

THE QUARTERLY JOURNAL FOR XILINX PROGRAMMABLE LOGIC USERS

The Programmable Logic CompanySM

Inside This Issue:

GENERAL

Editorial: What Do You Think?	2
New Building in San Jose	2
Customer Success Story - Cognex	3
Upcoming Events	4
New Product Literature	4
Financial Results	4
CORE Solutions Data Book	5
Technical Training Update	5

PRODUCTS

XC9536 ISP Demo Board	6
Low Cost XC5200 Family	7
XC9500 Price Reductions	7
Hi-Rel Product Roadmap	8
DSP LogiCORE Advantages	

DEVELOPMENT SYSTEMS

Customer Declares Software	
"A Leap Forward"	10-12
JTAGProgrammer for ISP	10-11
New CPLD Fitter Option	12

HINTS & ISSUES

Technical Questions & Answers 13
Technical Support Resources 13
XC4000XL-1 Exceeds 100MHz 14-16
XC9500 ISP and Teradyne Z1800 17
Are You Ready for 2 Million
Gates? A Case Study 18-19
Low Voltage Planning 20-21
HardWire Conversions 22-23
Component Availability Chart 24-25
Software Status
Programmer Support Charts 27-28
Alliance Contacts & Partners 29
Alliance EDA Products 30-31
Fax Response Form
1

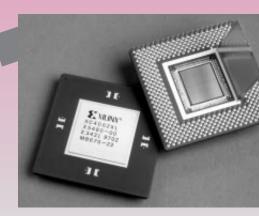
PRODUCT INFORMATION

Hi-Rel Product Roadmap

The new development roadmap for highdensity, high-reliability products will help Xilinx continue its leadership among QMLcertified chip suppliers ...

See page 8

New Software Called "A Leap Forward"


Alliance partner Hollandse Signaalapparaten B.V. thoroughly evaluated the new Alliance Series Software and declared that "improvements have been made in all areas ..."

See Pages 10-11

DESIGN TIPS & HINTS

High Performance Design With The 100MHz XC4000XL-1

Using the world's highest-density and fastest FPGA means designers must consider the special requirements of a chip that outpaces their design style ... See Pages 14-16

Are You Ready for 2 Million Gates?

The day is coming when it will take 20-30 engineers a full year to fill a single super-dense chip, if designing from scratch...

See Page 18-19

EDITORIAL

What Would You Like to See in XCell?

Xcell reaches well over 30,000 readers worldwide. Our surveys show that most of you read *XCell* regularly, and keep it for reference, because it provides a wealth of useful and timely information. We are now asking you to

> help us improve *XCell* and make it an even more meaningful and useful publication.

In future editions, we intend to provide more "how-to" information, including articles submitted by our technology partners showing you how to use their products to develop Xilinx designs. We intend to keep you informed of the fast changing trends and technology advances in our industry, so you can be prepared. We intend to provide reviews, highlighting

the latest products, literature, and services available both from Xilinx and from our technology partners. And, we intend to show you how your peers are meeting their specific design challenges. To accomplish this, we need your help. For example, what kinds of articles would you like to see more of, or less of? Do you use the reference information printed in the back, such as the component availability chart, or do you visit WebLINX for the latest updates? What sections do you read most, and least? What can we provide that will make a positive difference and help you do your job better? Are you interested in submitting articles of your own, describing how you solved a common problem or achieved a unique solution? This is your opportunity to influence the future of *XCell*.

Please E-mail your comments and suggestions to editor@xilinx.com.

With your help, we will continue to provide you with the best possible support.

Note: Bradly Fawcett, the editor of *XCell* since 1993 (*XCell* #10), has left Xilinx to pursue even greater challenges. His contribution to Xilinx has been exemplary and we wish him well. Great job, Brad! ◆

••We are now asking you to help us improve XCell and make it an even more meaningful and useful publication."

XCell

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124

 Phone:
 408-559-7778

 FAX:
 408-879-4676

 ©1997 Xilinx Inc.
 All rights reserved.

XCell is published quarterly for customers of Xilinx, Inc. Xilinx, the Xilinx logo, XACT, FPGA Foundry, and NeoCAD are registered trademarks; all XC-designated products, HardWire, XACTstep, LogiCORE, AllianceCORE, CORE Generator, Foundation Series, Alliance Series, WebLINX, Smart Search Select-RAM, NGBuild, XABEL-CPLD, Zero+ and EZTag are trademarks; and "The Programmable Logic Company" is a service mark of Xilinx, Inc. All other trademarks are the property of their respective owners.

Xilinx Adds Building to HQ Facility

ARTIST'S RENDERING COURTESY OF DENNIS KOBZA & ASSOCIATES, INC.

•

•

•

•

••••

•

Due to our continuing success, we are expanding. Ground breaking is now underway for a new building on our San Jose campus. This new, two-story, 180,000 sq. ft. building on 9.8 acres, will house up to 700 people. This environmentally conscious, open-floorplan, high-tech building will house the Xilinx Corporate staff, Sales, Marketing, Accounting, and Human Resources departments, among others. Construction is expected to be complete by August 1998.

CPLDs Provide Needed Design Flexibility in Vision Systems

At the world's top machine vision company, **Cognex**, designers of the new Checkpoint 900C have taken full advantage of the proven pin-locking capabilities and in-system programmability (ISP) of the XC9500 family. This new line of machine vision and pattern recognition products greatly accelerates image analysis for color vision applications running on high-speed production lines.

Based in Natick, Massachusetts, Cognex has been using Xilinx XC9500 devices since early 1996 in a multitude of new designs. It began shipments of this new system in June 1997.

"XC9500 components are key to the Checkpoint 900C, Cognex's first color vision processor. Xilinx's flexible pin-locking architecture, high-speed CPLD specs, and in-system programming capability have been instrumental in the development of our latest Checkpoint product. Changes to the design have been quick to implement — the re-programmability through the JTAG port has allowed quick transition from prototypes to production," noted Cognex's Steven Goodspeed.

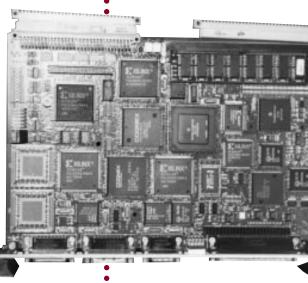
Cognex has focused on keeping pace with ever faster production lines, resulting in improved productivity, higher quality, and reduced costs for manufacturers. The robust performance and re-programmability of its systems have fueled its worldwide popularity.

As the first full-scale color machine vision system designed for the PC, the Checkpoint 900C is capable of a wide range of challeng-

Cognex's Checkpoint 900C color system.

le range of challenging machine vision applications in a number of major industries. For example, the Checkpoint 900C system can be used in the pharmaceutical industry to inspect blister packs and sort color tablets and capsules; in the automotive industry to verify that color fuses have been inserted in the correct position in fuse blocks; and in the electronics industry to ensure that

LEDs, cellular phone keys, and pager buttons are the correct color.


"The primary reason for selecting ISP technology was that this part of our design was extremely complex, and large functional blocks could be incorporated into single devices," Goodspeed said. "During the debug process, hardware changes could be contained and fixed within a single Xilinx XC9500 device, then quickly evaluated by

reloading the device through the ISP JTAG connection. No messy rework and component replacements were required."

System components include an embedded 68060 processor, a PCI interface, vision processing ASICs, CPLDs, and FPGAs. The CPLDs implement the major control logic, including the SDRAM controller and IO controller.

"Pin-locking and ISP have been key to upgrade flexibility of the Checkpoint 900C system. New product functionality can be downloaded using the JTAG port," said Goodspeed. "Not having to remove a component eliminates any need for sockets and extra handling of the hardware if rework is ever required."

The XC9500 family is a proven winner, especially in those applications that take advantage of the rock-solid pin-locking and ISP capability for design re-programmability.

••••••

•

New Product Literature

Learn about the newest Xilinx products and services through our extensive library of product literature. The most recent pieces are listed below. To order or to obtain a complete list of all available literature, please contact your local Xilinx sales representative.

TITLE	DESCRIPTION	NUMBER
Xilinx Packaging Guide	Technical Data	#100120
CPLD Pin-Locking Quick Reference Guide	Technical Data	#500855
Xilinx Education/Training Brochure	Features & Benefits	#0010134-07
Product Overview Brochure	Features & Benefits	#0010130-06

UPCOMING EVENTS

Look for Xilinx technical papers and product exhibits at these upcoming industry forums. For information about any of these conferences, please contact Kathleen Pizzo: Tel: 408-879-5377 FAX: 408-879-4676.

DSP World Expo / ICSPAT '97 September 15-17 San Diego, CA

DSP France September 17-19 Paris, France

DSP Germany September 30-October 1 Munich, Germany

FINANCIAL RESULTS

PCI France October 1-2 Paris, France

High-level Electronic System Design Conference and Exhibition (HESDC '97) October 7-9 San Jose, CA Keynote address by Richard Sevcik, Senior Vice President, Software at Xilinx **IP '97** October 20-21 Bracknell, United Kingdom

Telecom & Industrial PCI Conference (TIPCIC '97) October 21-23 Framingham, MA.

New Products Lead 3Q97 Growth

Revenues for the fiscal quarter ending June 28, 1997 totaled \$160.8 million, up 6% from \$151.8 million in the fourth quarter of the prior fiscal year, and up 7% from \$150.2 million in the first quarter of fiscal 1997. Net income was \$33.4 million, up 10% from the preceding quarter, and up 3% from the first quarter of the last fiscal year. Gross margin rose to just over 62%, while operating expenses as a percentage of revenues decreased relative to the preceding quarter.

"I continue to be pleased by the revenue contributions of our new products which constituted nearly \$7 million this quarter," remarked Wim Roelandts, Xilinx chief executive officer. "The XC9500 family of in-system programmable (ISP) CPLDs doubled in revenue this quarter, and the high-density, high-speed XC4000XL family is currently the fastest ramping FPGA in the industry's history. On the software side, we shipped approximately 1,700 revenue seats this quarter, and our new Alliance Series version M1 software continues to be well received in the marketplace."

First quarter North American sales to major end markets were as follows: communications, 37%; data processing, 29%; and industrial, 15%. In addition, Xilinx continued to realize strong revenues from networking companies, which represented an all-time high 15% of North American revenues. Geographically, revenues from North America, Europe, and Asia/Pacific were up sequentially, while revenues from Japan declined. ◆

Xilinx Inc. stock is traded on the NASDAQ exchange under the symbol XLNX.

New CORE Solutions Data Book Available

The new data book focused on programmable logic cores and related products provides one definitive source and detailed product descriptions. Xilinx CORE Solutions improve both time-to-market and device utilization. They include:

- ► LogiCORE[™] products PCI, DSP, and the CORE generators.
- ➤ AllianceCORETM products Complete solutions for PCMCIA, USB, and Reed-Solomon, plus eight other cores and development tools from third-party partners.
- ► LogiBLOXTM Parameterized small building blocks.
- Reference Designs A listing of all application notes on WebLINX accompanied by design files.

Pages 5 and 6 in section 1 list all of the functions described in the catalog by application segment, and are your best guide to locating a specific product that is available *today*. If you don't see what you need, check the *Areas of Expertise* in the profiles of our AllianceCORE partners, starting on page 3-75. Our partners are happy to discuss the possibility of making a core for your specific needs.

The entire catalog can be downloaded from WebLINX at: http://www.xilinx.com/ products/logicore/core_sol.htm

To order a hard copy, request the CORE Solutions Data Book by calling 1-800-231-3386 (U.S. only) or 408-879-5017 (worldwide) or e-mailing your request to literature@xilinx.com. ◆

NOTE: New products and updates, made since the last publish date, can be found on WebLINX at http://www.xilinx.com/products/ logicore/logicore.htm

EXILINY

CORE Solutions

TECHNICAL TRAINING UPDATE

Training Now Available Worldwide

Alliance Software

version M1

• August 1, 25

• September 5, 22

Update:

The new Alliance Software version M1 Tools Course and the Alliance Software version M1 Update Course are now being offered on a regularly scheduled basis worldwide.

The *Alliance M1 Tools Course*, for new users, is two-and-a-half days long. The *Alliance Software version M1 Update Course*, for existing users, is one day long.

The dates for these courses, held at the Xilinx San Jose facility, are:

Alliance Software version M1 Tools:

- August 5, 18
- September 9, 15
- October 13, 27
- November 3, 17 October 6, 20
- December 1, 17

Xilinx distributors worldwide offer these same courses at regional or local sites. For dates and locations, check with your distributor, see the Xilinx Educational Services brochure, or visit the training section under "sup-

port" at WebLINX (www.xilinx.com).

The 1997 brochure was updated at the end of July. It describes the contents of each training course and the latest dates (at time of publication) of scheduled training courses.

The customer educa-

Information regarding training can always be obtained by calling the registrar at 408-879-5090 or via e-mail at customer.training@xilinx.com.

tion group will continue to develop new training courses to address future Xilinx software releases and the needs of ourcustomers. ◆ APPLICATION NOTES

XC9500/XC7000 CPLD Applications

New XC9536 ISP CPLD Demo Board

Designers may use the new XC9536 insystem-programming (ISP) demo board to prototype, debug, and troubleshoot small designs. When used with the new Foundation Series or Alliance Series software, the board demonstrates the benefits of combining a robust pin-locking architecture with ISP.

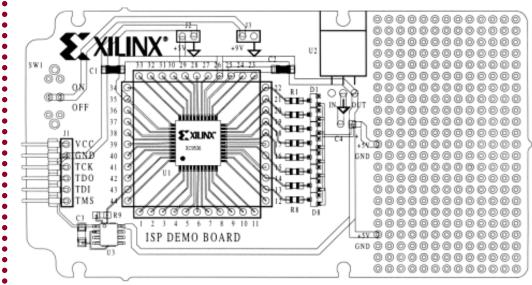
The board includes an XC9536-VQ44 CPLD, 555 surface-mount oscillator, eight surface-mount LEDs, a JTAG interface, and a

sea-of-holes prototyping area.

The eight surface mount LEDs are connected to the right side of U1, the XC9536 CPLD, as shown in **Figure 1**. A sample design for

a Johnson shift counter is included, producing a shifting LED pattern.

As a test of the XC9500 family pin-locking capability, the design of the Johnson shift counter can be easily modified to generate a different LED pattern (counting up instead of


1.8 107 09

down, for example). Once the new design has been processed, you can immediately reprogram the demo board to test the change. This quickly shows that the pinouts can remain locked, even after making design changes.

We have an application note to support the demo board as well. It includes a description of operation, a schematic, VHDL and ABEL demo files, and stock numbers for all components. It is available now by visiting WebLINX (www.xilinx.com/apps/epld.htm). You can select application note number XAPP078, the XC9536 ISP Demo Board, and the associated VHDL or ABEL Johnson shift counter demo files. To process the ABEL demo file, use the Xilinx Foundation Series software. To process the VHDL file, use the Alliance Series software.

Programming the demo board can be accomplished using either the Xilinx EZTag software, or the new JTAG programmer software contained in the Foundation or Alliance Series Software.

You can order the demo board, part number HW-CPLD-DEMOBD, by contacting your local Xilinx Distributor. ◆

Find it on the Web at: www.xilinx.com/apps/ epld.htm

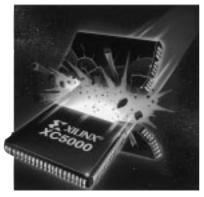
Application Note

The case of

NAT Inte

The XC5200 Series The Lowest-Cost FPGAs Anywhere

The XC5200 family is now shipping into new, high-volume applications such as CD players, PC add-in cards, set-top boxes and personal communications devices. Because of cost sensitivity, many of these applications have relied on gate arrays in the past. Success in these markets has rocketed sales of the XC5200 family to a million units, in record time—twice as fast as any previous device.


According to Masato Yorifuji, senior engineer for Hitachi, Ltd., Japan, "... while designing the world's first MPEG camera for digital photography, we needed the advantages of re-programmability to deliver leading edge products to the market. Although we historically considered only a mask-programmed solution for our product, the Xilinx XC5200 family delivered a compatible costper-logic-cell and reduced our time-to-production by six months."

