

μ**PD78356**

16-BIT SINGLE-CHIP MICROCONTROLLER

HARDWARE

μ**PD78355** μ**PD78356** μ**PD78P356**

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

QTOP is a trademark of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun-Microsystems, Inc. HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company. NEWS and NEWS-OS are trademarks of SONY Corporation. TRON is an abbreviation of The Real-time Operating System Nucleus. ITRON is an abbreviation of Industrial TRON.

Phase-out/Discontinued

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed : µPD78355/(A)/(A1)/(A2), 78P356KP-S The customer must judge the need for license : µPD78356/(A)/(A1)/(A2), 78P356GC-7EA, 78P356GD-5BB/(A)/(A1)/(A2)

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard:Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

Major Revisions in This Edition

Page	Description
Throughout	"The following products are under development" -> changed to "already developed" μ PD78355, 78356, 78P356, 78356 (A), 78P356 (A)
p. 83, 84	CHAPTER 5 PORT FUNCTIONS Addition of description of the external 8-bit bus to 5.2.3 (4) Port 9
p. 231, 232	CHAPTER 10 ASYNCHRONOUS SERIAL INTERFACE Addition of 10.7 Transmitting/Receiving Data Using the Macro Service
p. 469 to 471	APPENDIX B TOOLS Addition of description when using the integrated debugger

The mark \bigstar shows major revised points.

PREFACE

Users:	This manual is for engineers who intend to subseries for application program develop. The related products are μ PD78356 subs	oment.
	 Standard products : μPD78355, 78356 Special products : μPD78355 (A)^{Note}, 78356 (A1)^{Note}, 78356 (A2)^{Note} 	
	Note Under development	
Purpose:	The purpose of this manual is to help use of the μ PD78356 subseries as listed belo	
Organization:	The μ PD78356 subseries manual consists and instruction.	of two volumes, hardware (this manual)
	Hardware Pin functions Internal peripheral hardware Interrupt Instruction set list	Instruction CPU functions Addressing Instruction set list Detailed explanation of instructions

- CAUTIONS -

Cautions on the use of the μ PD78356 subseries are summarized in CHAPTER 22. Read them before using the product.

For the up-to-the-minute information about this product, please contact an NEC representative.

Guidance:

Before using this manual, the user should have a general knowledge of the electronics, logical circuit, and microcontroller fields.

- To readers using this manual for the products other than μ PD78356

-> When there is no functional difference in the products, the manual describes only the μ PD78356, and its descriptions are applicable to the products other than μ PD78356 subseries.

The description of PROM is for both a one-time PROM and EPROM.

Examples in this manual are described assuming that they are used for the "Standard" quality grade of ordinary electronic equipment. If you want to apply these examples to use which requires "Special" quality grade, consider the quality grade of parts and circuits to be actually used.

•	To check the details of a register if you know the name of the register:
	-> Look it up in APPENDIX C.

- To understand the details of functions which you want to use: -> Look it up in APPENDIX D.
- To understand details of the instruction functions in the μPD78356 subseries:
 See the separate μPD78356 User's Manual Instruction (IEU-853)^{Note}.
- To understand the general functions of the μ PD78356 subseries: -> Read the entire manual in the order of the table of contents.
- To know the electrical specifications in the μPD78356 subseries:
 -> Refer to the Data Sheet in the separate volume.
- To know application examples of each function:
 Refer to the separate Application Note.


Note This document number is that of Japanese version.

Data weight	:	Higher digits on the left side
		Lower digits on the right side
Active low	:	xxxx (Pins and signal names are overscored)
Memory map address	:	Low-order address on the upper side
		High-order address on the lower side
Note	:	Explanation of the indicated part of the text
Caution	:	Information requesting the user's special attention
Remark	:	Supplementary information
Numeric value	:	Binary xxxxB or xxxx
		Decimal xxxx
		Hexadecimal xxxxH

Legend:

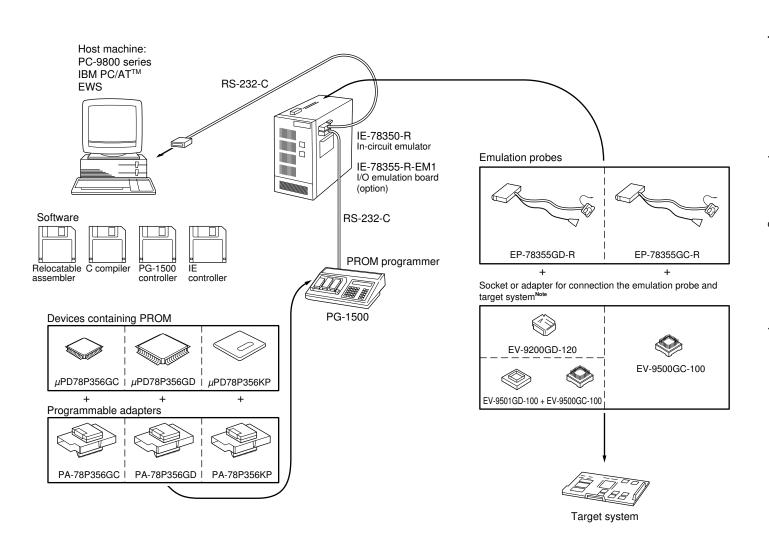
Register format:

Never write a combination of codes marked "Setting prohibited" in the register formats in the text.

Be careful when handling characters that are easily confused:

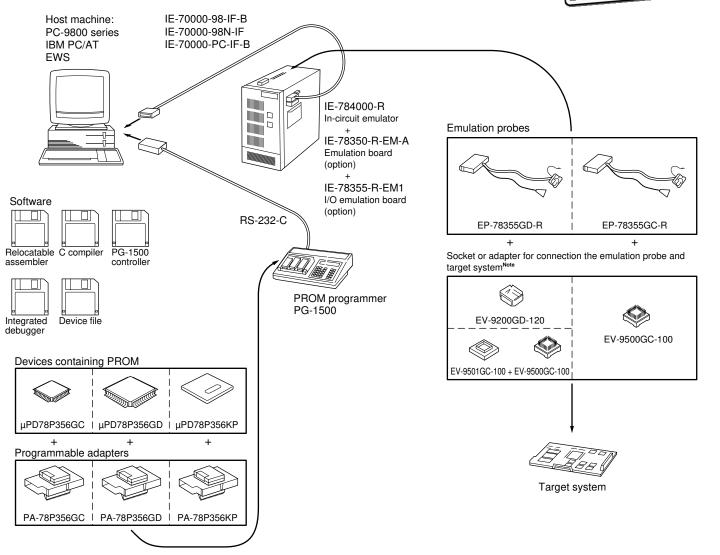
- 0 (zero), O (uppercase of o)
- 1 (one), I (lowercase of L), I (uppercase of i)

Related documents:

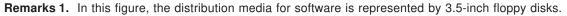

Documents related to device

Document Nam	е	Document No.	
		English	Japanese
µPD78355, 78356 Data Sh	eet	To be published soon	U10155J
µPD78P356 Data Sheet		To be published soon	U10325J
µPD78355 (A), 78356 (A) [Data Sheet	Planned	To be published soon
μ PD78P356 (A) Data Shee	t	Planned	To be published soon
µPD78356 User's Manual	Hardware	This manual	U10669J
Instructions		IEU-1395	IEU-853
µPD78356 Special Function Register Table		IEM-1214	IEM-5576
µPD78352A Instruction Set		—	IEM-5543

• Documents related to development tools

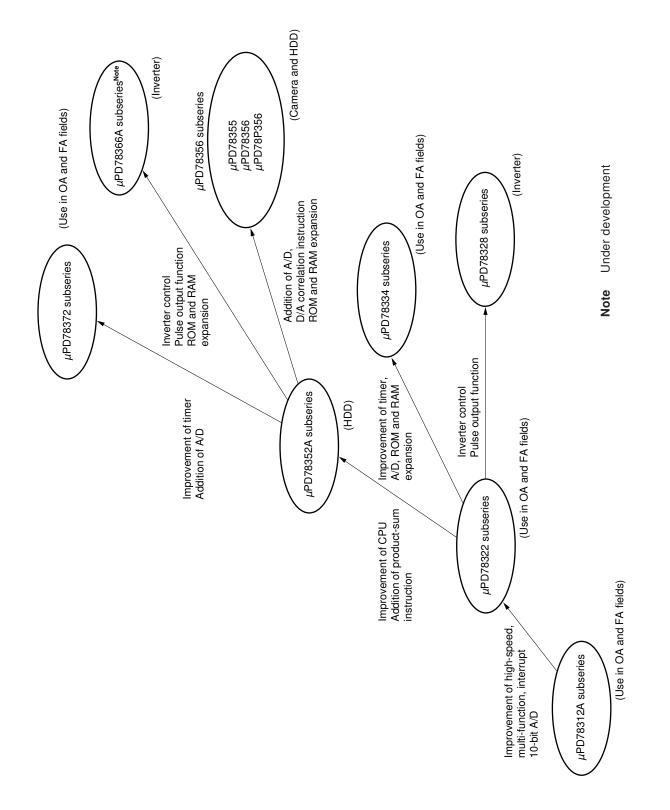

Document Nam	e	Docum	ent No.
		English	Japanese
IE-78350-R	Hardware	EEU-1366	EEU-754
User's Manual	Software	EEU-1376	EEU-753
IE-784000-R User's Manua	l	EEU-1534	EEU-5004
IE-78355-R-EM1 User's Ma	anual	EEU-1423	EEU-866
EP-78355GC-R User's Mai	nual	EEU-1508	EEU-963
EP-78355GD-R User's Mai	nual	EEU-1509	EEU-964

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.



Note The conversion socket or the conversion adapter is supplied with the emulation probe.

Remarks 1. The PG-1500 can be directly connected to the host machine via the RS-232-C interface.2. In this figure, the distribution media for software is represented by 3.5-inch floppy disks.



2. In this figure, the host machines are represented by desk-top personal computers.

Development of 78K/III series products

CONTENTS

CHAPTE	R 1 GENERAL	1
1.1	Features	2
1.2	Applications	3
1.3	Ordering Information and Quality Grade	3
	1.3.1 Standard products	3
	1.3.2 Special products	4
1.4	Pin Configuration (Top View)	5
	1.4.1 μPD78355 normal operation mode	5
	1.4.2 PROM programming mode (only μ PD78P356: MODE0/V _{PP} = +5 V,	
	MODE1 = G, P21 = G, RESET = G)	8
1.5	Block Diagram	10
1.6	Function Overview	11
1.7	Differences between the μ PD78355, μ PD78356, and μ PD78P356	12
1.8	Example of System Configuration	13
CHAPTE	R 2 PIN FUNCTIONS	15
2.1	List of Pin Functions	15
	2.1.1 Normal operating mode	15
	2.1.2 PROM programming mode	
	(only for the μ PD78P356: MODE0/VPP = H, MODE1 = L, P21 = L, $\overline{\text{RESET}}$ = L)	20
2.2	Pin Functions	21
	2.2.1 Normal operation mode	21
	2.2.2 PROM programming mode (only for the μ PD78P356)	31
2.3	Input/Output Circuits and Connection of Unused Pins	32
CHAPTE	R 3 CPU ARCHITECTURE	35
3.1	Memory Space	35
	3.1.1 Vector table area	37
	3.1.2 CALLT instruction table area	38
	3.1.3 CALLF instruction entry area	38
	3.1.4 Internal RAM area	38
	3.1.5 Special function register area	43
	3.1.6 External memory area	43
3.2	Processor Registers	44
	3.2.1 Control registers	45
	3.2.2 General registers	51
	3.2.3 Special function registers (SFRs)	53
3.3	Data Memory Addressing	61
	3.3.1 General-register addressing	62
	3.3.2 Short direct addressing	63
	3.3.3 Special function register (SFR) addressing	63
CHADTE	R 4 SUMMARY OF BLOCK FUNCTION	65
4.1	Execution Unit	65 65
4.1	Bus Control Unit	65
7.6		

	4.3	Progra	m Memory and Data Memory	65			
	4.4	Ports					
	4.5	Real-Time Pulse Unit					
	4.6	Real-Time Output Port					
	4.7	A/D Converter					
	4.8	D/A Converter					
	4.9	Serial	Interfaces	67			
	4.10	PWM C	Dutput Unit	67			
	4.11	Watch	dog Timer	67			
	4.12	Interru	pt Controller	67			
~							
CH			RT FUNCTIONS	69			
	5.1		are Configuration	69 77			
	5.2		ons of the Ports	77			
		5.2.1	I/O port functions and alternate functions	78			
		5.2.2	I/O mode setting	79			
		5.2.3	Control mode setting	82			
		5.2.4	Pull-up resistor specification	90			
СН	APTER	6 CLC	OCK GENERATOR	93			
CH			AL-TIME PULSE UNIT (RPU)	97			
	7.1	•	uration	98			
		7.1.1	TM0	102			
		7.1.2	TM1	102			
		7.1.3	TM2	102			
		7.1.4	TM3	103			
		7.1.5 7.1.6	TM4	103			
			UDC	103			
		7.1.7	Compare registers	104			
	7.2	7.1.8	Capture/compare registers (CC00 to CC02, CC30, and CC31)	105 106			
	1.2	7.2.1	Timer unit mode registers (TUM0 to TUM3)	106			
		7.2.1	Timer Control Registers (TMC0 to TMC2 and the UDCC)	100			
		7.2.2	Timer output control registers (TOC0 to TOC2)	114			
		7.2.4	Timer overflow status register (TOVS)	119			
		7.2.4	External interrupt mode registers (INTM0 and INTM1)	121			
		7.2.6	Noise protection control register (NPC)	123			
	7.3		ion	124			
	110	7.3.1	Timer 0 (TM0)	124			
		7.3.2	Timer 1 (TM1)	130			
		7.3.3	Timer 2 (TM2)	134			
		7.3.4	Timer 3 (TM3)	138			
		7.3.5	Timer 4 (TM4)	142			
		7.3.6	Up/down counter (UDC)	144			
	7.4		Output Function	152			
	7.5		ime Output Function	155			
			•				

	7.5.1	Configuration	155
	7.5.2	Control registers	156
	7.5.3	Operation	158
CHAPTE	R8 A/D	CONVERTER	159
8.1		juration	
8.2		onverter Mode Register 0 (ADM0)	
8.3		onverter Mode Register 1 (ADM1)	
8.4		onversion Result Registers (ADCRs)	
8.5		tion	
0.5	8.5.1	Basic operation of the A/D converter	
	8.5.2	Operating mode for the A/D converter	
	8.5.3	Trigger modes for the A/D converter	
8.6		ary for A/D Converter Characteristics Graphs	
9.1	-	juration	
9.2	•	tion of the D/A Converters ons	
9.3	Cautio	ns	211
СНАРТЕ	R 10 AS	SYNCHRONOUS SERIAL INTERFACE	213
10.1	Config	juration of Asynchronous Serial Interface	214
10.2	Setting	g Pins for Serial Transmission	216
10.3	Setting	g Data Format	218
10.4	Setting	g Baud Rate	220
	10.4.1	Configuration of baud rate generator	222
	10.4.2	Setting a desired baud rate	224
10.5	Transr	mitting Data	227
10.6	Receiv	/ing Data	229
10.7	Trans	mitting/Receiving Data Using the Macro Service	231
10.8	Handli	ing Reception Error	233
СНАРТЕ		LOCK SYNCHRONOUS SERIAL INTERFACE	235
11.1		juration of Clock Synchronous Serial Interface	
11.2	-	g Pins for Serial Transmission	
11.2		g Baud Rate	
11.5			
	11.3.1 11.3.2	Configuration of baud rate generator Setting a desired baud rate	
11 /	-	-	
11.4 11.5		peration Modes of Clock Synchronous Serial Interface g 3-Wire Serial I/O Mode	
11.5	11.5.1	-	
		Transmitting data in 3-wire serial I/O mode	
	11.5.2	Receiving data in 3-wire serial I/O mode	
	11.5.3	Transmitting and receiving data in 3-wire serial I/O mode	
14.0	11.5.4	Action taken when shift operation is not in phase with serial clock	
11.6		g SBI Mode	
	11.6.1	SBI data format	
	11.6.2	Controlling and detecting the serial bus status	
	11.6.3	Transmitting and receiving data in SBI mode	
	11.6.4	Activating operation only when an address is received	

CHA	PTER	12 CL	OCK SYNCHRONOUS SERIAL INTERFACE	
		(W	TH PIN SWITCHING FUNCTION)	279
	12.1	Config	uration of Clock Synchronous Serial Interface	
		(with F	Pin Switching Function)	280
	12.2	Setting	Pins for Serial Transmission	282
	12.3	Switch	ing Pins in 3-Wire Serial I/O Mode	284
	12.4	Setting	g Baud Rate	286
		12.4.1	Configuration of baud rate generator	288
		12.4.2	Setting a desired baud rate	290
	12.5	Operat	ion Mode of Clock Synchronous Serial Interface	
		(with F	Pin Switching Function)	292
	12.6	Selecti	ing Start Bit for 3-Wire Serial I/O Mode Transmission	293
		12.6.1	Transmitting data in 3-wire serial I/O mode	295
		12.6.2	Receiving data in 3-wire serial I/O mode	297
		12.6.3	Transmitting and receiving data in 3-wire serial I/O mode	299
		12.6.4	Action taken when shift operation is not in phase with serial clock	302
СНА	PTER	13 PV	VM SIGNAL OUTPUT FUNCTION	303
	13.1	Config	uration	303
	13.2	Contro	I Register	304
		13.2.1	PWM control register (PWMC)	304
		13.2.2	PWM buffer registers (PWM0 and PWM1)	304
		13.2.3	Compare registers (CMP0 and CMP1)	304
	10.0	0		305
	13.3	Operat	ion	305
	13.3	Operat	10n	305
		•	ATCHDOG TIMER	305
СНА		14 W/		
СНА	PTER	· 14 W/ Config	ATCHDOG TIMER	307
СНА	PTER 14.1	· 14 W/ Config Watch	ATCHDOG TIMER	307 307
СНА	PTER 14.1 14.2	14 W Config Watch Watch	ATCHDOG TIMER uration dog Timer Mode Register (WDM)	307 307 308
СНА	PTER 14.1 14.2 14.3 14.4	Config Watche Watche Examp	ATCHDOG TIMER uration dog Timer Mode Register (WDM) dog Timer Output Pin le of Application	307 307 308 310
СНА	PTER 14.1 14.2 14.3 14.4	Config Watche Watche Examp	ATCHDOG TIMER uration dog Timer Mode Register (WDM) dog Timer Output Pin	307 307 308 310
СНА	PTER 14.1 14.2 14.3 14.4 PTER	Config Watche Watche Examp	ATCHDOG TIMER uration dog Timer Mode Register (WDM) dog Timer Output Pin le of Application	307 307 308 310 310
СНА	PTER 14.1 14.2 14.3 14.4 PTER	Config Watche Watche Examp	ATCHDOG TIMER uration dog Timer Mode Register (WDM) dog Timer Output Pin le of Application	307 307 308 310 310 311
СНА	PTER 14.1 14.2 14.3 14.4 PTER	14 W/ Config Watch Watch Examp 15 IN Interru	ATCHDOG TIMER uration dog Timer Mode Register (WDM) dog Timer Output Pin ble of Application TERRUPT FUNCTION pt Requests	307 307 308 310 310 311 311
СНА	PTER 14.1 14.2 14.3 14.4 PTER	Config Watche Watche Examp 15.1.1	ATCHDOG TIMER uration dog Timer Mode Register (WDM) dog Timer Output Pin de of Application TERRUPT FUNCTION pt Requests Nonmaskable interrupt	307 307 308 310 310 311 311 314
СНА	PTER 14.1 14.2 14.3 14.4 PTER	A 14 W/ Config Watche Examp A 15 IN Interru 15.1.1 15.1.2	ATCHDOG TIMER uration	307 308 310 310 311 314 314 314
СНА	PTER 14.1 14.2 14.3 14.4 PTER	14 W/ Config Watch Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4	ATCHDOG TIMERuration	307 307 308 310 310 311 314 314 314 315
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4	ATCHDOG TIMER	307 308 310 310 311 311 314 314 314 315 315
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru	ATCHDOG TIMERuration	307 308 310 310 311 314 314 314 314 315 315 315
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1	ATCHDOG TIMER uration	307 308 310 310 311 314 314 314 315 315 316 316
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1 15.2.2 15.2.3	ATCHDOG TIMER uration	307 308 310 310 311 314 314 314 315 315 316 316 316
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1 15.2.2 15.2.3	ATCHDOG TIMER	 307 308 310 310 311 314 314 315 316 316 316 316 316 316 316
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1 15.2.2 15.2.3 Interru	ATCHDOG TIMER	 307 308 310 310 311 314 314 315 316 316 316 316 316 316 316 317
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1 15.2.2 15.2.3 Interru 15.3.1	ATCHDOG TIMER	 307 308 310 310 311 314 314 315 316 316 316 316 316 317 319
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1 15.2.2 15.2.3 Interru 15.3.1 15.3.2	ATCHDOG TIMER	307 308 310 310 311 314 314 314 315 316 316 316 316 316 316 317 319 324
СНА	APTER 14.1 14.2 14.3 14.4 APTER 15.1	14 W/ Config Watch Examp 15 IN Interru 15.1.1 15.1.2 15.1.3 15.1.4 Interru 15.2.1 15.2.2 15.2.3 Interru 15.3.1 15.3.2 15.3.3	ATCHDOG TIMER	307 308 310 310 311 314 314 315 315 316 316 316 316 316 317 319 324 326

	15.5	Maskable Interrupt Acknowledgement	333
		15.5.1 Vectored interrupt	335
		15.5.2 Context switching	335
		15.5.3 Maskable interrupt priority	337
	15.6	Software Interrupt Acknowledgement	343
		15.6.1 Software interrupt acknowledgement by the BRK instruction	343
		15.6.2 Software interrupt (context switching) acknowledgement by the BRKCS instruction	343
	15.7	Op-code Trap Interrupt Acknowledgement	346
	15.8	Macro Service Function	347
		15.8.1 Macro service overview	347
		15.8.2 Basic operation of macro service	350
		15.8.3 Macro service completion	352
		15.8.4 Macro service control register	353
		15.8.5 Macro service mode	355
		15.8.6 Macro service operation	355
	15.9	When Interrupt Requests and Macro Service are Held Temporarily	364
	15.10	Instructions Which are Stopped Temporarily in Interrupts and Macro Services	367
СН	APTER	16 STANDBY FUNCTION	369
-	16.1	Function Overview	369
	16.2	Standby Control Register (STBC)	370
	16.3	Operation	372
		16.3.1 HALT mode	372
		16.3.2 STOP mode	375
CH	APTER	17 RESET FUNCTION	385
СН	APTER	18 BUS INTERFACE FUNCTION	389
	18.1	External Device Expansion Function for the μ PD78356	389
	18.2	Access to External Devices by the μ PD78355	393
	18.3	Control Registers	394
		18.3.1 Memory expansion mode register	394
		18.3.2 Programmable wait control register	396
	18.4	Bus Timing	399
СН		19 PROGRAMMING FOR THE μ PD78P356	403
.	19.1	Operating Mode	404
	19.2	Procedure for Writing on PROM (Page Program Mode)	405
	19.3	Procedure for Writing Data into PROM (Byte Program Mode)	408
	19.4	Procedure for Reading from PROM	411
	19.5	Erasure Characteristics (µPD78P356KP Only)	412
	19.6	Protective Film Covering the Erasure Window (μ PD78P356KP Only)	412
	19.7	Screening of One-Time PROM Version Devices	412
.			
CH		20 INSTRUCTION SET	413
	20.1	Operand Identifier and Description	413

	20.2	Legend	416
	20.3	Notational Symbols in Flag Operation Field	417
	20.4	Differences between the μ PD78356 and μ PD78352A Instruction Sets	417
	20.5	Operations of Basic Instructions	418
CH	APTER	21 INSTRUCTION EXECUTION RATE	435
	21.1	Memory Space and Access Speed	435
		21.1.1 Main RAM and peripheral RAM	435
		21.1.2 Memory access	435
	21.2	Interrupt Execution Rate	443
	21.3	Calculating the Number of Execution Clocks	444
<u></u>		22 CAUTIONS	440
СП	22.1	Cautions for Chapter 2	449 449
	22.1	•	
	22.2	Cautions for Chapter 3	449 450
	22.3 22.4	Cautions for Chapter 5	450
		Cautions for Chapter 6	451
	22.5	Cautions for Chapter 7	451
	22.6	Cautions for Chapter 8	453
	22.7	Cautions for Chapter 9	454
	22.8	Cautions for Chapter 10	455
	22.9	Cautions for Chapter 11	456
		Cautions for Chapter 12	456
		Cautions for Chapter 13	456
		Cautions for Chapter 14	456
		Cautions for Chapter 15	457
		Cautions for Chapter 16	459
		Cautions for Chapter 17	459
		Cautions for Chapter 18	459
	22.17	Cautions for Chapter 21	460
AP	PENDI	X A DIFFERENCES BETWEEN THE μ PD78356 AND μ PD78334	461
AP		K B TOOLS	465
	B.1	Development Tools	465
	B.2	Embedded Software	472
AP	PENDIX	C REGISTER INDEX	475
	C.1	Register Name Index (Alphabetic Order)	475
	C.2	Register Symbol Index (Alphabetic Order)	479
AP	PENDI	X D FUNCTION INDEX	483
AP	PENDI	K E REVISION HISTORY	489

LIST OF FIGURES (1/7)

Fig. No.	Title	Page
2-1.	Input/Output Circuits of Each Pin	34
3-1.	Memory Map	36
3-2.	Register Configuration	44
3-3.	Format of Program Status Word	46
3-4.	Format of CPU Control Word	50
3-5.	Manipulation Bits of General Registers	51
3-6.	Addressing Space of Data Memory	61
5-1.	Basic I/O Port Configuration	70
5-2.	Port Specified as an Output Port	71
5-3.	Port Specified as an Input Port	72
5-4.	When the Control Is Specified	73
5-5.	Port Read Control Register Format	74
5-6.	Control (Output Port Specified)	75
5-7.	Port Configuration	77
5-8.	Format of the Port 0 Mode Register	79
5-9.	Format of the Port 1 Mode Register	79
5-10.	Format of the Port 2 Mode Register	80
5-11.	Format of the Port 3 Mode Register	80
5-12.	Format of the Port 5 Mode Register	80
5-13.	Format of the Port 8 Mode Register	80
5-14.	Format of the Port 9 Mode Register	81
5-15.	Format of the Port 10 Mode Register	81
5-16.	Format of the Port 0 Mode Control Register	84
5-17.	Format of the Port 2 Mode Control Register	85
5-18.	Format of the Port 3 Mode Control Register	86
5-19.	Format of the Port 8 Mode Control Register	
5-20.	Format of the Port 10 Mode Control Register	88
5-21.	Format of the Memory Expansion Mode Register	89
5-22.	Format of Pull-up Resistor Option Register L	91
5-23.	Format of Pull-up Resistor Option Register H	91
6-1.	Block Diagram of the Clock Generator	93
6-2.	External Circuitry of the System Clock Generator	94
6-3.	Examples of Wrong Resonator Connection Circuitry	95
7-1.	Block Diagram of the Real-Time Pulse Unit (RPU)	98
7-2.	Format of Timer Unit Mode Register 0	107
7-3.	Format of Timer Unit Mode Register 1	107
7-4.	Format of Timer Unit Mode Register 2	108
7-5.	Format of Timer Unit Mode Register 3	108

LIST OF FIGURES (2/7)

111
ode 126
CLR0 Input) 129
Timer Mode 132
r Mode 133
Timer Mode 136
r Mode 137
Timer Mode 139
r Mode 140
r Mode 143
Normal Mode 146
e Up/Down
g Edge 148
5 - 5 -
g Edge) 149
9 9 - 7
g Edge) 150

LIST OF FIGURES (3/7)

Fig. No.	Title	Page
8-1.	Block Diagram of the A/D Converter	160
8-2.	Operating Modes and Trigger Modes for the A/D Converter	163
8-3.	Format of A/D Converter Mode Register 0 (ADM0)	164
8-4.	Format of A/D Converter Mode Register 1 (ADM1)	167
8-5.	Word Access to ADCRs	169
8-6.	Byte Access to ADCRs	170
8-7.	Basic Operation of the A/D Converter (A/D Trigger Mode: ANI0 to ANI2)	171
8-8.	A/D Conversion in Synchronization with a Trigger Signal	
	(External Trigger Mode: Four-Trigger Mode)	172
8-9	Rewriting Data in ADM during A/D Conversion (A/D Trigger Mode: ANI0 to ANI2)	173
8-10.	Rewriting Data in PMC0 during A/D Conversion (A/D Trigger Mode: Four-Trigger Mode)	173
8-11.	A/D Conversion in the Select Mode (One-Buffer Mode)	175
8-12.	A/D Conversion in the Select Mode (Four-Buffer Mode)	176
8-13.	A/D Conversion in the Scan Mode	176
8-14.	Operating Modes and Trigger Modes for the A/D Converter	177
8-15.	Example 1 of A/D Conversion in the A/D Trigger Mode	177
0 10.	(Select Mode, One-Buffer Mode, ANIn)	178
8-16.	Example 2 of A/D Conversion in the A/D Trigger Mode	170
0 10.	(Select Mode, Four-Buffer Mode, ANIn)	179
8-17.	Example 3 of A/D Conversion in the A/D Trigger Mode (Scan Mode, ANI0 to ANI7)	180
8-18.	Example 1 of A/D Conversion in the Timer Trigger Mode	100
0 10	(Select Mode, One-Buffer Mode, One-Trigger Mode, Timer One-Shot Mode, ANIn)	182
8-19.	Example 2 of A/D Conversion in the Timer Trigger Mode	
	(Select Mode, One-Buffer Mode, One-Trigger Mode, Timer Loop Mode, ANIn)	183
8-20.	Example 3 of A/D Conversion in the Timer Trigger Mode	
	(Select Mode, One-Buffer Mode, Four-Trigger Mode, Timer One-Shot Mode, ANIn)	185
8-21.	Example 4 of A/D Conversion in the Timer Trigger Mode	
	(Select Mode, One-Buffer Mode, Four-Trigger Mode, Timer Loop Mode, ANIn)	186
8-22.	Example 5 of A/D Conversion in the Timer Trigger Mode	
	(Select Mode, Four-Buffer Mode, One-Trigger Mode, Timer Loop Mode, ANIn)	188
8-23.	Example 6 of A/D Conversion in the Timer Trigger Mode	
	(Select Mode, Four-Buffer Mode, Four-Trigger Mode, Timer One-Shot Mode, ANIn)	190
8-24.	Example 7 of A/D Conversion in the Timer Trigger Mode	
	(Select Mode, Four-Buffer Mode, Four-Trigger Mode, Timer Loop Mode, ANIn)	191
8-25.	Example 8 of A/D Conversion in the Timer Trigger Mode	
	(Scan Mode, One-Trigger Mode, Timer Loop Mode, ANI0 to ANI7)	193
8-26.	Example 9 of A/D Conversion in the Timer Trigger Mode	
	(Scan Mode, Four-Trigger Mode, Timer One-Shot Mode, ANI0 to ANI7)	195
8-27.	Example 10 of A/D Conversion in the Timer Trigger Mode	
	(Scan Mode, Four-Trigger Mode, Timer Loop Mode, ANI0 to ANI7)	195
8-28.	Example 1 of A/D Conversion in the External Trigger Mode	
	(Select Mode, One-Buffer Mode, One-Trigger Mode, ANIn)	197

LIST OF FIGURES (4/7)

Fig. No.	Title	Page
8-29.	Example 2 of A/D Conversion in the External Trigger Mode	
	(Select Mode, One-Buffer Mode, Four-Trigger Mode, ANIn)	198
8-30.	Example 3 of A/D Conversion in the External Trigger Mode	
	(Select Mode, Four-Buffer Mode, One-Trigger Mode, ANIn)	199
8-31.	Example 4 of A/D Conversion in the External Trigger Mode	
	(Select Mode, Four-Buffer Mode, Four-Trigger Mode, ANIn)	200
8-32.	Example 5 of A/D Conversion in the External Trigger Mode	
	(Scan Mode, One-Trigger Mode, ANI0 to ANI7)	202
8-33.	Example 6 of A/D Conversion in the External Trigger Mode	
	(Scan Mode, Four-Trigger Mode, ANI0 to ANI7)	204
8-34.	Combined Error	206
8-35.	Quantization Error	206
8-36.	Zero-Scale Error	207
8-37.	Full-Scale Error	207
8-38.	Non-linearity Error	207
9-1.	Block Diagram of a D/A Converter (n = 0, 1)	209
9-2.	Examples of Buffer Amplifier Connection	211
10-1.	Block Diagram of the Asynchronous Serial Interface	215
10-2.	Port 3 Mode Control Register Format	
10-3.	Port 3 Mode Register Format	
10-4.	Data Format of the Asynchronous Serial Interface	
10-5.	Setting of ASIM Register (Data Format)	
10-6.	Setting of ASIM Register (Serial Clock)	
10-7.	Block Diagram of Baud Rate Generator	
10-8.	Timer Control Register 2 Format	
10-9.	Transmission Completion Interrupt Timing for Asynchronous Serial Interface	
10-10.	Reception Completion Interrupt Timing for Asynchronous Serial Interface	
10-11.	Setting of ASIM Register (Reception Enabled)	230
10-12.	Transmitting/Receiving Data Using the Macro Service	232
10-13.	Reception Error Timing	
10-14.	ASIS Register Format	234
11-1.	Block Diagram of Clock Synchronous Serial Interface	238
11-2.	Port 3 Mode Control Register Format	
11-3.	Port 3 Mode Register Format	
11-4.	Setting of CSIM0 Register (Serial Clock)	
11-5.	Block Diagram of Baud Rate Generator	
11-6.	Timer Control Register 2 Format	
11-7.	Example of System Configuration in the 3-Wire Serial I/O Mode	
11-8.	Example of System Configuration in the SBI Mode	248
11-9.	Timing of 3-Wire Serial I/O Mode	
11-10.	Setting of CSIM0 Register (3-Wire Serial I/O Mode)	250
	, , , ,	

LIST OF FIGURES (5/7)

Fig. No.	Title	Page		
11-11.	Timing of 3-Wire Serial I/O Mode (Transmission)	251		
11-12.	Setting of CSIM0 Register (Transmission Enabled)	252		
11-13.	Timing of 3-Wire Serial I/O Mode (Reception)			
11-14.	Setting of CSIM0 Register (Reception Enabled)			
11-15.	Timing of 3-Wire Serial I/O Mode (Transmission and Reception)			
11-16.	Setting of CSIM0 Register (Transmission and Reception Enabled)	257		
11-17.	Example of System Configuration in SBI Mode	259		
11-18.	Setting of CSIM0 Register (SBI Mode)	260		
11-19.	Bus Release Signal	261		
11-20.	Command Signal	261		
11-21.	Address	262		
11-22.	Command	262		
11-23.	Data	262		
11-24.	Acknowledge Signal	263		
11-25.	Busy Signal and Ready Signal	263		
11-26.	Format of Serial Bus Interface Control Register	267		
11-27.	Operations of RELT, CMDT, RELD and CMDD	268		
11-28.	Operation of ACKT	268		
11-29.	Operation of ACKE	269		
11-30.	Operation of ACKD	270		
11-31.	Operation of BSYE	271		
11-32.	Setting of CSIM0 Register (Transmission/Reception Enabled)	273		
11-33.	Address Transfer from Master to Slave Device	274		
11-34.	Command Transfer from Master to Slave Device	274		
11-35.	Data Transfer from Master to Slave Device	275		
11-36.	Data Transfer from Slave to Master Device	275		
11-37.	Example of System Configuration in SBI Mode	276		
11-38.	Setting of CSIM0 Register (Wake-Up Function)	277		
12-1.	Block Diagram of Clock Synchronous Serial Interface (with Pin Switching Function)	281		
12-2.	Port 10 Mode Control Register Format	282		
12-3.	Port 10 Mode Register Format	283		
12-4.	Setting of CSIM1 Register (Pin Switching)	285		
12-5.	Setting of CSIM1 Register (Serial Clock)	287		
12-6.	Block Diagram of Baud Rate Generator	289		
12-7.	Timer Control Register 2 Format	291		
12-8.	Example of System Configuration in the 3-Wire Serial I/O Mode	292		
12-9.	Timing of 3-Wire Serial I/O Mode	293		
12-10.	Setting of CSIM1 Register (Start Bit for 3-Wire Serial I/O Mode)	294		
12-11.	Timing of 3-Wire Serial I/O Mode (Transmission)	295		
12-12.	Setting of CSIM1 Register (Transmission Enabled)	296		
12-13.	Timing of 3-Wire Serial I/O Mode (Reception)	297		

LIST OF FIGURES (6/7)

Fig. No.	Title	Page	
12-14.	Setting of CSIM1 Register (Reception Enabled)	298	
12-15.	Timing of 3-Wire Serial I/O Mode (Transmission and Reception)	300	
12-16.	Setting of CSIM1 Register (Transmission and Reception Enabled)		
13-1.	Block Diagram of the PWM Unit	303	
13-2.	Format of PWM Control Register	304	
13-3.	Operation of PWM Output Function (High-Active Setting)	305	
14-1.	Block Diagram of the Watchdog Timer	307	
14-2.	Format of the Watchdog Timer Mode Register	309	
15-1.	Format of the Interrupt Control Registers	321	
15-2.	Format of the Interrupt Mask Flag Registers	324	
15-3.	Format of the Interrupt Mode Control Register	326	
15-4.	Format of the In-service Priority Register	327	
15-5.	Format of the Program Status Word (PSWL)	328	
15-6.	Nonmaskable Interrupt Request Acknowledgement	330	
15-7.	Interrupt Acknowledgement Algorithm	334	
15-8.	Context Switching Operation in Response to Interrupt Request	335	
15-9.	Format of the RETCS Instruction	336	
15-10.	Return Operation from Interrupt Using Context Switching Function by RETCS		
	Instruction	336	
15-11.	Operation Example When Other Interrupt Requests are Generated		
	during Interrupt Servicing	338	
15-12.	Operation Example of Simultaneously Generated Interrupt Requests	341	
15-13.	Level 3 Interrupt Acknowledgement Due to IMC Register Setting	342	
15-14.	Context Switching Operation by the BRKCS Instruction Execution	344	
15-15.	Format of the RETCSB Instruction	345	
15-16.	Restoring from Software Interrupt by BRKCS Instruction		
	(RETCSB Instruction Operation)	346	
15-17.	Difference between Vectored Interrupt and Macro Service Servicing	347	
15-18.	Sample Sequence of Macro Service Processing	350	
15-19.	Operation when Macro Service Completes	352	
15-20.	Basic Structure of a Macro Service Control Word	353	
15-21.	Macro Service Control Word Format	354	
16-1.	Transition Diagram of the Standby Modes	369	
16-2.	STBC Register Write Instruction	370	
16-3.	Format of the Standby Control Register	371	
16-4.	Format of the Watchdog Timer Mode Register	377	
16-5.	Operations after STOP Mode is Released (1)	378	
16-6.	Operations after STOP Mode is Released (2)	379	
16-7.	Operations after STOP Mode is Released (3)	380	

LIST OF FIGURES (7/7)

Fig. No.	Title	Page
16-8.	Operations after STOP Mode is Released (4)	381
16-9.	Releasing the STOP Mode by NMI Input	383
17-1.	Acceptance of the RESET Signal	385
17-2.	Reset Operation at Power-on	386
18-1.	Memory Map for Expansion Mode (for μ PD78356 When an External 8-bit bus is Specified)	391
18-2.	Memory Map for Expansion Mode (for μ PD78356 When an External 16-Bit Bus	000
18-3.	is Specified) Memory Map of the μPD78355	392 393
18-4.	Format of the Memory Expansion Mode Register	395
18-5.	Format of the Programmable Wait Control Register	397
18-6.	Read Operation (with an 8-Bit Bus)	399
18-7.	Write Operation (with an 8-Bit Bus)	400
18-8.	Read Operation (When an Even Address is Accessed with a 16-Bit Bus)	400
18-9.	Write Operation (When an Even Address is Accessed with a 16-Bit Bus)	401
18-10.	Read Operation (When an Odd Address is Accessed with a 16-Bit Bus)	401
18-11.	Write Operation (When an Odd Address is Accessed with a 16-Bit Bus)	402
19-1.	Memory Map (in the μ PD78P356 Programming Mode)	403
19-2.	Flowchart of Procedure for Writing (Page Program Mode)	406
19-3.	Timing Chart of PROM Write and Verify Operation (Page Program Mode)	407
19-4.	Write Operation Flowchart (Byte Program Mode)	409
19-5.	Timing Chart of PROM Write and Verify Operation (Byte Program Mode)	410
19-6.	PROM Read Timing Chart	411
21-1.	Concept of Memory Access in Op-Code Fetch	437
21-2.	Concept of Memory Access in Data Access	440
22-1.	Examples of Buffer Amplifier Connection	455

LIST OF TABLES (1/3)

Table No.	Title	Page
1-1.	Differences between the μ PD78355, μ PD78356, and μ PD78P356	12
2-1.	Port Pin Functions	15
2-2.	Non-port Pin Functions	17
2-3.	Pin Functions for PROM Programming Mode	20
2-4.	Input/Output Circuits of Each Pin and Connection of Unused Pins	32
3-1.	Vector Table Area	37
3-2.	Operations when Word Accessing in the Internal RAM Area	39
3-3.	General Register Configuration	52
3-4.	Special Function Registers	55
5-1.	Port Functions and Alternate Functions of the Ports	78
5-2.	Operation of Port 4 and Port 5 (µPD78356)	82
5-3.	μ PD78356 Port 9 Operation (External 8-bit Bus)	83
5-4.	μ PD78356 Port 9 Operation (External 16-bit Bus)	83
7-1.	Components of the Real-Time Pulse Unit (RPU)	101
7-2.	Interrupt Request Signals from 16-Bit Compare Registers	104
7-3.	Interrupt Request Signal from the 10-Bit Compare Register	104
7-4.	Functions of Timer Unit Mode Registers	106
7-5.	Functions of Timer Control Registers	109
7-6.	Functions of Timer Output Control Registers	114
7-7.	Timer Outputs and Trigger Signals	114
7-8.	Function of the Timer Overflow Status Register	119
7-9.	Functions of External Interrupt Mode Registers	121
7-10.	Function of the Noise Protection Control Register	123
7-11.	Interrupt Request Signals from 16-Bit Compare Registers for Timer 0 (TM0)	125
7-12.	Operating Modes for Each Timer Output Pin of Timer 0 (TM0)	125
7-13.	Capture Trigger Signals for 16-Bit Capture Registers for Timer 0 (TM0)	128
7-14.	Interrupt Request Signals from 16-Bit Compare Registers for Timer 1 (TM1)	131
7-15.	Operating Modes for Each Timer Output Pin of Timer 1 (TM1)	131
7-16.	Interrupt Request Signals from 16-Bit Compare Registers for Timer 2 (TM2)	135
7-17.	Operating Modes for Each Timer Output Pin of Timer 2 (TM2)	135
7-18.	Interrupt Request Signals from 16-Bit Compare Registers for Timer 3 (TM3)	139
7-19.	Capture Trigger Signals for 16-Bit Capture Registers for Timer 3 (TM3)	141
7-20.	Interrupt Request Signals from 10-Bit Compare Registers for Timer 4 (TM4)	143
7-21.	Interrupt Request Signals from 16-Bit Compare Registers for the Up/Down Counter	
	(UDC)	145
7-22.	Operating Mode for the Up/Down Counter (UDC)	148
7-23.	Timer Output Pins and Toggle Signals	152

LIST OF TABLES (2/3)

Table No.	Title	Page
7-24.	Timer Output Pins and Set and Reset Signals	152
7-25.	Data of RTPHn and RTPLn (n = 0 to 7) to Be Read	158
8-1.	Analog Input Pins to Be Selected	165
8-2.	CS Bit Manipulation and A/D Conversion in the A/D Trigger Mode	166
8-3.	CS Bit Manipulation and A/D Conversion in the Timer Trigger Mode or	
	External Trigger Mode	166
8-4.	A/D Conversion Time	168
8-5.	Trigger Mode for the ANI0 to ANI3 Pins	168
10-1.	Baud Rate Setting Examples (Asynchronous Serial Interface)	226
10-2.	Causes of Reception Errors	233
11-1.	Signals Used in SBI Mode	264
13-1.	PWM Signal Repetition Frequencies	303
15-1.	Interrupt Request Handling	311
15-2.	Interrupt Sources	312
15-3.	Interrupt Control Registers	317
15-4.	Interrupt Control Register Flags for the Interrupt Request Signals	318
15-5.	Multiple-interrupt Servicing	337
15-6.	Interrupt for Which Macro Service Can be Used	348
15-7.	Classification of Macro Service Modes	355
15-8.	Counter Mode Operation Specification	356
15-9.	Specification of Block Transfer Mode Operation	357
15-10.	Specification of Block Transfer Mode (with a Memory Pointer) Operation	359
15-11.	List of Instructions with which Interrupt Requests may not be Acknowledged	365
16-1.	Operation States in the HALT Mode	372
16-2.	Acceptance of Interrupts Generated during Interrupt Handling	373
16-3.	Operations after the HALT Mode is Released by an Interrupt Request	374
16-4.	Releasing the HALT Mode by a Macro Service Request	374
16-5.	Operation States in the STOP Mode	375
16-6.	Release of STOP Mode and Operations after Release	382
17-1.	Hardware Statuses after Reset	387
18-1.	Assigning Functions to Pins (for μ PD78356 When an External 8-Bit Bus is Specified)	389
18-2.	Operation of Port 5 (Expansion Mode)	390
18-3.	Assigning Functions to Pins (for μ PD78356 When an External 16-Bit Bus is Specified)	392
18-4.	Status after PWC Register Reset	396

LIST OF TABLES (3/3)

Table No.	Title	Page
19-1.	Functions of Pins in the Programming Mode	404
19-2.	Operating Modes for Programming on PROM	404
20-1.	Operand Identifier and Description	414
20-2.	Absolute Names and Their Corresponding Function Names of an 8-bit Register	415
20-3.	Absolute Names and Their Corresponding Function Names of a 16-bit Register	415
20-4.	Notational Symbols in Flag Operation Field	417
21-1.	The Number of Clocks Registered for Op-code Fetch	436
21-2.	Bus Control Signals in Op-Code Fetch	438
21-3.	Number of Clocks Required for Data Access	439
21-4.	Bus Control Signals in Data Access (When Specified External 8-bit Bus)	441
21-5.	Bus Control Signals in Data Access (When Specified External 16-bit Bus)	442
21-6.	Number of saddr Accesses by Instruction	445
21-7.	Number of sfr Accesses by an Instruction	448

CHAPTER 1 GENERAL

Phase-out/Discontinued

The µPD78356 subseries products are products of the 16-bit single-chip microcontroller 78K/III series. They contain a 16-bit high-speed, high-performance CPU.

