TRANSISTORS • DIODES RECTIFIERS - CIRCUIT-PAKS

SEMICONDUCTOR

THE FREE RUNNING MULTIVIBRATOR

by

R. J. Bosselaers

Semiconductor Division
Raytheon Company

These notes were written as a guide for the design of a widely used transistor circuit - The Free Running Multivibrator. Limiting values for the resistors are obtained through simple static calculation of the bias conditions for a given temperature range.

The important advantages to be derived from this improved circuit are greater starting reliability and distinctly faster rise time.

This application note is being distributed in connection with the release and immediate availability of the Raytheon $2 \mathrm{~N} 438,2 \mathrm{~N} 439$, and 2N 440 Germanium fusion alloy NPN transistors designed for use in computers and switching applications where reliability is a primary consideration.
A. CONVENTIONAL CIRCUIT:

A conventional circuit for a saturating free running multivibrator is shown in Figure 1.

FIGURE 1
A disadvantage of this circuit is the long rise time, which can easily be explained as follows:

Suppose T_{1} conducting, T_{2} cutoff. The collector-emitter voltage of T_{1} has then the saturation value V_{S}. As soon as the base of T_{2} has a forward bias V_{b}, T_{2} comes into conduction. At this moment the voltage across C_{1} equals ($\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{s}}$) $=0.1 \mathrm{~V}$ so that C_{1} is practically completely discharged. As T_{1} goes out of conduction, C_{1} is recharged via R_{L} so that the collector voltage V_{c} of T_{1} will rise exponentially toward +E. Neglecting the input resistance of $\mathrm{T}_{2}, \mathrm{~V}_{\mathrm{c}}$ is given by:

$$
\begin{equation*}
V_{c}=E\left(1-e^{-t / R_{L} C_{1}}\right) \tag{1}
\end{equation*}
$$

The rise time is then found to be:

$$
\operatorname{tr}=R_{L} C_{1} \ln 10=2.3 R_{L} C_{1}
$$

An approximate formula for the period T is:

$$
T=\left(R_{1} C_{1}+R_{2} C_{2}\right) \ln 2
$$

or if $R_{1} C_{1}=R_{2} C_{2}$:

$$
\mathrm{T}=2 \ln 2\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)
$$

Combining:

$$
\begin{equation*}
\frac{\operatorname{tr}}{\mathrm{T}}=\frac{\ln 10}{2 \ln 2}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1}}\right)=-1.66\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1}}\right) \tag{2}
\end{equation*}
$$

Saturation requires that $\mathrm{R}_{1}<\mathrm{hFE} \mathrm{R}_{\mathrm{L}}$
so that:

$$
\begin{equation*}
\frac{\operatorname{tr}}{\mathrm{T}}>\frac{1.66}{\mathrm{hFE}} \tag{3}
\end{equation*}
$$

If the circuit is designed for a minimum hFE of 40 then $\operatorname{tr} / \mathrm{T}=4 \%$. At 1 kcs this would mean a rise time of $40 \mu \mathrm{sec}$.

Another disadvantage of this circuit is the possibility that T_{1} and T_{2} go both into saturation so that the circuit does not always start oscillating when switched on.

B. ALTERNATE CIRCUIT

A very satisfactory circuit is shown in Figure 2.

FIGURE 2

Initially both T_{1} and T_{2} are conducting, there is no charge on C . The proportioning of voltage and resistor values is such that there is no saturation under these conditions.

Since the loop gain is greater than unity, this situation is unstable. As a result, the emitter voltage of T_{2} will rise, causing T_{1} to cut off and base and emitter of T_{2} will rise further until they are limited by the supply voltage.
C is now charged via R_{2} and T_{2}.
Since V_{b} is fairly constant during the process, the drop of V_{b} is compensated by the initial charge on C equivalent to V_{b}, and V_{b} may be neglected here.

The resistor R_{1} is equivalent to a resistor $R_{1} / h_{\text {FE } 2}$ in the emitter lead and can be neglected in most cases.

The charging voltage is ($\mathrm{E}_{1}+\mathrm{E}_{2}$) and the charging ends when the voltage across R_{2} equals ($E_{2}-V_{b}$), when T_{1} takes over.

