everyone concerned in its use.

The diagrams

The methodology uses two basic types of dia
grams-activity diagrams and data diagrams. On
the activity diagrams, the boxes represent activi
ties and the lines ('arrows,' in SADT terminol
ogy) connecting the boxes represent classes of
data interfaces. Note that the diagrams are not
flow charts and the arrows are not equivalent to
the flow of data, as will be described. On the
data diagrams, the boxes represent data classes
and the arrows represent the activities that gen
erate or use the data.

A general rule in the use of SA is: there must
be no fewer than 3 and no more than 6 boxes on
any diagram. Further, the methodology encour
ages readers and commentors to inspect the dia
grams to make sure that this rule (and others)
are being followed in practice. The reasoning be
hind the rule is that too narrow a view is being
taken if only one or two boxes are shown, while
more than six boxes will cover too much to com
prehend. The diagrams are very 'information
rich,' as we hope to show; even with a maximum
of six boxes, they cover a lot of material.

The concept of bounded context is emphasized
by SofTech. Each box, with all of its arrows,
must completely describe its activity and nothing
outside of that activity (the essence of decomposi
tion).

Arrows entering the left side of an activity box
represent data inputs, and those leaving from the

EDP ANALYZER, JANUARY, 1979

right side represent data outputs. Arrows enter
ing the top of a box are control, and those enter
ing the bottom represent mechanisms.

Control arrows must always be present. They
indicate the conditions or constraints under
which an activity is performed. To illustrate, a
batch control total is an example of a control sig
nal that enters the validation activity; it helps de
termine if the batch, as received, is complete.

Mechanism arrows are used much less fre
quently. They relate to the resources that are
used to perform the activities; a person or a com
puter are examples.

An output from one box can be a control or
input to another box on the diagram. One box
may represent the computation and checking of
batch control totals, for instance, and one of its
outputs would be a control signal to another box
where the validation of individual transactions is
done. If a control total did not check out, then
the batch of transactions would not be passed on.

Parallel processing is allowed and can be
shown on an activity diagram. Also, necessary
sequence is shown. For instance, a batch control
total must be confirmed and the individual trans
actions must be validated before the batch of
transactions can be passed on for further process
ing.

Activiry model. The top-level activity diagram
has from three to six boxes that represent the
complete system being investigated-all of that
system and nothing but that system, as it inter
faces its environment. This may not seem to be
very complex, but since the boundaries of these
top boxes are retained throughout the decompo
sition, it is an important step. And particularly
in the case of a new system, creating this diagram
can require a good amount of time. It is quite
possible, we have been told, for the job to require
several man-months to determine the best three
to six major components of a complex new sys
tem. The decomposition may involve the analyst
in questions of organizational changes, re-assign
ment of responsibilities, possibly enlarging the
scope of the system beyond what was originally
thought, and so on. This is the true structured
analysis, not drawing the diagrams; the diagrams
just support the effort.

Each box has a three to six word description
of the activity: 'pass valid data,' and 'try to fix'

3

are examples. Further, each arrow is labelled:
'delivery data,' 'batch controls,' and 'kind and
number of errors' are examples.

Next, these boxes on the top-level diagram are
decomposed, each on a separate diagram. These
second level diagrams also have from three to six
boxes each. Further, the inputs into a second
level diagram, and the outputs from the diagram,
come from the inputs, outputs, etc. of the box on
the top-level diagram.

We may be giving the impression that creating
an SADT diagram is a lot like drawing a flow
chart. Such is not the case. Ross (Reference 2)
gives a description of the mental processes re
quired to create a diagram. First the box struc
ture is built, by identifying the constraints that
define the boundaries of each box-that is, what
is considered to be inside the box. The use of
'control' arrows helps the author to state pre
cisely his understanding of the activity. Next, the
arrow structure, showing the controlling con
straints for each box, is built. Then build the di
agram structure, says Ross.

The concept of bounded context is important,
both at the diagram level and at the box level. At
the box level, it means the box and all of its ar
rows; the bounded context identifies all functions
that are performed within the box, without re
gard to who performs those functions or how
they are performed.

To illustrate· bounded context, since it is so
fundamental to SA, consider a central billing sub
system within a larger order-shipping-billing
system. The central billing box on the top-level
diagram might show (a) shipping documents as
input, (b) data file additions, changes and dele
tions, plus inquiries and corrections as control,
and (c) reports, invoices, and other inventory and
sales data as output. In such a case, the author
has determined that the maintenance of the cus
tomer billing data file is, in his mind, a part of
this function. Eventually, he will explicitly de
fine just what data and what data file mainte
nance are to be included in this function. The
author has decided that the maintenance of the
accounts receivable data and the posting of cus
tomer payments are not a part of this function,
while the correction of errors on invoices is a
part of the function. Later, as decompostion pro
ceeds (or based upon the comments of a com
mentor), the author may conclude that defective

EDP ANALYZER, JANUARY, 1979

merchandise returned from customers and the
consequent issuance of credit invoices should also
be a part of this function. If so, he goes back to
the top-level diagram, as well as the appropriate
lower level diagrams, and makes the changes.
Eventually, he will feel that he has fully defined
this function and that he has identified all of the
inputs, outputs, and controls that apply.

