
PRODUCTS
Editorial ... 2
Chip-Scale Packaging 3
New Spartan -4 Devices 4-5
The New XC95144 6
QPRO Products Unveiled 7
Customer Success Stories:

SECAD .. 8
Esaote Biomedica 9
KAT GmbH........................ 10-11

DEVELOPMENT SYSTEMS
The Core Story 12-13
Low-Cost PCI Solution 14
XC9500 Core Support 14-15
CPLD Starter Kit 15
FPGA DSP Design Tools ... 16-17
Using Timing Constraints .. 18-19
Cycle Time Reduction 20-21
Device Programmer Support ... 21

SPECIAL SECTION ON
HDL VERIFICATION

Verification for
Higher Productivity 22-23

Synopsys SmartModel 24-26
Mixed Schematic/

HDL Entry 27
Verifying PCI Designs 28-29
Mixed-Design Verification . 30-31
HDL Simulation Basics 32-35
OrCAD Express 36-37
Leonardo Spectrum 38-39
Self-checking Test Bench 40

HINTS & ISSUES
Best HDL Design Flow? 41
ASIC ➠ Linx 42
HDL Advisor 43
Q&A From Our Hotline 44-47

The Programmable Logic CompanySM

Inside This Issue:

T H E Q U A R T E R L Y J O U R N A L F O R X I L I N X P R O G R A M M A B L E L O G I C U S E R S

XCELL

DESIGN TIPS & HINTS

DEVELOPMENT SYSTEMS

The Best HDL Design Flow?
Benchmark tests on common designs prove
that Xilinx has by far the most efficient HDL
design flow…

See page 41

Issue 29
Third Quarter
1998

Synplify Extends Timing Constraint
The timing of macrofunctions not synthesized in Synplify
may now be characterized using SCOPE…

See pages 18-19

Marconi, S.p.A.:

HDL VERIFICATION
SPECIAL SECTION
A 19-page section that looks at a wide range
of verification issues, including productivity,
PCI designs, HDL simulation and more …

See pages 22-40

PRODUCT INFORMATION
A new 48-lead, rugged
ball grid array package
ideally suited to today’s
portable and small form-
factor applications…

See page 3

Genova, Italy based Marconi,
S.p.A. has created Synopsys
scripts that can make the most

advanced synthesis techniques
simpler for FPGA users…

See pages 20-21

Chip-Scale
Packaging
Chip-Scale
Packaging

FPGA Design Cycle
Time Reduced
FPGA Design Cycle
Time Reduced

We
take you

to the
leaders.

2

XCell
Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3450
Phone: 408-559-7778
FAX: 408-879-4780
©1998 Xilinx Inc.
All rights reserved.

XCell is published quarterly
for customers of Xilinx, Inc.
XILINX and the Xilinx logo
are registered trademarks of
Xilinx, Inc. Spartan, Virtex,
HardWire, Alliance Series,
Foundation Series,
AllianceCORE, LogiCORE,
WebLINX, SelectRAM,
SelectRAM+, Dual Block,
FastFLASH, and all XC-prefix
products are trademarks,
and “The Programmable
Logic Company” is a service
mark of Xilinx, Inc. Other
brand or product names are
trademarks or registered
trademarks of their respec-
tive owners.

EDITORIAL

designs. This new software technology, in both the
Alliance Series 1.5 and Foundation Series 1.5
software, creates a performance-driven design
environment, so you get the industry’s highest
performance for high-density HDL designs.

AKAspeed includes many new features, plus
enhancements to the existing technology such as
timing-driven implementation, K-paths, advanced
timing analysis algorithms, a robust constraints
language, and incremental design capability. This
is a powerful and easy to use combination that
gives excellent results. AKAspeed includes:

➤ A floorplanner that takes advantage of your
knowledge of the structure of your design.

➤ The Xilinx CORE Generator to help you use our
rapidly expanding family of cores from Xilinx
and our AllianceCORE partners.

➤ A new Graphical Constraints Editor to help you
achieve optimal results on the first pass.

➤ Two new design guides for the industry’s lead-
ing HDL solutions.

➤ The ability to test your design under both best-
and worst-case operating conditions.

Your Best HDL Solution
High Level Design Languages, such as VHDL

and Verilog, are becoming more attractive as
device densities increase. Without these high-level
tools, it would be very difficult to design and
debug the very large designs that now fit on a
single FPGA. Our Alliance Series and Foundation
Series software provide an easy-to-use HDL design
environment that achieves the highest perfor-
mance designs.

Though we keep making breakthroughs, there
probably is no final “perfect solution,” because
the problem rapidly evolves. However, Xilinx
aggressively pursues in-house development pro-
grams, and partnerships with all of the key EDA
vendors, to keep you on the leading edge. There
is no better way. ◆

Software is the catalyst that subtly combines
your mental creativity with a piece of physical
silicon to produce a “living” representation of
your thoughts, something that is both physical and
non-physical, both matter and energy, heart and
spirit. Isn’t it a wonder? Perhaps with perfect

software, and the perfect device,
your thoughts could instantly mani-
fest themselves into real working
designs; there would be no limits to
your creative potential.

In an imperfect world, the clos-
est you can come to the ideal of
instant gratification is through the
use of Xilinx FPGAs and develop-
ment tools. Designs are not instanta-
neous yet, but with each new gen-
eration of Xilinx silicon and

software, your design capability increases and
your design time decreases.

The version 1.5 release of the Xilinx Alliance
Series and Foundation Series software moves you
one more step closer to realizing the ideal cre-
ative environment. These tools now offer 50%
faster compile times and 30% faster clock speeds
for average designs, plus they support our new
Virtex family, available in Q498, which will offer
an unprecedented one million gate density. There
has never been anything like this before.

Better software performance is always a good
thing, and we are constantly improving our tools
with new algorithms and processes. However, as
you begin to approach million gate designs you’ll
need all the software “horsepower” you can get.
So, we’ve added many new performance and
productivity enhancing features to our version 1.5
software, smoothing the transition of our FPGAs
into ASIC applications.

New AKAspeed Technology
AKAspeed is an array of new algorithms and

new algorithmic strategies, combined with ad-
vanced new feature sets and applications that are
optimized for higher performance, higher density

Moving Towards a Perfect World…
by Carlis Collins,
Managing Editor

of Corporate
Communications,

editor@xilinx.com

3

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

PRODUCT INFORMATION - HARDWARE

Figure 1 shows a side view of how the package
is constructed. The die is mounted on top, bonded
to the substrate
surface, and wire
bonded using
industry-standard
techniques. Ther-
mal resistance of
the package
(Θ JA) is 45.5°C
per watt, which is
comparable to the
VQ44 package at
about 42°C per
watt. System manu-
facturers using
CSPs can benefit from CPLD speed and cost im-
provements (die shrinks) without ever having to
change package footprint, because die shrinks can
be accommodated without having to change pack-
age dimensions.

The XC9536 is the first XC9500 FastFLASH ISP
family device offered in this package. It features 34
I/Os, full IEEE 1149.1 JTAG support, 10,000 pro-
gram/erase cycles, 20 years of data retention, and
unmatched logic flexibility with the industry’s best
CPLD pin-locking. The XC9536 CSP has 48 pins
arranged in a seven-millimeter by seven-millimeter
configuration using a 0.8 millimeter solder ball pitch.
(Package technologies with a ball pitch greater than
0.8 millimeters are considered ball grid arrays and
not CSP.) The footprint is three times smaller than the
44-pin very thin quad (TQ44) package and 40 per-
cent smaller than the 48-pin thin quad (TQ48)
package, as shown in Figure 2.

For more information on chip-scale
packaging, visit WebLINX at:
www.xilinx.com/products/csp.htm ◆

Chip-Scale
Packaging:

Ideally Suited to Today’s Portable and Small Form-Factor Applications

Xilinx recently unveiled a new 48-lead chip-
scale package (CSP) that offers all the benefits of
an extremely small form factor in a rugged ball
grid array package. This package is ideally suited
for a growing number of applications where
minimal board space and package thickness are
important, such as portable and wireless designs,
PCMCIA cards, PC boards, and PC add-in cards.
Xilinx is the first non-memory manufacturer to
have chip-scale packaging (CSP) technology
available now.

Chip-scale packages are about 20% larger than
the size of the die, with a ball pitch less than one
millimeter. With these packages, the requirements
for handling and lead coplanarity are greatly
reduced because there are no fragile leads to
bend. The package is also very thin (1.3 to
1.8mm) and light weight (0.17 gram) which
makes it ideally suited for weight conscious por-
table applications like cell phones, hand held
inventory and bar code reader systems, and per-
sonal digital assistants.

NEW

by Frank Toth, Market-
ing Manager for
FastFLASH Products,
toth@xilinx.com

17.6mm

17.6m
m

12mm

12
m

m

7mm

7m
m

44 PLCC

44 VQ

48 Chip
Scale

Package

Figure 2

Figure 1

/products/csp.htm

4

excels in this respect, with an I/O frequency of
92 MHz for the XCS30; this is 12% faster than the
comparable XC4013E-1, at 82 MHz. For the two
smaller Spartan devices, the XCS05 and XCS10,
the I/O frequency surpasses 100 MHz (see
Figure 1).

Spartan is a full-featured family with on-chip
SelectRAM memory and 238 to 1836 logic cells
(5K to 40K system gates). It takes advantage of a
unique process that utilizes 0.5 micron technol-
ogy for transistors and 0.35 micron technology
for interconnect. This provides the smallest and
fastest logic, using a 5V supply.

Spartan –4 Speed Files
The -4 speed files were generated with a new

characterization methodology that more accu-
rately models the worst-case delays in the silicon
while reducing the test cost. The result is a very
fast, yet low-cost solution. By applying this new
methodology to the volume production units now
being processed for the Spartan family, the Spar-
tan -3 speed grade was simplified and overall
performance was improved as well.

To use the new –4 speed grade, download the
speed files from WebLINX, the Xilinx website, at
http://www.xilinx.com/techdocs/htm_index/
sw_M1.4_alliance.htm. The initial Spartan support
in the Xilinx software (Alliance Series and Foun-
dation Series version 1.4) includes a placeholder
for the -4 speed files, making it easy to drop in
the new files; installation instructions are in-
cluded in the “readme” file. The production
versions of the Xilinx Alliance Series and Founda-
tion Series version 1.5 software will include the
new speed files. If you are using the beta version
of the 1.5 release, make sure you have the correct
speed files.

The low-cost Spartan FPGA family is excellent
for high-volume consumer applications such as
PCs, digital cameras, set-top boxes, and DVD
equipment. Now, with the introduction of the new
Spartan -4 speed grade, the family can be used in
very high-performance applications as well,
delivering on the promise of being the industry’s
no-compromise ASIC-replacement FPGAs.

For example, the two largest Spartan devices
can now meet the stringent requirements of
33 MHz PCI applications with no wait states, mak-
ing this the first low-cost FPGA family to provide
such high performance, with many applications
running at beyond 80 MHz.

Last year, 76% of ASIC design starts required
80 MHz speed or less. With an I/O speed beyond
100 MHz for the smaller members of the family,
and internal frequencies that can go much higher,
the Spartan devices easily meet this requirement.

Spartan –4 Performance
The new Spartan -4 speed grade is approxi-

mately 25% faster than the original Spartan -3.
This makes it comparable to the XC4000E-1, and
faster than any competitor’s 5V FPGAs. I/O fre-
quency is commonly used as a performance
benchmark, because it indicates how fast two
devices can “talk” with each other. I/O frequency
is measured by taking the inverse of the pin-to-pin
clock-to-out and setup delays. The Spartan -4

New Spartan -4 Devices
for High-Speed Applications

by Marc Baker, Xilinx Applications Engineer, marc.baker@xilinx.com

❝...the two largest Spartan devices can now

meet the stringent requirements of 33 MHz

PCI applications with no wait states...❞

/techdocs/htm_index/sw_M1.4_alliance.htm

5

article on p 14). Xilinx also offers several DSP-
related cores for the Spartan architecture, along
with AllianceCORE solutions from other vendors.
All of these pre-defined solutions can immediately
take advantage of the higher speed offered by the
Spartan -4 speed files. Download the new files
today to take advantage of the fastest low-cost
FPGAs available.

You can download the latest datasheet from
WebLINX at http://www.xilinx.com/partinfo/
spartan.pdf. Note that as with all other Xilinx FPGAs,
the datasheet provides the guaranteed worst-case
pin-to-pin setup and hold times, which are not
reflected in the speed files or timing reports.

Spartan –4 devices are available on distributor
shelves today, for all densities and packages. Con-
tact your local salesperson or distributor
for pricing and lead-times. ◆

Spartan Speed Designator
The Spartan series uses a new speed desig-

nator that starts at an arbitrary number and
increases for higher speed. Thus, the Spartan -4
is faster than the Spartan -3, but the “-4” doesn’t
indicate any relative speed against other products.
All future Xilinx products will use this new no-
menclature, which is similar to speed designators
in the ASIC world. This avoids the problems of
having two-digit speed grades. It also avoids the
potential for basing performance assumptions on
a single specification.

For example, most Xilinx devices use the delay
through the Look-Up Table (LUT) for the speed
designation. The Spartan -4 has a 1.2 ns LUT
delay, the fastest of any Xilinx 5-volt FPGA, equal
to the XC4000XL-09 and faster than the
XC4000E-1 (1.3 ns). However, the Spartan -4
overall performance is typically slower than the
XC4000XL-09, and comparable to the XC4000E-1
(see Figure 2).

The lookup table delay, being just one small
part of any given path in a design, does not accu-
rately reflect overall performance, and does not
work well as a general method of comparing
speeds. Overall design speed depends on the
function being implemented and the routing de-
lays in the critical path. Those routing delays can
be as short as 0 ns, especially when using carry
logic. As an example, a 16-bit counter runs at 96
MHz in the XCS30-4. The Xilinx Timing Analyzer
and third-party simulation tools will report worst-
case delays with a 0.1 ns resolution.

Spartan Core Support
The new Xilinx PCI32 Spartan master and slave

interface further reduces the cost of implementing
a programmable PCI solution (see the related

Figure 1

Figure 2

❝Spartan is a full-featured
family with on-chip

SelectRAM memory and 238
to 1836 logic cells (5K to

40K system gates).❞

120—

100—

80—

60—

40—

20—

0—
XCS40 XCS30 XCS20 XCS10 XCS05

M
H

z

Spartan -4 Tops I/O Speed ■ Spartan-3
■ XC4000E-1
■ Spartan-4

12—

10—

8—

6—

4—

2—

0—
XCS30-4 XC4013XL-09 XC4013XL-1 XC4013E-1 XC3142A-09 XC3142A-1

Ti
m

e

LUT vs. Decoder Delay ■ LUT
■ 4:16 Decoder

/partinfo/spartan.pdf

6

The New XC95144

process. The rest of the XC9500 family will be
transitioned over to the new process by the
end of 1998.

Higher Density at a Lower Price
The 50% die size reduction enables Xilinx to

maintain its CPLD price leadership into the future.
As you can see, the XC95144 offers 12% more
capacity than the competitors’ conventional
128-macrocell device at a 62% lower price
(see chart below).

The new XC95144 is a superior CPLD solution
at a rock bottom price. ◆

by John Ahn, CPLD
Product Manager,

john.ahn@xilinx.com

1996
0.6µ

50%
SMALLER! 1H98

0.5µ

The FastFLASH family of CPLDs just got better
with the recent introduction of the XC95144. This
newest member of the XC9500 family completes
the fastest growing line of CPLDs in the industry.
The XC95144 features 144 macrocells with 7.5 ns
pin-to-pin delays and is offered in 100-pin TQFP,
100-pin PQFP, and 160-pin PQFP packages.

The XC95144 is the first CPLD to use the
new advanced FastFLASH process from United
Semiconductor Corporation in Taiwan. This new
0.5-micron process technology offers up to a 50%
die size reduction from the previous 0.6-micron

$30—

$25—

$20—

$15—

$10—

$5—

0—
Altera Altera Xilinx Xilinx

EPM7128E EPM7128S XC95144 XC95108

10
0-

U
ni

t
Li

st
 P

ri
ce

12% More Headroom Than Competitors’ Devices!