Matrox Graphics, a Montreal-based company whose sales of PC graphics add-in cards have more than doubled each of the last three years, has selected the Xilinx XC5204 device for the high-volume Rainbow Runner daughtercard, used on the Matrox Millenium. The XC5204 was chosen for this consumer application because of its low cost, high I/O count and reprogrammability. Plus, further design changes are possible simply by providing a new software driver because the XC5204

configuration data is part of the driver. This allows the board to change not only software, but also hardware, to adapt to the latest 3D and video applications. Configuring from the driver also eliminates the need for a serial PROM, further optimizing board space.

The XC5200 family has succeeded in replacing low density gate arrays where other PLD vendors have failed because it leverages leading-edge process technology with specific architectural innovations that minimize die area and cost.

Ask your local Xilinx sales representative for more information. \blacklozenge

XC9500 Family Price Reductions

Effective September 1, the prices for the XC9500 CPLD family have been reduced up to 30%, depending on speed and package. The price reductions result from improvements in wafer yields and manufacturing efficiencies, along with dramatic increases in production volumes.

Now it is easier for designers to take advantage of the most advanced CPLD technology available. For example, price is no longer a barrier to using in-system programmability (ISP) because the ISP-capable XC9500 family is now the same price or lower than other non-ISP devices. For specific pricing information, contact your local Xilinx sales representative.

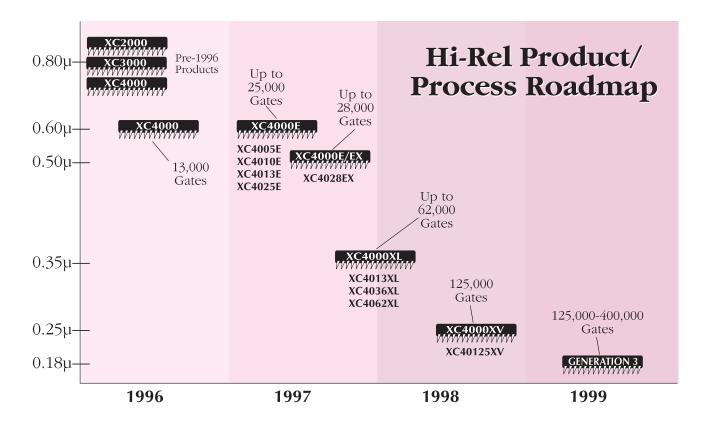
XC9500 Family Price Reductions (in 100+ units)

Old Price	New Price	% Reduction
\$3.95	\$3.05	23%
\$5.70	\$3.20	44%
\$15.30	\$8.05	47%
\$48.50	\$23.65	51%
	\$3.95 \$5.70 \$15.30	\$3.95 \$3.05 \$5.70 \$3.20 \$15.30 \$8.05

Hi-Rel Product Roadmap Provides High-Density Leadership

Even as defense spending continues to decrease, the funds devoted to electronics for "smart" weapons and defense systems are expected to grow. Designers in the Hi-Rel/ Military applications market are spending wisely, focusing on development time and time-to-market in a highly competitive industry, and using the latest technologies.

Xilinx has created a high-density FPGA roadmap that, in conjunction with QML certification, makes Xilinx FPGAs the technology of choice for defense system designers.


As it becomes more and more difficult to obtain Hi-Rel ASICs, high-density FPGAs will become the standard for Hi-Rel logic design. This will be accomplished by focusing on selected products and offering both throughhole and surface mount packaging options.

Xilinx is already shipping the industry's largest QML-compliant FPGA — the 25,000-gate XC4025E device.

With the trend towards lower supply voltages, the 3.3 volt XC4000XL family is destined to become the flagship of the Xilinx Hi-Rel product lines. The 62,000-gate XC4062XL FPGA will be available as a QML product in the first half of 1998.

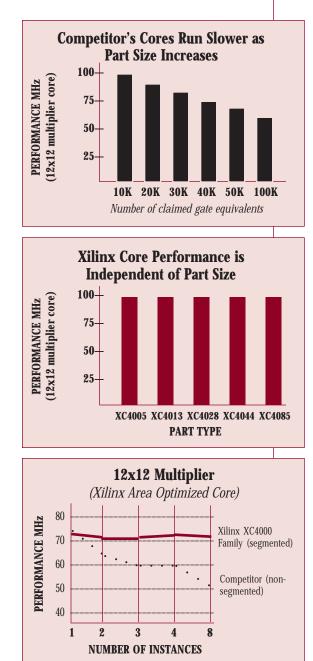
Out strong product leadership will be further enhanced with the 2.5 volt, 125,000gate XC40125XV device before the end of 1998, followed by a third generation family that will provide up to 400,000 gates of QML programmable logic in 1999.

Because FPGAs solve many of the problems facing the defense electronics industry, they have been successfully designed into hundreds of military and aerospace applications, such as electronic warfare, countermeasures, missile guidance, radar, sonar, communications and avionics systems. ◆

9

Xilinx DSP LogiCORE Advantages

he Xilinx CORE Generator, in conjunction with the XC4000XL segmented architecture, automatically produces highly efficient DSP designs that are predictable for any size device. Xilinx is the only FPGA supplier that can achieve this.


In the past, high-level VHDL designs (originally intended for gate arrays) could be used in FPGAs, but they produced inefficient, slow, and unpredictable results. Now, using the DSP LogiCOREs that are created from your design specifications, you can get performance and density that is equivalent to hand crafted designs.

In addition to logic design, the CORE Generator also produces a physical layout for each parameterized core, containing relative placement information for each CLB. Once the CLBs are mapped and placed relative to each other, multiple cores can be dropped into a Xilinx FPGA and still meet the predefined performance specifications of each individual core. This is made possible by our unique segmented routing architecture.

Xilinx is the only FPGA manufacturer that produces a physical layout in parallel with the core logic design. Our competition uses cores that must rely on the place and route software to build the physical design each time they are used. And, their non-segmented routing architecture means you cannot predict performance, which decreases as more logic is added to a device and varies between different software runs, as shown in **Figure 1**.

The Xilinx core performance is also independent of device size. For example, a 12x12 parallel multiplier achieves the same maximum clock rate when it's used in an XC4005XL as when it's used in an XC4085XL. Our competitor's non-segmented architecture cannot achieve this because their metal interconnections get longer as the device size increases, as illustrated in **Figure 2**. Because of this, our competitor's core performance cannot be specified or controlled during the design phase; you must wait until the design is completed to determine if your system requirements were met. The Xilinx segmented routing does not have this problem and therefore timing is always predictable, as illustrated in **Figure 3**.

Xilinx CORE Solutions and the new CORE Generator, provide predictable, consistent, high-performance designs that get your product to market in the least time with the least effort. See our *CORE Solutions Data Book* for more information.

Figure 1: Our competitor's

FPGAs exhibit performance degradation as the device size grows, due to the increased capacitance of long non-segmented interconnections.

Figure 2: The Xilinx segmented routing guarantees consistent performance as more logic is added.

Figure 3: Segmented routing and

routing and the Xilinx CORE Generator guarantee consistent performance between small and large FPGAs •

"A Leap Forward" Signaal Evaluates the Xilinx Alliance Series Software Tools

Hollandse Signaalapparaten B.V.

(Signaal), a subsidiary of Thomson-CSF, recently performed an evaluation of the new Alliance Series software. The design was for an interface between an MC68360 CPU and a SHARC bus running at a clock frequency of 25 MHz, and was implemented in an XC4010E-4PQ208 FPGA. About 70% of the CLBs and 80% of the IOBs were used. All I/O pins were locked to enable concurrent design of the PCB layout.

The evaluation used the Synopsys FPGA Compiler for synthesis, and the Cadence Leapfrog simulator for behavioral (RTL), functional, and timing simulation. However, any synthesis tool and VITAL-compliant simulator could have been used because all interfaces are based on standard formats such as VHDL, SDF, and EDIF. *See "design flow" at right.*

The Customer Evaluation Report

Jaap Mol of Signaal wrote, "The new Alliance Series software is a leap forward; improvements have been made in all areas." His report included many other key insights:

Usability of the Software

"The usability has been improved by the new GUI. It is intuitive and allows for better control, which is especially important for the first time user of the tools."

Controllability of the Tools

"The controllability has been improved using the flow engine and user-definable templates. Design constraints can be specified during synthesis (netlist constraints) and during place and route (user and physical constraints). Constraint-driven place and route is essential for timing-critical, highdensity designs."

New JTAGProgrammer Software for ISP

The new JTAGProgrammer tool represents a major step forward in the evolution of in-system programming (ISP) download and test software.

Using the new JTAGProgrammer graphical user interface, designers have immediate access to all of the ISP functionality provided by XC9500 CPLD 1149.1-compliant devices. The structure of the boundary-scan chain is readily visible and the status of each part in the chain is clearly indicated on the topology diagram.

The JTAGProgrammer user interface is identical in its look and feel across all plat-

forms (Sun, HP, PC). The same GUI can be used to download either via the parallel download cable (JTAG) or serial download cable (XChecker) as well as being used to generate serial vector format (SVF) files for easy interfacing to embedded processors, automatic test equipment, or third-party tools.

As with EZTag, JTAGProgrammer provides a simple-to-use interface that shields the end user from the intricacies of the boundary-scan protocol. JTAGProgrammer, however, adds more flexibility including the support of additional programming options like:

Version and Revision Control

"Version and revision control capability have proven to be very useful in performing design tradeoffs. The best possible solution for the design can be selected from implemented versions and revisions. This is especially useful when using Xilinx FPGA technology to do rapid prototyping of a system. The Design Manager offers the capability for doing version and revision control on designs. In the Design Manager a design is referred to as a project. If there have been changes to a logic design (e.g. the netlist), this is referred to as a new version of the design. If the design is mapped into another device, package, or speed-grade, this can be referred to as a new revision. This way, the user can easily make trade-offs, without losing previous results."

Report Browsing

"During implementation of the design, many reports are generated. For instance, there are reports concerning timing, place and route, and pad assignments."

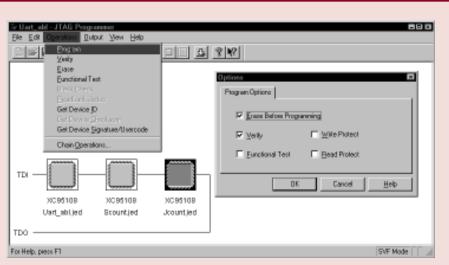
On-Line Help

"The on-line help is available from within the design manager. The help function is based on Windows Hyperhelp, has a search function, and is easy-to-use."

The Signaal Design Flow:

- ► A VHDL (RTL) model was verified using the VHDL simulator. This model also functioned as an input for logic synthesis.
- ➤ The synthesis tool translated the VHDL model to gates. (The required synthesis libraries are provided by Xilinx or the synthesis tool vendor.)
- An EDIF netlist was generated during synthesis, containing the connectivity between Xilinx primitives. This netlist was later transferred to the place and route software.
- Optionally, functional (pre-layout) simulation could be performed using the Xilinx VITAL library, to verify the correctness of the synthesis process before proceeding with place and route.
- ➤ The EDIF netlist was processed by the place and route software. After place and route was completed, a VHDL netlist and SDF timing information were generated. These were used for Timing Simulation, once again making use of the Xilinx VITAL library. In addition, static timing analysis was performed during synthesis and during place and route.

Interface Formats to Other Tools


"The interface to and from Xilinx tools is dramatically improved by the move to standard formats like EDIF, VHDL, and SDF. This was the major reason why the interfaces from the synthesizer and simulator did not cause any major problems. The availability of a

Continued on the following page

- Ability to skip erase before programming.
- Automatic detection of new XC9500 silicon features.
- ► Ability to override write protection.
- Automatic detection of programming characteristics of silicon.

JEDEC files generated from XACT*step* version 6.X software are 100% compat-

ible with JTAGProgrammer so you can use your archived JEDEC files without modification in the new JTAGProgrammer environment.

JTAGProgrammer runs on SunOS 4.x (Solaris 1.X), SunOS 5.X (Solaris 5.X), HP UX 9.X and 10.X, Windows 95, and Windows NT 4.0. ◆

A Leap Forward Continued from the previous page

VITAL-compliant VHDL library makes it possible to use one testbench, one simulator, and one language for simulation on any level of abstraction.

"Apart from the tools, which are called from the flow engine, the following functions are also available:

- "The timing analyzer provides a timing analysis of specific paths in the design, and helps to verify that the timing constraints are met by the place and route tools.
- "The epic design editor can be used to manually place and route any or all parts of the design.
- "The hardware debugger provides an interface to the XChecker cable, which can be used for reconfiguring an FPGA, while prototyping the system.

"The PROM file formatter generates one or more PROM files in a suitable format for an EPROM programmer. It can merge multiple bitstreams into the resulting PROM files. Both serial and byte-wide PROMs are supported.

"It is quite visible that Xilinx has put a lot of effort into the development of this release. The new tools are intuitive, have good controllability, and support industry standards. The support of industry standards makes the interface to third-party EDA vendors easy and seamless. The tools helped cut down our design time significantly, which translates into reduced time-to-market. We hope Xilinx will continue investing resources in this direction." ◆

New Alliance and Foundation CPLD Fitter Option

The new Alliance Series and Foundation Series software contain a CPLD fitter option called "use advanced fitting." This new feature allows the software to group equations that have the same input signals into the same function block. You would typically use this option

_****	****Fur	nction B	lock Res	ource Su	mmary*;	* * * * * *
Func- tion Block	# of Macro- cells	FB Inputs Used	Signals Used	Total Pt Used	0/I0 Req	IO Avail
FB1	10	36	36	35	8/0	10
FB2	14	36	40	66	4/0	14
FB3	12	36	37	87	9/0	9
FB4	12	36	36	76	8/0	10
FB5	11	34	34	45	5/0	13
FB6	9	36	36	34	5/0	13

Figure 1: Function Block Resource Summary from Fitter Report.

on large designs that cannot fit because of function block input restrictions.

If your design is unable to fit into a particular device, take a look at the top of the report (.RPT) file. Designs which appear to have plenty of I/O pins, product terms, and macrocells when mapped into an XC9500 device may not fit because of the 36-signal input limit to each function block. In the example in **Figure 1**, we see that almost all of the FB inputs are being used. However, the total number of product terms and macrocells in each function block are not fully utilized. This would be a perfect candidate for trying the "advanced fitting" algorithm.

What exactly does this new algorithm do differently? There are 36 inputs to a function block in the XC9500 CPLD architecture. The CPLD fitter software will default to fitting designs based on a pin-locking algorithm. This pin-locking algorithm tends to spread equations throughout the CPLD, ensuring room for growth and change for all of the equations.

This spreading function, however, tends to use up the number of function block inputs very quickly. By selecting the "advanced fitting" algorithm, the software weights common signal usage higher and tends to group equations with the same signals into the same function block. As a result, it provides a denser fit for larger designs by freeing the otherwise used inputs from other function blocks. ◆

TECHNICAL QUESTIONS & ANSWERS

Will I still be able to target XC3000/A and XC5200 devices with the Foundation Series software?	As long as the XACT <i>step</i> version 6 implementation software remains installed on your system (located in C:\XACT by default), and the XACT variable and path point to this location, you will still be able to target XC3000/A and XC5200 devices with the Foundation Series tools. When you open an existing Foundation Series project, targeting an XC3000/A or XC5200 device, it will ask if you wish to enable the XACT <i>step</i> v6 flow. Once the XACTstep v6 flow is enabled, the Foundation Project Manager will revert back to the XACT <i>step</i> v6 menus, and will launch the XACT <i>step</i> v6 Design Manager instead of the Foundation Series Design Manager. The project type can always be switched between the XACT <i>step</i> v6 and Foundation Series flows by selecting "file → project type" from the Project Manager. If the XACT <i>step</i> v6 flow is not listed as an available project type, and you wish to create a new project targeting either an XC3000/A or XC5200 device, add the following lines to the bottom of the SUSIE.INI file, located in the Windows directory: [Flow_26] XILINX6=ON If the desired libraries are no longer present, they must be copied from the Foundation 6.0.1 CD-ROM from the \ACTIVE\SYSLIB directory to C:\ACTIVE\SYSLIB (where C:\ACTIVE is the location of the Foundation Series Design Entry software), and manually added to the Foundation Series project by selecting "file → project libraries" from the Project libraries" from the Project Manager.
Do I still need a hardware key with the Foundation Series software?	If you have either a Foundation Series STD-V or BAS-V package, you will need to have a Xilinx hardware security key attached to your PC's parallel port in order to enable the VHDL features of the product. Existing Foundation Series VHDL customers may use their existing key with the Foundation Series version M1.3 software. New Foundation Series VHDL customers will receive a pre-programmed hardware key with their new software.
How do I compile the Foundation Series HDL simulation libraries so I can perform timing or post-synthesis simulation in QuickHDL?	The Foundation Series version M1.3.7 includes Verilog and VHDL compile scripts that run the HDL-compilation commands automatically. For more information, see the files: \$XILINX/mentor/data/verilog/README \$XILINX/mentor/data/vhdl/README

TECHNICAL SUPPORT RESOURCES

Need technical help right now? Here's where to start:

Find us on the Internet at www.xilinx.com

 We update our "Answers" Web tool daily with the latest application notes, data sheets, patches, and solutions to your technical questions. Get immediate answers 24 hours per day!