We give this example to show how the SA dia
grams help the author come to grips with stating
the requirements. The diagrams are not used af
ter the fact, to record the requirements; rather,
they are very much a part of the process of de
veloping the requirements.

Arrows may branch to two or more boxes. By
labelling, the author can indicate whether all the
data interfaces with all of the boxes or whether
each box uses only part of the data.

An activity box becomes 'active' when it uses
some inputs and control to produce some output.
The complete story of a diagram includes all of
the ways that all the boxes can become active.
Thus an SA diagram is very information-rich.
One diagram conveys about the same amount of
information as 10 to 15 pages of text, we were
told-and, in one instance, some 2,000 pages of
text for the requirements of a military informa
tion system were reduced to about 40 SA dia
grams.

The process of decomposing the activity dia
grams is continued until no further decompostion
is warranted.

Data model. After developing the activity
model, the author begins developing a top-down
decompostion of the data, by drawing successive
levels of a data model. Data classes on the top
level diagram might include, for instance, the
data definitions, the data files, transactions, and
reports.

The data model is not a mirror image of the
activity model, we were told. The boxes repre
sent the data classes (at that level of decomposi
tion) and the arrows represent the activities that
inter-relate the different data classes. But the
data model gives a quite different view of the
system. Typically, tlte author gets new insights
into the requirements and must go back and re
vise the activity model.

4

In Soffech's public papers on SADT, not
much information is provided on the develop
ment of data models.

Participants. An 'author' creates the dia
grams, as discussed above. A 'reader' reads one
or more diagrams to gain understanding. A
'commentor' is an expert in the subject area who
acts as an inspector of content; he reads and en
ters comments and questions in writing on the
diagram, as has been mentioned; also, there may
be more than one commentor for a diagram. A
'technical committee' resolves technical issues. A
'project librarian' maintains the file of the vari
ous model diagrams and generations of those dia
grams. An 'instructor' trains authors, readers,
commentors, librarians, data procesing manag
ers, and user department managers in the meth
odology, to the level of detail appropriate to their
jobs. And a 'counselor' is an expert in SADT who
acts as backup for the teacher during the first
project.

Example of use

Combelic (Reference 3) gives a brief descrip
tion of the use of the SA portion of SADT at ITT
Europe. The company adopted this SA portion in
early 197 4 and, in mid-197 5, began developing
its own compatible structured design methodol
ogy for real-time communications switching soft
ware. What the company is now using is a com
bination of the SA portion of SADT plus the in
house design methodology.

The primary inputs to the SA function, says
Combelic, are the list of customer requirements
plus the functional specifications of the telephone
hardware of the system. The output of the SA
function is a functional requirements model-the
set of activity diagrams, many of which are ac
companied by a page or two of explanatory text.
The functional requirements model emphasizes
the what of the system, not the how.

SA provides a disciplined way of understand
ing requirements in detail before starting design,
says Combelic. Further, the method promotes
teamwork, in an environment where a team
might consist of people with widely varying ex
perience, from up to eight different ITT compa
nies, speaking six different languages.

- ITT Europe has found the following benefits
from the use of SA. There has been a decrease in

EDP ANALYZER, JANUARY, 1979

overall software development cost of at least
20%. The quality of the software has improved;
there has been a reduction in the number of bugs
found during integration testing by a factor of
between two and ten. The method has forced
high level decisions early, providing a sound ba
sis for later lower level decisions. It provides an
essentially continuous review and inspection by
means of the written comments (in effect, contin
uous 'walk-throughs'). It encourages agreement
on the requirements before beginning design. It
has allowed non-software people to better under
stand the contribution of software to the opera
tion of the system being built. It has provided an
easy way to measure progress during the analy
sis phase. And it makes staff competence and in
competence visible.

There have been some problems and mistakes
in the use of the methodology, says Combelic. It
is hard for authors to always think in purely
functional terms. At first, they were bothered by
the lack of a design methodology to accompany
SA, so they tended to want to think of how· along
with what. The method was oversold at first, as a
panacea. The company found that mere 'train
ing' was not enough; 'education' was required to
accomplish the needed fundamental change in
mental outlook. Potential authors must be se
lected on the basis of intelligence and willingness
to try the method, rather than just on experience.
And, he says, the training cost is substantial
$20,000 to $40,000 per course, for up to ten au
thors (but worth it).

In his verbal presentation at the 1978 Na
tional Computer Conference, Combelic men
tioned three main problems with the methodol
ogy that still exist (and, by implication, that
probably exist with other similar methodologies).
These are: there are no formal criteria for guid
ing decomposition, there is no way to enforce se
mantic rigor, and there is no way to judge if a
diagram is 'good' -or even to know what 'good'
means.

Combelic stresses a point that seems to apply
to all top-down analysis and design methodolo
gies. That is, the method takes much more time
before design starts than the methods they used
previously. This time is spent in gaining a thor
ough understanding of the requirements. But it
does cause impatience among some participants
and management.