$29.95

$14.25
$12.50 $11.35

7

Xilinx Unveils
New “QPRO” Products
For aerospace, defense, and high reliability markets

by Howard Bogrow,
Xilinx Marketing
Manager for Hi-Rel
Products, howard.
bogrow@xilinx.com

–55°C to +125°C. Packaging options include
thermally enhanced plastic quad flat packs and
ball grid arrays as well as hermetic pin grid arrays
and top-brazed ceramic quad flat packs.

The QPRO solutions include the Xilinx
XQ4000X FPGAs, which are available as military
temperature range ceramic and plastic encapsu-
lated devices that deliver densities up to 130,000
system gates. The QPRO line is also supported by
the Xilinx Foundation Series and Alliance Series
software, and a variety of verified software cores
that can be used to create system-level functions
such as standard bus interfaces.

“Our new QPRO offerings continue a commit-
ment by Xilinx to serve the changing needs of
these specialized markets, and they cap our
recent efforts of winning full QML status,” said
Rick Padovani, director of the Xilinx aerospace
and defense business. “Xilinx is leading the logic
industry in delivering off-the-shelf, commercial
products that are cost-effective and meet the
exacting standards of performance and reliability
in rugged environments that
our aerospace and defense
customers demand. Moreover,
Xilinx provides reliability of
supply and a superior alterna-
tive to traditional ASICs for
customers designing new sys-
tems or upgrading older equip-
ment.”

Xilinx has been serving the
military and aerospace market for more than a
decade and provides customers with continuity of
supply, specialized products, and guaranteed
mask and process controls that are unmatched by
any other programmable logic manufacturer. The
QPRO brand name reflects the Xilinx commitment
to QML, Performance, Reliability of supply, and
Off-the-shelf products. ◆

Xilinx recently announced the new QPRO line
of QML-certified programmable logic devices
designed to meet the evolving requirements of the
aerospace and defense markets, supporting a
procurement trend toward products built using

the best commercial practices. Xilinx
is one of only 20 semiconductor

suppliers in the world to receive
Qualified Manufacturer Listing,

or QML.
As a QML supplier,
Xilinx can quickly intro-
duce state-of-the-art,
military-grade products
because our world-class
processes and materials
have been qualified in
advance, eliminating the
need to qualify indi-
vidual products or
production lots. Xilinx
can now offer the latest,
highest-performance
products to both com-
mercial and military-
aerospace customers, at
the same time; the usual
12-to-18 month delay
for military qualification
is eliminated.

QPRO FPGAs are
guaranteed to operate in
extended temperature
and rugged environ-
ments. For example,
N-grade plastic and
M-grade ceramic
packages are rated
for operating environ-
ments ranging from

❝Xilinx provides

reliability of supply and

a superior alternative

to traditional ASICs❞

8

FPGA CUSTOMER SUCCESS STORY

SECAD, a French company specializing in
Xilinx FPGA design, real-time image-processing
board design and manufacturing, recently
designed a PCI-based Reconfigurable Image
Advanced Processor (PRIAP) using the XC4010XL.
This board includes a color or B/W video decoder
and three 16-Mbit memory planes, expandable to
64Mbit. These memory planes and the output of
the decoder are accessed by the FPGA simulta-
neously, allowing real-time computation with four
data flows. The board includes a PCI interface and
an 80 MHz 24-bit DSP, which can be devoted to
data communication between the memory planes
and the PCI interface.

The first application, developed for the View-
point company, is for real-time target tracking.

Other possible real-time
computations are:

➤ 2D or time filtering

➤ Mathematical morphology

➤ Correlation

➤ Thresholding

➤ Movement detection

➤ Any high-performance,
reconfigurable computing,
with or without image
processing

SECAD chose the Xilinx
4000XL family for a number of reasons:

➤ SECAD has used Xilinx for more than 10 years
in all of their image processing boards.

➤ Different densities are available within the
PQ208 footprint, from 4005XL to 4044XL,
allowing different processing capabilities
without board redesign.

➤ The Foundation Series software is easy to use
with the Metamor VHDL compiler, the ALDEC

simulator, and other tools from Xilinx like
X-BLOX.

The only problem at the beginning of the design
was the use of the beta version of the software,
running under Windows95, which caused some
problems. Also it was the first design we have done
in VHDL, and we had to learn a lot about it. VHDL
allows us to reuse most of our design, and we will
develop a VHDL library for this board, allowing us
to rapidly develop new designs.

We do not plan to use a HardWire version,
because, with the RAM-based version, we can
program new algorithms without changing the
board. A HardWire version will be interesting
only if we find an OEM customer for 1K or
10K/year quantity, with a fixed image-processing
algorithm need.

The SECAD company was founded in 1983. It
has 19 employees, and its main activities are:

➤ Electronic board and systems design, and
manufacturing for industry OEM market.

➤ Image processing board design and
manufacturing for OEMs.

➤ Design and manufacturing of proprietary
imaging products.

➤ Turn-key image processing applications for
industry, military, medical.

➤ Xilinx FPGA development and service.

➤ VHDL and Xilinx FPGA training.

➤ Providing FPGA design expertise.

➤ FPGA and CPLD development, using VHDL or
schematics.

➤ Complete board development, and
manufacturing.

For information on SECAD, call: +33 4
76 33 05 21, or fax : +33 4 76 33 05 56, or
e-mail secad38@compuserve.com ◆

PCI Reconfigurable Image
Advanced Processor (PRIAP)

by Denis Rousseau,
SECAD Product Manager,
secad38@compuserve.com

9

FPGA CUSTOMER SUCCESS STORY

When the designers at Esaote Biomedica
(Genoa, Italy) were looking for a logic solution
that provided dual-port RAM, they found that only
the Spartan Series of FPGAs from Xilinx met their
cost requirements. Esaote was able to begin their
design even before the production devices were
available, because they were one of the first to
receive the Alliance Series version 1.4 develop-
ment system and Spartan device samples. As a
result, Esaote placed the first volume order for
Spartan devices.

The Esaote Florence R&D team is developing
the next-generation of diagnostic ultrasound
equipment. The target is a portable ultrasound
scanner that is light, small, easy-to-use, and fast to
produce results. The core of the application needs
to process a high volume of data very fast, using
dual-port RAM, at low power consumption and
low cost. This is a perfect application for the
Spartan family.

Esaote originally considered the XC4000XL
FPGA family, taking advantage of the on-chip
Select-RAM and high speed. True dual-port RAM
was built by using the built-in dual-port read
capability of the Xilinx Select-RAM and then
adding a second block of RAM for dual-port write.
However, the resulting implementation did not
meet cost targets. In October 1997, the Xilinx
representative firm working with Esaote,
Silverstar-Celdis, presented advance information
on the Spartan Series. The no-compromises
Spartan family met the technical, performance,
and cost requirements of the system. The Spartan
solution was more cost-effective than even an
ASIC alternative.

Esaote was able to prototype their design using
the 5-V Spartan XCS20-3TQ144 samples. For
implementation software, they used Alliance 1.4,
which provided software support even before the

Spartan announcement. Esaote
engineers also used the beta
version of the Xilinx CORE
Generator to create some of
their DSP functions.

Esaote has always paid
careful attention to the issues
associated with the cost of
health care, as demonstrated by
its cost-effective family of prod-
ucts. In this design, there are 32
Spartan devices per board, and two
boards per system. With Esaote expect-
ing to build 1,000 systems, the total
Spartan usage is 64,000 devices. The
Spartan family is what made this low-
cost product feasible.

Esaote Background
The Esaote Group designs, manufactures, mar-

kets, and services non-invasive diagnostic medical
imaging systems and specialty medical monitoring
equipment worldwide. The Esaote Group is the
leading European manufacturer of diagnostic
ultrasound equipment and the world leader in
Dedicated Magnetic Resonance Imaging. In Italy
the Esaote Group is the leading provider of elec-
tronic diagnostic medical equipment. Group head-
quarters are located in Genoa, Italy.

Esaote’s technologically-advanced imaging
products include a broad line of diagnostic
ultrasound machines and an innovative Magnetic
Resonance Imaging (MRI) system designed spe-
cifically to scan joints and extremities (Artoscan).
The non-imaging products include electrocardio-
graph (EKG) and electroencephalograph (EEG)
diagnostic monitors.

For more information on Esaote see
their website at www.esaote.com ◆

A Spartan Success Story by Marc Baker, Xilinx
Applications Engineer,
marc.baker@xilinx.com

Views from
Esaote
Biomedia’s
manufactur-
ing facilities.

http://www.esaote.com

10

CPLD CUSTOMER SUCCESS STORY

targeted for XC3100A series FPGAs, mainly due to
the need for 50 MHz bus speeds. Soon, it was
discovered that pin-locking was becoming a ma-
jor issue. CG-CoreEl, of Pune, India, then recom-
mended the use of CPLDs. The designs were then
redesigned and targeted to XC9572 CPLDs which
have excellent pin-locking capability.

The CPLDs provided In-System Programmabil-
ity, no loss of components due to design revi-
sions, and greatly reduced manufacturing times.
All the design work was carried out in India with
the support of CG-CoreEl, Pune, India, the local
representatives. Now, KAT GmbH uses Xilinx
CPLDs in all current and future designs.

The KATSYS8010 Design
Though there are four CPLDs in any particular

configuration, five CPLDs were actually designed.
The functions of these CPLDs are as follows:

➤ PC Interface CPLD: All the necessary inter-
face circuitry for accessing the memory- and
PC-related I/O from the ISA bus.

➤ RAM Control CPLD: The battery-backed
RAM is dual-ported to both PC and Pentium.
Address decoding, arbitration, command, and
bus-multiplexer control signals were imple-
mented in this CPLD.

➤ I/O Control CPLD: All the I/O devices like
interrupt controllers, timers, 24V I/Os, serial
communication ports, watchdog timers, and
system ID are controlled by this CPLD.

➤ Axes Control CPLD: All the timing and con-
trol needed for interfacing to analog devices
such as ADCs, DACs, DISSIC, watch dog timer,
module ID, are generated by this CPLD.

➤ SERCOS Control CPLD: All the timing and
control needed for interfacing to SERCOS
controller, auxiliary ADC, 64-bit to 16-bit data
bus steering, are generated by this CPLD.

The KATSYS8010 CNC
by T.S.N. Murthy,
Principal Design

Engineer, KAT GmbH,
tsnm@giaspn01.

vsnl.net.ni

KATSYS8010 is the second in the series of
high-performance CNC controllers from KAT
GmbH, Bremen, Germany. The first product,
KATSYS8000, was designed in 1993. KATSYS8000
was a multiprocessor solution, integrated into an
industrial PC. The CNC machine can be controlled
via either digital drives, interfaced over the SErial
Realtime COmmunication System (SERCOS), or
via analog drives.

KATSYS8010, a compact version with a Pentium
200 MHz processor, is a PC plug-in CNC control-
ler. KATSYS8010 is also configurable, providing
either four axes of analog control or digital control
via SERCOS standards. The CNC programs and data
are downloaded from the PC, which is stored in

battery backed memory. The
CNC control software that

comes with KATSYS8010
also has a program-

mable mask
generator for
user configu-

ration. The per-
formance of the 200

MHz Pentium is about two
and a half times that of

KATSYS8000.
While KATSYS8000 can interface

only to incremental encoders,
KATSYS8010 can interface to either incremen-

tal or absolute encoders. This was possible due to
the design of the XC5210-based Dual Incremental
encoder and Synchronous Serial Interface Con-
troller (DISSIC, see page 11).

Why CPLDs were Chosen
KATSYS8000 was designed with more than 40

PALs. It was very tedious to program, label, and
insert these into sockets. So, the first design goal
for KATSYS8010 was to remove this problem.
Accordingly, the complete logic was split into four
different blocks and each of these were initially

11
FPGA CUSTOMER SUCCESS STORY

clock for the position data transfer; the position
data can be 32 bits wide. When the position data is
less than 32 bits, the remaining bits can be used to
receive information such as parity, power fail, or
other check bits. The position data can be located
anywhere within the 32 bit data and can be coded
in either binary or gray codes. The data transfer
can be initiated either
by a software com-
mand or a hardware
signal. Maximum clock
frequency is 400 KHz.

DISSIC has a 16 bit,
Intel-style micropro-
cessor interface and is
available in two imple-
mentation versions —
V2.0 has one absolute
and two incremental
encoder interfaces, and V2.1 which has two
absolute encoder interfaces.

DISSIC was the first Xilinx FPGA design for
KAT GmbH, and they were very pleased with the
performance of the XC5210-PC84 FPGAs. ◆

“The XC9500 CPLDs pack in so much logic, that
it has eliminated a lot of PALs and GALs and greatly
reduced the power consumption. The Xilinx soft-
ware is very reliable - all the five designs worked
right the first time. And, four of the five CPLDs were
running with a 50 MHz clock. Thanks to the accu-
rate simulation results of the Xilinx software” said
TSN Murthy, principal design engineer.

“The Xilinx FastFlash CPLD technology is so

Controller from KAT GmbH
elegant, that we want to use only Xilinx CPLDs for
all our future logic designs” said Ulrich Schulz,
project leader.

End Use
KATSYS8010 can be used in all types of CNC

machines. In order to apply KATSYS8010 in di-
verse machines, KAT supplies user-configurable
software to suit the machine and its
configuration. ◆

KAT GmbH recently used the Xilinx XC5210-
PC84 FPGAs to create a Dual Incremental Encoder
and Synchronous Serial Interface Controller.
DISSIC interfaces to two encoder types —
incremental and absolute.

The incremental encoder interface takes in A,
B, and R pulses from an encoder, filters the
spikes, decodes, and counts. The up/down
counter is 32 bits wide and can be preloaded with
a user value for a reference position. The position
value in the counter can be stored into a register
either via a software command or a hardware

signal. Other registers can be
used to store the counter values
on the activation of some exter-
nal signals.

The incremental encoder
interface can also be used for
digitizing. In this case one axis

moves to a target position, while the other axes
store the position of their respective counters. The
maximum input frequency of the A, B pulses is
around 950 KHz.

The absolute encoder interface implements the
Synchronous Serial Interface. DISSIC provides the

KAT GmbH Using Xilinx XC5210 FPGAs For a Dual Incremental Encoder
and Synchronous Serial Interface Controller (DISSIC)

❝DISSIC was the

first Xilinx FPGA design for KAT

GmbH, and they were very

pleased with the performance

of the XC5210-PC84 FPGAs.❞

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

12

PRODUCT INFORMATION - SOFTWARE

This year, Xilinx will ship products with
unprecedented logic density. Our FPGAs already
offer you 250K system gates, an order of magni-
tude greater than what was available just a few
years ago. Devices twice as large are expected
around mid-year, and our first million-gate FPGA
will be sampling by the end of 1998.

How will you create the logic to fill
these huge devices?

It’s obvious that designing one gate at a time
is not going to work. The answer lies with
intellectual property (IP), or cores, which are
predefined system functions, used for nearly a
decade by designers of traditional mask-
programmed custom ASICs.

It’s only recently that cores have started
making inroads into FPGA designs. Three main
reasons account for this new migration. First,
FPGAs are now large enough to accommodate

cores, and a
surprisingly large
and diverse
library of com-
patible cores is
coming into exist-
ence. These cores
include functions
such as PCI and
PCMCIA bus inter-
faces, digital
signal processing
algorithms, RISC
microprocessors,
standard periph-
eral controllers,
and asynchronous
transfer mode

(ATM) functions. The expansive logic resources
of our FPGAs, coupled with cores, allow you to
create system-level designs on a single chip.

The great attraction of cores is that they
allow you to quickly and reliably create the most

difficult sections of your designs. For small
designs, cores are a welcome convenience. But
for larger designs, they are becoming a necessity.

For example, one of our customers, a forward-
looking company, created an embedded applica-
tion that combines a RISC processor core with
several DSP core functions, communicating over a
PCI bus whose interface logic was also created by
a core. This would have been a monumental
undertaking if designed from scratch.

New tools are already on the horizon that will
make the task of grouping multiple cores on a
single FPGA even easier. These tools will allow
you to pull cores from a common library and
place them at predetermined locations to make
the most efficient use of resources and achieve
your performance requirements.

A second reason cores are coming to the FPGA
marketplace is performance. The latest genera-
tion of FPGAs operate at system speeds in the
80—100MHz range, and they will soon exceed
150MHz, fast enough to handle 66 MHz PCI 64 or
communications protocols such as a 155Mbps
synchronous optical network (Sonet). These
functions are significant design challenges in
themselves, and it’s a great benefit to you if the
functionality is available as a core.