If you don't have access to the Web or can't locate an answer via step #1, then...

2. Contact your nearest Customer Support Hotline (see below)

NORTH AMERICA	UNITED KINGDOM	FRANCE	GERMANY	JAPAN
(Mon, Tues, Wed, Fri	(Mon, Tues, Wed, Thur	(Monday-Friday 9:30am-	(Mon, Tues, Wed, Thur	(Mon, Tues, Thur, Fri
6:30am-5pm, Thur 6:30am	9:00am-12:00pm, 1:00-	12:30pm, 2:00-5:30pm)	8:00am-12:00pm, 1:00-	9:00am-5:00pm,
- 4:00pm Pacific Time)	5:30pm, Fri 9:00am-	Hotline: (33) 1 3463 0100	5:00pm, Fri 8:00am-	Wed 9:00am-4:00pm)
Hotline: 800 255 7778	12:00pm, 1:00-3:30pm)	Fax: (33) 1 3463 0959	12:00pm, 1:00pm-3:00pm)	Hotline: (81) 3 3297 9163
or 408 879 5199	Hotline: (44) 1932 820821	Email: frhelp@xilinx.com	Hotline: (49) 89 93088 130	FAX: (81) 3 3297 0067
Fax: 408 879 4442	Fax: (44) 1932 828522	*	Fax: (49) 89 93088 188	Email: jhotline@xilinx.com
BBS: 408 559 9327	Email: ukhelp@xilinx.com		Email: dlhelp@xilinx.com	-
Email: hotline@xilinx.com			. 1 1	1.0

Need a software update, authorization code, or documentation update? **Contact Customer Service:** U.S.: 800 624 4782 Europe: (44) 1932-349401 International: 408 559 7778

DESIGN HINTS AND ISSUES

High Performance Design XC4000XL-1 FPGAs Exceed 100MHz

In addition to being the world's highest density FPGAs, the Xilinx XC4000XL-1 family is also the world's fastest. They offer greater than 100 MHz internal system clocks and more than 70 MHz in I/O speed. This combination of speed and density comes with low power and total compatibility with 3.3 volt or 5.0 volt logic.

The increase in speed can be quite substantial. Designs for the XC4000E-3 family will run 80-100% faster on the equivalent XC4000XL-1 devices. The pin compatibility among all XC4000 Series devices makes it simple to test actual design speeds — just retarget any design for an existing XC4000 Series FPGA to the appropriate XC4000XL-1 device using the Alliance Series or Foundation Series software.

Article Summary

This article describes the achievable performance (maximum clock frequency) in top-ofthe-line FPGAs. It analyzes the performance of seven typical sub-functions and lists the achievable performance levels for the fastest available Xilinx XC4000XL device, compared with the fastest available Altera 10K100 device. All data was derived from the manufacturers' worst-case timing analyzer.

The remainder of this article describes the dramatic performance impact of three different design styles. It shows that you can often double the performance of the FPGA by spending some effort on optimizing the design structure for the specific FPGA architecture.

An expanded version of this article is available on WebLINX (www.xilinx.com), as an application note, under the title "Speed metrics for high performance FPGAs."

Selected	Component Frequency M	easurem	ents	FREQ.	EXPLANATION	XC4062XL-1	10K100-3
	1 I U			Fmux(2)	64:32 Mux between registers	131 MHz	105 MHz
FREQ.	EXPLANATION	XC4062XL·1	10K100-3	Fmux(8)	64:8 Mux between registers	80 MHz	60 MHz
Fio(int)	Clocked I/O referenced to internal clock	196 MHz	na	Fmxu(64)	64:1 Mux between registers	56 MHz	38 MHz
Fio(ext)	Clocked I/O referenced to external clock	74 MHz	54 MHz	Feau(4)	10 4 hit AND torms hotwoon no sistors	164 MHz	86 MHz
Fio(lut)	Clocked I/O to CLB regs	31MHz	29 MHz	Fequ(4)	16 x 4 bit AND terms between registers		
	(referenced to external clock)			Fequ(16)	4 x 16 bit AND term between registers	81 MHz	54 MHz
Fdst(4,4)	Distance within 4 rows and 4 columns	196 MHz	156MHz	Fequ(64)	1 x 64 bit AND term between registers	30 MHz	17 MHz
Fdst	Distance across largest chip	79 MHz	71 MHz	Fadd(1,5)	5-bit adder between registers	135 MHz	148 MHz
(0,128)	horizontally or vertically	10 MILL	11 101112	Fadd(1,32)	32-bit adder between registers	73 MHz	43 MHz
Fdst	Distance across largest chip diagonally	28MHz	28MHz	Fadd(4,32)	4 cascaded 32-bit adders between registers	32 MHz	21 MHz
(64,128)/2	and back			- (1.1)			
Flut(4,2)	Two cascaded 4 input LUTs	130 MHz	82 MHz	Fmem(16)	16 Bit 16 element dual port RAM between registers	128 MHz	na
Tiut(4,2)	between registers	100 101112	02 WIIIZ	Fmem(128)	16 Bit 128 element dual port RAM	68 MHz	25 MHz
Flut(4,4)	Four cascaded 4LUTs between registers	73 MHz	49 MHz	rmeni(120)	between registers	UO IVIIIZ	20 WILLS
Flut(4,8)	Eight cascaded 4LUTs between registers	36 MHz	27 MHz	Fmem(1024)	16 Bit 1024 element dual port RAM	40 MHz	na
					between registers		

•• This combination of speed and density comes with low power and total compatibility with 3.3 volt or 5.0 volt logic."

FPGA Component Speeds

To determine the maximum speed of the components used in FPGA designs, a set of test designs was created. These designs, written in VHDL, measure fundamental aspects of FPGA performance. The following components were entered and tested for frequency:

- ► I/O three configurations of I/O pins and clocks.
- Interconnect registers separated by "N" rows and columns.

- State Machines 1 to 6 levels (3-, 4-, and 5-input look-up tables).
- Multiplexers 64:32, 64:16, 64:8, 64:4, 64:2, and 64:1 mux.
- Constant Comparators ("AND" terms) 4-, 8-, 16-, 32-, and 64-bit AND terms.
- Adders 4-, 8-, 16-, 24-, and 32-bit adders as well as 2- and 4-bit cascaded adders.
- Memory-Dual Port RAMs, 16-bits wide; 16-, 32-, 64-,128-, 256-, 512- and 1024-bits deep.

FPGA Design Style Affects Performance

In general, FPGA designs with a low ratio of registers to look-up tables (LUTs) run at lower clock rates than designs with equal numbers of registers and LUTs. Even higher clock rates can be achieved if additional registers are used to break up interconnect delays. Design styles can be characterized as low, medium, and high frequency based on the register-to-LUT ratio. They might also be called "easy," "medium," and "difficult." It is important to understand that this difference is not affected by the design entry method. It is just as easy to include registers in a VHDL design as in a schematic. In fact, high-level tools can include register re-timing methods which can significantly increase system frequency.

"No Problems" Design Style

If you've ever done a low-speed design for an FPGA, you know how convenient it is to ignore logic depth, pipelining, and placement issues. Logic synthesizers will often generate designs in this style because pipelining and logic placement are not automatically handled. The "no problem" design style requires that timing and placement not be an issue; if the design passes functional simulation, then it will route and meet the non-demanding timing.

Medium Frequency FPGA Design Style

Most designs intended for FPGAs fall into this design style. Your designs will tend to fall into this category, if you use one-hot state machines, Global Low Skew (GLS) buffered clocks, register all your big data-path components, and practice moderate floor-planning.

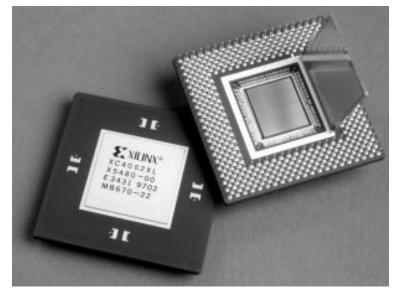
High Frequency Design Style

A high clock frequency allows little margin for such things as routing delay or carry propagation. To work at this level, the physical aspect of a design must be considered. It may mean adding registers to cover interconnect delay, or detailed floor-planning.

Design Style Summaries						
Design Style	Charac- teristic Freq.	Reg- isters /LUTs	Inter- connect distance	Design Effort	Norm- alized Freq.	Density
Low Freq	Fmin	~0.5	Long	Lowest	0.5	Highest
Medium Freq	Ftyp	=1.0	Medium	Medium	1.0	Medium
High Freq	Fmax	~2.0	Short	Highest	2.0	Lowest

FPGA System Frequency Definitions

For maximum frequency designs, the type of functionality available to you is restricted. In fact, the types of components that run at the same maximum frequency can be used to define these design styles in a formal sense.


High Performance Design

The components can be adders, I/O pins, state machines, or anything else you can build in an FPGA. For proper operation, all the components used must run at the selected system frequency. If available within each design style; the selected components are generally compatible with each other, and a formal definition allows frequency measurements to be taken.

Continued from the previous page

the types of components used in a design are known, you can estimate the speed of a new design without detailed knowledge of the actual design. Alternatively, you can limit the types of components used in a design to insure hitting a target frequency.

The following table defines the types of components that are

Component	Parameters Defined	High Freq.	Medium Freq.	Low Freq.
State machines	Number of cascaded 4LUTs	2 Logic Levels	4 Logic Levels	8 Logic Levels
Multiplexers	Number of input bits/ Number of output bits	64-bits/32-bits	64-bits/8-bits	64-bits/1-bit
"AND-OR" Terms	Number of Inputs bits/ Number of cascaded AND-OR terms	4-bit/1 level	16-bit/1 level	64-bit/2 levels
Adders	Number of input bits/ Numbers of cascaded adders	4-Bit/1 level	32-Bits/ 1 Level	32-Bits/4 Levels
Inputs/Outputs	Type of Input/Type of Output/ Timing Reference for Clock	"NoDelay" inputs/ "Fast" outputs/ internal clock	"Full Delay" inputs/ "Fast" outputs/ external GLS clock	"Full Delay" input via 4LUT/ "Slow" Outputs via 4LUT/ external GLS clock
Memory	Number of locations Dual Ported Memory	16-elements	128-Elements	1024 Elements
Interconnect	Distance between registers	4 CLBs	64 CLBs	128 CLBs

System Frequency Measurements

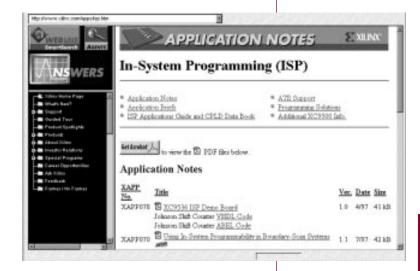
The system frequencies for the three associated design styles can now be measured. First the component frequencies required for

Frequency	Design Style	XC4062XL-1	10K100-3
Fmax	High Frequency	128 MHz	82 MHz
Ftyp	Typical system	68 MHz	43 MHz
Fmin	Low frequency	28 MHz	17 MHz

a design style are measured, then the system frequency is determined. The system frequency is defined as the minimum speed of all the components necessary for each design style. To illustrate the point that Xilinx XC4000XL-1 devices are the world's fastest high-density FPGAs, these same measurements were made for a competitor's FPGA; the Altera 10K100-3 device is roughly the same size as the Xilinx XC4052XL.

Integrating XC9500 ISP Capabilities With Manufacturing Test on the Teradyne Z1800

In-system programming (ISP) allows you to program and re-program devices that are already soldered on a system board. ISP streamlines manufacturing flows, allows you to update and reconfigure remote systems, and makes prototyping much easier. The XC9500 family integrates ISP functionality through the IEEE 1149.1 (JTAG) test access port without requiring any externally applied voltages greater than 5V. This allows JTAGcompatible automatic test equipment, such as the Teradyne Z1800, to program XC9500 devices.


Z1800 Configuration and Fixturing

The Teradyne Board Test System performs ISP as an integrated part of the manufacturing test process. In order to integrate programming into the system test flow, you need:

- A Teradyne Z1800 tester with the digital functional processor board running the F1 software.
- The Xilinx EZTag or JTAGProgrammer software.
- ➤ The zip file containing the Teradyne SVFP translator, C files, and software libraries (downloaded from WebLINX).

➤ A C compiler capable of producing a16-bit DOS executable for the Z1800. The computers provided with Teradyne board test systems support Microsoft Visual C++ and Borland Turbo C++ version 3.0 compilers.

Availability

The svfp translator, C files, libraries, and accompanying documentation are available on WebLINX (www.xilinx.com), the Xilinx Web site. Point your browser to http:// www.xilinx.com/apps/isp.htm and select the topic titled *Programming Xilinx XC9500 on a*

Teradyne Z1800 with DFP - EZTag Version.

Xilinx now offers you full JTAG/ISP support for the top three ATE manufacturers: Teradyne, HP, and GenRad. The necessary software and documentation for all three ATE platforms is available free of charge from WebLINX.

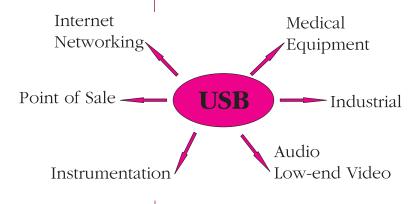
With complete ATE support and the industry's most extensive JTAG capability, Xilinx is the ISP CPLD vendor of choice. Find it on the Web at: http://www.xilinx.com

/apps/isp.htm

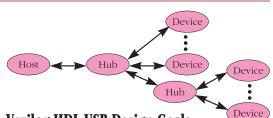
Using Technology-Independent Intellectual Property Are You Ready for 2

By the year 2000, Xilinx will be producing devices containing more than 100,000 logic cells (2 million gates). You will soon have a canvas so broad that it will be difficult to paint all the landscape. We estimate that it will take a full 12 months and 20-30 engineers to fill a device of this density, if designing from scratch.

Clearly the solution to maintaining a trouble-free design cycle is to stop creating every design from scratch, and to start using technology-independent intellectual property. Just as it's easier to paint by numbers, it's easier to re-use blocks of logic. The use of intellectual property or core-based design modules is an essential component of a high-end "system on a chip" solution. The LogiCORE and AllianceCORE modules from Xilinx offer proven, pre-implemented, and fully verified cores that provide the fast time-to-market solutions you need.


This article demonstrates the use of technology-independent intellectual property (IP) through the design of a Universal Serial Bus application.

Universal Serial Bus Case Study


The Universal Serial Bus (USB) protocol was created to provide a standardized serial bus to be used in the personal and mobile computer markets. Just as PCI is becoming a standard parallel bus, USB is now becoming a standard PC serial bus for lower-bandwidth PC peripherals such as mice, keyboards, modems, and so on.

USB Protocol Description

The USB protocol uses a differentialtwisted shielded pair for its physical medium. The signal coding is NRZI with bit stuffing, and has been designed to transmit data at two rates: 1.5 Mbps (low speed) and 12 Mbps (full speed). It can support up to 127 devices.