5

(On the question of acceptance, a leading con
sultant in the field, who teaches another struc
tured analysis and design methodology, has been
quoted as saying "Our best customers of our
structured design method, who started using it
two years ago, are no longer using it. The reason
is that the users' 'rrepresentatives had not been
trained in the new' methodology. It did not meet
their expectations so they could not accept it." So
training must include not only the analysts and
programmers but also the data processing man
agers and the user department managers, so that
they understand why the method takes more
time at the outset.)

Combelic makes another interesting point.
About two-thirds of the value of the total analy
sis and design methodology is in the SA part, he
says. That is where the biggest gains are real
ized. But the SA part, by itself, is not sufficient;
the design method is essential. If the SA authors
know that the design points will be considered,
they are more willing to defer those points to the
design phases and concentrate on the what dur
ing the analysis phase.

For more information on SADT, including dis
cussions of other user experiences, see Reference
4.

IA-Information Analysis

We recently attended a seminar in Holland,
presented by the IFIP Applied Information
Processing Group (IFIP/IAG), on Information
Analysis (IA). This methodology was developed
by Professors B. Langefors, ,M. Lundeberg, and
their colleagues at the University of Stockholm,
Sweden, and they presented the bulk of the semi
nar. We had heard many comments about this
methodology over the p~st several years, and
welcomed this chance to learn about it first hand.

The overall methodology consists of five
phases: change analysis, activity studies, infor
mation analysis, data system design, and equip
ment adaption. The last two phases are con
cerned with design, and so we will touch on
them only briefly in this discussion. We will
concentrate instead on activity studies and infor
mation analysis. But first, a brief description of
change analysis.

Change ana{ysis. The first step in any infor
mation system study, say the IA developers,

EDP ANALYZER, JANUARY, 1979

should be an identification of the underlying
problems, from a management or organizational
standpoint. When a new information system is
being considered for some part of an enterprise,
review that part of the enterprise and try to
identify the types of changes and improvements
that are needed. It may turn out that changes are
needed in the 'object' system, that handles the
physical materials as well as the information.

In short, try to see the new information system
in its complete context. What are the basic prob
lems that management wants to solve? What
seem to be the causes of those problems? What
should be the goals of the project?

This concern with the 'object' system, covering
physical products as well as information, carries
over into the next phase, activity studies.

Activity studies

We can describe these studies best by outlining
the mechanics of performing them. The mechan
ics are quite similar to what is used in the re
maining three phases· of the overall methodology.

The method emphasizes user participation in
the process. Thus, the 'analyst' function gener
ally involves both system analysts and users.

The method involves the use of a very simple
form-a large, empty square, about 7 inches on
a side, drawn on an 8 1/2 by 11 inch sheet of
paper. The square defines the boundaries of
what is being analyzed or designed. Everything
within the square is considered to be a part of
the function being studied, and nothing outside
of the square would be a part of the function. So
the concept of 'bol!nds' is injected at the outset.

The analyst draws small boxes just outside the
top of the square to represent documents or ma
terials flowing into the function from the 'outside
world' or from other functions. Management
policies and guidelines, appropriate to this level,
also show as inputs. Similarly, boxes are drawn
just outside the bottom of the square to represent
documents or materials flowing out of the func
tion.

The analyst analyzes the function by identify
ing from three to six activities that make up the
function. Note that these probably will involve
both information handling and materials han
dling activities. For an order-prpduction-ship
ping-billing function, the activities might include
customer order processing, invoicing, production,

6

and inventory handling and distribution, as an
example. In this instance, the analyst sees the
overall function as consisting of these four activi
ties.

To diagram this function, the analyst begins
by identifying the inputs and outputs and draw
ing the appropriate boxes at the top and bottom
of the square. Then comes a bit of a surprise.
For the four activities, the analyst just makes
four large dots within the square, well separated
from each other, and beside each one writes its
name.

A dot for an activity? Yep, that's all-and for
a very good reason, we think. The analyst cannot
write. anything inside the dot; only the name can
be written beside it. The method is saying to the
analyst, "Do not think about the details of this
activity yet, just think about it as a yet-to-be-de
fined activity." The method is thus forcing the
analyst to use a 'levels of abstraction' approach.

Next, the analyst draws a line from one or
more input boxes to one or more activity dots, as
appropriate. In our example, customer orders
flow into customer order processing, and raw
materials flow into production. Similarly, the an
alyst draws lines from the activities to the output
boxes. Thus, a line is drawn from invoicing to
invoices, and from inventory handling and distri
bution to products at customers' sites.

This may sound like a simple process but it is
not. It takes quite a bit of thought to properly
define the boundaries of the object system. We
tried it and discovered a tendency to set the
boundaries too large. And the incorporation of
the materials handling activities comes as a sur
prise to analysts accustomed to working with in
formation only.

Remember that, in the change analysis phase,
the basic problems with the object system were
(hopefully) identified, and the goals being sought
in the new system were identified. In defining
the scope of the object system, the analyst must
keep these problems and goals in mind. They
help determine the scope.

Next, the analyst looks at each activity (dot)
within the square. He must determine what ma
jor types of information and materials are pro
duced by each activity. Information and/or ma
terials flowing outside of the function involve
lines drawn to boxes at the bottom of the square,

EDP ANALYZER, JANUARY, 1979

as already mentioned. But for information and/
or materials flowing to another activity (or activ
ities) inside the square, not only must lines be
drawn but also boxes are drawn and labelled.
Thus 'approved customer orders' might flow
from customer order processing to both invoicing
and to inventory handling and distribution.

