
EDP ANALYZER 
,c 1978 by Canning Publications, Inc. 

MARCH, 1978 
VOL. 16, NO. 3 

PROGRESS IN SOFTWARE ENGINEERING: PART 2 

This is the second of two reports that survey what is happen
ing in the area of "software engineering" -the design, construc
tion, and maintenance of software systems under an engineering 
discipline. Last month we discussed some of the tools and tech
niques that have been developed for problem definition, design, 
construction, modification, and quality assurance when software 
systems are created-both system software and application soft
ware. In this report, we discuss some tools and techniques for 
managing the creation and maintenance of software. We think 
you will be hearing a lot more about software engineering from 
now on. 

Engineering is concerned with how to design, 
construct, and operate human artifacts such as 
machines, bridges, buildings, and so on. The engi
neering disciplines that are the strongest are those 
that have mathematically based theoretical foun
dations. Examples include aeronautical engineer
ing, electrical engineering, and chemical 
engineering. Some other disciplines that use the 
term "engineering" (and often deal mainly with 
hmnan activities) are based not on mathematical 
foundations but rather on field experiences. Qual
ity of results seems to be much more variable in 
these latter disciplines, we gather. 

What about the engineering of software? Does 
it have a theoretical foundation upon which to 
base the engineering practices? 

One of the people who gives a "yes" answer to 
this question is Kenneth Kolence, who has devel
oped what he calls "software physics" as a foun
dation for software engineering. In our August 
1975 report, we discussed some of Kolence's ideas 
and how they were being applied in a rational 
method for computer job costing and charging. 
We. still feel it to be one of the most interesting 

methods of job costing and charging that we have 
come across. 

In 1975, Kolence organized the Institute for 
Software Engineering, which h~s members and 
which acts as a technical trade association. The 
purpose of the Institute is to assist its members to 
put into practice quantitative software engineer
ing techniques. The main focus of Institute activi
ties to date has been on the applications of 
software physics to capacity management, in
cluding job costing and charging. As of this writ
ing, the Institute has 120 member organizations, 
of whom about 10 have fully implemented the 
costing aspect of capacity management. 

Kolence's concepts of software physics include 
software power, software work, and storage ca
pacity usage. An approximate definition of soft
ware work is: a processor does one unit of 
software work on a storage device when it trans
fers one byte to that storage device. Software 
work thus is always associated with changing stor
age. For example, a tape drive does 1000 units of 
work on main storage when it reads a 1000 byte 
block. It also does 1000 units of work on the tape 

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; orders for 
copies filled promptly; prices listed on last page. 



when it writes the same block. It is immaterial 
how many bits within the byte are changed, as 
long as the symbol state is changed. 

The concept of software power is used in two 
ways, says Kolence. One is for capacity measure
ment-determining the capacity available to do 
work per unit of time. The other is for perform
ance measurement-the actual rate at which 
work is performed. Further, work is invariant but 
power is not; the work associated with a given 
workload is essentially fixed hut the power to 
perform the workload will vary with machine 
configuration. 

Let us consider briefly an application of these 
concepts to capacity management. A frequently 
asked question in computer centers is: "How 
much capacity is still available with our present 
hardware configuration?" And a related question 
is: "How much capacity will we have left after we 
add that specified new application?" Kolence 
seeks to give objective, quantitative answers to 
such questions. 

CPU power. The CPU power means the number 
of units of software work that the CPU can per
form per second of execution time. It is deter
mined by measuring all of the bytes transferred to 
or from main storage and the CPU in a second. Av
erage power is the number of units ·of software 
work that can he performed over an extended pe
riod of time; peak power is a rate that can be sus
tained only for a second or less. 

It should come as no surprise that the power of 
a specific model of CPU can be determined only by 
extensive measurements, using (primarily) hard
ware monitors. But even with monitors, there 
may be problems. The needed probe points are 
not always known-or even available. However, 
as more people attack these problems, answers 
seem to be found. At a seminar we attended, Ko
lence gave the following general, average power 
figures as illustrative of what is being found. An 
IBM 370/ 158 has the power to perform about 7 
million units of software work per second. The 
power figure for the IBM 370/ 165 was about 12 
mw/s and for the Model 168, 20 mw/s. Kolence 
cautioned against taking these figures too liter
ally, for reasons we will mention shortly. 

Tape drive power. The power of a tape drive to 
perform work should be a function of the block 

EDP ANALYZER. MARCH 1978 

size and the number of blocks written per second. 
Power increases as the block size increases and 
approaches the maximum transfer rate. But 
power is constrained by contention for the tape 
control unit. Software work calculations point 
out how little the power of a configuration is in
creased when a tape drive is added but the control 
unit bottleneck continues. 

Disk drive power. Disk drive power is calcu
lated much the same as tape drive power-hut the 
results can be even more dramatic. In one study 
that was presented at the seminar mentioned 
above, after the system had six 3330-type spin
dles, there was a trivial increase in available 
power with each spindle added. The constraints 
occurred in the control units and channels. 

What we are saying is that Kolence has devel
oped a theoretical approach that makes use of 
software work and software power concepts. His 
goal is to use these (and other related) concepts to 
provide quantitative, objective answers to ques
tions about the ability of configurations to per
form work. 

The concepts are stiil evolving. For instance, 
for the smaller IBM 370 models, 135 and below, 
each instruction fetches one byte-and in the 
process of transferring that byte, does one unit of 
software work. But in the larger CPUS, an instruc
tion might cause 100 or more bytes to be fetched 
when actually only one byte has been requested. 
This design has been used to increase machine ef
ficiency. The machine is so fast that not much 
time is wasted in fetching the additional bytes
and further, the next instructions needed may 
well be in those bytes. But when the extra bytes 
are not used, "waste work" has been done. The 
CPU has not done 100 units of software work, say, 
but perhaps only 1 or 2, and the other 98 or 99 
bytes that were transferred represented waste. In 
other instances, a large number of the bytes trans
ferred might actually be used, so that the waste 
would be less. The amount of waste here can be 
appreciable, so efforts are continuing to find ways 
to measure it. In so doing, the ways of increas
ing the effective capacity of a CPU are being 
identified. 