The USB architecture defines a host PC and "devices" or "functions" (such as keyboard or mouse) with "hubs" in the middle as necessary for fan-out.

Verilog HDL USB Design Goals

Mentor Graphics Inventra, a member of the Xilinx AllianceCORE partnership, has developed a family of USB functions and hub controller soft cores. These cores can be combined with application-specific back-end logic.

Inventra USB cores come in low speed and full speed versions for applications such as micro-controllers, audio, and generic user definable USB interfaces. These cores have been designed with the following goals in mind:

- ► A technology independent design methodology.
- Design implementation and mapping directed by synthesis timing constraints.
- Synthesis tools select state machines.
- Ability to re-use the bus interface with application-specific logic.

For this USB case study, an Inventra USB function controller core was selected. The USB function controller's hierarchy and logic was originally designed with its full-speed timing characteristics in mind. The USB function controller's hierarchy is illustrated in **Figure 1**.

While the full-speed USB Function Controller runs at 12 MHz, the design involves several blocks that run at 4X the basic rate, or 48 MHz. This 48 MHz clock is

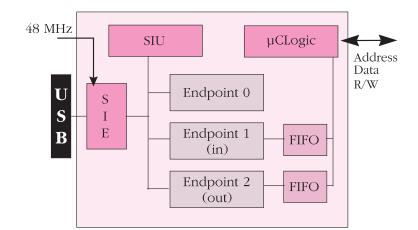
Million Gates?

used to over-sample and drive both the data and the 12 MHz data clock from the serial NRZI USB data signal.

Controlling Timing

The design's logic was divided into different timing blocks as illustrated in **Figure 2**. This was done to understand the timing relationships both within and between blocks of logic.

By implementing the design using these timing blocks as the hierarchical boundaries, the Inventra engineers where able to clearly define timing specifications and constraints for the blocks of logic that needed to run at a rate of 48 MHz and those that needed to run only at 12 MHz. They were also able to control the timing interaction between these blocks.


By using the Xilinx Alliance series timing constraint capability, the global timing of 12 MHz was applied to the entire design. Then the more critical constraint of 48 MHz was applied to the flip-flops and I/O pads that needed to run at the 4X rate.

State Machines

The synthesis tools were also used to select the most efficient and highest performance state machines. The USB function controller consists of, among other things, five state machines. The Inventra engineers found that two of the state machines would not meet the system timing requirements if standard encoding methods were used for synthesis. By directing the synthesis tools to use "one hot" encoding for these two machines, performance requirements for these two blocks were met. To maintain the core's design re-use capability, the Verilog RTL code was not modified; only the synthesis options were changed.

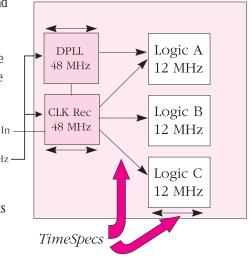
Module Re-use

By developing the USB function controller as a reusable IP, Inventra is able to maintain a single version of RTL source code with a range of interfacing options for various back-end applications. This back-end application logic can also be developed using this technology independent methodology, allowing the modules to interface easily.

Summary

This USB IP development case study shows how generic Verilog RTL code was used to define the register transfer level functions while synthesis was used to produce the gate level implementation. The constraint files and directives are used to drive both the synthesis and

the Alliance Series place and route tools.


In this technology-independent IP design flow, the Xilinx design tools used the new timing-driven placement and Data In routing algorithms. The robust timing 48 MHz analysis tools were also used to verify that the timing requirements were met. There was no hand placement or routing, and no floor-planing was required.

The use of this technology independent methodology will become more and more important as device densities increase. Xilinx is committed to delivering not only the highest performance and highest density devices, but also to providing you with the tools you need to develop them quickly and easily.

For information on the Xilinx LogiCORE, AllianceCORE, or Mentor Graphics Inventra USB products, check out the Xilinx CORE Solutions web site at: http://www.xilinx.com/products/ logicore/logicore.htm ◆

Figure 1: USB Core Hierarchy

Figure 2: Timing Blocks

Plan Now for Lower Supply Voltages

I he relentless pressure to achieve higher speed, higher density, lower cost, and lower power consumption is driving Xilinx (and other IC manufacturers) to use ever-thinner gate oxides and smaller geometries, resulting in a requirement for lower supply voltages.

At 0.35 microns, devices cannot reliably tolerate a 5 volt supply, and require a 3.3 volt supply instead. At 0.25 microns, the supply voltage must be lowered to 2.5 volts. At 0.18 microns, a 1.8 volt supply will be likely. To take advantage of the technical and economic benefits of these smaller process geometries, you will face several challenges:

- Distributing multiple supply voltages on the PC board.
- Interfacing between CMOS devices using different supply voltages.
- ➤ Sequencing supply voltages.

Distributing Multiple Supply Voltages on the PC Board

At today's speeds, the analog characteristics of a PC board play a strong role in determining digital system performance. Even modest-length (3 inch) interconnects must be treated as trans-

••At 0.35 microns, devices cannot reliably tolerate a 5 volt supply, and require a 3.3 volt supply instead." mission lines. Pay attention to each signal path, including the complete current loop from the positive supply connection, through the IC and interconnects, through the ground distribution, through the decoupling capacitors, back to the positive supply terminal.

Modern designs require PC boards with at least four

layers (and usually more). At least one inner layer must be dedicated as a ground plane and kept as undisturbed as possible. Any major hole in the ground plane forces the ground current to take detours — increasing the inductance and causing ground voltage spikes. In simple designs, 5 volt and 3.3 volt supplies can share a common power plane. To demonstrate the importance of good Vcc decoupling, assume that you have a 40 MHz clock and the device consumes 1 amp. Most of the current flow will be in the first 5 ns of the 25 ns clock period. This 5 amp peak current must be supplied by the sum of the decoupling capacitors. In this example, 5 amps times 5 ns causes a 250 mV drop on a 0.1 μ F decoupling capacitance, creating a possible problem. Here are some recommendations:

- Decoupling capacitors must have very low inductance and series resistance. The total capacitance value is less important, as long as it exceeds 0.1 μF. The best way to achieve low impedance at gigahertz speeds is to use multiple capacitors in parallel. Use 0.01 to 0.1 μF ceramic capacitors mounted very close to each Vcc pin and directly connected to the ground plane.
- Signal lines must be kept short. A narrow, 0.25 inch (6 mm) trace represents an inductance of 20 nH. A current transient of 100 mA/ns causes a voltage drop of 2 volts across this inductance, which is unacceptable.
- Some PC boards can use an extremely thin dielectric layer between the ground and Vcc planes to achieve excellent distributed decoupling capacitance.
- Ground bounce, cross-talk, and other external noise must be minimized. Xilinx provides a slew-rate-limited output option, individually programmable for each pin, so you can slow the transition rate on all non-critical outputs.

Interfacing Between Devices with Different Supply Voltages

Because all supply voltages share a common ground, there are no problems interfacing at Low logic levels. All potential problems occur when interfacing at High logic levels. For example:

3.3 volt logic High driving a 5 volt input — There is no problem when the 5 volt device has a TTL-level input threshold of approximately 1.3 volt. This is true for most CMOS devices. The driving 3.3 volt output High level is close to Vcc, and thus well above the required Vih of 2 volts.

5 volt logic High driving 3.3 volt input — In most cases, the High 5 volt output voltage will force excessive current into the 3.3 volt input. The pins on older Xilinx 3.3 volt FPGAs, and on most other manufacturers' 3.3 volt devices have a clamp diode between each pin and Vcc to protect the circuit against electrostatic discharge (ESD). This diode starts conducting when the pin is driven more than 0.7 volts positive with respect to its Vcc. This diode presents a problem in mixed-voltage systems, because it clamps whenever a 5 volt logic High is connected to a 3.3 volt input.

Xilinx has overcome this problem by eliminating the clamp diode between the pin and Vcc in the circuit structure of the Xilinx XC4000XL family. The pin can thus be driven as high as 5.5 volts without regard to the actual supply voltage on the receiving input. Therefore, these devices are unconditionally 5 volt tolerant, and you can ignore all interface precautions. Excellent ESD protection (several thousand volts) is

achieved by means of a patented diodetransistor structure that does not connect to Vcc. Directly connecting an active High 5 volt CMOS output to an active High 3.3 volt output creates contention and must be avoided.

When 3.3 volt inputs are being driven from a TTL-level output using an n-channel pull-up transistor — available as an option on all XC4000 and XC4000E and XC4000EX devices — the input current is naturally limited to less than a few mA, even when the 5 volt supply is at 5.25 volts while the 3.3 volt supply is at 3.0 volts; a very unlikely combination. At nominal supply voltage levels, the current is approximately 1 mA.

When non-5-volt-tolerant inputs are driven from a CMOS-level, complementary, rail-torail output, you must somehow limit the current. A 1 Kohm resistor limits the current to less than 2 mA, but causes a slight speed penalty (1 Kohm x 35 pF = 35 ns)

3.3 volt logic High driving a "CMOS threshold" 5 volt input — This interface

situation should be avoided. An active High 3.3 volt output cannot be pulled higher, because the internal pull-up transistor represents an impedance of approximately 50 ohms for any current in either direction. A pull-up resistor to 5 volts is therefore useless. If the internal pull-up transistor is disabled (open drain output) the pin can be pulled higher, until the ESD clamp becomes conductive. The pins on the Xilinx XC4000X famil can thus be configured as open drain, and an external resistor can pull them all the way to 5 volts (with a resulting RC speed penalty).

Sequencing Supply Voltages

Any system with more than one supply voltage faces the possibility of these voltages being applied in an undefined or uncontrolled sequence. For most ICs, this means you must calculate the maximum current flowing into the pins of the non-powered device. The current value depends on the powered-up device's output structure (complementary outputs drive the highest current) and on the voltage compliance (impedance) of the non-powered Vcc distribution net. If it is held rigidly to ground, the undesired current will be high. If the nonpowered Vcc can easily be pulled High, the current will be far less. Most inputs will tolerate 50 mA for a few seconds, and 10 mA for unlimited time. For significantly higher currents there might be the short-term risk of latch-up, and the long-term risk of metal migration if the high current persists for thousands of hours.

The Xilinx XC4000XL family is 5 volt tolerant, even when their Vcc is zero. Therefore, these devices have no problem with arbitrary power sequencing or even with "hot plug-in". When 5 volt power is applied first, there is no current into the Xilinx FPGAs. When 3.3 volt power is applied first, the device outputs can be kept in a 3-state condition by connecting the 5 volt Vcc line as an active-Low Global 3-state input to the

••At 0.25 microns, the supply voltage must be lowered to 2.5 volts. At 0.18 microns, a 1.8 volt supply will be likely."

Continued on the

following page

HardWire: Ensuring a Successful FPGA to

••Here are some of the critical issues for ensuring a successful FPGA conversion.» HardWire[™] conversion of FPGAs into ASICs gives system designers the power of programmability, greatly accelerating the design phase, while adding the cost-effectiveness of a true ASIC solution, especially for density ranges of 25,000 gates and above.

Since 1991, Xilinx's HardWire service has completed more than 700 conversions of flexible FPGA designs to low-cost ASICs ready for volume production.

Here are some of the critical issues for ensuring a successful FPGA conversion.

1. Use Synchronous Design Methods

We recommend that you design your FPGA with the production solution (ASIC) in mind. FPGAs can sometimes "hide" design flaws. These flaws can manifest themselves in the ASIC version when the design speeds up. The most common issues are with asynchronous paths and simultaneous switching output noise.

To ensure consistent timing, your design must be synchronous. Because FPGAs are RAM-based devices, an ASIC conversion will remove all the programmable elements and replace them with metal vias. In almost every case, the device timing speeds up substantially. If a design is asynchronous, the timing relationships may not behave the same in the ASIC as they did in the FPGA, perhaps causing race conditions.

In asynchronous FPGA designs, the small glitches generated by unstable outputs can be filtered by the pass transistors used to control the routing of long nets. However, in the ASIC version, those pass transistors are replaced by metal vias, possibly allowing an unfiltered glitch to propagate throughout the system.

If your design must be asynchronous, it is imperative that you carefully plan the timing relationships on the device itself, and between chips at the system level. Building in generous timing margins can help.

Lower Supply Voltages Continued from the previous page

3.3 volt devices, again eliminating any undesirable current.

Converting to Lower Voltage Designs

Xilinx 3.3 volt FPGAs are fully compatible with their 5 volt equivalents. You can start a design using 5 volt supplies, later plugging in the 3.3 volt devices with no concern for functionality, speed, pin locations, or logic levels.

The next transition — to 2.5 volts — will arrive within a year. This change will be less of a challenge because Xilinx will, at first, use 2.5 volts only for the internal logic, while running the I/O with 3.3 volt power. You must provide the additional Vcc, but you need not be concerned about signal level incompatibilities. However, we will increase the number of Vcc and ground pins.

To ease these transitions, the IC industry plans to accommodate direct interfacing between three successive generations: first between 5, 3.3, and 2.5 volt devices, and then in 1999, 3.3, 2.5, and 1.8 volt devices.

Conclusion

New improvements in IC technology enable a wealth of new, smaller systems with higher performance and lower power requirements. To take advantage of these improvements, designers must provide new supply voltages — 3.3 volts now and 2.5 volts in the near future.

In many cases, these new, lower-voltage devices will be used side-by-side with older, 5 volt parts. These mixed-voltage environments could create a variety of design challenges, especially when using FPGAs that are not specifically designed to operate in mixed-voltage environments. The new 3.3 volt Xilinx FPGA families are immune to all power sequencing problems and can be interfaced directly with 5 volt devices, making them an ideal solution for many mixed-voltage systems. ◆ *An expanded version of this article appears in the August 18, 1997 edition of* Electronic Design.

ASIC Conversion

2. Thoroughly Simulate Your FPGA Design

Xilinx does not require functional or timing simulations, prior to FPGA/ASIC conversion. However, the FPGA design destined for an ASIC should be exhaustively simulated.

Unit delay simulation can be thought of as "best-case" simulation, since the logic will usually perform under the actual unit delay. This can set the "timing minimum" pole. The maximum simulation sets the "timing maximum" pole. If there are no functional differences between the maximum and minimum, then the design is likely to be free of timing dependencies.

3. Plan Your RAM Usage

RAM on an FPGA device is very efficient. However, RAM on an ASIC can be inefficient if not well planned,; and large RAM blocks may require extensive silicon area. Generally, if a design's RAM requirements exceed 25-35% of the total CLBs used, the die size will increase substantially, perhaps requiring triplelevel metal for additional routing. One singleport RAM bit equals roughly four to six gate array gates; one dual port RAM bit can require seven to ten gates. If large amounts of RAM are required, it may be appropriate to leave part off-chip, or in extreme cases, consider a standard cell implementation.

4. Pay Attention to FPGA Configuration Modes

FPGA configuration modes are key. In the FPGA, data is stored in the PROM. The PROM is downloaded to the FPGA via one of many configuration modes, allowing the system to "wake up" in an orderly manner. During conversion, the normal configuration mode is "instant on." If the ASIC device is still dependent on other events prior to "waking up," you should implement the configuration mode into the ASIC. Otherwise, system-level timing errors may result or ASICs might appear nonfunctional. Prior to ASIC conversion, the configuration scheme must be well documented so that configuration logic can be included in the ASIC version.

5. Select Your Best Vendor

Finally, select a vendor who can handle the features, density, and volume production of the resulting ASIC. Many ASIC vendors offer a "conversion service" that is nothing more than netlist translation into a third-party library. After the netlist translation, customers must re-simulate and re-validate both timing and functionality.

Xilinx supports full turnkey conversion, using Xilinx-specific tools and technology. The Xilinx-converted ASIC has Xilinx-specific features built into the die to eliminate the mismatch between the FPGA features and the ASIC implementation.

HardWire is the only FPGA conversion method that supports Xilinx devices with state-of-the-art technology and guarantees success. Xilinx design engineers work closely

with you to ensure that all considerations have been reviewed. The FPGA is converted to a Xilinx Hard-Wire device using the same fabrication facilities used to make the FPGA, with greater than 90% first-attempt success rates.