In short, this top-level diagram might have
five or six information and material input boxes
at the top, five or six information and material
output boxes at the bottom, the four activity dots,
and perhaps four information type boxes for in
ternal information types, all connected by appro
priate lines. The diagram, when completed, is
assigned a control number.

The diagram is basically simple to draw.
There is not a lot of writing, just the labelling of
the dots and boxes. The analyst must concentrate
on what is being done within the scope of the
function, and not how it is done. There is no way
to indicate the procedures used within an activ
ity. Only necessary sequence is indicated; cus
tomer orders are checked before being passed on,
but no effort is made to indicate whether the ap
proved orders go first to invoicing or to inventory
handling.

The next step in the process is to analyze each
of the activities on the top-level diagram. The
analyst uses another blank form with the empty
square on it. From the top-level diagram, he de
termines what inputs flow into the selected activ
ity, and draws a box for each at the top of the
square. Similarly, the outputs are determined
from the top-level diagram and boxes are drawn
at the bottom.

Now the analyst must determine what compo
nent activities make up the selected activity. For
customer order processing, these might be credit
check, order approval, and adjustment handling.
In this case, three dots are put inside the square
and connected to the appropriate inputs and out
puts. Then any inter-activity messages or mate
rial flows are identified and drawn in.

As this process of decomposition continues, it
may become evident that the materials handling
activities need to be changed, in order to meet
the goals of the project. Such a redesign probably
will require the services of other specialists.

Also, as this process of decomposition contin
ues, diagrams are developed that have no materi
als handling activities on them; they consist

7

solely of information handling. Having reached
this point, the analyst is ready to begin informa

tion ana!Jsis.
A point worth noting is that at least the three

users that addressed the seminar tended to skip
over this activity analysis and instead go directly
to information analysis. But IA's developers feel
that system quality will improve, and manage
ment will be better satisfied with results, if
change analysis and activity analysis are done.

Information analysis

The information analysis phase follows much
the same procedure as activity analysis, except
that only information processes are considered,
not materials handling activities. The same basic
form-an empty square on a sheet of paper-is
used.

Each information handling activity from the
appropriate activity diagram is analyzed on a
separate information flow diagram. The input
information sets, as determined from the activity
diagram, are drawn as boxes just outside the top
of the square. The output information sets result
in boxes at the bottom of the square. And now
the analyst must identify the information
processes needed to transform the inputs into
outputs, as well as any necessary sequence in those
processes. Thus the diagram must show what
different types of information must be available
for processing .in order to produce an output. In
our example, a customer order is needed before
order entry can be performed. Order entry and
customer credit data are needed before the credit
check can be done. Also, if in drawing the dia
gram, a sequence appears to exist but in fact is
not really necessary, that point is indicated on
the diagram. Further, intermediate information
sets are indicated by boxes between the informa
tion processes, suitably labelled.

The next step is to decompose the information
processes from such a diagram, each one dia
grammed on a separate form. The diagram
should show any information sets that exist in
different generations (such as the updating of the
customer file). Note that we are still concerned
with analyzing requirements, not with the design
of the new system.

Having continued this decomposition as far as
practical, the analyst next performs a data ana!J
sis. Each information set is broken down by

EDP ANALYZER, JANUARY, 1979

showing a listing of the data types that make it
up. This analysis results in a hierarchy of data
types. For example, customer orders might be
sub-divided into the main order types (single or
ders, bulk orders, customer returns for adjust
ment, etc.). Eventually, this breakdown lists the
data fields that make up a given type of data
record.

Then the analyst develops a list of the infor
mation. processes that have been identified. For
each process, a process table is created, showing
what inputs are needed, what calculations must
be peformed, and what outputs are produced.
Note that this is the first time that detailed pro
cedures (the calculations) have been considered.
The 'levels of abstraction' approach used by IA
has delayed this consideration as long as possi
ble.

We do not want to give the impression that IA
is a once-through, top-to-bottom methodology. At
each stage of decomposition, the analyst may dis
cover something that causes him to go back and
revise some of the higher level diagrams. The
same thing can occur with the data analysis. In
the process of decomposing the data types, it may
become apparent that the information flow dia
grams have to be changed somewhat.

The next two phases involve the design of the
new system and its adaptation to fit particular
equipment. Since these subjects are outside the
scope of our discussion, we will treat them only
very briefly.

Using the results of the information process
analysis and data analysis, the system designer(s)
develops an (almost) equipment-independent so
lution. Design diagrams are used that are very
similar to the ones discussed above. Instead of
processes, computer programs are identified in
general terms, such as sort, update, print, and so
on. Following this, a program-oriented data
structure is developed, for the files used by each
program. Then Michael Jackson's approach to
program structure is suggested, with the struc
ture based on this data structure.

Having developed an equipment-independent
solution, the final step in design is to adapt the
solution to fit particular equipment. Also, practi
cal considerations, such as controls, audit trails,
and backup, are brought in.

These are the main characteristics, then, of
Information Analysis. But what have been the

8

experiences of users? Three users described their
experiences at the seminar mentioned above.

