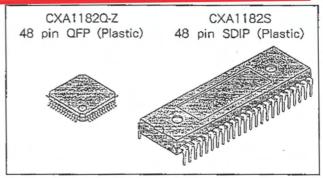
## SONY

# CXA1182Q-Z/S

## Servo Signal Processor for CD Player


## For the availability of this product, please contact the sales office.

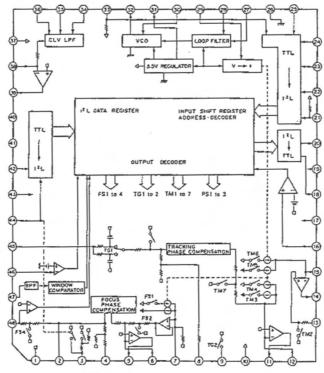
## Description

CXA1182 is abipotatr IC designed for the servo contrad of compact disc players.

#### **Features**

- Single power supply, 5V
   Dual power supply, ±5V
- Low power consumption
   ± 5V: 165mW (Typ.), 5V: 100mW (Typ.)
- Servo fumctionss same as the CX2011 08 (foeus, tracking, and sied servo)
- Built-im LPF for spindle servo
- Bullt-in loop filter and VCO for EFM clock reproduction PLII
- · Few extermal parts
- Built-im circuit to prevent sled runaway
- Built-in circuit for disc defects
- · Built-in anti-shock circuit
- · High-speed access through linear motor
- Microcomputer serial data bus common with CX23035 or CXD1135Q types
- Upword compatible with CX20108 for microcomputer software
- Peaks of focus search, track jump, and sled kick pulse can be set through external resistors.




#### **Functions**

- Foeus servo controli
- Tracking serve control
- Sled servo control
- Spindile servo
   LPF, drive ampliffer
- EFM clock reproduetion PLL Loop filter, 8.64 MHz VCO

#### Structure

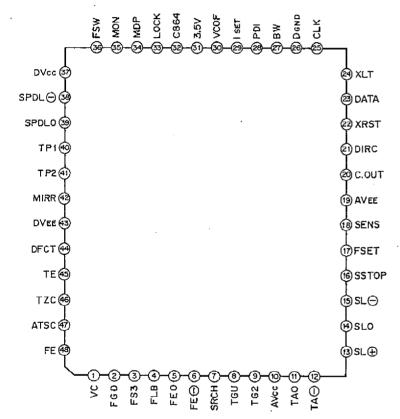
Bipolar silicon monolithic IC

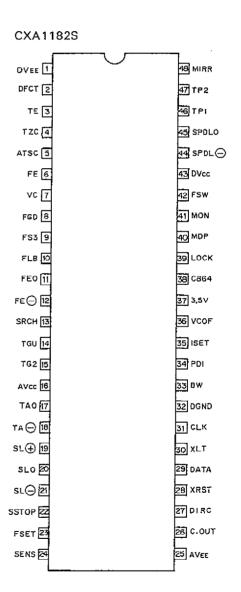
## **Block Diagram**



Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits,

## Absolute Maximum Ratings (Ta = 25°C)


| <ul> <li>Supply voltage</li> </ul>              | VCC - VEE | 12            | V  |
|-------------------------------------------------|-----------|---------------|----|
| <ul> <li>Operating temperature</li> </ul>       | Topr      | -20  to  +75  | ٥C |
| <ul> <li>Storage temperature</li> </ul>         | Tstg      | -55 to $+150$ | °C |
| <ul> <li>Allowable power dissipation</li> </ul> | PD CXA11  | 82Q 833       | mW |
|                                                 | CXA11     | 82S 1330      | mW |


### **Recommended Operating Conditions**

| •                                  |            |          |   |
|------------------------------------|------------|----------|---|
| <ul> <li>Supply voltage</li> </ul> | VCC — VEE  | 4 to 11  | V |
|                                    | VCC - DGND | 4 to 5.5 | V |

### Pin Description

CXA1182Q-Z





|     | VI - |        | 1                                                    | Numbers in ( ) show CXA1182S                                                          |
|-----|------|--------|------------------------------------------------------|---------------------------------------------------------------------------------------|
| Q-Z | No.  | Symbol | Equivalent Circuit                                   | Description                                                                           |
| 2   | . 8  | FGD    | Vcc<br>180 ₹48K<br>20μΔ<br>VEE                       | Connect a capacitor between this pin and pin 3 (9) to reduce the high-frequency gain. |
| 3   | 9    | FS3    | 3 46K W                                              | The high-frequency gain of the focus servo can be changed by switching FS3 ON or OFF. |
| 4   | 10   | FLB    | 40K W VEE                                            | External time constant setting pin to raise the low bandwidth of the focus servo.     |
| 5   | 11   | FEO    | Vcc                                                  | Focus drive output                                                                    |
| 11  | 19   | TAO    | (5) <b>A</b> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | Tracking drive output                                                                 |
| 14  | 20   | SLO    |                                                      | Sled drive output                                                                     |
| 39  | 45   | SPDLO  | 39 250µA 100µA VEE                                   | Spindle drive output                                                                  |
| 6   | 12   | FE —   | 80 ₹90K Vcc<br>80 × 40K 2.5µA                        | Inverse input pin for the focus amplifier.                                            |
| 7   | 13   | SRCH   | 7 Vcc  3.5µA 1 11µA                                  | External time constant setting pin to generate focus search waveforms.                |