We find Kolence's ideas stimulating. And we 
think they represent one approach to how theo
retical concepts can be used to form the founda
tions for software engineering. For more 

2 



information, see Reference 1. 
In these two reports, last month and this month, 

we are reviewing the status of software engineer
ing as we see it, based on conferences and work
shops that we have attended, plus a review of a 
good amount of literature. Last month, we dis
cussed some important progress in the subject 
areas of (1) problem definition and requirements 
analysis, (2) architecture, engineering, and design 
of software systems, (3) construction and modifi
cation of these systems, and (4) quality assurance. 

In this report, we will conclude our discussion 
of software engineering methodology per se with 
an overview of what is happening in methods for 
evaluating quality and performance of software. 
Then we will discuss some improved techniques 
for managing software engineering projects. As 
we mentioned last month, there are people in the 
field who believe that the management tech
niques are every bit as important for ultimate suc
cess as are the software engineering techniques 
themselves. 

Evaluation of software 
The methods to be discussed here are those 

used for evaluating the quality and performance 
of software systems. Since the context here is an 
engineering one, the methods should be quan
titative in nature. Ideally, they should also have 
good theoretical foundations and not be based 
solely on experience. However, this ideal is as yet 
seldom realized. 

Evaluation for design purposes 

Gilb (Reference 2) has collected a substantial 
amount of empirical data for defining "good" per
formance of software. In the absence of theory for 
defining good performance, the field must rely on 
empirical data. In addition, empirical data can be 
useful for checking the validity of a new theory. 

The contents of some of the chapters covered 
in Reference 2 will give an idea of how Gilb ap
proaches this subject. In his first two chapters, he 
discusses methods of testing and of predicting the 
reliability of programs. One method described is 
what he calls the "bebugging" technique. In this 
technique, a number of known bugs are inserted 
into a program that is to be tested. The ratio of 
how many of these are found by testing, as com
pared with the number inserted, is then used to 
estimate how many bugs in total are in the pro-

EDP ANALYZER, MARCH 1978 

gram. That is, if testing found three-quarters of 
the planted bugs, and if, say, fifteen non-planted 
bugs were also found, this is a rough indication 
that there might be about five more non-planted 
bugs in the program, There is obviously no assur
ance that the ability to find planted bugs is the 
same as the ability to find non-planted bugs. But 
the technique does give the programmer (and 
management) some feeling about the number of 
bugs that may be remaining in the program. 

For his discussion of inspection of software, 
Gilb draws heavily on the work of Michael Fagan 
of IBM, which we discussed last month. 

Gilb then gets into several chapters dealing 
with human behavior aspects of producing soft
ware. He describes "motivational metrics" which 
include financial penalties for not meeting con
tract performance measures. Another technique 
uses weights and points for making multi-element 
component comparisons and analyses. And he 
suggests the use of "dual code" -having the same 
program coded twice as an indirect measure of 
the quality. This dual coding adds only about 5% 
to 10% to the total cost of the project, he says, and 
conceivably could actually save money. 

We have touched on only a few of Gilb's chap
ters, but this discussion should give an idea of how 
he approaches the subject of software metrics. 
We have classified this material as applying to the 
design of software; it could equally well be clas
sified as applying to the construction of software. 

Evaluation to improve performance 

This use of evaluation methods is somewhat 
like the subject of industrial engineering. Tech
niques are developed and applied for detecting 
wasteful activities and operations, so that they 
can be redesigned in order to reduce the amount 
of waste. And, in fact, much of the application of 
Kolence's concepts of software physics has been 
directed to this area. 

Evaluation techniques for improving perform
ance can be used for "tuning" the operation of ex
isting systems. In addition, they can contribute to 
the "good practice" type of design principles, for 
improving the design of new software systems. 

There is a wealth of material being published 
on computer performance evaluation methods. 
We would single out for mention two periodicals: 
(a) Performance Evaluation Review, Reference 3, 
published by the ACM Special Interest Group on 

3 



Measurement and Evaluation, and (h) EDP Per
formance Review, Reference 4, ·published by 
Applied Computer Research. 

As an illustration of the type of material being 
published within this subject area, we will cite 
two references. 

K. Sreenivasan (Reference 5) discusses how ac
counting data collected by an operating system 
(in this case, IBM's SMF facility) can be used for 
evaluating computer system performance. This is 
a theme that appears frequently in the literature. 
The technique should not be overlooked by 
people interested in evaluation methods. 

J. L. Elshoff (Reference 6a) describes an analy
sis of 120 commercial PLI 1 programs obtained 
from several data processing installations at Gen
eral Motors Corporation. The programs were 
scanned both manually and automatically, to 
identify areas in which a better programming job 
could be done. Here are some of the findings. In 
the area of program size, some programs exceeded 
3700 source statements in length, with an average 
of 853 statements. The programs were, in general, 
monolithic in structure and were not modu
larized. As far as program readability is con
cerned, specific attributes that aid readability 
include readable identifiers, indentation, pagina
tion, and descriptive comments. The analysis 
showed that these were inconsistently used or not 
used at all, Elshoff reported. Program complexity 
is indicated by the number of data items used by a 
program and the flow of control through the pro
gram. The analysis found an average of 384 data 
items identified in a program; of these, 277 were 
used one or more times, requiring the program
mer to know the names and definitions, while the 
other 107 items were defined but not used by the 
program. For flow of control, the average pro
gram had 152 IF statements, 100 GO TO state
ments, and 162 "spans" (number of statements 
between two references to the same identifier), 
with 13% of these spans exceeding 100 state
ments. For these and other reasons, discussed in 
the paper, Elshoff argues for a structured dis
cipline for program development. 

In a follow-on paper (Reference 6e ), Elshoff 
compares these 120 non-structured programming 
(NsP) programs with 34 structured programming 
(sP) programs developed later by the same 
groups. The average SP program was about 30% 
smaller than the average NSP program, in number 

EDP ANALYZER, MARCH 1978 

of source statements. Most programmers were 
able to get rid of most Go TO statements but this 
was offset by an increase in such other types as 
CALL and PROCEDURE statements. The SP pro
grams had much cleaner structures, they read 
from top to bottom and from left to right (not true 
of NSP programs), had deeper nesting levels but 
more constrained flow of control, and were more 
readable and understandable. Structured pro
gramming certainly improved the end produc.:t of 
the programmers, said Elsh_off. 