Third, intellectual property developers have
traditionally built their cores around standard
high-level description languages such as VHDL
and Verilog, the mainstream tools of ASIC design-
ers that provide a large degree of flexibility. These
languages are now becoming the basis for more
and more PLD tools, and that is one of the many
things attracting IP developers to the program-
mable logic market. In fact, developers are
discovering that FPGAs are excellent prototyping
vehicles for cores.

Developers can silicon-test their designs di-
rectly on programmable logic devices and polish
the code much quicker and with less expense
than they could by going through an ASIC vendor

The Core Story: A Breakthrough

❝The great attraction

of cores is that they allow you to

quickly and reliably create the

most difficult sections of your

designs. For small designs, cores

are a welcome convenience. But

for larger designs, they are

becoming a necessity.❞

13

and lining up a customer as a development
partner. Our SRAM-based PLDs permit core
designers to “rewire” the devices immediately
by reprogramming them with new designs.

Moreover, the growing use of FPGAs presents
independent IP developers, and programmable
logic vendors themselves, with a “mass market”
for their products. The worldwide universe of
programmable logic customers numbers in the
tens of thousands, compared to several hundred
very large companies that buy IP for their high-
volume mask-programmed ASICs.

Cores are also helping you answer the classic
“make or buy” question. For example, as ubiqui-
tous as it is today, the PCI interface remains a
complex standard, rife with timing-critical specifi-
cations. Making a PCI interface from scratch can
add from six to nine engineering months to a
design. Buying it, on the other hand, can mean a
substantial saving of time and money, especially
for PCI designs where engineering time, cost, and
volume may not justify going to a traditional ASIC
solution. Additionally, buying cores frees you to
concentrate on the intellectual value they add –
beyond the basic PCI bus interface – to the
product that’s on the drawing board.

The Xilinx LogiCORE PCI interface illustrates
one model of how cores are being delivered in
the FPGA market today. Our PCI offering consists
of pre-defined functions (target and initiator) that
allow you to create a complete PCI interface on a
single FPGA, and still have ample logic remaining
to create the unique back-end interface required
for your application.

Two points illustrate why the market has
quickly accepted a product like the LogiCORE
PCI core (more than 300 electronic equipment
manufacturers have licensed it to date). First, the
design is pre-verified and tested, ensuring that it
will comply with the rigorous PCI specification.
Second, it has a pre-defined layout, and it’s
optimized for our FPGA architecture. Therefore,

timing for critical
paths is fixed,
ensuring predictable
and consistent per-
formance.

Cores are flowing
from a growing
community of inde-
pendent IP develop-
ers who are coming
to realize that their
cores must be tuned
for a particular
device architecture
using the tools
designed to program that device. Power con-
sumption, performance, and core predictability
vary considerably based on differences in the
FPGA vendors’ place-and-route tools, device
interconnect structure, and on-chip memory
resources.

Design verification and device optimization are
critical elements for the success of PLD cores,
whether they are sold and supported by device
suppliers or by IP developers. In fact, indepen-
dent IP developers are beginning to align them-
selves closely with programmable logic vendors in
order to accomplish this. Xilinx, for example, has
partnered with nearly two dozen IP providers
worldwide through its AllianceCORE program,
and expects to expand the number of partners in
the program this year. Such partnerships help to
ensure that cores will reach you only after they
are verified and optimized, and only when a
strong support system is in place.

The momentum is clearly behind PLD cores,
and during 1998 you can expect to see significant
new developments in this segment of the market.
Larger and faster devices, new FPGA architec-
tures, powerful tools, and targeted IP offerings
are shaping up to combine cores and FPGAs into
true system-level solutions. ◆

in Time to Market by Rich Sevcik, Senior Vice President of Software, Xilinx

❝Cores are flowing from
a growing community of

independent IP developers who
are coming to realize that their

cores must be tuned for a
particular device architecture

using the tools designed to
program that device.❞

14

Xilinx provides the most cost-effective and
highest-performance PCI solution in the market by
leveraging the flexibility of Xilinx FPGAs. We make
PCI easy to design by providing a complete solu-
tion of proven cores, intuitive development tools,
and comprehensive support.

Why Xilinx PCI?
By integrating a fully compliant PCI interface with

an application-specific back-end design into one
FPGA, you can achieve higher integration and higher

performance than other PCI
solutions. The flexibility of
Xilinx FPGAs makes it possible
to update the PCI board, using
software alone, in develop-
ment or in the field. This
significantly reduces your
design risk and cuts develop-
ment time.

Furthermore, the Xilinx
PCI solution can be custom-
ized for a specific application

and, as a result, the highest possible performance
can be achieved. Xilinx high-speed FPGAs support
zero wait-state burst operations and by integrating
scalable, dual-port FIFOs on the chip, our custom-
ers have achieved a sustained bandwidth of up to
132 Mbytes per second (the theoretical maximum
for a 32-bit, 33MHz PCI interface).

PCI32 XC4000 Devices–
The high-performance PCI solution

This solution integrates a PCI interface with up

to 124,000 system gates. The core supports zero
wait-state burst operations and a sustained band-
width of up to 132 Mbytes per second.

PCI32 Spartan –
The low-cost PCI solution

This solution integrates a PCI interface plus up
to 30,000 system gates at a price below standard
chip solutions.

To minimize the learning curve and simplify
the design process, Xilinx provides fully proven
and predictable PCI cores (LogiCORE PCI) that
can be integrated into your design using the stan-
dard Xilinx implementation tools. LogiCORE PCI
products use Xilinx Smart-IP technology, are easily
configured and downloaded with an intuitive user
interface from WebLINX (the Xilinx website), and
come with VHDL and Verilog simulation models
and testbenches.

Xilinx and its partners can also provide refer-
ence design examples, prototyping boards, PCI
drivers, driver development tools, and design
services.

Conclusion
Because Xilinx FPGAs integrate the PCI interface

plus 15,000 to 124,000 user gates, no external
PLD is required for glue logic. The result is a
highly integrated, flexible, one-chip, PCI solution
at a lower cost than most standard PCI chip sets.

For more information, visit WebLINX at:
www.xilinx.com/products/logicore/pci/
pci_sol.htm ◆

The Low-Cost PCI Solution
by Per Holmberg,

LogiCORE Product
Manager,

per@xilinx.com

Figure 1: The Xilinx
Cost Advantage

New XC9500
CORE Support

by Dave Grace, CPLD Software
Product Manager,
dave.grace@xilinx.com

Xilinx CPLDs offer you a number of advantages such as
high system clock speeds, short pin-to-pin delays, industry
standard JTAG support, and non-volatile FLASH-based In-
System Programmability (ISP). Xilinx XC9500 CPLDs are
perfect for integrating many off-the-shelf ICs, and because you
can easily customize or enhance any design, CPLDs offer you
the ability to optimize your system for speed, density, cost, or
all three. Now, you also have the time-to-market and ease-of-
use advantages of intellectual property (cores) as well.

/products/logicore/pci/pci_sol.htm
/products/logicore/pci/cgen_demo/xpciClientDemo.htm

15

Insight Electronics is offering a new, low-cost
CPLD development system. The Xilinx CPLD
Starter Kit includes Xilinx Foundation Series
software, an ISP/JTAG download cable, and an
XC9536 demo board; everything you need to
easily create and test high-performance XC9500
designs, within minutes of opening the box.

The XC9500 family is the industry’s most
advanced CPLD product, offering 5-ns pin-to-pin
speeds, full IEEE 1149.1 JTAG support, ultra-
reliable pin-locking, and advanced surface
mount packaging. In addition, the XC9500 family
commands the lowest cost per macro cell in the
industry, due to the advanced Xilinx proprietary
FastFLASH technology.

The CPLD-Starter Kit is a very inexpensive way
for you to begin designing with low-density Xilinx
products. This full-featured development system
provides everything you need including simulation
capability and a hardware download cable for in-
system programming and real time logic debug-
ging. You can enter designs via schematic capture,
state diagrams, and high-level description language
(HDL), plus the kit can be upgraded to the industry
standard VHDL for use with higher density designs.

CPLD Starter Kit Features

➤ Foundation Series Base V1.4 software

➤ Device support for all XC9500 CPLD products

➤ XC9500 demo board

➤ Parallel download cable for in-system pro-
gramming

➤ XC9500 product description sheet

➤ CPLD application guide

➤ XC9500 example design

➤ Upgrade to full VHDL system for just $390
(special offer)

➤ Memec Design Services information

➤ Support for Xilinx lower density FPGAs
(XC4000E/X up to XC4010E/X, and Spartan)

➤ Price: $99.00

Hardware Requirements

➤ Windows 95- or Windows NT 4.0-compatible PC

➤ 32MB RAM, minimum

This starter kit is ideal if you want to create
low-density designs, quickly, efficiently, and cost
effectively.

Full-Featured Xilinx CPLD Starter Kit
for $99.00 from Insight Electronics

by Chris Skipworth,
chris_skipworth@
ins.memec.com

Contact your nearest Insight-Electronics Sales Office to purchase the CPLD-Starter Kit at
1-800-677-7716 (USA), or 1-800-204-0010 (Canada). ◆

There are three ways you can take advantage of XC9500
devices using COREs:

➤ LogiBLOX - The XC9500 family is now fully supported
by the LogiBLOX module generator in the new Alliance
Series and Foundation Series 1.5 release, shipping this
summer.

➤ AllianceCORE - The XC9500 family is also supported
under the Xilinx AllianceCORE program. Core designs
for UARTs, MicroProgram Controllers, Peripheral

Interface Controllers, DRAM Controllers, and Synchronous DRAM
Controllers are available today.

➤ Xilinx CORE Generator - XC9500 functionality and support will be
incorporated into the Xilinx CORE Generator in the first half of 1999.

Simplifying the design process through the use of proven, high-
performance cores gives you significant benefits. Now, Xilinx adds the
XC9500 ISP CPLD family to the list of core-compatible device architec-
tures that help you achieve higher performance results with significant
reductions in design time. ◆

16

Over the past year, Xilinx has simplified the
task of implementing DSP functions in FPGAs
through the release of its optimized DSP
LogiCOREs and its CORE Generator technology.
Many users have experienced significant gains in
productivity when using these DSP cores, because
they no longer have to implement functions such
as FIR filters from the ground up.

In a core-based design methodology, an effi-
cient implementation is dependent on identifying
the optimal parameters for a core. For example, a
core that is programmed to use a 16-bit data path
will use many more gates than a core employing
only a 9-bit data path. Furthermore, even without
bit-width optimization, DSP function design
already involves significant complexity such as
calculating the number of taps or determining
coefficient values for a filter. Without access to a
tool specifically designed for optimizing DSP

functions, it may be extremely difficult to develop
an efficient final silicon implementation.

System-level design tools that support the
design of DSP functions have existed for some
time. However, the traditional offerings in this
arena have had a number of drawbacks. Some
system design tools only effectively enable DSP
function development using single- or double-
precision floating point arithmetic. The digital
designer is left with the difficult task of converting
this design into fixed-point integer arithmetic
using as few bits as possible. Although some tools
have supported fixed-point and bit-width optimi-
zation, these have been not only very expensive
but also very difficult to use.

During an evaluation of DSP system-level
design tools, Ken Chapman, a Xilinx Applications
Specialist focusing on DSP, identified SystemView
by Elanix as a good system-level design solution
for FPGA implementations. Chapman has found
that digital designers tasked with doing DSP
designs often lack a formal background in DSP
theory. When combined with the lack of tools, it
was clear that many engineers had little chance of
producing a truly optimal design. “As a digital
design engineer who lacked a strong mathe-
matical background, I found SystemView enabled
me to grasp key DSP concepts in minutes,” stated
Chapman, “In addition, SystemView was the
only tool that combined ease-of-use with the
sophistication needed for today’s designs.”

Integration with the
Xilinx DSP design flow

To further enhance SystemView for FPGA
users, Xilinx and Elanix have integrated System-
View with the Xilinx DSP LogiCORE functions and
CORE Generator.

Each Xilinx DSP LogiCORE, such as a FIR filter
or multiplier, has a corresponding token in
SystemView’s DSP library. SystemView includes
Xilinx-specific parameter checking to verify that
the token parameter values are supported by the

DSP Design Tools
for Xilinx FPGAs

by Nick Lethaby, Direc-
tor of Business Devel-
opment, Elanix, Inc.,

nick@elanix.com

SystemView is integrated
with the Xilinx DSP
tools, providing a
smooth flow from sys-
tem-level design to
silicon implementation.

17

actual LogiCORE core. Once the design is
completed in SystemView, you can automatically
invoke and pass core parameters to the Xilinx
CORE Generator. The CORE Generator then
produces netlists of the fully parameterized cores,
HDL simulation models, schematic symbols, and
HDL instantiation code.

In future releases, SystemView by Elanix will
produce structural VHDL code, detailing the
interconnectivity between the cores required
to implement the whole DSP subsystem. This
structural VHDL includes the instantiation code
produced by the CORE Generator for each core.
SystemView will automatically invoke the Xilinx
Foundation VHDL editor so you can integrate the
DSP subsystem with the remainder of the design.

About SystemView
SystemView consists of a core tool that com-

bines design entry, simulation, analysis, and filter
design. In addition, a range of optional token
libraries are available. Users of Xilinx DSP solu-
tions must obtain the core SystemView tool and
the DSP library, along with a Xilinx FPGA option.

Some of the more important benefits of
SystemView for designers of DSP and communica-
tion applications are briefly summarized below:

➤ Faster design iteration: You can build models
using high-level functional blocks (tokens),
without needing to worry about low-level details
such as clocking. Compared to traditional
block-diagram tools, SystemView’s parameter
inheritance capabilities greatly reduce the
number of parameters that must be entered for
each. Since simulation occurs at the algorithmic
level, simulation speed is orders of magnitude
greater than HDL simulators. As a result of these
attributes, you can build, evaluate, and change
models very quickly and rapidly explore
different design options.

➤ Bit-true DSP token library: When using an
FPGA, you can reduce the final gate count by
using only the minimal number of bits
required to maintain signal integrity. The
SystemView DSP library provides bit-true DSP
function simulation, including quantization to
the exact arithmetic mode. This enables quick
determination of the appropriate bit-widths
without the need to develop bit-true C models
or hardware prototypes.

➤ Token libraries: In addition to a bit-true
DSP library, SystemView provides CDMA/IS-95,
communications, RF/Analog, and TTL logic
libraries. If desired, you can build end-to-end
communication systems. In addition, mixed-
mode behavior, such as an FPGA-based
DSP function interfacing to an A/D, can be
modeled up-front, reducing the likelihood of
encountering unexpected problems later in the
design cycle.

➤ Analysis tools: Tools such as HDL simulators
do not provide adequate signal analysis. As
a result, you may have to write custom pro-
grams to plot numbers in a meaningful way.
SystemView provides a range of analysis tools
specifically designed for signal analysis. These
tools enable you to quickly produce meaning-
ful data plots ranging from power spectrums
to QAM constellations or phase locked loop
phase planes.

Conclusion
This integration of SystemView by Elanix and

the Xilinx CORE Generator provides a faster and
simpler method for designing high-performance
DSP applications. You can now use a visual
design environment to directly generate high-
performance silicon implementations for DSP
applications.

For further information on Elanix and its products, visit the Elanix website at:
www.elanix.com or call 818-597-1414. ◆

*The term ‘SystemView’
is used as a shorthand
form for SystemView by
Elanix

SystemView by ELANIX is
a registered trademark
of Elanix, Inc.

❝You can now use a visual design
environment to directly generate high performance

silicon implementations for DSP applications.❞

http://www.elanix.com

18

Synplicity has expanded its Synthesis Con-
straint Optimization Environment (SCOPE) to
allow you to characterize the timing of
macrofunctions not synthesized in Synplify. These
new constraints integrate SCOPE more tightly for
mixed mode design entry than any other FPGA
constraint solution. SCOPE provides total control
of your synthesis results by using an innovative
multi-level constraint approach. The addition of
the timing constraints for mixed mode entry
complements the existing timing constraint.

New Synplify 3.0C
Timing Constraints:

➤ Black Box Propagation Delays

➤ Black Box Setup Delays

➤ Black Box Clock to Output Delays

Existing Timing Constraint Features:

➤ Clock Frequency

➤ Input Delays

➤ Output Delays

➤ Delays To Registers

➤ Delays From Registers

➤ Multicycle Paths

➤ Improve Timing Constraint

➤ Route Timing Constraint

When synthesizing a design, logic can often be
made faster at the expense of more logic. The most
direct method of evaluating these “area vs. perfor-
mance” trade-offs is by analyzing the performance
of the synthesized logic. Synplify allows you to
define timing constraints that automatically control
synthesis to meet the system requirements.