| Q-Z | o.<br>S | Symbol | Equivalent Circuit                                   | Description                                                                             |
|-----|---------|--------|------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 8   | 14      | TGU    | 8 20K ₹110K<br>20K ₹110K<br>₩ ₩ ₩                    | External time constant setting pin to switch the tracking high-frequency gain.          |
| 9   | 15      | TG2    | 9 180<br>9 WW 2µA VEE                                | External time constant setting pin to change the tracking high-frequency gain.          |
| 12  | 18      | TA —   | 180 №90К Vcc<br>180 № 3µД 111µД VEE                  | Inverse input pin for the tracking amplifier.                                           |
| 13  | 19      | SL +   | 10K<br>10K<br>W                                      | Non-inverse input pin for the sled amplifier.                                           |
| 15  | 21      | SL —   | 180<br>180<br>180<br>180<br>180<br>180<br>180<br>180 | Inverse input pin for the sled amplifier.                                               |
| 16  | 22      | SSTOP  | 180<br>180<br>VEE                                    | Signal pin for detecting for the ON/OFF limit switch of the innermost part of the disc. |

| N                                | 0.                               | C h l                            | F ' 1 1 0' ''                   | 2                                                                                                                                                                                                                                                                                                        |
|----------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q-Z                              | S                                | Symbol                           | Equivalent Circuit              | Description                                                                                                                                                                                                                                                                                              |
| 17                               | 23                               | FSET                             | Vec 180 15K ₹15K VEE            | Setting pin for the peak frequency of the focus and/or the tracking phase compensation and the f0 of CLV LPF.                                                                                                                                                                                            |
| 18                               | 24                               | SENS                             | Vcc<br>180<br>180               | Pin to output FZC, AS, TZC, and SSTOP by command from CPU.                                                                                                                                                                                                                                               |
| 20                               | 26                               | с. оит                           | 20 100K                         | Signal output for track number count                                                                                                                                                                                                                                                                     |
| 21<br>22<br>23<br>24<br>25<br>33 | 27<br>28<br>29<br>30<br>31<br>39 | DIRC  XRST  DATA  XLT  CLK  LOCK | 21 Vec<br>22 15μΑ<br>23 180 Vee | Pin for one-track jump Contains a 47 k $\Omega$ pull-up resistor. Reset input pin, reset at "L" Serial data input from CPU Latch input from CPU Serial data transfer clock input from CPU Pin for the operation of the sled runaway prevention circuit at "L" Contains a 47 k $\Omega$ pull-up resistor. |
| 27                               | 33                               | BW                               | 2.7 K<br>4.7 K ₹ VEE            | External time constant setting pin for the loop filter.                                                                                                                                                                                                                                                  |
| 28                               | 34                               | PDI                              | 4.7 K<br>W<br>100 P             | Input pin for the CX23035/CXD1135 phase comparator output PDO.                                                                                                                                                                                                                                           |
| 29                               | 35                               | ISET                             | Vcc 180 10K W VEE               | Input current to determine the peaks of focus search, track jump, and sled kick.                                                                                                                                                                                                                         |

| N   |    | Symbol   | Equivalent Circuit                          | Description                                                                                                        |
|-----|----|----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Q-Z | S  | 37.11301 | Equivalent Silvent                          | Description                                                                                                        |
| 30  | 36 | VCOF     | 30 TOK                                      | The free-running frequency of VCO is almost proportional to the resistance value between this pin and pin 31 (37). |
| 32  | 38 | C864     | Д.DVcc<br>№ 180                             | VCO output pin of 8.64 MHz.                                                                                        |
| 34  | 40 | MDP      | Vec 15K 180  W 20K  14.5K                   | Connecting pin to the CX23035/CXD1135 MDP pin.                                                                     |
| 35  | 41 | MON      | Vec \$ 100K<br>180<br>20.5K<br>₹15K         | Connecting pin to the CX23035/CXD1135 MON pin.                                                                     |
| 36  | 42 | FSW      | Vcc<br>180<br>36<br>W<br>20K<br>220K<br>VEE | LPF time constant setting external pin for the CLV servo error signal.                                             |
| 38  | 44 | SPDL —   | 180 VEE                                     | Inverse input pin for the spindle drive amplifier.                                                                 |

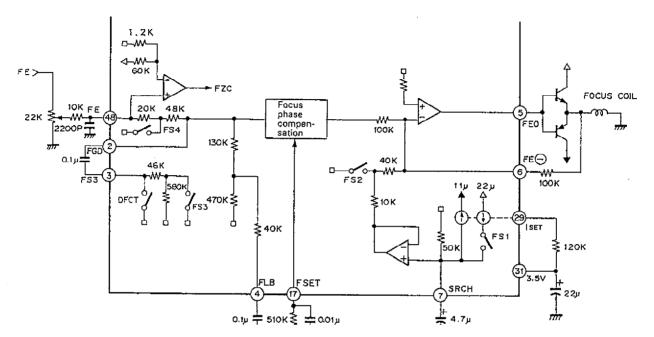
| N   | o. |        |                                    |                                                                                                                       |
|-----|----|--------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Q-Z | S  | Symbol | Equivalent Circuit                 | Description                                                                                                           |
| 40  | 46 | TP1    | Vcc Vcc                            | Pins 40 and 41 are equivalent to CXA1082's                                                                            |
| 41  | 47 | TP2    | 180                                | WDCK and FOK. However with CXA1182, they do not function. Here, set either DVEE and DGND to open or use WDCK and FOK. |
| 42  | 48 | MIRR   | 40 W                               | Mirror signal input pin                                                                                               |
| 44  | 2  | DFCT   | 42 T                               | Defect signal input pin. The defect counter-<br>measure circuit operates at "H".                                      |
| 45  | 3  | TE     | 680K<br>680K<br>1                  | Input pin for tracking error signals.                                                                                 |
| 46  | 4  | TZC    | 75K ₹ Vee                          | Input pin for the zero-cross tracking comparator.                                                                     |
| 47  | 5  | ATSC   | 470K<br>470K<br>470K<br>47P<br>47P | Input pin of the window comparator for ATSC detection.                                                                |
| 48  | 6  | FE     | Vcc<br>↓ 7μ  180  VEE              | Input pin for focus error signals.                                                                                    |