So a wide variety of quantitative methods are 
being used to evaluate the quality and perform
ance of the software development staff, the prod
ucts that they develop, and the ability of users to 
effectively use that software. We feel that such 
methods are properly part of the emerging dis
cipline of software engineering. 

Let us now turn our attention to some aspects 
of managing the software development process, 
where methods are needed to support software 
engineering. 

SOFTWARE ENGINEERING 
MANAGEMENT 

As we reported last month, we participated in a 
planning meeting for a software engineering 
handbook some time back. The meeting was 
sponsored by the U.S. National Bureau of Stand
ards, the National Science Foundation, and the 
Association for Computing Machinery, and is re
ported in Reference 7. Some of the participants in 
this meeting felt that the management techniques 
used in the software development process are ev
ery bit as important as the engineering techniques 
that are used. Since that meeting, we have heard 
this same theme repeated on numerous occasions. 
(In fact, Kolence contends that no technical 
methods are acceptable as software engineering 
techniques unless they provide effective manage
ment techniques based on them.) 

The main argument used in support of this 
position is that if poor managem~nt techniques 
are used, the development staff can become frus
trated by the seemingly arbitrary edicts and 
changes to plans that management imposes. This 
frustration, in turn, detracts from the effective
ness of the engineering techniques used. 

The subject being discussed here, then, is the 
methodology that managers (at several levels) can 
use for the better management of software devel-

4 



opment and modification. 
A better management methodology comes 

from a better understanding of the software de
velopment process. True, some of the character
istics of this process seem to be reasonably well 
understood. Certain problems have arisen again 
and again, and in some cases, fairly effective solu
tions have been developed. But, as we will point 
out, some important behavior patterns are just 
now coming into focus. 

There are some characteristics of the software 
development and modification process that are 
not too evident nor well understood, we believe. 
And even though they are not well recognized, 
they still can be very significant. Software engi
neering management seeks to determine such 
characteristics and to determine the management 
problems they can cause. The next step, of course, 
is to develop practical solutions for alleviating 
such problems. 

For our discussion here, we will single out the 
following three characteristics of the software de
velopment and modification process, expressed in 
terms of behavior patterns: 

• Staff behavior patterns 
• Project behavior patterns 
• System behavior patterns 
We will begin with the staff behavior patterns. 

Staff behavior patterns 
Many of the behavior patterns of the system de

velopment and maintenance staff are well known 
to data processing management, of course. One of 
the most common behavior patterns is the resist
ance of this staff to the acceptance of new meth
ods, particularly by the older staff members. 

Software engineering seeks to introduce a large 
number of new, disciplined methodologies. The 
discipline aspect of these methodologies will of
ten be the most difficult for a development staff to 
accept. Let us see what software engineering 
management has to offer for this problem area. 

Introducing change 

Edward Yourdon (Reference 8a), in discussing 
the choice of new metqodologies for software de
velopment, points out that production type proj
ects have different trade offs from research and 
development projects. The latter can experiment 
more with new methods. But production projects 
have hard deadlines to meet and must thus be 

EDP ANALYZER, MARCH 1978 

more careful in choosing what is to be tried out. 
(It was pointed out to us that the use of the 

terms "production type projects" and "research 
and development projects" can lead to misunder
standings. Perhaps a better way to differentiate 
projects is on the extent to which their problems 
and solutions are defined at the outset. A true 
R & D project should experiment with methods 
only if that experimentation was planned in 
advance.) 

Yourdon presents an overview of the main 
methodologies currently being introduced into 
software development. These include structured 
programming (perhaps more accurately called 
structured coding, involving the control con
structs of sequence, selection, and iteration), 
structured design, structured analysis, HIPO and 
other documentation techniques, top down de
velopment, structured walk-throughs, and chief 
programmer teams. (We discussed user expe
riences with all of these in our November 1977 
issue.) 

The point to be made here is that this set of 
methodologies represents a substantial change in 
the way software is developed at most organiza
tions. What are the main points about which data 
processing management should be concerned, for 
introducing these new methods? 

From his experiences with introducing such 
new methods, Yourdon has developed a number 
of suggestions. First and foremost, he says, trying 
to introduce all of these new methods at one time 
will generally lead to disaster. The methods 
should be installed gradually. Next, he points out, 
techniques that involve organizational change
such as chief programmer teams-are often the 
most difficult to install. Further, it can be a waste 
of time to try to install structured coding without 
also installing structured design. These seem to 
be the main "do not do" suggestions made by 
Yourdon. 

On the positive side, the most successful ap
proach to installing the new methods has often 
been to start with walk-throughs, he says. These 
walk-throughs are informal meetings for review
ing the correctness and quality of the analysis, de
sign, code, test data, and documentation work 
products. Project management might start with 
walk-through meetings for reviewing code, and 
create the environment where everyone's code is 
exposed to public discussion. These meetings will 

5 



allow each person on the development staff to see 
how he is doing relative to a "standard practice." 
Further, the problems that arise from not follow
ing the standard practice will become apparent. 
So the walk-throughs will often set the stage for 
the gradual introduction of other methods. 

The second positive suggestion made by Your
don is that top-down design and programming 
might be the next methods to install. These meth
od~ are often a good way to introduce the new 
structured development methods to the staff, he 
says. 

In brief, software engineering involves the in
troduction of many new disciplined methods into 
the software development and maintenance proc
ess. It is up to data processing management to de
termine how best to introduce these changes, in 
order to minimize "upheaval" and to promote the 
efficient use of the new methods. For a further dis
cussion, see our November 1977 report. 

Matching skills to job needs 

This subject might be termed "human engi
neering" in which it is attempted to effectively in
terface the new methodologies with the humans 
that will be using them. 

Freedman, Gause, and Weinberg (Reference 
8h) recommend using an environment which en
courages continual on-the-job education through 
formal and informal review, as opposed to formal 
training. What they advocate is the use of self
organizing teams, as opposed to the idea of chief 
programmer teams. 