Consider the Xilinx cores and macrofunctions
that have been carefully structured to fit into your
design. Most synthesis tools do not allow you
to specify the timing characteristics of these
functions when incorporated into your design.
Therefore, the synthesis tool does not understand
whether inputs and outputs are registered or
combinatorial. Additionally, the delays inside
these block are unknown, leading to paths that
become over- or under-constrained.

If a design is under-constrained, the logic will
not be synthesized to map to the optimal amount
of logic and will perform slower than required. If
a design is over-constrained, synthesis compro-
mises on design performance and area to achieve
the goals. The over-constrained design may either
be larger than required, or may be slower for the
overall design.

Defining Hierarchy with the
Black_Box Attribute

Synplify supports mixed mode design entry
by instantiating components and attaching the
“black_box” timing attribute. The black_box
attribute allows the integration of schematics,
LogiBlox, COREgen, Xilinx Core Solutions, as well
as any other design that is not to be synthesized in
VHDL or Verilog.

To use the black_box attribute create a stub
for the macrofunction (logic content will be
ignored). The stub must declare the ports and the
port directions. By placing the “black_box”
synthesis directive just before the semicolon in
the module declaration, Synplify will ignore the
internal logic. The body of the code then instanti-
ates the component. The netlist that Synplify gen-
erates will be combined with the other design files
when compiled in the Alliance Series tools.

Synplify Extends Timing Constraint
by Jim Tatsukawa,
Partner Programs

Manager, Synplicity
Inc., jimt@

synplicity.com

❝Synplify allows you to

define timing constraints that

automatically control synthesis to

meet the system requirements.❞

19

Control For Mixed Mode Entry
Timing Constraints
For Black_Box Modules

After the black_box module has been specified,
Synplify allows the full timing characterization of
the black_box module through the use of three
types of timing attributes that are attached to the
black_box definition. The following summaries
describe how to effectively use these timing con-
straints to fully characterize your design.

➤ Combinatorial delays through the black_box
module are defined by the syn_tpd attribute.
It specifies the delays from the inputs of the
black_box module to the outputs. Delays are
given in nanoseconds.
Syntax: syn_tpd1=”{input or input

bus}->{output or output
bus}={propagation delay in ns}”

➤ Registered inputs for the black_box module
use the syn_tsu attribute to specify the setup time
required for the inputs relative to the clock.
Synplify will then recognize the black_box
module as the destination of register to register
propagation delays. Many designs use both rising
edge and falling edge clocks. Synplify allows you
to specify the rising edge and falling edge clocks.
The syn_tsu specifies falling edge clocks by the
additional use of the “!” character.

Example Design
module ram32x4(z, d, addr, we, clk);
/* synthesis black_box

syn_tpd1=”addr[3:0]->z[3:0]=8.0"
syn_tsu1=”addr[3:0]->clk=2.0"
syn_tsu2=”we->clk=3.0"

 */
output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;

endmodule

/*
 * Build a bigger ram
 */

Syntax: syn_tsu[0-9]=”{input or
input bus}->{clock input}=
{propagation delay in ns}”

Syntax: syn_tsu[0-9]=”{input or
input bus}->!{clock input}=
{propagation delay in ns}”

➤ Registered outputs for the black_box mod-
ule use the syn_tco attribute to specify the
clock to output delays within the black_box
module. The syn_tco additionally specifies the
black_box module as the source of register to
register propagation delays. The syn_tco at-
tribute supports the rising or falling edge
clock specification as in the syn_tsu.
Syntax: syn_tco[0-9]=”{clock

input}->{output or output
bus}={propagation delay in ns}”

Syntax: syn_tco[0-9]=”!{clock
input}->{output or output
bus}={propagation delay in ns}”

◆

module ram64x4(z, d, addr, we, clk);
output [3:0] z;
input [3:0] d;
input [4:0] addr;
input we /* xsynthesis

syn_input_delay=10.0 */;
input clk;

wire [3:0] za, zb;

wire wea = we & ~addr[4];
wire web = we & addr[4];
ram32x4 r1 (za, d, addr[3:0], wea, clk);
ram32x4 r2 (zb, d, addr[3:0], web, clk);
assign z = addr[4] ? zb : za;

endmodule ◆

❝Synplify supports mixed mode design

entry by instantiating components and

attaching the “black_box” timing attribute.❞

20

With the availability of high-density FPGAs
(XC40250XV, 500K system gates) design imple-
mentation and verification are performed in
parallel to meet time-to-market requirements.
You are often forced to make functional changes
to your design during the synthesis and imple-
mentation phase. These changes commonly
termed as “Engineering Change Orders” (ECO)
need to be implemented with minimal impact to
the netlist, to preserve the original layout. For
minor RTL changes, the traditional top-down
iterative design methodology requires time

consuming re-synthesis and re-layout for the
complete design.

At Marconi S.p.A., the designers have developed
a top-down/bottom-up synthesis methodology to
accommodate ECOs, eliminating the need for
complete design re-synthesis and re-layout. This
methodology preserves netlist names of all current
parts not affected by RTL functional changes
enabling the design to use guided place and route.
This methodology works with Synopsys FPGA and
Design Compilers and requires in-depth knowledge
of dc_shell, the Synopsys scripting language.

FPGA Design Cycle Time
Reduction and Optimization

by Stefano Lorenzini,
CAE-VLSI Department,

Marconi S.p.A.,
Genova (Italy)

Figure 1

TRADITIONAL TOP-DOWN DESIGN METHODOLOGY

route stages of the complete design because syn-
thesis does not preserve the netlist names. As a
result, design iterations are very time-consuming
and synthesis and layout can become the signifi-
cant part of the design cycle. This design strategy
is quite simple but has its challenges:

➤ Start of the synthesis phase constrained to the
end of the RTL description

➤ Large amount of memory required for the
synthesis process for large designs (above
50K gates)

➤ CPU time increase for synthesis and layout
iterations

➤ RTL changes imply new synthesis and layout
iterations

➤ No layout reuse capability

The traditional FPGA design cycle represented
in Figure 1 requires you to complete the RTL
before entering the synthesis and layout cycle.

Using this approach, every small change in RTL
necessitates repeating the synthesis and place and

❝...the designers have developed a top-down/bottom-

up synthesis methodology to accommodate ECOs, eliminating the

need for complete design re-synthesis and re-layout. ❞

21

Due to the limitations using the traditional
top-down design methodology and intense time-
to-market requirements, the engineers at Marconi
have developed a methodology that reduces the
design cycle (as shown in Figure 2) using
Top-Down/Bottom-Up synthesis, and post-layout
synthesis capability (layout reuse).

Top-Down/Bottom-Up
synthesis capability

This synthesis strategy is commonly used in an
ASIC design flow. The hierarchical levels in the
design are synthesized individually, then merged
at the top-level. The complete design is then
placed and routed using the Xilinx Alliance Series
implementation tools. It leads to a tradeoff be-
tween process memory allocation and design
constraints management.

The procedure is simply managed by setting,
in a dedicated file, some mandatory variables
such as the synthesis session name, the RTL file
names, and the top-level module name. Once the
design has been completely synthesized, the first
layout iteration can take place.

Post-layout synthesis capability
After completion of the first design iteration, a

post-layout synthesis algorithm (dc_shell script) is
used to preserve netlist names during re-synthesis
in all circuit parts not affected by the RTL func-
tional change. This post layout synthesis capability
is also called ECO capability. Since this methodol-
ogy is very efficient for small design changes, highly
partitioned designs and good partitioning RTL rules
are essential for efficiency.

MARCONI FPGA DESIGN METHODOLOGY

Figure 2
This ECO synthesis methodology, working in

conjunction with a guide file, may reduce the de-
sign runtimes up to 10x.

Conclusion
Because FPGA densities are increasing rapidly,

ASIC design methodologies are now suitable. The
ASIC flow proposed here can reduce your FPGA
design cycle time by means of advanced synthesis
and layout techniques allowing you to control the
design development at every phase, avoiding the
limitations imposed by the standard synthesis tech-
niques. In the future, with the availability of one
million gate FPGAs (the Virtex family of devices)
formal verification algorithms will be essential to
further reduce the design cycle time for ECOs.

The dc_shells used for the Marconi
design methodology may be obtained by
contacting your local Xilinx FAE. ◆

Device Programmer Support
Here’s what you’ll see:
➤ Guide to Device Support Tables
➤ XC1700 PROMs
➤ XC7200 CPLDs
➤ XC7300 CPLDs
➤ XC9500 ISP CPLDs

You can find all the latest information
about third party programmer support for
Serial Configuration PROMs and CPLD devices
by visiting WebLINX, our website, at:
http://www.xilinx.com/support/programr/
dev_sup.htm.

The XC95144 and the XC17Sxx
Spartan Serial PROM family are the
newest additions to the list. ◆

/support/programr/dev_sup.htm

22

design entry, synthesis, implementation, and
verification. You will often need to move between
these four steps to either correct or change the
circuit, and that requires you to verify the design
at the following stages:

➤ RTL functional simulation

➤ Post-synthesis simulation

➤ Post-layout static timing analysis

➤ Post-layout simulation

Using a Testbench Methodology
A testbench is a separate set of VHDL or

Verilog code that you use to specify circuit input
stimuli and output responses, then you test to that
specification at various points in your design
cycle. This allows you to readily identify and
resolve problems early in the design process,
thereby saving significant time and costs. Steve
Winkelman of DisplayTech states “I reduced my
design cycle by 25% by adopting an HDL
simulation methodology” (see Figure 2).

A testbench also allows you to perform hard-
ware regression, software debug, and system
debug, in parallel. The same testbench (and
simulator) are used before implementation to
catch timing errors, and after synthesis to catch
critical path problems (with estimated logic block
and net delays).

Many FPGA designers are constantly pushing
to higher density FPGAs such as the XC40250XV
(500k system gates). The number of vectors
required to verify these designs has risen many
times faster than the size of the devices them-
selves, as shown in Figure 3. As a result, the
amount of time spent in simulation increases
dramatically. To help verify more in less time,
other verification tools and strategies similar to
ASIC strategies are being adopted. These tools
include static timing, formal verification, cycle

HDL VERIFICATION SPECIAL SECTION

To maintain competitiveness, many designers
have found that high-level Hardware Description
Languages (HDLs) are essential for representing
and verifying their designs. ASIC designers
adopted the HDL design and verification method-
ology several years ago, because it works at a
higher level of abstraction, allowing them to
produce more gates per day.

With the introduction of the Xilinx Spartan
family in 1997, along with the Xilinx mask
programmed HardWire capability, FPGAs are
rapidly becoming Gate Array replacements, and

FPGA designers are now looking
for a verification strategy to help
improve productivity.

Verification Methodology
As design density and complex-

ity increases, the cost of correcting
errors increases exponentially with
time. An error, if detected early in
the design cycle (during RTL simu-
lation), is fairly inexpensive to fix.
That same error, if caught late in
the design cycle, may necessitate
a redesign and re-verification.
Furthermore, debugging a finished
device is very time consuming and

often impossible because the debugging tools may
not allow you to observe all internal nodes.

Perhaps the most publicized example of a costly
bug was the one found in Intel’s Pentium proces-
sor, which lead to Intel announcing a $475 million
loss against fourth quarter earnings in 1994. To
avoid such costly mistakes, designers are simulat-
ing their designs using a testbench methodology
that allows them to observe all internal nodes and
isolate errors early in the design process.

The design and verification methodology,
shown in Figure 1, consists of four major steps:

Verification
for Higher Productivity

by Hitesh Patel and
Carol Fields, Xilinx
Alliance Marketing,

hiteshp@xilinx.com,
carol@xilinx.com

Figure 1: HDL Verifica-
tion Design Flow

We take you to
the leaders.

23

meet your changing requirements. In the Alliance
Series 1.5 release you will achieve the highest
quality results. You will also find minimum delay
characterization for hold time and race condition
checking, Global Set-Reset (GSR) simulation mod-
els that depict the true behavior of the silicon, and
a robust set of documentation supporting the
industry’s leading HDL simulators.

Summary
Design verification is arguably the most critical

task in successfully creating complex designs and
decreasing time to market. Without verification, error
isolation is a very tedious and time intensive effort.

In practice, engineers have found that a verifi-
cation strategy improves their productivity and
keeps design projects on schedule. As devices
surpass one million gates, a design for verification
strategy provides you with the confidence that you
are releasing functionally correct devices.

Xilinx will continue to lead the way in develop-
ing advanced methodologies with our premier
EDA partners. ◆

base simulation, and emulation. They significantly
speed-up the verification cycle times as opposed
to simulation, which can take a long time and
consume large amounts of memory.

The Changing Role of Verification
A design for verification strategy focuses simu-

lation at the RTL level where it runs the fastest. The
strategy replaces gate-level simulation with equiva-
lence checking, which does a complete job of
verifying that the low-level logic matches the RTL
specification in a fraction of the time needed to
simulate a meaningful vector set. With this strategy,
only netlists that have already been proven equiva-
lent to the “golden” RTL code are checked for
timing requirements. As a result, timing issues are
separated from functional issues and the timing
simulation can focus solely on timing issues.

Emulation, used in conjunction with equiva-
lence checking, allows you to run real applications
with the certainty that these diagnostics also check
the corresponding RTL code. Today, system
designers and their verification counterparts
can emulate large sections or even whole systems
using the high capacity, high performance Xilinx
FPGAs currently available.

Formal equivalence checking replaces regres-
sion simulation of gate-level implementations.
Once an RTL specification is signed off, it serves
as the reference against which implementations
are compared. The fully verified implementation
serves as the reference for later revisions. These
formal comparisons provide complete coverage
without vectors.

Why Should You Choose Xilinx?
Xilinx , from the very beginning, has used the

industry standards such as VITAL, VHDL, Verilog,
and SDF. These standards were developed for
ASICs and have been applied to FPGAs, because as
FPGAs replace ASICs, these standards are becom-
ing critical for seamlessly integrating FPGAs and
CPLDs into your existing flows.

The Xilinx AllianceEDA program and the
Alliance Series software team provides the highest
quality support for the industry-leading HDL simu-
lators and emerging verification tools. By closely
monitoring industry trends, we are prepared to

Figure 2: Productivity
increases when using
HDL simulation

Figure 3: Vector require-
ments as gate densities
increase.

24

FPGAs are often the most critical part of a
system and must be extensively tested. However,
today’s designs are typically too large and too com-
plex to rely on manual debugging methods; strong
verification and debugging tools are required.

SmartModel FPGA models, known as
SmartCircuit, provide you with the advanced
verification and debugging features that are
required to successfully verify your design in the
shortest timeframe. The SmartCircuit models are
basically templates of unconfigured devices. The
models are programmed by a design netlist in the
same format produced by the Xilinx place and
route tools (standard EDIF). The SmartCircuit
FPGA increases productivity by allowing you to

focus on the design and system verification tasks
rather than the simulation details.

PLdebug - Advanced
Debugging and Event Tracing

One key to successfully verifying a design is
the ability to quickly debug functional and timing
errors. The SmartCircuit PLdebug feature allows
you to do just that, by causally tracing back to the
root cause of any logic event or timing error.
Without PLdebug you would be forced to manually
analyze hundreds of possible paths to identify a
logic or timing error.

If you encounter functional or timing errors
during a simulation run, it is imperative to trace

them back to the parent event that is the root cause.
In a large design this is usually a very complex task.
The PLdebug feature uses an automated history
mechanism to deliver this capability while making a
minimal performance effect on the simulation. The
causal tracing features work from user-specified
trigger points to perform the following tasks:

➤ Trace back to locate the root cause of any logic
event error.

➤ Trace forward to find the effects of any specific
logic event.

➤ Identify the root cause of any timing constraint
violation.

The PLdebug reports quickly identify the root
of the logic or timing error by generating a list of
events internal to the FPGA that are causally related
to the problem event.

Using Synopsys SmartModel FPGA

Adapted from a
Synopsys Appli-

cation Note.

FIGURE 1 - CAUSAL TRACE

SmartModel TRACE:

Instance /TESTBENCH/DUT/
SMART(XC4005E_84),at time 586.3 NS.