| Test items |          |                            |         |    |    |    |    | sw | condi | tions |    |    |     |     | *  | В  | ias e | condi  | tion | s  | Input   |          | Description of output                                           |        |        |        | 1    |
|------------|----------|----------------------------|---------|----|----|----|----|----|-------|-------|----|----|-----|-----|----|----|-------|--------|------|----|---------|----------|-----------------------------------------------------------------|--------|--------|--------|------|
| No.        |          | Test items                 | Symbol  | Sl | S2 | S3 | 54 | S5 | S6    | S7    | 58 | S9 | S10 | SII | SD | El | E:    | 2 E    | Ξ3   | E4 | point   | point    | waveform<br>and test method                                     | Min.   | Тур.   | Max.   | Unit |
| ı          | Sup      | ply current t              | Alcc    |    |    |    |    |    |       |       |    |    | _   |     | 00 | 0  | 0     |        | 0    | 0  |         | 10       | Measure after resetting                                         | 2,8    | 5, 5   | 8, 2   | mΑ   |
| 2          | Sup      | ply current 2              | DICC    |    |    |    |    |    |       |       |    |    |     |     |    |    |       |        | П    |    |         | 37       |                                                                 | 10, 8  | 15,0   | 19. 2  | Αcm  |
| 3          | Sup      | ply current 3              | A, DIEE |    |    |    |    |    |       |       |    |    |     |     |    |    |       |        |      |    |         | 19<br>43 |                                                                 | 9,8    | 13.0   | 16, 2  | mΑ   |
| 4          | Sup      | ply current 4              | IDGND   |    |    |    |    |    |       |       |    |    |     |     |    |    |       | T      |      |    |         | 26       |                                                                 | 4.8    | 7, 5   | 10, 2  | лA   |
| 5          |          | DC voltage gain            | GFEO    |    |    |    |    |    |       |       |    |    |     |     | 08 |    |       |        |      |    | 48      | 5        | 5G = 10 Hz, 200mVp-p                                            | 18, 0  | 21.0   | 24, 0  | dB   |
| 6          |          | Feedthrough                | VFEOF   | 0  | 0  |    |    |    |       |       |    |    |     |     |    |    |       |        |      |    |         | П        | SG=10kHz, 40mVp-p, Gain differ-<br>ence between 08 and 00 of SD |        |        | -35    | dВ   |
| 7          | 7)       | Max. output<br>voltage l   | VFEOI   |    |    |    |    |    |       |       |    |    | 0   |     | 08 |    |       |        | П    |    |         |          | SG = 0.5VDC                                                     | 1, 98  |        |        | ٧    |
| 8          | Focus se | Max. output<br>voltage 2   | VFEO2   |    |    |    |    |    |       |       |    |    | 0   |     | 08 |    | П     |        |      |    |         |          | SG = -0.5VDC                                                    |        |        | -1, 98 | v    |
| 9          | servo    | Max. output<br>voltage 3   | VFE03   |    |    | 0  |    |    |       |       |    |    | 0   |     | 08 |    |       |        |      |    |         |          | \$G = 0.5VDC                                                    | i, 18  |        |        | v    |
| 10         |          | Max. output<br>voltage 4   | VFE04   |    |    | 0  |    |    |       |       |    |    | 0   |     | 08 |    | П     |        |      |    |         |          | SG = −0.5 ¥DC                                                   |        |        | -1, 18 | V    |
| 11         |          | Search output<br>voltage 1 | Vsrchi  |    |    |    |    |    |       |       |    |    |     |     | 02 |    | П     |        |      |    |         |          | ì                                                               | -0, 64 | -0, 55 | -0, 36 | V    |
| 12         |          | Search output<br>voltage 2 | VSRCH2  |    |    |    |    |    |       |       |    |    |     |     | 03 |    | П     |        |      |    |         |          |                                                                 | 0.36   | 0,55   | 0, 61  | v    |
| 13         |          | DC voltage gain            | GTEO    |    |    |    | 0  |    |       |       |    |    |     |     | 25 |    |       |        |      |    | 45      | 11       | SG = 10 Hz, 500mVp-p                                            | 11, 6  | 14,6   | 17, 6  | dB   |
| 14         |          | Feedthrough                | VTEOF   |    |    |    | 0  |    |       |       |    |    |     |     | 13 |    | П     |        |      |    |         |          | SG=10kHz,100mVp-p,Gain differ-<br>ence between 25 and 20 of SD  | -      |        | -39    | dВ   |
| 15         | ٠        | Max. output<br>voltage 1   | VTEPI   |    |    |    |    |    |       |       |    |    |     | 0   | 25 |    |       |        |      |    | П       |          | SG = 1.5VDC                                                     | 1.98   |        |        | v    |
| 16         | Tracking | Max. output<br>voltage 2   | VTEP2   |    |    |    |    |    |       |       |    |    |     | 0   | 25 |    | П     |        |      |    | П       |          | SG = 1.5VDC                                                     |        |        | -1. 98 | γ    |
| 17         | ig servo | Max. output<br>voltage 3   | VTEP3   |    |    |    |    |    |       |       | 0  |    |     | 0   | 25 |    | П     |        |      |    |         |          | SG = -1.5VDC                                                    | 1, 18  |        |        | . V  |
| 18         | 8        | Max. output<br>voltage 4   | VTEP4   |    |    |    |    |    |       |       | ٥  |    |     | 0   | 25 |    | П     |        |      |    |         |          | SG = 1.5VDC                                                     |        |        | -1. 18 | ٧    |
| 19         |          | Jump output<br>voltage 1   | VJUMPI  |    |    |    |    |    |       |       |    |    |     |     | 2C |    |       |        |      |    |         | П        |                                                                 | -0, 64 | -0, 55 | -0, 36 | V    |
| 20         |          | Jump output<br>voltage 2   | VJUMP2  |    |    |    |    |    |       |       |    |    |     |     | 28 |    |       |        | П    |    |         |          |                                                                 | 0,36   | 0, 55  | 0, 64  | ٧    |
| 21         | -        | DC voltage gain            | GSLO    |    |    |    |    |    |       |       |    |    |     |     | 25 |    |       |        | П    |    | 13      | 14       | SG = 10 Hz<br>Openloop gain                                     | 50     | 56     | 62     | dB   |
| 22         | Sled     | Max, output<br>voltage l   | VSLP1   |    |    |    |    |    |       |       |    |    |     |     | 25 |    | П     |        | П    |    | П       | $\prod$  | SG = 0.4VDC                                                     | 1,98   |        |        | v    |
| 23         | ed servo | Max. output<br>voltage 2   | VSLP2   | _  |    |    |    |    |       |       |    |    | _   |     | 25 |    | П     | $\top$ | Ħ    |    | П       | П        | SG = -0.4VDC                                                    |        |        | -1.98  | ٧    |
| 24         | ò        | Max. output<br>voltage 3   | Vsl.p3  |    |    |    |    |    |       |       |    | 0  |     |     | 25 | П  | П     |        | П    | П  | $\prod$ | $\prod$  | SG = 0.4VDC                                                     | 1, 18  |        |        | V    |