When considering an FPGA to ASIC conversion project, it is wise to

review all the design considerations, perform the critical system level testing, and most of all choose a vendor who can support your specific requirements.

•• When considering an FPGA to ASIC conversion project, it is wise to review all the design considerations, perform the critical system level testing, and most of all choose a vendor who can support your specific requirements."

COMPONENT AVAILABILITY CHART																																						
PINS	TYPE	CODE	XC3020A	XC3030A	XC3042A	XC3064A	XC3090A	XC3020L	XC3030L	XC3042L	XC3064L	XC3090L	XC3142L	XC3190L	XC3120A	XC3130A	XC3142A	XC3164A	XC3190A	XC3195A	XC4003E	XC4005E	XC4006E	XC4008E	XC4010E	XC4013E	XC4020E	XC4025E	XC4028EX	XC4036EX	XC4005XL	XC4010XL	XC4013XL	XC4020XL	XC4028XL	XC4036XL	XC4044XL	XC4052XL
	PLASTIC LCC	PC44																																				
	PLASTIC QFP	PQ44																																				
44	PLASTIC VQFP	VQ44																																				
	CERAMIC LCC	WC44																																				
64	PLASTIC VQFP	VQ64																																				
68	PLASTIC LCC	PC68																																				
00	CERAMIC LCC	WC68																																				
	PLASTIC LCC	PC84	۲	۲	•	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲		۲	۲	۲	۲	۲	۲	۲						۲	۲						
84	CERAMIC LCC	WC84																																				
	CERAMIC PGA	PG84	۲	•													•																					
	PLASTIC PQFP	PQ100	٠		٠																										۲	۲						
100	PLASTIC TQFP	TQ100																																				
100	PLASTIC VQFP	VQ100			۲				۲	۲			۲			۲					۲										*							
	TOP BRZ. CQFP	CB100	۲		۲											۲	۲																					
120	CERAMIC PGA	PG120																																				
132	PLASTIC PGA	PP132			۲												۲																					
152	CERAMIC PGA	PG132			۲	♦											♦																					
	PLASTIC TQFP	TQ144			۲	۲	۲				۲		۲	۲			۲		*				۲								*	*						
144	CERAMIC PGA	PG144																																				
	HI-PERF TQFP	HT144																															*	\$				
156	CERAMIC PGA	PG156																					۲															
160	HI-PERF QFP	HQ160																																	*	*	*	
100	PLASTIC PQFP	PQ160				۲	۲													۲		۲	۲	۲	۲	۲					۲	۲	٠	۲				
164	TOP BRZ. CQFP	CB164					۲															۲																
175	PLASTIC PGA	PP175					۲												۲	۲																		
	CERAMIC PGA	PG175					۲												۲	۲																		
176	PLASTIC TQFP	TQ176					۲					۲		۲					۲													*						
	HI-PERF TQFP	HT176																															*	*				
191	CERAMIC PGA	PG191																						۲	۲													
196	TOP BRZ. CQFP	CB196																							۲								<u> </u>					
208	PLASTIC PQFP	PQ208					•												٠	٠		٠		٠	<u> </u>	•					٠	٠	•	•				
	HI-PERF QFP	HQ208						-		-															•	•			•				-			٠	*	
223	CERAMIC PGA	PG223						-												۲							٠	•	-									
225	PLASTIC BGA	BG225																																				
228	TOP BRZ. CQFP	CB228																										•										
240	PLASTIC PQFP	PQ240						-		-																				•				•				
050	HI-PERF QFP	HQ240						-		-					-		-											•	•							٠	•	•
256	PLASTIC BGA	BG256						-	-	-		-			-		-																•	•	*			
299	CERAMIC PGA	PG299						-		-																		♦	<u> </u>				\vdash					
304	HI-PERF. QFP	HQ304						-		-					-		-												L ·				\vdash				*	**
352	PLASTIC BGA	BG352															-												•							•		
411	CERAMIC PGA	PG411 BG432						-		-					-																						•	
432 475	PLASTIC BGA CERAMIC PGA	PG432																												•							٠	
475 559	CERAMIC PGA	PG475 PG559						-									-																				H	
560	PLASTIC BGA	PG559 BG560								-							-																				H	
500	FLASHC DGA	00000								I					<u> </u>		I																					•

AUGUST 1997

							U	u	U				U						
PINS	TYPE	CODE	XC4062XL	XC4085XL	XC4005L	XC4010L	XC4013L	XC5202	XC5204	XC5206	XC5210	XC5215	XC6216	XC6264	XC9536	XC9572	XC95108	XC95216	XC95288
	PLASTIC LCC	PC44													۲	*			
	PLASTIC QFP	PQ44													•				
44	PLASTIC VQFP	VQ44																	
	CERAMIC LCC	WC44																	
64	PLASTIC VQFP	VQ64																	
	PLASTIC LCC	PC68																	
68	CERAMIC LCC	WC68																	
	PLASTIC LCC	PC84			۲	۲		۲	۲	٠	۲					۲	۲		
84	CERAMIC LCC	WC84																	
	CERAMIC PGA	PG84																	
	PLASTIC PQFP	PQ100						٠	٠	٠						٠	٠		
100	PLASTIC TQFP	TQ100														۲	۲		
100	PLASTIC VQFP	VQ100						٠	٠	٠									
	TOP BRZ. CQFP	CB100																	
120	CERAMIC PGA	PG120																	
100	PLASTIC PGA	PP132																	
132	CERAMIC PGA	PG132																	
	PLASTIC TQFP	TQ144						۲	۲	۲	۲		۲						
144	CERAMIC PGA	PG144																	
	HI-PERF TQFP	HT144																	
156	CERAMIC PGA	PG156						۲	۲										
	HI-PERF QFP	HQ160																	
160	PLASTIC PQFP	PQ160							۲	۲	۲	۲					۲	۲	
164	TOP BRZ. CQFP	CB164																	
177	PLASTIC PGA	PP175																	
175	CERAMIC PGA	PG175																	
170	PLASTIC TQFP	TQ176				۲				۲	۲								
176	HI-PERF TQFP	HT176																	
191	CERAMIC PGA	PG191							۲										
196	TOP BRZ. CQFP	CB196																	
000	PLASTIC PQFP	PQ208			۲	۲	۲			۲	۲								
208	HI-PERF QFP	HQ208										۲						۲	۲
223	CERAMIC PGA	PG223									۲								
225	PLASTIC BGA	BG225					۲				۲	۲							
228	TOP BRZ. CQFP	CB228																	
940	PLASTIC PQFP	PQ240					۲												
240	HI-PERF QFP	HQ240	٠									۲	۲	۲					
256	PLASTIC BGA	BG256																	
299	CERAMIC PGA	PG299																	
304	HI-PERF. QFP	HQ304	*									۲	٠						
352	PLASTIC BGA	BG352										٠		۲				۲	٠
411	CERAMIC PGA	PG411												۲					
432	PLASTIC BGA	BG432	٠																
475	CERAMIC PGA	PG475	٠																
		PG559	٠	۲															
559	CERAMIC PGA	1 0 0 0 0																	

- ♦ = Product currently shipping or planned
- ♦ = New since last issue of *XCell*

26

XILINX RELEASED SOFTWARE STATUS - AUGUST 1997															
	Product	Prod	UCT		Prod				XILINX PART Reference				LAST UPDT	Previous Version	Notes/
KEY	CATEGORY	DESCR	IPTION		FUNCT	ION			NUMBER	6.2	4.1.x	9.01	Сомр	RELEASE	Features
U	COREXEPLD	Suppo	ort		Corel	mpleme	ntation		DS-550-xxx	6.0.1	5.2.1	5.2.1	7/96	5.2/6.0	PC update by request only
U*	XABEL-CPLD		0 Suppo		Entry/	Simulati	on/Core		DS-571-PC1	6.1.2			11/96	6.1.1	New version w/Win 95 to 3.11, update by request
U* * I I	XACT-CPLD	XC950	0 Suppo	ort	Core -	+ Interfa	ce		DS-560-xxx	6.0.1	6.0.1	6.0.1	7/96	6.0	
I	Mentor	8.4=A	.4		Interfa	ice and	Libraries		DS-344-xxx		5.2.1	5.2.1	7/96	5.20	
Ι	Synopsys				Interfa	ice and	Libraries		DS-401-xxx		5.2.1	5.2.1	7/96	5.20	DA1 platform remains at v5.2
Ι	Viewlogic				Interfa	ice and	Libraries		DS-391-xxx	6.0.1	5.2.1	5.2.1	7/96	6.0	
5	XABEL				Entry,S	Simulatio	n,Lib, Opti	mizer	DS-371-xxx	5.2.1	5.2.1	5.2.1	7/96	5.2/6.0	Now available on HP7
Ι	XBLOX				Modu	le Gener	ator & Op	timizer	DS-380-xxx	5.2.1	5.2.1	5.2.1	7/96	5.2/6.0	
E, I	Verilog	2K,3K	,4K,4KE	,5K Lib.	Mode	ls & XNI	Translato	r	ES-VERILOG-xxx		1.00	1.00	na	na	Sun and HP
I 	Alliance Base PC	4KE/L	/XL/XC	9500	FPGA	/CPLD s	upport to	8K gates	DS-ALI-BAS-PC	1.3			na	1.2	Win 95 & NT 4.0
	Alliance Std. PC	4KE/L	/EX/XL/	XC9500	FPGA	/CPLD s	support ur	nlim. gates	DS-ALI-STD-PC	1.3			na	1.2	Win 95 & NT 4.0
	Alliance Base Workstation	4KE/L	/XL/XC9	9500	FPGA	/CPLD s	upport to	8K gates	DS-ALI-BAS-WS		1.3	1.3	na	1.2	Solaris 5.4, 5.5; OS 2.4, 2.5; HP-UX, HP715
	Alliance Std. Workstation	4KE/L	/EX/XL/	XC9500	FPGA	/CPLD s	upport ur	lim. gates	DS-ALI-STD-WS		1.3	1.3	na	1.2	Solaris 5.4, 5.5; OS 2.4, 2.5; HP-UX, HP715
•	Turns Engine 10-pk Dev. Sys. Opt.			XC9500			runs on m		DO-ALI-TE1-WS		1.3	1.3	na	1.2	Solaris 5.4, 5.5; OS 2.4, 2.5; HP-UX, HP715
	Turns Engine 50-pk Dev. Sys. Opt.						runs on m		DO-ALI-TE5-WS		1.3	1.3	na	1.2	Solaris 5.4, 5.5; OS 2.4, 2.5; HP-UX, HP715
	Workview Office Dev. Sys. Opt.						chem., sim		DO-ALI-WVO-PC	1.3			na	1.2	Win 95 & NT 3.5.1, 4.0
	Alliance Evaluation Kit								DS-ALI-EVAL	1.3	1.3	1.3	na	1.2	Solaris, OS, HP-UX, HP715, Win95, NT
		2K	3K	sшо 4K/Е	CON SUPP 5K	ort 7K	9K								
Ι	Cadence	Х	Х		Х			DS-CDN	-STD-xxx		5.2.1	5.2.1	7/96	5.20	
Ι	Mentor	Х	Х		Х			DS-MN8	3-STD-xxx		5.2.1	5.2.1	7/96	5.20	No AP1 update
I	Mentor	Х	Х		Х			DS-MN8	B-ADV-xxx		7.00	7.00	na	na	•
I I I U, I	Synopsys		Х		Х			DS-SY-S	ſD-xxx		5.2.1	5.2.1	7/96	5.20	Includes DS-401 v5.2
Ι	Viewlogic	Х	Х		Х			DS-VL-S	ГD-xxx	6.0.1	5.2.1	5.2.1	7/96	5.26.0	DA1 platform remains at v6.0
Ι	Viewlogic/S	Х	Х		Х			DS-VLS-S	STD-PC1	6.0.1			7/96	6.0	Currently updating in-warranty cust. w/WVO
U, I	3rd Party Alliance	Х	Х		Х			DS-3PA-	BAS-xxx	6.0.1			7/96	na	Customer w/v6.0 will receive v6.0.1 update
Ι	3rd Party Alliance	Х	Х		Х			DS-3PA-	STD-xxx	6.0.1	5.2.1	5.2.1	7/96	5.2/6.0	Includes 502/550/380
	Foundation Series			Х		Х	Х	DS-FND		1.3			8/97	6.0.2	Includes support for XC4000E/X & XC9500
	Foundation Series			Х		Х	Х	DS-FND	-BSV-PC	1.3			8/97	6.0.2	Includes support for XC4000E/X & XC9500
•	Foundation Series			X		X	X	DS-FND-		1.3			8/97	6.0.2	Includes support for XC4000E/X & XC9500
	Foundation Series			X		X	X	DS-FND-		1.3			8/97	6.0.2	Includes support for XC4000E/X & XC9500
	Foundation Series			X		X	X	DL-FND-		1.3			8/97	6.0.2	XC4000 not supported. Bill only additional l
	LogiCore-PCI Slave							LC-DI-PC		1.10	1.10	1.10	na	na	Requires signed license agreement
	LogiCore-PCIMaster							LC-DI-PC		1.10	1.10	1.10	na	na	Requires signed license agreement
	Evaluation	X	x		х			DS-EVAL		2.00	2.00	2.00	4/96	01/04	PC. Sun. HP kits with v5.2.1 and v6.0.1

KEY: N=New Product U= Update by request only I=Libraries, interfaces and XBLOX are included with versions 1.2 & 1.3 * = Check FTP site for most current revision of EZTAG programming software.