Some user experiences

Desisco Nederland B.V. provides consulting
services as well as application system develop
ment services. In 1972, Professors Langefors and
Lundeberg gave a seminar in Holland on IA that
was attended by a Desisco representative. This
person started using IA on a client program he
was working on that was already in the problem
analysis phase (beyond the feasibility study
phase).

Very soon, the IA diagrams showed that the
scope of the project was much larger than had
been indicated in the original requirements state
ment, developed by the client during a feasibility
study. The client agreed that the scope was in
deed larger than had been estimated. Since this
was all too characteristic of such proj~cts, De
sisco management was impressed.

The method is now used by all Desisco per
sonnel for feasibility studies, information system
analyses, and system design. They emphasize its
use in the early stages of a project, whether a
new system or the re-design of an existing sys
tem. It is very helpful for establishing the goals
for a new system, for determining users' infor
mation needs, and for communicating between
users and developers, they find.

Perhaps the best way to start a project is with
the whole object system, or a large part of it, and
perform a change analysis before doing the in
formation analysis, say the people at Desisco. In
such a case, the analyst deals with higher levels
of management and is more likely to identify the
real problems.

If the project team is not authorized to study
the whole object system, then Desisco recom
mends that another approach be used. That is,
do not stop at the designated inputs and outputs
for the information system under study, as speci
fied on the top-level diagram. Instead, use infor
mation analysis diagrams to trace the inputs
back into other systems and the outputs to other
systems. Make sure no gaps or overlaps occur
between the new system and the others.

The second user experience applied to a large
publisher of newspapers and magazines in Hol
land, as described by a project team member
from outside that organization. This company

EDP ANALYZER, JANUARY, 1979

had set up a good sized (3 to 4 man-year) pilot
project in 1975 to try out some of IBM's IPTs for
developing an on-line interactive database sys
tem. Among other things, the team used HIPO
charts and functional decomposition. Within six
months, the two analyst/designers assigned to
the project stopped it; they were unhappy with
the results they were getting, particularly from
the use of HIPO. After some re-thinking, they d~
cided to start over again, this time using IA.

The team did not use activity analysis, but did
use information analysis much as described
above. Data analysis was performed in a some
what different manner (using the 'third normal
form' approach of relational databases). Since a
database would be involved, particular attention
was paid to the relationships among the data
items. And when the processes were decomposed
into procedures, Nassi-Schneiderman charts
were used ~ather than text or pseudo-code.

Nine months later, the analysis had been com
pleted and design began. The system became op
erational at the end of 1977. Moreover, manage
ment considers both the use of IA and the result
ing system as successful, so the use of IA at this
company is expected to grow.

In the third case, the Swedish National Cen
tral Bureau for Statistics, in Stockholm, was con
cerned about providing better services to users
and decided to use IA to help achieve this. The
Bureau has large statistical data files, and it soon
became apparent that they could not define 'user
activities' in the use of those files. So activity
analysis and information analysis were not too
useful for them.

However, they did find much value in what
they call 'object system' analysis and developed a
structure diagramming method to show the rela
tionship between real-world items for their data
files. The method is quite similar to the well
known Bachman data structure diagrams, except
that, in addition to one-to-one and one-to-many
relationships, many-to-many relationships are
also shown.

The result has been the development of data
structures that 'model reality' much better than
the old files did. So the Bureau is finding that
users are better satisfied with their services.

For more information on Information Analy
sis, see Reference 5.

9

Analyzing user needs
Having discussed HIPO (briefly), SA, and IA,

let us now 'step back a pace' and analyze what
has been said. Based on the structure of these
methodologies and the user reactions to them,
what seem to be the most desirable features of an
analysis methodology?

Any such generalizations about a desirable
methodology admittedly would be based on a
small sample of user experiences. But until there
is a larger user population for these methodolo
gies, only-a small sample is available. The gener
alizations can provide a hypothesis that can be
validated (or not) as more use is made of these
methodologies.

The first desirable feature, recommended by
the developers of both SADT and IA, is controver
sial. That feature is 'identifying the basic prob
lem,' which the IA people call 'change analysis.'
But the users of IA who addressed the seminar
generally omitted this step, and instead tended to
go directly into information analysis. Let us
show the important role this step can play,
adapted from an actual case described at the
semmar.

Identify the problem. Consider the case of the
data processing department that has been work
ing on the preliminary plans for an on-line in
teractive order-shipping-billing system. That is,
assume that these functions are currently being
done on a batch system. Someone has conceived
the idea that system performance could be im
proved if orders were entered immediately,
rather than held up for batch accumulation. So
preliminary plans are developed showing how an
on-line interactive system might work and what
the time savings might be. And now these pre
liminary plans are being presented to various
members of management.

Assume further that the products shipped by
this company are perishable (for example, pro
cessed dairy products) and that customers can re
turn unsold products for partial refund. How
ever, the company cannot return anything to its
suppliers for partial refunds. It bears the loss for
all over-age products.