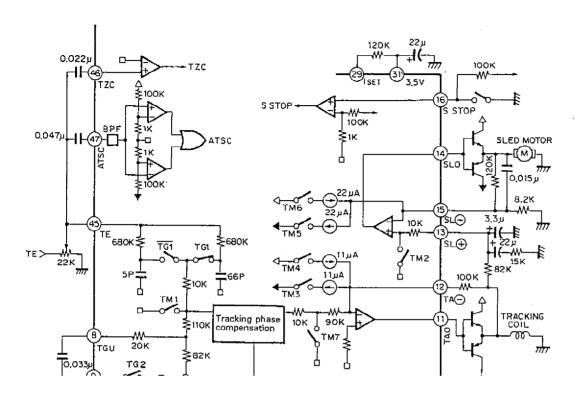
| Ω |  |
|---|--|
| х |  |
| ➣ |  |
| - |  |
| ≍ |  |
| 8 |  |
| Ä |  |
| Ÿ |  |
| Ň |  |
| ` |  |
|   |  |

| Test |               | Test items                 | Symbol   |    |    |    |    | SW | condi | itions |    |    |     |     | •  | Е  | ias co | onditio | ns      |       | Test  |                                                                    |        | T     |          | Unit |
|------|---------------|----------------------------|----------|----|----|----|----|----|-------|--------|----|----|-----|-----|----|----|--------|---------|---------|-------|-------|--------------------------------------------------------------------|--------|-------|----------|------|
| No.  |               | Tem nems                   | 3,111001 | SI | 52 | 53 | 54 | 35 | S6    | 57     | 58 | 59 | S10 | SII | SD | E1 | E2     | E3      | E4      | point | point | and test method                                                    | Min.   | Тур.  | Max.     | Onit |
| 25   | l             | Max. output<br>voltage 4   | VS1.P4   |    |    |    |    |    | ,     |        |    | 0  |     |     | 25 | 0  | 0      | 0       | 0       | 13    | 14    | SG = -0.4VDC                                                       |        |       | -1, 18   | ٧    |
| 26   | Sted s        | Feed through               | VSLOF    |    |    |    |    |    |       |        |    |    |     |     | -  |    |        |         |         |       |       | SG = 10kHz, 200mVp-p, Gain differ-<br>ence between 25 and 20 of SD |        |       | -34      | dB   |
| 27   | Scrva         | Kick output<br>voltage i   | VKICKI   |    |    |    |    | Γ  |       |        |    |    |     |     | 22 | П  |        |         | П       |       |       |                                                                    | -0, 75 | -0, 6 | -0, 45   | ٧    |
| 28   |               | Kick output<br>voltage 2   | VKtCK2   |    |    |    |    |    |       |        |    |    |     |     | 23 |    |        |         |         |       | П     |                                                                    | 0, 45  | 0,6   | 0, 75    | ν    |
| 29   |               | Spindle servo<br>gain      | GSPO     |    |    |    |    |    | 0     |        |    |    |     |     |    | П  |        |         |         | 34    | 39    | SG = 10Hz, 200mVp-p                                                | 14     | 16, 5 | 19       | dB   |
| 30   | ş.            | Max. output<br>voltage 1   | VSPPI    |    |    | -  |    |    | 0     |        |    |    |     |     |    |    |        |         | 11      | П     | П     | SG = 1.0VDC                                                        | 1,78   |       |          | v    |
| 31   | Spindle s     | Max. output<br>voltage 2   | VSPP2    |    |    |    |    |    | 0     |        |    |    |     |     |    |    |        |         |         | П     |       | SG = -1.0VDC                                                       |        |       | · -1, 78 | ٧    |
| 32   | serva         | Max. output<br>voltage 3   | VSPP3    |    |    |    |    |    | 0     | ٥      |    |    |     |     |    |    |        | П       | П       | П     | П     | SG = 1.0VDC                                                        | 1,13   |       |          | ν    |
| 33   |               | Max. output<br>voltage 4   | VSPP4    |    |    |    |    |    | 0     | 0      |    |    |     |     |    |    |        |         | П       |       |       | SG = -1.0VDC                                                       |        |       | -1, 13   | v    |
| 34   |               | PLL Reg. output<br>voltage | Vreg     |    |    |    |    |    |       |        |    |    |     |     |    |    |        | П       | П       |       | 31    | DC voltage                                                         | 3, 3   | 3, 5  | 3, 85    | ٧    |