Beginning cause report from “DBUS<6>”:

586.3 ns Z->X on model port DBUS<6>

586.3 ns Z->X on cell port /XSYM4/O,
net DBUS<6>

586.3 ns 1->0 on cell port /XSYM4/T,
net DBUS_ENABLE<0>

569.4 ns 1->0 on cell port /XSYM40/
O,net DBUS_ENABLE<0>

564.9 ns 0->1 on cell port /XSYM44/O,
net ENABLEBUS_SIG

562.6 ns 1->0 on cell port /XSYM43/O,
net U2;N735

560.6 ns 0->1 on cell port /XSYM42/O,
net YSIG2

558.1 ns 0->1 on cell port /U2;MODE<1>/
Q,net U2;MODE<1>

555.3 ns 0->1 on cell port /U2;MODE<1>/
C,net CLOCK1

553.9 ns 0->1 on cell port /BUFGS_TL/O,
net CLOCK1

550.0 ns 0->1 on model port CLOCK

Report completed.

Note: The report is triggered on a user-
specified event and then traces that event back
through time to the parent event. In this case
the parent event is the CLOCK port.

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

by Mick Posner,
Technical Market-

ing Manager,
Synopsys, Logic

Modeling

25

FIGURE 2 - EFFECT TRACE

SmartModel TRACE:

Instance /TESTBENCH/DUT/
SMART(XC4005E_84),at time 1087.1 NS.

Triggering effect report from “DBUS<6>”
at 1087.1 ns:

1087.1 ns Effect 0->X on cell port /
XSYM3/O,net U3;N163

1090.9 ns Effect 0->X on cell port /
XSYM50/O, net YSIG6

1090.9 ns Effect 0->X on cell port /
U3;I<6>/D,net YSIG6

Report completed.

Advanced Debugging -
Windows and Monitors

Visibility into the FPGA design during simula-
tion is another critical success factor. The ability
to trace the contents of an internal net or register
will aid in the debugging of the overall design.
Another feature of the
SmartCircuit FPGA models
is the ability to look
inside the FPGA
design using
the Win-
dows

feature — no longer is the FPGA a black box
within the simulation. The Windows feature allows
you to trace, in the simulation waveform window,
any nets, ports, or states. This gives you full
visibility into the design at a level that is easily
understood. Having this visibility substantially
eases the FPGA verification process and the sub-
sequent debugging. You can trace the designated
nets, ports, or states and force values on them,
allowing you to recreate corner cases and evaluate
a design’s functionality in those cases. The monitor
feature enables you to create a text print-out of the
values on the nets, ports, or states in the selected
portions of the design within the simulator’s
transcript window.

Advanced Debugging -
Visual SmartBrowser

Visual SmartBrowser (VSB) allows you to visu-
ally display the FPGA netlist using an on-demand
viewing technique. With very large and complex
FPGA designs, you are typically only interested in
a small section of the netlist. VSB allows you to

Models to Verify Xilinx FPGA Designs

FIGURE 3 - CAUSAL TRACE TRIGGERED
BY TIMING CONSTRAINT VIOLATION

SmartModel ERROR:

Violated pulsewidth constraint PW_CLR+
on CLR for cell U2;MODE<1> at time
12.1 ns.

Actual pulsewidth time 3.0ns, specified
minimum is 4.0 ns.

Instance /TESTBENCH/DUT/
SMART(XC4005E_84),at time 12.1 NS.

SmartModel TRACE:

Constraint causal report for event on
“CLR” at 12.1 ns:

12.1 ns 1->0 on cell port /XSYM72/O,
net YSIG27

10.5 ns 1->0 on cell port /XSYM37/O,
net U2;N658

5.5 ns 0->1 on cell port /XSYM33/O, net
N4

3.0 ns 0->1 on model port RESET

Report completed.

Using Pldebug you can quickly identify the
source of a functional error and the source of a
timing constraint violation. In Figure 3, you can
see that the source of the timing violation was a
short pulse on the RESET port.

By tracing the effect of an 0 to X transition
on the DBUS<6> port (see Figure 2), you can
see that the X propagates through the design to
the U3/I<6> instance net. You can control the
scope of the report, and target multiple events
and simulation times.

FIGURE 4 -
WAVEFORM
VIEWER

Continued on the
following page

26

concentrate on only the section that interests you.
VSB also incorporates a set of tools that allow

you to identify sections of the design you want to
display. VSB then generates the model command
file (mcf) required to make these sections avail-
able in the simulation. The only file that you have
to create, to simulate using a SmartCircuit model,
can be automatically generated using VSB.

Advanced Debugging - VSB helps
identify where a timing constraint
fix should be implemented

VSB is run on the SmartCircuit netlist that
contains all of the design’s specific delay and

timing information,
extracted from the origi-
nal vendor netlist. This
delay and timing infor-
mation is put at your
fingertips using the VSB
examine cell view.

After using PLdebug
to identify the root cause
of a timing violation you
can view the actual
delays being used by
each cell in that specific
path. You can then use
VSB to change the timing
of any parameter on the
cell and thus experiment
with “what if” scenarios.
The incremental changes
do not affect the source
netlist, but allow you to

exactly identify where the problem lies. With that
information you can return to the original source
of the design and fix the problem. Doing very

Synopsys
Continued from the

previous page

FIGURE 5 -
VISUAL

SMARTBROWSER

FIGURE 6 –
EXAMINE CELL

VIEW

quick incremental changes on the SmartCircuit
netlist, to evaluate if a change does fix the prob-
lem, speeds up the overall design cycle.

SmartModel FPGA models fit straight
into your existing design flow.

Below is a simplified view of the design flow
using SmartModels in system verification.

Using SmartModels with Xilinx
Alliance Tools

You don’t need to do anything special in the
Xilinx Alliance Series tools to target a SmartCircuit
FPGA model. The following options must be
selected in the Design Manager tool:
➤ From the design pull down select implement

and options. Select edit implementation
template. In the Interface section make sure
that the simulation data options are set to
Generic EDIF. (These are the Design
Manager Tools default settings.)

➤ Under implement options make sure
Produce Timing Simulation Data is
selected under the Optional Targets section.
(Configuration Data is checked by default.)

➤ Run the tools as normal and they will produce
a time_sim.edn file. This is your post-routed
netlist file that will be used to configure the
SmartCircuit models.

Conclusion
Using SmartModel FPGA models from Synopsys

can save valuable time and minimize the difficulty
of verifying and debugging complex FPGA designs

For full SmartModel documentation see the
Synopsys home page at, http://www.synopsys.com/
products/lm/docs/swift_r41/intro.html. ◆

FIGURE 7 – SMARTMODEL DESIGN FLOW

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

27

Xilinx allows complete design flexibility. Even
though a significant amount of designs are done
totally in schematics or HDL, there is also an ability
to mix these two popular entry methods. With a
top-level HDL or schematic, the submodules can
be either HDL or schematics. The advantages to
mixed-mode design entry are:

➤ Flexible design environment for a design team
with mixed skill members. (Some are skilled in
schematics while others are skilled in HDL.)

➤ You can use existing schematic designs.

➤ Allows a visual representation of large logic blocks
and interconnect via a top-level schematic.

➤ HDL descriptions of large blocks are easier to
understand, and simulate quickly and easily.

➤ You have total control of logic mapping and
constraints in a schematic.

➤ You can automatically optimize and map an
HDL design using synthesis tools.

A mixed mode design can be simulated, with a
top-level HDL or schematic, at the following five
stages of your design cycle:

1. Before synthesis.

2. After synthesis.

3. After the Translate step in the Flow Engine.

4. After the Map step in the Flow Engine.

5. After the Place & Route step in the Flow Engine.

Simulation with a
Schematic at the Top Level

1. Before synthesis, instantiate HDL modules into
the schematic and simulate the schematic using
test vectors. The HDL modules are simulated
for functionality before synthesis using an HDL
testbench. It is also possible to simulate the
complete design using appropriate simulation
tools. In the Mentor design environment, you
can use QuickHDL Pro to co-simulate schemat-
ics and HDL. In the Cadence design environ-
ment, you can use Verilog XL to simulate the
complete design by merging the pre-synthesis
HDL modules with the gate level HDL netlist
written by Concept.

2. After synthesis, generate an EDIF netlist for the
HDL modules. In the Mentor design environ-
ment, you can merge schematic EDIF netlists
and HDL EDIF netlists, and simulate the com-
plete design using Quicksim, which is a sche-
matic gate-level simulator. In the Cadence de-
sign environment, you can re-simulate the
design using Verilog XL after synthesis by writing
a post-synthesis HDL netlist merged with the
gate level HDL netlist written by Concept.

3. After translate, create an EDIF file by running
NGD2EDIF from the command line to re-
simulate the gate level netlist after translation
to Xilinx primitives.

4. After map and before place and route, simulate
your design with block delays but not routing
delays. Use NGDANNO from the command line
to create a back annotated simulation file and
use NGD2EDIF to create an EDIF file. You can

Mixed Schematic and HDL Design Entry

by Peter Lin, Technical
Marketing Engineer,
Alliance Series,
peterl@xilinx.com

Continued on the
following page

 Mixed Mode Flow Diagram

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

28

core. However, even though the direct interface to
the PCI bus is pre-verified, it is still your responsi-
bility to verify the compliance of your final design.

The PCI protocol is very complex, and as a
result, it is difficult to test every possible combi-
nation of transactions. Although simulation covers
most of the functional test, the only way to verify
full PCI compliance is to test the actual hardware.
This can be accomplished at the quarterly PCI-SIG
“plug-fests.” At these events, PC manufacturers
and PCI board manufacturers gather to test their

then perform timing simulation with block
delays. This is generally a good way to test
whether the design is meeting your timing
requirements before spending the time to do a
full place and route.

5. After place and route (if you have previously
selected EDIF as the simulation data format),
simulate your complete design with both block
and routing delays.

Simulation with an
HDL at the Top Level

1. Before synthesis, simulate the HDL modules of
your design using an HDL testbench. You can
simulate schematic components using a gate
level simulator. You can simulate the complete
design as in the case of a top-level schematic.

2. After synthesis, generate an EDIF netlist for the
HDL modules. You can simulate the gate level
function of the complete design as in the case
of a top-level schematic.

3. After translate, generate a structural HDL netlist
using NGD2VER or NGD2VHDL for gate level
simulation after the design is translated to
Xilinx primitives.

4. After map, simulate the design with block delays
similar to a top-level schematic except using the

command line NGD2VHDL or NGD2VER to
create a structural simulation netlist.

5. After place and route, (if you have previ-
ously selected VHDL or Verilog as the simu-
lation data format), simulate the complete
design with both block and routing delays
with VHDL/Verilog and associated SDF
(standard delay format) file.

Bus Notation in
Schematic and in Synthesis

In a mixed mode design, the Bus Dimen-
sion Separator style in your schematic must
match your synthesis bus style. If you use a
synthesis option to generate one bus style and
then use the EDIF from your schematic to
generate a different bus style, the implementa-
tion tool will not merge the schematic module
with the rest of the design, leaving it
unexpanded.

Conclusion
Xilinx allows mixed mode design methodol-

ogy with both HDL and schematic submodules.
With a schematic at the top level, you can
reuse test vectors throughout the design cycle;
while with HDL at the top level, you can reuse
your testbench throughout the design. ◆

Verifying
PCI Designs

Mixed
Schematic

Continued from the
previous page

by Nupur Shah,
Design Engineer,

nupur@xilinx.com

Your PCI design must be PCI compliant to
work along with other vendors’ PCs and PCI add-
in boards. Therefore the final stage in the design
flow of a PCI design is design verification, which
consists of two steps: functional verification
and timing verification.

By using a pre-designed PCI interface core, with
predictable timing (such as Xilinx LogiCORE PCI
products) the PCI protocol and timing is already
verified. Therefore, you can focus on your unique
back-end design and how it interfaces to the PCI

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

29

products. By implementing your PCI design in a
Xilinx FPGA, the hardware can easily be changed
and fixed if a problem is found.

PCI Functional Verification
To test PCI compliance, you will need to imple-

ment the PCI Special Interest Group (SIG) Test
Scenarios for Compliance Testing. These scenarios
test the basic transactions between two agents on a
PCI bus; one agent being the device under test
(DUT) and other being the behavioral model of a
PCI Initiator. These tests verify if the DUT is PCI
complaint or not. You have the option to purchase
a testbench from a third party vendor. However,
learning these testbenches can prove to be just as
difficult as developing one yourself, and there is
no guarantee that they provide full fault coverage.

If you choose to develop a testbench, there are
two types of testing that must be performed in
order to verify that your design is functional:
system-level testing and PCI bus protocol testing.
System-level testing sets up modules in a system to
transfer data back and forth. It checks to see if the
data was actually sent and whether it arrived at the
destination or not. It also checks for the validity
of the data. However, the correct operating proce-
dure is not checked in system-level testing.

PCI bus protocol testing is used to determine
if the modules in a system operate within the rules
of the protocol. Besides verifying the data, protocol
testing verifies that the agents are PCI compliant.
PCI protocol tests should include the basic
functional testing that is outlined in the PCI test
scenarios. However, these test scenarios do not
test every bus situation. There are several other
conditions that have high probability of occurring
and are recommended for implementation.

Some of the recommended exercises that
should be implemented are:

Target termination sequences: Sequences
where the target issues a termination when the
master inserts wait states before, during, and after
the termination.

Parity checking: Sequences where the
incorrect address and data parity are generated
to check the ability of the DUT to report errors.

Protocol checker: Checks to see if all the
operating rules are obeyed.

Developing an extensive testbench will help you
determine the correctness of the design before
continuing on to the implementation stage of the
design cycle. After implementation, the testbench
can be used for backannotated timing simulation.

PCI Timing Verification
Timing verification occurs after the design

has been implemented. There are two stages to
timing verification: static timing analysis and back
annotated timing simulation.

Static timing analysis is used to determine if the
design meets all the PCI timing specifications such
as setup/hold time and clock-to-out timing. Static
timing analyzers are provided by FPGA vendors
and will determine if 100% of the design met the
timing specifications. You have the responsibility
of specifying these timing parameters to the tool
and determining what parts of the design should
be attached to the each parameter. If the design
does not meet timing, the static timing analyzer
can be used to probe the design and determine
where the design is failing. Based on this investiga-
tion, you have the option to re-implement the
design using a tighter set of timing specifications
or redesign parts of the design to contain less
levels of logic.

After the design passes the static timing
analysis, it is beneficial to run the physical netlist,
with timing information, through the functional
testbench. This will allow you to determine if, in
fact, the design meets timing using actual physical
delays (not simply the unit delays that are applied
during functional simulation). Once you have
verified the design, it is ready to be downloaded to
a device and used in a physical system.

Conclusion
Using a pre-verified Xilinx PCI LogiCORE can

save you a lot of time and effort. These cores have
been proven in hundreds of designs. However, you
must still test your completed design to guarantee
full PCI compliance. ◆

❝The PCI protocol is very
complex, and as a result, it is difficult to test
every possible combination of transactions.❞

30

Viewlogic Systems offers a comprehensive
and flexible environment for language-based
design using VHDL or Verilog, or a combination
of both. By supporting multiple design styles and
by allowing styles to be mixed, Viewlogic has
created a verification flow that is flexible enough
to encompass a wide range of design method-
ologies. You have the ability to verify functionality
prior to synthesis, after synthesis, and after place
and route from the Fusion simulation environ-
ment. With tight integration to board-level design,
verification can even be extended to systems with
multiple FPGAs.

Design Entry Options
The benefits of using hardware description

languages (HDLs), such as VHDL or Verilog, are
numerous, especially when you consider the ever
increasing device densities such as those available
in the Xilinx Virtex family. Language-based design
provides you with the ability to work at higher
levels of abstraction, increasing productivity and
reducing design costs.

A significant advantage of language is that it
enables functional verification prior to commit-
ting a design to a particular technology. Once

functional correctness has been
verified, the design can be input to
a language synthesis tool, such as
FPGA Express, for optimization to
the selected Xilinx device family.

At Viewlogic, we have found that language is
not well suited to all types of design description.
Some designers prefer using a block diagram for
their top-level structural instantiation as opposed
to writing structural VHDL or Verilog; some sys-
tem houses require schematics at the top.