The μ PD78356 subseries has the following 12 models.

- Standard products : μPD78355, 78356, 78P356
- Special products : μPD78355 (A)^{Note}, 78355 (A1)^{Note}, 78355 (A2)^{Note}, 78356 (A), 78356 (A1)^{Note}, 789356 (A2)^{Note}, 78P356 (A2)^{Note}

Note Under development

The μ PD78356 series contains a data bus whose width can be switched from 8 bits to 16 bits, and vice versa (bus sizing function).

The μ PD78356 series also contains an ultrahigh-speed A/D converter and high-speed D/A converter, which are required in motor control, a real-time pulse unit, which controls pulses in real time, and large memory. Because the product-sum instruction is added, the μ PD78356 series can be used in many field as high-speed, high-performance CPU.

The μ PD78355 is a ROM-less version of the μ PD78356.

The µPD78P356 is produced by replacing the internal mask ROM of the µPD78356 with a one-time PROM or EPROM. One-time PROM versions, in which data can be written once are ideally suited for small-scale production of many different products, and rapid development and time-to-market of a new product. EPROM products, to which programs can be re-written after previously written programs have been erased, are suited for system evaluation.

The μ PD78355 (A), 78355 (A1), 78355 (A2), 78356 (A), 78356 (A1), 78356 (A2), 78P356 (A), 78P356 (A1), 78P356 (A2) are "special" quality grade versions of the μ PD78355, 78356 and 78P356, respectively.

1.1 Features

- · 16-bit internal architecture, 16- or 8-bit external data bus
- High-speed data processing using the pipeline control system and high-speed operation clock Minimum instruction execution time: 125 ns

(internal clock frequency: 16 MHz, external clock frequency: 32 MHz)

Phase-out/Discontinued

- 115 instruction sets suited for control applications (μPD78322 upward compatible)
 - 16-bit arithmetic/logical instruction
 - Multiply/divide instruction (16 bits x 16 bits, 32 bits ÷ 16 bits)
 - Signed multiply instruction
 - Product-sum instruction (16 bits x 16 bits + 32 bits)
 - Correlation instruction
 - String instruction
 - Bit manipulation instruction and so on
- Various peripheral hardware
 - Real-time pulse unit
 - Ultrahigh-speed 10-bit resolution A/D converter: 8 channels
 - (A/D conversion time is about 2 µs: Operation with an external frequency of 32 MHz)
 - 8-bit resolution D/A converter: 2 channels
 - 8/10/12-bit resolution variable PWM signal output function: 2 channels
- Discrete serial interfaces: 3 channels
 - UART
 - Synchronous serial interface/SBI
 - Synchronous serial interface (with pin switching function)
- · On-chip high-speed interrupt controller
 - A 4-level priority can be specified.
 - One interrupt processing mode can be selected out of three types: (vectored interrupt function, macro service function, and context switching function.)
- Internal memory: ROM 48 Kbytes (μPD78356)

Not provided (µPD78355)

PROM 48 Kbytes (µPD78P356)

RAM 2 Kbytes

1.2 Applications

[Standard products]

- · High-speed servo control for hard disk drive or floppy disk drive
- · Automatic focusing for camcoder or single-lens reflex camera
- · Motor control in factory automation field

[Special products]

· Car electrical control

1.3 Ordering Information and Quality Grade

1.3.1 Standard products

(1) Ordering information

Part number	Package	Internal ROM	
μPD78355GC-7EA	100-pin plastic QFP (14 x 14 mm)	Not provided	*
µPD78355GD-5BB ^{№te}	120-pin plastic QFP (28 x 28 mm)	Not provided	
μPD78356GC-xxx-7EA	100-pin plastic QFP (14 x 14 mm)	Mask ROM	*
μPD78356GD-xxx-5BB	120-pin plastic QFP (28 x 28 mm)	Mask ROM	*
μPD78P356GC-7EA	100-pin plastic QFP (14 x 14 mm)	One-time PROM	*
μPD78P356GD-5BB	120-pin plastic QFP (28 x 28 mm)	One-time PROM	*
µPD78P356KP-S ^{№te}	120-pin ceramic WQFN	EPROM	

Note Under development

Remark xxx indicates ROM code suffix.

(2) Quality grade

Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

1.3.2 Special products

 \star

*

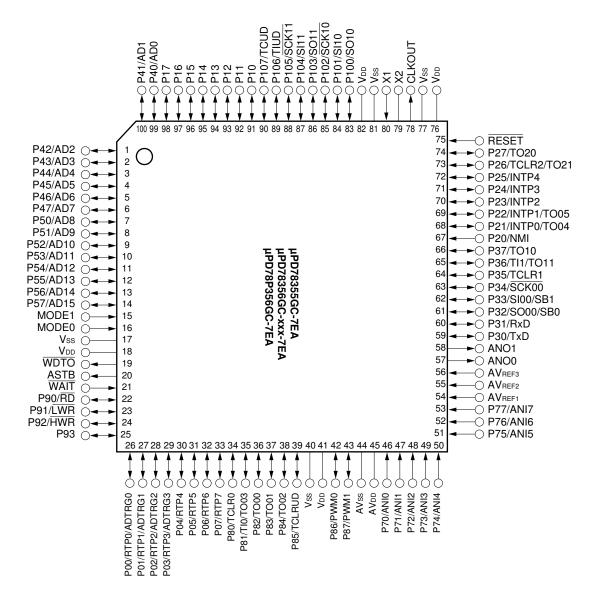
(1) Ordering information

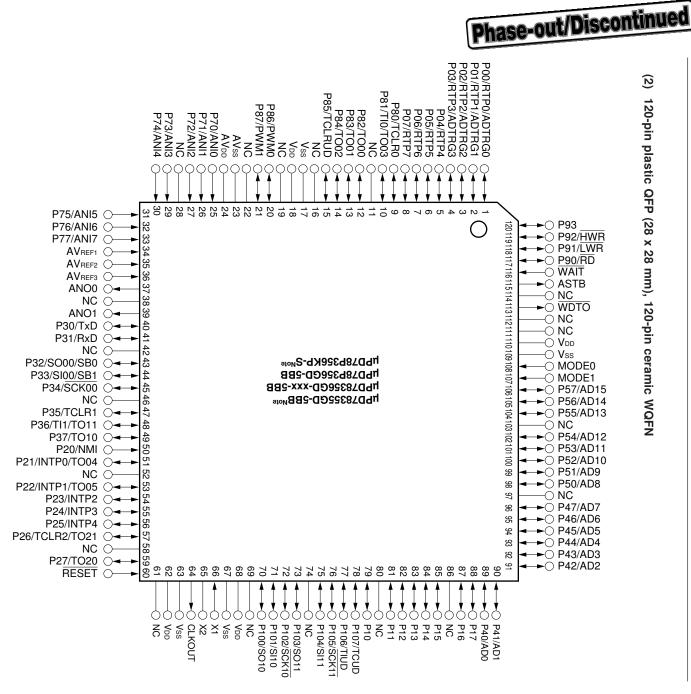
Part number	Package	Internal ROM
μPD78355GD(A)-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	Not provided
μPD78355GD(A1)-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	Not provided
μPD78355GD(A2)-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	Not provided
μPD78356GD(A)-xxx-5BB	120-pin plastic QFP (28 x 28 mm)	Mask ROM
μPD78356GD(A1)-xxx-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	Mask ROM
μPD78356GD(A2)-xxx-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	Mask ROM
μPD78P356GD(A)-5BB	120-pin plastic QFP (28 x 28 mm)	One-time PROM
μ PD78P356GD(A1)-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	One-time PROM
μ PD78P356GD(A2)-5BB ^{Note}	120-pin plastic QFP (28 x 28 mm)	One-time PROM

Note Under development

Remark: xxx indicates ROM code suffix.

(2) Quality grade


Special


Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

1.4 Pin Configuration (Top View)

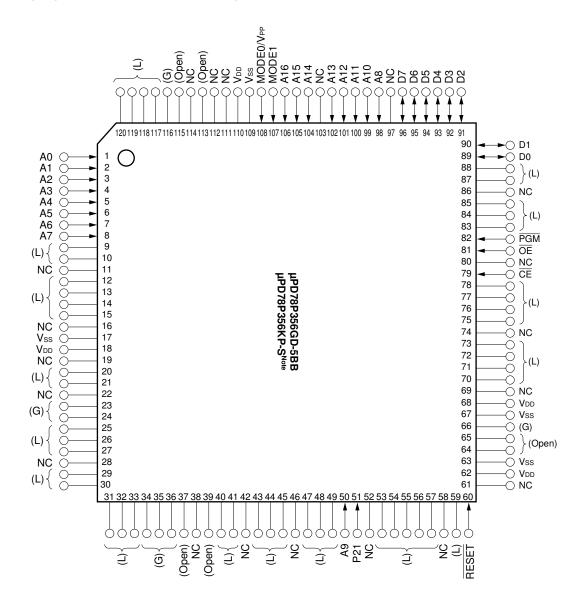
1.4.1 µPD78355 normal operation mode

(1) 100-pin plastic QFP (14 x 14 mm)

6

CHAPTER 1 GENERAL

	Port 0 Port 1	SI00, SI10 SI11	Serial input
	Port 2	SO00, SO10	Serial output
P30 to P37 :	Port 3	SO11	
P40 to P47 :	Port 4	SB0, SB1	Serial bus
P50 to P57 :	Port 5	SCK00, SCK10	Serial clock
P70 to P77 :	Port 7	SCK11	
P80 to P87 :	Port 8	PWM0, PWM1	Pulse width modulation output
P90 to P93 :	Port 9	WDTO	Watchdog timer output
P100 to P107 :	Port 10	MODE0, MODE1	Mode
RTP0 to RTP7 :	Realtime port	AD0 to AD15	Address/data bus
NMI :	Nonmaskable interrupt	ASTB	Address strobe
INTP0 to INTP4 :	Interrupt from peripherals	RD	Read strobe
TO00 to TO05 :]	LWR	Low-address write strobe
TO10, TO11 :	> Timer output	HWR	High-address write strobe
TO20, TO21 :	J	WAIT	Wait
TCLR0 to TCLR2 :	Timer clear input	CLKOUT	Clock output
TCLRUD :		RESET	Reset
TI0, TI1 :	Timer input	X1, X2	Crystal
TIUD :	Count pulse input	AVDD	Analog VDD
TCUD :	Control pulse input	AVss	Analog Vss
ANI0 to ANI7 :	Analog input	AVREF1 to AVREF3	Analog reference voltage
ADTRG0 to ADTRG3 :	A/D trigger input	Vdd	Power supply
ANO0, ANO1 :	Analog output	Vss	Ground
TxD :	Transmit data	NC	Non-connection
RxD :	Receive data		

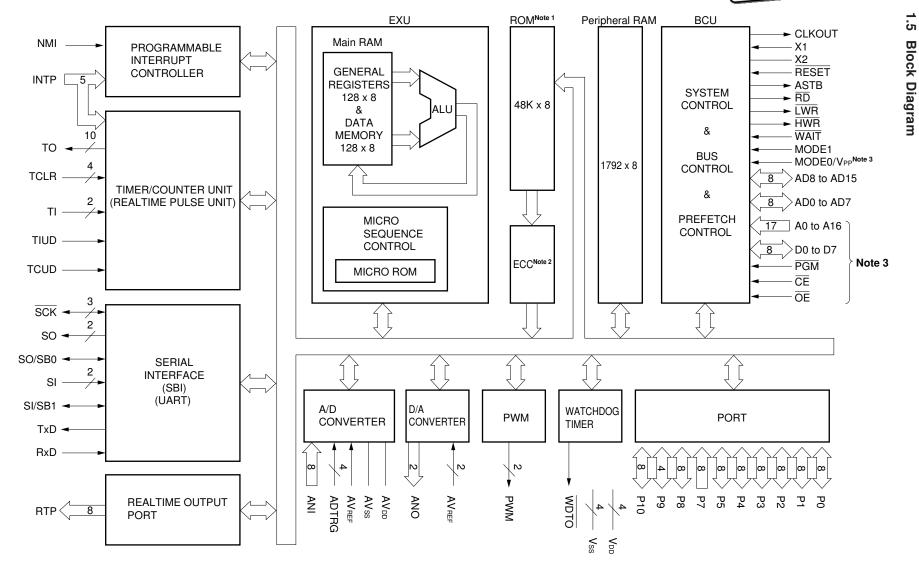

1.4.2 PROM programming mode (only μ PD78P356: MODE0/VPP = +5 V, MODE1 = G, P21 = G, RESET = G)

-) (Open) Ľ, Ļ CDD Vss 29 000 Ô Ô \mathbf{Q} $\cap \cap$ С \square \cap 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 0 RESET D2 1 74 -0 \bigcirc D3 2 73 0 D4 3 72 О (L) D5 4 71 -0 D6 D7 5 70 Ō 6 69 -0 A8 7 68 - P21 A10 8 C 67 -O A9 A11 9 (66 -0 µPD78P356GC-7EA **A12** Č 10 65 -0 A13 Ŏ 11 -Õ 64 A14 Ŏ 12 63 -0 A15 Ŏ 13 (L) -Ŏ -Ŏ 62 A16 Č 14 61 MODE1 15 -0 -0 60 MODE0/VPP 16 59 Vss C 17 58 $\phi \phi \phi \phi \phi \phi$ Vdd 18 (Open) 57 19 (Open) 56 20 55 (Ġ) (G) 21 54 22 53 23 (L) Ō 24 52 (L) 51 0 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Ó Ć Ó Ó Ó Ó Ó \bigcirc Ć Ć Ó Ó Ó V_{DD} A0 A1 A2 A5 A5 A7 A7 (L) (L) ð Ė
- (1) 100-pin plastic QFP (14 x 14 mm)

- Caution Symbols in parentheses denote processing for pins not used in the PROM programming mode.
 - L : Connect these pins separately to the Vss pins through resistors.
 - G : To be connected to the Vss pin.
 - Open : Nothing should be connected on these pins.

Phase-out/Discontinued

(2) 120-pin plastic QFP (28 x 28 mm), 120-pin ceramic WQFN



Note Under development

- Caution Symbols in parentheses denote processing for pins not used in the PROM programming mode.
 - L : Connect these pins separately to the Vss pins through resistors.
 - G : To be connected to the Vss pin.
 - Open : Nothing should be connected on these pins.

A0 to A16	: Address bus	MODE0, MODE1 :
D0 to D7	: Data bus	P21 : Programming mode set
CE	: Chip enable	RESET :
OE	: Output enable	VDD : Power supply
PGM	: Programming mode	Vss : Ground
		VPP : Programming power supply

Notes 1. The μ PD78355 does not contain ROM.

The µPD78P356 contains 48-Kbyte PROM.

- 2. Only the $\mu PD78P356$ contains ECC circuit.
- 3. Signals for the PROM programming mode in the $\mu PD78P356.$

1.6 Function Overview

Item	Program	μPD78355	μPD78356	μPD78P356
Minimum instruction execution time		125 ns (internal clock: 16 MHz operation, external clock: 32 MHz operation)		
Internal memory	ROM	_	48 Kbytes	_
	PROM	_	_	48 Kbytes
RAM			2 Kbytes	
Memory space		64 Kbytes (can externall	y be extended)	
General register		8 bits x 16 x 8 banks		
Number of basic ins	structions	115		
Instruction set		Bit manipulateString	metic/logical operation on (16 bits x 16 bits, 32 bit n (16 bits x 16 bits + 32 bit	
I/O line	Input	9	(Shared for analog input:	8)
	I/O	48	6	7
Real-time pulse unit		 16-bit timer x 5 10-bit timer x 1 16-bit compare register x 10 10-bit compare register x 1 16-bit capture/compare register x 5 Timer output x 10 		
Real-time output po	ort	Pulse outputs synchroniz	zed with real-time pulse ur	iit: 8
PWM unit		8/10/12-bit resolution val	riable PWM outputs: 2 cha	annels
A/D converter		10-bit resolution: 8 char	inels	
D/A converter		8-bit resolution: 2 channels		
Serial interface		Serial interface with a dedicated baud rate generator UART: 1 Clock synchronous serial interface/SBI: 1 Clock synchronous serial interface (with pin switching function): 1		
Interrupt function		 External sources: 5, Internal sources: 25 (including 5 external sources) A 4-level priority can be specified by software. One interrupt processing mode can be selected out of three types: (vectored interrupt function, macro service function, and context switching function.) 		
Bus sizing function		8 bits or 16 bits external data bus width can be selected.		
ECC circuit		Not pr	ovided	Provided
Package	Without a window	 100-pin plastic QFP (1 120-pin plastic QFP (2 	4 x 14 mm) (only standard 28 x 28 mm)	d products)
	With a window	-	-	120-pin ceramic WQFN (only standard products
Others		Watchdog timer functioStandby function (HAL		·

1.7 Differences between the μ PD78355, μ PD78356, and μ PD78P356

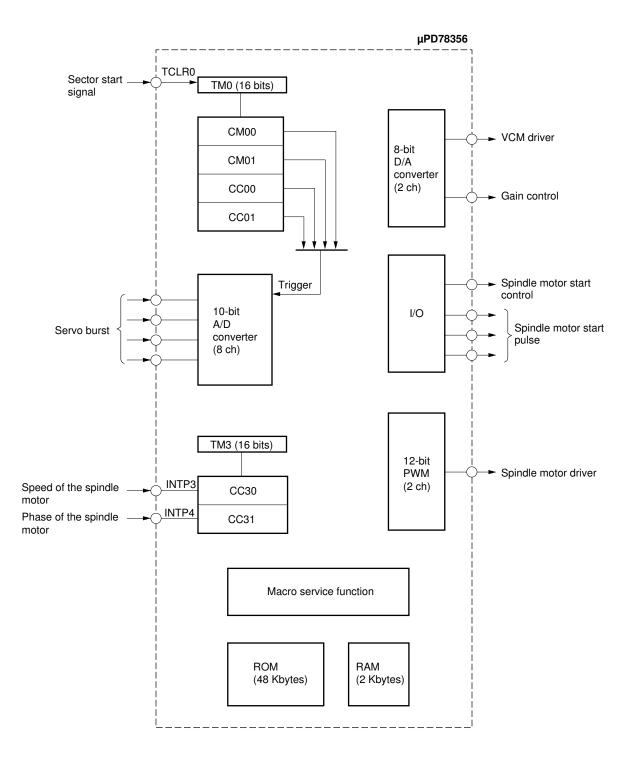
The difference between the μ PD78356 and μ PD78355 is that the μ PD78356 has an on-chip mask ROM while the μ PD78355 does not.

The μ PD78356 operates in the same way as the μ PD78355 when the level of the MODE0 pin is held high at all times (ROM-less mode).

The μ PD78P356 is a μ PD78356 with its internal mask ROM replaced with a one-time PROM or EPROM. The functions of the μ PD78P356 other than the PROM specifications such as the write/verify function are the same as for the μ PD78356.

Table 1-1 lists the differences between the μ PD78355, μ PD78356, and μ PD78P356.

ltem	Part No.	μPD78355	μPD78356	μPD78P356
Internal memory	ROM	Not provided.	48 Kbytes	48 Kbytes (PROM)
	RAM		2 Kbytes	
I/O line	Input		9 (Shared analog input: 8)	
	I/O	48	6	7
Port 4 (P40 to P47)		Always functions as the lower-order bits of the multiplexed address/data bus.	Can be specified as input or output in 8-bit units. Functions as the power-order bits of the multiplexed address/data bus (AD0 to AD7) in the external memory expansion mode.	
Port 5 (P50 to P57)		Always functions as the higher-order bits of the multiplexed address/data bus.	Can be specified as input or output in 1-bit units. Functions as the higher-order bits of the multiplexed address/data bus (AD8 to AD15) in the external memory expansion mode ^{Note} .	
Port 9 (P90 to P93)		P90 always functions as \overline{RD} strobe signal output, P91 as \overline{LWR} strobe output, and P92 as \overline{HWR} strobe output. P93 functions as I/O port.	Can be specified as input or output in 1-bit units. P90 functions as $\overline{\text{RD}}$ strobe signal output, P91 as $\overline{\text{LWR}}$ strobe output, and P92 as $\overline{\text{HWR}}$ strobe output in the external memory expansion mode. P93 functions as I/O port.	
Memory expansion mode register (MM)		Always in the external memory expansion mode.	Specifies input or output for port 4 in 8-bit units. Specifies the memory expansion widths for ports 4 and 5 in the external memory expansion mode.	
Port 5 mode register (F	PM5)	Not provided.	Specifies input or output for port 5 in 1-bit units.	
MODE0 and MODE1 settings		 With 8-bit external bus MODE0 = MODE1 = HL With 16-bit external bus MODE0 = MODE1 = HH 	 In the normal operation mode MODE0 = MODE1 = LL In the ROM-less mode (with 8-bit external bus) MODE0 = MODE1 = HL In the ROM-less mode (with 16-bit external bus) MODE0 = MODE1 = HH 	 In the normal operation mode MODE0 = MODE1 = LL In the programming mode (with 8-bit external bus) MODE0 = MODE1 = HL In the ROM-less mode (with 16-bit external bus) MODE0 = MODE1 = HH
ECC circuit		Not pr	ovided	Provided
Package	Without a window	 100-pin plastic QFP (1 120-pin plastic QFP (2 		
	With a window	-	-	120-pin ceramic WQFN


Table 1-1. Differences between the $\mu\text{PD78355},\,\mu\text{PD78356},\,\text{and}\,\,\mu\text{PD78P356}$

Note Which pins are used as an address bus depends upon the size of external memory (set by the memory expansion mode register.) (See **CHAPTER 18**.)

1.8 Example of System Configuration

Hard-disk servo control system

Phase-out/Discontinued

CHAPTER 2 PIN FUNCTIONS

2.1 List of Pin Functions

2.1.1 Normal operating mode

(1) Port pins

Pin	I/O	Function	Alternate function
P00	I/O	Port 0.	RTP0/ADTRG0
P01		8-bit I/O port.	RTP1/ADTRG1
P02		Can be specified as input or output in 1-bit units.	RTP2/ADTRG2
P03			RTP3/ADTRG3
P04 to P07			RTP4 to RTP7
P10 to P17	I/O	Port 1. 8-bit I/O port. Can be specified as input or output in 1-bit units.	_
P20	I	Port 2.	NMI
P21	I/O	8-bit I/O port.	INTP0/TO04
P22		Can be specified as input or output in 1-bit units. (P20/NMI is excluded.)	INTP1/TO05
P23			INTP2
P24			INTP3
P25			INTP4
P26			TCLR2/TO21
P27			TO20
P30	I/O	Port 3.	TxD
P31	8-bit I/O port.		RxD
P32		Can be specified as input or output in 1-bit units.	SO00/SB0
P33			SI00/SB1
P34]		SCK00
P35			TCLR1
P36	1		TI1/TO11
P37			TO10

Table 2-1. Port Pin Functions (1/2)

Pin	I/O	Function	Alternate function
P40 to P47 ^{Note}	I/O	Port 4. 8-bit I/O port. Can be specified as input or output in 8-bit units.	AD0 to AD7
P50 to P57 ^{Note}	I/O	Port 5. 8-bit I/O port. Can be specified as input or output in 1-bit units.	AD8 to AD15
P70 to P77	I	Port 7. Port used only for 8-bit input.	ANI0 to ANI7
P80	I/O	Port 8.	TCLR0
P81		8-bit I/O port.	TI0/TO03
P82		Can be specified as input or output in 1-bit units.	TO00
P83			TO01
P84			TO02
P85			TCLRUD
P86			PWM0
P87			PWM1
P90 ^{Note}	I/O	Port 9.	RD
P91 ^{Note}		4-bit I/O port.	LWR
P92 ^{Note}		Can be specified as input or output in 1-bit units.	HWR
P93			_
P100	I/O	Port 10.	SO10
P101		8-bit I/O port.	SI10
P102		Can be specified as input or output in 1-bit units.	SCK10
P103			SO11
P104			SI11
P105			SCK11
P106			TIUD
P107			TCUD

Table 2-1. Port Pin Functions (1/2)

Note Does not function as a port for the μ PD78355 (Pin P92 does not function only when the external 16-bit bus is specified).

(2) Non-port pins

Pin	I/O	Function	Alternate function
RTP0	0	Outputs a pulse in real time as triggered by a trigger signal sent from	P00/ADTRG0
RTP1		the real-time pulse unit.	P01/ADTRG1
RTP2			P02/ADTRG2
RTP3			P03/ADTRG3
RTP4 to RTP7			P04 to P07
NMI	I	Nonmaskable interrupt request input	P20
INTP0		External interrupt request input	P21/TO04
INTP1			P22/TO05
INTP2			P23
INTP3			P24
INTP4			P25
T10	I	External count clock input to timer 0	P81/TO03
TI1		External count clock input to timer 1	P36/TO11
TIUD		External count clock input to the up/down counter	P106
TCUD		Input for the control signal to determine whether the up/down counter counts up or down.	P107
TCLR0		Clear signal input to the real-time pulse unit	P80
TCLR1			P35
TCLR2			P26/TO21
TCLRUD			P85
TO00	0	Timer output from the real-time pulse unit (RPU)	P82
TO01			P83
TO02			P84
TO03			P81/TI0
TO04			P21/INTP0
TO05			P22/INTP1
TO10			P37
TO11			P36/TI1
TO20			P27
TO21			P26/TCLR2
ANI0 to ANI7	I	Analog input to the A/D converter	P70 to P77
ADTRG0		External trigger signal input to the A/D converter	P00/RTP0
ADTRG1			P01/RTP1
ADTRG2			P02/RTP2
ADTRG3			P03/RTP3

Table 2-2. Non-port Pin Functions (1/3)

ANO0 O ANO1 O TxD O RxD I SCK00 I/O SCK10 I/O SCK11 I SI00 I SI10 I SO00 O SO10 O SO11 I/O SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O ASTB O	Analog output from the D/A converter Serial data output from the asynchronous serial interface Serial data input to the asynchronous serial interface Serial clock I/O for the clock synchronous serial interface Serial data input in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data 1/O in the SBI mode of the clock synchronous serial interface	 P30 P31 P34 P102 P105 P33/SB1 P101 P104 P32/SB0 P100 P103
TxD O RxD I SCK00 I/O SCK10 I SCK11 I SI00 I SI10 I SI10 O SO10 O SO11 O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	Serial data input to the asynchronous serial interface Serial clock I/O for the clock synchronous serial interface Serial data input in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data l/O in the SBI mode of the clock synchronous serial	P31 P34 P102 P105 P33/SB1 P101 P104 P32/SB0 P100 P103
RxD I SCK00 I/O SCK10 I/O SCK11 I SCK11 I SI00 I SI10 I SI10 I SO00 O SO11 I SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	Serial data input to the asynchronous serial interface Serial clock I/O for the clock synchronous serial interface Serial data input in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data l/O in the SBI mode of the clock synchronous serial	P31 P34 P102 P105 P33/SB1 P101 P104 P32/SB0 P100 P103
SCK00 I/O SCK10 I/O SCK11 I SI00 I SI10 I SI10 O SO10 O SO11 I/O SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	Serial clock I/O for the clock synchronous serial interface Serial data input in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data 1/O in the SBI mode of the clock synchronous serial	P34 P102 P105 P33/SB1 P101 P104 P32/SB0 P100 P103
SCK10 SCK11 SI00 I SI10 I SI10 I SI10 I SU11 I SO00 O SO10 I SO11 I SB0 I/O SB1 O PWM0 O PWM1 O MDTO O AD0 to AD7 I/O AD8 to AD15 I/O	Serial data input in the 3-wire mode of the clock synchronous serial interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data I/O in the SBI mode of the clock synchronous serial	P102 P105 P33/SB1 P101 P104 P32/SB0 P100 P103
SCK11 I SI00 I SI10 O SI11 O SO00 O SO10 I/O SO11 I/O SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data I/O in the SBI mode of the clock synchronous serial	P105 P33/SB1 P101 P104 P32/SB0 P100 P103
SI00 I SI10 I SI11 O SO00 O SO10 I SO11 I SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I	interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data I/O in the SBI mode of the clock synchronous serial	P33/SB1 P101 P104 P32/SB0 P100 P103
SI10 SI11 SO00 O SO10 I/O SO11 I/O SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	interface Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data I/O in the SBI mode of the clock synchronous serial	P101 P104 P32/SB0 P100 P103
SI11 SO00 SO10 SO11 SO11 SB0 J/O SB1 PWM0 O PWM1 WDTO AD0 to AD7 AD8 to AD15	Serial data output in the 3-wire mode of the clock synchronous serial interface Serial data I/O in the SBI mode of the clock synchronous serial	P104 P32/SB0 P100 P103
SO00 O SO10 I/O SO11 I/O SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	interface Serial data I/O in the SBI mode of the clock synchronous serial	P32/SB0 P100 P103
SO10 SO11 SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 O	interface Serial data I/O in the SBI mode of the clock synchronous serial	P100 P103
SO11SB0I/OSB1OPWM0OPWM1OWDTOOAD0 to AD7I/OAD8 to AD15I	Serial data I/O in the SBI mode of the clock synchronous serial	P103
SB0 I/O SB1 O PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 O		
SB1 PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 O		
PWM0 O PWM1 O WDTO O AD0 to AD7 I/O AD8 to AD15 O	interfece.	P32/SO00
PWM1 WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	interface	P33/SI00
WDTO O AD0 to AD7 I/O AD8 to AD15 I/O	O PWM signal output	P86
AD0 to AD7 I/O AD8 to AD15		P87
AD8 to AD15	Output for the signal which indicates the watchdog timer overflowed. (A nonmaskable interrupt is generated.)	_
	Lower-order bits of the multiplexed address/data bus used when external memory is expanded	P40 to P47
ASTB O	Higher-order bits of the multiplexed address/data bus used when external memory is expanded	P50 to P57
	Output for the timing signal used in externally latching address information output from the AD0 to AD15 pins, in order to access the external memory	_
RD	Read strobe signal output to the external memory	P90
LWR	Write strobe signal output to the low-order 8 bits in the external memory	P91
HWR	Write strobe signal output to the high-order 8 bits in the external	P92
WAIT I	memory	-
MODE0 I MODE1		

Table 2-2. Non-port Pin Functions (2/3)

Pin	I/O	Function	Alternate function
CLKOUT	0	System clock output	-
RESET	I	System reset input	-
X1	I	Crystal input pin for the system clock. When a clock signal is provided	_
X2	_	externally, input to the X1 pin and the X2 pin should be left open.	
AVREF1	I	A/D converter reference voltage input	-
AVREF2		D/A converter reference voltage input	_
AV _{REF3}			_
AVDD	-	Analog power supply for the A/D converter	-
AVss	-	Ground for the A/D converter	_
Vdd	_	Positive power supply	-
Vss	-	Ground	_
NC	_	Not internally connected. Connect the NC pin to the Vss pin (can also be left open).	_

Table 2-2. Non-port Pin Functions (3/3)

2.1.2 PROM programming mode (only for the μ PD78P356: MODE0/V_{PP} = H, MODE1 = L, P21 = L, RESET = L)

Pin	I/O	Function
MODE0/Vpp	Ι	Power supply pin for setting the μ PD78P356 to a PROM programming mode and for writing a program
MODE1		Setting the μ PD78P356 to a PROM programming mode
P21		
RESET		
A0 to A16		Address bus
D0 to D7	I/O	Data bus
PGM	I	Program input
CE		PROM enable input
ŌĒ		Read strobe to PROM
Vdd	_	Positive power supply
Vss		Ground

Table 2-3. Pin Functions for PROM Programming Mode

Caution Connect the MODE0/VPP, MODE1, P21, and RESET pins to VDD or Vss directly.

2.2 Pin Functions

2.2.1 Normal operation mode

(1) P00 to P07 (Port 0) ... 3-state input/output

Port 0 is an 8-bit I/O port. Port 0 functions not only as a general I/O port, but also as a real-time output port or an external trigger input for the A/D converter.

By setting the port 0 mode control register (PMC0), each bit of port 0 can be placed in one of the operating modes described below. (See **5.2**.)

(a) Port mode

Port 0 functions as an 8-bit general I/O port.

By setting the port 0 mode register (PM0), each bit of port 0 can be separately specified as an input port or output port.

(b) Control mode

Port 0 functions as the control pins described below.

(i) RTP0 to RTP7

These pins function as a real-time output port.

(ii) ADTRG0 to ADTRG3

These pins function as an external trigger input for the A/D converter.

Caution: When the RESET signal is input, all the pins of port 0 are set to the input mode (output highimpedance). At this time, the contents of the output latch are undefined.

(2) P10 to P17 (Port 1) ... 3-state input/output

Port 1 is an 8-bit I/O port. Port 1 functions as a general I/O port. By setting the port 1 mode register (PM1), each bit of port 1 can be separately specified as an input port or output port.

Caution When the RESET signal is input, all the pins of port 1 are set to the input mode (output highimpedance). At this time, the contents of the output latch are undefined.

(3) P20 to P27 (Port 2) ... 3-state input/output

Port 2 is an 8-bit I/O port. Note, however, that only P20/NMI is dedicated to input. Port 2 functions not only as a general I/O port, but also as control pins.

Phase-out/Discontinued

By setting the port 2 mode control register (PMC2), each bit of port 2 can be placed in one of the operating modes described below. (See **5.2**.)

(a) Port mode

Port 2 functions as an 8-bit general I/O port.

By setting the port 2 mode register (PM2), each bit of port 2 can be separately specified as an input port or output port. However, note that only P20 is dedicated to input.

(b) Control mode

Port 2 functions as the control pins described below.

(i) NMI

This pin functions as an input pin for an edge detection external nonmaskable interrupt request.

(ii) INTP0 to INTP4

These pins function as input pins for an edge detection external interrupt request.

(iii) TO04, TO05, TO20, TO21

These pins function as output pins for timer output from the real-time pulse unit.

(iv) TCLR2

This pin functions as an input pin for inputting a clear signal to the real-time pulse unit.

Caution When the RESET signal is input, all the pins of port 2 are set to the input mode (output highimpedance). At this time, the contents of the output latch are undefined.

(4) P30 to P37 (Port 3) ... 3-state input/output

Port 3 is an 8-bit I/O port. Port 3 functions not only as a general I/O port, but also as control pins. By setting the port 3 mode control register (PMC3), each bit of port 3 can be placed in one of the operating modes described below. (See **5.2**.)

(a) Port mode

Port 3 functions as an 8-bit general I/O port.

By setting the port 3 mode register (PM3), each bit of port 3 can be separately specified as an input port or output port.

(b) Control mode

Port 3 functions as the control pins described below.

(i) RxD, TxD

These pins function as I/O pins for serial data transferred via the asynchronous serial interface (UART).

(ii) SO00/SB0, SI00/SB1

These pins function as I/O pins for serial data transferred via the clock synchronous serial interface.

(iii) SCK00

This pin functions as an I/O pin for a serial clock signal transferred via the clock synchronous serial interface.

(iv) TO10, TO11

These pins function as output pins for timer output from the real-time pulse unit.

(v) TI1

This pin functions as an input pin for inputting an external count clock signal to timer 1 (TM1) of the real-time pulse unit.

(vi) TCLR1

This pin functions as an input pin for inputting a clear signal to the real-time pulse unit.

Caution When the RESET signal is input, all the pins of port 3 are set to the input mode (output highimpedance). At this time, the contents of the output latch are undefined.

(5) P40 to P47 (Port 4) ... 3-state input/output

The function of port 4 is different for the μ PD78355, μ PD78356, and μ PD78P356.

(a) μPD78355

Port 4 is placed in the external memory expansion mode at all times. When an external 8-bit bus is specified, port 4 always functions as an 8-bit address/data bus (AD0 to AD7). When an external 16-bit bus is specified, port 4 always functions as the lower 8-bit address/data bus (AD0 to AD7). Port 4 does not function as a port.

Phase-out/Discontinued

(b) μ PD78356, μ PD78P356 (with the MODE0 and MODE1 pins set low)

Port 4 is an 8-bit I/O port. Port 4 functions not only as a general I/O port, but also as an address/data bus.

By setting the memory expansion mode register (MM), port 4 can be placed in one of the operating modes described below. (See **CHAPTER 18**.)

(i) Port mode

Port 4 functions as an 8-bit general I/O port.

By setting the memory expansion mode register (MM), port 4 can be specified as an 8-bit input port or an 8-bit output port.

(ii) External memory expansion mode

Port 4 functions as an address/data bus (AD0 to AD7) for accessing external memory. When an external 8-bit bus is specified, port 4 functions as an 8-bit address/data bus. When an external 16-bit bus is specified, port 4 functions as the lower 8-bit address/data bus. In this case, the value of the port 4 register has no effect.

Caution When the RESET signal is input, all the pins of port 4 are set to the input mode (output highimpedance) regardless of whether the port mode or external memory expansion mode is set. At this time, the contents of the output latch are undefined.

(6) P50 to P57 (Port 5) ... 3-state input/output

The function of port 5 is different for the μ PD78355, μ PD78356, and μ PD78P356.

(a) *µ*PD78355

Port 5 is placed in the external memory expansion mode at all times. When an external 8-bit bus is specified, port 5 always functions as an 8-bit address/data bus (AD8 to AD15). When an external 16-bit bus is specified, port 5 always functions as the higher 8-bit address/data bus (AD8 to AD15). Port 5 does not function as a port.

(b) μ PD78356, μ PD78P356 (with the MODE0 and MODE1 pins made low)

Port 5 is an 8-bit I/O port. Port 5 functions not only as a general I/O port, but also as an address/data bus.

By setting the memory expansion mode register (MM), port 5 can be placed in one of the operating modes described below. (See **CHAPTER 18**.)

(i) Port mode

Port 5 functions as a 2-bit, 4-bit, or 8-bit general I/O port.

By setting the port 5 mode register (PM5), each bit of port 5 can be separately specified as an input port or output port.