| 35   | Ē             | Self-running<br>frequency  | Fvco     |    |    |    |    |    |       |        |    |    |     |     |    |    | 0      |         |         |       | 32    | $V_1 = 0 \text{mV}$                                                | 7,4    | 8.6   | 9, 7     | MHz  |
| 36   | -             | Frequency<br>deviation 1   | ΔFι      |    |    |    |    |    |       |        |    |    |     |     |    |    | П      |         |         |       |       | Frequency deviation from<br>FVCO, V <sub>4</sub> =148mV            | 7      | 11    | 15       | %    |
| 37   |               | Frequency<br>deviation 2   | ΔF¢      |    |    |    |    |    |       |        |    |    |     |     |    |    | П      | П       |         |       | ļ     | V <sub>1</sub> =-148mV                                             | -15    | -1i   | -7       | %    |
| 38   | SENS          | low level                  | VSENS    |    |    |    |    |    |       |        |    |    |     |     |    |    |        | П       | П       |       | 18    |                                                                    |        |       | -1. 98   | V    |
| 39   | COUT          | l low level                | vcour    |    |    |    |    |    |       |        |    |    |     |     |    |    | П      | П       | П       |       | 20    |                                                                    |        |       | -1.98    | V    |
| 40   | FZC value     | threshold                  | VTZC     |    |    |    |    |    |       |        |    |    |     |     | 00 | П  |        |         | $\prod$ | 48    | 18    |                                                                    | 39     | 50    | 61       | mV   |
| 41   | ATSC<br>value | threshold                  | VATSCI   |    |    |    |    |    |       |        |    |    |     |     | 10 |    | 0      | $\prod$ | •       | 47    |       | * Value of E when SENS                                             | -45    | -26   | -7       | ωV   |
| 42   | ATSC<br>value | threshold                  | VATSC2   |    |    |    |    |    |       |        |    |    |     |     | 10 |    |        | П       | *       | 47    |       | becomes High (=1.1V) by<br>E1 to E4 varying                        | 7      | 26    | 45       | mV   |
| 43   | TZC<br>value  | threshold                  | VTZC     |    |    |    |    |    |       |        |    |    |     |     | 20 |    | П      | ٠       | 0       | 46    |       | SG = 0V                                                            | -20    | 0     | 20       | mV   |
| 44   | SSTO<br>value | P threshold                | VSSTOP   |    |    |    |    |    |       |        |    |    |     |     | 30 | ٠  |        | 0       |         | 16    |       |                                                                    | -65    | -50   | -35      | mV   |

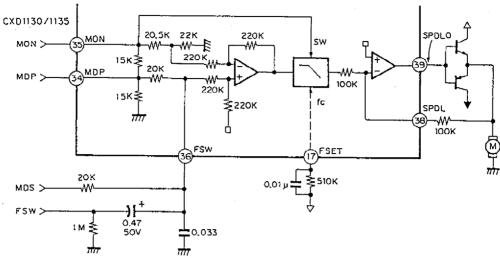
SONY


10 -

CXA11820-Z/S


## **Description of Functions**

## Focus servo system


(See the Pin Configuration for CXA1182S)



## Tracking sled servo system



#### Spindle servo and LPF



The 200 Hz LPF is formed with 0.033  $\mu$ F and 20 k $\Omega$  connected to pin 36. The secondary LPF is formed with the built-in LPF (fc up to 200 Hz with 510 k $\Omega$  for pin 17), and the carrier component of the CLV servo error signals MDS and MDP is eliminated.

In the CLV-S mode, FSW becomes L and pin 36 LPF fc lowers, strengthening the filter further. By connecting the pin 17 resistor to Vcc, even if stability is not achieved, fc does not vary with power supply voltage fluctuations.

Note) Use the phase compensation instead of MDS when CX23035 is used.