They report that a common cause of failure in 
trying to use some new organizational structure 
for a software development staff is mis-estimating 
both the staff talents and the task to be done. 
When the chief programmer team approach is 
tried, an inadequate person may be selected for the 
chief programmer, or the person selected to back 
up the chief programmer may be more qualified 
than the chief. Both of these mistakes can lead to 
failures of the approach. The chief programmer 
must be the best person on the team and in addi
tion must be adequate for the job, including the 
ability to lead the team. The existing staff tal
ents just may not support the idea of chief 
programmers. 

It is very important, say the authors, to let the 
technical leaders do the technical leading of the 
project. For one thing, teams should be small, 

EDP ANALYZER, MARCH 1978 

with no more than 5 to 6 members, so that super
vision activities are minimized. Perhaps more im
portant, recognize that the different team 
members have varying strengths and weaknesses; 
the "chief" role can thus float among the team 
members, as the project progresses through its 
several phases. For instance, whoever on the team 
is strongest in analysis and problem definition 
probably would be the "chief" during that phase 
of the project. 

Instead of first organizing the project itself, say 
the authors, select the people who will be on the 
project, and then let them organize the project. 
Further, make sure that each team uses a contin
ual review process, where all work products are 
reviewed by the several team members. Never let 
a problem become undefined, as new or changed 
user requirements come to light; make sure that 
all such changes are carefully reviewed and 
understood by the team. 

The self-organizing team concept may be 
a more flexible approach to team programming 
than the chief programmer team idea. It is an ap
proach that data processing management might 
well want to consider. 

Limiting the objectives 

Mills (Reference 6h) points out that human fal
libility tends to lead from grand to grandiose sys
tems which soon outstrip human intellectual 
capability for management and control. Further, 
such systems are often developed in an "open 
loop" manner, with neither periodic reviews nor 
any go/no-go checks by users. Here, then, is an 
all-too-frequent staff behavior pattern that causes 
serious problems in software development. 

What Mills proposes is the "divide and con
quer" approach. Divide large projects into small 
sub-projects that can be conducted by teams of 
from 3 to 6 members. Further, since for all prac
tical purposes it is impossible to get both com
plete and accurate user requirements at the outset 
of a project, provide means for modifying the sys
tem easily when new or changed requirements 
come to light. Provide user reviews and approvals 
at the appropriate intermediate points during a 
project, he says. 

As we see it, there are several implicit assump
tions in Mills' approach that need to be consid
ered. One assumption is that a large system can be 
effectively partitioned into sub-systems before 

6 



the user requirements for the whole system have 
been analyzed in detail. As we discussed in our 
July 1977 issue, some people in the field feel that 
this study of the complete requirements may be 
necessary before partitioning can be done for 
very large, complex systems. 

Another implicit assumption is that a complete 
sub-system be implemented and modified to meet 
user requirements by means of iterative refine
ment. For instance, if an interactive order-ship
ping-hilling system is being considered, the Mills' 
approach might be to divide the project into 
three (or more) sub-projects, such as order proc
essing, shipping processing, and hilling process
ing. The order processing might be chosen for the 
first sub-project. It would be developed so as to 
meet the full range of user needs for handling or
ders, by being able to modify the system as new or 
changed needs come to light. 

As we discussed last month, Basili and Turner 
(Reference 6d) propose another approach to the 
question of sub-system development that we feel 
has merit. They call their approach "iterative en
hancement." Some useful sub-set of the project is 
chosen and is implemented first. After it is work
ing, it is gradually enhanced by adding further 
functions until finally the whole project is com
pleted. In our example of the order processing 
~uh-project, perhaps the handling of regular, rou
tine orders would be selected for the first imple
mentation. Once it was working, then the other 
types of orders would be gradually added-rush 
orders, order cancellations, order adjustments, 
and so on. 

These are just some of the more important staff 
behavior patterns that software engineering man
agement is attempting to identify and to develop 
disciplines for. They include means for in
troducing the new methodologies as standard 
practices in an effective manner, and for con
trolling the all-too-frequent tendency to let sys
tem plans get grandiose. 

Let us now consider some interesting "behav
ior" patterns of software development projects, 
and see what software engineering management 
has to offer. 

Project behavior patterns 
In a sense, this topic is misnamed. It is the 

people on a software project that exhibit behav
ior; "project behavior" is then a consequence of 

EDP ANALYZER, MARCH 1978 

the people behavior. Still, there are characteristic 
patterns of behavior that occur from project to 
project and from organization to organization. 
It is these characteristic patterns that we are 
discussing. 

R. Caudill (Reference 8c) points out two main 
problems with software development projects. 
For one thing, there is generally a lack of manage
ment visibility and control. It is not possible for 
management to "see" all of the parts, as would be 
possible, say, in a building construction project. 
So management cannot visually tell how a soft
ware project is progressing. Secondly, software 
projects are often subjected to pressures from 
higher authority. These pressures are generally in 
the form of demands to complete the projects 
sooner, or to do more within the original sched
ule. Project management is then faced with the 
question of what can in fact be cut out of the proj
ects in order to meet these demands. 

Caudill argues that the concepts and principles 
of "configuration management" be used for con
trolling software development projects, as a solu
tion to these problems. The discipline of 
configuration management has been used success
fully in other high technology fields and can be 
used with software development, he feels. 

Caudill describes the five major principles of 
configuration management. One, a phased ap
proach is taken for each project. That is, a stand
ard set of phases is defined, through which each 
project must progress. Second, the work products 
("deliverables") of each phase are carefully 
defined. Third, both technical and management 
reviews are used throughout the development 
cycle. These reviews might occur at the end of re
quirements determination, system design, de
tailed design, and system test design phases, for 
instance. Fourth, "baselines" are set after the 
work products of each phase have been com
pleted and reviewed. These baselines represent a 
freezing of design; after a freeze has .been in
stituted, all subsequent changes must go through a 
change control procedure. Finally, project scal
ing is used, for adjusting to the size of each proj
ect. For instance, the number of reviews used for 
a small project would be less than the number 
required for a large project. 