(ii) External memory expansion mode

Port 5 functions as an address/data bus (AD8 to AD15) for accessing external memory. When an external 8-bit bus is specified, port 5 functions as an 8-bit address/data bus. When an external 16-bit bus is specified, port 5 functions as the higher 8-bit address/data bus. In this case, the value of the port 5 register has no effect.

P50 to P57 can be specified for address output stepwise according to the size of external expansion memory. (Any remaining pins can be used for a general I/O port.)

Caution When the RESET signal is input, all the pins of port 5 are set to the input mode (output highimpedance) regardless of whether the port mode or external memory expansion mode is set. At this time, the contents of the output latch are undefined.

(7) P70 to P77 (Port 7) ... Input

Port 7 is an 8-bit special input port. Port 7 functions not only as a general input port, but also as an analog signal input for the A/D converter.

(a) Port mode

Port 7 is placed in the control mode at all times. However, by executing a read instruction for port 7, the state of each pin can be read.

(b) Control mode

Port 7 functions as input pins (ANI0 to ANI7) for inputting an analog signal to the A/D converter.

(8) P80 to P87 (Port 8) ... 3-state input/output

Port 8 is an 8-bit I/O port. Port 8 functions not only as a general I/O port, but also as PWM output pins or control pins for the real-time pulse unit.

By setting the port 8 mode control register (PMC8), each bit of port 8 can be placed in one of the operating modes described below. (See **5.2**.)

(a) Port mode

Port 8 functions as an 8-bit general I/O port.

By setting the port 8 mode register (PM8), each bit of port 8 can be separately specified as an input port or output port.

(b) Control mode

Port 8 functions as the control pins described below.

(i) TO00, TO01, TO02, TO03

These pins function as output pins for timer output from the real-time pulse unit.

(ii) TI0

This pin functions as an input pin for inputting an external count clock signal to timer 0 (TM0) of the real-time pulse unit.

(iii) TCLR0, TCLRUD

These pins function as input pins for inputting a clear signal to the real-time pulse unit.

(iv) PWM0, PWM1

These pins function as PWM signal output pins.

Caution When the RESET signal is input, all the pins of port 8 are set to the input mode (output highimpedance). At this time, the contents of the output latch are undefined.

(9) P90 to P93 (Port 9) ... 3-state input/output

The function of port 9 is different for the μ PD78355, μ PD78356, and μ PD78P356.

(a) μPD78355

The P90 and P91 pins are placed in the external memory expansion mode at all times, and always function as the $\overline{\text{RD}}$ and $\overline{\text{LWR}}$ pins. P90 and P91 do not function as a port.

The P92 pin functions as a port when an external 8-bit bus is specified. P92 functions as the \overline{HWR} pin when an external 16-bit bus is specified. When P92 functions as the \overline{HWR} pin, it does not have the port function.

The P93 pin functions as a general I/O port. By setting the port 9 mode register (PM9), P93 can be specified as an input port or output port.

(b) μ PD78356, μ PD78P356 (with the MODE0 and MODE1 pins made low)

Port 9 is a 4-bit I/O port. Port 9 functions not only as a general I/O port, but also as control signal output pins for external memory.

By setting the memory expansion mode register (MM) and programmable wait control register (PWC), port 9 can be placed in one of the operating modes described below. (See **CHAPTER 18**.)

(i) Port mode

Port 9 functions as a 4-bit general I/O port.

By setting the port 9 mode register (PM9), each bit of port 9 can be specified as an input port or output port.

(ii) External memory expansion mode

Port 9 functions as control signal output pins for external memory.

<1> RD

This pin is the lead signal output pin for external memory.

<2> LWR

This pin is the 8-bit write signal output pin for external memory. When an external 16-bit bus is specified, this pin functions as the lower 8-bit write signal output pin for external memory.

<3> HWR

When an external 16-bit bus is specified, this pin functions as the higher 8-bit write signal output pin for external memory.

Caution When the RESET signal is input, all the pins of port 9 are set to the input mode (output highimpedance) regardless of whether the port mode or external memory expansion mode is set. At this time, the contents of the output latch are undefined.

(10) P100 to P107 (Port 10) ... 3-state input/output

Port 10 is an 8-bit I/O port. Port 10 functions not only as a general I/O port, but also as control pins. By setting the port 10 mode control register (PMC10), each bit of port 10 can be placed in one of the operating modes described below. (See **5.2**.)

(a) Port mode

Port 10 functions as an 8-bit general I/O port.

By setting the port 10 mode register (PM10), each bit of port 10 can be separately specified as an input port or output port.

(b) Control mode

Port 10 functions as the control pins described below.

(i) SO10, SI10, SO11, SI11

These pins function as I/O pins for serial data transferred via the clock synchronous serial interface (with the pin switch function).

(ii) SCK00, SCK11

These pins function as I/O pins for a serial clock signal transferred via the clock synchronous serial interface (with the pin switch function).

(iii) TIUD

This pin functions as an input pin for inputting a count clock signal to the up/down counter (UDC).

(iv) TCUD

This pin functions as an input pin for inputting a count operation switch control signal to the up/down counter (UDC).

Caution When the RESET signal is input, all the pins of port 10 are set to the input mode (output highimpedance). At this time, the contents of the output latch are undefined.

(11) ASTB (Address strobe) ... Output

This pin functions as an output pin for outputting a timing signal used to access external expansion memory. This port is used to latch an address output externally on the P40/AD0 to P47/AD7 pins.

(12) WAIT (Wait) ... Input

This pin functions as an input pin for inputting a control signal used to cause the bus cycle to wait. While the low-level signal is input to the \overline{WAIT} pin, the bus cycle is extended. Then, a device with a low-speed access capability can be connected.

(13) MODE0, MODE1 (Mode) ... Input

These pins function as input pins for inputting a control signal used to specify an operating mode. As indicated in the table below, the setting of these pins is different for the μ PD78355, μ PD78356, and μ PD78P356. The levels of the MODE0 and MODE1 pins cannot be changed during operation.

μPD78355	μPD78356	μPD78P356
External 8-bit bus	Normal operation mode	Normal operation mode
MODE0 = MODE1 = HL	MODE0 = MODE1 = LL	MODE0 = MODE1 = LL
External 16-bit bus	ROM-less mode	 Programming mode
MODE0 = MODE1 = HH	(External 8-bit bus)	(External 8-bit bus)
	MODE0 = MODE1 = HL	MODE0 = MODE1 = HL
	ROM-less mode	ROM-less mode
	(External 16-bit bus)	(External 16-bit bus)
	MODE0 = MODE1 = HH	MODE0 = MODE1 = HH

Cautions 1. Be sure to connect the MODE0 and MODE1 pins to VDD or VSS directly.2. Do not set settings other than the above to the MODE0 and MODE1 pins.

(14) RESET (Reset) ... Input

This pin is the system reset input pin and is low-level active.

(15) CLKOUT (Clock output) ... Output

This pin is the system clock output pin.

(16) X1, X2 (Crystal)

These pins are used to connect a crystal resonator used for system clock generation. An external clock, when used, is input to the X1 pin (the X2 pin is left open).

(17) WDTO (Watchdog timer output) ... Output

This pin is used to output a signal indicating that the watchdog timer has generated a nonmaskable interrupt.

- (18) ANO0, ANO1 (Analog output) ... Output D/A converter analog output pins
- (19) AVREF1 (Analog reference voltage) ... Input Reference voltage input pin used with the A/D converter
- (20) AVREF2, AVREF3 (Analog reference voltage) ... Input Reference voltage input pins used with the D/A converter

- (21) AVDD (Analog VDD) A/D converter power supply pin
- (22) AVss (Analog Vss) A/D converter GND pin
- (23) VDD (Power supply) Positive power supply pin
- (24) Vss (Ground) Ground potential pin

(25) NC (Non-connection)

This pin is not internally connected. Connect this pin to Vss. (This pin can also be left open.)

2.2.2 PROM programming mode (only for the µPD78P356)

(1) MODE0, MODE1, P21, RESET ... Input

Input pin that sets the μ PD78P356 in the PROM programming mode. When MODE0 is set to H, MODE1 is set to L, P21 is set to L, and RESET is set to L, the μ PD78P356 enters the PROM programming mode.

(2) A0 to A16 (Address bus) ... Input

Address bus that selects internal PROM address (0000H to BFFFH).

(3) D0 to D7 (Data bus) ... Input/output

Data bus. Programs are written in or read from the internal PROM via this bus.

(4) **PGM** (Programming mode) ... Input

Input pin for the operation mode control signal of the internal PROM. When this signal is active, it enables writing to the internal PROM. When this signal is inactive, it enables reading from the internal PROM.

(5) CE (Chip enable) ... Input

This pin inputs the enable signal from the internal PROM. When $\overline{CE} = H$, $\overline{OE} = H$, and $\overline{PGM} = L$, a single-page (four-byte) program can be written in 1-byte units. When $\overline{CE} = L$, $\overline{OE} = H$, and $\overline{PGM} = L$, a single-byte program can be written in 1-byte units. Setting \overline{OE} to L when $\overline{CE} = L$ enables the contents of PROM to be read.

(6) OE (Output enable) ... Input

This pin inputs the read strobe signal into the internal PROM. When $\overline{CE} = L$, activate this signal. Then the contents of the PROM selected by A0 to A16 is read on to D0 to D7 in 1-byte units.

(7) VPP (Programming power supply)

Power supply pin for program writing. When V_{PP} =12.5 V, \overline{OE} = H, and \overline{CE} = L, programs on D0 to D7 are written into the internal PROM selected by A0 to A16.

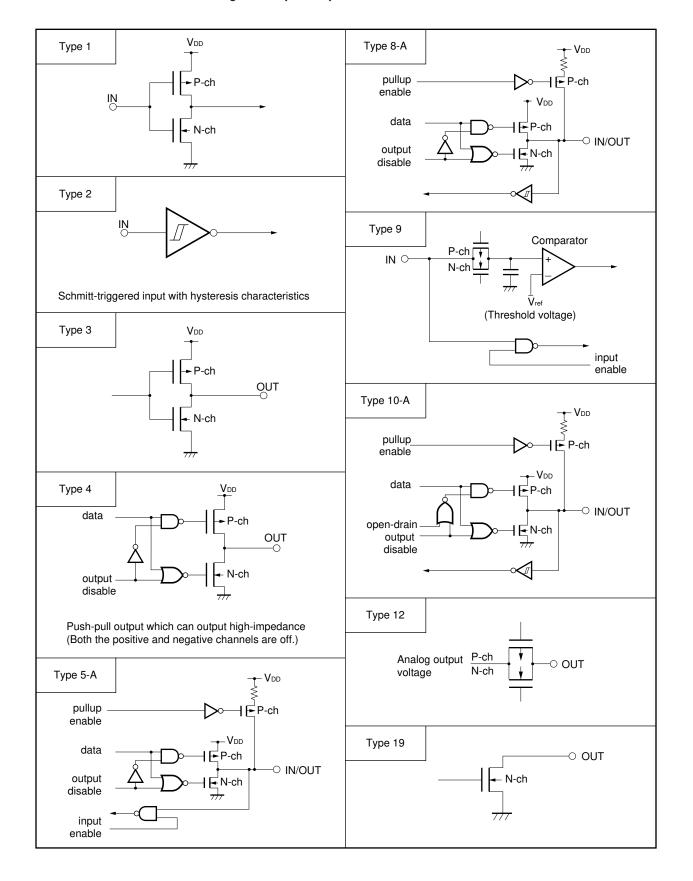
- (8) VDD (Power supply)Positive power supply pin
- (9) Vss (Ground) Ground potential pin

2.3 Input/Output Circuits and Connection of Unused Pins

Table 2-4 shows the input or output circuit type of each pin and connections of unused pins. Fig. 2-1 shows input and output circuits.

Table 2-4. Input/Output Circuits of Each Pin and Connection of Unused Pins (1/2)

Pin	I/O circuit type	Recommended connection method
P00/RTP0/ADTRG0 to P03/RTP3/ADTRG3	8-A	Input state $\ : \ Each pin is connected to the V_{DD} or$
P04/RTP4 to P07/RTP7	5-A	Vss pin via a separate resistor.
P10 to P17		Output state: Open
P20/NMI	2	Connected to the Vss pin.
P21/INTP0/TO04	8-A	Input state $\ : \ Each pin is connected to the V_{DD} or$
P22/INTP1/TO05		Vss pin via a separate resistor.
P23/INTP2		Output state: Open
P24/INTP3		
P25/INTP4		
P26/TCLR2/TO21		
P27/TO20		
P30/TxD	5-A	
P31/RxD		
P32/SO00/SB0	10-A	
P33/SI00/SB1		
P34/SCK00	8-A	
P35/TCLR		
P36/TI1/TO11		
P37/TO10	5-A	
P40/AD0 to P47/AD7		
P50/AD8 to P57/AD15		
P70/ANI0 to P77/ANI7	9	Connected to the Vss pin.
P80/TCLR0	8-A	Input state : Each pin is connected to the VDD or
P81/TI0/TO03		Vss pin via a separate resistor.
P82/TO00	5-A	Output state: Open
P83/TO01		
P84/TO02		
P85/TCLRUD	8-A	
P86/PWM0	5-A	
P87/PWM1		



Pin	I/O circuit type	Recommended connection method
P90/RD	5-A	Input state : Each pin is connected to the VDD or
P91/LWR		Vss pin via a separate resistor. Output state : Open
P92/HWR		Oulput state . Open
P93		
P100/SO10		
P101/SI10	8-A	
P102/SCK10		
P103/SO11	5-A	
P104/SI11	8-A	
P105/SCK11		
P106/TIUD		
P107/TCUD		
ANO0, ANO1	12	Open
ASTB	4	
CLKOUT	3	
WDTO	19	Connected to the Vss pin.
WAIT	1	Connected to the VDD pin.
MODE0, MODE1	1	-
RESET	2	
AVREF1 to AVREF3, AVSS	_	Connected to the Vss pin.
AVDD		Connected to the VDD pin.
NC		Connected to the Vss pin (or open).

Table 2-4. Input/Output Circuits of Each Pin and Connection of Unused Pins (2/2)

Phase-out/Discontinued

Fig. 2-1. Input/Output Circuits of Each Pin

CHAPTER 3 CPU ARCHITECTURE

Phase-out/Discontinued

3.1 Memory Space

The μ PD78356 allows access to a memory space of up to 64 Kbytes (see **Fig. 3-1**). The MODE0 and MODE1 pins of the μ PD78356 allow the user to choose between internal ROM access and external memory access (ROM-less mode).

The method of program memory mapping varies from one product to another. However, the same data memory mapping is input to all products.

(1) μ PD78355 (MODE0 and MODE1 = HL or HH)

Program memory is mapped to external memory (63232 bytes: 0000H to F6FFH). This area can be shared with data memory.

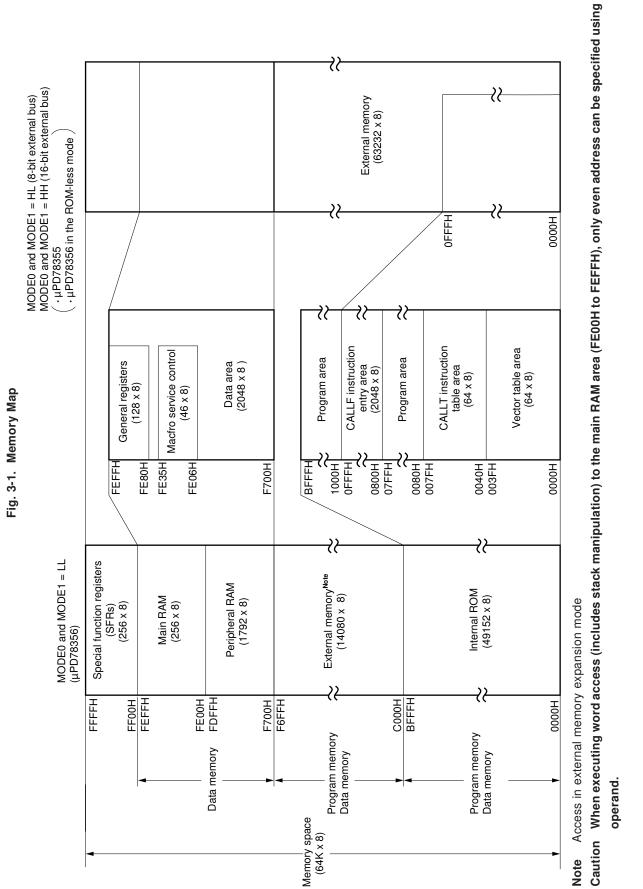
Data memory is mapped to internal RAM (2048 bytes: F700H to FEFFH).

When an external 8-bit bus is used, set MODE0 and MODE1 to HL. When an external 16-bit bus is used, set MODE0 and MODE1 to HH.

(2) μ PD78356 (MODE0 and MODE1 = LL)

Program memory is mapped to internal ROM (49152 bytes: 0000H to BFFFH) and external memory (14080 bytes: C000H to F6FFH). External memory is accessed in the external memory expansion mode. The external memory mapping area can be shared with data memory.

Data memory is mapped to internal RAM (2048 bytes: F700H to FEFFH).


Usually, set MODE0 and MODE1 to LL. To set the ROM-less mode, set MODE0 and MODE1 to HL when an 8-bit external bus is used, and set MODE0 and MODE1 to HH when a 16-bit external bus is used.

(3) μ PD78P356 (MODE0 and MODE1 = LL)

Program memory is mapped to internal PROM (49152 bytes: 0000H to BFFFH) and external memory (14080 bytes: C000H to F6FFH). External memory is accessed in the external memory expansion mode. The external memory mapping area can be shared with data memory.

Data memory is mapped to internal RAM (2048 bytes: F700H to FEFFH).

Usually, set MODE0 and MODE1 to LL. To set the programming mode, set MODE0 and MODE1 to HL. To set the ROM-less mode, set MODE0 and MODE1 to HH when a 16-bit external bus is used.

36

Phase-out/Discontinued

Phase-out/Discontinued

3.1.1 Vector table area

Interrupt requests from peripheral hardware, reset inputs, external interrupt requests, and branch addresses interrupted by a break instruction are stored in the 64-byte area from 0000H to 003FH.

When an interrupt request is issued, the contents of each vector table are set to the program counter (PC) before branching. The contents of the even addresses are set to eight low-order bits of the PC and the contents of the odd addresses are set to the eight high-order bits.

When the TPF bit of the CPU control word (CCW) is set, the internal ROM area 8002H to 803FH, instead of the area 0002H to 003FH, is used as an interrupt vector table.

Interrupt source		Vector tab	Vector table address	
Interrupt request	Interrupt source/unit	TPF = 0	TPF = 1	
RESET	RESET pin input	000	00H	
NMI	NMI pin input	0002H	8002H	
INTWDT	Watchdog timer	0004H	8004H	
INTOV0	Real-time pulse unit	0006H	8006H	
INTOV3		0008H	8008H	
INTP0/INTCC00	INTP0 Pin input/real-time pulse unit	000AH	800AH	
INTP1/INTCC01	INTP1 Pin input/real-time pulse unit	000CH	800CH	
INTP2/INTCC02	INTP2 Pin input/real-time pulse unit	000EH	800EH	
INTP3/INTCC30	INTP3 Pin input/real-time pulse unit	0010H	8010H	
INTP4/INTCC31	INTP4 Pin input/real-time pulse unit	0012H	8012H	
INTCM00	Real-time pulse unit	0014H	8014H	
INTCM01		0016H	8016H	
INTCM02		0018H	8018H	
INTCM03		001AH	801AH	
INTCM10		001CH	801CH	
INTCM11		001EH	801EH	
INTCM20		0020H	8020H	
INTCM21		0022H	8022H	
INTCM40		0024H	8024H	
INTCMUD0		0026H	8026H	
INTCMUD1		0028H	8028H	

Table 3-1. Vector Table Area (1/2)

Table 3-1.	Vector	Table	Area	(2/2)
------------	--------	-------	------	-------

Interrupt source Vector table add			
Interrupt request	Interrupt source/unit	TPF = 0	TPF = 1
INTSER	Asynchronous serial interface	002AH	802AH
INTSR		002CH	802CH
INTST		002EH	802EH
INTCSI0	Clock synchronous serial interface	0030H	8030H
INTCSI1		0032H	8032H
INTAD	A/D converter	0034H	8034H
Op-code trap	_	003	BCH
BRK instruction	_	003	BEH

3.1.2 CALLT instruction table area

Thirty-two tables of the address called by a single-byte call instruction (CALLT) can be stored in the 64-byte area from 0040H to 007FH. This area is the CALLT table area.

When the TPF bit of the CPU control word (CCW) is set, the internal ROM area 8040H to 807FH, instead of the area 0040H to 007FH, is used as a CALLT instruction table.

3.1.3 CALLF instruction entry area

A subroutine can be directly called for the area 0800H to 0FFFH by using a double-byte call instruction (CALLF).

3.1.4 Internal RAM area

2048-byte RAM is built into the area F700H to FEFFH. This area consists of the following two components:

- Peripheral RAM : F700H to FDFFH (1792 bytes)
- Main RAM : FE00H to FEFFH (256 bytes)

High-speed access to the main RAM is possible.

Macro service control words are mapped in the 46-byte area from FE06H to FE35H in the main RAM area. General registers are mapped in the 128-byte area from FE80H to FEFFH in the main RAM area. The general registers consist of eight banks.

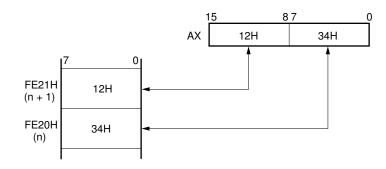
Cautions 1. When implementing word access (includes stack manipulation) to the main RAM area (FE00H to FEFFH), the access operation performed depends on whether the selected reference address is even or odd. (See Table 3-2.)

If both even and odd addresses are accessed, incorrect operations will be performed. Therefore, select only even reference addresses. (See Examples 1 and 2.) When executing the 16-bit data transfer instruction, select only even addresses by operand. If odd addresses are specified, errors will generate in the assembler package (RA78K/III).

2. Do not perform word access in both the peripheral RAM area and main RAM area. (See Example 3.)

Table 3-2. Operations when Word Accessing in the Internal RAM Area	Table 3-2.	Operations when	n Word Accessing in	the Internal RAM Area
--	------------	-----------------	---------------------	-----------------------

Reference address (n) Access area	Even	Odd
Main RAM	0	х
Peripheral RAM	0	0

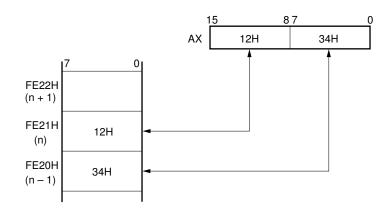

Examples 1 to 5 are examples of word accesses in the internal RAM area.

Phase-out/Discontinued

Examples 1. When writing/reading word data in/from even addresses (FE20H) in the main RAM area: When the word data is written in even addresses (address n) in the main RAM area, the low-order 8 bits of the word data are written in the even address (address n) and the high-order 8 bits are written in the high-order odd address (address n + 1). When the word data is read from the even address of the main RAM area (address n), the word

data is read from address n and address n + 1.

MOVW	AX, #1234H
MOVW	0FE20H, AX; Word data is written in FE20H
MOVW	AX, 0FE20H; Word data is read from FE20H



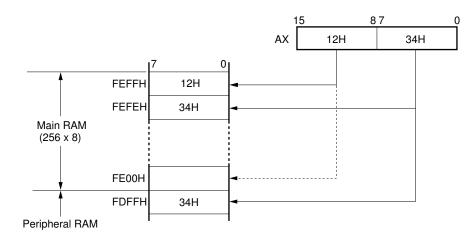
n: Reference address

2. When writing/reading word data in/from odd addresses (FE21H) in the main RAM area: When the word data is written in odd addresses in the main RAM area, the high-order 8 bits of the word data are written in the odd address (address n) and the low-order 8 bits are written in the loworder even address (address n - 1).

When the word data is read from the odd address of the main RAM area (address n), the word data is read from address n and address n - 1.

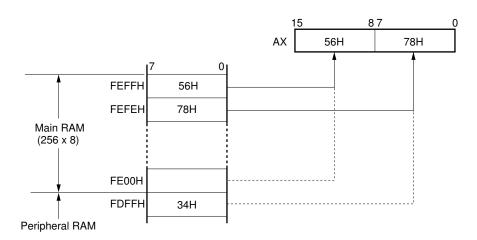
MOVW	AX, #1234H
MOVW	DE, #0FE21H
MOVW	[DE], AX; Word data is written in FE21H
MOVW	AX, [DE]; Word data is read from FE21H

n: Reference address


Phase-out/Discontinued

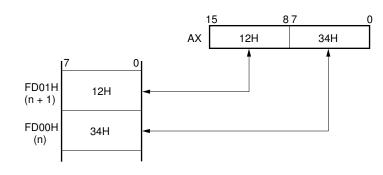
Examples 3. When writing/reading word data in/from both the peripheral RAM area and main RAM area: When the word data is written in both the peripheral RAM area and main RAM area, as it will be written in addresses separated by distance 256 bytes, incorrect operations will be performed. The word data is read from the last address (FDFFH) of the peripheral RAM area, it is read from FEFEH and FEFFH that are separated by distance 256 bytes.

MOVW	AX, #1234H
MOVW	DE, #0FDFFH
MOVW	[DE], AX; Word data is written in the peripheral RAM (FDFFH)
MOVW	DE, #0FDFFH


(In Writing)

MOVW

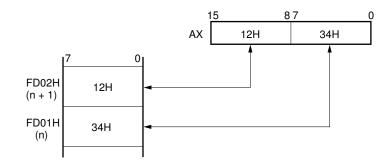
AX, [DE]; Word data is read from the peripheral RAM (FDFFH)


(In Reading)

Examples 4. When writing/reading word data in/from even addresses (FD00H) in the peripheral RAM area: When the word data is written in even addresses in the peripheral RAM area, the low-order 8 bits of the word data area written in the even address (address n) and the high-order 8 bits are written in the high-order odd address (address n + 1).

When the word data is read from the even address of the peripheral RAM area (address n), the word data is read from address n and address n + 1.

MOVW	AX, #1234H
MOVW	DE, #0FD00H
MOVW	[DE], AX; Word data is written in FD00H
MOVW	AX, [DE]; Word data is read from FD00H


n: Reference address

Phase-out/Discontinued

5. When writing/reading word data in/from odd addresses (FD01H) in the peripheral RAM area: When the word data is written in odd addresses in the peripheral RAM area, the low-order 8 bits of the word data are written in the odd address (address n) and the high-order 8 bits are written in the high-order even address (address n + 1).

When the word data is read from the odd address of the peripheral RAM area (address n), the word data is read from address n and address n + 1.

MOVW	AX, #1234H
MOVW	DE, #0FD01H
MOVW	[DE], AX; Word data is written in FD01H
MOVW	AX, [DE]; Word data is read from FD01H

n: Reference address

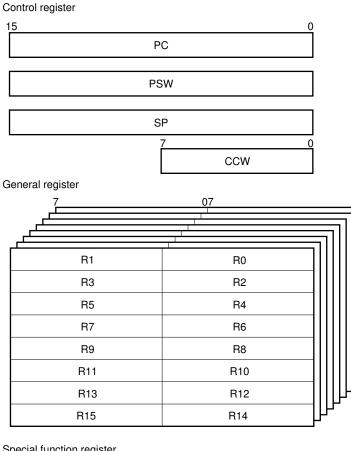
3.1.5 Special function register area

Registers having special functions, such as mode and control registers for the peripheral hardware, are mapped in the area from FF00H to FFFFH.

Caution Unmapped addresses of the special function register cannot be accessed (except the external access area).

3.1.6 External memory area

The μ PD78356 can expand an external memory (ROM or RAM) step by step to up to 14 Kbytes (C000H to F6FFH). The μ PD78355 can connect an external memory (ROM or RAM) in the 64-Kbyte area (0000H to F6FFH). To access an external memory, the pins P40/AD0 to P47/AD7 (address/data bus), P50/AD8 to P57/AD15 (address/ data bus), RD, HWR, LWR, and ASTB are used. An external access area is mapped in the 16-byte area from FFD0H to FFDFH of the special function register (SFR) area. SFR addressing can access an external memory in this area.


Caution Pins P50/AD8 to P57/AD15 function as address buses when 8-bit external buses are specified.

3.2 Processor Registers

There are three groups of registers: a control register group consisting of an 8-bit register and three 16-bit registers, a general register group consisting of eight banks, each of which consists of sixteen 8-bit registers, and a special function register group consisting of registers having special functions such as I/O mode registers for the peripheral hardware.

Fig. 3-2. Register Configuration

Special function register

7	0	7 0
	SFR255	SFR254
	SFR253	SFR252
	SFR251	SFR250
	SFR249	SFR248
Ĵ	*	\sim
	SFR1	SFR0

Remark The CCW of the control register group is mapped in the special function register (SFR) area.

3.2.1 Control registers

The control register group controls the program sequence, status, and stack memory and modifies operand addressing.

This group consists of an 8-bit register and three 16-bit registers.

(1) Program counter (PC)

The program counter is a 16-bit register which holds address information of the program to be executed next. The PC operates as follows:

• In normal operation

Automatically incremented according to the number of bytes of the instruction to be fetched.

· When a branch instruction is executed

The contents of the immediate data or register are set.

Input to the $\overrightarrow{\text{RESET}}$ pin sets the data in the reset vector table at 0000H and 0001H in the PC and makes a branch.

(2) Program status word (PSW)

The program status word (PSW) is a 16-bit register consisting of flags set or reset according to the result of executing an instruction.

Read and write operations are performed by the eight high-order bits (PSWH) or eight low-order bits (PSWL). Flags are operated by the bit manipulation instructions.

When an interrupt request is issued and when a BRK instruction is executed, the contents of the PSW is automatically saved in the stack. When an RETI or RETB instruction is executed, the contents are automatically restored.

Input to the RESET pin resets all bits.

Sym	bol	7	6	5	4	3	2	1	0	_
PSV	νн	UF	RBS2	RBS1	RBS0	0	0	0	0	
	_	7	6	5	4	3	2	1	0	
PSV	VL	S	z	RSS	AC	IE	P/V	0	CY	
	-									•
(UF			: Us	er flag						
RBS	60 t	o RBS	2 : Re	gister l	bank se	election	flag			
S			: Sig	gn flag	(MSB a	after ar	ithmeti	c/logica	al opera	ation)
Z			: Ze	ro flag						
{ RSS	6		: Re	gister :	set sele	ection f	lag			
AC		: Auxiliary carry flag								
IE			: Int	Interrupt request enable flag						
P/V			: Pa	Parity/overflow flag						
CY			: Ca	Carry flag						

Fig. 3-3. Format of Program Status Word

The flags are explained below.

(a) User flag (UF)

This flag controls the program. The flag is set or reset on the user program.

(b) Register bank selection flag (RBS0 to RBS2)

This 3-bit flag selects one of eight register banks (register bank 0 to register bank 7).

(c) Sign flag (S)

The sign flag indicates that the most significant bit after an arithmetic/logical operation is 1. This flag is set when the most significant bit after the operation is 1. Otherwise, this flag is reset. This flag can be tested with a conditional branch instruction.

(d) Zero flag (Z)

The zero flag indicates that the result of an arithmetic/logical operation is 0. This flag is set when the result is 0. Otherwise, this flag is reset. This flag can be tested with a conditional branch instruction.

(e) Register set selection flag (RSS)

This flag specifies general registers (8 bits each) functioning as X, A, C, and B and general register pairs (16 bits each) functioning as AX and BC.

The RSS flag values correspond to function names and absolute names enclosed in parentheses as follows. (See **Table 3-3**.)

• RSS = 0

X (R0), A (R1), C (R2), B (R3), AX (PR0), and BC (RP1)

• RSS = 1

X (R4), A (R5), C(R6), B (R7), AX (RP2), and BC (RP3)

To set or reset the RSS flag, be sure to specify an RSS pseudo instruction just before or immediately after the instruction for setting or resetting the RSS flag as shown in the example below:

<Example of a program>

- To set the RSS flag (RSS = 0) RSS 0 ; RSS pseudo instruction CLR1 PSWL.5 MOV B, A ; Corresponds to MOV R3, R1.
- To reset the RSS flag (RSS = 1) RSS 1 ; RSS pseudo instruction SET1 PSWL.5 MOV B, A ; Corresponds to MOV R7, R5.

Switching the RSS flag between the values has the same effect as using two register sets. Registers and register pairs not specified by the RSS flag can be accessed by specifying the absolute names in the program.

(f) Auxiliary carry flag (AC)

The auxiliary carry flag is used for decimal adjustment and indicates that an underflow or overflow has occurred for bit 3.

Phase-out/Discontinued

This flag is set when the result of executing an arithmetic/logical instruction generates a carry of bit 3 (overflow) or a borrow into bit 3 (underflow). Otherwise, this flag is reset. This flag can be tested with a conditional branch instruction.

(g) Interrupt request enable flag (IE)

This flag enables or disables an interrupt request. Executing an EI instruction sets this flag. Executing a DI instruction or receiving an interrupt resets this flag.

(h) Parity/overflow flag (P/V)

The P/V flag can be tested with a conditional branch instruction. When an arithmetic/logical instruction is executed, this flag operates as follows:

Parity flag operation

This flag is set if the number of set bits as the result of executing a logical instruction is an even number. Otherwise, this flag is reset. The parity flag depends on only the eight low-order bits of the logical operation result regardless whether the logical operation is performed in 8-bit units or 16-bit units.

· Overflow flag operation

This flag is set if the result of executing an arithmetic instruction exceeds the two's complement range. Otherwise, the flag is reset.

For example, the two's complement range for 8-bit arithmetic operation is from 80H (-128) to 7FH (+127). The flag is set if the result exceeds this range. The flag is reset if the result is within this range.

Example: The overflow flag operates as follows while executing an 8-bit add instruction.

When 78H (+120) is added to 69H (+105), the result is E1H (+225). The P/V flag is then set because the result exceeds the upper limit of the two's complement range. E1H is represented as -31 in two's complement.

$$78H (+120) = 0111 1000 +) 69H (+105) = +) 0110 1001 0 1110 0001 = -31 P/V = 1 ↑ C$$

When the following two negative numbers are added, the P/V flag is reset because the result is within the two's complement range.

(i) Carry flag (CY)

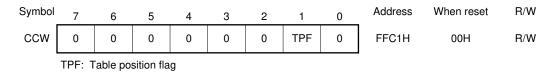
The carry flag indicates that an overflow or underflow has occurred in an arithmetic/logical operation. This flag is set when an arithmetic/logical operation results in a carry (overflow) or a borrow (underflow) for bit 7. In word operations, this flag is set when a carry (overflow) or borrow (underflow) occurs for bit 15. Otherwise, this flag is reset.

This flag can be tested with a conditional branch instruction. This flag also functions as a bit accumulator when a bit manipulation instruction is executed.

The stack pointer (SP) is a 16-bit register which holds the first address of the memory stack area (LIFO format). The SP is manipulated by a dedicated instruction (Stack manipulation instruction).

Phase-out/Discontinued

The stack pointer is decremented before data is written (saved) into the stack memory, and is incremented after data is read (restored) from the stack memory.

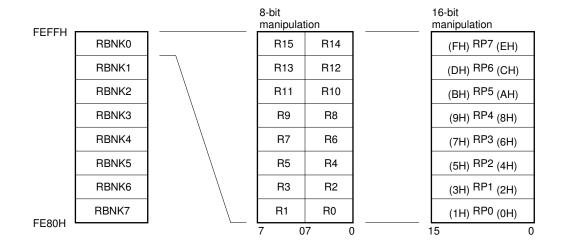

As input to the RESET pin causes the SP to become undefined, the SP must be set before calling a subroutine.

Caution When executing word access to the main RAM area (FE00H to FEFFH), only even address can be specified using operand.

(4) CPU control word (CCW)

The CPU control word (CCW) is an 8-bit register which consists of flags related to CPU control. The CCW is mapped in the special function register area (FFC1H) and can be controlled by the software. Input to the RESET pin resets all bits.

Fig. 3-4. Format of CPU Control Word


The table position flag (TPF) specifies the location of a vector table referenced by a CALLT instruction or interrupt request. The TPF flag switches the vector table location as follows:

- TPF = 0 (reset)
- 0000H to 007FH
- TPF = 1 (set)
- 8000H to 807FH
- Caution The vector tables for the RESET input, BRK instruction, and op-code trap interrupt are fixed to 0000H, 003EH, and 003CH, respectively. They are not affected by the TPF.

3.2.2 General registers

The 128-byte general register group which consists of eight banks is mapped in the specific area (FE80H to FEFFH) of the internal RAM space. Each bank consists of sixteen 8-bit general registers.

A pair of 8-bit registers can function as a 16-bit register pair (RP0 to RP7).

A function name listed in Table 3-3, as well as an absolute name, is assigned to each 8-bit register (16 registers). The X register functions as the low-order bits of a 16-bit accumulator. The A register functions as an 8-bit accumulator or the high-order bits of a 16-bit accumulator. The B and C registers function as a counter. The DE, HL, VP, and UP registers, in a pair, function as an address register. The VP register functions as a base register and the UP register functions as a user stack pointer.

The value of the register set selection flag (RSS) in the program status word (PSW) changes the register having a specific function, as shown in Table 3-3.

If the program has been coded with the function names, operating the RSS flag has the same effect as using two sets of registers (X, A, B, C, AX, and BC). A register not specified by the RSS flag can be accessed by writing the absolute name in a program. When the RSS flag is 0, for example, register R4 can be accessed by specifying the absolute name, that is, R4 in the program.

The μ PD78356 can implement two types of addressing: implied addressing and register addressing. Implied addressing is performed as process data addressing by a function name which places much importance on the specific function of each register. Register addressing is performed by an absolute name which aims to create a program which is easy to describe and which performs less data transfer, enabling high-speed data processing.

Table 3-3. General Register Configuration

(a) Correspondence between absolute names and function names for 8-bit registers

[
Absolute name	Functio	n name
Absolute fiame	RSS = 0	RSS = 1
R0	Х	
R1	А	
R2	С	
R3	В	
R4		Х
R5		А
R6		С
R7		В
R8	VP∟	VP∟
R9	VРн	VРн
R10	UP∟	UP∟
R11	UРн	UРн
R12	E	E
R13	D	D
R14	L	L
R15	Н	Н

(b) Correspondence between absolute names and function names for 16-bit register pairs

Absolute name	Functio	n name
Absolute name	RSS = 0	RSS = 1
RP0	AX	
RP1	BC	
RP2		AX
RP3		BC
RP4	VP	VP
RP5	UP	UP
RP6	DE	DE
RP7	HL	HL

Phase-out/Discontinued

Unlike the general registers, the special function registers (SFRs) have special functions. The SFRs are assigned to the memory space at addresses FF00H to FFFFH, namely, a 256-byte special function register area.

Short direct addressing is available for a 32-byte area at addresses FF00H to FF1FH. Data in the SFRs assigned to this area can be processed in fewer clock cycles because the word length of the SFRs in the area is less than that of the SFRs in other areas. These assigned SFRs consist of capture, compare, and port registers, and they are frequently accessed.

The 16-byte area at addresses FFD0H to FFDFH is used to access the external storage medium by SFR addressing. Instructions in short word length enable access to external memory or bit manipulation in the external device.

The SFRs can be manipulated by arithmetic/logical instructions, transfer instructions, bit manipulation instructions, or suchlike in the same way as general registers. The manipulatable bit units (1, 8, or 16 bit units) vary according to SFR. (See **Table 3-4**.)

The following describes the methods for specifying SFRs corresponding to manipulatable bit units:

Bit manipulation

Specify the abbreviation for the operand (sfr.bit) of a bit manipulation instruction. The SFR can also be addressed.

8-bit manipulation

Specify the abbreviation for the operand (sfr) of an 8-bit manipulation instruction. The SFR can also be addressed.

• 16-bit manipulation

Specify the abbreviation for the operand (sfrp) of a 16-bit manipulation instruction. A 16-bit SFR is assigned to a two-byte area at consecutive even and odd addresses. Specify an even address when addressing the SFR.

Table 3-4 lists the special function registers (SFRs). The items in Table 3-4 mean:

Abbreviation	A symbol indicating the address of a incorporated SFR. This can be specified in the operand field of an instruction. Reserved word in the NEC assembler (RA78K/III).
	Can be used as sfr variables in the C compiler (CC78K/III) using the #pragma sfr instruction.
• R/W	Indicates whether data can be read from the special function register and/or data can be written into the register. R/W : Can be read and written.
. Manipulatabla bit unit	 R : Can be read^{Note}. W : Can be written. Indicates the unit of bits (1, 8, or 16) when manipulating the special function register.
• Manipulatable bit unit	Indicates the unit of bits (1, 8, or 16) when manipulating the special function register (indicated by \bigcirc). The SFR which can be manipulated in 16-bit units can be specified in the sfrp operand. An even address is specified for the address specification.
• When reset	The SFR which can be manipulated in 1-bit units can be specified by a bit manipulation instruction. Indicates the status of each register when the $\overrightarrow{\text{RESET}}$ is input.
When reset	

Note Read-only register. The bits of the register can be tested.

Cautions 1. Write 0 or 1 into any SFR bit correctly whenever it is predetermined to be so.

- 2. Do not write data into the register which is only used for data reading. Writing data into such registers may result in an error.
- 3. The SFR area (FF00H to FFFFH) addresses to which a special function register is not assigned cannot be accessed (except the external access area). Accessing these addresses may result in an error.