#### Commands

The input data that activates this IC consists of 8 bits. It shall be represented as \$XX in two hexadecimal digits. (X Denotes 0 to F). Commands for the CXA1082AQ are classified into 4 types — \$0X to 3X.

1. \$0X [SENSE Pin 18 is "FZC"]

This command is related to the focus servo control.

The bit configuration is as follows:

The four switches FS1 to FS4 are related to focusing, and correspond to D0 to D3.

\$00 At FS1 = 0, Pin 7 is charged to 
$$(22\mu A - 11\mu A) \times 50 \text{ k}\Omega = 0.55 \text{ V}$$
.  
If FS2 = 0, this voltage is not output and the output of Pin 5 remains 0 V.

\$02 From the above state, FS2 only becomes 1 and a negative output is output to Pin 5. This voltage level is stipulated as follows:

$$(22 \mu A - 11 \mu A) \times 50 k\Omega \times \frac{\text{Resistance value between Pin 5 and Pin 6}}{50 k\Omega} \cdots (1)$$

\$03 From the above state, FS1 becomes 1 and the current supply of  $+22 \mu A$  is separated. Then, the CR charge/discharge circuit is formed and Pin 7 voltage decreases as time passes, as shown in Fig. 1.

## 1) Description of FS4

This switch placed between focus error input 48 and the focus phase compensation, serves to switch on and off the focus servo.

$$$00 \rightarrow $08$$
Focus off  $\leftarrow$  Focus on

#### 2) Focusing procedure

Assume the polarity is as follows:

- a) The searching lens moves away or toward the disc.
- b) At the same time, the output voltage of Pin 5 varies from negative to positive.
- c) Further on, the focus S-curve changes as follows:

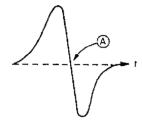



Fig. 3 S-curve

The focus servo is activated at the operating point (A) shown in Fig. 3. Generally, focus servo is switched on for focus searching while passing that (A) point. Moreover, a logical product (AND) is used with the Focus-OK signal to prevent malfunction.

Note here that \$08 should be commanded in the shortest time after FZC changes from H to L. For this purpose, the (b) sequence required for software is better than (a).

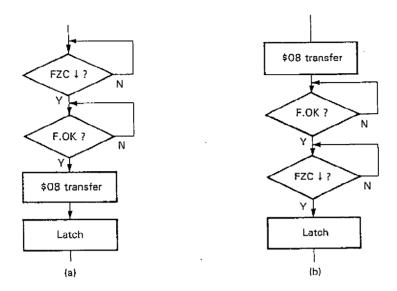



Fig. 5 Bad Sequence and Good Sequence

31 Sanca Pin (Pin 18)

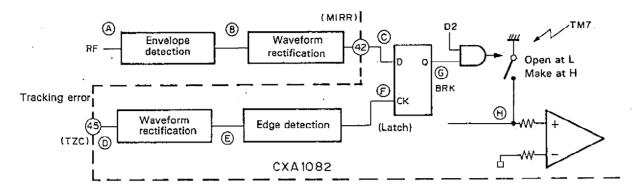
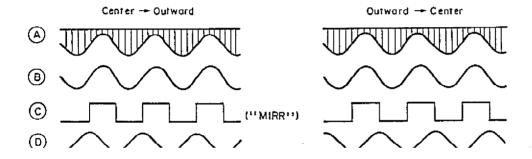




Fig. 6 TM7 Movement (Break Circuit)



#### DIRC Pin 21 and 1 Track Jump

Generally, for a 1-track jump, an acceleration pulse is added, then a deceleration pulse is given for a specified time from the moment the tracking error passes the 0 point after that, the tracking servo is switched on again. For the 100-track jump to be explained in the next item, as long as the number of tracks is about 100 there is no problem. But for the 1-track jump it must be exactly one. This is why the above complicated procedure is required. For the 1-track jump of a CD player, both the acceleration and deceleration take about 300 to 400 µs. When software is used to execute this operation, the flow chart will be as shown in Fig. 9. Practically however, it takes time to transfer data.

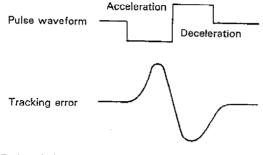



Fig. 8 Pulse Waveform and Tracking Error of 1-Track Jump



#### 4. \$3X

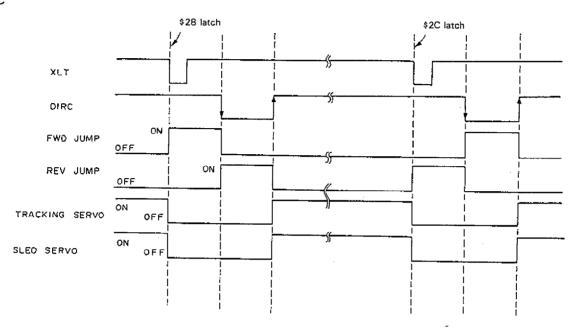
This command is used for switching the Focus search and Sled kick peak value.