We discussed progress in the use of project 
management systems in pur December 1977 is
sue. Modem project management systems follow 

7 



the principles of configuration management out
lined by Caudill. The point to be made is that 
ther principles have been used successfully for 
managing other types of high technology projects 
that have many points of similarity with soft
ware development projects. So data processing 
management should not feel that software devel
opment projects are "unique," from a manage
ment control standpoint. 

In the planning meeting for a software engi
neering handbook (reported in Reference 7), a 
number of the participants felt that this whole 
concept of project management, as just described, 
was at least as important as any other aspect of 
software engineering. 

The man/month trade-off 

It is widely believed that the completion of a 
complex software project can be speeded up by 
adding'"more people to the project. In fact, this 
can be an erroneous assumption, as pointed out by 
Frederick Brooks, Jr. 

Brooks, in his collection of essays on software 
engineering (The Mythical Man-month, Refer
ence 9), states what he calls "Brooks' Law": 
"Adding manpower to a late software pro;ect 
rnakes it later." His essay on this subject chal
lenges the assumed interchangeability of people 
and months on a large software project. Some 
tasks are essentially sequential in nature, he says, 
so that they are conducted at the speed at which 
one person can accomplish them. No matter how 
many people might be assigned to the project, it 
still takes nine months to create a baby, he points 
out. The'' other characteristic of large software 
projects is that they involve complex relation
ships and inter-communication. The more people 
on a project, the greater the complexity of rela
tionships and the more inter-communication that 
is needed. Both of these factors consume time and 
tend to delay the projects. 

Gordon and Lamb (Reference 10) feel that 
while Brooks' Law is for the most part accurate, 
it is still an over-simplification. To analyze where 
the law might and might not apply, they 
constructed a simple model of software worker 
productivity. 

The model has three main elements. The first 
element is the learning curve, the well-known ex
ponential rate at which a person learning a new 
job "comes up to speed." Based on learning curve 

EDP ANALYZER, MARCH 1978 

experience (and many studies of this have been 
made by industrial engineers), they say that about 
one-third of a person's time is "lost" due to learn
ing, during the learning period. 

To illustrate their analysis, they consider a proj
ect that requires one productive man-year, or 
2000 man-hours. If one person is assigned to do 
the project and it takes that person six months to 
learn the project (that is, in six months the person 
has reached the point where he spends only 5% of 
his time learning more about the project), then 
two man-months of time will be lost. It will take 
14 months to complete the project, not 12. And if 
the person were to leave the project at the end of 
six months and another person were assigned to 
take over, the process would be repeated and 
the project would now require 16 months to 
complete. 

The second element in their model is teaching. 
If one or more additional people are added to a 
project, the original project member(s) must 
spend time teaching the new people about the 
project. Gordon and Lamb assume that the time 
that is lost in teaching is the inverse of learning. 
So if a second person were added to the above 
project, when it was apparent that it was falling 
behind schedule, about two months of the original 
person's time might be lost in teaching. 

The third element in their model is commu
nicating and coordinating the efforts of multiple 
team members. They assume that the time loss 
here is a logarithmic function of team size. 

Now consider a four man-year (8000 produc
tive man-hour) project, they say. Assume that four 
people are assigned to the project, and that prog
ress is to be checked every three months. Learn
ing plus communication and coordination will 
cause the project to fall behind schedule, which 
fact is detected at the first check point. Seeing 
that the project is falling behind, management de
cides to add one more person. Teaching, learning, 
and communicating losses increase, and the proj
ect falls further behind schedule. If this same 
management decision (to add one more person) is 
made at each of the next two check points, what 
happens? At the end of 12 months, 11,000 man
hours will have been expended on the project, but 
only 7,500 productive man-hours will have been 
realized. The project will still not have been com
pleted and it will already be almost 40% over 
budget. 

8 



What can be done? The solution, as Gordon 
and Lamb see it, is for management to add more 
people to the project than might be expected to 
be needed, and as early as possible. In other 
words, over-staff the project at the first sign of 
trouble. But this takes courage on the part of data 
processing management (to request it) and un
usual understanding on the part of higher levels of 
management (to approve it). 

We think Brooks plus Gordon and Lamb have 
enriched the field's understanding of a common 
project behavior problem area. Perhaps a better 
solution is not the one suggested by Gordon and 
Lamb but rather to allow for the loss factors more 
realistically in the original project time and cost 
estimates and then staff accordingly. But what
ever solution is chosen, here is a characteristic of 
projects that data processing management must 
be aware of. 

In short, it is not valid to assume that people 
and months can be interchanged on software proj
ects of reasonable size and complexity. 

System behavior patterns 
This subject area perhaps is not quite so likely 

to be misnamed as in the case of project behavior 
patterns. True, it is through human activities that 
systems are created and operated. But somehow, 
systems seem to take on characters and personal
ities of their own. Behavior patterns for systems 
do not seem too incongruous. 

Last month we quoted at some length a paper 
by Mills, presented at the Second International 
Conference on Software Engineering, held in Oc
tober 1976, and published in Reference 6b. At the 
risk of duplication, we will quote from this paper 
again because it sets the stage for the discussion of 
system behavior patterns. 

The maintenance of software systems, says 
Mills, is consuming altogether too many data 
processing resources. ·Some 75% of programming 
personnel are already concerned with mainte
nance; unless significant changes are made, this 
percentage will rise even higher and at the 
expense of development. 

There are two main reasons for this dominance 
of maintenance activities, says Mills. For one 
thing, application systems are maintained for an 
indefinite period of time after they have been de
veloped. So a fraction of the development staff 
must be shifted over to perform maintenance. If 

EDP ANALYZER, MARCH 1978 

20% of the development staff is shifted to mainte
nance every two years, then after 12 years 
maintenance will represent about 7 4% of the ef
fort-which is about what the effort is, he feels. 
The only stable point is when 100% of the effort is 
on maintenance. 

The other reason for the dominance of mainte
nance is that it has proved to be much more diffi
cult to develop good systems than has been 
commonly supposed, where "good" means both 
correct and capable. A part of the work force is 
needed to perform corrective maintenance, to re
move errors that were built into the systems by 
mistake. And another part of the work force is 
needed to perform adaptive maintenance, for en
hancing the system. As adaptive maintenance 
continues, the organization may eventually lose 
sight of the original system. 