A status as			DAM	Manip	ulation t	pit unit	
Address	Special function register (SFR) name	Abbreviation	R/W	1	8	16	At resetting
FF00H	Port 0	P0	R/W	0	0	_	Undefined
FF01H	Port 1	P1		0	0	-	
FF02H	Port 2	P2	R/WNote 1	0	0	-	
FF03H	Port 3	P3	R/W	0	0	_	
FF04H	Port 4	P4Note 2		0	0	_	
FF05H	Port 5	P5Note 2		0	0	-	
FF07H	Port 7	P7	R	0	0	_	
FF08H	Port 8	P8	R/W	0	0	_	
FF09H	Port 9	P9		0	0	-	
FF0AH	Port 10	P10		0	0	_	
FF10H	Capture/compare register 00	CC00		-	-	0	
FF11H							
FF12H	Capture/compare register 01	CC01		-	-	0	
FF13H							
FF14H	Capture/compare register 02	CC02		-	-	0	
FF15H							
FF16H	Capture/compare register 30	CC30		-	-	0	
FF17H							
FF18H	Capture/compare register 31	CC31		-	-	0	
FF19H							
FF1AH	Compare register 00	CM00		-	-	0	
FF1BH							
FF1CH	Compare register 01	CM01		-	-	0	
FF1DH							
FF1EH	Compare register 02	CM02		-	-	0	
FF1FH							
FF20H	Port 0 mode register	PM0		0	0	_	FFH
FF21H	Port 1 mode register	PM1		0	0	_	
FF22H	Port 2 mode register	PM2 ^{Note 3}		0	0	_	
FF23H	Port 3 mode register	PM3		0	0	_	
FF25H	Port 5 mode register	PM5 ^{Note 2}		0	0	_	
FF28H	Port 8 mode register	PM8		0	0	_	
FF29H	Port 9 mode register	PM9		0	0	_	0FH
FF2AH	Port 10 mode register	PM10		0	0	_	FFH

Table 3-4. Special Function Registers (1/6)

Notes 1. Bit 0 : Read-only

2. Not provided for μ PD78355.

3. Bit 0 is fixed at "1".

Address	Special function register (SFR) name	Abbreviation	R/W	Manip	ulation t	oit unit	- At resetting
Audress	Special function register (SFR) frame	ADDIEVIATION	n/ VV	1	8	16	At resetting
FF30H	Timer register 0	TM0	R	-	-	0	0000H
FF31H							
FF32H	Timer register 1	TM1		-	-	0	
FF33H							
FF34H	Timer register 2	TM2		-	-	0	
FF35H							
FF36H	Timer register 3	TM3		-	-	0	
FF37H							_
FF38H	Timer register 4	TM4		-	-	0	
FF39H							_
FF3AH	Presettable up/down counter register	UDC	R/W	-	-	0	
FF3BH							
FF3CH	External interrupt mode register 0	INTM0		0	0	-	00H
FF3DH	External interrupt mode register 1	INTM1		0	0	-	_
FF40H	Port 0 mode control register	PMC0		0	0	-	
FF42H	Port 2 mode control register	PMC2 ^{Note}		0	0	-	01H
FF43H	Port 3 mode control register	PMC3		0	0	-	00H
FF44H	Pull-up resistor option register L	PUOL		0	0	-	_
FF45H	Pull-up resistor option register H	PUOH		0	0	-	_
FF48H	Port 8 mode control register	PMC8		0	0	-	_
FF4AH	Port 10 mode control register	PMC10		0	0	-	
FF50H	Compare register 03	CM03		-	-	0	Undefined
FF51H							_
FF52H	Compare register 10	CM10		-	-	0	
FF53H							_
FF54H	Compare register 11	CM11		-	-	0	
FF55H							-
FF56H	Compare register 20	CM20		-	-	0	
FF57H							
FF58H	Compare register 21	CM21		-	-	0	
FF59H							-
FF5AH	Compare register 40	CM40		-	-	0	
FF5BH							

Table 3-4. Special Function Registers (2/6)

Note Bit 0 is fixed at "1".

Address	Special function register (SER) name	Abbreviation	R/W	Manip	ulation b	oit unit	At resetting
Address	Special function register (SFR) name	Abbreviation	ri/ VV	1	8	16	Alleselling
FF5CH	Up/down counter compare register 0	CMUD0	R/W	_	-	0	Undefined
FF5DH							
FF5EH	Up/down counter compare register 1	CMUD1		_	-	0	
FF5FH							
FF60H	Real-time output port register L	RTPL		0	0	_	
FF61H	Real-time output port register H	RTPH		0	0	_	
FF62H	Port read control register	PRDC		0	0	_	00H
FF63H	Real-time output port mode register	RTPM		0	0	_	
FF68H	A/D converter mode register 0	ADM0		0	0	_	
FF69H	A/D converter mode register 1	ADM1		0	0	_	07H
FF6AH	D/A conversion data setting register 0	DACS0		0	0	-	00H
FF6BH	D/A conversion data setting register 1	DACS1		0	0	_	
FF6AH	D/A conversion data setting register	DACS		-	-	0	0000H
FF6BH							
FF70H	Timer unit mode register 0	TUM0		0	0	_	00H
FF71H	Timer unit mode register 1	TUM1		0	0	_	
FF72H	Timer unit mode register 2	TUM2		0	0	_	
FF73H	Timer unit mode register 3	TUM3		0	0	_	
FF74H	Timer control register 0	TMC0		0	0	_	
FF75H	Timer control register 1	TMC1		0	0	-	
FF76H	Timer control register 2	TMC2		0	0	_	04H
FF77H	Up/down counter control register	UDCC		0	0	_	00H
FF78H	Timer output control register 0	TOC0		0	0	_	
FF79H	Timer output control register 1	TOC1		0	0	_	
FF7AH	Timer output control register 2	TOC2		0	0	_	
FF7BH	Timer overflow status register	TOVS	R/WNote	0	0	_	1
FF7CH	Noise protection control register	NPC	R/W	0	0	_	
FF80H	Clock synchronous serial interface mode register 0	CSIM0		0	0	-	

Table 3-4. Special Function Registers (3/6)

Bits 7 and 6 Note

: Always 0

Bits 5, 4, 2 and 1 : Read/write

Bits 3 and 0 : Read-only

Adduces		Abbrovistica		Manip	ulation t	oit unit	At repotting
Address	Special function register (SFR) name	Abbreviation	R/W	1	8	16	At resetting
FF82H	Serial bus interface control register	SBIC	R/W ^{Note}	0	0	_	00H
FF86H	Serial I/O shift register 0	SIO0	R/W	0	0	_	Undefined
FF88H	Asynchronous serial interface mode register	ASIM		0	0	_	80H
FF8AH	Asynchronous serial interface status register	ASIS	R	0	0	_	00H
FF8CH	Serial reception buffer : UART	RXB		_	0	_	Undefined
FF8EH	Serial transmission shift register : UART	TXS	W	-	0	-	
FF90H	Clock synchronous serial interface mode register 1	CSIM1	R/W	0	0	_	00H
FF96H	Serial I/O shift register 1	SIO1		0	0	_	Undefined
FFA0H	PWM control register	PWMC		0	0	_	00H
FFA2H	PWM buffer register 0L	PWM0L		0	0	_	Undefined
FFA2H	PWM buffer register 0	PWM0		_	-	0	
FFA3H							
FFA4H	PWM buffer register 1L	PWM1L		0	0	_	
FFA4H	PWM buffer register 1	PWM1		_	_	0	
FFA5H							
FFA8H	In-service priority register	ISPR	R	0	0	_	00H
FFAAH	Interrupt mode control register	IMC	R/W	0	0	_	80H
FFACH	Interrupt mask flag register	MK0L		0	0	-	FFH
FFACH	Interrupt mask flag register	MK0		-	-	0	FFFFH
FFADH							
FFADH	Interrupt mask flag register	MK0H		0	0	-	FFH
FFAEH	Interrupt mask flag register	MK1L		0	0	-	
FFAEH	Interrupt mask flag register	MK1		-	-	0	00FFH
FFAFH							
FFB0H	A/D conversion result register 0	ADCR0	R	-	-	0	Undefined
FFB1H							
FFB1H	A/D conversion result register 0H	ADCR0H		_	0	_	
FFB2H	A/D conversion result register 1	ADCR1		_	-	0	
FFB3H							
FFB3H	A/D conversion result register 1H	ADCR1H		-	0	_	

Table 3-4. Special Function Registers (4/6)

Note Bits 7 and 5 : Read/write Bits 6, 3 and 2: Read-only Bits 4, 1 and 0: Write-only

Address	Openial function resister (OED) rest	Abbrevistic		Manip	ulation t	oit unit	At regetting
Address	Special function register (SFR) name	Abbreviation	R/W	1	8	16	At resetting
FFB4H FFB5H	A/D conversion result register 2	ADCR2	R	-	-	0	Undefined
FFB5H	A/D conversion result register 2H	ADCR2H			0		-
FFB6H	A/D conversion result register 3	ADCR3			_	0	-
FFB7H							
FFB7H	A/D conversion result register 3H	ADCR3H		_	0	_	-
FFB8H	A/D conversion result register 4	ADCR4		_	_	0	-
FFB9H							
FFB9H	A/D conversion result register 4H	ADCR4H		_	0	_	-
FFBAH	A/D conversion result register 5	ADCR5		_	_	0	
FFBBH							
FFBBH	A/D conversion result register 5H	ADCR5H		_	0	_	
FFBCH	A/D conversion result register 6	ADCR6		-	_	0	
FFBDH							
FFBDH	A/D conversion result register 6H	ADCR6H		_	0	_	
FFBEH	A/D conversion result register 7	ADCR7		-	_	0	
FFBFH							
FFBFH	A/D conversion result register 7H	ADCR7H		-	0	_	
FFC0H	Standby control register	STBC ^{Note 1}	R/W	-	0	-	0000 x 000B
FFC1H	CPU control word	CCW		0	0	-	00H
FFC2H	Watchdog timer mode register	WDM ^{Note 1}		_	0	-	
FFC4H	Memory expansion mode register	MM		0	0	_	
FFC6H	Programmable wait control register	PWC		-	-	0	COAAH ^{Note 2}
FFC7H							
FFD0H to FFDFH	External SFR area	-		0	0	-	Undefined
FFE0H	Interrupt control register (INTOV0)	OVIC0		0	0	_	43H
FFE1H	Interrupt control register (INTOV3)	OVIC3		0	0		
FFE2H	Interrupt control register (INTP0/INTCC00)	PICO		0	0	_	-
FFE3H	Interrupt control register (INTP1/INTCC01)	PIC1		0	0	_	-
FFE4H	Interrupt control register (INTP2/INTCC02)	PIC2		0	0	_	
FFE5H	Interrupt control register (INTP3/INTCC30)	PIC3		0	0	_	
FFE6H	Interrupt control register (INTP4/INTCC31)	PIC4		0	0	_	
FFE7H	Interrupt control register (INTCM00)	CMIC00		0	0	_	
FFE8H	Interrupt control register (INTCM01)	CMIC01		0	0	_	1
FFE9H	Interrupt control register (INTCM02)	CMIC02		0	0	_	1

Table 3-4. Special Function Registers (5/6)

Notes 1. Writable only by special instructions

2. Becomes CFAAH only in the ROM-less mode of the external 16-bit bus (MODE0, 1 = HH).

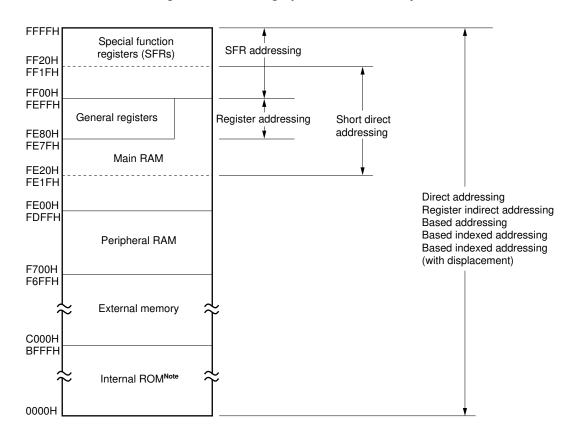

Address	Special function register (SFR) name	Abbreviation	R/W	Manip	ulation b	oit unit	At repotting
Address			Π/ ٧٧	1	8	16	At resetting
FFEAH	Interrupt control register (INTCM03)	CMIC03	R/W	0	0	-	43H
FFEBH	Interrupt control register (INTCM10)	CMIC10		0	0	_	
FFECH	Interrupt control register (INTCM11)	CMIC11		0	0	_	
FFEDH	Interrupt control register (INTCM20)	CMIC20		0	0	_	
FFEEH	Interrupt control register (INTCM21)	CMIC21		0	0	_	
FFEFH	Interrupt control register (INTCM40)	CMIC40		0	0	_	
FFF0H	Interrupt control register (INTCMUD0)	CMICUD0		0	0	_	
FFF1H	Interrupt control register (INTCMUD1)	CMICUD1		0	0	_	
FFF2H	Interrupt control register (INTSER)	SERIC		0	0	_	
FFF3H	Interrupt control register (INTSR)	SRIC		0	0	_	
FFF4H	Interrupt control register (INTST)	STIC		0	0	_	
FFF5H	Interrupt control register (INTCSI0)	CSIIC0		0	0	_	
FFF6H	Interrupt control register (INTCSI1)	CSIIC1		0	0	-	
FFF7H	Interrupt control register (INTAD)	ADIC		0	0	_	

Table 3-4. Special Function Registers (6/6)

3.3 Data Memory Addressing

Various addressing modes are provided for the μ PD78356 to improve memory operability or to enable the use of a high-level language. Special addressing is applicable, in particular, to the space of data memory from F700H to FFFFH according to each function of the special function register (SFR) group and general register group. Fig. 3-6 shows the addressing space of data memory.

Note In the ROM-less mode of the μ PD78355 or μ PD78356, data memory is used as external memory.

Caution When executing word access (including stack manipulation) to the main RAM area (FE00H to FEFFH), only even address can be specified using operand.

3.3.1 General-register addressing

(1) Implied addressing

The instruction automatically addresses the register that functions as an accumulator (A or AX) or loop counter (B or C) assigned to the general-register area.

Coding example: MULU r

If the value stored in register B is used as a multiplier for a multiply instruction of 8 bits by 8 bits, code the following:

MULU B; AX <- A x B

The instruction performs multiply operation between the accumulator (register A) and register B and stores the result in the 16-bit accumulator (register AX).

(2) Register addressing

The instruction directly addresses the desired registers.

Coding example: ADD r,r

To specify registers D and E storing the target values for the 8-bit add instruction, code the following:

ADD D, E; D <- D + E

3.3.2 Short direct addressing

This addressing is used for accessing the internal RAM area at addresses FE20H to FEFFH and the SFR area at addresses FF00H to FF1FH. Short direct addressing enables high-speed access to these areas by a short instruction code.

Specify an even address when manipulating 16-bit data.

Coding example: ADD A, saddr

If one target value of the 8-bit add instruction is already stored in the location at address FE80H in internal data memory, code the following:

ADD A, 0FE80H; A <- A + (FE80H)

3.3.3 Special function register (SFR) addressing

This addressing is used for manipulating SFRs mapped in the SFR area at addresses FF00H to FFFFH.

Coding example: MOV A, sfr

If a special function register is specified as a transfer source for port 0 in the SFR area, code the following 8-bit transfer instruction:

MOV A, P0; A <- P0

CHAPTER 4 SUMMARY OF BLOCK FUNCTION

Phase-out/Discontinued

4.1 Execution Unit

The execution unit (EXU) controls address calculation, arithmetic/logical operations, and data transfer by a microprogram.

The EXU contains a 256-byte main RAM. Eight register banks are addressed to the main RAM in the EXU.

4.2 Bus Control Unit

The bus control unit (BCU) activates a required bus cycle according to the physical address obtained from the execution unit (EXU). When the EXU does not issue a bus cycle activation request, the BCU generates an address required for prefetching an instruction. The prefetched instruction code is fetched into the instruction queue.

8-bit or 16-bit external data bus can be used (bus sizing function).

The number of bytes held in the instruction queue depends on the area from which the instruction is fetched.

- Fetched from internal memoryNote 5 bytes
- Fetched from external memory 3 bytes

Note Internal memory: Internal ROM (only in the μ PD78356 and μ PD78P356), peripheral RAM

4.3 Program Memory and Data Memory

The μ PD78356 and μ PD78P356 contain a 48-Kbyte program memory (ROM) and a 2048-byte data memory (RAM). The μ PD78355 contains only a 2048-byte data memory (RAM). It does not have a ROM.

The 2048-byte data memory consists of 256-byte main RAM contained in the EXU and 1792-byte is peripheral RAM.

Phase-out/Discontinued

As indicated below, the ports have function as control pins as well as general ports.

Port name	I/O		Multiple functions available
Port 0	8-bit I/O	General port	Real-time output port, external trigger input for the A/D converter
Port 1	8-bit I/O		-
Port 2	8-bit I/O	1	External interrupt input, RPU capture trigger input, clear signal input and timer output
Port 3	8-bit I/O		Serial interface I/O, RPU count pulse input, clear signal input and timer output
Port 4	8-bit I/O		Address/data bus (AD0 to AD7)
Port 5	8-bit I/O		Address/data bus (AD8 to AD15)
Port 7	8-bit input		Analog input for the A/D converter
Port 8	8-bit I/O		RPU count pulse input, clear signal input and timer output, PWM signal output
Port 9	4-bit I/O		External access control signal output
Port 10	8-bit I/O		Serial interface I/O, RPU count pulse input

Remark RPU: Real-time pulse unit

4.5 Real-Time Pulse Unit

The real-time pulse unit (RPU) consists of the following hardware.

- · Five 16-bit timers
- One 10-bit timer
- Ten 16-bit compare registers
- One 10-bit compare register
- · Five 16-bit capture/compare registers
- Ten Timer outputs

The RPU can measure a pulse width and frequency and output a programmable pulse. It also can control the output timing of the real-time output port.

Phase-out/Discontinued

The real-time output port (RTP) can control the output timing of the port by the signal from the RPU as a trigger pulse. The port can be used in 1-bit units. This port is also used as port 0 and can output 8 real-time pulses.

4.7 A/D Converter

This converter is a 10-bit very high-speed high-resolution A/D converter having 8 analog input pins. The A/D converter uses the serial-parallel conversion system.

4.8 D/A Converter

Two D/A converters of 8-bit resolution voltage output are contained. The converter uses the resistor string system for conversion.

4.9 Serial Interfaces

Three independent serial interfaces are provided as listed below, and a baud rate generator common to the three interfaces is incorporated. The two clock synchronous serial interfaces have the operating modes indicated below.

- · Asynchronous serial interface (UART)
- · Synchronous serial interface
 - Serial bus interface (SBI) mode
 - Three-wire serial I/O mode
- · Synchronous serial interface (with pin switching function)
 - Three-wire serial I/O mode

4.10 PWM Output Unit

The μ PD78356 has two PWM signal outputs of 8/10/12-bit resolution. By externally connecting a low-pass filter, a PWM output can be used as a digital-to-analog conversion output. The PWM outputs are most suitable, for example, for a control signal for the actuator of a motor.

4.11 Watchdog Timer

The watchdog timer is a free-running counter with a nonmaskable interrupt function designed to prevent crashes or deadlocks. A program error can be detected when a watchdog timer overflow interrupt (INTWDT) is generated or when the watchdog timer output pin (WDTO) goes low. By connecting this output to the RESET pin, abnormal application system operation caused by a program error can be prevented.

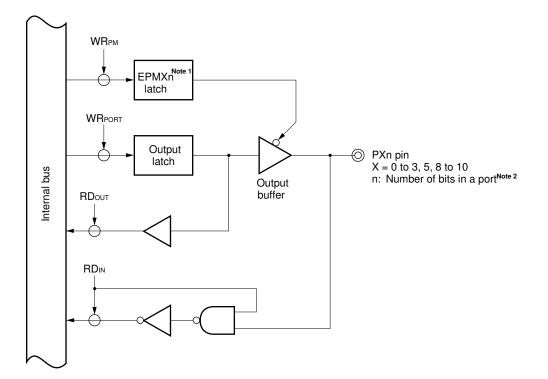
4.12 Interrupt Controller

The interrupt controller processes various interrupt requests (NMI and INTP0 to INTP4) issued from peripheral hardware and external device with the vectored interrupt, macro service, or context switching. The interrupt controller also allows programmable specification of the 4-level interrupt priority by software.

CHAPTER 5 PORT FUNCTIONS

Phase-out/Discontinued

5.1 Hardware Configuration


As shown in Fig. 5-1, three-state bidirectional ports are basically used for the ports of the μ PD78356. (P20 of port 2 and port 7 are used only for input.)

A RESET input signal sets each bit of a port mode register to 1, specifying the port as an input port. All port pins go into the high-impedance state. The contents of the output latch become undefined by a RESET input signal. Before specifying the port as an output port, set data in the output latch.

Caution For the μ PD78355 and for the μ PD78356 and μ PD78P356 in the ROM-less mode, ports 4, 5, and 9 (low-order 3 bits) do not function as ports. For details, see 5.2.

Phase-out/Discontinued

Fig. 5-1. Basic I/O Port Configuration

- Notes 1. PMXn latch: Bit n in the port mode register PMX (X = 0 to 3, 5, 8 to 10)
 - When X = 0, 1, 3 to 5, 8, 10, n = 0 to 7
 When X = 2, n = 1 to 7
 When X = 9, n = 0 to 3

Remarks 1. P20 of port 2 is used only for input. Port 7 is used only for input.

2. Port 4 can be specified as an input or output port by the memory expansion mode register (MM).

(1) When a port is specified as an output port

The output latch is enabled, and a transfer instruction can transfer data between the output latch and accumulator.

The contents of the output latch can be set or reset bit by bit. Data once written to the output latch are held until another instruction is executed to operate the port.

When a port specified as an output port is read using an instruction such as a transfer instruction, the contents of the output latch are read.

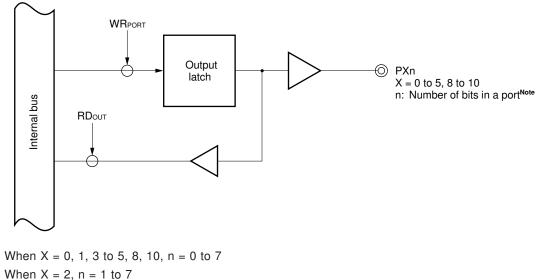


Fig. 5-2. Port Specified as an Output Port

When X = 2, n = 1 to 7 When X = 9, n = 0 to 3

Note

Remark P20 of port 2 is used only for input.

(2) When a port is specified as an input port

The levels of the port pins can be loaded into the accumulator with a transfer instruction. Even when the port is specified as an input port, writing to the output latch is possible. Data transferred from the accumulator with a transfer instruction are all stored in the output latch, regardless of whether the port is specified as an input port or output port.

Phase-out/Discontinued

However, the data is not output to the port pins because the output buffer for the bits have become highimpedance. (When the bits specified as an input are switched to an output port, the contents of the output latch are output to the port pins.)

The contents of the output latch of the bits specified as an input port cannot be loaded into the accumulator. (See **Fig. 5-3**.)

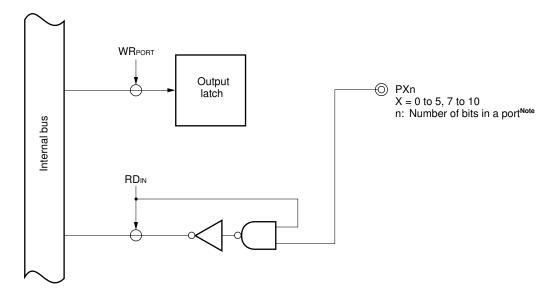
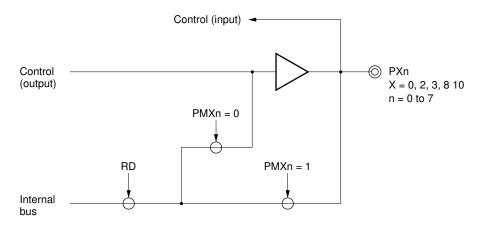


Fig. 5-3. Port Specified as an Input Port

Note When X = 0 to 5, 7, 8, 10, n = 0 to 7 When X = 9, n = 0 to 3



(3) When a port is specified for control signal input or output

Ports 0, 2, 3, 8, and 10 can be used for control signal input or output on a bit-by-bit basis by setting the desired bit(s) of the port mode control registers (PMC0, PMC2, PMC3, PMC8, and PMC10) to 1. In this case, the settings of the port mode registers (PM0, PM2, PM3, PM8, and PM10) have no effect.

When a pin or pins are used for a control signal, the state of the control signal can be checked by executing a port read instruction.

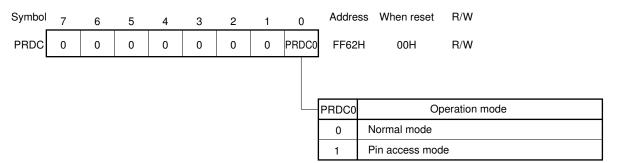
(a) When a port is specified for control signal output

The pin state of a control signal can be read by executing a port read instruction when the desired bit of the port mode register is set to 1.

The state of an internal control signal can be read by executing a port read instruction when the desired bit of the port mode register is reset to 0.

(b) When a port is specified for control signal input

The pin state of a control signal can be read by executing a port read instruction only when the desired bit of the port mode register is set to 1.


Caution The pin functioning as an input pin in the control mode may not operate correctly if the desired bit of the port mode control register is rewritten during the operation. Therefore writing to the port mode control register should be executed at initial settings of the system.

(4) Port output data check function

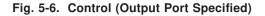
The μ PD78356 has a function that enables pin state to be read in the port output mode so that application system reliability can be improved (pin access mode). With this function, output data and actual pin state can be checked as required. If a mismatch is found, an action such as replacement with another system can be taken.

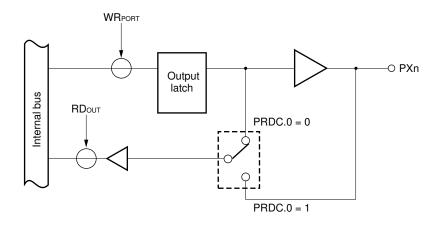
Phase-out/Discontinued

Before pin state can be read, bit 0 of the port read control register (PRDC) must be set to 1. A RESET input signal sets register PRDC to 00H.

Fig. 5-5. Port Read Control Register Format

Example: HA sample program is given below which checks output data to port 0 (P0), port 1 (P1), and port 3 (P3) by using the pin access mode.


TEST:	DI		; Disables interrupt
	MOV	A,#5AH	; Test data = 5AH
	MOV	P0,A	; Sets 5AH in output latch
	MOV	P1,A	
	MOV	P3,A	
	SET1	PRDC.0	; Sets pin access mode (sets PRDC)
	CMP	A,P0	; Compares pin level with output latch contents
	BNE	\$ERR0	; Performs error processing if mismatch occurs
	CMP	A,P1	
	BNE	\$ERR1	
	CMP	A,P3	
	BNE	\$ERR3	
	CLR1	PRDC.0	; Normal mode (resets PRDC)
	EI		; Enables interrupt


- Cautions 1. In the pin access mode (PRDC0 = 1), no bit manipulation instruction for a port operates normally. After a port check is completed, be sure to reset the mode to the normal mode (PRDC0 = 0).
 - If an interrupt occurs in the pin access mode, a bit manipulation instruction may be executed in the same mode. This will cause an error. Before starting a check, be sure to set the DI state.

Phase-out/Discontinued

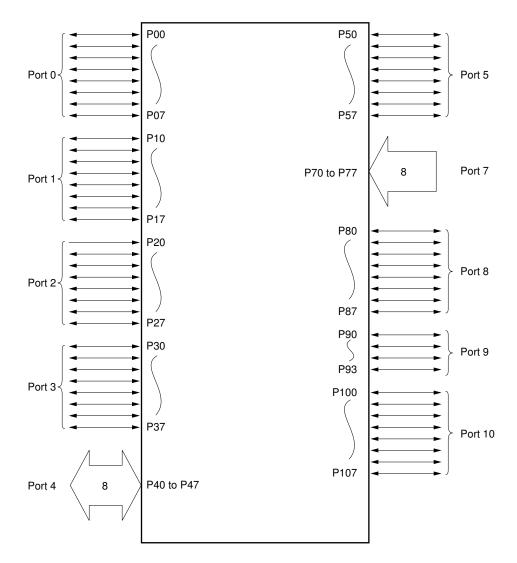
- In addition, do not use macro services that manipulate ports.
- 3. Nonmaskable interrupts are unavoidable. So, the following provisions should be made in the program as required:
 - The nonmaskable interrupt routine is to perform no port manipulation.
 - The level of PRDC.0 is to be saved at the start of the nonmaskable interrupt routine, then is restored when control is returned.

When PRDC.0 is set to 1, the switch enclosed in dotted lines in the figure below is connected to the pin and the pin state is read. If a bit manipulation instruction is executed in this state, the pin state is read and a bit operation is executed. This may adversely affect the contents of the output latch. When PRDC.0 is reset to 0, the system enters the normal mode.

In addition, instructions (CHKL, CHKLA) dedicated to frequent port state checking are available. By EXCLUSIVE ORing, these instructions compare the pin state with the contents of the output latch (in the port mode) or the pin state with the level of the internal control output signal (in the control mode).

Phase-out/Discontinued

Example: A sample program is given below which checks pin state and the contents of an output latch using the CHKL or CHKLA instruction.


TEST:	SET1 CHKL BNE	P0.3 P0 \$ERR1	; Sets bit 3 of port 0; Checks port 0; Branches to error processing (ERR1) if mismatch with output latch contents occurs
ERR1:	CHKLA BT BT	P0 A.7,\$BIT07 A.6,\$BIT06	; Check incorrect bits ; Bit 7? ; Bit 6?
	BT BR	A.1,\$BIT01 \$BIT00	; Bit 1? ; Bit 0 is incorrect if all above bits are correct.

- Cautions 1. Use the CHKL or CHKLA instruction only when the PRDC0 bit of the PRDC register is set to 0 (normal mode).
 - 2. Concerning the I/O port pin, the check result of the pin which is set to input port mode will always be the same between the CHKL and CHKLA instructions regardless of the setting of the port mode/control mode. Concerning the input dedicated ports, the input pin level will always be read by the CHKL and CHKLA instructions because there is no latch. Therefore, for the input dedicated ports, the CHKL and CHKLA instructions are essentially ineffective.
 - Set control output pins to the input mode before executing the CHKL or CHKLA instruction to check the output level of the pin of a port where control and port output pins are used together. (The output level of a control pin cannot be checked with the CHKL or CHKLA instruction because the output level varies asynchronously.)

5.2 Functions of the Ports

The μ PD78356 is provided with the ports shown in Fig. 5-7, which enable various types of control.

5.2.1 I/O port functions and alternate functions

Table 5-1 lists the function of each port. Each port functions as an I/O port and also functions as I/O pins for internal hardware.

Port name	Port function	Alternate function
Port 0	8-bit I/O port. Specifiable as input or output in 1-bit units.	Real-time output port (RTP) or external trigger input for A/D converter in control mode
Port 1	8-bit I/O port. Specifiable as input or output in 1-bit units.	_
Port 2	8-bit I/O port. Specifiable as input or output in 1-bit units. (P20 is excluded.)	Capture trigger input, clear signal input, or timer output for real-time pulse unit (RPU), or external interrupt input in control mode
Port 3	8-bit I/O port. Specifiable as input or output in 1-bit units.	Count pulse input, clear signal input, or timer output for real-time pulse unit (RPU), or I/O for serial interface (UART, CSI) in control mode
Port 4	8-bit I/O port. Specifiable as input or output in 8-bit units.	Address/data bus (AD0 to AD7) for memory expansion
Port 5	8-bit I/O port. Specifiable as input or output in 1-bit units.	Address/data bus (AD8 to AD15) for memory expansion
Port 7	Port used only for 8-bit input.	Analog input for A/D converter in control mode
Port 8	8-bit I/O port. Specifiable as input or output in 1-bit units.	Count pulse input, clear signal input, or timer output for real-time pulse unit (RPU), or PWM signal output in control mode
Port 9	4-bit I/O port. Specifiable as input or output in 1-bit units.	Control signal output for memory expansion
Port 10	8-bit I/O port. Specifiable as input or output in 1-bit units.	Count pulse input for real-time pulse unit (RPU) or I/O for serial interface in control mode

Table 5-1. Port Functions and Alternate Functions of the Ports

5.2.2 I/O mode setting

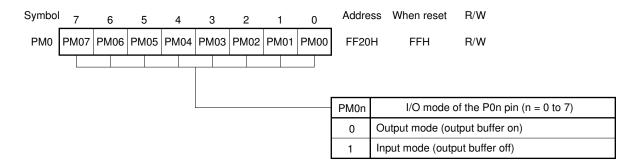
(1) Port n (n = 0 to 3, 5, 8, 9, 10)

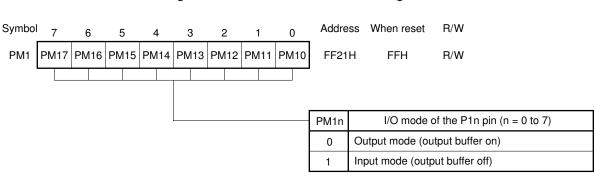
The I/O mode of each port is set in 1-bit units with a port mode register (PM). (See **Fig. 5-8** to **5-15**.) Each pin of a port functions as an input or output port, depending on the setting of the corresponding bit of the PM register. It is an input port when the bit is one, and an output port when the bit is zero. Bit 0 of the port 2 mode register (PM2) is always one.

The contents of each PM register are specified by an 8-bit manipulation instruction.

(2) Port 7

Port 7 functions only as input port. Port 7 has no port mode register.


(3) Port 4


The I/O mode of port 4 only is set with the memory expansion mode register (MM) in 8-bit units. (See **Fig. 5-21**.)

Register MM is set with a bit or 8-bit manipulation instruction.

Fig. 5-8 to 5-15 show the format of each port mode instruction register.

Fig. 5-8. Format of the Port 0 Mode Register

Fig. 5-9. Format of the Port 1 Mode Register

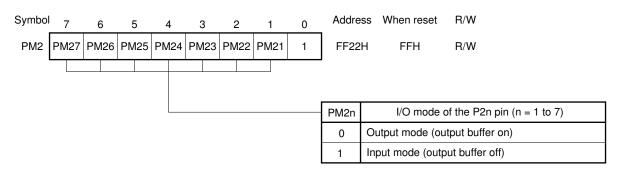
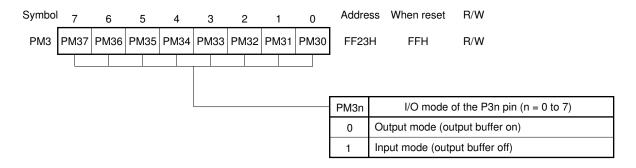
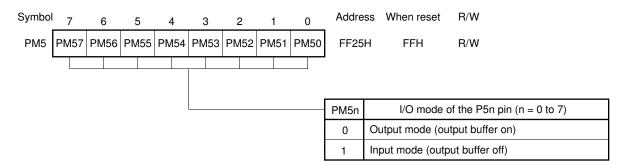
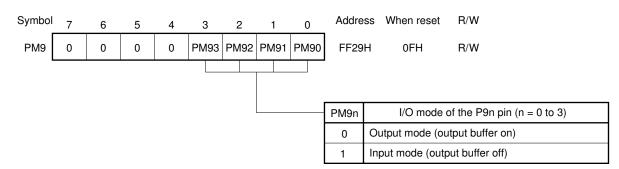
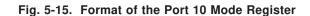



Fig. 5-10. Format of the Port 2 Mode Register

Caution Bit 0 of the port 2 mode register is always one.

Fig. 5-11. Format of the Port 3 Mode Register



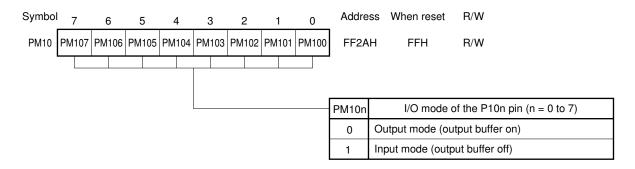


Fig. 5-14. Format of the Port 9 Mode Register

5.2.3 Control mode setting

(1) Port n (n = 0, 2, 3, 8, 10)

The control mode of each port is set in 1-bit units with a port mode control register (PMC). (See **Fig. 5-16** to **5-20**.)

Each pin of port n functions as a control pin when the corresponding bit of the PMC register is set to 1. In this case, the previous states of the port and the set value in the PMC register have no effect. The contents of each PMC register are specified by an 8-bit manipulation instruction.

(2) Port 7

The pins of port 7 are always set in the control mode. Port 7 has no port mode control register. The pin state of each port can be read by executing a port read instruction.

(3) Port 4 and port 5

(a) *µ*PD78356

The control mode is set according to the contents of the memory expansion mode register (MM) (see **Fig. 5-21**). As shown in Table 5-2, the operations of ports 4 and 5 depend on the expansion mode of the MM register. When the MM register is in the expansion mode, port 4 functions as an address/data bus and some bits of port 5 function as address bus.

When data is written or verified for the μ PD78P356 in the PROM programming mode, port 4 functions as an I/O port for the data.

The contents of the MM register are specified by a bit manipulation instruction or an 8-bit manipulation instruction.

Sotting	of MM register	Operation of port 4			O	peratior	n of port 5			
Getting	or wive register	P40 to P47	P50	P51	P52	P53	P54 P55 P56 P57			
F	Port mode	Input port			(General	I I/O port			
(sing	le chip mode)	Output port								
Expansion	256-byte expansion	Address/data bus								
mode	4-Kbyte expansion		AD8	AD9	AD10	AD11	0	General	I/O por	rt
	16-Kbyte expansion						AD12	AD13	General	I/O port
	Full expansion								AD14	AD15

Table 5-2. Operation of Port 4 and Port 5 (µPD78356)

Remark ADn (n = 8 to 15): Address bus

(b) μPD78355

The ports operate as described below. One pin of the port does not function as a port.

- · Port 4 : Lower address/data bus (AD0 to AD7)
- Port 5 : Higher address/data bus (AD8 to AD15)

This also applies when the μ PD78356 is used in the ROM-less mode.

(4) Port 9

★

The control mode is set according to the contents of the memory expansion mode register (MM).

(a) μ**PD78356**

(i) External 8-bit bus

Port 9 operates as indicated in Table 5-3.

When the expansion mode is set, the P90 and P91 pins function as the \overline{RD} and \overline{LWR} pins, respectively, and the P92 and P93 pins function as ports. When the μ PD78356 is placed in the ROM-less mode, the P90 and P91 pins function as the \overline{RD} and \overline{LWR} pins, respectively, and P92 and P93 pins as ports at all times. In this case, the MM0 to MM2 bits have no effect.

Table 5-3	UPD78356 Port 9	Operation	(External 8-bit Bus)
Table J-J.	με 070550 εύτι 9	operation	(LALEITIAL O-DIL DUS)

Setting of MM register	Operation of port 9				
MM0 to MM2	P90	P91	P92	P93	
Port mode	General-purpose port				
Expansion mode	RD	LWR	General-pu	Irpose port	

(ii) External 16-bit bus

Port 9 operates as indicated in Table 5-4.

When the expansion mode is set, the P90, P91, and P92 pins function as the \overline{RD} , \overline{LWR} , and \overline{HWR} pins respectively, and the P93 pin function as a port. When the μ PD78356 is placed in the ROM-less mode, the P90, P91, and P92 pins function as the \overline{RD} , \overline{LWR} , and \overline{HWR} pins, respectively, and P93 pin as ports at all times. In this case the bits MM0 to MM2 cannot be set.

Table 5-4.	μ ΡD78356	Port 9	Operation	(External	16-bit Bus)
------------	------------------	--------	-----------	-----------	-------------

Setting of MM register	Operation of port 9				
MM0 to MM2	P90	P91	P92	P93	
Port mode	General-purpose port				
Expansion mode	RD	LWR	HWR	General- purpose port	

(b) μ**PD78355**

(i) External 8-bit bus

The P90 and P91 pins function as the $\overline{\text{RD}}$ and $\overline{\text{LWR}}$ pins, respectively, and the P92 and P93 pins function as ports at all times. The lower three bits (MM0 to MM2) of the MM register cannot be set.

Phase-out/Discontinued

(ii) External 16-bit bus

The P90, P91, and P92 pins function as the \overline{RD} , \overline{LWR} , and \overline{HWR} pins, respectively, and the P93 pin as a port. The lower three bits (MM0 to MM2) of the MM register cannot be set.

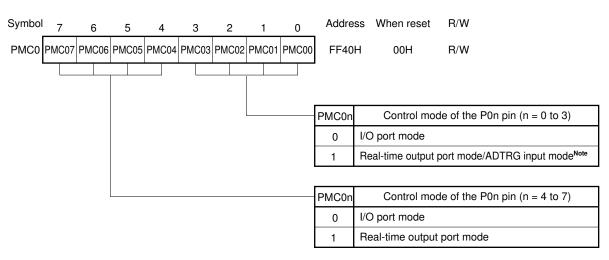
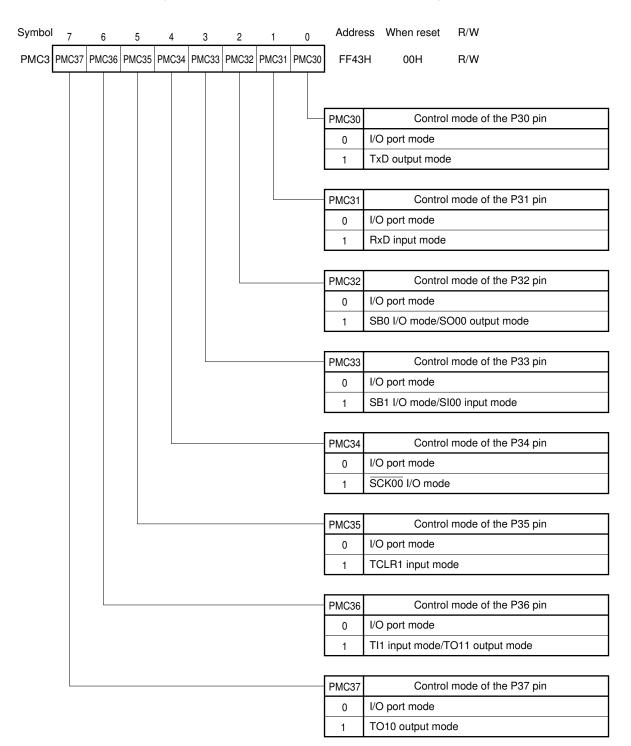


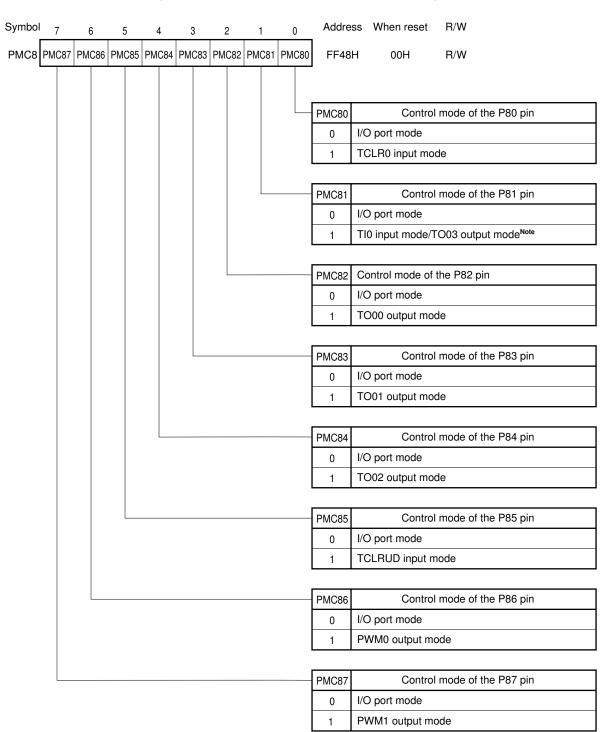
Fig. 5-16. Format of the Port 0 Mode Control Register

Note Pins P00 to P03 function as external trigger input pins (ADTRG0 to ADTRG3) of the A/D converter when the TRG bit 2 of the A/D converter mode register 1 (ADM1) is "1". (See **Fig. 8-4**.)