P	ROGRAMME	R SUP	PORT H	For XII	LINX X(C1700 Serial P	roms - Au	GUST	1997		
MANUFACTURER	MODEL	XC1718D XC1736D XC1765D	XC1718L XC1765L	XC17128D XC17256D	XC17128L XC17256L	MANUFACTURER	MODEL	XC1718D XC1736D XC1765D	XC1718L XC1765L	XC17128D XC17256D	XC17128L XC17256L
ADVANTECH	PC-UPROG LABTOOL-48		NOT QUA	LIFIED		LEAP ELECTRONICS	LEAPER-10 LP U4	V2.0 V2.0		V2.0 V2.0	
ADVIN	PILOT-U24 PILOT-U28 PILOT-U32 PILOT-U40 PILOT-U84 PILOT-142 PILOT-143 PILOT-144 PILOT-144 PILOT-145	10.84B 10.84B 10.84B 10.84B 10.84B 10.84B 10.84B 10.84B 10.84B		10.84B 10.84B 10.84B 10.84B 10.84B 10.84B 10.84B 10.84B 10.84B		LINK COMPUTER GRAPHICS LOGICAL DEVICES	CLK-3100 ALLPRO-40 ALLPRO-88 ALLPRO-88XR ALLPRO-96 CHIPMASTER 2000 CHIPMASTER 6000 XPRO-1	V5.61 V2.7 6.5.10 V2.4U V1.31A SPROM.310	6.5.10	V5.61 V2.7 V2.7 6.5.10 V2.4U V1.31A SPROM.310	6.5.10
AMERICAN RELIANCE, iNC.	SPECTRUM-48	10.010		10.010		MICROPROSS	ROM 5000 B Rom 3000 U	V1.94 V3.84		V1.94 V3.84	
B&C MICROSYSTEMS INC. BP MICROSYSTEMS	PROTEUS-UP40 CP-1128 EP-1140	3.7Q		3.7Q		MQP ELECTRONICS	MODEL 200 SYSTEM 2000 PIN-MASTER 48	6.46 2.25 V1.25	6.46 2.25 V1.25	6.46 2.25 V1.25	V1.25
	BP-1200 BP-1400	V3.15 V3.15	V3.15 V3.15	V3.15 V3.15	V3.15 V3.15	NEEDHAM'S ELECTRONICS	EMP20	V3.10		V3.10	
	BP-2100 BP-2200	V3.15 V3.15	V3.15 V3.15	V3.15 V3.15	V3.15 V3.15	OMC	Typro C Typro S				
BYTEK	135H-FT/U MTK-1000 MTK-2000 MTK-4000 FIREMAN-8M	8E 8E 8E 8E 8E	8E 8E 8E 8E 8E	8E 8E 8E 8E 8E	8E 8E 8E 8E 8E	Phyton RED SQUARE	Multiprog IQ-180 IQ-280 Uniwriter 40 Chipmaster 5000		NOT (QUALIFIED	
DATAMAN DATA I/O	FIREMAN-8X CHIPBURNER-40 DATAMAN-48 UniSite	8E 1.0a V1.30 V5.4	8E 1.0a V5.4	8E 1.0a V1.30 V5.4	8E 1.0a BBS	SMS	Expert Optima Multisyte Sprint Plus48		NOT Q	QUALIFIED	
DATATO	2900 3900	V5.4 V5.4 V5.4	V5.4 V5.4 V5.4	V5.4 V5.4 V5.4	BBS BBS	STAG	Eclipse Quasar	6.5.10	6.5.10	6.5.10	6.5.10
	AutoSite ChipLab 2700	V5.4 V5.4 V5.4	V5.4 V5.4 V5.4	V5.4 V5.4 V5.4	BBS BBS BBS	SUNRISE	T-10 UDP T-10 ULC		NOT (QUALIFIED	
DEUS EX MACHINA	XPGM	V1.60	V1.60	V1.60	V1.60	SUNSHINE	POWER-100 EXPRO-60/80	V8.40 V8.40		V8.40 V8.40	
ELECTRONIC ENGINEERING TOOLS ELAN DIGITAL SYSTEMS	ALLMAX/ALLMAX+ MEGAMAX 3000-145	V2.4U V1.1E	V2.4U V1.1E	V2.4U V1.1E		SYSTEM GENERAL	TURPRO-1 Turpro-1 F/X Turpro-1 T/X	V2.26H V2.26H	V2.26H V2.26H	V2.26H V2.26H	V2.26H V2.26H
	5000-145 6000 APS		NOT Q	UALIFIED			APRO Multi-Apro	V1.24 V1.16	V1.16	V1.16	V1.16
EQUINOX HI-LO SYSTEMS RESEARCH	All-03A All-07 All 11	V3.19 V3.19	V3.19 V3.19	V3.19 V3.19	V3.19 V3.19	TRIBAL MICROSYSTEMS	TUP-300 TUP-400 FLEX-700	V3.19 V3.19 V3.19	V3.19 V3.19 V3.19	V3.19 V3.19 V3.19	V3.19 V3.19 V3.19
ICE TECHNOLOGY LTD	All-11 Micromaster 1000/E Speedmaster 1000/E	V3.17 V3.17	V3.17 V3.17	V3.17 V3.17	V3.17 V3.17	XELTEK	SuperPRO SuperPRO II SuperPRO II/P	2.4B 2.4B		2.4B 2.4B	
	Micromaster LV LV40 Portable	V3.17 V3.17	V3.17 V3.17	V3.17 V3.17	V3.17 V3.17	XILINX	HW-112 HW-130	5.20 V2.03	V2.03	BBS/FTP V2.03	V2.03
	Speedmaster LV	V3.17	V3.17	V3.17	V3.17	CH	IANGES SINCE LAST IS	SSUE PRINTEI	D IN COLOR		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PROGRAMM	aer Support For X	(C9500 (CPLDs -	– Augus	т 1997	
Ide Color Lab Sept 97 Sept 97 ADVIN SYSTEMS HICT F128 HICT F12	MANUFACTURER	MODEL	9536/F	9572/F	95108/F	95216/F	95288/F
ADVIN SYSTEMS RECTAIN A PROPERTY OF A PROPEC	ADVANTECH		0.07	G 0.7			
PUOL 128 PLOC	ADVIN SYSTEMS		Sept-97	Sept-97			
PICOT 1492 PICOT 1492 PICOT 1493 PICOT	AD VIN STSTEWS	PILOT-U28					
PICOT 1144 PICOT							
PIC 01 143 PIC 01		PILOT-U84					
PERCAN_PERCAN_PERCANCE_INC_ PERCENT_LIAS Image: Constraint of the second secon							
AMERICAN RELARCE BESCHIELMARE BP MURRONSTEMSFrideware Frideware BP 1200 BP 1200<							
BP MICROSYSTEMS P1 128 PF 1400 PF 1400 PF 1400 PF 1400 PF 1400 V3 21 PF 155 V3 21 PF 155 PF 155 PF 155 V3 21 PF 155 PF 155 P	AMERICAN RELIANCE, INC.						
Prite Prior <td>B&C MICROSYSTEMS, INC.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	B&C MICROSYSTEMS, INC.						
BP 200 BP 200 BP 200 BP 200 BP 200 BP 200 BP 200 Construction <b< td=""><td>BP MICROSYSTEMS</td><td>CP-1128 FP-1140</td><td></td><td></td><td></td><td></td><td></td></b<>	BP MICROSYSTEMS	CP-1128 FP-1140					
BRS 100 V3.21 BRS V3.21 V3.21 BYTEK NTR 1000 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		BP-1200					
BES200V3.21BBSV3.21PFTEK1254 FT/10 MTR 2000125512551255DATADATAMAN 4812551255DATA200012501255DATA200012501255DATA200012501255DATA200012551255DRUS EVAACHNA ENGINEERING20001431255BELCTRONIC ENGINEERING20001431255BELCTRONIC ENGINEERING20001431255BELCTRONIC ENGINEERING20001431255BELCTRONIC CO, LTDMICCAMAX12551255ALLINAX VALLAMAX- MICCAMAX200012551255REQUINOX125512551255FEAD ELECTRONIC CO, LTD12471310071255ALLIPRO-40 ALLIPRO-80125512551255DATA2000125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA1265125512551255DATA12651255<			V3.21 V3.21	BBS	V3.21 V3.21		
MIX 1000 MIX 2000 MIX 2000 MIX 2000 MIX 20000 200000 200000 200000 200000 200000 2000000 200000 200000 200000000 2000000000000000000000000000000000000	D. MILL	BP-2200	V3.21				
MIK 2000 MIK 2000 MIK 2000 AUA 1/OMIK 2000 MIK 2000 AUA 1/OMIK 2000 MIK 2000 AUA 1/OMIK 2000 BBS <b< td=""><td>BYTEK</td><td></td><td></td><td></td><td></td><td></td><td></td></b<>	BYTEK						
DATAMAN DATADATAMAN-48DATA2000 2000 annohise Chiphake Chiphake Chiphake BBSBBSBBSDEUS EX MACHINA ENGINEERING Chiphake ELATRONIC ENGINEERING TOOLSAPACM ALMAVALImage: Chiphake BBSBBSDEUS EX MACHINA ENGINEERING Chiphake ELATRONIC ENGINEERING TOOLSAPACM ALMAVALImage: Chiphake BBSImage: Chiphake BBSELATRONIC ENGINEERING TOOLSAPACM ALMAVALImage: Chiphake ADDOL 145Image: Chiphake BBSImage: Chiphake BBSEQUINOX HLO SYSTEMS RESEARCH ALLO TO CHIP HLO SYSTEMS RESEARCH ALLO TO CHIP ALLI IN CHIPANESTERINGImage: Chiphake ALLI IN ALLI IN AL		MTK-2000					
DATA I/O2700 Silve Computed BBSBBS BBSBBS BBSBBS BBSDEUS EX MACHINA EXCINEENCEVPCMBBSBBSBBSDEUS EX MACHINA EXCINEENCEMLMAXAILMAX+ MECMMAXImage: Second Se	DATAMAN						
BBS CURPENDER CURPENDER CURPENDER DRUS EX MACHINA FAGINPERINGPACMBBS BBSBBS BBSDRUS EX MACHINA FAGINPERING EXCITODIN ENGINPERING TOOLSALLMAX ALLMAX- MEGAMAX	DATA I/O	2700					
Chiplab ULS EX MACHINA ENGINEERINGCHOM ULS EX MACHINA ENGINEERING TOOLSCHOM MECAMAX.BBSBBSBBSBBSBBSDRUS EX MACHINA ENGINEERING TOOLSMECAMAX.NOT QUALIFIEDELAN3000-145S000-145NOT QUALIFIEDEQUINOXB000 AFSV3.02V3.02V3.02HLO SYSTEMS RESEARCHAliO7 AliO7V3.02V3.02V3.02ICE TECHNOLOGY LTDMicronaster 1000/E Speedmaster 100Sept 97Sept 97Speedmaster 100Speedmaster 100Sept 97Oct 97Speedmaster 100Speedmaster 100Sept 97V7.3.27LOG CAL DEVICESALIPRO-88 ALIPRO-88 ALIPRO-88 MICRONSSept 97Oct 97MICRPROSSROM 5000 BSept 97Oct 97MICRPROSSROM 5000 BSept 97Oct 97MICRPROSSROM 5000 BSept 97V7.3.27MICRPROSSROM 5000 BSept 97Sept 97MICRPROSSROM 5000 BSept 97V7.3.27MICRPROSSROM 5000 BSept 97V7.3.27MICRPROSSROM 5000 BSept 97V7.3.27SMSCUINTABBSBBSBBSSMSCUINTASept 97V7.1.30SUNSIDET-10 UDPSept 97Sept 97SUNSIDET-10 UDPSept 97Sept 97SUNSIDET-10 UDPSept 97Sept 97SUNSIDET-10 UDPSept 97Sept 97SUNSIDET-10 UDPSept 97Sept 97SUNSIDE<			BBS	BBS	BBS		
DRUE RE MACHINA ENCLIFERING YECM Image: Constraint of the section of		Chiplab					
ELECTRONIC ENGINEERING TOOLS ALLMAX/ALLMAX+ MERAMAX Source	DELIS EX MACHINA ENGINEERING		RR2	RR2	BR2		
ELAN3000-145 0000 APSNOT QUALIFIEDEQUINOX H410 SINTEMS RESEARCH0000 APS 143 1000 HUD SINTEMS RESEARCHAH07 AH07V3.02V3.02V3.02ICE TECHNOLOGY LTDMicromaster 1000/E 	ELECTRONIC ENGINEERING TOOLS	ALLMAX/ALLMAX+					
5000 145 OT QUALIFED EQUINOX All 03A V3.02 V3.02 V3.02 V3.02 HILO SYSTEMS RESEARCH All 03A V3.02 V3.02 V3.02 V3.02 LCE TECHNOLOGY LTD Micromaster 1000/E Speedmaster 1000/E ALLPRO.48 Sept 97 Oct 97 Sept 97 LOGICAL DEVICES ALLPRO.48 Sept 97 Oct 97 V7.3.27 Sept 97 MICRPROSS ROM 5000 B V7.3.27 Oct 97 V7.3.27 Sept 97 MINATO MIB81	ET A NI						
ROUINOXImage: section of the se	ELAIN	5000-145			NOT QUALIFIEI		
HILO SYSTEMS RESEARCHAlio3A ALI 11V3.02V3.02V3.02V3.02ICE TECHNOLOGY LTDSpecimaster 1000/E Specimaster 1000/E Specimaster 1000/E Specimaster 1000/E Specimaster 1000/E Specimaster 2000 Chipmaster 2000 	FOLUNOV	6000 APS					
Alt 07V3.02V3.02V3.02Alt 1411Micromaster 1000/E Specimaster 1000/E Noportmaster 100/E Noportmaster 100/E Noportmaster 100/EImage: Constraint 2000/E Noportmaster 100/EImage: Constraint 2000/E Noportmaster 100/ELEAP ELECTRONIC CO., LTD.LEAPER 10 LEAP ELECTRONIC CO., LTD.Image: Constraint 2000/E LTP 04Image: Constraint 2000/E Noportmaster 2000/E Chipmaster 2000/E Chipmaster 2000/E Chipmaster 2000/E NTR 01Sept-97Oct-97Sept-97MICRPROSSROM 5000 B ROM 3000 UImage: Constraint 2000/E PImage: Constraint 2000/E PImage: Constraint 2000/E PImage: Constraint 2000/E PMICRPROSSROM 5000 B ROM 3000 UImage: Constraint 2000/E PImage: Constraint 2000/E PImage: Constraint 2000/E PMICRPROSSROM 5000 B ROM 3000 UImage: Constraint 2000/E PImage: Constraint 2000/E PImage: Constraint 2000/E PMICRPROSSROM 5000 B ROM 3000 UImage: Constraint 2000/E PImage: Constraint 2000/E PImage: Constraint 2000/E PMICRPROSSROM 5000 B ROM 3000 UImage: Constraint 2000/E PImage: Constraint 2000/EImage: Constraint 2000/EMICRPROSSROM 3000 UImage: Constraint 2000/E PImage: Constraint 2000/EImage: Constraint 2000/ESMEDHAMS ELECTRONICSPM20Image: Constraint 2000/EImage: Constraint 2000/EImage: Constraint 2000/ESMEDHAMS ELECTRONICSPM20Image: Constraint 2000/EImage: Constraint 2000/EImage: Constraint 2000/ESMEDHAMS ELECTRONICS <td>HI-LO SYSTEMS RESEARCH</td> <td>All-03A</td> <td></td> <td></td> <td></td> <td></td> <td></td>	HI-LO SYSTEMS RESEARCH	All-03A					
ICE TECHNOLOGY LTD Micromaster 1000/E Micromaster 1V L404 Portable See used master 1000/E Micromaster 1V L404 Portable See used master 1000/E Micromaster 1V LEAP ELECTRONIC CO., LTD. LPREPE 10 LPU4 Image 1000/E Micromaster 1V See used master 1000/E Micromaster 1V See used master 1000/E Micromaster 1V LOGICAL DEVICES ALLPRO-88X ALLPRO-968 ALLPRO-968 See used master 1000/E Micromaster 6000 See used master 100/E Micromaster 600			V3.02	V3.02	V3.02		
Micromaster LV IVA0 PortableMicromaster LV IVA0 PortableLEAP ELECTRONIC CO., LTD.ILAPRC +10 IP U4	ICE TECHNOLOGY LTD						
Speedmaster LV LEAP ELECTRONIC CO., LTD. LAPRE 10 Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan="2		Speedmaster 1000/E					
LEAP ELECTRONUC CO., LTD.LEAPER-10 PU4LAPER-10 PU4LAPER-10 PU4LINKCLK-3100		Speedmaster LV					
IP U4LINKCLK 3100LOGICAL DEVICESALLPRO-40 ALLPRO-88X ALLPRO-88X LALPRO-960 Chipmaster 2000Sept-97 Oct-97Sept-97 V7.3.27MICRPROSSROM 3000 LMICRPROSSROM 3000 LMICRPROSSROM 3000 LMINATOM181MQP ELECTRONICSMMPD1 200 MINATO R 48NEEDHAM'S ELECTRONICSEMP20OMCTypno 5PhytonMultiprogRed SquareIO 280 Univerter 40INSTEM SCOREFOR Sept-97SMSEVPERT OULSARSMSEVPERT OULSARSTAGCULSARSUNRISET-10 ULCSUNRISET-10 ULP TURPRO 1 TURPRO 1 TUP 300XELTEKSUPERPRO II SUPERPRO III 2.48							
LOGICAL DEVICESALIPRO-40 ALIPRO-88XR ALIPRO-88XR ALIPRO-88XR ALIPRO-960/SRVE ALIPRO-960/SRVE ALIPRO-960/SRVE ALIPRO-960/SRVE ALIPRO-960/SRVE MICRPROSSALIPRO-40 Sept-97Sept-97 Oct-97Sept-97 V7.3.27MICRPROSSROM 3000 0 ROM 3000 0 PRO-160000 PRO-160000 PRO-160000 PRO-160000Image: 100 mining the septembre PRO-160000 PRO-160000Image: 100 mining the septembre PRO-160000Image: 100 mining the septembre PRO-160000MICRPROSSROM 3000 0 ROM 3000 0 PRO-160000 PRO-160000 PRO-160000000Image: 100 mining the septembre PRO-16000000000000000000000000000000000000	LEAP ELECTRONIC CO., LID.						
ALLPRO-88 ALLPRO-96 SBXR ALLPRO-96 SBXR ALLPRO-96 CM DPRO-1Sept-97Sept-97WICAPRO-36 Chipmaster 2000 Chipmaster 2000 Chipmaster 2000 Chipmaster 2000 Chipmaster 2000 Chipmaster 2000 Chipmaster 2000 SYSTEM 2000 UV7.3.27Oct.97V7.3.27MICRPROSSROM 5000 B ROM 3000 UW1881	LINK						
ALLPRO-88XR Chipmaster 2000 Chipmaster 6000 XPRO-1V7.3.27Oct.97V7.3.27MICRPROSSROM 5000 B ROM 3000 U	LOGICAL DEVICES		Sept-97	Oct-97	Sent-97		
Chipmaster 2000 Chipmaster 6000 YPRO 1Chipmaster 6000 YPRO 1MICRPROSSROM 5000 B ROM 3000 UImage: Source of Sucreman Source of Source of Sucreman Source of Sucre		ALLPRO-88XR			•		
Chipmaster 6000 VPRO 1Chipmaster 6000 VPRO 2MICRPROSSROM 3000 UMINATOM1881MQP ELECTRONICSMODEL 200 SYSTEM 2000 PINASTER 48NEEDHAM'S ELECTRONICSEMP20OMCTypo C Typo SPhytonMultiprogRed SquareIQ-180 IQ-280 Uniwriter 40 Chipmaster 5000SMSEXPEVENT PINASTER 48SMSEXPEVENT PINASTER 48SMSEXPEVENT PINASTER 48SMSEXPEVENT PINASTER 48SMSEXPEVENT PINASTER 48SMSEXPEVENT PINASTER 48SMSEXPEVENT PINASTER 48STAGELIPSE PINASTESUNRISET-10 UDC T-10 ULCSUNSHINEPOWER-100 EXPEVENT Sept-97SYSTEM GENERALTURPRO 1 TURPRO 1 TX TURPRO 1 TX TURPRO 1 TX TURPRO 1 TX Sept-97SYSTEM GENERALFex 00 TUP-400XELTEKSUPERPRO SUPERPRO 1 SUPERPRO 1 SUPERPRO 100 SUPERPRO 1			V7.3.27	Oct-97	V7.3.27		
MICRPROSSROM 5000 B ROM 3000 UImage: sector of the sector of t		Chipmaster 6000					
MINATOM1881Image: Section of the	MICRPROSS	ROM 5000 B					
MQP ELECTRONICSMODEL 200 SYSTEM 2000 PIN-MASTER 48Image: Section 200 PIN-MASTER 48NEEDHAM'S ELECTRONICSEMP20OMCTypro C Typro SOMCTypro C Typro SPhytonMultiprogRed SquareIQ-180 IQ-280 Univriter 40 Univriter 40 Univriter 40 Univriter 40 Chipmaster 5000SMSEXPERT SPRINT PLUS48STAGC/IPSE SPRINT PLUS48STAGFCILPSE QUASARSUNRISET-10 UDC TUPF0-1 FX TURPRO-1 FX APROSUNSHINEPOWER-100 EXPER-660/80SYSTEM GENERALTURPRO-1 FX TURPRO-1 TX APROMULTLAPROSept-97 Sept-	MINIATO						
SYSTEM 2000 PIN-MASTER 48SYSTEM 2000 PIN-MASTER 48SYSTEM 2000 PIN-MASTER 48MEEDHAM'S ELECTRONICSFMP20OMCTypro C Typro SOMCTypro SPhytonMultiprogRed SquareIQ 380 IQ 280 Uniwriter 40 Chipmaster 5000SMSEXPERTBBS OPTIMA SBBSBBS BBS BBSSTAGECLIPSE QUASARV7.1.30SUNRISET10 UDP T10 UDP EXPRO-60/80NOT QUALIFIEDSUNSHINEPOWER-100 EXPRO-60/80Sept-97 Sept-97SYSTEM GENERALTURRO-1 r TURRO 1 TX APRO MULTLAPROSept-97 Sept							
NEEDHAM'S ELECTRONICSEMP20Image: section of the		SYSTEM 2000					
OMCType C Type SImage: Section of the secti	NEEDHAM'S ELECTRONICS						
PhytonMultiprogIcola of the section of the sect	OMC	Typro C					
Red SquareIQ-180 U-280 Uniwriter 40 Chipmaster 5000NOT QUALIFIEDSMSEXPERT OPTIMA MULTISYTEBBS BBS BBSBBS BBS BBS BBSBBS BBS BBSBBS BBS BBSSTAGECLIPSE QUASARV7.1.30Sept-97V7.1.30SUNRISET-10 UDP T-10 ULCNOT QUALIFIEDSUNSHINEEXPRO-60/80Image: Constraint of the sept-97 Sept-97Sept-97SYSTEM GENERALTURPRO-1 TURPRO-1 TX APRO TURPRO-1 TX APROSept-97 Sept-97Sept-97 Sept-97Sept-97 Sept-97TRIBAL MICROSYSTEMSFlex-700 TUP-400V3.02V3.02V3.02V3.02XELTEKSUPERPRO II SUPERPRO II P2.4BImage: Constraint of the sept-97 Sept-97Sept-97	Phyton						
Uniwriter 40 Chipmaster 5000BBS BBS BBS BBSBBS BBS BBS BBSBBS BBS BBSSMSEXPERT OPTIMA MULITSYTE SPRINT PLUS48BBS BBSBBS BBS BBSBBS BBSSTAGECLIPSE QUASARV7.1.30Sept-97 NOT QUALIFIEDV7.1.30SUNRISET-10 UDP T-10 ULCNOT QUALIFIEDImage: Comparison of the sept-97 Sept-97Sept-97 Sept-97SUNSHINEPOWER-100 EXPRO-60/80Image: Comparison of the sept-97 Sept-97Sept-97 Sept-97Sept-97 Sept-97SYSTEM GENERALTURPRO-1 FX TURPRO-1 TX APRO MULTI-APROSept-97 Sept-97Sept-97 Sept-97Sept-97 Sept-97TRIBAL MICROSYSTEMSFlex-700 TUP-400V3.02 2.4BV3.02 V3.02V3.02 V3.02V3.02XELTEKSUPERPRO II/P SUPERPRO II/P2.4B 2.4BImage: Comparison of the sept-97 2.4BImage: Comparison of the sept-97 3.24	Red Square						
Chipmaster 5000ControlControlSMSEXPERT OPTIMA MULTISYTE SPRINT PLUS48BBS BBSBBS BBSBBS BBSSTAGECLIPSE QUASARV7.1.30Sept-97V7.1.30SUNRISET-10 UDP T-10 ULCNOT QUALIFIEDControlSUNSHINEPOWER-100 EXPRO-60/80Sept-97Sept-97SYSTEM GENERALTURPRO-1 TURPRO-1 TX APROSept-97 Sept-97Sept-97 Sept-97Sept-97 Sept-97TRIBAL MICROSYSTEMSFlex-700 TUP-300 TUP-400V3.02V3.02V3.02XELTEKSUPERPRO II SUPERPRO II/P2.4B 2.4BSuperpero II/PSept-97 2.4B		IQ-280 Uniwriter 40			NOT QUALIFIEI)	
OPTIMA MULTISYTE SPRINT PLUS48BBSBBSBBSSTAGECLIPSE QUASARV7.1.30Sept-97V7.1.30SUNRISET-10 UDP 		Chipmaster 5000					
MULTISYTE SPRINT PLUS48V7.1.30Sept-97V7.1.30STAGECLIPSE QUASARV7.1.30Sept-97V7.1.30SUNRISET10 UDP T10 ULCNOT QUALIFIEDSUNSHINEPOWER-100 EXPRO-60/80Sept-97Sept-97SYSTEM GENERALTURPRO-1 TURPRO-1 TX APROSept-97Sept-97 Sept-97Sept-97 Sept-97TRIBAL MICROSYSTEMSFlex-700 TUP-300 TUP-300V3.02V3.02V3.02XELTEKSUPEPPRO II SUPEPPRO II/P2.4B 2.4BSuperpersonal	SMS	EXPERT OPTIMA					
STAGECLIPSE QUASARV7.1.30Sept-97V7.1.30SUNRISET-10 UDP T-10 ULCNOT QUALIFIEDSUNSHINEPOWER-100 EXPRO-60/80Sept-97Sept-97SYSTEM GENERALTURPRO-1 		MULTISYTE	600	600	500		
QUASAR Not QUALIFIED SUNRISE T-10 UDP T-10 ULC NOT QUALIFIED SUNSHINE POWER-100 EXPRO-60/80 EXPRO-60/80 SYSTEM GENERAL TURPRO-1 FX TURPRO-1 FX Sept-97 Sept-97 Sept-97 Sept-97 Sept-97 Sept-97 Sept-97 TURPRO-1 TX APRO MULTI-APRO Sept-97 SUPERPRO V3.02 TUP-300 V3.02 TUP-400 V3.02 XELTEK SUPERPRO II SUPERPRO II/P 2.4B	STAG		V7 1 30	Sept-97	V7 1 30		
T-10 ULC NOT GUALIFIED SUNSHINE POWER-100 EXPRO-60/80 POWER-100 SYSTEM GENERAL TURPRO-1 TURPRO-1 FX TURPRO-1 FX APRO Sept-97 Sept-97 Sept-97 Sept-97 TRIBAL MICROSYSTEMS Flex-700 TUP-400 V3.02 V3.02 XELTEK SUPERPRO SUPERPRO IL/P 2.4B SUPERPRO IL/P 2.4B		QUASAR	11.1.50	Sept 97	,7.1.50		
SUNSHINE POWER-100 EXPRO-60/800 Sept-97 Sept-97 Sept-97 SYSTEM GENERAL TURPRO-1 FX TURPRO-1 FX APRO MULTI-APRO Sept-97 Sept-97 Sept-97 TRIBAL MICROSYSTEMS Flex-700 TUP-300 TUP-300 V3.02 V3.02 V3.02 XELTEK SUPEPRO II 2.4B SUPEPRO II/P 2.4B	SUNRISE			NOT QUALIFIE	D		
SYSTEM GENERALTURPRO-1 TURPRO-1 FX TURPRO-1 TX APRO MULTI-APROSept-97 Sept-97Sept-97 Sept-97Sept-97 Sept-97TRIBAL MICROSYSTEMSFlex-700 TUP-300 TUP-400V3.02V3.02V3.02XELTEKSUPERPRO I SUPERPRO II/P2.4BL	SUNSHINE	POWFR-100					
TURPRO-1 FX TURPRO-1 TX APRO Sept-97 Sept-97 Sept-97 TRIBAL MICROSYSTEMS Flex-700 TUP-300 TUP-400 V3.02 V3.02 V3.02 XELTEK SUPERPRO I SUPERPRO II/P 2.4B V	SYSTEM CENEDAL		Sont 07	Sont 07	Sont 07		
TURPRO-1 TX APRO Sept-97 Sept-97 TRIBAL MICROSYSTEMS Flex-700 TUP-300 TUP-400 V3.02 V3.02 XELTEK SUPERPRO II SUPERPRO II/P 2.4B	STSTEIVI GEIVERAL	TURPRO-1 FX	Sept-97 Sept-97	Sept-97	Sept-97 Sept-97		
MULTI-APRO Sept-97 Sept-97 Sept-97 TRIBAL MICROSYSTEMS Flex-700 V3.02 V3.02 V3.02 TUP-300 TUP-400 V3.02 V3.02 V3.02 XELTEK SUPERPRO I 2.4B V3.02 V3.02				-			
TUP-300 TUP-400 XELTEK SUPERPRO SUPERPRO II 2.4B SUPERPRO II/P 2.4B		MULTI-APRO					
TUP-400 XELTEK SUPERPRO SUPERPRO II 2.4B SUPERPRO II/P 2.4B	TRIBAL MICROSYSTEMS		V3.02	V3.02	V3.02		
SUPERPRO II 2.4B SUPERPRO II/P 2.4B		TUP-400					
SUPERPRO II/P 2.4B	XELTEK		2 4 R				
XILLINX HW-130 V4.00 V4.00 V4.00 V4.10 V4.10		SUPERPRO II/P	2.4B				
	XILINX	HW-130	V4.00	V4.00	V4.00	V4.10	V4.10

