

150MHZ CLOCK FOR WHITNEY CHIPSET

W83194AR-73

Data Sheet Revision History

	Pages	Dates	Version	Version	Main Contents
				On Web	
1	n.a.			n.a.	All of the versions before 0.50 are for internal use.
2	n.a.	02/Apr	1.0	1.0	Change version and version on web site to 1.0
3					
4					
5					
6					
7					
8					
9					
10					

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this data sheet belong to their respective owners.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

1.0 GENERAL DESCRIPTION

The W83194AR-73 is a Clock Synthesizer for Intel Whitney chipset. W83194AR-73 provides all clocks required for high-speed RISC or CISC microprocessor and also provides 32 different frequencies of CPU, SDRAM, PCI, 3V66, IOAPIC clocks frequency setting. All clocks are externally selectable with smooth transitions.

The W83194AR-73 provides I^2C serial bus interface to program the registers to enable or disable each clock outputs and provides 0.25% center and 0-0.5% down type spread spectrum to reduce EMI.

The W83194AR-73 accepts a 14.318 MHz reference crystal as its input and runs on a 3.3V supply. High drive PCI and SDRAM CLOCK outputs typically provide greater than 1 V /ns slew rate into 30 pF loads. CPU CLOCK outputs typically provide better than 1 V /ns slew rate into 20 pF loads as maintaining $50\pm5\%$ duty cycle. The fixed frequency outputs as REF, 24MHz, and 48 MHz provide better than 0.5V /ns slew rate.

1.0 PRODUCT FEATURES

- 2 CPU clocks
- 9 SDRAM clocks for 2 DIMMs
- 8 PCI synchronous clocks.
- Optional single or mixed supply:
 - (VDDR = VDDP=VDDS = VDD48 = VDD3 = 3.3V, VDDA=VDDC=2.5V)
- Skew form CPU to PCI clock -1 to 4 ns, center 2.6 ns
- Smooth frequency switch with selections from 66.8 to 150MHz
- I²C 2-Wire serial interface and I²C read back
- 0.25% center and 0-0.5% down type spread spectrum
- Programmable registers to enable/stop each output and select modes (mode as Tri-state or Normal)
- 48 MHz for USB
- 24 MHz for super I/O
- Packaged in 48-pin SSOP

3.0 PIN CONFIGURATION

FS3	FS2	FS1	FS0	CPU(MHz)	SDRAM (MHz)	3V66 (MHz)		PCI(MHz)	IOAPIC (MHz)
			I			SEL_3V66=0	SEL_3V66=1		
0	0	0	0	100.23	100.23	66.82	66.82	33.41	16.71
0	0	0	1	100.9	100.9	67.26	67.26	33.63	16.815
0	0	1	0	105	105	70	70	35	17.5
0	0	1	1	66.89	100.33	66.89	66.89	33.44	16.72
0	1	0	0	120	120	64	80	40	20.00
0	1	0	1	124	124	64	82.66	41.33	20.67
0	1	1	0	133.3	133.3	66.65	88.86	44.43	22.22
0	1	1	1	133.6	100.2	66.65	66.65	33.32	16.66
1	0	0	0	140	140	70	70	35	17.5
1	0	0	1	150	150	64	75	37.50	18.75
1	0	1	0	114.99	114.99	64	76.66	38.33	19.17
1	0	1	1	70	105	70	70	35	17.5
1	1	0	0	75	112.5	64	75	37.5	18.75
1	1	0	1	83.31	124.96	64	83.31	41.65	20.825
1	1	1	0	90	90	60	60	30	15
1	1	1	1	95	95	63.33	63.33	31.67	15.84

4.0 FREQUENCY SELECTION BY HARDWARE

5.0 SERIAL CONTROL REGISTERS

The Pin column lists the affected pin number and the @PowerUp column gives the state at true power up. Registers are set to the values shown only on true power up. "Command Code" byte and "Byte Count" byte must be sent following the acknowledge of the Address Byte. Although the data (bits) in these two bytes are considered "don't care", they must be sent and will be acknowledge. After that, the below described sequence (Register 0, Register 1, Register 2,) will be valid and acknowledged.