Thus the charge time is: $\quad t_{1}=R_{2} C \ln \left(\frac{E_{1}+E_{2}}{E_{2}-V_{b}}\right)$
Now T_{1} is conducting and T_{2} is cut off. C is discharged via R_{3} and T_{1}.
The discharge time is the time required for the voltage across. R_{3} to drop from $\left(E_{1}+E_{2}-V_{b}\right)$ to $\left(E_{2}-2 V_{b}\right)$ 。

$$
\begin{equation*}
t_{2}=R_{3} C \ln \left(\frac{E_{1}+E_{2}-V_{b}}{E_{2}-2 V_{b}}\right) \tag{5}
\end{equation*}
$$

And the total period: $T=R_{2} C \ln \left(\frac{E_{1}+E_{2}}{E_{2}-V_{b}}\right)+R_{3} C \ln \left(\frac{E_{1}+E_{2}-V_{b}}{E_{2}-2 V_{b}}\right)$

CALCULATION OF R_{1} :

R_{1} can be calculated from the saturation conditions for T_{1}.
A maximum value can be found from the requirement that T_{1} should not be saturated under static conditions.

The result is:

$$
\begin{equation*}
R_{1}<\left(\frac{E_{1}+V_{b}}{E_{2}-V_{b}}\right) R_{2} \tag{7}
\end{equation*}
$$

For a good wave-shape it is however required that T_{1} be saturated under dynamic conditions.

Therefore: $\quad I_{c 1} R_{1}=E_{1}$
or if we assume $\alpha=1$

$$
\mathrm{I}_{\mathrm{e} 1} \mathrm{R}_{1}=\mathrm{E}_{1}
$$

Under dynamic conditions, $\mathrm{I}_{\mathrm{e} 1}$ is increased by the discharge current I_{d}.
I_{d} decreases exponentially from $I_{d 1}$ at the beginning to $I_{d 2}$ at the end of the discharge period, where

$$
\begin{aligned}
& I_{d 1}=\frac{E_{1}+E_{2}-V_{b}}{R_{3}} \\
& I_{d 2}=\frac{E_{2}-2 V_{b}}{R_{3}}
\end{aligned}
$$

Adding the static value of $\mathrm{I}_{\mathrm{e} 1}, \frac{\left(\mathrm{E}_{2}-\mathrm{V}_{\mathrm{b}}\right)}{\mathrm{R} 2}$, the following relationship is obtained.

$$
\begin{equation*}
\frac{E_{2}-V_{b}}{R_{2}}+\frac{E_{1}+E_{2}-V_{b}}{R_{3}}>I_{e 1}>\frac{E_{2}-V_{b}}{R_{2}}+\frac{E_{2}-2 V_{b}}{R_{3}} \tag{8}
\end{equation*}
$$

Taking the minimum value of $I_{e 1}$, a minimum value for R_{1} is found, so that

$$
R_{1}>\frac{E_{1}}{\frac{E_{2}-V_{b}}{R_{2}}+\frac{E_{2}-2 V_{b}}{R_{3}}}
$$

A complication arises however, since the process described above will repeat only if the loop gain is greater than unity at the end of the cycle. This requires that T_{1} is not saturated. For this reason it is advisable to choose $R 1$ equal to the minimum value of (9).

Example:

$$
\left.\begin{array}{lc}
\mathrm{E}_{1}=4.5 \mathrm{~V} & \mathrm{~T}_{1} \\
\mathrm{E}_{2}=1.5 \mathrm{~V} & \mathrm{~T}_{2}
\end{array}\right\} \begin{gathered}
\text { Raytheon NPN units (such as } 2 \mathrm{~N} 440 \text {) } \\
\mathrm{V}_{\mathrm{b}}=0.2 \mathrm{~V}
\end{gathered} \quad \begin{gathered}
\mathrm{FE}=100 \\
\text { Alpha Cutoff }=11 \mathrm{mcs}
\end{gathered}
$$

Of all three resistors one can be chosen, the two others can be found from conditions (9) and the equality of t_{1} and t_{2}.

In this example we will choose $R_{2}=150 . \quad R_{3}$ can be found by equating (4) and (5).

$$
R_{2} \ln \left(\frac{E_{1}+E_{2}}{E_{2}-V_{b}}\right)=R_{3} \ln \left(\frac{E_{1}+E_{2}-V_{b}}{E_{2}-2 V_{b}}\right)
$$

which gives $\quad R_{3}=138 \Omega$
Substituting the values of R_{2} and R_{3} in (9) yields:

$$
\mathrm{R}_{1}=271 \Omega
$$

Finally (6) gives $\quad T=459 \mathrm{C}$ seconds where C is stated in farads.
Figure 3 gives the measured period T vs capacitance.* As can be seen, the measured curve lies almost entirely $0.65 \mu \mathrm{sec}$ higher than the calculated curve. The discrepancy is due to finite switching times and storage effects, which have been neglected in the calculations.

Also it shows that the curve shifts up with temperature. From $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ it shifts from 0.5 to $0.85 \mu \mathrm{sec}$ above the calculated curve. This is approximately $3 \mathrm{~m} \mu \mathrm{sec} /{ }^{\circ} \mathrm{C}$.

* Using the circuit of Figure 2 and the resistor values as calculated in this example.

FIGURE 3