In order to contain this growth of maintenance, 
Mills argues for better development methods. 
Better· development methods (for which he de
scribes his ideas and which we discussed last 
month) will greatly reduce the need for correc
tive maintenance. Fewer errors will be built into 
the systems. Also, better development methods 
will foresee some of the likely enhancements and 
will allow for them. So adaptive maintenance will 
be easier. 

As we see it, Mills is right in arguing that good 
development methods will lead to greatly re
duced corrective maintenance. And it is also pos
sible that such methods will make adaptive 
maintenance easier, but they certainly will not 
eliminate the need for adaptive maintenance. 
There are many reasons why application systems 
go through a long series of enhancements. An or
ganization can accept only so much change in its 
procedures at one time, otherwise the upheaval 
factor is too great. So it may be necessary to in
stall a system that performs only the most essen
tial functions and then gradually enhance it. 
Further, it is hard for users to conceive of what 
they may want a few years hence until they have 
grasped the power of the new system. Business 
conditions will change, requiring changes in the 
application systems. New technology will be
come available which can provide new, desirable 
opportunities; the new distributed systems might 
be a case in point here. Also, new hardware 
and operating system configurations will become 
available but will require the existing application 

9 



·----~-·~~------------~------------------------·--------

systems to be modified in order to exploit their ca
pabilities. For these and similar reasons, we be
lieve that adaptive maintenance will continue to 
be needed. 

The point we are making here is that software 
engineering methods should prove to he very 
helpful in greatly reducing corrective mainte
nance. And hopefully they will make adaptive 
maintenance easier to perform. But software sys
tems will continue to go through almost continual 
enhancements, for reasons such as those just men
tioned. This is one aspect of what we mean by sys
tem behavior patterns-the typical life cycle of 
software systems. 

E. B. Daly (Reference 6c) reports on a study 
that compares hardware development and 
maintenance with that of software. The data for 
the study came from three large projects plus nu
merous smaller ones conducted at the GTE Auto
matic Electric Laboratories. Here are some of the 
findings that he reports. 

Software development is slower. Hardware 
logic gates, as measures of complexity, are com
parable to branching statements in programs, he 
says. Comparing hardware development projects 
to software development projects of about the 
same complexity, he found that it took about 
twice as many man-hours to develop one instruc
tion as it did to develop one logic gate. Further, it 
took four times as many man-hours to do design 
maintenance (corrective maintenance) for soft
ware as it did for hardware. 

The reasons for these differences, he feels, are 
the following. The management techniques and 
the development processes for hardware are more 
advanced than those used on software projects. 
The people involved (generally, the engineers) 
are more experienced than their counterparts in 
software development. More "building blocks" 
are available for hardware and they perform a 
wider variety of functions. Finally, the hardware 
gets tested twice-once on its own and once when 
the software is being tested on it. 

One might conclude from these comments that 
hardware development and design maintenance 
represents a level of achievement which software 
development and maintenance should seek to 
equal. This equality might come from the use of a 
software engineering discipline that roughly 
matches the capability of the hardware engineer-

EDP ANALYZER, MARCH 1978 

ing discipline. But the software discipline is cur
rently far behind the hardware discipline. 

Hard to compare software pro;ects. Daly ap
parently found it harder to compare two software 
development projects than to compare two hard
ware development projects. At least, he felt that 
it was very hard to compare two software projects 
because of differences in about 15 factors (which 
he lists) that affect the software development 
rate. 

For the development of "small" real-time sys
tems (involving from 5,000 to 20,000 instruc
tions), he found that production rates varied from 
1.6 to about 5 instructions per man-hour. For 
large real-time systems (involving over 75,000 in
structions), average production rates were 1.9 
instructions per hour for data manipulation in
structions and 0.24 instructions per hour for diag
nostic instructions. 

Two main points stand out from Daly's figures, 
in our mind. One is that comparable variations in 
production rates probably would not be tolerated 
in hardware development and maintenance, for 
systems of similar complexity. The second point is 
that Daly's figures confirm what many have been 
recognizing, which is that there are substantial 
differeQces in development rates between large 
and small systems. This is not a well understood 
phenomenon, as far as we know. What are the 
measures of complexity, and where does com
plexity begin to increase in a non-linear (exponen
tial?) fashion? If data processing management 
had better answers to these questions, it would be 
possible to do a much better job of estimating de
velopment times and costs. 

The development/maintenance time ratio. 
Daly presents some interesting figures on the 
man-hours required to both develop and maintain 
large real-time systems over a four year time pe
riod. By the end of the fourth year, some 54% of 
the total man-hours had been spent on devel
opment and the other 46% were spent on design 
(essentially corrective) maintenance. Daly says 
that "local support," which might be another 
form of corrective maintenance, was not included 
in these figures. The 54% development time was 
broken down as follows: developing specifica
tions, 13%; building, 20%; testing, 13%; and docu
mentation, 8%. 

10 



After the fourth year, design maintenance in
creases very slowly, says Daly. At the end of the 
tenth year, it might represent about 60% of the to
tal man-hours expended. One wonders, of course, 
if the better development methods advocated by 
Mills would substantially reduce these mainte
nance figures. 

It is interesting to compare Daly's figures with 
somewhat similar figures presented by Barry 
Boehm at the Second International Conference 
on Software Engineering, mentioned earlier. 
Boehm reported on studies made by TRW Sys
tems on large software systems, mostly for mili
tary applications. Over a good portion of the life 
cycle of a software system, about 30% of the man
hours were spent on designing, building, and test
ing the systems, and the other 70% of the time was 
spent on maintenance. Boehm did not separate 
corrective and adaptive maintenance, and it 
seems likely that his figures lumped these two 
types of maintenance. Daly, of course, did not in
clude adaptive maintenance and perhaps not all 
of the corrective maintenance. 

What conclusions might one draw, then, based 
on what Mills, Daly, and Boehm have said? It 
seems to us that one can conclude that corrective 
maintenance will require about 50% to 60% of the 
total man-hours over a seven to ten year life of a 
complex application system (say, 75,000 or more 
instructions). For small interactive systems, prob
ably the relative time spent on corrective mainte
nance will be less; these systems are less complex 
and hence fewer errors are likely to occur during 
construction. 