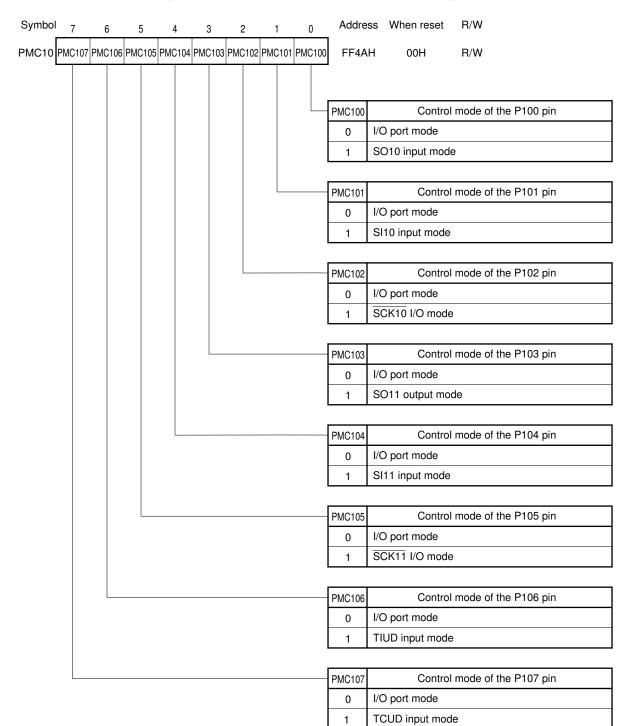


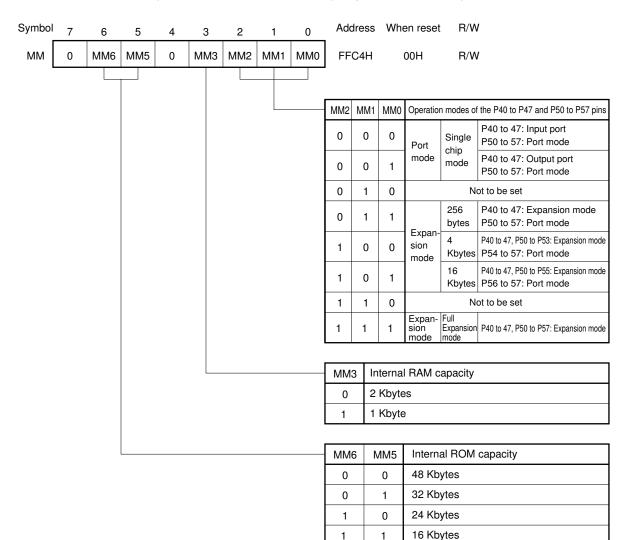
Symbol	7	6	5	4	3	2	1		0	Addres	ss When reset	R/W
PMC2	PMC27	PMC26	PMC25	PMC24	PMC23	PMC22	PMC2	21	1	FF42I	H 01H	R/W
										PMC21	Control	mode of the P21 pin
										0	I/O port mode	
										1	INTP0 input mode	e/TO04 output mode ^{Note 1}
										PMC22	Control	mode of the P22 pin
										0	I/O port mode	
										1	INTP1 input mode	e/TO05 input mode ^{Note 1}
										PMC23	Control	mode of the P23 pin
										0	I/O port mode	
										1	INTP2 input mode	9
										PMC24	Control	mode of the P24 pin
										0	I/O port mode	
										1	INTP3 input mode	9
										PMC25	Control	mode of the P25 pin
										0	I/O port mode	
										1	INTP4 input mode	9
										PMC26	Control	mode of the P26 pin
										0	I/O port mode	
										1	TCLR2 input mod	le/TO21 output mode ^{Note 2}
										PMC27	Control	mode of the P27 pin
										0	I/O port mode	
										1	TO20 output mod	e

Fig. 5-17. Format of the Port 2 Mode Control Register


- Notes 1. As external interrupt (INTP0, INTP1) will be generated even if pins P21 and P22 are used as timer outputs (TO04, TO05), mask the interrupt. (See Fig. 15-1.) When not using them as timer outputs, disable the timer outputs using the TOC1 register. The pins will become high-impedance. (See Fig. 7-11.)
 - 2. When using pin P26 as a timer output (TO21), disable the external clear input using the TUM1 register. (See Fig. 7-3.)

Caution Bit 0 of the port 2 mode control register is always one.


Fig. 5-18. Format of the Port 3 Mode Control Register


Fig. 5-19. Format of the Port 8 Mode Control Register

Note When not using pin P81 as the timer output (TO03), disable the timer output using the TOC0 register. The pin will become high-impedance. (See **Fig. 7-10**.) When not using as the TI0 input, disable the external clock input using the TMC0 register. (See **Fig. 7-6**.)

Fig. 5-20. Format of the Port 10 Mode Control Register

Fig. 5-21. Format of the Memory Expansion Mode Register

- Cautions 1. Be sure to write 0 in bits 4 and 7. If 1 is written in these bits, operation will not be normal.
 - 2. Invalid combinations are specified as "Not to be set" in Fig. 5-21. Never write these combinations.

5.2.4 Pull-up resistor specification

Each pin of ports 0 to 5 and ports 8 to 10 of the μ PD78356 has an on-chip, pull-up resistor specifiable by software. (However, this does not apply to the P20 pin.)

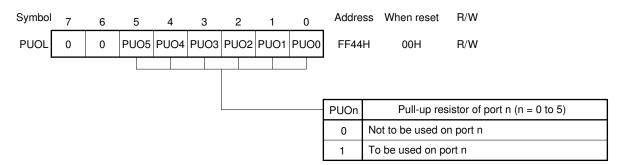
(1) Ports 0 to 3, and ports 8 to 10

Whether to use an on-chip, pull-up resistor can be specified for each pin separately with the pull-up resistor option registers (PUOL, PUOH) and port mode register (PM).

When the PUO bit corresponding to a port is set to 1, the on-chip, pull-up resistor of a pin specified as an input port with the PM register is enabled.

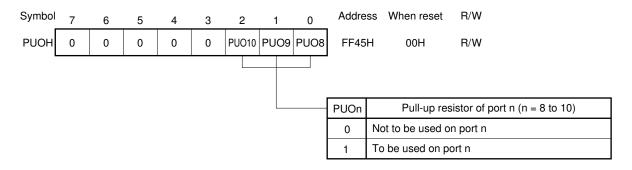
(2) Port 4

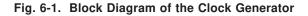
The use of an on-chip, pull-up resistor is enabled only in the normal operation mode. The use of the on-chip, pull-up resistor of a pin is enabled when the PUO4 bit of the PUOL register is set to 1, and the pin is specified as an input port with the memory expansion mode register (MM).

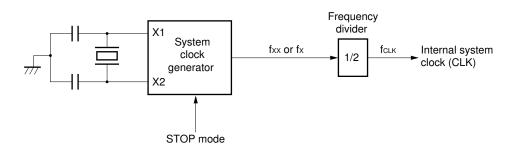

(3) Port 5


The use of an on-chip, pull-up resistor is enabled only in the normal operation mode. The use of the on-chip, pull-up resistor of a pin is enabled when the PUO5 bit of the PUOL register is set to 1, and the pin is specified as an input port with the memory expansion mode register (MM) and port 5 mode register (PM5).

The use of the on-chip, pull-up resistor of a pin is also enabled when the pin is specified as a control pin with the port mode control register (PMC). So, when the on-chip, pull-up resistor of a control pin is not to be used, set the value of the corresponding bit of the PM register to 0 (output mode) or set the corresponding PUO bit to 0.


Caution In μPD78356 emulation using the IE-78350-R, the use of the on-chip, pull-up resistors of port 1, 4, 5, or 9 is disabled even if the PUO1, PUO4, PUO5, or PUO9 bit of the PUOL and PUOH registers is set to 1. When using a pull-up resistor, first set the corresponding bit to 1 to use software common to the IE-78350-R and μPD78356, then externally attach a pull-up resistor.





CHAPTER 6 CLOCK GENERATOR

Phase-out/Discontinued

The clock generator generates and controls an internal system clock (CLK) supplied to the CPU. The clock generator is configured as shown in Fig. 6-1.

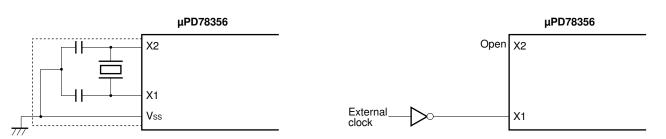
Remarks 1. fxx : Crystal oscillator frequency

2. fx : External clock frequency

3. fclk : Internal system clock frequency

The system clock generator generates a clock signal with a crystal resonator connected to the X1 and X2 pins. The system clock generator stops oscillation when it is set to the standby mode (STOP mode). (See **CHAPTER 16**.)

An external clock can be applied. In this case, a clock signal is to be applied to the X1 pin. The X2 pin is left open.

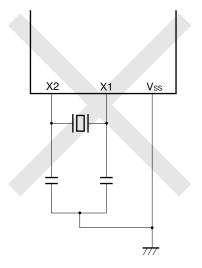

The frequency divider divides system clock generator output (fxx for the crystal oscillator or fx for an external clock) by two to produce an internal system clock (f_{CLK}).

Caution When using an external clock, do not set the STP bit of the standby control register (STBC) to 1.

Fig. 6-2. External Circuitry of the System Clock Generator

(a) Crystal oscillator

(b) External clock



- Cautions 1. When using the system clock oscillator, run wires in areas enclosed with broken lines of Fig. 6-2 according to the following rules to avoid effects such as stray capacitance:
 - Minimize the wiring.
 - Never cause the wires to cross other signal lines or run near a line carrying a large varying current.
 - Cause the grounding point of the capacitor of the oscillator to have the same potential as Vss. Never connect the capacitor to a ground pattern carrying a large current.
 - Never extract a signal from the oscillator.
 - 2. When applying external clocks, do not connect a wire or a similar capacitive load to the X2 pin.

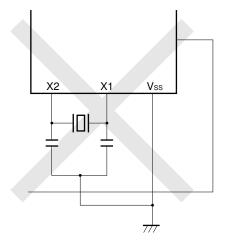
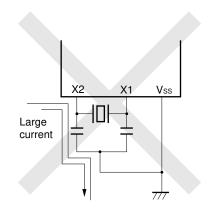
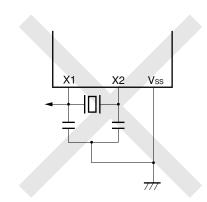
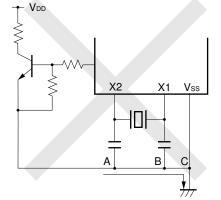

Fig. 6-3 shows examples of wrong resonator connection circuitry.

Fig. 6-3. Examples of Wrong Resonator Connection Circuitry


- (a) Connection circuit wiring is too long.
- (b) There is another signal line crossing.


(c) A high varying current flows near a signal line.



(d) A current flows over the ground line of the generator circuit.(The potentials of points A, B, and C change.)

(e) A signal is extracted.

CHAPTER 7 REAL-TIME PULSE UNIT (RPU)

Phase-out/Discontinued

The RPU can output programmable pulses, measure pulse intervals and frequencies, generate trigger signals for the A/D converter, and function as a baud rate generator for the serial interface.

The RPU consists of four 16-bit timers (timers 0 to 3), one 10-bit timer (timer 4), and one 16-bit up/down counter. The timers and up/down counter have the following features:

- Timer 0 Generates trigger signals for the A/D converter. Up to four inputs are available for sampling and conversion timing in the A/D converter.
- Timers 0 to 2 Allow various pulse outputs such as toggle output and set/reset output.
- Timers 0 and 3 and up/down counter...... Generate overflow interrupts.
- Timers 1 and 2..... Control the output timing of a real-time output port.
- Timer 4 Specifies the baud rate for the serial interface.
- Up/down counter....... Software can toggle between incrementing and decrementing the counter. One of four operating modes can be selected to count external clock pulses. The counter is thus available for many applications.

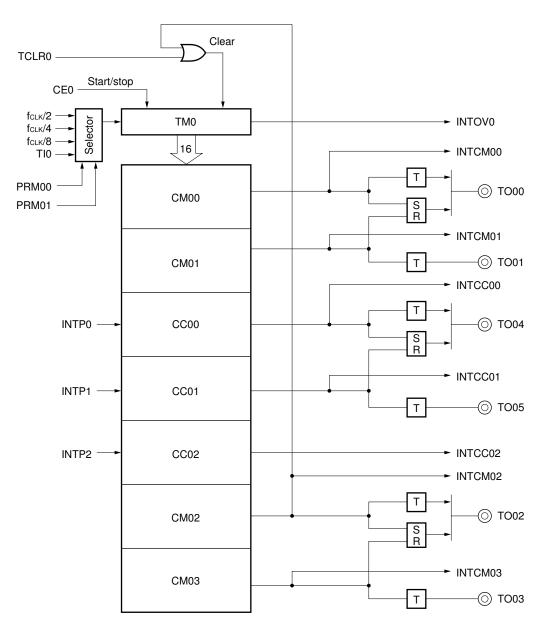
Remark Toggle output and set/reset (SR) output

Toggle output : A trigger signal inverts the state of this pulse output.

The μ PD78356 uses a match signal from a compare register as the trigger signal.

• SR output : A set trigger signal sets this pulse output to 1. A reset trigger signal resets this pulse output to 0.

The μ PD78356 uses match signals from different compare registers as the set and reset trigger signals. Set and reset timings can be separately specified.



7.1 Configuration

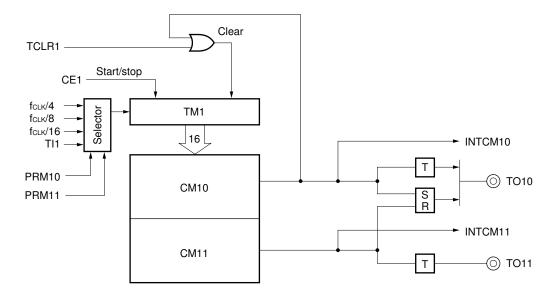

Fig. 7-1 shows the block diagram of the RPU. Table 7-1 lists hardware components of the timers and counter in the RPU.

Fig. 7-1. Block Diagram of the Real-Time Pulse Unit (RPU) (1/3)

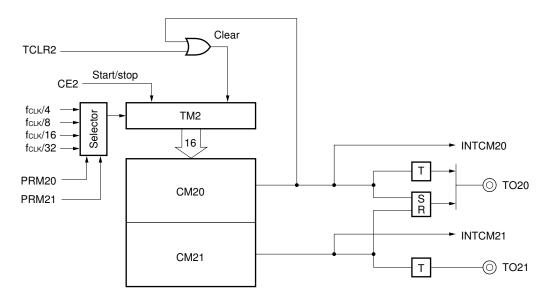
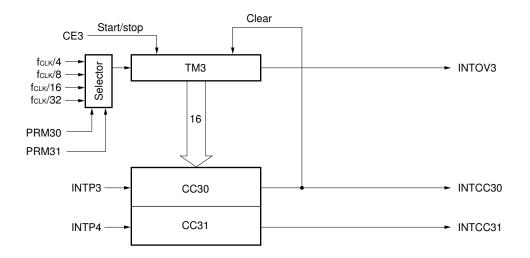

Timer 0

Fig. 7-1. Block Diagram of the Real-Time Pulse Unit (RPU) (2/3)


Timer 2

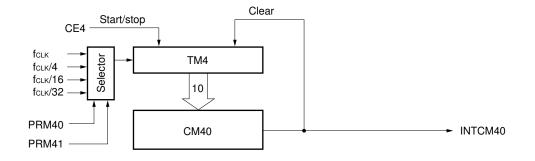
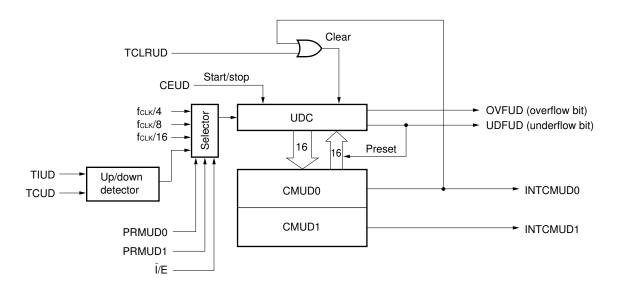

Timer 1

Fig. 7-1. Block Diagram of the Real-Time Pulse Unit (RPU) (3/3)


Timer 3

Timer 4

Match interrupt Number Capture Timer Count clock of timer Timer clear Register from compare trigger register outputs Timer 0 16-bit timer INTCM00^{Note 1} TCLR0 fclk/2 16-bit compare register (CM00) 6 _ 16-bit compare register (CM01) INTCM01^{Note 1} INTCM02 (TM0) fclk/4 _ fclk/8 16-bit compare register (CM02) INTCM02 Input to the TI0 pin 16-bit compare register (CM03) INTCM03 16-bit capture/compare register (CC00) INTCC00^{Note 1} INTP0 INTCC01^{Note 1} 16-bit capture/compare register (CC01) INTP1 16-bit capture/compare register (CC02) INTCC02 INTP2 16-bit timer 16-bit compare register (CM10) Timer 1 fclk/4 INTCM10 2 TCLR1 _ (TM1) fclk/8 16-bit compare register (CM11) INTCM11 INTCM10 fclk/16 Input to the TI1 pin Timer 2 16-bit timer 16-bit compare register (CM20) INTCM20 TCLR2 fclk/4 2 (TM2) fclk/8 16-bit compare register (CM21) INTCM21 INTCM20 fclk/16 fclk/32 Timer 3 16-bit timer fclk/4 16-bit capture/compare register (CC30) INTP3 INTCC30 (TM3) fclk/8 16-bit capture/compare register (CC31) INTP4 _ fclk/16 fclk/32 INTCM40 INTCM40 Timer 10-bit timer fclk 10-bit compare register (CM40) _ 4 Note 2 fclk/4 (TM4) fclk/16 fclk/32 Up/down 16-bit up/ fclk/4 16-bit compare register (CMUD0) INTCMUD0 TCLRUD _ _ counter down fclk/8 16-bit compare register (CMUD1) INTCMUD1 _ INTCMUD0 counter fclk/16 (UDC) Input to the TIUD pin

Notes 1. Used also as a sampling trigger signal for the A/D converter.

2. Used also as a baud rate generator for the serial interface.

Remarks 1. fclk: Internal system clock

- 2. INTPn (n = 0 to 4): External interrupt
- 3. TM0, TM3, and the UDC have overflow interrupt functions.

The following sections describe the functions of the timers, compare registers, and capture/compare registers.

7.1.1 TM0

TM0 is a 16-bit timer/event counter. The timer can also be used as a one-shot timer.

TM0 counts internal clock pulses (fcLK/2, fcLK/4, or fcLK/8) or external events applied to the TI0 pin. The PRM01 and PRM00 bits of timer control register 0 (TMC0) selects one of the three internal clock pulses or the external event. The CE0 bit of timer control register 0 (TMC0) specifies whether the counting of TM0 is enabled or disabled.

When counting causes TM0 to overflow, an overflow interrupt (INTOV0) occurs, and the overflow bit (OVF0) is set to 1.

TM0 is cleared by an external clear input (TCLR0) or a match interrupt (INTCM02) from the compare register (CM02).

When the counter stops or a RESET signal is input, all the bits of TM0 are cleared to 0.

7.1.2 TM1

TM1 is a 16-bit timer/event counter.

TM1 counts internal clock pulses (fcLk/4, fcLk/8, or fcLk/16) or external events applied to the TI1 pin. The PRM11 and PRM10 bits of timer control register 0 (TMC0) selects one of the three internal clock pulses or the external event.

The CE1 bit of timer control register 0 (TMC0) specifies whether the counting of TM1 is enabled or disabled. When counting causes TM1 to overflow, the overflow bit (OVF1) is set to 1.

TM1 is cleared by an external clear input (TCLR1) or a match interrupt (INTCM10) from the compare register (CM10).

When the counter stops or a RESET signal is input, all the bits of TM1 are cleared to 0.

7.1.3 TM2

TM2 is a 16-bit interval timer.

TM2 counts internal clock pulses (fcLk/4, fcLk/8, fcLk/16, or fcLk/32). The PRM21 and PRM20 bits of timer control register 1 (TMC1) specify which clock is counted.

The CE2 bit of timer control register 1 (TMC1) specifies whether the counting of TM2 is enabled or disabled. When counting causes TM2 to overflow, the overflow bit (OVF2) is set to 1.

TM2 is cleared by an external clear input (TCLR2) or a match interrupt (INTCM20) from the compare register (CM20).

When the counter stops or a RESET signal is input, all the bits of TM2 are cleared to 0.

7.1.4 TM3

TM3 is a 16-bit interval timer.

TM3 counts internal clock pulses (fcLk/4, fcLk/8, fcLk/16, or fcLk/32). The PRM31 and PRM30 bits of timer control register 1 (TMC1) specify which clock is counted.

The CE3 bit of timer control register 1 (TMC1) specifies whether the counting of TM3 is enabled or disabled.

When counting causes TM3 to overflow, an overflow interrupt (INTOV3) occurs, and the overflow bit (OVF3) is set to 1.

TM3 is cleared by a match interrupt (INTCC30) from the capture/compare register (CC30).

When the counter stops or a RESET signal is input, all the bits of TM3 are cleared to 0.

7.1.5 TM4

TM4 is a 10-bit interval timer. TM4 can also be used as a baud rate generator for the serial interface.

TM4 counts internal clock pulses (fcLK, fcLK/4, fcLK/16, or fcLK/32). The PRM41 and PRM40 bits of timer control register 2 (TMC2) specify which clock is counted.

The CE4 bit of timer control register 2 (TMC2) specifies whether the counting of TM3 is enabled or disabled. TM4 is cleared by a match interrupt (INTCM40) from the compare register (CM40).

When the counter stops or a RESET signal is input, all the bits of TM4 are cleared to 0.

7.1.6 UDC

The UDC is a 16-bit up/down counter.

The UDC counts internal clock pulses (fcLk/4, fcLk/8, or fcLk/16) or increments or decrements the number of external events input from the TIUD pin.

The PRMUD1, PRMUD0, and \bar{I}/E bits of the up/down counter control register (UDCC) specify whether one of the clocks is counted or the number of external events is incremented or decremented.

The CEUD bit of the UDCC specifies whether the counting of the UDC is enabled or disabled.

When counting causes the UDC to overflow or underflow, the overflow bit (OVFUD) or underflow bit (UDFUD) is set to 1.

The UDC is cleared by an external clear input (TCLRUD) or a match interrupt (INTCMUD0) from the compare register (CMUD0).

When the counter stops or a RESET signal is input, all the bits of the UDC are cleared to 0.

7.1.7 Compare registers

A compare register compares the contents of the corresponding timer with the data held in the compare register at all times, and generates an interrupt request signal when they match.

See Table 7-1 for detailed information about the configuration of the timers and compare registers and the correspondence between the compare registers and interrupt sources.

The contents of each compare register become undefined after RESET signal is input.

(1) 16-bit compare registers (CM00 to CM03, CM10, CM11, CM20, CM21, CMUD0, and CMUD1)

As shown in Fig. 7-1, 16-bit compare registers are connected to TM0 to TM2 and the UDC. Compare registers connected to TM0 to TM2 have timer output functions. Each compare register inverts the corresponding timer output when a match interrupt occurs (toggle output operation). CM00 and CM01, CM02 and CM03, CM10 and CM11, and CM20 and CM21 can be used to set or reset output (set or reset output operation).

Compare register	Interrupt request signal
CM00	INTCM00
CM01	INTCM01
CM02	INTCM02
CM03	INTCM03
CM10	INTCM10
CM11	INTCM11
CM20	INTCM20
CM21	INTCM21
CMUD0	INTCMUD0
CMUD1	INTCMUD1

Table 7-2. Interrupt Request Signals from 16-Bit Compare Registers

(2) 10-bit compare register (CM40)

As shown in Fig. 7-1, a 10-bit compare register is connected to TM4. A match signal from CM40 can be used as a baud rate input for the serial interface.

Table 7-3. Interrupt Request Signal from the 10-Bit Compare Register

Compare register	Interrupt request signal		
CM40	INTCM40		

7.1.8 Capture/compare registers (CC00 to CC02, CC30, and CC31)

The capture/compare registers are 16-bit registers that function either as a capture or compare register. Control registers specify whether the capture/compare register functions as a capture or compare register.

(1) When a capture/compare register functions as a capture register

The capture/compare register takes in (captures) the contents of each timer when a capture trigger signal occurs. As a capture trigger, an external interrupt (INTPn: n = 0 to 4) can be used. See Table 7-1 for the correspondence between the registers and capture triggers. The occurrence of a capture trigger also means the occurrence of an interrupt. By using a capture register, the pulse width and period of externally applied pulses can be easily measured.

(2) When a capture/compare register functions as a compare register

The capture/compare register generates an interrupt based on a match between the timer and register values. When CC00 or CC01 is used as a compare register, the register either inverts the corresponding timer output when a match interrupt occurs (toggle output operation) or sets or resets output (set or reset output operation).

The interrupt source depends on whether the capture register function or compare register function is selected. When the capture register function is selected, the corresponding external interrupt capture trigger is selected. When the compare register function is selected, the corresponding match interrupt is selected.

The contents of each capture/compare register become undefined after RESET signal is input.

Caution When the compare register function is selected, interrupt generation based on the corresponding external interrupt (capture trigger signal) is impossible.

7.2 Control Registers

The following six types of control registers specify the operation of the real-time pulse unit (RPU):

- Timer unit mode registers (TUM0 to TUM3)
- Timer control registers (TMC0 to TMC2, and UDCC)
- Timer output control registers (TOC0 to TOC2)
- Timer overflow status register (TOVS)
- External interrupt mode registers (INTM0 and INTM1)
- Noise protection control register (NPC)

The following sections describe the control registers.

7.2.1 Timer unit mode registers (TUM0 to TUM3)

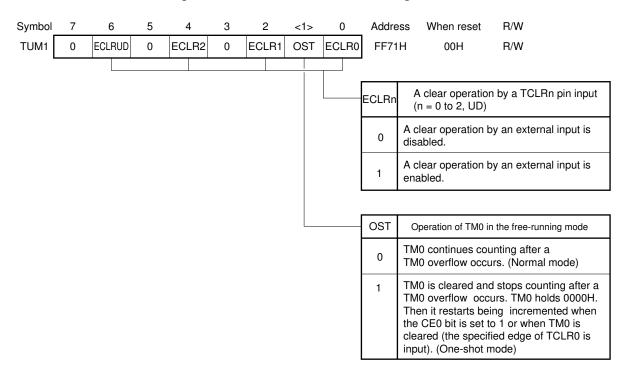
Timer unit mode registers (TUM0 to TUM3) are 8-bit registers. Table 7-4 lists their functions.

Table 7-4. Functions of Timer Unit Mode Registers

Register	Symbol	Function
Timer unit mode register 0	TUMO	Specifies the operating mode for capture/compare registers (CC00 to CC02, CC30, and CC31) and the output mode for timer output pins (TO00, TO02, and TO04).
Timer unit mode register 1	TUM1	Specifies whether to enable or disable clear signals (TCLR0, TCLR1, TCLR2, and TCLRUD) input to the RPU, and controls the operation of TM0 after a TM0 overflow and one-shot operation.
Timer unit mode register 2	TUM2	Specifies edges of external clock inputs (TI0, TI1, and TIUD).
Timer unit mode register 3	TUM3	Specifies edges of clear signals input to the RPU (TCLR0, TCLR1, TCLR2, and TCLRUD).

Fig. 7-2 to 7-5 show the formats of TUM0 to TUM3.

Data can be read from or written into TUM0 to TUM3 by a bit manipulation instructions or 8-bit manipulation instruction.


A RESET input signal sets TUM0 to TUM3 to 00H.

Phase-out/Discontinued Fig. 7-2. Format of Timer Unit Mode Register 0 Symbol 5 Address When reset R/W 7 6 4 3 2 1 0 TUM0 TOM04 TOM02 TOM00 CMS31 CMS30 CMS02 CMS01 CMS00 FF70H 00H R/W Operating mode for a capture/compare CMSmn register (CCmn)(m = 0, 3, n = 0 to 2)0 Capture mode Compare mode 1 Output mode for a timer output pin TOM0n (TO0n) (n = 0, 2, 4) 0 Toggle output mode

Caution Before changing the timer output mode (setting of the TOM00, TOM02, or TOM04 bit), disable the timer output for the corresponding timer output pin.

1

Set/reset output mode

Caution Timer output (TO21) is impossible when a clear operation by a TCLR2 pin input is enabled.

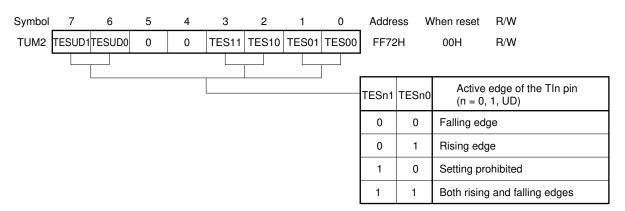
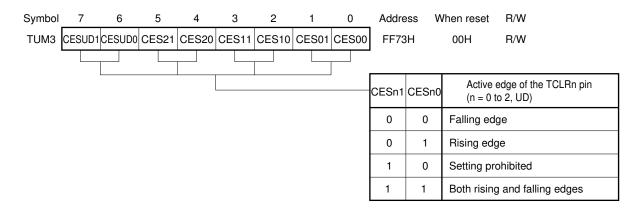
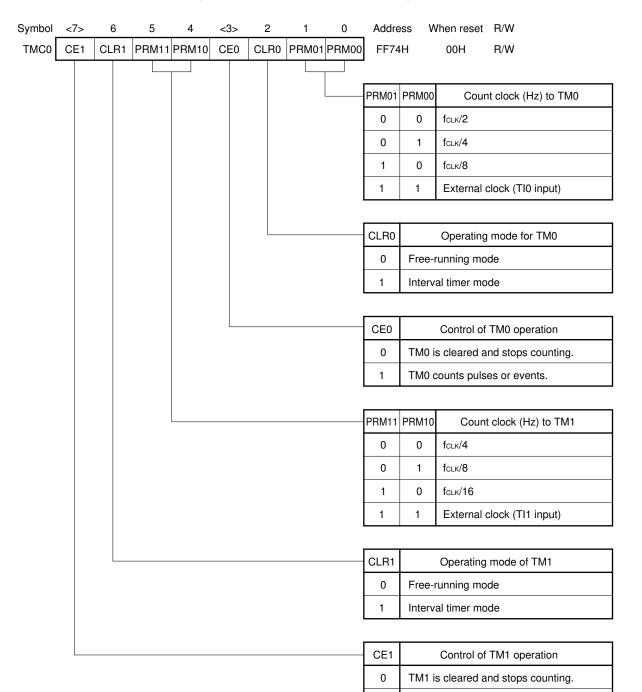



Fig. 7-4. Format of Timer Unit Mode Register 2

Caution When the operating mode for the UDC is specified as mode 4 (by the UDCC register), the specification of an edge for the TIUD pin (settings of the TESUD0 and TESUD1 bits) becomes ineffective.

7.2.2 Timer Control Registers (TMC0 to TMC2 and the UDCC)

Timer control registers are 8-bit registers. Table 7-5 lists their functions.


Table 7-5.	Functions of	Timer	Control	Registers
------------	--------------	-------	---------	-----------

Register	Symbol	Function
Timer control register 0	TMC0	Controls counting of TM0 and TM1.
Timer control register 1	TMC1	Controls counting of TM2 and TM3.
Timer control register 2	TMC2	Controls counting of TM4.
Up/down counter control register	UDCC	Controls the counting of the UDC.

Fig. 7-6 to 7-9 show the formats of TMC0 to TMC2 and the UDCC.

Data can be read from or written into TMC0 to TMC2 and the UDCC by a bit manipulation instruction or 8-bit manipulation instruction.

A RESET input signal sets TMC0 to TMC2 and the UDCC to 00H.

Fig. 7-6. Format of Timer Control Register 0

Caution Timer output (TO03) is impossible when the input of an external count clock to TM0 (TI0) is specified. Timer output (TO11) is impossible when the input of an external count clock to TM1 (TI1) is specified.

1

TM1 counts pulses or events.

Remark fclk: Internal system clock

Symbol	<7>	6	5	4	<3>	2	1	0	Addre	ess M	/hen reset	R/W	
TMC1	CE3	CLR3	PRM31	PRM30	CE2	CLR2	PRM21	PRM20	FF75	iн	00H	R/W	
-									•				
									PRM21	PRM20	Cour	nt clock (Hz) to TM2	
									0	0	fclк/4		
									0	1	fclк/ 8		
									1	0	fclк/16		
									1	1	fclк/ 32		
									CLR2		Operating	mode for TM2	
									0	Free-r	running mo	de	
									1	Interv	al timer mo	de	
									CE2		Control of	TM2 operation	
									0	TM2 is	s cleared a	nd stops counting.	
									1	TM2 c	counts pulse	es.	
									PRM31	PRM30	Count	t clock (Hz) to TM3	
									0	0	fclк/4		
									0	1	fclк/8		
									1	0	fclĸ/16		
									1	1	fclк/ 32		
									CLR3		Operating	mode for TM3	
									0	Free-r	running mo	de	
									1	Interv	al timer mo	de	
									·				
									CE3		Control of	TM3 operation	
									0	TM3 i	s cleared a	nd stops counting.	

1

TM3 counts pulses.

Fig. 7-7. Format of Timer Control Register 1

Remark folk: Internal system clock

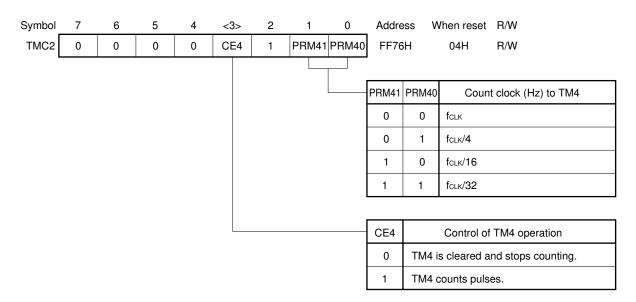


Fig. 7-8. Format of Timer Control Register 2

Remark fclk: Internal system clock

Symbol <7>	6	5	4	3	2	1	0	Addre	ess W	hen re	set R/W	
UDCC CEUD	ENMD	PRMUD1	PRMUD0	Ū/D	Ī/E	0	0	FF77	7H	00H	R/W	
								1				
								Ū/D		ther the	e UDC is incre	emented or
								0	The U	DC is i	ncremented.	
								1	The U	DC is c	lecremented.	
								PRMUD1	PRMUD0	Ī/E	Count clock	Whether the UDC incremented or decremented
								0	0	0	fс∟к/4	Specified by
								0	1	0	fськ/8	setting of Ū/D bit
								1	0	0	fclк/16	
								1	1	0	Not to be se	t
								0	0	1	TIUD	Mode 1
								0	1	1	(external clock)	Mode 2
								1	0	1		Mode 3
								1	1	1		Mode 4
								ENMD			resetting the register (CML	UDC by using JD0)
								0	Disable	ed. (No	ormal mode)	
								1	registe the UD clock p underf	r match C is cle oulse is lows, th	le contents of In the contents eared when the input. When the CMUD0 regodulo mode)	of the UDC, ne next count
								CEUD	0	Control	of the UDC of	peration
								0	The U	DC is c	leared and st	ops counting.
								1	The U	DC cou	ints pulses or	events.

Fig. 7-9. Format of the Up/Down Counter Control Register

Caution When the operating mode for the UDC is specified as mode 4, the specification of an edge for the TIUD pin (by the TUM2 register) becomes ineffective.

Remarks 1. fcLK: Internal system clock

2. Operating mode for the up/down counter (For details, see 7.3.6.)

Mode 1	The UDC is decremented when the input to the TCUD pin is high. The UDC is incremented when the input to the TCUD pin is low.
Mode 2	The UDC is incremented when the specified edge of a TIUD input is detected. The UDC is decremented when the rising edge of a TCUD input is detected.
Mode 3	Whether the UDC is incremented or decremented is automatically determined according to the TCUD input state when the specified edge of the TIUD input is detected.
Mode 4	Whether the UDC is incremented or decremented is automatically determined when the rising and falling edges of the TIUD input and the rising and falling edges of the TCUD input are detected.

7.2.3 Timer output control registers (TOC0 to TOC2)

Timer output control registers (TOC0 to TOC2) are 8-bit registers. Table 7-6 lists their functions.

Table 7-6.	Functions	of Tim	er Output	Control	Registers
------------	-----------	--------	-----------	---------	-----------

Register	Symbol	Function
Timer output control register 0	TOC0	Specifies the active level for timer output pins, TO00, TO01, TO02, and TO03, and whether the timer output is enabled or disabled for these pins.
Timer output control register 1	TOC1	Specifies the active level for timer output pins. TO04, TO05, TO10, and TO11, and whether the timer output is enabled or disabled for these pins.
Timer output control register 2	TOC2	Specifies the active level for timer output pins, TO20 and TO21, and whether the timer output is enabled or disabled for these pins. Also specifies the output mode for timer output pins, TO10 and TO20.

Fig. 7-10 to 7-12 show the formats of TOC0 to TOC2.

Data can be read from or written into TOC0 to TOC2 by a bit manipulation instruction or 8-bit manipulation instruction.

A RESET input signal sets TOC0 to TOC2 to 00H.

		Set and reset output modes				
Timer output pin	Toggle output mode	Set trigger	Reset trigger			
ТО00	INTCM00	INTCM00	INTCM01			
TO01	INTCM01	_	_			
TO02	INTCM02	INTCM02	INTCM03			
TO03	INTCM03	_	_			
TO04	INTCC00	INTCC00	INTCC01			
TO05	INTCC01	_	_			
TO10	INTCM10	INTCM10	INTCM11			
TO11	INTCM11	_	_			
TO20	INTCM20	INTCM20	INTCM21			
TO21	INTCM21					

Symbol	<7>	6	<5>	4	<3:	>	2	2	<1	1>	0	Addre	ess When reset R/W
TOC0	ENTO03	ALV03	ENTO02	ALV02	2 ENTC	201	AL۱	/01	ENT	-000 A	ALV00	FF78	H 00H R/W
												-	
												ALV00	Active level for the TO00 pin
												0	Low level
												1	High level
												ENTO00	Operation of the TO00 pin
												0	The timer output is disabled. (ALV00 is output.)
												1	The timer output is enabled.
												ALV01	Active level for the TO01 pin
												0	Low level
												1	High level
												ENTO01	Operation of the TO01 pin
												0	The timer output is disabled. ($\overline{\text{ALV01}}$ is output.)
												1	The timer output is enabled.
												ALV02	Active level for the TO02 pin
												0	Low level
												1	High level
												ENTO02	Operation of the TO02 pin
												0	The timer output is disabled. (ALV02 is output.)
												1	The timer output is enabled.
												ALV03	Active level for the TO03 pin
												0	Low level
												1	High level
												ENTO03	Operation of the TO03 pin
												0	TI0 input mode ^{Note}
												1	Timer output mode.

Fig. 7-10. Format of Timer Output Control Register 0

- **Note** If the ENTO03 bit is reset to 0 when the PMC81 bit of the PMC8 register is 1, the state of TO03 pin becomes high-impedance.
- Caution Before changing the active state (setting of the ALV00, ALV01, ALV02, or ALV03 bit), disable the timer output for the corresponding timer output pin.

Symbol	<7>	6	<	5>	4	<	3>	2	2	<1>		0	Addre	ess When reset R/W
TOC1 E	ENTO11	ALV	'11 EN	TO10	ALV	10 EN	FO05	ALV	/05	ENTO	04 A	LV04	FF79	H 00H R/W
													ALV04	Active level for the TO04 pin
													0	Low level
													1	High level
													ENTO04	Operation of the TO04 pin
													0	INTP0 input mode ^{Note 1}
													1	Timer output mode
													ALV05	Active level for the TO05 pin
													0	Low level
													1	High level
													ENTO05	Operation of the TO05 pin
													0	INTP1 input mode ^{Note 2}
													1	Timer output mode
					L								ALV10	Active level for the TO10 pin
													0	Low level
													1	High level
													ENTO10	Operation of the TO10 pin
													0	The timer output is disabled. (ALV10 is output.)
													1	The timer output is enabled.
													ALV11	Active level for the TO11 pin
													0	Low level
													1	High level
													ENTO11	Operation of the TO11 pin
													0	The timer output is disabled. (ALV11 is output.)

Fig. 7-11. Format of Timer Output Control Register 1

- **Notes 1.** If the ENTO04 bit is reset to 0 when the PMC21 bit of the PMC2 register is 1, the state of TO04 pin becomes high-impedance.
 - **2.** If the ENTO05 bit is reset to 0 when the PMC22 bit of the PMC2 register is 1, the state of TO05 pin becomes high-impedance.

1

The timer output is enabled.

- Cautions 1. Before changing the active level (setting of the ALV04, ALV05, ALV10, or ALV11 bit), disable the timer output for the corresponding timer output pin.
 - 2. When the timer outputs for the TO04 and TO05 pins are disabled, external interrupt request inputs (INTP0 and INTP1) are assumed for these pins.