	XILINX		CE-EDA CO	ONTACTS - A	UGUST 1	997	
Company Name	CONTACT NAME	PHONE NUMBER	E-MAIL ADDRESS	COMPANY NAME	CONTACT NAME	PHONE NUMBER	E-MAIL ADDRESS
Accolade Design Automation	Dave Pellerin	(800) 470-2686	pellerin@seanet.com	Logical Devices	Chip Willman	(303) 279-6868	logdev@logicaldevices.com
ACEO Technology, Inc.	Philip George	(510) 656-2189	pgeorge@aceo.com	Memec Design Services	Maria Agular	(602) 491-4311	info@mds.memec.com
Acugen Software, Inc.	Nancy Hudson	(603) 881-8821		Mentor Graphics	Sam Picken	(503) 685-1298	sam_picken@mentorg.cor
Aldec	David Rinehart	(702) 456-1222x12	dave@aldec.com	MINC	Kevin Bush	(719) 590-1155	
ALPS LSI Technologies	David Blagden	441489571562		Minelec	Marketing Dept.	+32-02-4603175	
Alta Group	Paul Ekas	(408) 523-4135	ekas@altagroup.com	Model Technology	Greg Seltzer	(503) 526-5465	greg_seltzer@model.com
Aptix Corporation	Michel Courtney	(408) 428-6226	michel@aptix.com	OrCAD	Mike Jingozian	(503) 671-9500	mikej@orcad.com
Aster Ingenierie S.A.	Christopher Lotz	+33-99537171		Protel Technology	Luise Markham	(408) 243-8143	
Cadence	Ann Heilmann	(408) 944-7016	annh@cadence.com	Quad Design Technology	Britta Sullivan	(805) 988-8250	
Capilano Computing	Chris Dewhurst	(604) 522-6200	info@capilano.com	SimuCad	Richard Jones	(510) 487-9700	richard@simucad.com
Chronology Corporation	MikeMcClure	(206) 869-4227x116	sales@chronology.com	Sophia Sys & Tech	Tom Tilbon	(408) 232-4764	
CINA-Computer Integrated Network Analysis	Brad Ashmore	(415) 940-1723	bashmore@cina.com	Summit Design Corporation	Ed Sinclair	(503) 643-9281 (206) 867-6257	
Compass Design Automation	Marcia Murray	(408) 474-5002	marcia@compass-da.com	Synario Design Automation	Jacquelin Taylor Lynn Fiance	(,	taylorja@data-io.com
Epsilon Design Systems	Cuong Do	(408) 934-1536	CuongEDS@aol.com	Synopsys Synplicity, Inc.	Marie McAllister	(415) 694-4289 (415) 961-4962	lynnf@synopsys.com marie@synplicity.com
Escalade	Rod Dudzinski	(408) 654-1651		Teradvne	Mike Jew	(617) 422-3753	iew@teradvne.com
Exemplar Logic	Tom Hill	(503) 685-7750	hill@exemplar.com	Tokyo Electron Limited	Shige Ohtani	+81-3-334-08198	shige@xilinx.tel.com.jp
Flynn Systems	Matt Van Wagner	(603) 598-4444	matt@flvnn.com	TopDown Design Solutions	Art Pisani	+81-3-334-08198 (603) 888-8811	snige@xilinx.tel.com.jp
Fujitsu LSI	Masato Tsuru	+81-4-4812-8043		Trans EDA Limited	James Douglas	+44-703-255118	
Harmonix Corporation	Shigeaki Hakusui	(617) 935-8335		VEDA Design Automation	Kathie O'Toole	(408) 496-4515	
IK Technology Co.	Tsutomu Someya	+81-3-3839-0606	someya@ikt.co.jp	Veribest	Mike O'Donohue	(303) 581-2330	mikeo@veribest.com
IKOS Systems	Brad Roberts	(408) 366-8509	brad@ikos.com	Viewlogic	Philip Lewer	(508) 480-0881	plewer@viewlogic.com
INCASES Engineering GmbH	Christian Kerscher	+49-89-839910	ckerscher@ muc.incases.com	Visual Software Solutions	Riky Escoto	(800) 208-1051	rescoto@attmail.com
ISDATA	Ralph Remme	+49-72-1751087	ralph.remme@isdata.de	Zuken	Makato Ikeda	+81-4-594-27787	
Logic Modeling Corp. (Synopsis Division)	Marnie McCollow	(503) 531-2412	marniem@ synopsys.com	Zycad	Charlene Locke	(510) 623-4451	char@zycad.com

