

Hence in Electr

TYPE 2N64

The 2N64 is a hermetically sealed PNP junction transistor intended primarily for use in audio or low radio frequency applications. The tinned flexible leads may be soldered or welded directly to the terminals of circuit components without the use of sockets. Standard inline subminiature sockets may be used by cutting the leads to a suitable length.

MECHANICAL DATA

CASE: Metal and Glass

BASE: None (0.016" tinned flexible leads. Length: 1.5" min.
Spacing: Leads 1-4 0.144" center-to-center;
Other Leads 0.048" center-to-center)

TERMINAL CONNECTIONS:

Lead 1 Collector Lead 4 Base Lead 5 Emitter

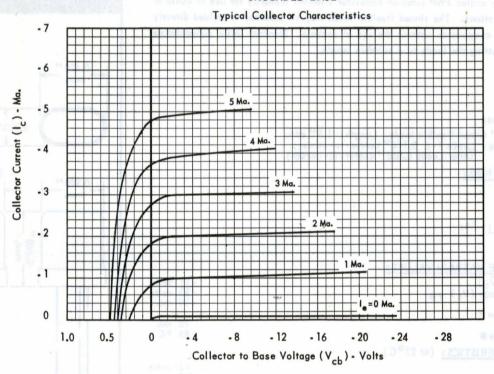
MOUNTING POSITION: Any

E-LECTRICAL DATA

RATINGS - ABSOLUTE MAXIMUM VALUES:			
Collector Voltage (\hat{V}_{c}) Peak Collector Voltage (V_{c}) ♠⊕ Collector Current Collector Dissipation *		-30	volts volts ma.
Emitter Current Ambient Temperature ■			ma. °C
AVERAGE CHARACTERISTICS: (at 27°C)	to Bean Valence to 1 - Value		
Collector Voltage Emitter Current Collector Resistance Base Resistance Emitter Resistance Base Current Amplification Factor	GROUNDE D. EMITTER	1.0 2.0 700 25 45	volts ma. meg. ohms ohms
Cut-off Current (approx.) Noise Factor (max.)●		22	μα. db
AVERAGE CHARACTERISTICS - COMMON E	EMITTER: (at 27°C)		
Collector Voltage Emitter Current Input Resistance Load Resistance Power Gain (Matched Input)	- 1.5 0.5 2400 20,000 39	1.0	volts ma. ohms ohms db.
AVERAGE CHARACTERISTICS - COMMON C	COLLECTOR: (at 27°C)		
Collector Voltage Emitter Current Input Resistance A Load Resistance Power Gain (Matched Input)	87	1.0	volts ma. meg. ohms db.
AVERAGE CHARACTERISTICS - COMMON B	ASE: (at 27°C)		
Collector Voltage Emitter Current Input Resistance Load Resistance Power Gain (Matched Input)		-6 1.0 70 0.1 31	

0.420" max. 0.230" max. 0.195" 0.390" max. max. 0.460 max. 5 4

- This is the maximum operating temperature recommended. However, characteristic damage will not result from occasional exposures to storage temperatures up to 100 °C.
- Measured under conditions for grounded emitter operation at Vcb = -2.5 volts for a 1 cycle bandwidth at 1000 cycles.
- ▲ Higher input impedances, without appreciable loss in gain, can be achieved by operating at lowered collector current.
- * This is a function of maximum ambient temperature (T_A) expected. It is approximately equal to 1.7(85 $^{\circ}$ C- T_A) milliwatts.
- # In circuits stabilized for Ic or Ie and which do not have critical distortion requirements, absolute maximum peak voltage is 60 volts.
- ♦ Collector voltage V_{ce} at which I_c rises to 2 ma. in common emitter circuit with base lead connected directly to emitter lead. Ambient temperature = 25° C. Tentative Data


MANUFACTURING COMPANY RAYTHEON

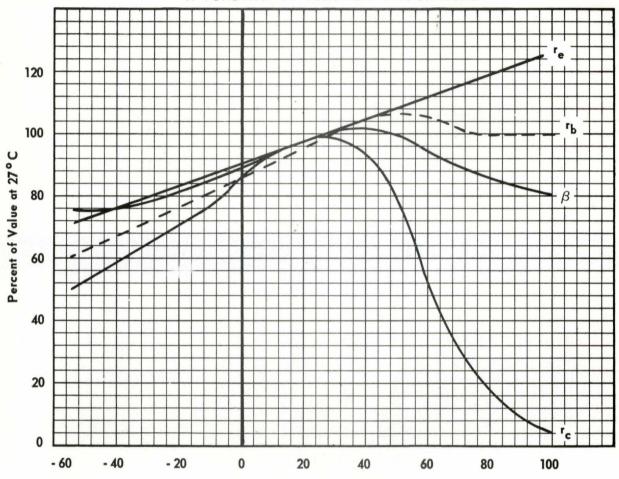
RECEIVING AND CATHODE RAY TUBE OPERATIONS

GERMANIUM TRANSISTOR

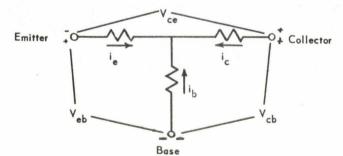
GROUNDED BASE

GROUNDE D EMITTER

Collector to Emitter Voltage (V_{Ce})


lacktriangledown This family is a function of 1-a and thus changes appreciably with small changes in $oldsymbol{a}$.

RAYTHEON MANUFACTURING COMPANY


RECEIVING AND CATHODE RAY TUBE OPERATIONS

GERMANIUM TRANSISTOR

TYPICAL CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE

Temperature - Degrees Centigrade

Arrows refer to positive electrode current flow.

RAYTHEON MANUFACTURING COMPANY

RECEIVING AND CATHODE RAY TUBE OPERATIONS