Symbol	7	6	6	5	4	<3:	>	2		<1>		0	Addre	ss When reset R/W	
тос2 т	OM20	TON	/10	0	0	ENTC)21	ALV	21 EI	NTO2	20 A	LV20	FF7A	H 00H R/W	
													ALV20	Active level for the TO20 pin	
													0	Low level	
													1	High level	
													ENTO20	Operation of the TO20 pin	
													0	The timer output is disabled. ($\overline{\text{ALV20}}$ is out	put.)
													1	The timer output is enabled	
													ALV21	Active level for the TO21 pin	
													0	Low level	
													1	High level	
													ENTO21	Operation of the TO21 pin	
													0	TCLR2 input mode ^{Note}	
													1	Timer output mode	
					 								TOM10	Output mode for the TO10 pin	
													0	Toggle output mode	
													1	Set/reset output mode	
					 								TOM20	Output mode for the TO20 pin	
													0	Toggle output mode	
													1	Set/reset output mode	

Fig. 7-12. Format of Timer Output Control Register 2

- **Note** If the ENTO21 bit is reset to 0 when the PMC26 bit of the PMC2 register is 1, the state of TO21 pin becomes high-impedance.
- Caution Before changing the active level (setting of the ALV20 or ALV21 bit) and the timer output mode (setting of the TOM10 or TOM20 bit), disable the timer output for the corresponding timer output pin.

7.2.4 Timer overflow status register (TOVS)

The timer overflow status register is an 8-bit register. Table 7-8 lists its function.

Table 7-8.	Function of the	Timer Overflow	Status Register
------------	-----------------	-----------------------	-----------------

Register	Symbol	Function
Timer overflow status register	TOVS	Stores the overflow state of TM0 to TM3 and the overflow or underflow state of the UDC.

Fig. 7-13 shows the format of the TOVS.

Data can be read from or written into the TOVS by a bit manipulation instruction or 8-bit manipulation instruction. A RESET input signal sets the TOVS to 00H.

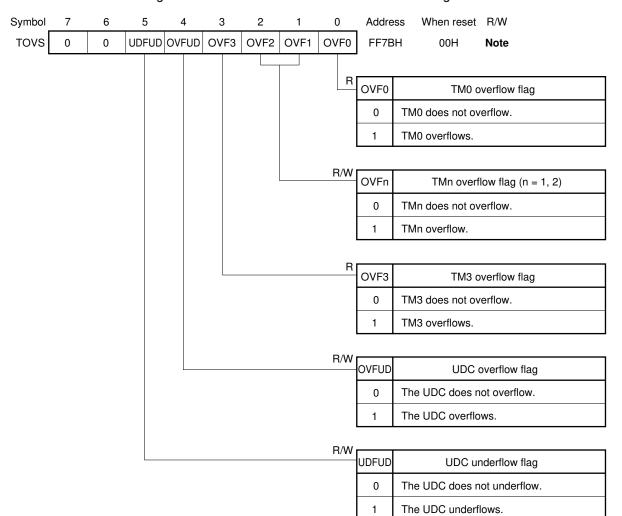


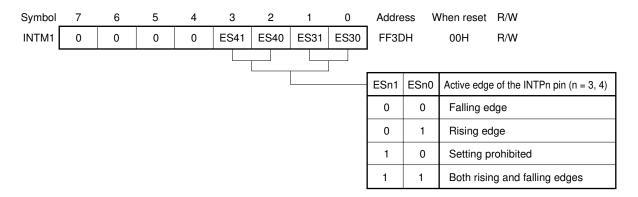
Fig. 7-13. Format of the Timer Overflow Status Register

Note Each read/write bit functions as a read or write bit independently.

Caution Each flag of the TOVS is reset in a different way. Only software can reset the OVF1, OVF2, OVFUD, and UDFUD bits. Reset these flags after testing them. The OVF0 and OVF3 bits are read-only bits. These flags are cleared to 0 when the interrupt request flags (OVIF0 and OVIF3) of the interrupt control registers (OVIC0 and OVIC3) are reset to 0 or TM0 and TM3 overflow interrupts (INTOV0 and INTOV3) are acknowledged.


External interrupt mode registers (INTM0 and INTM1) are 8-bit registers. Table 7-9 lists their functions.

Register	Symbol	Function
External interrupt mode register 0	INTM0	Specifies the edges for the NMI and INTP0 to INTP2 pins.
External interrupt mode register 1	INTM1	Specifies the edges for the INTP3 and INTP4 pins.


Fig. 7-14 and 7-15 show the formats of INTM0 and INTM1.

Data can be read from or written into INTM0 and INTM1 by a bit manipulation instruction or 8-bit manipulation instruction.

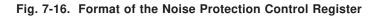
A RESET input signal sets INTM0 and INTM1 to 00H.

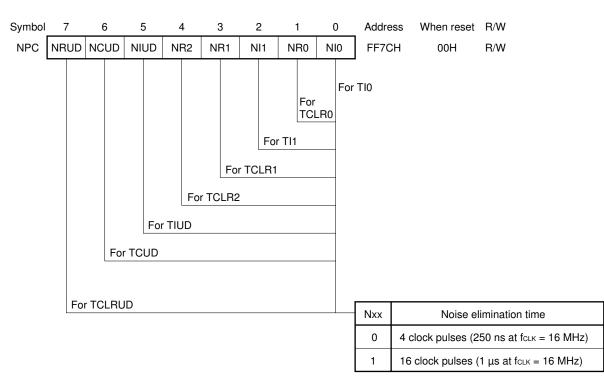
Fig. 7-15. Format of External Interrupt Mode Register 1

7.2.6 Noise protection control register (NPC)

The noise protection control register (NPC) is an 8-bit register. Table 7-10 lists its function.

When the input time is less than the noise elimination time specified by the NPC, the input is assumed to be noise and ignored.


Sampling is performed every two clock pulses.


Table 7-10.	Function of the	Noise Protection	Control Register
-------------	-----------------	------------------	-------------------------

Register	Symbol	Function
Noise protection control register	NPC	Specifies the digital noise elimination time by sampling clock pulses on the pins for inputting external count clock pulses to TM0 to TM2 and the UDC (TI0, TI1, TIUD, and TCUD) and on the pins for inputting clear signals (TCLR0, TCLR1, TCLR2, and TCLRUD).

Fig. 7-16 shows the format of the NPC.

Data can be read from or written into NPC by a bit manipulation instruction or 8-bit manipulation instruction. A RESET input signal sets the NPC to 00H.

Caution Before changing the noise elimination time (the setting of the NI0, NR0, NI1, NR1, NR2, NIUD, NCUD, or NRUD bit), disable the counting of the corresponding timer.

Remark fclk: Internal system clock

7.3 Operation

7.3.1 Timer 0 (TM0)

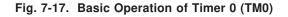
(1) Basic operation of timer 0 (TM0)

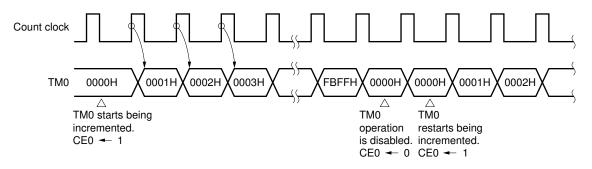
TM0 functions as a 16-bit interval timer, free-running timer, or event counter for external signals. Timer control register 0 (TMC0) specifies the operating mode for TM0.

TM0 counts internal clock pulses (fcLk/2, fcLk/4, or fcLk/8) or external clock pulses (TI0 pin input), according to the specification by the PRM01 and PRM00 bits of the TMC0 register. The specification of an external clock as a count clock enables TM0 to function as an event counter.

If TM0 overflows while counting clock pulses, an overflow interrupt (INTOV0) occurs, and the OVF0 bit of the timer overflow status register (TOVS) is set to 1.

When the preset value of the compare register (CM02) matches the value counted by TM0, the contents of TM0, which functions as an interval timer, are cleared, and a match interrupt (INTCM02) occurs. Regardless of how TM0 operates, the external clear input (TCLR0) can clear the contents of TM0.


When TM0 functions as a free-running timer, it can be used as a one-shot timer. In this case, timer unit mode register 1 (TUM1) specifies the operation of TM0.


The CE0 bit of the TMC0 register specifies whether counting is enabled (see Fig. 7-17).

When software sets the CE0 bit to 1, TM0 starts counting. Even if software sets the CE0 bit to 1 with the bit already set to 1, TM0 continues counting.

When the CE0 bit is reset to 0, TM0 is cleared and stops counting.

A RESET input signal clears all the bits of TM0, stopping the counting of TM0.

Caution If bit 1 (PMC81) of the port 8 mode control register (PMC8) is rewritten from 0 to 1 or 1 to 0, when the count clock to timer 0 (TM0) is specified as the external clock (TI0 input) to perform count operations, TM0 may count up. Therefore, rewrite the PMC81 bit after stopping the TM0 count operations.

(2) Comparing values

The value counted by TM0 is compared with the value held in a compare register.

When the value counted by TM0 matches the value set in the compare register, a match signal is sent to an output control circuit. When the match signal is generated, the states of timer output pins (TO00 to TO05) are changed, and an interrupt request signal is generated. A match interrupt (INTCM02) from the compare register (CM02) clears TM0.

Phase-out/Discontinue

When the CLR0 bit of timer control register 0 (TMC0) is reset to 0, TM0 is set to the free-running timer mode. When the bit is set to 1, TM0 is set to the interval timer mode.

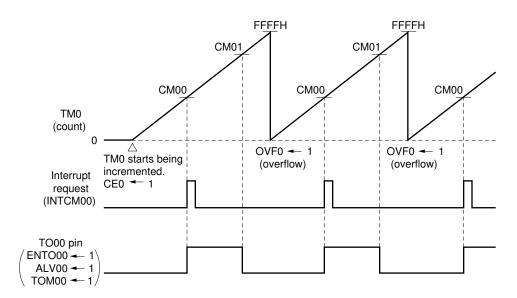
Compare register	Interrupt request signal
CM00	INTCM00
CM01	INTCM01
CM02	INTCM02
CM03	INTCM03
CC00 ^{Note}	INTCC00
CC01 ^{Note}	INTCC01
CC02 ^{Note}	INTCC02

Compare register	Interrupt request signal

Table 7-11. Interrupt Request Signals from 16-Bit Compare Registers for Timer 0 (TM0)

Note These registers are also used as capture registers. Timer unit mode register 0 (TUM0) specifies whether they are used as capture or compare registers.

TM0 has six timer output pins (TO00 to TO05). Table 7-12 lists the operating modes for each pin. For details, see 7.4.


Timer output pin	Output o	peration mode	Operating mode specified by			
TO00	Toggle	Set or reset	TOM00 bit of the TUM0 register			
TO01	Toggle	-	-			
TO02	Toggle	Set or reset	TOM02 bit of the TUM0 register			
TO03	Toggle	_	_			
TO04	Toggle	Set or reset	TOM03 bit of the TUM0 register			

Toggle

TO05

Table 7-12 Operating Modes for Each Timer Output Pin of Timer 0 (TM0)

When an overflow is detected in the free-running timer mode, the contents of TM0 are cleared.

Fig. 7-18. Example of Comparison for TM0 in the Free-Running Timer Mode

When TM0 is set to the interval timer mode, the value counted by TM0 is compared with the value of the compare register (CM02). When the values match, TM0 is cleared to 0 at the next count clock. This enables TM0 to function as an interval timer having a count clock period equal to the value set in the CM02 register.

Phase-out/Discontinued

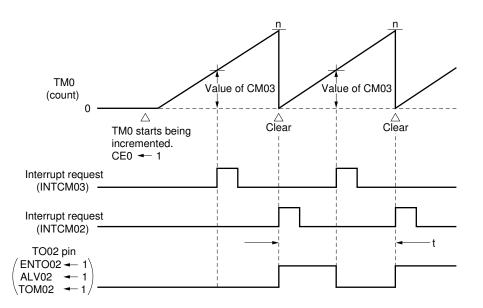


Fig. 7-19. Example of Comparison for TM0 in the Interval Timer Mode

Caution When 00H is set in the CM02 register in the interval timer mode, TM0 performs interval operation at each count clock input. The interval time at the first match is different from that at the second or subsequent matches.

•	Time until the first match	Value of the CM02 register x count
		clock period

• Time until the second match or subsequent matches... (Value of the CM02 register + 1) x count clock period

Remark n : Value of the CM02 register

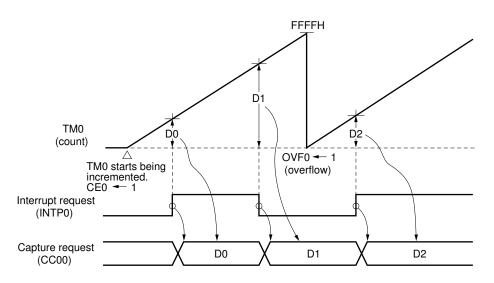
t : Interval time = (n + 1) x count clock period

(3) Capturing a value

The value counted by TM0 is sent to and held in (captured by) a capture register in synchronization with an external trigger signal. The specified edges detected at the external interrupt request input pin are used as external triggers (capture triggers). In synchronization with a capture trigger, the value counted by TM0 is captured in the capture register. The capture register holds the value until the next capture trigger is generated.

Phase-out/Discontinued

Capture register	Capture trigger		
CC00 ^{Note}	INTP0		
CC01 ^{Note}	INTP1		
CC02 ^{Note}	INTP2		


	· · · ·			
Table 7-13.	Capture Tridde	r Signals for 16-Bi	Capture Registers f	or Timer 0 (TM0)

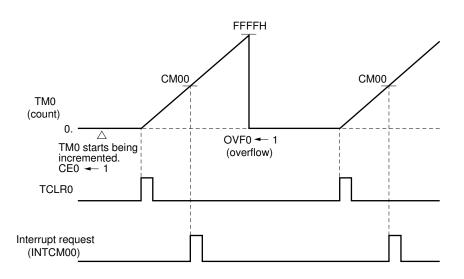
Note These registers are also used as compare registers. Timer unit mode register 0 (TUM0) specifies whether they are used as capture or compare registers.

External interrupt mode register 0 (INTM0) specifies whether the rising edge, falling edge, or both are used as a capture trigger.

When both the rising edge and falling edge are used as a capture trigger, the width of an external input pulse can be measured. When either of the two edges is used as a capture trigger, the input pulse period can be measured.

Remark Dn (n = 0, 1, 2, ...): Value counted by TM0

(4) One-shot operation


When the OST bit of timer unit mode register 1 (TUM1) is set to 1 in the free-running timer mode, timer 0 (TM0) is put in the one-shot operation mode.

Phase-out/Discontinued

When counting causes TM0 timer to overflow in the one-shot operation mode, an overflow interrupt (INTOV0) occurs and TM0 stops counting. In this case, TM0 is cleared to 0000H and the CE0 bit of timer control register 0 (TMC0) is set to 1.

When the CE0 bit is set to 1 again or an external clear signal (TCLR0) is input in the standby state, TM0 restarts counting. When counting causes TM0 to overflow, TM0 stops counting and enters the standby state again.

Fig. 7-21. Example of One-Shot Operation (When Timer 0 (TM0) Is Started by TCLR0 Input)

7.3.2 Timer 1 (TM1)

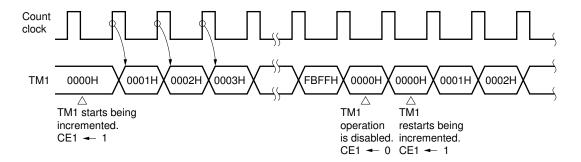
(1) Basic operation of timer 1 (TM1)

TM1 functions as a 16-bit interval timer, free-running timer, or event counter for external signals. Timer control register 0 (TMC0) specifies the operating mode for TM1.

TM1 counts internal clock pulses (fcLK/4, fcLK/8, or fcLK/16) or external clock pulses (TI1 pin input), according to the specification by the PRM11 and PRM10 bits of the TMC0 register. The specification of an external clock as a count clock enables TM1 to function as an event counter.

If TM1 overflows while counting clock pulses, the OVF1 bit of the timer overflow status register (TOVS) is set to 1.

When the preset value of the compare register (CM10) matches the value counted by TM1, the contents of TM1, which functions as an interval timer, are cleared, and a match interrupt (INTCM10) occurs. Regardless of how TM1 operates, the external clear input (TCLR1) can clear the contents of TM1.


The CE1 bit of the TMC0 register specifies whether counting is enabled (see Fig. 7-22).

When software sets the CE1 bit to 1, TM1 starts counting. Even if software sets the CE1 bit to 1 with the bit already set to 1, TM1 continues counting.

When the CE1 bit is reset to 0, TM1 is cleared and stops counting.

A RESET input signal clears all the bits of TM1, stopping the counting of TM1.

Fig. 7-22. Basic Operation of Timer 1 (TM1)

Caution If bit 6 (PMC36) of the port 3 mode control register (PMC3) is rewritten from 0 to 1 or 1 to 0, when the count clock to timer 1 (TM1) is specified as the external clock (TI1 input) to perform count operations, TM1 may count up. Therefore, rewrite the PMC36 bit after stopping the TM1 count operations.

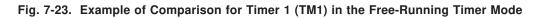
(2) Comparing values

The value counted by TM1 is compared with the value held in a compare register.

When the value counted by TM1 matches the value set in the compare register, a match signal is sent to an output control circuit. When the match signal is generated, the states of timer output pins (TO10 and TO11) are changed, and an interrupt request signal is generated. A match interrupt (INTCM10) from the compare register (CM10) clears TM1.

Phase-out/Discontinue

When the CLR1 bit of timer control register 0 (TMC0) is reset to 0, TM1 is set to the free-running timer mode. When CLR1 is set to 1, TM1 is set to the interval timer mode.


Compare register	Interrupt request signal
CM10	INTCM10
CM11	INTCM11

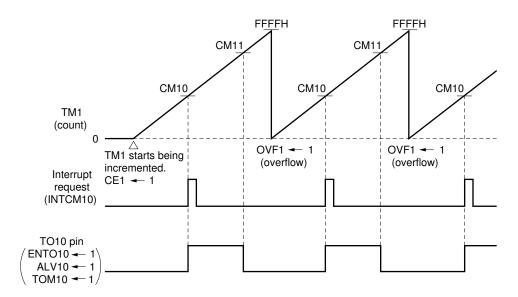

TM1 has two timer output pins (TO10 and TO11). Table 7-15 lists the operating modes for each pin. For details, see **7.4**.

Table 7-15. Operating Modes for Each Timer Output Pin of Timer 1 (TM1	Table 7-15.	Operating	Modes for	Each T	imer Output	Pin of	Timer 1	(TM1)
---	-------------	-----------	-----------	--------	-------------	--------	---------	-------

Timer output pin	Output operation mode		Operating mode specified by
TO10	Toggle	Set or reset	TOM10 bit of the TOC2 register
TO11	Toggle	_	_

When an overflow is detected in the free-running timer mode, the contents of TM1 are cleared.

When TM1 is set to the interval timer mode, the value counted by TM1 is compared with the value of the compare register (CM10). When the values match, TM1 is cleared to 0 at the next count clock. This enables TM1 to function as an interval timer having a count clock period equal to the value set in the CM10 register.

Phase-out/Discontinue

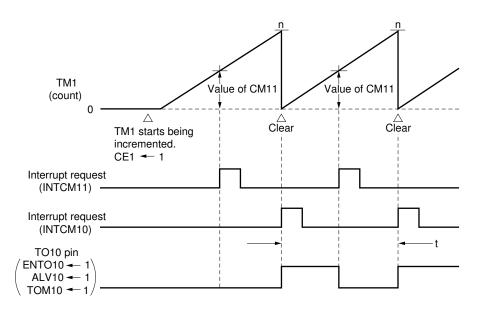


Fig. 7-24. Example of Comparison for Timer 1 (TM1) in the Interval Timer Mode

- t : Interval time = (n + 1) x count clock period
- Caution When 00H is set in the CM10 register in the interval timer mode, TM1 performs interval operation at each count clock input. The interval time at the first match is different from that at the second or a subsequent match.
 - Time until the first match Value of the CM10 register x count clock period
 - Time until the second match or a subsequent match ... (Value of the CM10 register + 1) x count clock period

Remark n : Value of the CM10 register

7.3.3 Timer 2 (TM2)

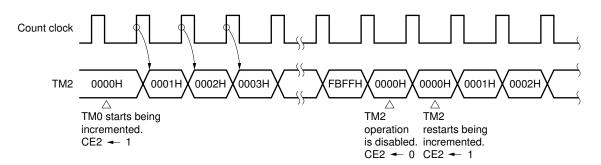
(1) Basic operation of timer 2 (TM2)

TM2 functions as a 16-bit interval timer or free-running timer. Timer control register 1 (TMC1) specifies the operating mode for TM2.

TM2 counts internal clock pulses ($f_{CLK}/4$, $f_{CLK}/16$, or $f_{CLK}/32$), according to the specification by the PRM21 and PRM20 bits of the TMC1 register.

If TM2 overflows while counting clock pulses, the OVF2 bit of the timer overflow status register (TOVS) is set to 1.

When the preset value of the compare register (CM20) matches the value counted by TM2, the contents of TM2, which functions as an interval timer, are cleared, and a match interrupt (INTCM20) occurs. Regardless of how TM2 operates, the external clear input (TCLR2) can clear the contents of TM2.


The CE2 bit of the TMC1 register specifies whether counting is enabled (see Fig. 7-25).

When software sets the CE2 bit to 1, TM2 starts counting. Even if software sets the CE2 bit to 1 with the bit already set to 1, TM2 continues counting.

When the CE2 bit is reset to 0, TM2 is cleared and stops counting.

A RESET input signal clears all the bits of TM2, stopping the counting of TM2.

Fig. 7-25. Basic Operation of Timer 2 (TM2)

Caution If bit 6 (PMC26) of the port 2 mode control register (PMC2) is rewritten from 0 to 1 or 1 to 0 when clear operations is enabled using pin TCLR2, TM2 may be cleared. Therefore, rewrite the PMC26 bit after stopping the TM2 count operation.

(2) Comparing values

The value counted by TM2 is compared with the value held in a compare register.

When the value counted by TM2 matches the value set in the compare register, a match signal is sent to an output control circuit. When the match signal is generated, the states of timer output pins (TO20 and TO21) are changed, and an interrupt request signal is generated. A match interrupt (INTCM20) from the compare register (CM20) clears TM2.

Phase-out/Discontinue

When the CLR2 bit of timer control register 1 (TMC1) is reset to 0, TM2 is set to the free-running timer mode. When CLR2 is set to 1, TM2 is set to the interval timer mode.

Compare register	Interrupt request signal
CM20	INTCM20
CM21	INTCM21

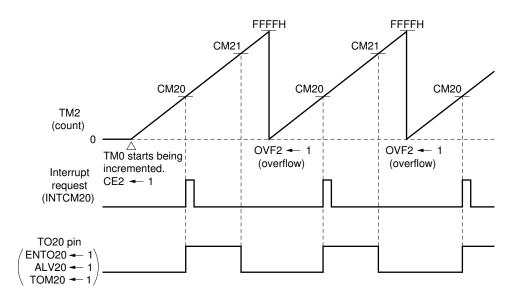
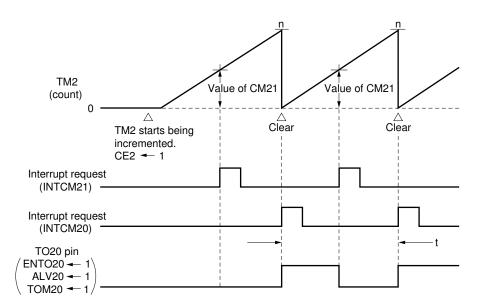

TM2 has two timer output pins (TO20 and TO21). Table 7-17 lists the operating modes for each pin. For details, see **7.4**.

Table 7-17.	Operating	Modes fo	r Each	Timer Out	tout Pin	of Timer 2	(TM2)
						••••••	····-/

Timer output pin	Output operation mode		Operating mode specified by
TO20	Toggle	Set or reset	TOM20 bit of the TOC2 register
TO21	Toggle	_	_


When an overflow is detected in the free-running timer mode, the contents of TM2 are cleared.

When TM2 is set to the interval timer mode, the value counted by TM2 is compared with the value of the compare register (CM20). When the values match, TM2 is cleared to 0 at the next count clock. This enables TM2 to function as an interval timer having a count clock period equal to the value set in the CM20 register.

Phase-out/Discontinued

- t : Interval time = (n + 1) x count clock period
- Caution When 00H is set in the CM20 register in the interval timer mode, TM2 performs interval operation at each count clock input.

The interval time at the first match is different from that at the second or a subsequent match.

- Time until the first match Value of the CM20 register x count clock period
- Time until the second match or a subsequent match ... (Value of the CM20 register + 1) x count clock period

Remark n : Value of the CM20 register

7.3.4 Timer 3 (TM3)

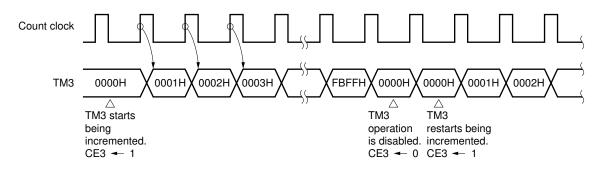
(1) Basic operation of timer 3 (TM3)

TM3 functions as a 16-bit interval timer or free-running timer. Timer control register 1 (TMC1) specifies the operating mode for TM3.

TM3 counts internal clock pulses (fcLk/4, fcLk/8, fcLk/16 or fcLk/32), according to the specification by the PRM31 and PRM30 bits of the TMC1 register.

If TM3 overflows while counting clock pulses, an overflow interrupt (INTOV3) occurs, and the OVF3 bit of the timer overflow status register (TOVS) is set to 1.

When the preset value of the compare register (CC30) matches the value counted by TM3, the contents of TM3, which functions as an interval timer, are cleared, and a match interrupt (INTCM30) occurs.


The CE3 bit of the TMC1 register specifies whether counting is enabled (see Fig. 7-28).

When software sets the CE3 bit to 1, TM3 starts counting. Even if software sets the CE3 bit to 1 with the bit already set to 1, TM3 continues counting.

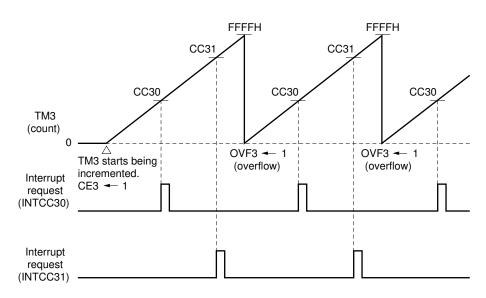
When the CE3 bit is reset to 0, TM3 is cleared and stops counting.

A RESET input signal clears all the bits of TM3, stopping the counting of TM3.

Fig. 7-28. Basic Operation of Timer 3 (TM3)

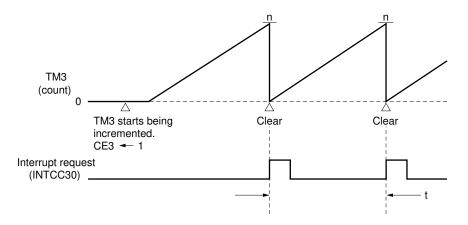
(2) Comparing values

The value counted by TM3 is compared with the value held in a compare register. When the value counted by TM3 matches the value set in the compare register, an interrupt request signal is generated. A match interrupt (INTCC30) from the compare register (CC30) clears TM3. When the CLR3 bit of timer control register 1 (TMC1) is reset to 0, TM3 is set to the free-running timer mode. When CLR3 is set to 1, TM3 is set to the interval timer mode.


Phase-out/Discontinued

Compare register	Interrupt request signal
CC30 ^{Note}	INTCC30
CC31 ^{Note}	INTCC31

Note These registers are also used as capture registers. Timer unit mode register 0 (TUM0) specifies whether they are used as capture or compare registers.


When an overflow is detected, the contents of TM3 in the free-running timer mode are cleared to 0.

When TM3 is set to the interval timer mode, the value counted by TM3 is compared with the value of the compare register (CC30). When the values match, TM3 is cleared to 0 at the next count clock. This enables TM3 to function as an interval timer having a count clock period equal to the value set in the CC30 register.

Remark n : Value of the CC30 register t : Interval time = (n + 1) x count clock period

Caution When 00H is set in the CC30 register in the interval timer mode, TM3 performs interval operation at each count clock input. The interval time at the first match is different from that at the second or a subsequent match.

•	Time until the first match	Value of the CC30 register x count
		clock period
•	Time until the second match or a subsequent match	(Value of the CC30 register + 1)
		x count clock period

(3) Capturing a value

The value counted by TM3 is sent to and held in (captured by) a capture register in synchronization with an external trigger signal. The specified edges detected at the external interrupt request input pin are used as external triggers (capture triggers). In synchronization with a capture trigger, the value counted by TM3 is captured in the capture register. The capture register holds the value until the next capture trigger is generated.

Phase-out/Discontinued

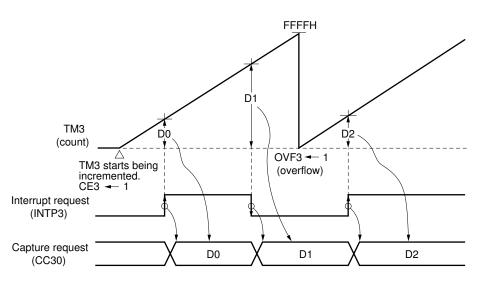

Capture register	Capture trigger signal	
CC30 ^{Note}	INTP3	
CC31 ^{Note}	INTP4	

Table 7-19. Capture Trigger Signals for 16-Bit Capture Registers for Timer 3 (TM3)

External interrupt mode register 1 (INTM1) specifies whether the rising edge, falling edge, or both are used as a capture trigger.

When both the rising edge and falling edge are used as a capture trigger, the width of an external input pulse can be measured. When either of the two edges is used as a capture trigger, the input pulse period can be measured.

Remark Dn (n = 0, 1, 2, ...): Value counted by TM3

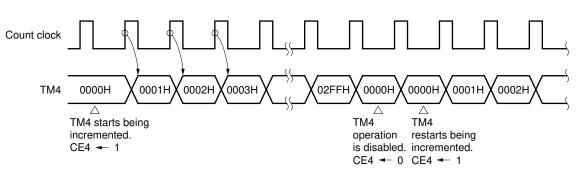
Note These registers are also used as compare registers. Timer unit mode register 0 (TUM0) specifies whether they are used as capture or compare registers.

7.3.5 Timer 4 (TM4)

(1) Basic operation of timer 4 (TM4)

TM4 functions as a 10-bit interval timer.

TM4 counts internal clock pulses (fcLK, fcLK/4, fcLK/16 or fcLK/32), according to the specification by the PRM41 and PRM40 bits of the TMC2 register.


When the preset value of the compare register (CM40) matches the value counted by TM4, the contents of TM4 are cleared, and a match interrupt (INTCM40) occurs.

The CE4 bit of the TMC2 register determines whether counting is enabled (see Fig. 7-32).

When software sets the CE4 bit to 1, TM4 starts counting. Even if software sets the CE4 bit to 1 with the bit already set to 1, TM4 continues counting.

When the CE4 bit is reset to 0, TM4 is cleared and stops counting.

A RESET input signal clears all the bits of TM4, stopping the counting of TM4.

Fig. 7-32. Basic Operation of Timer 4 (TM4)

(2) Comparing values

The value counted by TM4 is compared with the value held in a compare register.

When the value counted by TM4 matches the value set in the compare register, an interrupt request signal is generated. A match interrupt (INTCM40) from the compare register (CM40) clears TM4.

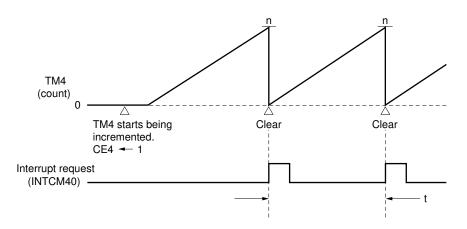

Phase-out/Discontinue

Table 7-20. Interrupt Request Signals from 10-Bit Compare Registers for Timer 4 (TM4)

Compare register	Interrupt request signal	
CM40	INTCM40	

The value counted by TM4 is always compared with the value held in the CM40 compare register. When the values match, TM4 is cleared to 0 at the next count clock. This enables TM4 to function as an interval timer having a count clock period equal to the value set in the CM40 register.

Remark n: Value of the CM40 register

- t : Interval time = (n + 1) x count clock period
- Caution When 00H is set in the CM40 register in the interval timer mode, TM4 performs interval operation at each count clock input.

The interval time at the first match is different from that at the second or a subsequent match.

- Time until the second match or a subsequent match (Value of the CM40 register + 1) x count clock period

7.3.6 Up/down counter (UDC)

(1) Basic operation of the up/down counter (UDC)

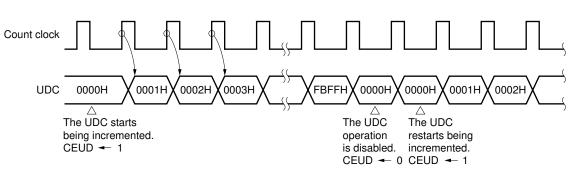
The UDC functions as a 16-bit interval timer, free-running timer, or event counter for external signals. The up/down counter control register (UDCC) specifies the operating mode for the UDC.

The UDC counts internal clock pulses (fcLK/4, fcLK/8, or fcLK/16) or increments or decrements the number of external events input from the TIUD pin. The PRMUD1 and PRMUD0 bits of the UDCC specify whether one of the clocks is counted or the number of external events is incremented or decremented.

The \overline{U}/D bit of the UDCC specifies whether the UDC is incremented or decremented. However, specifying a count clock as an external clock enables external pins (the TIUD and TCUD pin inputs) to specify whether the UDC is incremented or decremented.

When counting causes the UDC to overflow, the OVFUD bit of the timer overflow status register (TOVS) is set to 1.

When counting causes the UDC to underflow, the UDFUD bit of the TOVS is set to 1.


When the UDC functions as an interval timer and the preset value of the compare register (CMUD0) matches the value counted by the UDC, the UDC is cleared, and a match interrupt (INTCMUD0) occurs. Regardless of how the UDC operates, the external clear input (TCLRUD) can clear the contents of the UDC.

The CEUD bit of the UDCC specifies whether counting is enabled (see Fig. 7-34).

When software sets the CEUD bit to 1, the UDC starts counting. Even if software sets the CEUD bit to 1 with the bit already set to 1, the UDC continues counting.

When the CEUD bit is reset to 0, the UDC is cleared and stops counting.

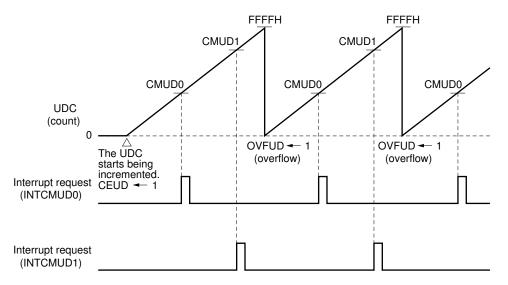
A RESET input signal clears all the bits of the UDC, stopping the counting of the UDC.

Fig. 7-34. Basic Operation of the Up/Down Counter (UDC)

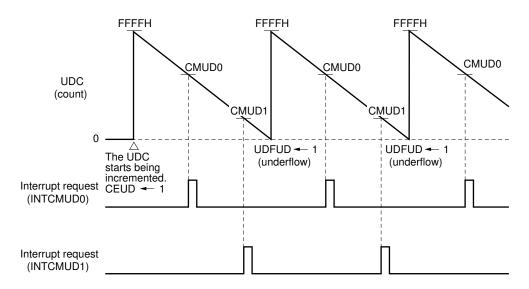
(2) Comparing values

The value counted by the UDC is compared with the value held in a compare register. When the value counted by the UDC matches the value set in the compare register, an interrupt request signal is generated. A match interrupt (INTCMUD0) from the compare register (CMUD0) clears the UDC. When the ENMD bit of the up/down counter control (UDCC) register is reset to 0, the UDC counts in the normal mode. When ENMD is set to 1, the UDC counts in the up/down modulo mode.

Phase-out/Discontinued

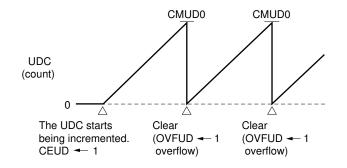

Table 7-21. Interrupt Request Signals from 16-Bit Compare Registers for the Up/Down Counter (UDC)

Compare register	Interrupt request signal	
CMUD0	INTCMUD0	
CMUD1	INTCMUD1	


When the UDC overflows or underflows while being incremented or decremented in the normal mode, it is cleared to 0. This enables the UDC to function as a free running timer.

(1) When the UDC is incremented

(2) When the UDC is decremented


When the UDC is incremented in the up/down modulo mode, the value counted by the UDC is compared with the value held in the CMUD0 compare register. When the values match, the UDC is cleared to 0 at the next count clock. When the UDC underflows while being decremented, the UDC is preset to the value held in the CMUD0 register.

Phase-out/Discontinued

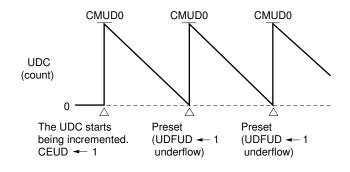

This enables the UDC to function as an interval timer or up/down counter having a count clock period equal to the value set in the CMUD0 register.

Fig. 7-36. Example of Comparison for the Up/Down Counter (UDC) in the Up/Down Modulo Mode

(1) When the UDC is incremented

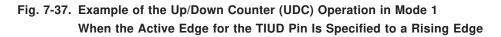
(2) When the UDC is decremented

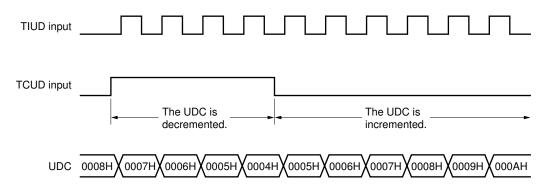
(3) Incrementing or decrementing the UDC

Specifying a count clock as an external clock for the UDC enables the external count clock input (the TIUD pin) and counting control signal input (the TCUD pin) to specify whether the UDC is incremented or decremented. The PRMUD1 and PRMUD0 bits of the up/down counter control register (UDCC) specify one of modes 1 to 4 as the operating mode for the UDC.

Phase-out/Discontinued

U	DCC registe	er	Operating	Operation of the LIDC	
PRMUD1	PRMUD0	Ī/E	mode	Operation of the UDC	
0	0	1	Mode 1	The UDC is decremented when the input on the TCUD pin is high. The UDC is incremented when the input on the TCUD pin is low.	
0	1	1	Mode 2	The UDC is incremented when the specified edge of a TIUD input is detected. The UDC is decremented when the rising edge of a TCUD input is detected.	
1	0	1	Mode 3	Whether the UDC is incremented or decremented is automatically determined according to the TCUD input level when the specified edge of the TIUD input is detected.	
1	1	1	Mode 4	Whether the UDC is incremented or decremented is automatically determined when both the rising edge and falling edge of the TIUD input and both the rising edge and falling edge of the TCUD input are detected.	

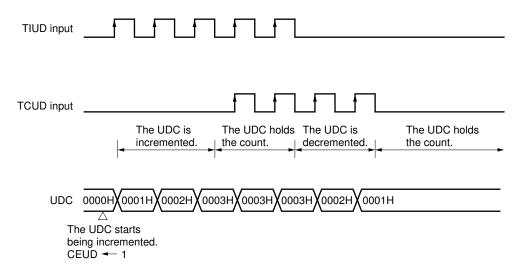

Table 7-22. Operating Mode for the Up/Down Counter (UDC)


Caution Specifying mode 4 as the operating mode for the UDC invalidates the edges for specified by timer unit mode register 2 (TUM2) for the TIUD pin.

(a) Mode 1 (PRMUD1 = 0, PRMUD0 = 0)

While the TCUD pin is kept high in this mode, the UDC is decremented the number of external count clocks by one each time an external count clock is input from the TIUD pin. While the TCUD pin is kept low, the UDC is incremented the number of external count clocks.

Fig. 7-37 shows how the UDC operates when the edge for the TIUD pin is specified as a rising edge by the TUM2 register.


(b) Mode 2 (PRMUD1 = 0, PRMUD0 = 1)

In this mode, the UDC is incremented on the specified edge of an input to the TIUD pin (specified by timer unit mode register 2 (TUM2)). The UDC is decremented on the rising edge of an input to the TCUD pin. If count clock pulses are simultaneously input to the TIUD and TCUD pins, the UDC does not count pulses, but holds the previous value.

Phase-out/Discontinued

Fig. 7-38 shows how the UDC operates when the edge for the TIUD pin is specified as a rising edge.

Fig. 7-38. Example of the Up/Down Counter (UDC) Operation in Mode 2 (When the Active Edge for the TIUD Pin Is Specified to a Rising Edge)

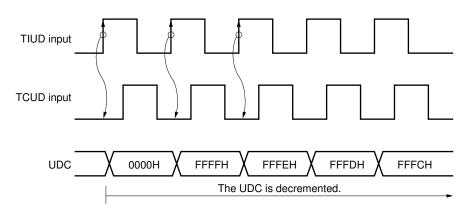
(c) Mode 3 (PRMUD1 = 1, PRMUD0 = 0)

In this mode, signals 90 degrees out of phase (such as outputs of the shaft encoder for the servo motor) are input to the TIUD and TCUD pins to use them as count clock pulses.

Phase-out/Discontinued

The UDC automatically toggles between incrementing and decrementing by detecting a relative phase advance or delay between these two signals.

When the signals 90 degrees out of phase are input to the TIUD and TCUD pins, the UDC samples the level of the signal on the TCUD pin on the specified edge of an input to the TIUD pin.


When the sampled level of the signal on the TCUD pin is low, the UDC is decremented on the specified edge of an input to the TIUD pin.

When the sampled level of the signal on the TCUD pin is high, the UDC is incremented on the specified edge of an input to the TIUD pin.