In other cases, designers may find it easier to
use bubble diagram graphical editors for state
machine entry. Being able to mix and match these
alternative design styles and verify them in a single
process is critical to design success. The use of IP
cores may also require you to instantiate language
modules into a block diagram, thereby requiring

a verification environment that can handle a mix
of design styles.

Co-Simulation with the Fusion
Verification Environment

To handle this complete variety of mixed
design styles, Viewlogic offers the Fusion simula-
tion environment. Fusion is an environment that
encompasses four simulators. There are three
digital simulators and one analog simulator. The
digital simulators are:

➤ Fusion/ViewSim for gate level simulation.

➤ Fusion/Speedwave for VHDL.

➤ Fusion/VCSi for Verilog simulation.

In the Fusion environment, you can use any one
of the simulators, or a mix of all three. Each simu-
lator operates on its piece of the design, fully com-
municating with the other simulators as the design
dictates. You see the output presented as if the
Fusion environment were a single simulator; there
is one set of input stimuli and one set of output.

Functional Verification
Before committing your design to place and

route or synthesis, you should verify that your
design is functionally correct; finding bugs early
in the design cycle makes them much easier to
resolve. Viewlogic gives multiple options for func-
tionally verifying your design.

For pure schematic designs, after schematic
capture you perform gate-level simulation in the
Viewlogic Fusion/ViewSim simulator. Xilinx pro-
vides a complete set of ViewSim models with the
Alliance Series software that enables you to simu-
late these schematics. You can translate your
schematics into a ViewSim netlist, load the design
into ViewSim, stimulate your design, and verify the
results. Stimulus is provided via the ViewSim
command language. Usually, these commands are
executed from a file, but they can also be run
interactively. ViewSim has the ability to check
outputs against a given set of inputs, which gives it

Viewlogic’s Mixed-Design
Verification Methodology

by Philip Lewer,
Product Marketing,

Viewlogic,
plewer@viewlogic.com

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

31

a regression capability, and ViewSim can also
generate a waveform file, which can be inspected
in the Vwaves waveform reader program.

VHDL designs can be verified with the
Fusion/SpeedWave VHDL simulator, and you will
usually write a testbench to stimulate and verify
your designs.

If you are using Verilog, your design can be
verified with the Fusion/VCSi Verilog simulator.
Like SpeedWave and ViewSim, Fusion/VCSi is
accessed from the Fusion simulation environment.
Now you have the option of using a ViewSim
command file or a Verilog test fixture. The test
fixture and Verilog design files are loaded into
Fusion/VCSi where they are compiled on the fly
and automatically loaded into the Verilog simula-
tor. Again, like SpeedWave and ViewSim you can
generate waveform files for inspection in Vwaves.

An additional advantage of Verilog is the PLI
programming language interface. The PLI defines
how to interface user-defined C language functions
with a Verilog design. This means that you can co-
simulate your Verilog design with the C functions.

Viewlogic’s Fusion simulation environment also
supports mixed design styles such as a top-level
schematic with underlying VHDL and/or Verilog
blocks for representing state machines or
synthesizable cores. Through Viewlogic’s Fusion
environment, you have the ability to functionally
simulate schematics containing Xilinx primitives
with VHDL blocks and Verilog blocks. The power
of this environment is that you keep your full
language debugging capability seamlessly flowing
among gate-level, VHDL, and Verilog simulation.
When you use this methodology, you will typically
write your stimulus in ViewSim command format
and not use HDL testbenches or test fixtures

Post-Synthesis Simulation
Post-synthesis simulation is used to verify that

your VHDL or Verilog code was synthesized into
the logic you expected. FPGA Express has the
ability to output VHDL and Verilog netlists repre-
senting the synthesized design. It is at this point
that your testbench or test fixture can be used
again. This time the unit under test is not your
original code but is the top-level entity/module of
the netlist synthesized by FPGA Express. The
synthesized netlist is written as structural VHDL
or Verilog, instantiating primitives from the Xilinx

UNISIM library with the primitive behaviors
defined. By using this netlist in conjunction with
the UNISIM library and your testbench/test fixture,
your design can be verified. Note that FPGA
Express can also output these netlists with the
primitive behavior defined.

Post Place-and-Route Simulation
After place and route, the Xilinx Alliance Series

tools can output a structural netlist in Viewlogic-
compatible EDIF, VHDL, or Verilog. If you are
creating schematic-based designs, you will most
likely choose EDIF. This timing-embedded EDIF
can be converted into a ViewSim netlist, which can
be very useful if you are also using ViewSim for
board level verification. If you choose this path,
you can use your original simulation command
file to verify timing through your design. If you are
doing VHDL or Verilog designs, you may also
choose EDIF or you can have the Alliance Series
Core tools output structural VHDL or Verilog with
a corresponding SDF timing file instead. Unlike
the structural netlist generated by FPGA Express,
the structural VHDL and
Verilog netlists output by the
Xilinx Alliance Series tools
instantiate SIMPRIM primitives.
Xilinx provides libraries for the
SIMPRIM primitives for use
with Fusion/ViewSim, Fusion/
SpeedWave (VHDL/VITAL), and
Fusion/VCSi (Verilog).

Conclusion
As you move from schemat-

ics to language-based design, it
is important to have an environment that allows
multiple verification options. Viewlogic provides a
set of tools for language verification, schematic
verification, and mixed schematic/language-based
verification. Xilinx, through its UNISIM and
SIMPRIM libraries, provides the models that enable
these flows. By covering these three types of design
styles, you may pick a verification flow that best
suits your design methodology.

For more information on the Viewlogic
solution for FPGAs and other types of pro-
grammable devices, contact Viewlogic at
1-800-873-8439 or visit our website at
www.viewlogic.com ◆

❝As you move
from schematics to

language-based design, it
is important to have an
environment that allows

multiple verification
options.❞

http://www.viewlogic.com

32

This article introduces the basic facts and
terminology of HDL simulation for FPGAs and
CPLDs, to help you simulate your design more
efficiently.

There are three stages in the FPGA design
process in which you conduct simulation:

➤ Register Transfer Level - To verify the
syntax and functionality without the timing
information. The majority of the design
development is done through repetitive RTL
simulation until you get the required function-
ality. Errors identified early in the design cycle
are inexpensive to fix compared to functional
errors identified during silicon debug.

➤ Gate-level Functional Simulation – After the
RTL simulation is error free, the HDL design is
synthesized to gates. The post-synthesized gate-
level simulation is a functional simulation with
unit delay timing. The simulation can be used to
identify initialization issues and to analyze don’t
care conditions. “The don’t care space of a
design may be larger than the functional space,”
says Michael Bohm, VP and Chief Scientist at
Exemplar Logic. The post synthesis simulation
generally uses the same testbench as functional
simulation.

➤ Gate-level Timing Simulation – Gate-level
timing simulation is a back-annotated timing
simulation. Timing simulation is important in
verifying the operation of your circuit after the

worst case place and
route delays are
calculated for your
design. The back
annotation process
produces a netlist of
library components
annotated in an SDF
file with the appro-
priate block and net
delays from the
place and route
process. The simula-
tion will identify any

race conditions and setup-and-hold violations
based on the operating conditions for the
specified functionality.

Design Techniques for
Better Simulation Results

Design techniques are used in the process
of applying optimizations to an FPGA design. The
top-down design method refers to applying a
single optimization at the top level of your design;
the bottom-up design method refers to perform-
ing individual optimizations on sub-blocks of
your design.

To improve the quality of the results of the
simulation, use the following guidelines for design
partitioning:

➤ Limit gate counts in sub-blocks; 10k to 50k gates.

➤ Limit clocks to one per block.

➤ Group similar logic together, such as state
machines, data path logic, decoder logic,
and ROMs.

➤ Partition state machines into separate blocks
of hierarchy.

➤ Separate timing-critical blocks from non timing-
critical blocks.

These features eliminate any ambiguity in your
design by providing better quality simulation
results. You can also add other features to the
design such as breaking the asynchronous feed-
back loops, and design stitching to build the
entire design after optimizations have been per-
formed on individual subblocks. You can also
unfold the netlist to perform two different optimi-
zations (such as area or delay) on two different
instances of common sub-blocks. These features
can help improve the quality of simulation results.

Simulation Libraries
The following libraries are available for the

Xilinx simulation flow:

➤ UNISIM Library - Used for functional simula-
tion and contains default unit delays. This
library includes all of the Xilinx Unified Library
components that are inferred by most popular

The Basic Elements of HDL Simulation

by Mahadevan
Ramasame, Technical
Marketing Engineer,

Alliance Series,
mahadeva@xilinx.com

❝The top-down
design method refers to

applying a single optimization
at the top level of your design;
the bottom-up design method

refers to performing individual
optimizations on sub-blocks of

your design. ❞

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

33

LogiBLOX models that are created on-the-fly by
the LogiBLOX tool. The source libraries for the
LogiBLOX packages must be compiled into a
library named LogiBLOX. These packages are
available separately for VHDL and Verilog designs.
The component model from the LogiBLOX GUI
should be compiled into your working directory
with your design.

The Simprim VHDL or Verilog Library can be
compiled to any physical location and can be
named Simprim.

VHDL Simulation
The Xilinx simulation flow supports the VHDL

language standard IEEE-STD-1076-87 and the
standard logic package IEEE-STD-1164-93. In
VHDL designs, you must declare as ports any
signals that are simulated or monitored from
outside a module. Global GSR and GTS signals
are used to initialize the simulation and require
access ports if controlled from the testbench. The
addition of these ports makes the pre and post
implementations of your design different and your
original testbench is no longer applicable to both
versions of your design.

However, it’s usually a good idea to get a pre-
route VHDL description (used in gate-level func-
tional simulation) that can be used for functional
simulations with the GSR and GTS characteristics
that match post-route results (gate-level timing
simulation). This enables you to predict your
design description accuracy at an earlier stage
and reduces your design modification after place
and route; therefore, this reduces your total de-
sign time. This is achieved by the addition of new
library cells to simulate the GSR/GTS behavior.

Global Signal Methodology
To match the simulation behavior at all the

three stages in the FPGA design, add a behavioral
representation for GSR and Xilinx implementation
directives. This directive is used to specify, to the
place and route tools, the use of the special pur-
pose GSR net that is pre-routed on the chip, and
not to use the local asynchronous set/reset pins.
Hence it utilizes the existing routing resources
and significantly improves the performance. The

synthesis tools. The UNISIM library also
includes components that are commonly
instantiated such as I/O’s and memory cells.
You can instantiate the UNISIM library compo-
nents in your design (VHDL or Verilog) and
simulate them during the RTL simulation. The
HDL code must refer to the compiled UNISIM
library. The HDL simulator must map the
logical library to the physical location of the
compiled library.

➤ LogiBLOX and Coregen Library - LogiBLOX
is a module generator used for schematic-
based design entry of modules such as adders,
counters, and large memory blocks. LogiBLOX
can be used in the HDL flow to generate large
blocks of memory for instantiation. LogiBLOX
components are simulated with behavioral
code. They are not intended to be synthesized,
but they can be simulated. Coregen library
models are high level VHDL behavioral or RTL
models that are mapped to SIMPRIM structural
models in the back-annotated netlist. The
behavioral model is used for any post-
synthesis simulation because synthesis
processes these modules as a black box.

➤ SIMPRIM Library - Used for simulations at
the following steps in the design flow:

• RTL simulations that include instantiated
LogiBLOX modules.

• Post-implementation simulations.

• Timing simulation.

LIBRARY COMPILATION
The UNISIM libraries are used for RTL and

post-synthesis simulations. Because industry
standard simulators like ModelSim use pre-
compiled libraries, Xilinx recommends compiling
the UNISIM components that are instantiated in
the current design. The UNISIM VHDL or Verilog
Library can be compiled to any physical location.
The order in which the VHDL source files for the
UNISIM library must be compiled is listed in the
Xilinx simulation design guide.

The LogiBLOX library is not a library of
modules. It is a set of packages required by the

for FPGAs and CPLDs

Continued on the
following page

34

new library cells introduced have both the behav-
ioral representation and the implementation
directives. The new library cells are:

➤ ROC – Emulates the reset on configuration pulse.

➤ ROCBUF – Allows the test bench to drive the
chip-generated reset on configuration without
implementing an actual input pin on the chip.

➤ TOC – Emulates the chip-generated 3-state on
configuration pulse.

➤ TOCBUF – Allows the test bench to drive the
chip-generated 3-state on configuration with-
out actually implementing the actual input on
the chip.

➤ STARTBUF – A technology-independent version
of the STARTUP block supported for simulation.

These five cells allow you to control the global
reset and 3-state signal emulation, so you can
get pre-route initialization simulations to match
post-route simulations. The cells also drive imple-
mentation tools to add or delete pins and also
help in the selection of nets for routing.

Models of the ROC and TOC cells, used for
functional simulation, are given below.

Xilinx VHDL simulation supports the VITAL
modeling standard IEEE-STD-1076.4 – 95 and
Standard Delay Format version 2.1. This standard
allows you to simulate your designs with any
VITAL-compliant simulator and hence it acceler-
ates your design compilation times, resulting in
improved performance.

These features allow you to do high perfor-
mance designs with shorter design cycles.

Verilog Simulation
The Xilinx simulation flow supports the Verilog

language standard IEEE-STD-1364-95. The Verilog
version of the UNISIM library may not need to be
compiled, depending on the Verilog tool. Because
there are a few cells with functional differences
between Xilinx devices, a separate library is pro-
vided for each supported device. The libraries are
in uppercase only and if needed, lower case li-
braries are provided in Xilinx/Cadence interface.

Unlike VHDL, Verilog can simulate internal
signals and these signals are driven directly from
the testbench without instantiating any specific
component. The global set/reset net is present in
your implemented design even if you do not
instantiate the STARTUP block in your design. The
function of STARTUP is to give you the option to
control the global reset net from an external pin.

The general procedure for specifying the
global set/reset during a post-synthesis Verilog
UNISIM simulation involves defining the global
reset signals with suitable Verilog macros. This is
necessary because these global nets do not exist in
the UNISIM libraries and as a result, the reset of
UNISIM components is controlled by the detection
of those macros. Also, the global set/reset signals
need to be declared as either a wire or reg and
the choice depends on whether the design
contains a STARTUP component or not.

At the beginning of an FPGA design simulation,
the global set/reset signal or the GR global reset
signal must be toggled to emulate the power-on
reset of the FPGA. This is to ensure that the flip-
flops and latches in your simulation function
correctly. The general procedure for specifying
GTS is similar to that used for specifying the
global set/reset signals, GSR and GR.

HDL
Simulation
Continued from the

previous page

Model of
ROC for

Functional
Simulation

Model of TOC for Functional Simulation

35

A SAMPLE TESTBENCH MODEL:

library declarations ;
entity sample of testbench is
end ;
architecture test of testbench is
 instantiation of a component of the design ;
 signal declarations ;
begin
 port mapping of the component to the signals

declared ;
process

begin
clock period declaration ;

end process ;
process

begin
Test vectors for design ;

end process ;
end test ;
configuration statement to configure

architecture to the component
instantiation; (optional)

Testbenches
A testbench is a separate set of VHDL or

Verilog code that connects to the inputs and
outputs of a design. The testbench has two main
purposes:

➤ It provides the stimulus and response infor-
mation (clocks, set/reset, input data, and so
on) that the design will encounter when it is
implemented in an FPGA and installed into the
final system.

➤ The testbench contains regression checking
constructs, which allow design functionality to
be tested throughout the FPGA HDL Simulation
flow (RTL, Functional Gate, and Timing Gate).

Use the steps for simulation in an industry
standard simulator such as ModelSim:

➤ Create a working library.

➤ Compile the RTL/post-synthesis/place and
route HDL design.

➤ Compile the testbench.

➤ Simulate the testbench and design. For place
and route HDL design, simulate the testbench
and design, with timing information.

➤ Run until the testbench stops.

You can create the testbench using a partic-
ular coding style for supplying the stimulus by
referring to the synthesis or simulation vendors’
documentation.