During the presentation of the preliminary
plans, the speed of entering customer orders is
emphasized. But one sharp manager speaks up
and says, "That is all very well, but the system

EDP ANALYZER, JANUARY, 1979

is not addressing our real problem. Our real
problem is that our customers make mistakes in
their order quantities, ordering either too much
or too little. If they order too much, we end up
giving them partial refunds. If they order too lit
tle, they and we lose sales. Both of these situa
tions are wasteful. Your new order entry system
does nothing to correct this situation."

This comment might trigger off another from
a second manager. "Yes, the same sort of prob
lem occurs with our suppliers. Since we do not
know how much our customers will order, we
tend to order too much or too little raw materials
from our suppliers. If we order too much, we
end up with waste. If we order too little, we ei
ther cannot supply some customers or we pay
more for expedited orders. The new system will
do nothing to solve this."

Out of such a discussion might come the idea
of trying to forecast the order quantities for indi
vidual products by individual customers, based
on the main factors that influence customer or
ders (perhaps holidays, vacation periods, special
events, weather, etc.). Then provide these fore
casted quantities to the customers on their order
forms and let them revise the quantities as they
see fit. Hopefully, in the majority of cases, no re
vision will be made. When revisions are made,
again hopefully they will not be large. So the
company will have a better idea of how much
the customers will order and in turn will know
better how much to order from suppliers. As a
result, the boundary of the system has been ex
tended from order entry out to the customers' or
dering decisions.

In this example, the basic problem was identi
fied almost by happenstance. Instead of depend
ing on chance, though, perform a 'change analy
sis,' say the IA people, •and actively search out the
basic problems.

But now on to the characteristics that the
users seemed to agree were most desirable.

Desired characteristics

Levels of abstraction. Decomposition by levels of
abstraction appears to be fundamental, for ana
lyzing complex systems. With this approach, the
analyst is concerned with just one level of detail

10

at a time; all consideration of lower levels of de
tail is postponed. So the analyst is more con
cerned with breadth of consideration than with
depth, at any level.

It is not realistic to assume that all analysis
will be fully top-down, in the levels of abstrac
tion approach. For one thing, there will be a
good amount of iteration, where the analyst has
to change something at a higher level because of
some just-discovered lower level factor. Then,
too, the analyst may want to analyze a particu
larly complex detailed aspect at the outset, to see
what it really consists of, rather than approach it
top down.

Three to six elements. Coupled with the levels of
abstraction approach is the idea of limiting the
number of elements being considered at any one
time to between three and six. This restriction
forces the analyst to aggregate similar things
and/or separate things with differences-so the
analyst must look for similarities and differences,
which increases understanding.

By looking at three to six elements, the analyst
is also forced to consider the relationships among
these elements. This also increases understand
ing, as compared with looking at only one ele
ment at a time.

Bounded context. This concept requires that the
analyst identify all processes, data types, and re
lationships among them within the specific group
of elements being analyzed. All that belong must
be included; all that do not belong must be ex
cluded. This precise definition of boundaries also
helps promote understanding.

Anaryze both activities and data. The tendency is
to analyze the activities and to treat the data al
most as an after-thought. But the methodology
should require that the data types be analyzed
top-down in much the same manner as the activ
ities are analyzed.

For instance, in the order-shipping-billing ex
ample for proGessed dairy products, given above,
the analyst might, on the top level diagram, only
show something like 'customer reorder data.'
During the data analysis, this would have to be
broken down into its constituent elements. It
might become apparent to the analyst that a data
file of the dates of holidays and special events
might be needed, if these data types were part of
the customer reorder decision. Eventually, the
analyst would have to determine just what data

EDP ANALYZER, JANUARY, 1979

would be supplied to the customer, to indicate
the basis upon which the forecast has been
based. Each of these steps might give the analyst
more insight into the application and point out
the need to rev_ise the activity diagrams.

Graphical notation. This also might be a contro
versial characteristic, although HIPO, SA, and IA
all use it. But a graphical language can be both
relatively simple and quite powerful in its ability
to convey information. Because of its pictorial
nature, it can show boundaries, activities, data
types, relationships, and the number of elements
within the boundaries. Thus, it too can aid com
prehension. In fact, it may be the onry effective
way to get a group of users to look at a require
ments document.

Simple for users to grasp. An important factor of
the methodology should be that it provides an
effective communication bridge between the ana~
lyst and the user and between the analyst and
the designer/developer. A graphical notation,
wifh simple, uncluttered diagrams, can provide
this. Users have been able to readily 'grasp the
message' with the three graphical methods dis
cussed in this report. And in two of them-SA
and IA-the necessary flow of data within the
boundaries is also easily grasped.

Easy to change. As we have tried to indicate,
the diagrams go through many revisions during
the analysis phase. So it is important that they
not be difficult to redraw. If they are simple
combinations of lines and boxes, with very few
words, they will meet this objective. (We will say
something about automated versions shortly.)

Numbering system. Closely related to this char
acteristic of ease of change is the system of num
bering the different diagrams-as well as the .
different generations of each diagram.

It is not unusual for an analyst or designer to
suddenly see a 'neat' way to do something or to
express something. Before he or she plunges
ahead with this neat solution, it pays to check
back to prior generations of the same document.
On one of those documents might well be the ev
idence that this neat idea was considered once
before but had to be rejected for a legitimate rea
son. Thus getting at prior generations of a dia
gram is important, and a good numbering system
will help accomplish this.