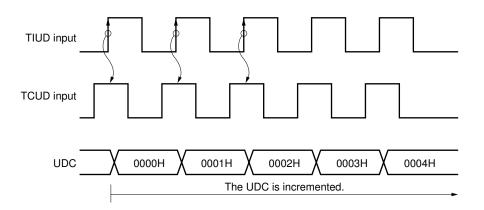
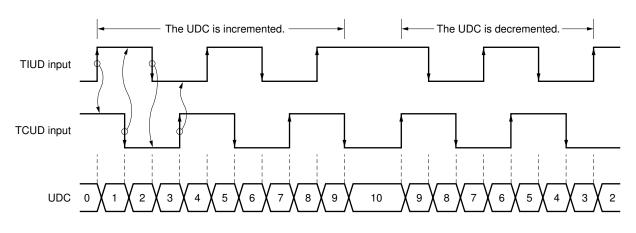

Fig. 7-39 shows the operation of the UDC when an edge of the signal on the TIUD pin is specified as a rising edge.

Fig. 7-39. Example of the Up/Down Counter (UDC) Operation in Mode 3 (When the Active Edge for the TIUD Pin Is Specified to a Rising Edge)

(1) When the UDC is decremented

(2) When the UDC is incremented


(d) Mode 4 (PRMUD1 = 1, PRMUD0 = 1)

is called a four-times counter.)

As with mode 3, in mode 4, signals 90 degrees out of phase (such as outputs of the shaft encoder for the servo motor) are input to the TIUD and TCUD pins to use them as count clock pulses. When the signals 90 degrees out of phase are input to the TIUD and TCUD pins, the UDC automatically toggles between incrementing and decrementing at the timing as shown in Fig. 7-40. In mode 4, the UDC is incremented or decremented on both the rising and falling edges of the out-of-phase signals. The UDC is incremented or decremented four times per cycle of input signals. (The UDC

Phase-out/Discontinued

Caution Specifying mode 4 as the operating mode for the UDC invalidates edges specified for the TIUD pin by timer unit mode register 2 (TUM2).

Fig. 7-40. Example of the Up/Down Counter (UDC) Operation in Mode 4

7.4 Timer Output Function

Toggle modes or set or reset modes can be specified for outputs on the TO00, TO02, TO04, TO10, and TO20 pins. Only toggle modes can be specified for outputs on the TO01, TO03, TO05, TO11, and TO21 pins.

Registers TOC0 to TOC2 specify the outputs of timers (specification of active levels, specification of whether the outputs are enabled or disabled, and selection of a toggle mode or set or reset mode).

Tables 7-23 and 7-24 list the correspondence between timer output pins and control signals. Fig. 7-41 is a block diagram of timer output for timers TM0, TM1, and TM2.

Timer output pin	Toggle output	
TO00	INTCM00	
TO01	INTCM01	
TO02	INTCM02	
TO03	INTCM03	
TO04	INTCC00	
TO05	INTCC01	
TO10	INTCM10	
TO11	INTCM11	
TO20	INTCM20	
TO21	INTCM21	

Table 7-23. Timer Output Pins and Toggle Signals

Table 7-24. Timer Output Pins and Set and Reset Signals

Timer output pin	Set signal	Reset signal
ТО00	INTCM00	INTCM01
TO02	INTCM02	INTCM03
TO04	INTCC00	INTCC01
TO10	INTCM10	INTCM11
TO20	INTCM20	INTCM21

Caution If the output level is changed when timer output has been enabled by pins TO04 and TO05, the interrupt request flag (PIC0.7, PIC1.7) will be set (1). Therefore, when using as the timer output, preset the interrupt mask flag (PIC0.6, PIC1.6) to "1" to set the interrupt mask state.

Timer 0 (TM0)

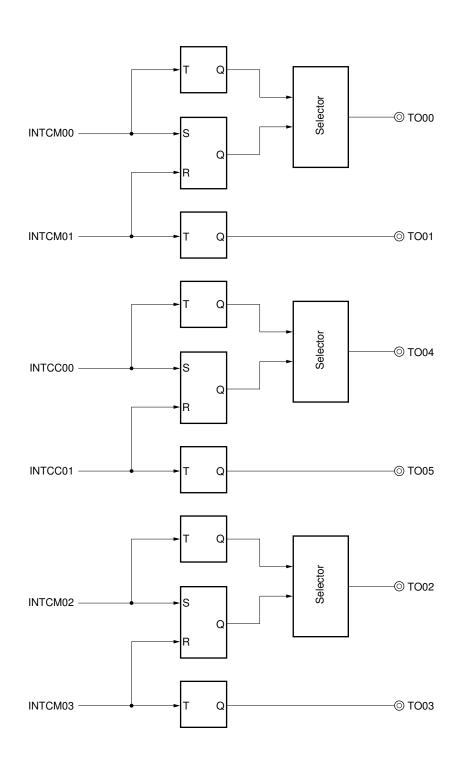
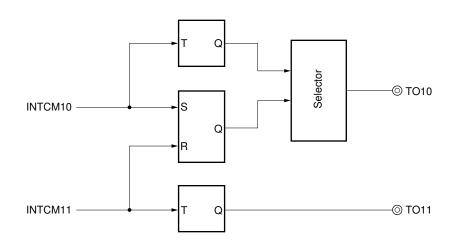
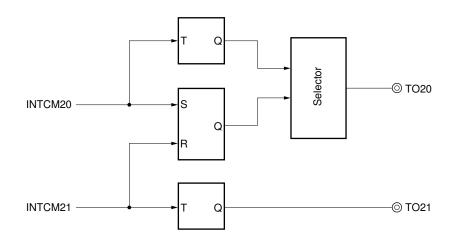




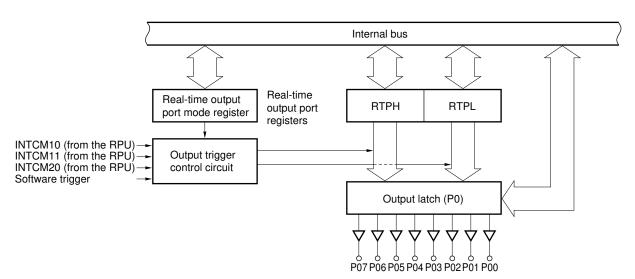
Fig. 7-41. Block Diagrams of Timer Output (TM0, TM1, TM2) (2/2)

Timer 1 (TM1)

Timer 2 (TM2)

7.5 Real-Time Output Function

The real-time output port (RTP) outputs data held in the buffer registers in phase with a trigger signal from the real-time pulse unit (RPU).


Software can specify the combination of real-time output port registers (RTPH and RTPL) and output pins. This allows multi-channel synchronous pulse output to be controlled easily.

7.5.1 Configuration

The RTP multiplexes signals to port 0 (P0). The RTP has the following three registers to control the output status:

- Real-time output port mode register (RTPM)
- Real-time output port register H (RTPH)
- Real-time output port register L (RTPL)

The real-time output is changed by a trigger signal specified by the TRH1, TRH0, TRL1, and TRL0 bits of the RTPM. The signal to be output by the RPU or a software trigger can be specified as a trigger signal.

Fig. 7-42. Block Diagram of the Real-Time Output Port

(1) Real-time output port mode register (RTPM)

This register is an 8-bit register that specifies the operating mode for the real-time output port.

Fig. 7-43 shows the format of the RTPM.

Data can be read from or written into the RTPM by a bit manipulation instruction or 8-bit manipulation instruction.

A $\overline{\text{RESET}}$ input signal sets the RTPM to 00H.

Fig. 7-43. Format of the Real-Time Output Port Mode Register

Symbol	7	6	5	4	3	2	1	0	Addre	ess V	/hen res	et R/W	
RTPM	TRH1	TRH0	TRL1	TRL0	0	RCM2	RCM1	RCM0	FF63	BH	00H	R/W	
•													
									RCM2	RCM1	RCM0	Port 0 output real-time outp registers (RTI	
												RTPH	RTPL
									0	0	0	P07 to P00	-
									0	0	1	P07 to P01	P00
									0	1	0	P07 to P02	P01, P00
									0	1	1	P07 to P03	P02 to P00
									1	0	0	P07 to P04	P03 to P00
									1	0	1		
									1	1	0	Setting p	rohibited
									1	1	1		
								I					
									TRL1	TRL0	Trigge port re	er signal for rea	l-time output .)
									0	0	INTC	/10	
									0	1	INTC	/111	
									1	0	INTC	/120	
									1	1	Softwa	are trigger	
									TRH1	TRH0	Trigge port re	er signal for rea egister H (RTPI	I-time output H)
									0	0	INTC	/10	
									0	1	INTC	/111	
									1	0	INTC	//20	
									1	1	Softwa	are trigger	

(2) Real-time output port register H (RTPH)

This register is an 8-bit register that stores the upper half of the output data of the real-time output port. Write data is output to the pins connected to the RTPH according to the setting of the corresponding bit of the real-time output port mode register (RTPM).

Phase-out/Discontinued

When a signal output by the real-time pulse unit (RPU) is specified as an output trigger to the real-time output port, the data written in the RTPH is output to the pins in phase with the trigger signal. When a software trigger is specified as a trigger signal, the data written in the RTPH is output to the RTPH is output to the pins.

Data can be read from or written into the RTPH by a bit manipulation instruction or 8-bit manipulation instruction.

The contents of the RTPH become undefined after RESET signal is input.

(3) Real-time output port register L (RTPL)

This register is an 8-bit register that stores the lower half of the output data of the real-time output port. Write data is output to the pins connected to the RTPL according to the setting of the corresponding bit of the real-time output port mode register (RTPM).

When a signal output by the real-time pulse unit (RPU) is specified as an output trigger to the real-time output port, the data written in the RTPL is output to the pins in phase with the trigger signal. When a software trigger is specified as a trigger signal, the data written in the RTPL is output to the pins.

Data can be read from or written into the RTPL by a bit manipulation instruction or 8-bit manipulation instruction. The contents of the RTPL become undefined after $\overline{\text{RESET}}$ signal is input.

The real-time output port registers (RTPH and RTPL) are read regardless of the settings of the port 0 mode register (PM0) and port 0 mode control register (PMC0). Read data varies according to the settings of RCM0 to RCM2 as shown in Table 7-25.

Phase-out/Discontinued

DOMO	DOM	RCM1 RCM0		RTPH contents to be read									RTPL contents to be read						
RGMZ	RCM2 RCM1 RCM0		7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
0	0	0		RTPH								0							
0	0	1				RTPH	1			0	0							RTPL	
0	1	0			RT	PH			()	0						RT	PL	
0	1	1			RTPH	1			0		0					RTPL			
1	0	0		RTPH				0 0						RT	PL				
	ngs other nose abov						•		Set	ting p	orohib	ited			•				

Table 7-25. Data of RTPHn and RTPLn (n = 0 to 7) to Be Read

Caution 0 is always read when the RTPM register specifies data of the RTPH and RTPL registers that is not connected to any pin.

7.5.3 Operation

To specify the function of port 0 (P0) for the real-time output port, set the corresponding bit of the port 0 mode control register (PMC0) to 1 and the TRG2 bit of A/D converter mode register 1 (ADM1) to 0.

The real-time output port mode register (RTPM) is used to specify the connection of the real-time output port registers (RTPH and RTPL) with the output pins (P00 to P07) and output triggers.

When a signal output by the real-time pulse unit (RPU) is specified as an output trigger, the data written in the real-time output port registers (RTPH and RTPL) is automatically output to the port in phase with the trigger signal.

When a software trigger is specified as a trigger signal, the output of the port is changed on the timing of writing data in the RTPH and RTPL.

Caution When a software trigger is specified as an output trigger to the real-time output port, the contents of the RTPH and RTPL are output to the pins. Before specifying a software trigger, write data in the RTPH and RTPL.

CHAPTER 8 A/D CONVERTER

Phase-out/Discontinued

The μ PD78356 contains an ultrahigh-speed, high-resolution 10-bit analog/digital (A/D) converter. The A/D converter has eight analog input pins (ANI0 to ANI7) and eight 10-bit A/D conversion result registers (ADCRs) that store conversion results.

The converter uses the serial-parallel conversion system and stores conversion results in ADCRs. This system allows ultrahigh-speed, high-precision conversion (conversion time: approx. 2 μ s at an external clock speed of 32 MHz).

Either of the following two conversion modes can be specified for the A/D converter. Software specifies the operating mode for the A/D converter with the A/D converter mode register 0 (ADM0), enabling the A/D conversion suitable for an application system to be selected.

Select mode

The converter converts a single analog input data item.

Scan mode

The converter converts multiple analog input data items.

In each operating mode, the converter stores conversion results in ADCRs each time it terminates A/D conversion. Upon completion of A/D conversion, an A/D conversion termination interrupt (INTAD) occurs. The interrupt enables a macro service, such as automatic data transfer, to be started by hardware.

Any one of the following three conversion timing triggers can be specified for the A/D converter. Software specifies a conversion trigger with the A/D converter mode register 1 (ADM1), enabling the fine timing control suitable for an application system to be selected.

• A/D trigger mode

A/D conversion is started by setting the CS bit of the ADM0 register to 1.

Timer trigger mode

A/D conversion is started by a trigger signal output by the real-time pulse unit (RPU).

External trigger mode

A/D conversion is started by the input of external triggers (ADTRG0 to ADTRG3).

Caution The A/D trigger mode, timer trigger mode, or external trigger mode can be specified for each pin ANI0 to ANI3. However, the A/D trigger mode is always specified for the ANI4 to ANI7 pins.

8.1 Configuration

Fig. 8-1 shows the block diagram of the A/D converter. Fig. 8-2 lists the operating modes and trigger modes for the A/D converter.

The four high-order channels (ANI4 to ANI7) of the analog inputs for the A/D converter are always used in the A/D trigger mode. The A/D trigger mode, timer trigger mode, or external trigger mode, however, can be specified for each of the four low-order channels (ANI0 to ANI3). Trigger modes are selected by software.

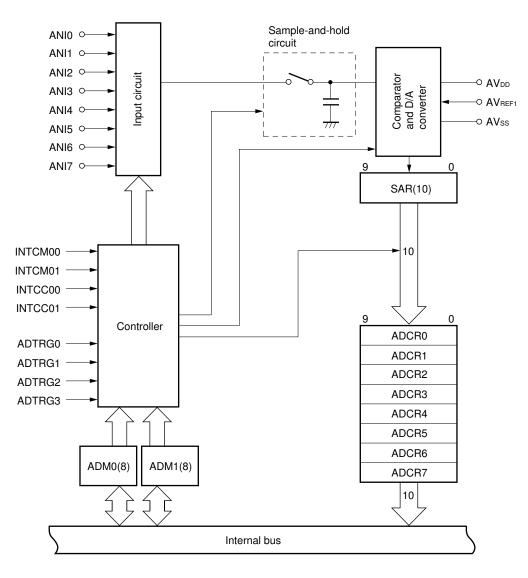


Fig. 8-1. Block Diagram of the A/D Converter

(1) Input circuit

The input circuit selects an analog input and sends the analog input to the sample-and-hold circuit according to the operating mode and trigger mode specified by A/D converter mode registers 0 and 1 (ADM0 and ADM1).

(2) Sample-and-hold circuit

The sample-and-hold circuit samples each of the analog inputs successively received from the input circuit and sends them to the comparator. The sample-and-hold circuit, however, holds analog input being converted to digital data.

(3) Comparator

The comparator compares the analog input voltage with the output voltage of the D/A converter to determine whether the voltages are the same.

(4) D/A converter

The D/A converter outputs the voltage that matches the analog input voltage. The successive approximation register (SAR) controls the output voltage of the D/A converter.

(5) Successive approximation register (SAR)

SAR is a 10-bit register for specifying the data to control the output voltage of the D/A converter to be compared with the analog input voltage.

Upon completion of A/D conversion, the contents of SAR (conversion result) are stored in the A/D conversion result register (ADCR). When all the specified A/D conversions are terminated, an A/D conversion termination interrupt (INTAD) occurs.

(6) Controller

The controller selects an analog input, generates the operation timing signal for the sample-and-hold circuit, and controls a conversion trigger according to the operating mode and trigger mode specified by ADM0 and ADM1.

(7) ANI0 to ANI7 pins

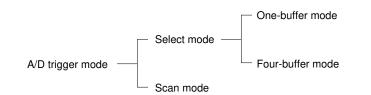
The ANI0 to ANI7 pins are the eight channels of the analog input pins to the A/D converter.

Caution Apply the reference voltage to the ANI0 to ANI7 pins. If a voltage in the range of V_{DD} to V_{SS} inclusive (even in the range of the absolute maximum ratings) is applied to these pins, the converted values of the channels are undefined, and the converted values of other channels may also be affected.

(8) AVREF1 pin

This pin is used to input the reference voltage of the A/D converter. The signals input to the ANI0 to ANI7 pins are converted to digital signals based on the voltage applied between AVREF1 and AVss.

(9) AVss pin


This pin is the ground pin of the A/D converter. Input the Vss level to the AVss pin.

(10) AVDD pin

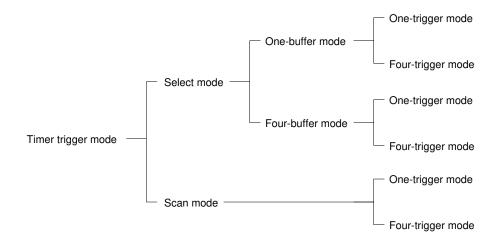
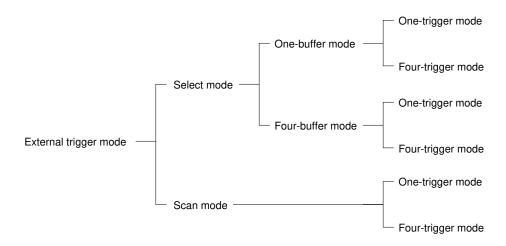
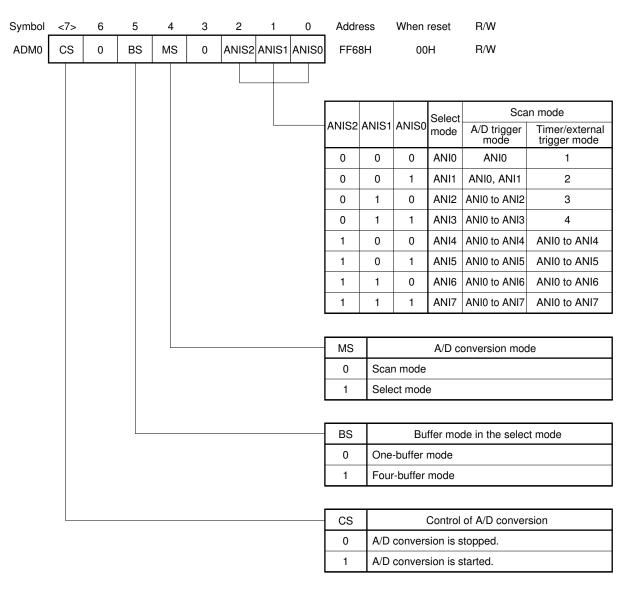

Input the VDD level to the AVDD pin.

Fig. 8-2. Operating Modes and Trigger Modes for the A/D Converter


(1) A/D trigger mode

(2) Timer trigger mode

(3) External trigger mode


8.2 A/D Converter Mode Register 0 (ADM0)

A/D converter mode register 0 (ADM0) is an 8-bit register that selects analog input pins for the A/D converter, specifies the operating mode for the A/D converter, specifies the buffer mode, and controls the operation of the A/D converter.

Data can be read from or written into ADM0 with a bit manipulation instruction or 8-bit manipulation instruction. When data is written into ADM0 during A/D conversion, A/D conversion is initialized and carried out from the beginning.

When a $\overline{\text{RESET}}$ signal is input, ADM0 is set to 00H.

Fig. 8-3 shows the format of ADM0.

Fig. 8-3. Format of A/D Converter Mode Register 0 (ADM0)

The following describes each bit of ADM0.

(1) ANIS0 to ANIS2 bits (bits 0 to 2)

These bits select an analog input pin (ANI0 to ANI7) for A/D conversion. Each of these bits specifies a pin corresponding to the operating mode for the A/D converter.

				Scan mode							
ANIS2	ANIS1	ANIS0	Select mode	A/D trigger mode	Timer trigger mode or external trigger mode						
0	0	0	ANI0	ANIO	1						
0	0	1	ANI1	ANIO, ANI1	2						
0	1	0	ANI2	ANI0 to ANI2	3						
0	1	1	ANI3	ANI0 to ANI3	4						
1	0	0	ANI4	ANI0 to ANI4	ANI0 to ANI4						
1	0	1	ANI5	ANI0 to ANI5	ANI0 to ANI5						
1	1	0	ANI6	ANI0 to ANI6	ANI0 to ANI6						
1	1	1	ANI7	ANI0 to ANI7	ANI0 to ANI7						

Table 8-1. Analog Input Pins to Be Selected

Caution The order in which the ANI0 to ANI3 bits are scanned is specified according to the order in which the match signals from compare registers or external trigger signals are generated in the timer trigger mode or external trigger mode for the scan mode. As a result, the ANIS0 to ANIS2 bits specify no analog input pin, they specify the number of trigger inputs.

(2) MS bit (bit 4)

The MS bit specifies the operating mode for the A/D converter such as the scan or select mode.

- When the MS bit is set to 0, the scan mode is specified.
- · When the MS bit is set to 1, the select mode is specified.

(3) BS bit (bit 5)

The BS bit specifies a buffer mode for A/D conversion in the select mode.

- · When the BS bit is set to 0, the one-buffer mode is specified.
- When the BS bit is set to 1, the four-buffer mode is specified.

(4) CS bit (bit 7)

Manipulation of the CS bit varies according to the trigger mode of the A/D converter.

The CS bit enables or disables A/D conversion. Setting the CS bit to 1 starts A/D conversion.

Upon completion of A/D conversion, the CS bit is reset to 0. The CS bit is therefore used to check the state of A/D conversion.

In the timer trigger mode or external trigger mode, A/D conversion is possible regardless of the setting of the CS bit.

When the CS bit is 0, the input of a trigger signal from the real-time pulse unit (RPU) or external unit sets the CS bit to 1. Upon completion of A/D conversion for the channels specified by ADM0, the CS bit is reset to 0.

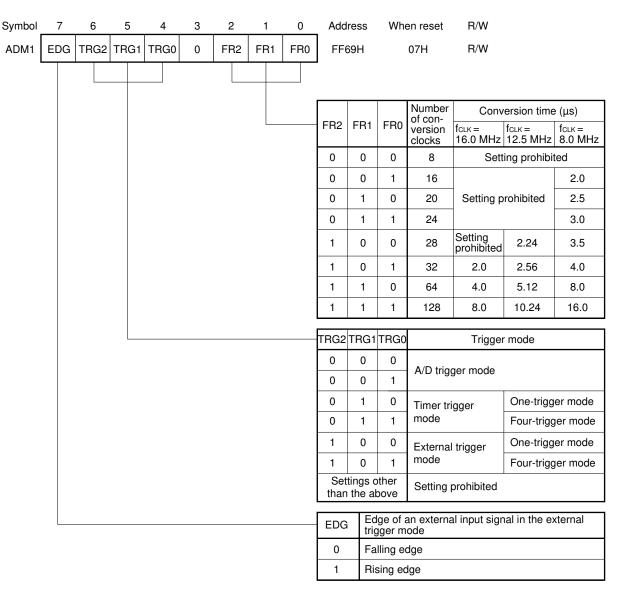
Table 8-2 shows the state of A/D conversion in the A/D trigger mode. Table 8-3 shows the state of A/D conversion in the timer trigger mode or external trigger mode.

Table 8-2. CS Bit Manipulation and A/D Conversion in the A/D Trigger Mode

CS bit manipulation	Setting of	the CS bit
	0	1
Write	A/D conversion is disabled.	A/D conversion is started.
Read	A/D conversion stop state	A/D conversion start state

Table 8-3. CS Bit Manipulation and A/D Conversion in the Timer Trigger Mode or External Trigger Mode

CS bit manipulation	Setting of the CS bit						
	0	1					
Read	Trigger standby state	A/D conversion start state					


8.3 A/D Converter Mode Register 1 (ADM1)

A/D converter mode register 1 (ADM1) is an 8-bit register that specifies the conversion time, the trigger mode of the A/D converter, and an edge in the external trigger mode.

Data can be read from or written into ADM1 with a bit manipulation instruction or 8-bit manipulation instruction. When data is written in ADM1 during A/D conversion, A/D conversion is initialized and carried out from the beginning.

When a RESET signal is input, ADM1 is set to 07H.

Fig. 8-4 shows the format of ADM1.

Remark fclk: Internal system clock

The following describes each bit of ADM1.

(1) FR0 to FR2 bits (bits 0 to 2)

These bits specify the conversion time for the A/D converter.

Each of these bits specifies an appropriate A/D conversion time when the oscillator frequency is changed.

FR2	FR1	FR0	Number of		Conversion time (μ s)							
FR2	ГПІ	FRU	conversion clocks	fclк = 16.0 MHz	fclк 12.5 MHz	fськ = 8.0 MHz						
0	0	0	8									
0	0	1	16	Setting p	prohibited	2.0						
0	1	0	20			2.5						
0	1	1	24			3.0						
1	0	0	28	Setting prohibited	2.24	3.5						
1	0	1	32	2.0	2.56	4.0						
1	1	0	64	4.0	5.12	8.0						
1	1	1	128	8.0	10.24	16.0						

Table 8-4. A/D Conversion Time

(2) TRG0 to TRG2 bits (bits 4 to 6)

These bits specify a trigger mode for the four low-order channels of the analog input pins (ANI0 to ANI3).

Table 8-5. Trigger Mode for the ANI0 to ANI3 Pins

TRG2	TRG1	TRG0	Trigger mode	Number of triggers
0	0	0	A/D trigger mode	-
0	0	1		
0	1	0	Timer trigger mode	1
0	1	1		4
1	0	0	External trigger mode	1
1	0	1		4
1	1	0	Setting prohibited	_
1	1	1		

(3) EDG bit (bit 7)

This bit specifies the edge (falling or rising) of a trigger signal input from the external unit to the ADTRG0 to ADTRG3 pins in the external trigger mode.

- When the EDG bit is 0, the falling edge is specified.
- When the EDG bit is 1, the rising edge is specified.

8.4 A/D Conversion Result Registers (ADCRs)

The μ PD78356 has eight 10-bit A/D conversion result registers (ADCRs). The contents of each ADCR can only be read separately with 16-bit or 8-bit manipulation instruction. The A/D conversion results are read from the ADCRs in either of the following two ways:

(1) Word access (16-bit manipulation instruction execution)

Effective word data is read from the low-order 10 bits of an ADCR. Os are always read from the high-order six bits. Fig. 8-5 shows the word access to ADCRs.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	R/W
ADCRn	0	0	0	0	0	0	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	R
(<u> </u>																	

Fig. 8-5. Word Access to ADCRs

(n = 0 to 7)

Symbol	Address	When reset
ADCR0	FFB0H	Undefined
ADCR1	FFB2H	
ADCR2	FFB4H	
ADCR3	FFB6H	
ADCR4	FFB8H	
ADCR5	FFBAH	
ADCR6	FFBCH	
ADCR7	FFBEH	

Remark AD0 to AD9: A/D conversion result

169

(2) Byte access (8-bit manipulation instruction execution)

Data is read from the high-order eight bits of a 10-bit ADCR. Fig. 8-6 shows the byte access to ADCRs.

Symbo	d	7	6	5	4	3	2	1	0	R/W	
ADCRn	Н	AD9	AD8	AD7	AD7 AD6		AD4	AD4 AD3		2 R	
(n = 0 to	(n = 0 to 7)										
		Syml	ool	A	ddres	ss	Whe	en res	set		
		ADCF	ROH	F	FB1	Н	Uno	define	ed		
		ADCF	R1H	F	FB3I	Н					
		ADCF	R2H	F	FB5I	Η					
		ADCF	ЗΗ	F	FB7I	Η					
		ADCF	{4H	F	FB9I	Η					
		ADCF	R5H	F	FBB	Н					
		ADCR6H			FBD	H					
		ADCF	87H		FFBF	Н					

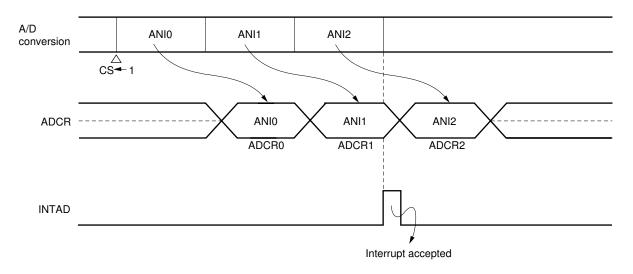
Fig. 8-6. Byte Access to ADCRs

Remark AD2 to AD9: A/D conversion result (high-order eight bits of a 10-bit)

8.5 Operation

Only the A/D trigger mode can be specified for the higher four channels (ANI4 to ANI7) of the analog inputs for the A/D converter. However, the A/D trigger mode, timer trigger mode, or external trigger mode can be specified for each of the lower four channels (ANI0 to ANI3).

Unless otherwise specified, the explanation of the lower four channels (ANI0 to ANI3) below also applies to the higher four channels.


8.5.1 Basic operation of the A/D converter

The A/D converter operates as follows.

- (1) An analog input is selected and an operating mode and trigger mode are specified with A/D converter mode registers 0 and 1 (ADM0 and ADM1). A/D conversion then starts when the CS bit is set to 1.
- (2) The comparator compares the analog input voltage with the voltage applied by the D/A converter.
- (3) Upon completion of 10-bit comparison, the effective digital value is held in the Successive Approximation Register (SAR), and the value is sent to and held in the A/D conversion result register (ADCR). When A/D conversion is completed the number of times specified by ADM0, an A/D conversion termination interrupt (INTAD) occurs. The interrupt must be handled with a vectored interrupt or macro service function (see 15.8).

Fig. 8-7 shows an example of the operation of the A/D converter when it converts the ANI0 to ANI2 pin inputs to digital data in the A/D trigger mode.

Caution Do not apply a voltage out of the range of AV_{SS} to AV_{DD} to the pins used as the input pins of the A/D converter.

Fig. 8-7. Basic Operation of the A/D Converter (A/D Trigger Mode: ANI0 to ANI2)

A/D conversion is started in synchronization with a trigger signal output by the real-time pulse unit (RPU) (timer trigger mode) or in synchronization with a trigger signal input from the external unit (external trigger mode).

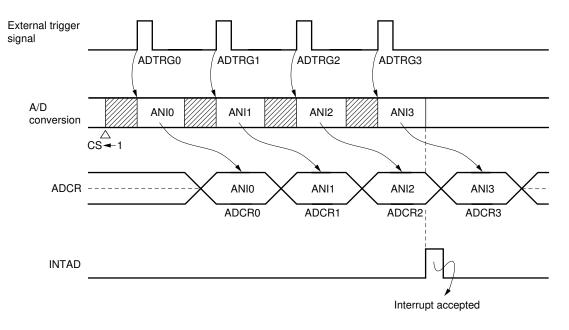

When software specifies the timer trigger mode or external trigger mode of the scan mode in the TRG0 to TRG2 bits of ADM1, a trigger signal enters a standby state. The first trigger signal starts A/D conversion. Upon completion of the conversion operation, the next trigger signal enters the standby state. When A/D conversion is completed the number of times specified by ADM0, an A/D conversion termination interrupt (INTAD) occurs.

Fig. 8-8 shows an example of A/D conversion in the four-trigger mode of the external trigger mode.

When data is written in ADM0 and ADM1 during A/D conversion, A/D conversion is initialized and started from the beginning.

Fig. 8-9 shows an example of writing data in ADM0 during A/D conversion of the ANI0 to ANI2 pin inputs in the A/D trigger mode.

When a RESET signal is input, the contents of each ADCR become undefined.

Fig. 8-8. A/D Conversion in Synchronization with a Trigger Signal (External Trigger Mode: Four-Trigger Mode)

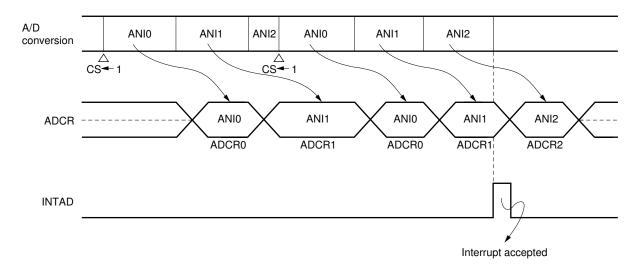
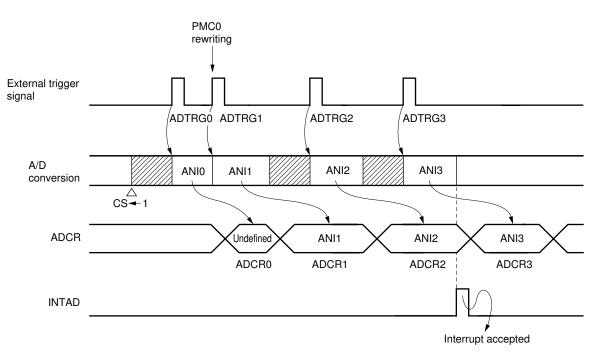



Fig. 8-9 Rewriting Data in ADM during A/D Conversion (A/D Trigger Mode: ANI0 to ANI2)

If the port 0 mode control register (PMC0) is rewritten during A/D conversion in the external trigger mode of the A/D converter, the external trigger edge is generated and the conversion operation is stopped and the result of the stopped A/D conversion will be undefined. But the number of inputs will be counted and A/D conversion will continue to be performed in accordance with the new trigger.

Fig. 8-10 shows an example of manipulation performed when data is rewritten in the PMC0 register during A/D conversion in the external trigger mode (4 trigger mode).

Caution If conversion results are programmed to branch off only when certain values are set in branching processes directly using the A/D conversion results, the conversion results will not become the values due to the effects of conversion differences, and may not branch to the specified routine. Therefore create programs in which conversion results branch when it ranges with the total difference width.

The following shows examples of programs where specific processes are performed when the analog input voltage input to pin ANI0 is $\frac{1}{2}$ AV_{REF1}.

<Wrong example>

Ū	CMPW BNE	ADCR0, # \$UNMATC	
			<1> Process when the A/D conversion result is 1FFH
UNMATCH:			J
			<2> Process when the A/D conversion results is other than 1FFH

If the conversion result does not become 1FFH due to conversion difference, it cannot branch to <1>.

$\overline{\nabla}$

<Correct example>

UNMATCH:

xampie>	
CMPW	ADCR0, #0201H
BGT	\$UNMATCH
CMPW	ADCR0, #01FCH
BLT	\$UNMATCH
	·)
	 <1> Process when the A/D conversion result is 1FCH to 201H .
	·]
:	
	•
	- <2> Process when the A/D conversion results is outside the above range
	·]

When the conversion result is in the 1FCH to 201H range, it is determined that the $\frac{1}{2}$ AV_{REF1} analog voltage has been input and the processing is executed.

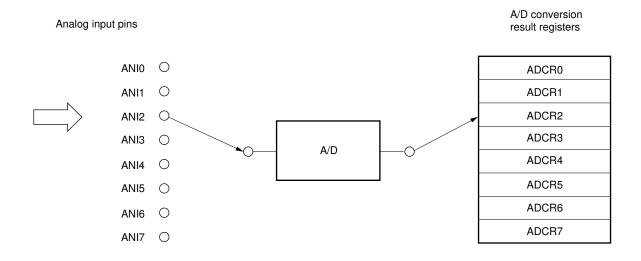
8.5.2 Operating mode for the A/D converter

Either of the following two modes can be selected as the operating mode of the A/D converter. An operating mode is selected with A/D converter mode register 0 (ADM0). Setting the CS bit of ADM0 to 1 starts A/D conversion.

- Select mode
- Scan mode

(1) Select mode

The select mode performs an A/D conversion of one analog input (ANIn: n = 0 to 7) selected with ADM0. The conversion result is stored in the A/D conversion result register (ADCRn: n = 0 to 7) corresponding to the analog input.


The select mode has the following two modes for storing the A/D conversion result in the registers:

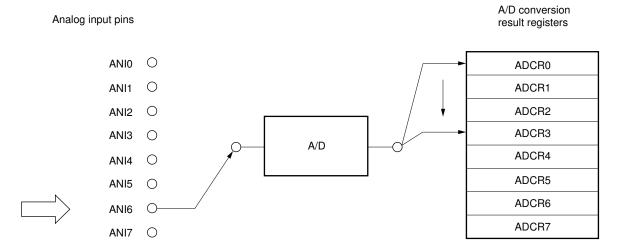
- · One-buffer mode
- · Four-buffer mode

(a) One-buffer mode

One A/D conversion is performed for one analog input, then the result is stored in one A/D conversion result register. In this case, an analog input corresponds to an A/D conversion result register on a one-to-one basis.

An A/D conversion termination interrupt (INTAD) occurs each time an A/D conversion is performed to indicate that the A/D conversion has been completed.

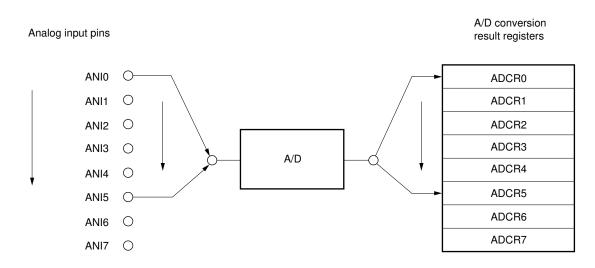
Fig. 8-11. A/D Conversion in the Select Mode (One-Buffer Mode)


(b) Four-buffer mode

Four A/D conversions are performed for one analog input, then the results are stored in four A/D conversion result registers (ADCR0 to ADCR3).

Phase-out/Discontinued

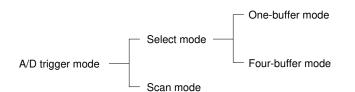
An A/D conversion termination interrupt (INTAD) occurs upon completion of four A/D conversions. This mode is useful for finding the average of A/D conversions.



(2) Scan mode

To perform A/D conversion, the scan mode sequentially selects analog inputs on the ANI0 pin for the analog input pin specified by ADM0. The results of A/D conversions are stored in the A/D conversion result registers corresponding to the analog inputs on a one-to-one basis. An A/D conversion termination interrupt (INTAD) occurs upon completion of A/D conversion of the specified analog inputs. This mode is useful for monitoring multiple analog inputs.

8.5.3 Trigger modes for the A/D converter


The trigger modes are classified into the following three modes. Each mode is used as a timing trigger to start A/D conversion. One of these trigger modes and an A/D conversion time are specified with A/D converter mode register 1 (ADM1).

The A/D trigger mode is always specified for the higher four channels (ANI4 to ANI7) of the analog inputs for the A/D converter. However, the A/D trigger mode, timer trigger mode, or external trigger mode can be specified for each of the lower four channels (ANI0 to ANI3).

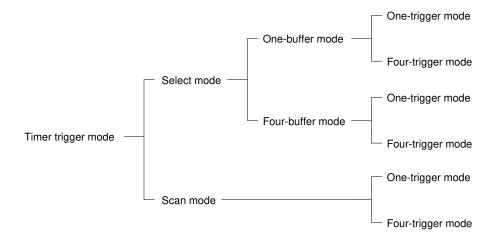
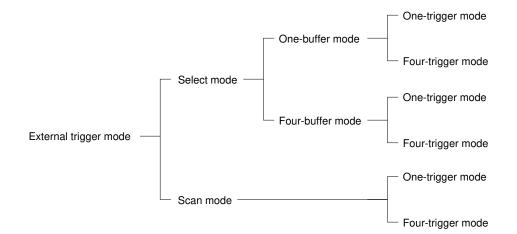

- A/D trigger mode
- · Timer trigger mode
- External trigger mode

Fig. 8-14. Operating Modes and Trigger Modes for the A/D Converter


(1) A/D trigger mode

(2) Timer trigger mode

(3) External trigger mode

(1) A/D trigger mode

Writing data in A/D converter mode register 0 (ADM0) starts A/D conversion. A/D conversion can be synchronized using software.

(a) Select mode

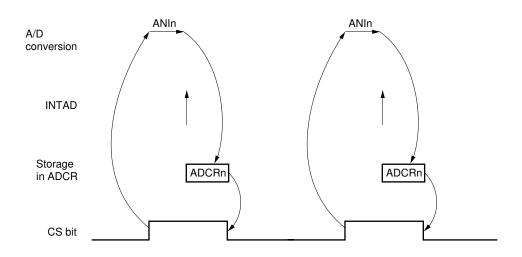
The select mode performs the A/D conversion of one analog input (ANIn: n = 0 to 7) selected with ADM0. The conversion result is stored in the A/D conversion result register (ADCRn: n = 0 to 7) corresponding to the analog input.

The select mode has the following two modes (one-buffer mode and four-buffer mode) for storing the A/ D conversion result in the registers.

(i) One-buffer mode

One A/D conversion is performed for one analog input, then the result is stored in one A/D conversion result register. In this case, an analog input corresponds to an A/D conversion result register on a one-to-one basis.

An INTAD interrupt occurs each time an A/D conversion is performed, then the A/D conversion is terminated (CS = 0).


Writing data in ADM0 restarts A/D conversion.

This mode is useful for reading the A/D conversion result each time an A/D conversion is performed.

Analog input		A/D conversion result register	
ANIn	->	ADCRn	

Remark n = 0 to 7

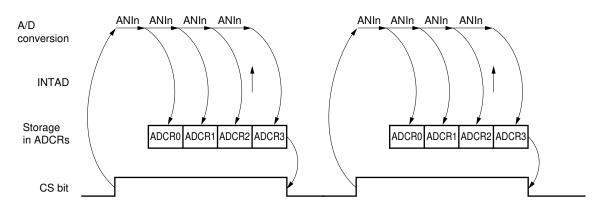
Fig. 8-15. Example 1 of A/D Conversion in the A/D Trigger Mode (Select Mode, One-Buffer Mode, ANIn)

(ii) Four-buffer mode

Four A/D conversions are performed for one analog input, then the results are stored in four A/D conversion result registers (ADCR0 to ADCR3).

Phase-out/Discontinued

An A/D conversion termination interrupt (INTAD) occurs upon completion of four A/D conversions, then the A/D conversion is terminated (CS = 0).


Writing data in ADM0 restarts A/D conversion.

This mode is useful for finding the average of A/D conversion results.