One. might also conclude that when adaptive 
maintenance is added to the corrective mainte
nance, it seems quite likely that at least 75% of the 
total man-hours are being spent on some form of 
maintenance. As Mills points out, this leaves pre
cious little time for developing new systems. 

But the problem does not end there. Software 
systems tend to lose structure and to grow to a 
point where "fission" occurs, over their life cycle. 
To see why this is so, let us consider program 
evolution. 

Program evolution 

Belady, Lehman, and Parr have studied the dy
namics of program evolution and have reported 
their findings in References 11 and 12. The origi
nal study was concerned with what happened to 

EDP ANALYZER, MARCH 1978 

IBM's os/360 operating system after its initial re
lease. After finding what they believed might be 
patterns of evolution, they investigated two other 
operating systems in two quite different environ
ments. The same general patterns were observed. 

The authors feel that they may well have 
uncovered general behavior patterns for the com
bination of organizations, people, and the com
puter programs themselves. So they feel they can 
present some general conclusions on program 
evolution. 

Continuing change. All three operating sys
tems grew in size long after their initial devel
opment. This growth was due to correcting faults, 
improving performance, adding new functions, 
and supporting new hardware. 

Breadth of change. The percent of each oper
ating system that was changed increased almost 
linearly with time. Eventually, all modules were 
changed at least once. 

Loss of structure. The authors found that re
peatedly modifying a system :.vithout redesign 
tend5 to obscure its conceptual structure. So, over 
a period of time, the original structure of these 
three operating systems gradually was lost. Per
haps the "proof of correctness" to program devel
opment (which we discussed last month) might 
constrain this tendency. 

Smooth growth in size. The growth in size 
seems to be statistically smooth, say the authors. 
Size increases rapidly at first, then gradually slows 
down-although the maintenance effort may 
remain quite constant. 

Growth in relRase intervals. The time between 
two successive releases of each operating system 
tended to increase exponentially. The most likely 
explanation of this, said the authors, was that 
it became increasingly difficult to make changes. 
Even though maintenance effort remained about 
constant, this behavior resulted in a decelerated 
growth in size. 

Decrease in work rate. Closely related to the 
above behavior was the tapering off in the num
ber of changes made, due to the fact that changes 
became harder and harder to make. With a con-

11 



stant maintenance effort, this meant a decrease in 
the effective work rate. 

Maximum change per rdease. There seems to 
be a practical maximum limit to the growth in 
program size per release. With os/360, this limit 
was about 400 modules added to the system. If a 
release had more than this amount, it led to 
significant problems such as performance errors. 
Moreover, if this limit was even approached, the 
next releases turned out to be much smaller, per
haps to allow a catch up in correcting faults and 
completing the documentation. 

Need for measure of complexity. Some meas
ure of system complexity would be useful, say the 
authors, to indicate to management when a com
plete structural redesign becomes highly de
sirable. As one (only approximate) measure of 
complexity, the authors used the cumulative per
centage of modules that had been handled 
(changed or added). They later revised this to be 
the cumulative handlings, where each of two 
changes to the same module would be counted. 
But they see the shortcomings of each measure. 
What is really desired, they say, is a measure of 
the degree of concentration of the changes. The 
more scattered the changes through the system, 
the more the conceptual structure will be ob
scured and the more error prone will be the 
changes. Eventually, the changes may well make 
the system so complex that a complete redesign 
will be needed. It may even be necessary to sub
divide the system into two systems ("fission") in 

EDP ANALYZER published monthly and Copyright"' 1978 
by Canning Publications, lnc., 925 Anza Avenue, Vista, Calif. 
92083. All rights reserved. While the contents of each report 
are based on the best information available to us, we cannot 
guarantee them. This report may not be reproduced in whole 
or in part, induding photocopy reproduction, without the 

EDP ANALYZER, MARCH 1978 

order to make it workable. 
We think it is fair to say, then, that software sys

tems exhibit a behavior. They tend to grow in size 
and complexity, as faults are corrected and new 
functions added. 

Conclusion 

As we have attempted to point out in these two 
reports, software engineering seeks to impose a 
discipline on the development and modification 
of software. A wide variety of tools and tech
niques have been developed, unfortunately with 
very spotty coverage of the life cycle of a soft
ware system. 

Within the development phase, most of the 
work to date has been on developing tools and 
techniques for construction, quality assurance, 
and evaluation. Much less work has been done on 
determining requirements, performing design, 
and performing maintenance. 

As the discussion just completed indicates, soft
ware engineering should address the whole life 
cycle of a software system-say, for instance, for 
ten years of life. Software systems tend to grow in 
size and complexity, as faults are corrected and as 
new functions are added. Structure is lost, mainte
nance becomes harder and more costly, and the 
risk of unreliable operation is increased. These 
are problem areas that simply must be addressed 
by software engineering. 

In short, while much has been accomplished in 
software engineering, there is still much more 
that needs to be done. 

written permission of the publisher. Richard G. Canning, Edi
tor and Publisher. Subscription rates and back issue prices on 
last page. Please report non-receipt of an issue within one 
month of normal receiving date. Missing issues requested af
ter this time will be supplied at regular rate. 

12 



REFERENCES 

1. For more information on Kenneth Kolence's ideas on soft
ware physics and their application to software engineer
ing, plus a free software physies primer, write to the 
Institute for Software Engineering, P.O. Box 637, Palo 
Alto, Calif. 94302. 

2. Gilb, Tom, Software Metrics, Winthrop Publishers, Inc. 
(17 Dunster Street, Cambridge, Mass. 02138), 1977. 

3. Performance Evaluation Review, ACM Special Interest 
Group on Measurement and Evaluation (ACM, 1133Ave
nue of the Americas, New York, N.Y. 10036), membership 
$12 per year for non-ACM members; published quarterly. 

4. EDP Performance Review, Applied Computer Research 
(8808 North Central Avenue, Phoenix, Ariz. 85020); price 
$48 per year; published monthly. 

5. Sreenivasan, K., "Application of accounting data in eval
uating computer system performance." Software Practice 
and Experience Gohn Wiley Sons, Ltd., Baffins Lane, Chi
chester, Sussex, U.K.); April-June 1976; p. 239-244; U.S. 
priee $75 per year; published bi-monthly. 