Bit	@PowerUp	Pin	Description	
7	0	-	$0 = \pm 0.25\%$ Center type Spread Spectrum Modulation	
			1 = 0~ 0.5% Down type Spread Spectrum Modulation	
6	0	-	SSEL2 (Frequency table selection by software via I ² C)	
5	0	-	SSEL1 (Frequency table selection by software via I ² C)	
4	0	-	SSEL0 (Frequency table selection by software via I ² C)	
3	0	-	0 = Selection by hardware	
			1 = Selection by software I ² C - Bit (2, 6:4), Register1 Bit1	
2	0	-	SSEL3 (Frequency table selection by software via I ² C)	
1	0	-	0 = Normal	
			1 = Spread Spectrum enabled	
0	0	-	0 = Running	
			1 = Tristate all outputs	

5.1 Register 0: CPU Frequency Select Register

5.2 Register 1 : CPU Clock Register (1 = Active, 0 = Inactive)

Bit	@PowerUp	Pin	Description
7	X	-	FS3#
6	Х	-	FS0#
5	Х	-	FS2#
4	1	28	24_48MHz(Active / Inactive)
3	1	27	48MHz-0(Active / Inactive)
2	1	26	48MHz-1(Active / Inactive)
1	1	-	SEL_3V66(Frequency table selection by software via I ² C)
0	1	31	SDRAM_F(Active / Inactive)

5.3 Register 2: SDRAM Clock Register (1 = Active, 0 = Inactive)

Bit	@PowerUp	Pin	Description
7	1	32	SDRAM7 (Active / Inactive)
6	1	33	SDRAM6 (Active / Inactive)
5	1	35	SDRAM5 (Active / Inactive)
4	1	36	SDRAM4 (Active / Inactive)
3	1	37	SDRAM3 (Active / Inactive)
2	1	39	SDRAM2 (Active / Inactive)
1	1	40	SDRAM1 (Active / Inactive)
0	1	41	SDRAM0 (Active / Inactive)

8			8 (/ /
Bit	@PowerUp	Pin	Description
7	1	20	PCICLK7 (Active / Inactive)
6	1	19	PCICLK6 (Active / Inactive)
5	1	17	PCICLK5 (Active / Inactive)
4	1	16	PCICLK4 (Active / Inactive)
3	1	15	PCICLK3 (Active / Inactive)
2	1	13	PCICLK2 (Active / Inactive)
1	1	12	PCICLK1 (Active / Inactive)
0	1	11	PCICLK0 (Active / Inactive)

5.4 Register 3: PCI Clock Register (1 = Active, 0 = Inactive)

5.5 Register 4: Additional Register (1 = Active, 0 = Inactive)

Bit	@PowerUp	Pin	Description
7	Х	-	SEL_3V66#
6	1	8	3V66_1(Active / Inactive)
5	1	7	3V66_0(Active / Inactive)
4	0	-	Reserve
3	1	47	IOAPIC (Active / Inactive)
2	Х	-	FS1#
1	1	44	CPUCLK1(Active / Inactive)
0	1	45	CPUCLK0(Active / Inactive)

5.6 Register 5: Reserve Register

Bit	@PowerUp	Pin	Description
7	0	-	Reserve
6	0	-	Reserve
5	0	-	Reserve
4	0	-	Reserve
3	0	-	Reserve
2	0	-	Reserve
1	0	-	Reserve
0	0	-	Reserve

57 Pagistar 6.	Winhond Chi	n ID Rogistor	(Road Only)
J. / INCEISICI U.			

Bit	@PowerUp	Pin	Description
7	1	-	Winbond Chip ID
6	0	-	Winbond Chip ID
5	0	-	Winbond Chip ID
4	1	-	Winbond Chip ID
3	0	-	Winbond Chip ID
2	0	-	Winbond Chip ID
1	1	-	Winbond Chip ID
0	0	-	Winbond Chip ID

5.8 Register 7: Winbond Chip ID Register (Read Only)

Bit	@PowerUp	Pin	Description
7	0	-	Winbond Chip ID
6	0	-	Winbond Chip ID
5	0	-	Winbond Chip ID
4	0	-	Winbond Chip ID
3	0	-	Winbond Chip ID
2	0	-	Winbond Chip ID
1	1	-	Winbond Chip ID
0	0	-	Winbond Chip ID

6.0 SPECIFICATIONS

6.1 ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in this table may cause permanent damage to the device. Precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. Subjection to maximum conditions for extended periods may affect reliability. Unused inputs must always be tied to an appropriate logic voltage level (Ground or Vdd).

Symbol	Parameter	Rating
Vdd , V _{IN}	Voltage on any pin with respect to GND	- 0.5 V to + 7.0 V
T _{STG}	Storage Temperature	- 65°C to + 150°C
Τ _Β	Ambient Temperature	- 55°C to + 125°C
T _A	Operating Temperature	0°C to + 70°C