Conclusion
Xilinx offers a wide range of FPGA and CPLD

solutions, including large density devices and low
cost devices. You can successfully implement and
correlate global initialization behavior of user-
defined logic-, LogiBLOX-, and CORE Generator-
based designs at all simulation phases, from RTL
to back-annotated netlists. ◆

○ ○

❝Xilinx offers a wide range of FPGA and

CPLD solutions, including large density devices and low cost

devices. You can successfully implement and correlate global

initialization behavior of user-defined logic-, LogiBLOX-, and

CORE Generator-based designs at all simulation phases, from

RTL to back-annotated netlists.❞

36

OrCAD Express complements the Xilinx
Alliance Series and Foundation Series software by
providing robust system-level design capabilities.
Because a majority of electronic design engineers
who develop programmable logic are also
responsible for the system-level documentation
(such as schematics, bill of materials for produc-
tion, and a PCB layout netlist), OrCAD set out to
ensure that, with OrCAD Express, it would be easy
to verify and integrate Xilinx CPLDs and FPGAs
into the system. The typical workflow for one or
more progammable devices adjacent to the sys-
tem design workflow is illustrated in Figure 1.

Device Design and Simulation
OrCAD Express includes Xilinx Unified Librar-

ies and a LogiBLOX interface for schematic de-
sign, VHDL models for functional and timing
simulation, as well as RT-level synthesis which
provides a solution for a majority of the program-
mable logic design flows.

All Xilinx CPLDs and FPGAs can be debugged
and confirmed with the behavioral and gate-level
simulation of OrCAD Express. Schematic debugging
is eased with schematic cross-probing and signal-
state annotations on the schematic, as well as the
necessary VHDL debugging facilities to confirm that
models operate correctly before synthesis.

Auto Symbol Generation
To help document large I/O count devices at the

system level, many engineering groups create elec-
trical symbols of the FPGA using a pin naming con-
vention based on the names used in the design.
Figure 2. illustrates a typical signal-to-package-pin
name transition. Figure 3 shows the electrical
symbol created by the Generate Part tool of Express.

Step 1 locks a signal to a specific package pin
with schematic properties (as in the LogiBLOX pad
symbol) or as a VHDL signal attribute of RT-level
source. Step 2 uses Xilinx Alliance Series software
to implement the CPLD or FPGA and create a sig-
nal/pin map file. Step 3 illustrates the electrical
symbol of the FPGA that will appear on the system
schematic for production and PCB layout. Pins
programmed by NGDBuild appear here on the
electrical symbol.

Board Design with Express CIS
OrCAD Express includes thousands of symbols

for system-level design and, when used in conjunc-
tion with the Component Information System (CIS)
option, ensures that correct and complete data
about the Xilinx FPGA or CPLD is available for
production of the system. Figure 4 illustrates the
part data base explorer which adds important
parametric data to the basic electrical FPGA or

Board Design and Simulation
Using OrCAD Express

by Troy Scott, Techni-
cal Product Manager,

OrCAD Express

Figure 1. Programmable
logic in the system
design workflow.

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

37

CPLD symbol. Proper-
ties such as PCB foot-
print, and corporate
inventory part num-
ber, that are crucial
for the engineering
hand-off to produc-
tion, are transferred
to the schematic or
merged with the bill of
materials.

Simulating
Multiple
Devices

To confirm the
operation of multiple
devices created by the
Xilinx Alliance Series
or Foundation Series
software, Express
allows you to model
the gate-level netlists
and VHDL model
descriptions of the
CPLD or FPGA. Other

digital components of the system schematic such
as memory or bus interfaces can be modeled with
VHDL bus-functional models to verify system
behavior.

Simulating a Board
Using VHDL Models

Express allows the use of RT-level VHDL
models for synthesis as well as a general model-
ing language for system-level simulation. The
Express schematic system makes it easy to get
started with automatic model template generation.
Figure 5 illustrates the steps to quickly create a
VHDL model template from a symbol on the
system schematic.

For more information on Orcad
Express, visit www.orcad.com.

Author biography
Troy Scott is the Technical Product Manager

for OrCAD Express at OrCAD (Beaverton, Ore.).
He received his BSCE degree with Technical
Communication Option from the Oregon Institute
of Technology (Klamath Falls, Ore.). During his

Figure 2. Pin constraints to
schematic symbol flow.

Figure 3.
Xilinx pin
(PLOC)
constraints
to symbol
generation
in OrCAD
Express.

Figure 5.
OrCAD
Express
generates
VHDL
model
template
from the
schematic
editor.

six years at OrCAD, Scott has worked in technical
services, documentation, testing, marketing, and
software engineering. His current interest is high-
level design methodologies for programmable
logic using EDA technology. ◆

Figure 4. Express CIS part database explorer.

http://www.orcad.com

38

The Xilinx Alliance Series place and route
environment has built-in timing analysis that calcu-
lates actual delays for the chip and verifies timing.
Leonardo Spectrum can augment the functionality
of the Alliance Series software by providing addi-
tional functionality such as critical path identifica-
tion, schematic correlation, and cross highlighting.
And because Leonardo Spectrum fully supports
backannotation of post-route timing information to
the Alliance Series environment, you can take
advantage of these features to help verify timing for
Xilinx devices.

Leonardo Spectrum is the only FPGA
synthesis tool on the market that sup-
ports backannotated timing analysis for
Xilinx Alliance Series place and route.
The Alliance Series environment gener-
ates post-routed netlists using
“simprims” which are special Xilinx
primitives used only for simulation. This
“simprims” library is built directly into
Leonardo Spectrum along with a netlist
interface that reads mapped EDIF netlists

Post-Route Timing Analysis

by Tom Hill, FPGA
Relations Manager,

Exemplar, tom.hill@
exemplar.com

and SDF backannotation files, all of which are
required for post route static timing analysis.

The Advantages of Backannotated
Static Timing Analysis

The advantage of performing post place and
route static timing analysis with Leonardo is the
timing analysis features available to the user.
Some of the more important features are
described below:

CRITICAL PATH IDENTIFICATION
The Alliance Series place and route function

performs delay analysis on the entire design,
presenting all paths to you for viewing via reports.
Leonardo Spectrum can perform critical path
analysis and report only the timing paths that
violate your timing constraints.

CORRELATION TO
SCHEMATIC AND HDL SOURCE

Leonardo Spectrum not only has the ability to
analyze and report a critical timing path but also
to generate a concise schematic fragment showing
only the nets and instances of the critical path.

This provides a powerful
analysis tool for locating
timing problems. Using
Leonardo Spectrum’s
backannotated timing
interface, critical path
schematic fragment
viewing is available with
the actual post-route
timing delays. In addition
to generation of critical
path fragments, Leonardo
Spectrum can also gener-
ate fan-in and fan-out
fragments from any
selected net or instance.
For example, clock or
reset circuits can be
reconstructed from a
flip-flop being displayed
on the critical path
fragment schematic.Figure 1 - The Leonardo Spectrum Timing Analysis Environment

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

39
Performing Backannotated
Timing Analysis

To perform backannotated static timing analy-
sis with Leonardo Spectrum, the first step is to
generate a gate level VHDL or Verilog netlist and
an SDF file from the Alliance Series place and
route software. To setup the Alliance Series soft-
ware, perform the following steps:

The Alliance Series place and route software will
produce a VHDL file and an SDF backannotation
file that can be read into Leonardo Spectrum.
Perform the following step to read in. Use
Leonardo Spectrum’s Back Annotation editor.

And enter in the fields as follows:

At this point you are
ready to perform static
timing analysis.

Conclusion
Leonardo Spectrum

gives you a number of
significant advantages when
you verify the timing of your
designs. ◆

with Leonardo Spectrum

40

With all the changes that occur from transform-
ing technology-independent HDL to a technology-
dependent FPGA device, it is a good design practice
to perform a final verification stage before creating
silicon. This final verification will prove that the
original HDL performs to specification and mini-
mizes the risk in the final device.

One way to perform this verification is through a
self-checking test bench. This test harness will not
only prove design correctness, but will also provide
a structure that is simple and easy to debug. The
diagram below illustrates this principle.

The self-checking test bench has three main
blocks: the original HDL model, the final gate-level
model, and a comparison block. The test bench
works by comparing the results from the two FPGA
models, which both receive the same input stimulus,
and then flags any discrepancies that are found. The
real power in this method is that when an error is
found, you can probe into both models and trace
signals to see what is causing the problem.

The comparison block provides the brains in a
testbench. This block performs a logical compare of
the primary results of both models. The “strobe” pin
on this block decides when data should be valid in
both models. This is usually just before the end of the
clock period. The “mask” pin tells the comparison
block when to ignore data from the models. This is
used during the initialization phase of the simulation.
Usually the HDL model is in a known state from the
beginning of simulation, while the gate level simula-
tion will take a few clock cycles to settle down. The
other feature of the comparison block is that it can
stop the simulator when an error occurs by executing
a VHDL “assert.” This is nice feature because the
simulator has stopped at the exact point of an error
so you can then debug the design.

Conclusion
A self-checking test bench is a great method

for performing that final verification stage before
creating silicon. It gives you the extra confidence
that the design will be correct and smoothly roll
into production. ◆

As an FPGA designer, your life is basically one
big debug cycle. From the moment you receive the
first specification from marketing, until production
silicon is ready, you are looking for problems.

Once you recognize a problem, then corrective
action must be identified. This process of problem
identification and correction is the slowest part of
the design process, mainly due to the “human fac-
tor.” Your ability to take in all available information,
evaluate the data, and come to a conclusion is one of
the main bottlenecks in producing complex FPGAs.

In the days when designs stayed below the
10K-gate barrier, you were capable of handling
designs using schematic capture. The amount of
design information that you had to control was
manageable, with low risk. As designs got larger,
Hardware Description Languages (HDL) allowed
you to describe an FPGA in a more abstract and
compact form. This new form, along with func-
tional simulation, allowed you to define, under-
stand, and build very complex FPGAs.

The HDL developed for an FPGA can be thought
of as an executable specification for the device
being designed. The problem with this specification
is that it only contains the functional information.
The AC, DC, and physical information about an
FPGA come from the transformation performed
during logic synthesis and place and route.

by Michael A. Bohm,
Exemplar Logic,

VP, Chief Scientist,
bohm@exemplar.com

Verification Using a
Self-checking Test Bench

40

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.

41

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Xilinx has the easiest, most efficient HDL
design flow, as proven by customers in indepen-
dent trials. To make the point, here is one story
about the HDL Design Seminar that was held at
Designcon, in San Jose (January 1998).

The objective of the design seminar was to
demonstrate HDL design flows to designers that
are new to HDL design methodologies and tools
by having multiple design teams (a total of 16)
design a thermostat controller. The following
design flows and tool combinations were used:

Looking for the Best HDL Design Flow?
by Mary Brown,
Product Marketing,
Alliance Series,
maryb@xilinx.com

and

Paul Ingersoll, Regional
Marketing Manager,
paul.ingersoll@xilinx.com

FPGA
Simulation Synthesis Technology

Veribest FPGA Express Xilinx

MTI Exemplar Xilinx

MTI Synplicity Xilinx

MTI Exemplar Altera

Viewlogic Viewsynthesis Altera

MTI Synplicity Altera

Each team was given the design specification and
algorithm so they could describe the behavior of the
design in either Verilog or VHDL, simulate, synthe-
size, place and route, and finally download the
design bitstream into an FPGA. The target device and
speed grade was based on the designers’ best judge-
ment. The FPGA would then be inserted into a demo

Figure 1 -
Design Flow

❝Each team was
given the design specification
and algorithm so they could
describe the behavior of the

design...❞

board and a blow-dryer test would be used to judge
the successful completion of the design. Figure 1
illustrates the design flow.

The two Xilinx-based teams were able to com-
plete the design in record time - approximately two
hours. The first Altera team required an additional
hour and used twice as much device resources.
The second Altera team could not complete the
design because Altera’s MAX PLUS II software kept
issuing a “Device Does Not Fit” error.

Summary of the teams’ results:

DESIGN HINTS AND ISSUES

Utiliz- Design
Rank Team Device ation Cycle*

1st 1 Xilinx 4005E 35% 120
mins

2nd 2 Xilinx 4005E 35% 120
mins

3rd 3 Altera 8282 70% 130
mins

4th 4 Altera 8282 Device Incom-
Does plete
Not Fit

* Design Cycle – Includes writing the HDL, simulation,
synthesis, and device programming.

Conclusion
So, as you can see, Xilinx has the easiest-to-use,

the simplest, the most tightly-integrated HDL design
flow, with faster runtimes. Of course, tests of this
type are very subjective. However, based on these
tests and other benchmarks, we are confident you
will see similar results. Judge for yourself. ◆

42

by Gerald S. “Jerry”
Worchel, Principal

ASIC Market Analyst,
In-Stat, jerryw@

instat.com.

The semi-custom ASIC market (and tech-
nology) has undergone two key paradigm shifts
in recent years. The first was that cell-based
technology replaced Dynamic RAM, as the leading-
edge technology driver. The second change to
occur, and as important as the first, was that cell-
based technology replaced array-based technology
in the semi-custom ASIC market. These two shifts
alone have forever changed the landscape of the
semi-custom ASIC market. For instance, have
you noticed that the next-generation process
technology advances are now coming first from
semi-custom ASIC manufacturers, and not the
usual DRAM manufacturers? This fact will not
change in the future.

The standard cell design methodology, which
has trailed the gate array market in revenues for
what once seemed like forever, is now more than
twice its size. The requirement for high complex-
ity, high density, high performance designs, with
mixed-signal capability, is what has caused this
shift in market fates.

These factors will all be explored in much
greater depth in future issues of this publication.
However, there are far more issues than just these
that will affect the future semi-custom ASIC market,
and this column will explore many of them. Some of
the planned topics for future discussion are:

➤ Packaging (assembly)

➤ Test

➤ Intellectual Property (IP)

➤ Design

➤ Process technology

➤ Wafer fabrication

➤ Materials

Next issue: “Embedded Designs; The
Myth, The Reality.”

I look forward to our future communiqués, and
would welcome your comments and recommen-
dations, as well as your thoughts in general, regard-
ing this column and its future. Please take the
opportunity to e-mail me at jerryw@instat.com. ◆

This represents the first in a continuing series
of articles that will address the application-specific
IC (ASIC) market, its design methodologies, and
the trends and issues associated with its future. As
this is my first column to appear in XCell, I feel it’s
only appropriate to take this opportunity to intro-
duce myself to you. I will also highlight changes
that have occurred in the semi-custom ASIC mar-
ket over the past few years, give an overview of the
market’s future, and include a preview of what you
can look forward to in upcoming issues.

To start, I have nearly 40 years of direct experi-
ence in the semiconductor industry. The majority
of this time has been on the wafer facility and
wafer processing side, in both a technical and
managerial capacity. My experience spans the
entire breadth of semiconductor process technol-
ogy, from fab layout and implementation through
assembly, test, and yield/failure analysis. I have
been an analyst with In-Stat for nine years, cover-
ing both the memory and ASIC markets. During
this time I have maintained my technical aware-
ness through direct industry contact, attending
technical conferences, technical consulting for
In-Stat, and reading the plethora of technical
literature that is available. Prior to In-Stat I was
the founder and President of International
Semiconductor Technology (IST), a company
specializing in semiconductor technology
transfers. So much for me.