Changes since last issue normally printed in color. There have been no changes since XCell 25. Inquiries about the Xilinx Alliance Program can be e-mailed to alliance@xilinx.com

AllianceCORE

K

XILINX ALLIANCECORE PARTNERS - AUGUST 1997

Additional information is available on WebLINX, starting at: http://www.xilinx.com/products/logicore/alliance/tblpart.htm

Additional information is available on	weblink, starting at:	http://www.xiiinx.com/produc	cts/logicore/alliance/tbipart.ntm
PARTNER NAME	PHONE	EMAIL/WEB URL	EXPERTISE
ARM Semiconductor (USA), Inc.	Tel: 408-733-3344	armsemi@netcom.com	Microprocessors, microcontrollers, peripherals, communications
1095 E. Duane Ave., Suite 211 Sunnyvale, CA 94086 (USA)	Fax: 408-733-9922	www.armsemi.com	
CAST, Inc.	Tel: 914-354-4945	info@cast-inc.com	AM29xx peripherals, DSP
24 White Birch Drive, Pomona, NY 10970 (USA)	Fax: 914-354-0325	www.cast-inc.com	
Comit Systems	Tel: 408-988-2988	preeth@comit.com	Base functions, communications
1250 Oakmead Pkwy, Suite 210 Sunnyvale, CA 94088 (USA)	Fax: 408-988-2133	www.comit.com	
CoreELMicrosystems	Tel: 510-770-2277	sales@coreel.com	ATM, communications
46750 Fremont Blvd #208 Fremont, CA 94538 (USA)	Fax: 510-770-2288	www.coreel.com	
Digital Objects	Tel: 510-795-2212	sales@digitalobjects.com	CardBus
3550 Mowry Ave., Suite 101 Fremont, CA 94538 (USA)	Fax: 510-795-2219	www.digitalobjects.com	
Eureka Technology 4962 El Camino Real, #108 Los Altos, CA 94022 (USA)	Tel: 415-960-3800 Fax: 415-960-3805	info@eurekatech.com	PCI, PowerPC peripherals
Integrated Silicon Systems, Ltd.	Tel: +44-1232-664664	info@iss-dsp.com	DSP functions
29 Chlorine Gardens Belfast, BT9 5DL (North. Ireland)	Fax: +44-1232-669664	www.iss-dsp.com	
Inventra/Mentor	Tel: 503-685-8000	www.mentorg.com/inventra	USB, PCI, DSP, telecom,
1001 Ridder Park Drive, San Jose, CA 95131-2314 (USA)	Fax: 408-451-5690		microprocessor peripherals
Logic Innovations	Tel: 619-455-7200	fpga@logici.com	PCI, MPEG-2, ATM, communications
6205 Lusk Boulevard San Diego, CA 92121 (USA)	Fax: 619-455-7273	www.logici.com	
Memec Design Services	Tel: 602-491-4311	info@memecdesign.com	Microprocessor peripherals, base functions, Xilinx design services
1819 S. Dobson Rd., Suite 203, Mesa, AZ 85202 (USA)	Fax: 602-491-4907	www.memecdesign.com	
Mobile Media Research, Inc.	Tel: 510-657-4891	sales@mobmedres.com	PCMCIA, CardBus
39675 Cedar Blvd., Suite 295A, Newark, CA 94560 (USA)	Fax: 510-657-4892	www.mobmedres.com	
NMI Electronics, Ltd.,Fountain House, Great Cornbow,	Tel: +44 121 585 5979	ip@nmi.co.uk	Design services and base-level
Halesowen, West Midlands, B63 3BL (UK)	Fax: +44 121 585 5764	www.nmi.co.uk	functions for the XC9500
PhoenixTechnologies/VirtualChips	Tel: 408-570-1000	virtualchips-info@phoenix.com	PCI, USB, CardBus, ATM
2107 N. First Street, Suite 100, San Jose, CA 95113 (USA)	Fax: 408-452-0952	www.phoenix.com	
Rice Electronics PO Box 741 Florissant, MO 63032 (USA)	Tel: 314-838-2942 Fax: 314-838-2942	ricedsp@aol.com	DSP
SAND Microelectronics	Tel: 408-235-8600	sales@sandmicro.com	PCI, USB
3350 Scott Blvd., #24, Santa Clara, CA 95131 (USA)	Fax: 408-235-8601	www.sandmicro.com	
SICAN Microeletronics Corp.	Tel: 650-871-1494	infor@sican-micro.com	CAN bus, DSP, communications
400 Oyster Point Blvd., #512, So. San Francisco, CA 94080 (USA)	Fax: 650-871-1504	www.sican-micro.com	
Technology Rendezvous, Inc.	Tel: 408-556-0280	info@trinic.com	FireWire
3160 De La Cruz Blvd., Suite 101, Santa Clara, CA 95054 (USA)	Fax: 408-556-0284	www.trinic.com	
VAutomation	Tel: 603-882-2282	sales@vautomation.com	Microprocessors, microcontrollers, communications
20 Trafalgar Square Suite 443 (4th Floor) Nashua, NH 03063 (USA)	Fax: 603-882-1587	www.vautomation.com	

30

XILINX ALLIANCE-EDA COMPANIES & PRODUCTS - AUGUST 1997 - 1 OF 2

				3 K/	XC	CPLD	Uni		PLATF		
Company Name	PRODUCT NAME	VERSION	Function	4 K	5200	7к9к	Lib	PC	Sun	RS6000	HP7
Accolade Design Automation	Peak VHDL	3.2	Simulation	\checkmark	~			~			
ACEO Technology, Inc.	Asyn	5.0	Synthesis	\checkmark	1		✓	✓	1		✓
Acugen Software, Inc.	Sharpeye ATGEN AAF-SIM PROGBSDL TESTBSDL	2.63 2.63 2.63 2.63 2.63 2.63	Testability Analysis Automatic Test Generation Fault Simulation BSDL Customization Boundary Scan ATG	シンシン	~ ~ ~ ~ ~	7k 7k 7k 7k 7k		~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~		シンシンシ
Aldec	Active-CAD	2.2	Schematic Entry, State Machine & HDL Editor, FPGA Synthesis & Simulation	1	1	1	1	1			
ALPS LSI Technologies	Edway Design Systems		Synthesis/Simlulation	1		1		1			
Aptix Corporation	System Explorer ASIC Explorer	3.1 2.3	System Emulation ASIC Emulation	✓ 4K	\ \	1	✓		1		1
Aster Ingenierie S.A.	XILLAS	4.2	LASAR model generation	1		7k		1	1		1
Auspy Development Co.	APS	1.2.3	Multi-FPGA Partitioning	1	1			1	✓		
Cadence	Verilog Concept FPGA Designer Synergy Composer	97A 97A 97A 97A 97A	Simulation Schematic Entry Topdown FPGA Synthesis FPGA Synthesis Schematic Entry	~ ~ ~ ~ ~ ~ ~ ~	\$ \$ \$	7k 7k 7k 7k 7k 7k	\ \ \ \ \ \		\$ \$ \$ \$ \$	\ \ \ \ \ \ \	\$ \$ \$ \$ \$ \$ \$
Capilano Computing	Design Works	3.1	Schematic Entry/Sim	1			1	1			
Chronology Corporation	TimingDesigner QuickBench	3.0 1.0	Timing Specification and Analysis Visual Test Bench Generator	√ √	\ \	<i>\</i> <i>\</i>	√ ✓	√ √	√ √		√ √
CINA-Computer Integrated Network Analysis	SmartViewer	1.0e	Schematic Generation	1		7k		1			
Compass Design Automation	ASIC Navigator X-Syn QSim		Schematic Entry Synthesis Simulation	\ \ \ \	\ \	7k 7k			\$ \$ \$		\$ \$ \$
Epsilon Design Systems	Logic Compressor		Synthesis optimization	1	1			1			
Escalade	DesignBook	2.0	Design Entry	1			1	1	1		
Exemplar Logic	Galileo Leonardo	4.1 4.0.3	Synthesis/Timing Analysis/Simulation Synthesis/Timing Analysis/ <mark>Simulation</mark>	√ √	\ \	<i>\</i> <i>\</i>	√ √	<i>\</i> <i>\</i>	√ √		√ √
Flynn Systems	Probe FS-ATG CKTSIM FS-SIM	3.0 3.0 3.0 3.0 3.0	Testability Analysis Test Vector Generation Logic Analysis Simulation	~ ~ ~ ~	\ \ \ \	7k 7k 7k 7k 7k		\ \ \ \			
Fujitsu LSI	PROVERD		Top-Down Design System	\checkmark				~			
Harmonix Corporation	PARTHENON	2.3	Synthesis	4k		7k		~	√		
IK Technology Co.	Ishizue Professionals	1.06	Schematic Entry/Simulation	√				~	√		√
IKOS Systems	Voyager Gemini	2.31 1.21	Simulation Simulation	<i>s</i>	\$ \$				<i>\</i> <i>\</i>		<i>\</i>
INCASES Engineering GmbH	Theda	5.0	Design Entry	1				<i>✓</i>	✓	1	✓
ISDATA	LOG/iC2	5.0	Synthesis Simulation	√	√	\checkmark	✓	~			
Logic Modeling Corp. (Synopsis Division)	Smart Model LM1200		Simulation Models Hardware Modeler	<i>\</i>	1	<i>\</i> <i>\</i>		<i>\</i> <i>\</i>	√ √	<i>\</i> <i>\</i>	1
Logical Devices	Total Designer Ulysa	4.7 1.0	Simulation & Synthesis VHDL Synthesis	<i>\</i> <i>\</i>	\ \	<i>\</i> <i>\</i>	√ √	<i>\</i> <i>\</i>			

Items that have changed since the last issue (XCell 25) are in color.

XILINX ALLIANCE-EDA COMPANIES & PRODUCTS - AUGUST 1997 - 2 OF 2

				3 K/	XC	CPLD	Uni		PLATE	ORMS	
Company Name	P RODUCT NAME	VERSION	FUNCTION	4 K	5200	7к9к	Lib	PC	Sun	RS6000	HP7
Mentor Graphics	Design Architect	B.x	Schematic Entry	1	~	1	1		1	1	1
*	Galileo	4.1	Synthesis/Timing Analysis	~	1	1	1		~	~	~
	Leonardo	4.0.3	Synthesis/Timing Analysis	\checkmark	~	~	\checkmark		~	~	~
	QuickSim II	B.x	Simulation	1	1	1	1		1	1	1
	QuickHDL	B.x	HDL Simulation	<u> </u>	1	<i>✓</i>	✓		1	1	1
MicroSim	MicroSim Design Lab		Schematic Entry, Mixed A/D & FPGA Simulation, PCB Layout and Routing	1	1		1	~			
MINC	PLDesigner-XL/PL-Synthesizer	3.3/3.2.2	Synthesis	\checkmark				1	\checkmark		\checkmark
Model Technology	V-System/VHDL	4.6G+	Simulation	\checkmark		1	✓	1	\checkmark	\checkmark	\checkmark
OrCAD	OrCAD Express	7.0	Schematic Entry, VHDL, Mixed-mode Entry, Simulation, Synthesis, Brd Design	1	1	~	1	1			
Protel Technology	Advanced Schematic	3.2	Schematic Entry	1	1	7k	1	1			
	Advanced PLD	3	PLD/FPGA Design & Simulation	\checkmark	1	7k		1			
Quad Design Technology	Motive	4.3	Timing Analysis	✓				1	✓	1	1
SimuCad	Silos III	96.1	Schematic Entry & Simulation	1	1		1	1			
Sophia Sys & Tech	Vanguard	5.31	Schematic Entry	1		1		1	1		1
Summit Design Corp.	Visual HDL	3.0	Graphical Design Entry/ Simulation/Debug	1	1	1	1	1	~	1	~
Synario Design Automation	ABEL	6.3	Synthesis, Simulation			1	1	1			
-j	Synario	2.3	Schematic Entry, Synthesis & Simulation	1	1	1	1	1			
Synopsys	FPGA Express	1.2	Synthesis	1	1	TBD		1			-
J I J	FPGA Compiler	3.4b+	Synthesis	1	1	1	1		1	1	1
	Design Compiler	3.4b+	Synthesis	~	1	1	1		~	~	~
	VSS	3.4b+	Simulation	✓	~	 ✓ 	\checkmark		✓	✓	~
Synplicity, Inc.	Synplify-Lite	3.0	Synthesis	\checkmark	~	1	1	1	~		~
	Synplify	3.0	Synthesis	1	~	1	✓	1	<i>✓</i>		1
	HDL Analyze	3.0	Schematic	√	1	_	<i>✓</i>	 Image: A start of the start of	√	_	1
TopDown Design Solutions	info to come									_	
Trans EDA Limited	TransPRO	1.2	Synthesis	\checkmark					\checkmark		\checkmark
VEDA Design Automation Inc	Vulcan	4.5	Simulation	✓					\checkmark		√
Veribest	Veribest VHDL	14.0	Schematic Entry	 Image: A second s			✓	~	~		✓
	Veribest Verilog	14.0	Simulation	1			1	1	\checkmark		~
	VeriBest Simulator	14.0	Simulation	1	1		1	1	1		1
	DMM VeriBert Sentheric	14.x	Design Management	1	1		1	1	1		1
	VeriBest Synthesis Synovation	14.0 12.2	Synthesis Synthesis	1	1		1	1	1		1
	PLDSyn	12.2	Design Entry Synthesis	1		7k	~	1	1		1
	VerBest Design Capture	14.x	Design Capture	1	1	/ K	1	1	1		1
Viewlogic	WorkView Office	7.1.2/7.2	Schem/Sim/Synth	· /	1	1	· ·	· ·	•		•
viewiogic	ProSynthesis	5.02	Synthesis	1	v	7k	<i>`</i>	1	1	1	1
	ProSim	6.1	Simulation, Timing Analysis	1		7 k	1	1	1	1	1
	ProCapture	6.1	Schematic Entry	1		7k	1	1	1	1	1
	PowerView	6.0	Schem/Sim/Synth/Timing Analysis	\checkmark	~	<i>✓</i>	\checkmark		\checkmark	1	1
Visual Software Solutions	Statecad	3.0	Grph. Design Entry, Sim., Debug	1	1	✓	1	1	1		1
Zuken	Tsutsuji		Synthesis/Simulation	1					1	1	✓
Zycad	Paradigm RP		Rapid Prototyping	1					1		1
J	Paradigm XP		Gate-level Sim	1					1		1

Items that have changed since the last issue (XCell 25) are in color.

FAX RESPONSE FORM-XCELL 26 3Q97

Corporate

Headquarters Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Tel: 408-559-7778 Fax: 408-559-7114

Europe

Xilinx, Ltd. Benchmark House 203 Brooklands Road Weybridge Surrey KT14 0RH United Kingdom Tel: 44-1-932-349401 Fax: 44-1-932-349499

Japan

Xilinx, KK Daini-Nagaoka Bldg. 2F 2-8-5, Hatchobori, Chuo-ku, Tokyo 104 Japan Tel: 81-3-3297-9191 Fax: 81-3-3297-9189

Hong Kong

Xilinx Asia Pacific Unit 4312, Tower II Metroplaza Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852-2424-5200 Fax: 852-2494-7159

FAX Us Your Comments and Suggestions

To: XCell Editor Xilinx Inc.

FAX: 408-879-4780

_ Date: _____

□ Please add my name to the *XCell* mailing list.

NAME			
COMPANY			
ADDRESS			
CITY/STATE/ZIP			
PHONE			

□ I'm interested in having my company's design featured in a future edition of XCell.

Please call me at: ____

□ Here's what I'd like to see featured in *XCell*:

You may also e-mail your comments and suggestions to: editor@xilinx.com

First Class Presort U.S. Postage **PAID** Permit No. 2196 San Jose, CA