Defined procedure of use. The methodology
should have a debugged, prescribed method of

11

use-including suggestions on how to decompose
systems. One reason, of course, is that the vari
ous types of users (analysts, designers, program
mers, managers, etc.) all should have the same
understanding of the use, to the level of detail
that their jobs require. But there is another im
portant reason. There is a tendency for analysts,
designers, and programmers to modify a method
ology to suit their particular whims. If this is al
lowed to happen, soon there will be a reduced
compatibility among the diagrams. So users
should be trained in the correct use of the meth
odology and then the use should be monitored.

Adequate training materia(As indicated, there
will be a variety of types of users-analysts, de
signers, programmers, data processing managers,
user department managers, project librarians,
and inspectors-so the availability of good train
ing material is essential.

Frequent inspections. These should be a basic
part of the methodology. One type of inspection
is for content, to make sure that the require
ments are being fully and accurately stated. Such
inspections are best performed by people who
know the application in depth. Another type of
inspection is for correct use of the methodology,
best done by people who know the methodology
in detail.

It can be very helpful, we gather, if these in
spectors write their comments and questions on
the diagrams and the analysts also write their
answers on the diagrams. The diagrams thus
will provide an audit trail of their evolution.

Leads into design method. Users of top-down
methodologies tell us how hard it is for analysts
and designers to change their way of thinking,
which has typically been bottom-up, to top
down. And it is just as hard for them to concen
trate on what the system must do, during the
analysis phase, and to ignore the how. If the
analysis method just naturally flows into the de
sign method, they are more willing to delay con
sideration of the how. So the presence of a design
methodology, and one that is compatible with the
analysis method, is important. At the same time,
the method should not force the designer to use
the requirements structure in the design. There
should be a natural way to move from the struc
ture for displaying requirements to the design
structure for the new system.

EDP ANALYZER, JANUARY, 1979

From the seminar presentations and our talks
with users of analysis methodologies, we gather
that the above characteristics are the ones that
have been found most beneficial.

Why is HIPO controversial?

As we indicated earlier in the report, IBM's
HIPO is quite widely known and thus provides a
basis for comparison with other methods.

But from our contacts and discussions, it ap
pears that HIPO may be the least used of IBM's
IPTs. Yes, we have heard reports of satisfied
users, but more often it seems to be a case of "we
tried it and didn't like it." HIPO seems to be re
ceiving more than its share of criticism.

Why is this the case?
If the above list of desired characteristics rs

valid, then it can provide an answer to this ques
tion. HIPO has very few of these characteristics.

It does have a good degree of bounded context,
for instance; it uses a graphical notation that has
proved to be readily grasped by users and devel
opers alike. When coupled with structured walk
throughs (another IPT), it provides for a good in
spection mechanism. But that is about as far as
HIPO goes.

What HIPO does not provide is more revealing.
It does not really use the levels of abstraction ap
proach. It creates a hierarchical chart of func
tions and then the analyst examines one process
at a time; it does not show from three to six
processes on an IPO chart, along with the rela
tionships among them. Each process includes de
tailed procedures, almost at the pseudo-code
level; for other than bottom level boxes, these are
usually only control procedures. HIPO does not
provide for a data analysis that parallels the ac
tivity analysis. The IPO charts are not particu
larly easy to redraw because of their wordiness.
No disciplined method of use exists. The re
quirements structure (the hierarchy chart) tends
to be imposed upon design. And HIPO does not
lead naturally into a compatible design method
ology, we gather from users, so analysts may be
reluctant to postpone design considerations and
concentrate on what the system should do, dur
ing analysis.

Perhaps this lack of these characteristics
characteristics that sotne users feel are impor
tant-accounts for HIPO's failure to gain wider
acceptance.

12

The analyst's 'work bench'

The term 'work bench' is being applied to a
set of software tools that help the system devel
oper do his or her job. Initially, the concept was
applied to the programming function. It is now
being extended to support the functions of system
analysis, system design, and data administration.

To see how the analyst's work bench might
operate, assume that each analyst has a graphics
terminal tied to a computer with the necessary
support software. Also, means must be provided
within the department for printing out graphic
diagrams, perhaps via one of the new photocopy
like printers. The work bench might then be ex
pected to perform the following functions.

Peiform routine tasks. The work bench
should relieve the analyst of routine duties, so as
to concentrate on the application. The work
bench should allow the analyst to draw graphic
diagrams on the terminal, perhaps by the use of
a light pen, and enter text via a keyboard. The
system should apply diagram identification num
bers. Diagrams would then be printed out, for
review by commentors. Commentors could either
write their comments on the paper diagFams
(and someone else enter them into the system) or
could enter them directly on a terminal. The
work bench should allow the analyst to easily
correct the diagrams and create updated versions,
filing the old versions away. It should enforce the
use of standard procedures, should retrieve old
generations of documents for perusal upon de
mand, and should provide the 'Help' facility to
tell the analyst what options are available at any
decision point.

Support analysis. In addition, the work bench
should help the analyst perform the analysis of

user needs. One way to do this is to prompt the
analyst by means of a checklist, developed from
several sources: from experience, from the results
of inspections, from published checklists devel
oped by others, and so on. The work bench
might help detect missing, incomplete, and/or
inconsistent requirements statements, which are
prime causes of system difficulties.