6.2 AC CHARACTERISTICS

VddR=Vdd3=VddP=VddS=3.3V \pm 5 %, VddC = VddA= 2.375V~2.9V , T _A = 0 $^{\circ}$ C to +70 $^{\circ}$ C							
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions	
Output Duty Cycle		45	50	55	%	Measured at 1.5V	
CPU/SDRAM to PCI Offset	t _{OFF}	1		4	ns	15 pF Load Measured at 1.5V	
Skew (CPU-CPU), (PCI- PCI), (SDRAM-SDRAM)	t _{SKEW}			250	ps	15 pF Load Measured at 1.5V	
CPU/SDRAM	t _{CCJ}			±250	ps		
Cycle to Cycle Jitter							
CPU/SDRAM	t _{JA}			500	ps		
Absolute Jitter							
Jitter Spectrum 20 dB	BWJ			500	KHz		
Bandwidth from Center							
Output Rise (0.4V ~ 2.0V)	t⊤∟H	0.4		1.6	ns	15 pF Load on CPU and PCI	
& Fall (2.0V ~0.4V) Time	t _{THL}					outputs	
Overshoot/Undershoot	Vover	0.7		1.5	V	22 Ω at source of 8 inch	
Beyond Power Rails						PCB run to 15 pF load	
Ring Back Exclusion	Vrbe	0.7		2.1	V	Ring Back must not enter this range.	

6.3 DC CHARACTERISTICS

VddR=Vdd3=VddP=VddS=3.3V \pm 5 %, VddC = VddA= 2.375V~2.9V , T _A = 0 $^{\circ}$ C to +70 $^{\circ}$ C							
Parameter	Symbol	Min	Тур	Мах	Units	Test Conditions	
Input Low Voltage	V _{IL}	Vss- 0.3		0.8	V _{dc}		
Input High Voltage	V _{IH}	2.0		Vdd +0.3	V _{dc}		
Input Low Current (no pull-up Resistors)	Ι _{ΙL}	-5	2.0		μA		
Input Low Current (pull-up Resistors)	Ι _{ΙL}	-200	-100		μA		
Input High Current	I _{IH}	-5		5	μA		
Operating Current	I _{DD}		60	100	mA	@66M	
Power Down Current	I _{DDPD}		400	600	μA	C _L = 0pF	
Input Frequency	Fi		14.318		MHz	Vdd=3.3V	
Pin Inductance	Lpin		7		nH		
Input Capacitance	C _{IN}			5	pF	Logic Inputs	
	C _{OUT}		6		pF	Output pins capacitance	
	CINX	13.5		22.5	pF	X1 & X2 pins	
Transition Time	T _{Tra}			3	mS		
Disable/Enable Delay	Т	1		10	nS		
Clock stabilization	T _{STA}			3	mS		

7.0 ORDERING INFORMATION

Part Number	Package Type	Production Flow		
W83194AR-73	48 PIN SSOP	Commercial, 0°C to +70°C		

8.0 HOW TO READ THE TOP MARKING

1st line: Winbond logo and the type number: W83194AR-73 2nd line: Tracking code <u>2</u> 8051234

- <u>**2</u>**: wafers manufactured in Winbond FAB 2</u>
- 8051234: wafer production series lot number

3rd line: Tracking code 814 G B B

- 814: packages made in '98, week 14
- <u>G</u>: assembly house ID; A means ASE, S means SPIL, G means GR
 - BB: IC revision

All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

9.0 PACKAGE DRAWING AND DIMENSIONS

48 PIN SSOP OUTLINE DIMENSIONS							
		INCHES		MILLIMETERS			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
Α	-	-	0.110	0	0	2.79	
A ₁	0.008	0.012	0.016	0.20	0.30	0.41	
A2	0.085	0.090	0.095	2.16	2.29	2.41	
b	0.008	0.010	0.013	0.20	0.25	0.33	
С	0.006	0.008	0.010	0.15	0.20	0.25	
D	-	0.625	0.637	-	15.88	16.18	
E	0.291	0.295	0.299	7.39	7.49	7.59	
е		0.025 BS0	0	0.64 BSC			
н	0.395	0.408	0.420	10.03	10.36	10.67	
L	0.025	0.030	0.040	0.64	0.76	1.02	
а	0°	5º	8°	0º	5°	8º	

Electronics Corp. Headquarters No. 4, Creation Rd. III

Science-Based Industrial Park Hsinchu, Taiwan TEL: 886-35-770066 FAX: 886-35-789467 www: http://www.winbond.com.tw/

Taipei Office 11F, No. 115, Sec. 3, Min-Sheng East Rd. Taipei, Taiwan TEL: 886-2-7190505 FAX: 886-2-7197502 TLX: 16485 WINTPE Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II 123 Hoi Bun Rd., Kwun Tong Kowloon, Hong Kong TEL: 852-27516023-7 FAX: 852-27552064 Winbond Electronics (North America) Corp.

2730 Orchard Parkway San Jose, CA 95134 U.S.A. TEL: 1-408-9436666 FAX: 1-408-9436668

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sale.