The semi-custom ASIC market has undergone
major change over the last few years. In-Stat
defines the semi-custom ASIC market as being
represented by the combined worldwide revenues
of the following semi-custom design methodology
categories:

➤ Non-Embedded Gate Array

➤ Embedded Gate Array

➤ Non-Embedded User Programmable Logic

➤ Embedded User Programmable Logic

➤ Standard Cell

➤ Linear Array

In-Stat Analyst To Discuss ASIC Issues
COLUMN

43

VHDL Example of a Clock Enable Pin
———
— CLOCK_ENABLE.VHD —
— Illustrates clock use of clock —
— enable rather than gated clock —
— May 1997 —
———
— CLOCK_ENABLE.VHD
— May 1997
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity clock_enable is
port (IN1,IN2,DATA,CLOCK,LOAD: in STD_LOGIC;
DOUT: out STD_LOGIC);
end clock_enable;
architecture BEHAV of clock_enable is
signal ENABLE: STD_LOGIC;
begin
ENABLE <= IN1 and IN2 and LOAD;
EN_PR: process (ENABLE,DATA,CLOCK)
begin
if (CLOCK’event and CLOCK=’1') then
if (ENABLE=’1') then
DOUT <= DATA;
end if;
end if;
end process; — End EN_PR
end BEHAV;

Verilog Example of a Clock Enable Pin
/*
//
// CLOCK_ENABLE.V //
// Example of use of clock enables //
// rather than gating the clock //
// May 1997 //
//
*/
module clock_enable (IN1, IN2, DATA, CLK,

LOAD, DOUT);
input IN1, IN2, DATA;
input CLK, LOAD;
output DOUT;
wire ENABLE;
reg DOUT;
assign ENABLE = IN1 & IN2 & LOAD;
always @(posedge CLK)
begin
if (ENABLE)
DOUT <= DATA;
end
endmodule

◆

VHDL Example of a Gated Clock
———
— GATE_CLOCK.VHD Version 1.1 —
— Illustrates clock buffer control —
— Better implementation is to use —
— clock enable rather than gated clock —
— May 1997 —
———
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity gate_clock is
port (IN1,IN2,DATA,CLK,LOAD: in STD_LOGIC;
OUT1: out STD_LOGIC);
end gate_clock;

architecture BEHAVIORAL of gate_clock is
signal GATECLK: STD_LOGIC;
begin
GATECLK <= (IN1 and IN2 and CLK);
GATE_PR: process (GATECLK,DATA,LOAD)
begin
if (GATECLK’event and GATECLK=’1') then
if (LOAD=’1') then
OUT1 <= DATA;
end if;
end if;
end process; —End GATE_PR
end BEHAVIORAL;

Verilog Example of a Gated Clock
//
// GATE_CLOCK.V Version 1.1 //
// Gated Clock Example //
// Better implementation to use clock //
// enables than gating the clock //
// May 1997 //
//
module gate_clock(IN1, IN2, DATA, CLK, LOAD,

OUT1) ;
input IN1 ;
input IN2 ;
input DATA ;
input CLK ;
input LOAD ;
output OUT1 ;
reg OUT1 ;
wire GATECLK ;
assign GATECLK = (IN1 & IN2 & CLK);
always @(posedge GATECLK)
begin

if (LOAD == 1’b1)
OUT1 = DATA;
end
endmodule

COLUMN

by Roberta Fulton,
Technical Marketing
Engineer, Alliance
Series, roberta.
fulton@xilinx.com

How can I use the “clock
enable pin” instead of gated
clocks in my HDL designs?

The use of gated clocks can introduce
glitches, increased clock delay, clock skew, and
other undesirable effects, unless you pay close

attention to your design. The first two examples in
this article (VHDL and Verilog) illustrate a design
that uses a gated clock.

Following these examples are VHDL and
Verilog designs that show how you can modify the
gated clock design to use the clock enable pin of
the CLB.

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

44

Q&AQ&A

in the top button bar, hit Cancel in the password
dialog, then click on the link to “Please send me a
new password.”

This will bring up a form where you can enter
your email address. WebLINX will automatically
send you a new password.

Reference: http://www.xilinx.com/
techdocs/3935.htm

COMMMON QUESTIONS AND ANSWERS FROM OUR HOTLINE by The Xilinx Product Applications Group, kamalk@xilinx.com

I get an error from NGDBUILD about X_FF or some other SIMPRIM type
primitive being an invalid module from NGDBUILD in my LogiBLOX design
— what could be the cause?

LogiBLOX

If you specified “EDIF simulation netlist” as one
of your output formats for your LogiBLOX module,
you may see such an error. For the version 1.4
release, you will need to delete the EDIF file that you
generate using LogiBLOX for functional simulation
before trying to implement the design.

The version 1.5 of LogiBLOX will write the imple-
mentation netlist to a file with the “.ngc” extension
instead of “.ngo”. This change was made because
otherwise NGDBUILD finds the EDIF simulation
netlist (“.edn” file) created by LogiBLOX for that
module, and tries to use it as the source netlist to
recreate the “.ngo” file. Since the LogiBLOX-created
EDIF netlist is intended only for simulation, and

does not contain the required implementation infor-
mation, NGDBUILD (EDIF2NGD) will reject the EDIF
and issue an error.

To eliminate this problem, the version 1.5 of
LogiBLOX will write the implementation netlist to a
file with the “.ngc” extension (instead of “.ngo”).
When NGDBUILD finds a “.ngc” file to define a
module, it will use this file directly, and not look
for any associated “source” netlists. In all other
respects, the “.ngc” file serves the same purpose
as the “.ngo” file.

 Reference: http://www.xilinx.com/
techdocs/3904.htm

COREgen What can I do if I’m having problems with, or can’t remember, my WebLINX/
CoreLINX password, or if I have problems registering on the CoreLINX website?

If you are having trouble registering on the
WebLINX site, please send an email to webmaster@
xilinx.com describing the problem. Be sure to in-
clude details on the exact sequence of steps you are
going through, and note exactly where it fails.

If you are having trouble logging in to the Xilinx
website, remember that passwords are case sensi-
tive. If you cannot remember your password, you
can go to the Xilinx site, click on the Agent’s link

What versions of Viewlogic, Foundation, Synopsys, Express are supported by
COREGEN?

Versions of Viewlogic, Foundation, Workview
Office, FPGA Express, and Synopsys FPGA Com-
piler required by COREGEN were inadvertently
omitted from the User Guide.

COREGEN v1.4.0 supports the following platforms:

➤ Viewlogic Powerview v6.0 or later

➤ Workview Office v7.4

➤ Foundation vF1.4 (REQUIRED)

➤ Synopsys FPGA Express v2.0 (v2.1 preferred)

➤ Synopsys FPGA Compiler v1997.01

Reference: http://www.xilinx.com/
techdocs/3884.htm

○ ○

/techdocs/3904.htm
/techdocs/3935.htm
/techdocs/3884.htm
/s97bin/getnews

45

Most often, Btrieve and Lmacs errors are a
result of conflicts associated with the Btrieve
software. Btrieve is a Windows database software
program, which is used by the Foundation Library
Manager. Btrieve may also be used by other
Windows software, which are unrelated to the
Foundation software. If this other software uses a
different version of the Btrieve software than the
Foundation software uses, conflicts may exist, and
Lmacs or Btrieve errors may be issued by Founda-
tion. Often, the errors involve Foundation not
being able to locate the proper library files.

First, check your WINDOWS directory for any
of the following files:

➤ Wbt32res.dll ➤ Wbtrcall.dll
➤ Wbtrlocl.dll ➤ Wbtrvres.dll
➤ Wbtr32.exe

The Foundation install program writes the
above files to the c:\windows directory by default.

Search for the same .dll and/or .exe files in the
c:\windows\system directory. If they are also
found here, there is a conflict between the
differenct versions of Btrieve on your PC.
Remove these files from c:\windows\system.

It is also possible that there is an incompatible
version of Btrieve being loaded by Windows. This
incompatible version may have been installed by
another windows program. An easy way to attempt
to resolve this problem is to copy the Btrieve files
directly from the Foundation CD-ROM into the
Windows directory.

From the Foundation Design Entry Tools
CD-ROM, go to the FNDTN\ACTIVE\BTRIEVE
directory, and copy the following all of the files in
that directory into your local Windows directory.

○ ○

Foundation
Series
Software

Using Foundation, what can I do when I encounter Lmacs or Btrieve errors?

How do I compile the Simulation Libraries for the Model Technology Simulator? Model
Technologytime and disk space than necessary. Generally it is

much more efficient to compile the libraries to a
central area and point to the libraries via the
modelsim.ini file. Solution record #1923 available
on the Xilinx website at http://www.xilinx.com/
techdocs/1923.htm explains how to compile the
simulation libraries in this more efficient manner.

If you are using Modelsim to simulate VHDL or
Verilog, the Xilinx simulation libraries need to be
compiled first, before a simulation may be
performed. The simulation libraries may be
compiled to the project’s working directory;
however after creating a few Xilinx projects, this
redundant library compilation may take up more

this behavior. But, if you do not want or do not
need these FFs to have a asynchronous reset or
set pins, you must still describe, in the RTL code
for the FFs, an asynchronous reset or set pin.

By connecting the HDL code which describes
the asynchronous reset or set pin of an RTL de-
scribed FF to the ROCBUF, you can create FFs that
power-up in a known state. The ROCBUF will not
synthesize to logic. So, even though the ROCBUF is
connected to a top-level port, no extra pin will be
added to a design. The top-level port the ROCBUF
is connected to will not be implemented.

○ ○

HDL State
Machine
Technique

I want to create a group of FFs which power-up in a certain state. How can I
do this in HDL without creating an extra port in my design using Alliance1.4?

The ROCBUF was created for synthesis users
who needed to create FFs which would power-up
in a ‘1’ or ‘0’ state, but the FF would not have an
asynchronous reset or set pin. FFs in XC4000 type
devices with an asynchronous reset pin will power-
up as a ‘0’. FF’s in XC4000 type devices with an
asynchronous set pin will power-up as a ‘1.’

By describing FFs with an asynchronous set or
reset pin, you can create a group of FFs that
power-up in a known pattern, like “10101111.” If
you want FFs with asynchronous reset or set pins,
this is an easy task, because the HDL will describe

Continued on the
following page

/techdocs/1923.htm

46

Q&AQ&A

VERILOG EXAMPLE OF USING THE ROCBUF:

module
stmchine(CLK,RESET,STRTSTOP,CLKEN,RST);

input CLK;
input RESET;
input STRTSTOP;
output CLKEN;
output RST;

reg CLKEN;
reg RST;
wire rstWire;

parameter [5:0] //synopsys enum
STATE_TYPE
 clear=6’b000001,
 zero=6’b000010,
 start=6’b000100,
 counting=6’b001000,
 stop=6’b010000,
 stopped=6’b100000;

reg [5:0] current_state;
reg [5:0] next_state;

always@(current_state or STRTSTOP)
begin

 case(current_state) //synopsys
full_case parallel_case

 clear:begin
 next_state<=zero;
 CLKEN<=1’b0;
 RST<=1’b1;
 end

 zero:begin

 next_state<=(STRTSTOP)?start:zero;
 CLKEN<=1’b0;
 RST<=1’b0;
 end

 start:begin

 next_state<=(STRTSTOP)?start:counting;
 CLKEN<=1’b0;
 RST<=1’b0;
 end

 counting:begin

 next_state<=(STRTSTOP)?stop:counting;
 CLKEN<=1’b1;
 RST<=1’b0;

 end
 stop:begin

 next_state<=(STRTSTOP)?stop:stopped;
 CLKEN<=1’b0;
 RST<=1’b0;

 end
 stopped:begin

 next_state<=(STRTSTOP)?start:stopped;
 CLKEN<=1’b0;
 RST<=1’b0;

 end
 endcase

 end

 always@(posedge CLK or posedge
rstWire)
 begin

 if(rstWire==1’b1)
 current_state = clear;
 else
 current_state = next_state;

 end

ROCBUF U1 (.I(RESET),.O(rstWire));

endmodule

COMMMON QUESTIONS AND ANSWERS FROM OUR HOTLINE

HDL State
Machine

Technique
Continued from the

previous page

STD_LOGIC);
end component;

begin

process(CE,CLK,clrSig)
 begin

 if(clrSig=’1') then
qoutsig <=”0100010001";

 elsif(CE=’1') then
if(CLK’event and CLK=’1') then

qoutsig<=qoutsig +
“0000000001”;

end if;
 end if;
 end process;

QOUT<=qoutsig;

U1: ROCBUF port
map(I=>CLR,O=>clrSig);

end inside;

VHDL EXAMPLE OF USING THE ROCBUF:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_unsigned.all;

entity smallcntr is

 port (CE : in STD_LOGIC;
 CLK : in STD_LOGIC;
 CLR : in STD_LOGIC;
 QOUT : out STD_LOGIC_VECTOR(9

downto 0)
);

end smallcntr;

architecture inside of smallcntr is

signal qoutsig : STD_LOGIC_VECTOR(9
downto 0);
signal clrSig: STD_LOGIC;

component ROCBUF
port(I: in STD_LOGIC; O: out

47

the data coming from the FPGA interconnect in
this state (IOB.O and IOB.T).

This captured data can be shifted out for inspec-
tion on the TDO pin during the Shift-DR State of the
TAP controller (Shift/Capture line asserted).

Note 1: The IEEE standard 1149.1 does not
require an internal injection of data to the device
interconnect during the Update-IR state. However,
this capability helps to compensate for the lack of
INTEST support.

Note 2: The Update latches are accessed every
time the TAP controller is in the Update-DR state,
regardless of the instruction. Care must be taken
to ensure that appropriate data is contained in the
update latches prior to initiating an EXTEST in-
struction. Any instruction, including BYPASS, that
is executed after the test data has been loaded, but
before the EXTEST instruction becomes current,
changes the test data. ◆

The XC4000 and XC5200 series devices
implement the IEEE 1149.1-compatible EXTEST
instruction. Loading a bit sequence “000” in the
Boundary Scan Instruction register (IR) will
enable the EXTEST instruction.

Figure 1 shows the Boundary Scan Logic in
a typical IOB. The Boundary Scan Data register
(DR) is a serial shift register implemented in the
IOBs. Each IOB can be configured as an indepen-
dently controlled bi-directional pin. Therefore,
three data register bits are provided per IOB:
for input data, output data, and 3-state control.

An update latch accompanies each bit of the
DR, and is used to hold test data during shifting
of new test data. The update latches get updated
during the Update-DR State of the TAP controller.

To execute the EXTEST instruction, shift the bit
pattern “000” into the IR in the Shift-IR state of
the TAP controller via the TDI pin. This instruction
will become current in the
Update-IR State and the
EXTEST line will get asserted.
At this time, data in the input
bit of the DR gets driven on to
the FPGA interconnect (IOB.I)
and data in the output and 3-
state control bits gets driven to
the device pins.

In the Capture-DR State of
the TAP controller, data from
the device pins goes to the DR
input bit (Shift/Capture line de-
asserted); it gets captured in
the IOB flip-flops. Care should
be taken to make sure that the
output bit of the DR has been
3-stated at this point, otherwise
there will be contention on the
pin and unknown data will get
captured. The output and
3-state bits of the DR capture

Boundary
Scan

How does the EXTEST instruction work in the XC4000/XC5200 series devices?

Figure 1 – Boundary
Scan Logic

40

First Class Presort
U.S. Postage

PAID
Permit No. 2196

San Jose, CA

2100 Logic Drive
San Jose, CA 95124-3450

Corporate
Headquarters
Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Tel: 408-559-7778
Fax: 408-559-7114

Europe
Xilinx, Ltd.
Benchmark House
203 Brooklands Road
Weybridge
Surrey KT14 0RH
United Kingdom
Tel: 44-1-932-349401
Fax: 44-1-932-349499

Japan
Xilinx, KK
Daini-Nagaoka Bldg. 2F
2-8-5, Hatchobori,
Chuo-ku, Tokyo 104
Japan
Tel: 81-3-3297-9191
Fax: 81-3-3297-9189

Hong Kong
Xilinx Asia Pacific
Unit 4312, Tower II
Metroplaza
Hing Fong Road
Kwai Fong, N.T.
Hong Kong
Tel: 852-2424-5200
Fax: 852-2494-7159

R

PN:XLQ398

Rome wasn’t
built in a day.

Your ASIC can be.

www.xilinx.com

/

	Editorial: Moving Towards a Perfect World…
	Product Information: Hardware
	Chip-Scale Packaging
	New Spartan -4 Devices
	The New XC95144
	New “QPRO” Products

	Customer Success Stories
	PCI Reconfigurable Image Advanced Processor
	Esaote Biomedica: A Spartan Success Story
	The KATSYS8010 CNC Controller from KAT GmbH
	KAT GmbH: Using Xilinx XC5210 FPGAs

	Product Information: Software
	The Core Story: A Breakthrough in Time to Market
	The Low-Cost PCI Solution
	New XC9500 CORE Support
	Full-Featured CPLD Starter Kit for $99.00 from Insight
	DSP Design Tools
	Synplify Extends Timing Constraint Control for Mixed Mode Entry
	FPGA Design Cycle Time Reduction and Optimization
	Device Programmer Support

	HDL VERIFICATION SPECIAL SECTION
	Verification for Higher Productivity
	Using Synopsys SmartModel FPGA Models
	Mixed Schematic and HDL Design Entry
	Verifying PCI Designs
	Viewlogic’s Mixed-Design Verification Methodology
	The Basic Elements of HDL Simulation
	Board Design and Simulation Using OrCAD Express
	Post-Route Timing Analysis with Leonardo Spectrum
	Verification Using a Self-checking Test Bench

	Design Hints and Issues
	Looking for the Best HDL Design Flow?
	In-Stat Analyst To Discuss ASIC Issues
	The Xilinx HDL Advisor
	Common Questions & Answers