DO, D1 .... Sled, NORMAL feed, high-speed feed

D2, D3 ..... Focus search peak switching

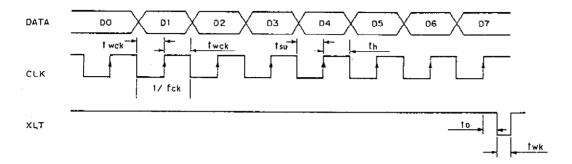
|    |    |    |    | Focus sea | rch peak | Sled kid | k peak |                   |
|----|----|----|----|-----------|----------|----------|--------|-------------------|
| D7 | D6 | D5 | D4 | D3        | D2       | D1       | D0     | Relative<br>value |
|    |    |    |    | (PS3)     | (PS2)    | (PS1)    | (PS0)  |                   |
|    |    |    |    | 0         | 0        | 0        | 0      | ± 1               |
| ١, | 0  | 1  | 1  | 0         | 1        | 0        | 1      | ± 2               |
| ļυ | 0  | 1  | T  | 1         | .0       | 1        | 0      | ± 3               |
|    |    |    |    | 1         | 1        | 1        | 1      | ± 4               |

## Others


## 1. Connection of the power supply pin

|                        | Vcc  | Vss | VC  |
|------------------------|------|-----|-----|
| ±5V dual power supply  | + 5V | −5V | 0∨  |
| 5V single power supply | + 5V | ٥٧  | VC* |

\*CXA1081


## Parallel Direct Interface

## 1. DIRC

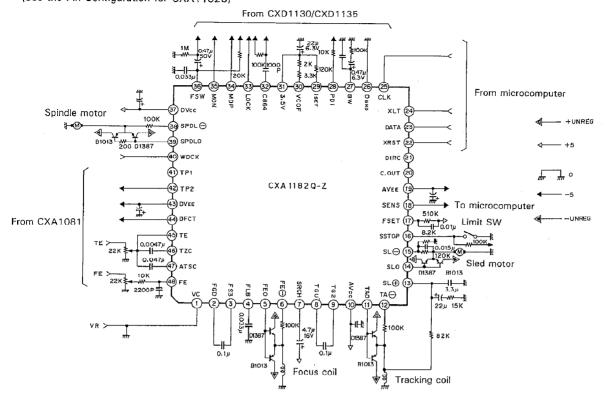


2. LOCK (Sled runaway prevention circuit)

## **CPU Serial Interface Timing Chart**

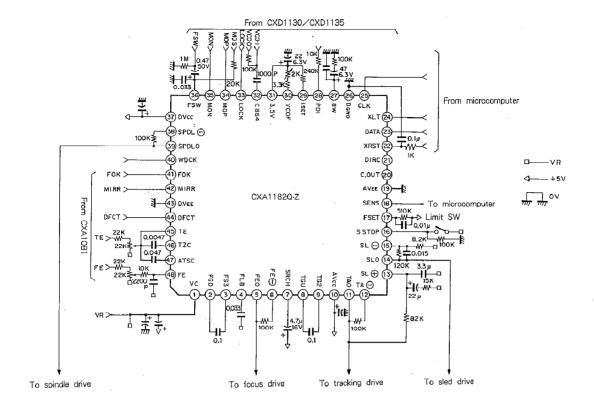


DVcc - DGND = 4.5 to 5.5V


| Item              | Symbol | Min. | Тур.         | Max. | Unit |  |
|-------------------|--------|------|--------------|------|------|--|
| Clock frequency   | fck    |      | <del>.</del> | 1    | MHz  |  |
| Clock pulse width | fwck   | 500  |              |      | ns   |  |
| Hold time         | tsu    | 500  |              |      | ns   |  |
| Setup time        | th     | 500  |              |      | ns   |  |
| Delay time        | to     | 500  | <u> </u>     |      | ns   |  |
| Latch pulse width | twi    | 1000 |              |      | ns   |  |

## Serial Data Truth Table

| Serial data      | Hexa. | Function        |
|------------------|-------|-----------------|
| FOCUS CONTROL    |       | FS = 4321       |
| 0000000          | \$00  | 0000            |
| 00000001         | \$01  | 0001            |
| 00000010         | \$02  | 0010            |
| 00000011         | \$03  | 0 0 1 1         |
| 00000100         | \$04  | 0100            |
| 00000101         | \$05  | 0 1 0 1         |
| 00000110         | \$06  | 0 1 1 0         |
| 00000111         | \$07  | 0111            |
| 00001000         | \$08  | 1000            |
| 00001001         | \$09  | 1001            |
| 00001010         | \$0A  | 1010            |
| 00001011         | \$0B  | 1011            |
| 0011000          | \$0C  | 1100            |
| 00001101         | \$0D  | 1101            |
| 00001110         | \$0E  | 1110            |
| 00001111         | \$0F  | 1 1 1 1         |
| TRACKING CONTROL |       | AS= 0 AS= 1     |
| THE SOUTH OF     |       | TG= 2 1 TG= 2 1 |
| Langtaga         | ۱ ۲۰۰ | l <u> </u>      |