6. IEEE Transactions on Software Engineering, IEEE Com
puter Society (5855 Naples Plaza, Long Beach, Calif. 
90803), individual eopies $10: 
a) Elshoff, J. L., "An analysis of some commereial PL/l 

programs," June 1976, p. 113-120. 
b) Mills, H. D., "Software development," December 

1976, p. 265-273. 
c) Daly, E. B., "Management of software development," 

May 1977, p. 230-242. 
<l) Basili, V. R. and A. J. Turner, "Iterative enhancement: 

A practical technique for software development," 
December 1975, p. 390-396. 

e) Elshoff, J. L., "The influence of structured program-

ming on PL/l program profiles," September 1977, 
p. 364-368. 

7. U.S. national Bureau of Standards, Report on planning 
session on software engineering handbook, Tech Note 
832, Nov. 1974; order from Superintendent of Docu
ments, U.S. Printing Office, Washington, D.C. 20402; SD 
Cat. No. C 13. 46:832; price 70 cents. 

8. Proceedings of 1977 National Computer Conference, 
AFIPS Press (210 Summit Avenue, Montvale, N.j. 07645), 
priee $60, mierofiche $15: 
a) Yourdon, E., "The choice of new software devel

opment methodologies for software development proj
ects," p. 261-266. 

b) Freedman, D., D. C. Gause, and G. M. Weinberg, "Or
ganizing and training for a new software development 
project,'' p. 255-260. 

c) Caudill, R., "Understanding the developmental life 
cycle," p. 269-276. 

9. Brooks, F. P. Jr., The mythical man-month, Addison-Wes
ley Publishing Co. Gacoh Way, Reading, Mass. 01867), 
1975; price $5.95. 

10. Gordon, R. L. and J. C. Lamb, "A close look at Brooks' 
law," Datamation (1801 S. La Cienega Blvd., Los An
geles, Calif. 90035) June 1977, p. 81-83, 86; price $3. 

11. Belady, L. A. and M. M. Lehman, "A model of large pro
gram development," IBM Systems Journal (IBM, Ar
monk, N.Y. 10504), No. 3, 1976; p. 225-252; price 50 cents. 

12. Lehman, M. M. and F. N. Parr, "Program evolution and 
its impact.on software engineering," Proceedings of 2nd 
International Conference on Software Engineering, Octo
ber 1976; order from IEEE Computer Society (address 
above), price $20. 

You may have been seeing articles recently in the trade press about possible 
government regulation of "trans-border data flows." If you are concerned 
almost wholly with data processing within one country, it may appear that the 
possible regulations will have little effect on your operations. (Data processing 
executives in multi-national companies are very concerned about the possible 
regulations.) It is quite possible, though, that the regulations will have impacts 
on strictly domestic data processing. Next month, we discuss what is happen
ing in this emerging sub;ect area. 

EDP ANALYZER, MARCH 1978 13 



SUBJECTS COVERED BY EDP ANALYZER IN PRIOR YEARS 

1975 (Volume 13) 

Number 
1. Progress Toward International Data Networks 
2. Soon: Public Packet Switched Networks 
3. The Internal Auditor and the Computer 
4. Improvements in Man/Machine Interfacing 
5. "Are We Doing the Right Things?" 
6. "AreWeDoingThingsRight?" 
7. "Do We Have the Right Resources?" 
8. The Benefits of Standard Practices 
9. Progress Toward Easier Programming 

10. The New Interactive Search Systems 
11. The Debate on Information Privacy: Part 1 
12. The Debate on Information Privacy: Part 2 

1976 (Volume 14) 

Number 
1. Planning for Multi-national Data Processing 
2. Staff Training on the Multi-national Scene 
3. Professionalism: Coming or Not? 
4. Integrity and Security of Personal Data 
5. APL and Decision Support Systems 
6. Distributed Data Systems 
7. Network Structures for Distributed Systems 
8. Bringing Women into Computing Management 
9. Project Management Systems 

10. Distributed Systems and the End User 
11. Recovery in Data Base Systems 
12. Toward the Better Management of Data 

1977 (Volume 15) 
Number 

1. The Arrival of Common Systems 
2. Word Processing: Part 1 
3. Word Processing: Part 2 
4. Computer Message Systems 
5. Computer Services for Small Sites 
6. The Importance of EDP Audit and Control 
7. Getting the Requirements Right 
8. Managing Staff Retention and Turnover 
9. Making Use of Remote Computing Services 

10. The Impact of Corporate EFT 
11. Using Some New Programming Techniques 
12. Progress in Project Management 

1978 (Volume 16) 

Number 

1. Installing a Data Dictionary 
2. Progress in Software Engineering: Part 1 
3. Progress in Software Engineering: Part 2 

(List of subjects prior to 1975 sent upon request) 

PRICE SCHEDULE 

The annual subscription price for EDP ANALYZER is $48. The two year price is $88 and the three year price 
is $120; postpaid surface delivery to the U.S., Canada, and Mexico. (Optional air mail delivery to Canada and 
Mexico available at extra cost.) 

Subscriptions to other countries are: One year $60, two years, $112, and three years $156. These prices in
clude AIR MAIL postage. All prices in U.S. dollars. 

Attractive binders for holding 12 issues of EDP ANALYZER are available at $6.25. Californians please add 
38¢ sales tax. 

Because of the continuing demand for back issues, all previous reports are available. Price: $6 each (for U.S., 
Canada, and Mexico), and $7 elsewhere; includes air mail postage. 

Reduced rates are in effect for multiple subscriptions and for multiple copies of back issues. Please write for 
rates. 

Subscription agency orders limited to single copy, one-, two-, and three-year subscriptions only. 

Send your order an<;l check to: Send editorial correspondence to: 
EDP ANALYZER EDP ANALYZER 
Subscription Office Editorial Office 
925 Anza Avenue 925 Anza Avenue 
Vista, California 92083 Vista, California 92083 
Phone: (714) 724-3233 Phone: (714) 724-5900 

Name'------------------------------------------~ 
Company ________________________________________ _ 

Address----------------------------------------~ 

City, State, ZIP Code ____________________________________ _ 