We think you will be seeing and hearing a lot
more about system development work benches in
the months just ahead.

Next month, we will continue our discussion
of new software development methodologies,
picking up at the point where user requirements
have been defined.

REFERENCES
1. Jones, M.N., "HIPO for developing specifications,"

Datamation (1801 S. La Cienega Blvd., Los Angeles,
Calif. 90035); March 1976; p. 112 ff.

2. A series of papers on the analysis of user needs and de
termining requirements, included in Software Engineering

(IEEE Computer Society, 5855 Naples Plaza, Suite
301, Long Beach, Calif. 90803); January 1977, p. 16-
34; price $10.

3. Combelic, Donn, "Experiences with SADT," Proceedings

of 1978 National Computer Conference (AFIPS Press, 210
Summit Avenue, Montvale, N.J. 07645); p. 631-3; price
$60.

4. For more information on SADT, including some user
experiences, write SofTech, Inc., 460 Totten Pond
Road, Waltham, Mass. 02154.

5. For more information on Information Analysis, includ
ing two new books on the method (in English), write
Research Group ISAC, Department of Information
Processing, University of Stockholm, S-106 91 Stock
holm, Sweden.

6. For a copy of the IAG seminar handout material on In
formation Analysis, write IFIP /IAG, 40 Paulus Potter
straat, 1071 DB Amsterdam, Netherlands; price Dfl. 50
(via surface mail).

EDP ANALYZER published monthly and Copyright© 1979 by Canning Publications, Inc., 925 Anza Avenue,
Vista, Calif. 92083. All rights reserved. While the contents of each report are based on the best information available to
us, we cannot guarantee them. This report may not be reproduced in whole or in part, including photocopy repro
duction, without the written permission of the publisher. Richard G. Canning, Editor and Publisher. Subscription
rates and back issue prices on last page. Please report non-receipt of an issue within one month of normal receiving
date. Missing issues requested after this time will be supplied at regular rate.

EDP ANALYZER, JANUARY, 1979 13

SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS

1976 (Volume 14)

Number
1. Planning for Multi-national Data Processing
2. Staff Training on the Multi-national Scene
3. Professionalism: Coming or Not?
4. Integrity and Security of Personal Data
5. APL and Decision Support Systems
6. Distributed Data Systems
7. Network Structures for Distributed Systems
8. Bringing Women into Computing Management
9. Project Management Systems

10. Distributed Systems and the End User
11. Recovery in Data Base Systems
12. Toward the Better Management of Data

1977 (Volume 15)

Number
1. The Arrival of Common Systems
2. Word Processing: Part 1
3. Word Processing: Part 2
4. Computer Message Systems
5. Computer Services for Small Sites
6. The Importance of EDP Audit and Control
7. Getting the Require men ts Right
8. Managing Staff Retention and Turnover
9. Making Use of Remote Computing Services

10. The Impact of Corporate EFT
11. Using Some New Programming Techniques
12. Progress in Project Management

1978 (Volume 16)

Number
1. Installing a Data Dictionary
2. Progress in Software Engineering: Part 1
3. Progress in Software Engineering: Part 2
4. The Debate on Trans-border Data Flows
5. Planning for DBMS Conversions
6. "Personal" Computers in Business
7. Planning to Use Public Packet Networks
8. The Challenges of Distributed Systems
9. The Automated Office: Part 1

10. The Automated Office: Part 2
11. Get Ready for Major Changes
12. Data Encryption: Is It for You?

1979 (Volume 17)

Number
1. The Analysis of User Needs

(List of subjects prior to 1976 sent upon request)

PRICE SCHEDULE Call prices in u.s. dollars)

Subscriptions (see notes 1,2,4,5)

1 year
2 years
3 years

Back issues (see,.ntites 1,2,3)
First copy
Additional copies

Binders, each (see notes 2,5,6)
(in California

NOTES

U.S., Canada, Mexico
(surface delivery)

$48
88

120

$6

5
$6.25

6.63, including tax)

Other countries
(via air mail)

$60
112
156

$7

6
$9.75

1. Reduced prices are in effect for multiple copy subscriptions and for larger quantities of a back issue. Write for
details.

2. Subscription agency orders are limited to single copy subscriptions for one-, two-, and three-years only.
3. Because of the continuing demand for back issues, all previous reports are available. All back issues, at above

prices, are sent air mail.
4. Optional air mail delivery is available for Canada and Mexico.
5. We strongly recommend AIR MAIL delivery to "other countries" of the world, and have included the added cost

in these prices.
6. The attractive binders, for holding 12 issues of EDP ANALYZER, require no punching or special equipment.

Send your order and check to:
EDP ANALYZER
Subscription Office
925 Anza A venue
Vista, California 92083
Phone: (714) 724-3233

Name. ______________ _

Company-------------~·

Address __________ ·-----~

Send editorial correspondence to:
EDP ANALYZER
Editorial Office
925 Anza Avenue
Vista, California 92083
Phone: (714) 724-5900

City, State, ZIP Code ________________________________ .