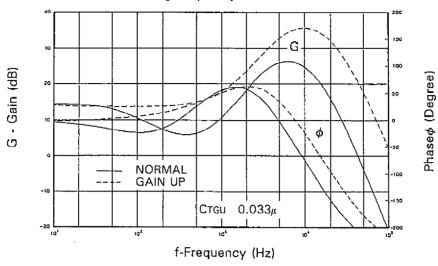

| Serial data    | Hexa. | Function    |        |        |  |  |  |  |  |
|----------------|-------|-------------|--------|--------|--|--|--|--|--|
| TRACKING MODE  |       | DIRC=1      | DIRC=0 | DIRC=1 |  |  |  |  |  |
| TITACKING MODE |       | TM = 654321 | 654321 | 654321 |  |  |  |  |  |
| 00100000       | \$20  | 000000      | 001000 | 000011 |  |  |  |  |  |
| 00100001       | \$21  | 000010      | 001010 | 000011 |  |  |  |  |  |
| 00100010       | \$22  | 000010      | 011000 | 100001 |  |  |  |  |  |
| 00100011       | \$23  | 100000      | 101000 | 100001 |  |  |  |  |  |
| 00100100       | \$24  | 000001      | 000100 | 000011 |  |  |  |  |  |
| 00100101       | \$25  | 000011      | 000110 | 000011 |  |  |  |  |  |
| 00100110       | \$26  | 010001      | 010100 | 100001 |  |  |  |  |  |
| 00100111       | \$27  | 100001      | 100100 | 100001 |  |  |  |  |  |
| 00101000       | \$28  | 000100      | 000100 | 000011 |  |  |  |  |  |
| 00101001       | \$29  | 000110      | 001010 | 000011 |  |  |  |  |  |
| 00101010       | \$2A  | 010100      | 011000 | 100001 |  |  |  |  |  |
| 00101011       | \$2B  | 100100      | 101000 | 100001 |  |  |  |  |  |
| 00101100       | \$2C  | 001000      | 000100 | 000011 |  |  |  |  |  |
| 00101101       | \$2D  | 001010      | 000110 | 000011 |  |  |  |  |  |
| 00101110       | \$2E  | 011000      | 010100 | 100001 |  |  |  |  |  |
| 00101111       | \$2F  | 101000      | 100100 | 100001 |  |  |  |  |  |

1.  $\pm 5$  V dual power supply for CXA1182Q (48 pin QFP) (See the Pin Configuration for CXA1182S)

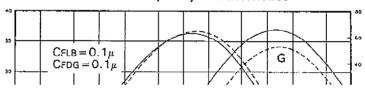


-

25




## Internal Phase Compensation Standard Circuit Design Data


| Mode     | ltem Symbo     |        |    | SW conditions |     |    |     |     |     |    |    | 20 | Bias conditions |  |  | ב ע | B =         | Output waveform |                                 | _    |       |      |      |
|----------|----------------|--------|----|---------------|-----|----|-----|-----|-----|----|----|----|-----------------|--|--|-----|-------------|-----------------|---------------------------------|------|-------|------|------|
|          |                | Symbol | SI | SZ            | \$3 | S4 | \$5 | \$6 | \$7 | S8 | 59 | SD |                 |  |  |     | oint<br>put | Test<br>point   | and description of test methods | Min. | Тур.  | Max. | Unit |
| Focus    | 1. 2 kHz gain  |        | 0  | 0             |     |    |     |     |     |    |    | 08 |                 |  |  |     | 48          | 5               |                                 |      | 21, 5 |      | dB   |
|          | 1. 2 kHz phase |        | 0  | 0             |     |    |     |     |     |    |    | 08 |                 |  |  |     |             |                 |                                 |      | 63    |      | deg  |
|          | 1, 2 kHz gain  |        | 0  | 0             |     |    |     |     |     |    |    | 0C |                 |  |  |     |             |                 |                                 |      | 16    |      | dB   |
|          | 1. 2 kHz phase |        | 0  | 0             |     |    |     |     |     |    |    | 0C |                 |  |  |     |             |                 |                                 |      | 63    |      | deg  |
| Tracking | 1. 2 kHz gain  |        |    |               |     | 0  |     |     |     |    |    | 25 |                 |  |  |     | 45          | 11              |                                 |      | 13    |      | dB   |
|          | 1. 2 kHz phase |        |    |               |     | 0  |     |     |     |    |    | 25 |                 |  |  |     |             |                 | -                               |      | -125  |      | deg  |
|          | 2. 7 kHz gain  |        |    |               |     | 0  |     |     |     |    |    | 25 |                 |  |  |     |             |                 |                                 |      | 26, 5 |      | dB   |
|          | 2, 7 kHz phase |        |    |               |     | 0  |     |     |     |    |    | 25 |                 |  |  |     |             |                 |                                 |      | -130  |      | deg  |
| Spindle  | 100 Hz phase   |        |    |               |     |    |     |     |     |    |    |    |                 |  |  |     | 34          | 39              |                                 |      | -30   |      | deg  |
|          | 2 kHz gain     |        |    |               |     |    |     |     |     |    |    |    |                 |  |  |     |             |                 |                                 |      | -3, 5 |      | dB   |
| le       |                |        |    |               |     |    |     |     |     |    |    |    |                 |  |  |     |             |                 |                                 |      |       |      |      |

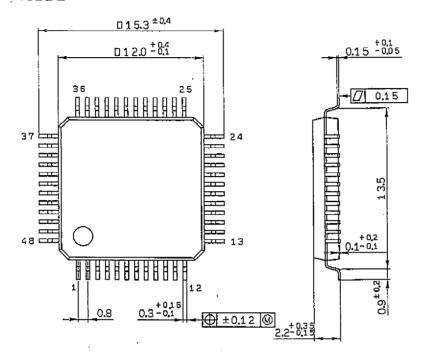
ê

## Tracking frequency characteristics



## FOCUS frequency characteristics




 $\widehat{\mathbf{\omega}}$ 

Package Outline

Unit: mm

48pin QFP (Plastic) 0.7g

CXA1182Q-Z