Analog input		A/D conversion result register
ANIn	->	ADCR0
ANIn	->	ADCR1
ANIn	->	ADCR2
ANIn	->	ADCR3

Remark n = 0 to 7

Fig. 8-16. Example 2 of A/D Conversion in the A/D Trigger Mode (Select Mode, Four-Buffer Mode, ANIn)

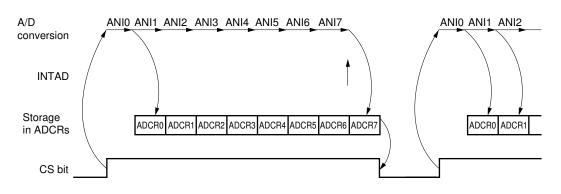
Remark n = 0 to 7

(b) Scan mode

To perform A/D conversion, the scan mode sequentially selects analog inputs on the ANI0 pin to the analog input pin (ANIn: n = 0 to 7) specified by ADM0. The results of A/D conversions are stored in the A/D conversion result registers corresponding to the analog inputs (ADCRn: n = 0 to 7).

Phase-out/Discontinued

An A/D conversion termination interrupt (INTAD) occurs upon completion of A/D conversion of the specified analog inputs (CS = 0).


Writing data in ADM0 restarts A/D conversion.

This mode is useful for monitoring multiple analog inputs.

Analog input	A/D conversion result register	
ANI0	->	ADCR0
•	•	
•	•	
	•	•
ANIn	->	ADCRn

Remark n = 0 to 7

(2) Timer trigger mode

A/D conversion of analog inputs (ANI0 to ANI3) is performed at the timing specified by compare registers of the real-time pulse unit (RPU).

Phase-out/Discontinued

The occurrence of match interrupts from four compare registers (CM00, CM01, CC00, and CC01) connected to timer 0 (TM0) outputs analog input conversion start signals.

The setting of timer unit mode register 1 (TUM1) specifies whether A/D conversion is terminated after a single A/D conversion (one-shot mode) or is repeated (loop mode).

Cautions 1. Before specifying the timer trigger mode, specify that the capture/compare registers (CC00 and CC01) function as a compare register.

2. The timer trigger mode is effective for ANI0 to ANI3 analog inputs only.

(a) Select mode

An analog input (ANIn: n = 0 to 3) specified by A/D converter mode register 0 (ADM0) is converted to digital data. The conversion result is stored in an A/D conversion result register (ADCRn: n = 0 to 3) corresponding to the analog input.

The select mode has the following two modes (one-buffer mode and four-buffer mode) for storing the A/ D conversion result in the registers.

(i) One-buffer mode

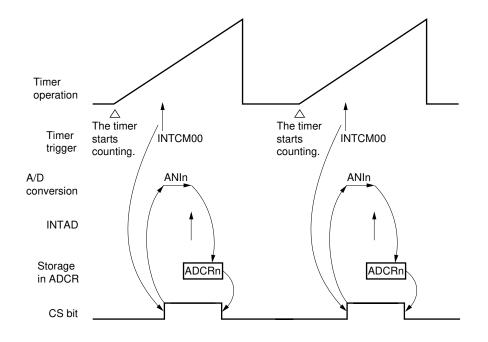
One A/D conversion is performed for one analog input, then the result is stored in one A/D conversion result register. In this case, an analog input corresponds to an A/D conversion result register on a one-to-one basis.

The one-buffer mode has the following two modes (one-trigger mode and four-trigger mode) corresponding to the number of triggers.

This mode is useful for reading the A/D conversion result each time an A/D conversion is performed.

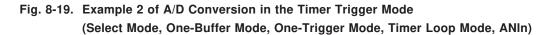
<1> One-trigger mode

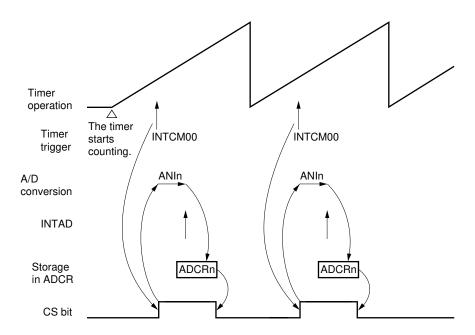
When a trigger signal (match interrupt (INTCM00)) is input, one A/D conversion is performed for one analog input, then the result is stored in one A/D conversion result register. An INTAD interrupt occurs each time an A/D conversion is performed, then the A/D conversion is terminated (CS = 0).


Phase-out/Discontinued

When timer 0 is in the one-shot mode, A/D conversion is terminated after a single A/D conversion. To restart A/D conversion, timer 0 must be restarted. When timer 0 is in the loop mode, A/D conversion is repeated each time an INTCM00 interrupt occurs.

Trigger signal	Analog input		A/D conversion result register
INTCM00	ANIn	->	ADCRn


Remark n = 0 to 3


Fig. 8-18. Example 1 of A/D Conversion in the Timer Trigger Mode (Select Mode, One-Buffer Mode, One-Trigger Mode, Timer One-Shot Mode, ANIn)

Remark n = 0 to 3

Caution When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.

Remark n = 0 to 3

Caution When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.

<2> Four-trigger mode

When four trigger signals (four match interrupts (INTCM00, INTCM01, INTCC00, and INTCC01)) are input, an analog input is converted to digital data four times, and the result is stored in one A/D conversion result register.

Phase-out/Discontinued

Each time an A/D conversion is performed, an INTAD interrupt occurs, and the CS bit is reset to 0.

The result of a single A/D conversion is held in the A/D conversion result register until the next A/D conversion is terminated. The conversion result must be loaded into memory when an INTAD interrupt occurs upon completion of the single A/D conversion.

When timer 0 is in the one-shot mode and A/D conversion is performed four times, A/D conversion is terminated. Timer 0 need be restarted to restart A/D conversion. When the first match interrupt occurs after timer 0 is started, the CS bit is set to 1 to start A/D conversion. When timer 0 is in the loop mode, A/D conversion is repeated each time a match interrupt occurs. Match interrupts may occur in any order.

Trigger signal	Analog input		A/D conversion result register
INTCM00	ANIn	->	ADCRn
INTCM01	ANIn	->	ADCRn
INTCC00	ANIn	->	ADCRn
INTCC01	ANIn	->	ADCRn

Remark n = 0 to 3

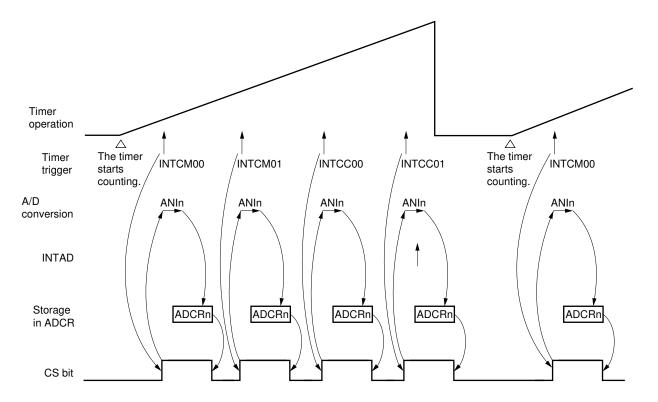


Fig. 8-20. Example 3 of A/D Conversion in the Timer Trigger Mode (Select Mode, One-Buffer Mode, Four-Trigger Mode, Timer One-Shot Mode, ANIn)

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

Remark n = 0 to 3

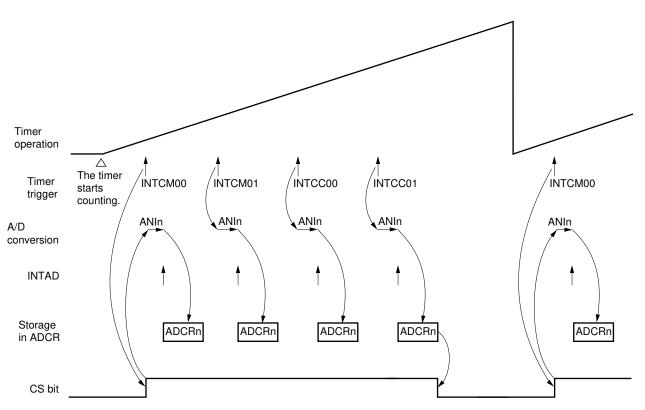
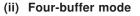



Fig. 8-21. Example 4 of A/D Conversion in the Timer Trigger Mode (Select Mode, One-Buffer Mode, Four-Trigger Mode, Timer Loop Mode, ANIn)

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

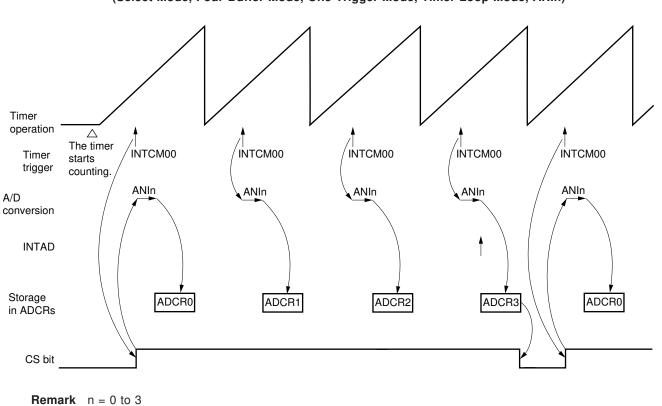
Remark n = 0 to 3

Four A/D conversions are performed for one analog input, then the results are stored in four A/D conversion result registers (ADCR0 to ADCR3).

Phase-out/Discontinued

The four-buffer mode has the following two modes (one-trigger mode and four-trigger mode) corresponding to the number of triggers.

This mode is useful for finding the average of A/D conversion results.


<1> One-trigger mode

When a trigger signal (match interrupt (INTCM00)) is input, four A/D conversions are performed for one analog input, then the results are stored in four A/D conversion result registers. Upon completion of the four A/D conversions, an INTAD interrupt occurs and the A/D conversions are terminated (CS = 0).

A/D conversion is repeated each time an INTCM00 interrupt occurs.

Trigger signal	Analog input		A/D conversion result register
INTCM00	ANIn	->	ADCR0
INTCM00	ANIn	->	ADCR1
INTCM00	ANIn	->	ADCR2
INTCM00	ANIn	->	ADCR3

Remark n = 0 to 3

Caution In the one-shot mode for timer 0, only a single INTCM00 interrupt occurs. No A/D conversion is therefore terminated. To prevent this, be sure to put timer 0 in the loop mode.

Fig. 8-22. Example 5 of A/D Conversion in the Timer Trigger Mode (Select Mode, Four-Buffer Mode, One-Trigger Mode, Timer Loop Mode, ANIn)

<2> Four-trigger mode

When four trigger signals (four match interrupts (INTCM00, INTCM01, INTCC00, and INTCC01)) are input, four A/D conversions are performed for one analog input, and the results are stored in four A/D conversion result registers.

Upon completion of the four A/D conversions, an INTAD interrupt occurs, and A/D conversion is terminated (CS = 0).

When timer 0 is in the one-shot mode and four A/D conversions are performed, A/D conversion is terminated. Timer 0 need be restarted to restart A/D conversion. When timer 0 is in the loop mode, A/D conversion is repeated each time a match interrupt occurs. Match interrupts may occur in any order.

Trigger signal	Analog input		A/D conversion result register			
INTCM00	ANIn	->	ADCR0			
INTCM01	ANIn	->	ADCR1			
INTCC00	ANIn	->	ADCR2			
INTCC01	ANIn	->	ADCR3			

Remark n = 0 to 3

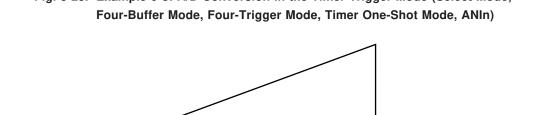
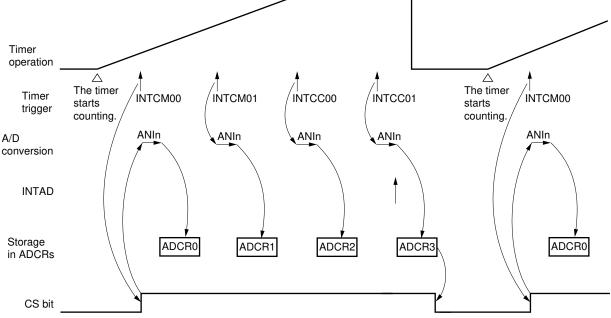



Fig. 8-23. Example 6 of A/D Conversion in the Timer Trigger Mode (Select Mode,

Remark n = 0 to 3

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

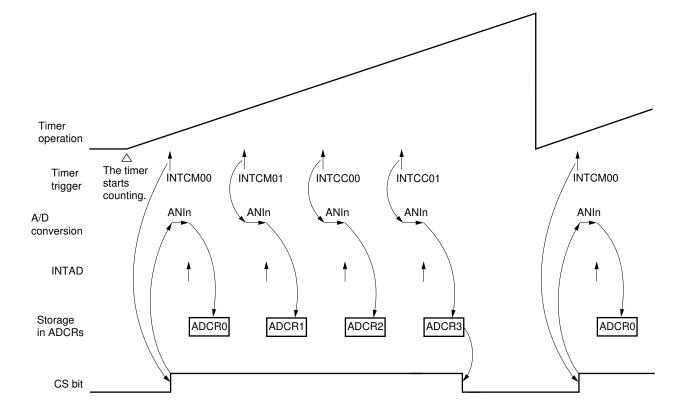


Fig. 8-24. Example 7 of A/D Conversion in the Timer Trigger Mode (Select Mode, Four-Buffer Mode, Four-Trigger Mode, Timer Loop Mode, ANIn)

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

Remark n = 0 to 3

(b) Scan mode

To perform A/D conversion, the scan mode sequentially selects analog inputs on the ANI0 pin to the analog input pin (ANIn: n = 0 to 7) specified by ADM0.

Phase-out/Discontinued

A/D conversion is performed for the lower four channels of analog inputs (ANI0 to ANI3) the specified number of times. When the real-time pulse unit (RPU) outputs a trigger signal, A/D conversion is performed for all four analog inputs starting with the first analog input on the ANI0 pin.

When ADM0 specifies that the lower four channels of analog inputs (ANI0 to ANI3) are scanned and A/D conversion is performed the specified number of times, an INTAD interrupt occurs and A/D conversion is terminated.

When ADM0 specifies that the higher four and lower four channels of analog inputs (ANI4 to ANI7) are scanned, the A/D converter enters the A/D trigger mode upon completion of A/D conversion for the lower four channels, then A/D conversion is performed for the remaining higher four channels.

The conversion results are stored in the A/D conversion result registers (ADCRn: n = 0 to 7) corresponding to the analog inputs.

Upon completion of A/D conversion for all the specified analog inputs, an INTAD interrupt occurs and A/ D conversion is terminated (CS = 0).

The scan mode has the following two modes (one-trigger mode and four-trigger mode) corresponding to the number of triggers.

This mode is useful for monitoring multiple analog inputs at all times.

(i) One-trigger mode

When a trigger signal (match interrupt (INTCM00)) is input, four A/D conversions are performed for the lower analog inputs (ANI0 to ANI3), then the A/D converter enters the A/D trigger mode to continue A/D conversion.

The analog inputs correspond to the A/D conversion result registers on a one-to-one basis.

Upon completion of all the specified A/D conversions, an INTAD interrupt occurs to terminate A/D conversion (CS = 0).

When an INTCM00 interrupt occurs upon completion of all the specified A/D conversions, however, A/D conversion is restarted.

Trigger signal	Analog input		A/D conversion result register			
INTCM00	ANI0	->	ADCR0			
INTCM00	ANI1	->	ADCR1			
INTCM00	ANI2	->	ADCR2			
INTCM00	ANI3	->	ADCR3			
(A/D trigger mode)	ANI4	->	ADCR4			
(A/D trigger mode)	ANI5	->	ADCR5			
(A/D trigger mode)	ANI6	->	ADCR6			
(A/D trigger mode)	ANI7	->	ADCR7			

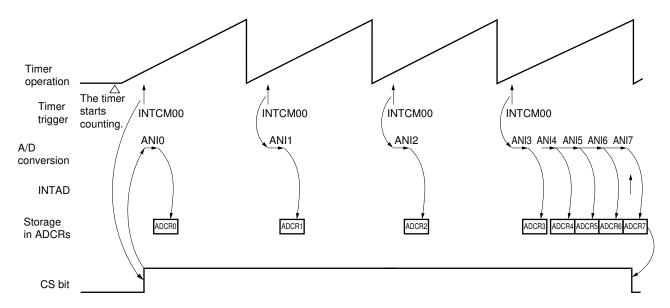
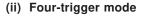



Fig. 8-25. Example 8 of A/D Conversion in the Timer Trigger Mode (Scan Mode, One-Trigger Mode, Timer Loop Mode, ANI0 to ANI7)

- Cautions 1. In the one-shot mode for timer 0, only a single INTCM00 interrupt occurs. No A/D conversion is therefore terminated. To prevent this, be sure to put timer 0 in the loop mode.
 - 2. When an INTCM00 interrupt occurs during A/D conversion of the analog inputs in the higher four channels (ANI4 to ANI7), the conversion is stopped and the ANI0 channel and subsequent channels are scanned again. The results of the stopped A/D conversions are undefined.

When four trigger signals (four match interrupts (INTCM00, INTCM01, INTCC00, and INTCC01)) are input, four A/D conversions are performed for the low-order analog inputs (ANI0 to ANI3), then the A/D converter enters the A/D trigger mode to continue A/D conversion.

Phase-out/Discontinued

The analog inputs correspond to the A/D conversion result registers on a one-to-one basis.

Upon completion of all the specified A/D conversions, an INTAD interrupt occurs and A/D conversion is terminated (CS = 0).

When timer 0 is in the one-shot mode and all the specified A/D conversions are performed, A/D conversion is terminated. Timer 0 need be restarted to restart A/D conversion. When timer 0 is in the loop mode and all the specified A/D conversions are performed, a match interrupt occurs and A/D conversion is restarted.

Match interrupts may occur in any order. Because trigger signals correspond to analog inputs on a one-to-one basis, however, the order in which the compare registers generate match signals determines the order in which the analog inputs are scanned.

Trigger signal	Analog input		A/D conversion result register			
INTCM00	ANI0	->	ADCR0			
INTCM01	ANI1	->	ADCR1			
INTCC00	ANI2	->	ADCR2			
INTCC01	ANI3	->	ADCR3			
(A/D trigger mode)	ANI4	->	ADCR4			
(A/D trigger mode)	ANI5	->	ADCR5			
(A/D trigger mode)	ANI6	->	ADCR6			
(A/D trigger mode)	ANI7	->	ADCR7			

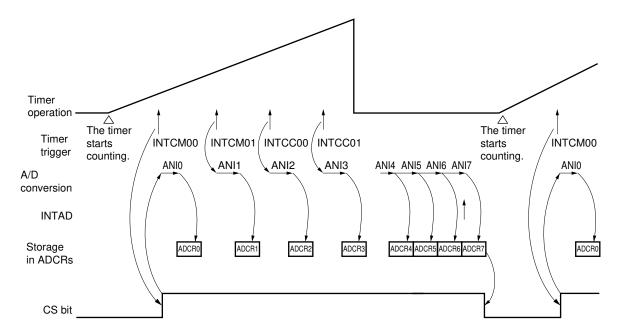
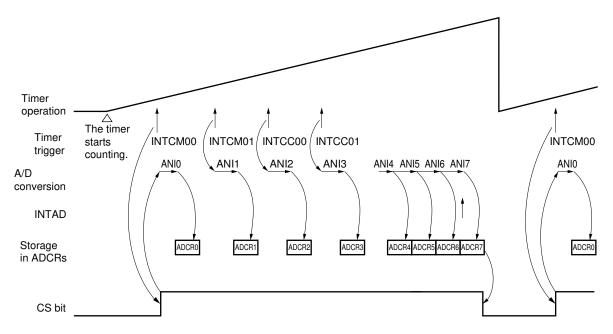



Fig. 8-26. Example 9 of A/D Conversion in the Timer Trigger Mode (Scan Mode, Four-Trigger Mode, Timer One-Shot Mode, ANI0 to ANI7)

Fig. 8-27. Example 10 of A/D Conversion in the Timer Trigger Mode (Scan Mode, Four-Trigger Mode, Timer Loop Mode, ANI0 to ANI7)

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

(3) External trigger mode

A/D conversion is performed for analog inputs (ANI0 to ANI3) at the timing of external trigger inputs (ADTRG0 to ADTRG3).

Phase-out/Discontinued

The external trigger inputs (ADTRG0 to ADTRG3) are also used as port 0 (P00 to P03). To set port 0 to the external trigger input mode, set the corresponding bit of the port 0 mode control register (PMC0) to set (1). A/D converter mode register 1 (ADM1) specifies either a four-trigger mode using the ADTRG0 to ADTRG3 pins or a one-trigger mode using the ADTRG0 pin only.

Cautions 1. The external trigger mode is effective for analog inputs ANI0 to ANI3 only.

2. External triggers may be generated when bits 0 to 3 (PMC00 to PMC03) of the PMC0 register are rewritten from 0 to 1 or 1 to 0 during A/D conversion in the external trigger mode. Therefore, rewrite these bits after stopping the operations of the A/D converter.

(a) Select mode

A/D conversion is performed for a single analog input (ANIn: n = 0 to 3) specified by A/D converter mode register 0 (ADM0). The conversion result is stored in the A/D conversion result register (ADCRn: n = 0 to 3) corresponding to the analog input.

The select mode has the following two modes (one-buffer mode and four-buffer mode) for storing the A/ D conversion result in the registers.

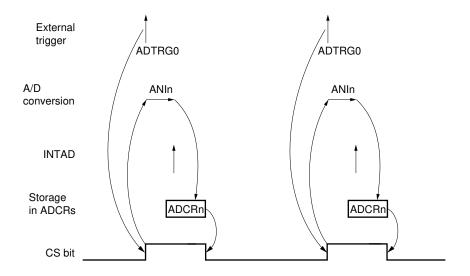
(i) One-buffer mode

One A/D conversion is performed for one analog input, then the result is stored in one A/D conversion result register. In this case, an analog input corresponds to an A/D conversion result register on a one-to-one basis.

The one-buffer mode has the following two modes (one-trigger mode and four-trigger mode) corresponding to the number of triggers.

This mode is useful for reading the A/D conversion result each time an A/D conversion is performed.

<1> One-trigger mode


When a trigger signal (external trigger input (ADTRG0)) is input, one A/D conversion is performed for one analog input, then the result is stored in one A/D conversion result register. An INTAD interrupt occurs each time an A/D conversion is performed, then the A/D conversion is terminated (CS = 0).

A/D conversion is repeated each time the ADTRG0 signal is input.

Trigger signal	Analog input		A/D conversion result register			
ADTRG0	ANIn	->	ADCRn			

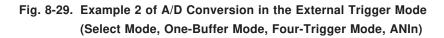
Remark n = 0 to 3

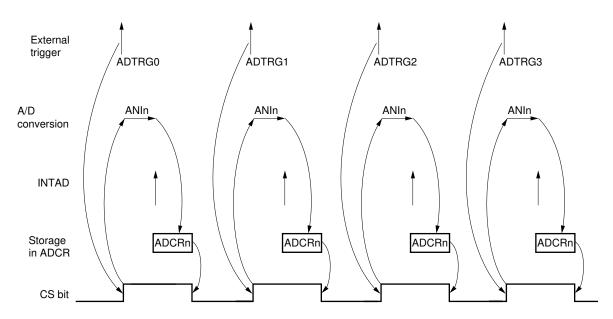
Fig. 8-28. Example 1 of A/D Conversion in the External Trigger Mode (Select Mode, One-Buffer Mode, One-Trigger Mode, ANIn)

Remark n = 0 to 3

Caution When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.

<2> Four-trigger mode


When four external trigger signals (ADTRG0 to ADTRG3) are input, four A/D conversions are performed for one analog input, and the result is stored in one A/D conversion result register. Each time an A/D conversion is performed, an INTAD interrupt occurs, and the CS bit is reset to 0. A/D conversion is terminated when four A/D conversions have been completed. The result of a single A/D conversion is held in the A/D conversion result register until the next A/D conversion is terminated. The conversion result must be loaded into memory when an INTAD interrupt occurs upon completion of the single A/D conversion. A/D conversion is repeated each time an external trigger signal is input.


External trigger signals may be generated in any order.

Trigger signal	Analog input		A/D conversion result register
ADTRG0	ANIn	->	ADCRn
ADTRG1	ANIn	->	ADCRn
ADTRG2	ANIn	->	ADCRn
ADTRG3	ANIn	->	ADCRn

Remark n = 0 to 3

Remark n = 0 to 3

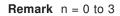
- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

(ii) Four-buffer mode

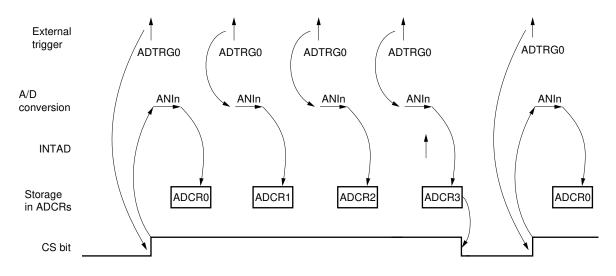
Four A/D conversions are performed for one analog input, then the results are stored in four A/D conversion result registers (ADCR0 to ADCR3).

Phase-out/Discontinued

The four-buffer mode has the following two modes (one-trigger mode and four-trigger mode) corresponding to the number of triggers.


This mode is useful for finding the average of A/D conversion results.

<1> One-trigger mode


When an external trigger signal (ADTRG0) is input, four A/D conversions are performed for one analog input, then the results are stored in four A/D conversion result registers. Upon completion of the four A/D conversions, an INTAD interrupt occurs and the A/D conversions are terminated (CS = 0).

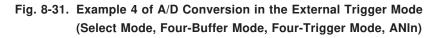
A/D conversion is repeated each time an ADTRG0 signal is input.

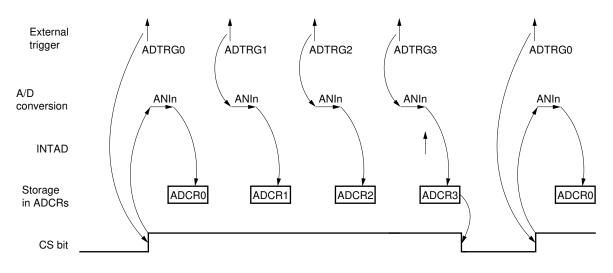
Trigger signal	Analog input		A/D conversion result register			
ADTRG0	ANIn	->	ADCR0			
ADTRG0	ANIn	->	ADCR1			
ADTRG0	ANIn	->	ADCR2			
ADTRG0	ANIn	->	ADCR3			

Fig. 8-30. Example 3 of A/D Conversion in the External Trigger Mode (Select Mode, Four-Buffer Mode, One-Trigger Mode, ANIn)

Remark n = 0 to 3

<2> Four-trigger mode


When four trigger signals (ADTRG0 to ADTRG3)) are input, four A/D conversions are performed for one analog input, and the results are stored in four A/D conversion result registers. Upon completion of the four A/D conversions, an INTAD interrupt occurs, and A/D conversion is terminated (CS = 0).


Phase-out/Discontinued

A/D conversion is repeated each time an external trigger signal is input. External trigger signals may be generated in any order.

Trigger signal	Analog input		A/D conversion result register
ADTRG0	ANIn	->	ADCR0
ADTRG1	ANIn	->	ADCR1
ADTRG2	ANIn	->	ADCR2
ADTRG3	ANIn	->	ADCR3

Remark n = 0 to 3

Remark n = 0 to 3

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.

(b) Scan mode

To perform A/D conversion, the scan mode sequentially selects analog inputs on the ANI0 pin to the analog input pin (ANIn: n = 0 to 7) specified by ADM0.

A/D conversion is performed for the lower four channels of analog inputs (ANI0 to ANI3) the specified number of times.

When ADM0 specifies that the lower four channels of analog inputs (ANI0 to ANI3) are scanned and A/D conversion is performed the specified number of times, an INTAD interrupt occurs and A/D conversion is terminated.

When ADM0 specifies that the higher four and lower four channels of analog inputs (ANI0 to ANI7) are scanned, the A/D converter enters the A/D trigger mode on completion of conversion for the lower four channels, then A/D conversion is performed for the remaining higher four channels.

The conversion results are stored in the A/D conversion result registers (ADCRn: n = 0 to 7) corresponding to the analog inputs.

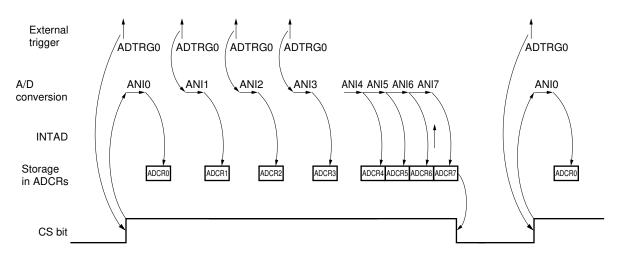
Upon completion of A/D conversion of all the specified analog inputs, an INTAD interrupt occurs and A/D conversion is terminated (CS = 0).

The scan mode has the following two modes (one-trigger mode and four-trigger mode) corresponding to the number of triggers.

This mode is useful for monitoring multiple analog inputs.

(i) One-trigger mode

When an external trigger signal (ADTRG0) is input, four A/D conversions are performed for the loworder analog inputs (ANI0 to ANI3), then the A/D converter enters the A/D trigger mode to continue A/D conversion.


Phase-out/Discontinued

The analog inputs correspond to the A/D conversion result registers on a one-to-one basis. Upon completion of all the specified A/D conversions, an INTAD interrupt occurs and A/D conversion is terminated (CS = 0).

When an ADTRG0 signal is input upon completion of all the specified A/D conversions, A/D conversion is restarted.

Trigger signal	Analog input		A/D conversion result register
ADTRG0	ANI0	->	ADCR0
ADTRG0	ANI1	->	ADCR1
ADTRG0	ANI2	->	ADCR2
ADTRG0	ANI3	->	ADCR3
(A/D trigger mode)	ANI4	->	ADCR4
(A/D trigger mode)	ANI5	->	ADCR5
(A/D trigger mode)	ANI6	->	ADCR6
(A/D trigger mode)	ANI7	->	ADCR7

Fig. 8-32. Example 5 of A/D Conversion in the External Trigger Mode (Scan Mode, One-Trigger Mode, ANI0 to ANI7)

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - When an ADTRG0 signal is input during A/D conversion of the analog inputs in the higher four channels (ANI4 to ANI7), the conversion is stopped and the ANI0 channel and subsequent channels are scanned again. The results of the stopped A/D conversions are undefined.

(ii) Four-trigger mode

When four trigger signals (ADTRG0 to ADTRG3) are input, four A/D conversions are performed for the low-order analog inputs (ANI0 to ANI3), then the A/D converter enters the A/D trigger mode to continue A/D conversion.

Phase-out/Discontinued

The analog inputs correspond to the A/D conversion result registers on a one-to-one basis.

Upon completion of all the specified A/D conversions, an INTAD interrupt occurs and A/D conversion is terminated (CS = 0).

When an external trigger signal is input after all the specified A/D conversions are performed, A/D conversion is restarted.

External trigger signals may be generated in any order. Because external trigger signals correspond to analog inputs on a one-to-one basis, however, the order in which the external trigger signals are input determines the order in which the analog inputs are scanned.

Trigger signal	Analog input		A/D conversion result register
ADTRG0	ANI0	->	ADCR0
ADTRG1	ANI1	->	ADCR1
ADTRG2	ANI2	->	ADCR2
ADTRG3	ANI3	->	ADCR3
(A/D trigger mode)	ANI4	->	ADCR4
(A/D trigger mode)	ANI5	->	ADCR5
(A/D trigger mode)	ANI6	->	ADCR6
(A/D trigger mode)	ANI7	->	ADCR7

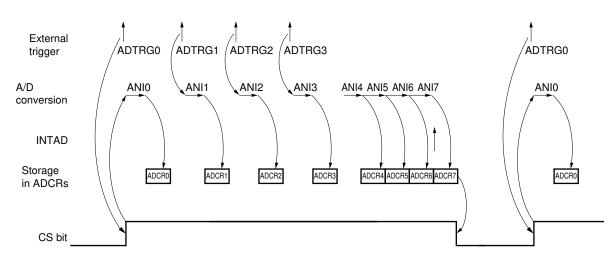


Fig. 8-33. Example 6 of A/D Conversion in the External Trigger Mode (Scan Mode, Four-Trigger Mode, ANI0 to ANI7)

- Cautions 1. When the next trigger signal is input during A/D conversion, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined.
 - 2. When several triggers are input simultaneously, the analog input of the analog input pin (ANIn) with the smallest number is converted. The other input triggers are ignored and the number of triggers is not counted. Therefore, the INTAD interrupt is not generated and A/D conversion results will be undefined.
 - 3. When the ADTRG0 to ADTRG3 signals are input during A/D conversion of analog inputs in the higher four channels (ANI4 to ANI7), the conversion is stopped and the ANI0 channel and subsequent channels are scanned again. The results of the stopped A/D conversions are undefined.

8.6 Glossary for A/D Converter Characteristics Graphs

This glossary contains definition of terms used in explaining A/D converter characteristics graphs.

(1) Resolution

A ratio of an acceptable minimum analog input voltage, that is, an analog input to a 1-bit digital output is called 1 LSB (least significant bit). The ratio of one LSB to the full scale is represented in %FSR (full-scale range).

For 10 bits,

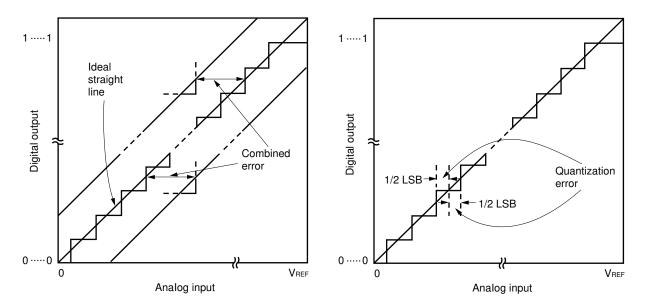
1LSB = 1/2¹⁰ = 1/1024 = 0.0098 %FSR

Accuracy is not related to resolution, but depends on a combined error.

(2) Combined error

The combined error represents the maximum difference between an actual value and a theoretical value. The combined error represents the error caused by combining any two of these errors: a zero-scale error, full-scale error, and non-linearity error.

The combined error in the characteristics graph contains no quantization error.


(3) Quantization error

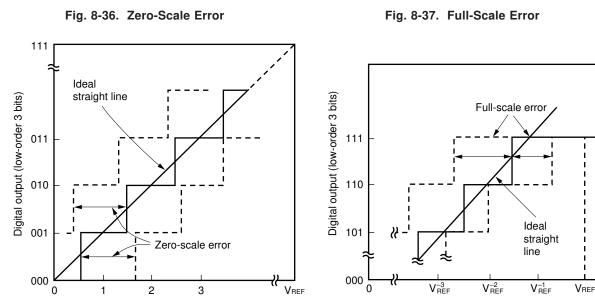
This is an error generated during analog-to-digital conversion. It occurs because an analog-to-digital converter can be no more accurate than $\pm 1/2$ LSB because of its resolution.

The combined error, zero-scale error, full-scale error, and non-linearity error in the characteristics graphs contain no quantization error.

Fig. 8-34. Combined Error

Fig. 8-35. Quantization Error

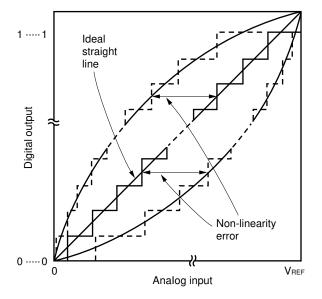
(4) Zero-scale error


The zero-scale error represents the difference between the actual analog input voltage and theoretical analog input voltage (1/2 LSB) when the digital output varies from 0......000 to 0......001. When the actual value is greater than the theoretical value, the zero-scale error represents the difference between the actual analog input voltage and theoretical analog input voltage (3/2 LSB) when the digital output varies from 0......001 to 0.......001.

(5) Full-scale error

The full-scale error represents the difference between the actual analog input voltage and theoretical analog input voltage (full-scale minus 3/2 LSB) when the digital output varies from 1......110 to 1......111.

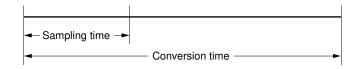
(6) Non-linearity error


The non-linearity error indicates that the conversion characteristics does not form an ideal straight line. The non-linearity error represents the maximum difference between the actual and ideal values when the zero-scale and full-scale errors are 0.

Analog input (LSB)

Fig. 8-38. Non-linearity Error

Analog input (LSB)



(7) Conversion time

Represents the time required until digital output is obtained after analog input voltage is applied. The conversion time in the characteristics tables includes sampling time.

(8) Sampling time

Time required for the sample-and-hold circuit to accept the analog voltage while an analog switch is on.

CHAPTER 9 D/A CONVERTERS

Phase-out/Discontinued

The μ PD78356 contains two 8-bit voltage output digital/analog (D/A) converters. The converters convert digital inputs using a resistor string system.

9.1 Configuration

Fig. 9-1 shows the configuration of a D/A converter.

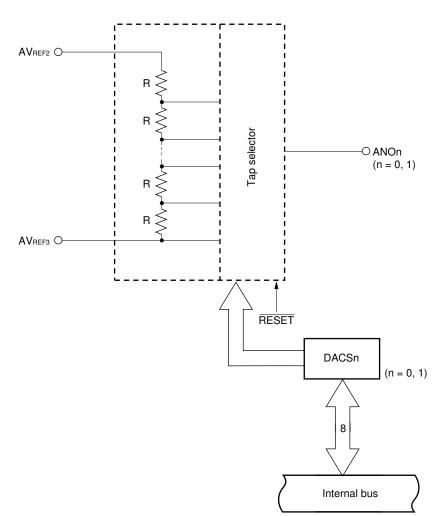


Fig. 9-1. Block Diagram of a D/A Converter (n = 0, 1)

(1) D/A converted data coefficient register (DACSn: n = 0 or 1)

DACSn sets the voltage output to the ANOn pin (n = 0 or 1). Byte access or word access to the register is possible. The voltage output to the ANOn pin is calculated by the following formula:

 $ANOn = \frac{AV_{REF2} - AV_{REF3}}{256} \times DACSn + AV_{REF3} [V]$

When a RESET signal is input, DACSn is set to 00H.

(2) Resistor string

In the D/A converter, 256 resistors with the same resistance are serially connected. The resistors at the ends of the resistor string are connected to the AV_{REF2} and AV_{REF3} pins, respectively. The μ PD78356 contains two resistor strings one for the ANO0 pin, and one for the ANO1 pin.

(3) Tap selector

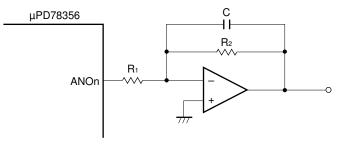
The tap selector selects one of 256 taps of the resistor string according to the value of DACSn and connects the selected tap with the ANOn pin.

When the RESET signal input is low (0), no tap is connected to the ANOn pin, namely the output is set to high-impedance state.

9.2 Operation of the D/A Converters

As soon as a value is written in the D/A converted data coefficient register (DACSn: n = 0 or 1), an analog voltage corresponding to the written value is output to the ANOn pin (n = 0 or 1). The output voltage is held until a new value is written in DACSn (n = 0 or 1).

The voltage output to the ANOn pin is calculated by the following formula:


$$ANOn = \frac{AV_{REF2} - AV_{REF3}}{256} \times DACSn + AV_{REF3} [V]$$

While the $\overrightarrow{\text{RESET}}$ signal input is low, the ANOn output is in high-impedance state and the contents of the DACSn is 00H. After the $\overrightarrow{\text{RESET}}$ signal input is released, the ANOn pin outputs the voltage whose level is the same as the AV_{REF3} pin.

9.3 Cautions

- (1) The ANOn pin (n = 0 or 1) cannot source a current due to the high output impedance of the D/A converters. When connecting a load with a low input impedance, insert a buffer amplifier between the load and ANOn pin. Keep the wire to the buffer amplifier or load as short as possible (because the output impedance is high). If this is impossible, surround the wire with the ground pattern.
- (2) The output voltage of each D/A converter changes step by step. In general, use the signal output from a D/A converter after passing it through a low-pass filter.
- (3) The D/A converters contained in the μPD78356 have high-impedance output while the RESET signal input is low. Arrange the load circuit so that it can accept high-impedance input.

Fig. 9-2. Examples of Buffer Amplifier Connection



(a) Inverting amplifier

• The input impedance of the buffer amplifier is equal to R₁ + R₂.

Phase-out/Discontinued

(b) Voltage follower

- The input impedance of the buffer amplifier is equal to R₁.
- Be sure to connect R1. Otherwise, the output becomes undefined while the RESET signal is asserted.
- (4) After a reset is released, the D/A converter outputs the voltage whose level is the same as the AVREF3 pin. Arrange the D/A converter output so that the converter outputs the same voltage as the voltage on the AVREF3 pin.

CHAPTER 10 ASYNCHRONOUS SERIAL INTERFACE

The μ PD78356 contains the universal asynchronous receiver transmitter (UART) that serves as an asynchronous serial interface. The interface transmits and receives 1-byte serial data following a start bit. Full-duplex operation is possible. In addition, the baud rate generator provided in the μ PD78356 allows communication at a wide range of baud rates.

The interface operates independently of clock synchronous serial interfaces with and without the pin switching function.

10.1 Configuration of Asynchronous Serial Interface

The asynchronous serial interface is controlled by the asynchronous serial interface mode register (ASIM) and asynchronous serial interface status register (ASIS). Received data is retained in the receive buffer (RXB), and data to be transmitted is written in the shift register for transmission (TXS).

Fig. 10-1 shows the configuration of the asynchronous serial interface.

(1) Asynchronous serial interface mode register (ASIM)

The ASIM register is an 8-bit register that controls the asynchronous serial interface operation. Both data reading and writing are possible with 8-bit and single-bit manipulation instructions. When the $\overrightarrow{\text{RESET}}$ signal is input, the ASIM register is set to 80H.

(2) Asynchronous Serial Interface Status Register (ASIS)

The ASIS register is an aggregate of flags that indicate the presence of an error in received data. If an error is detected in one portion of the received data, the flag associated with that portion is set to 1. The flag is reset to 0 when data is read from the receive buffer (RXB) or the next data portion is received. (If the newly received data has an error, then the flag associated with that portion is set to 1.) Only data writing is possible with 8-bit and single-bit manipulation instructions. When the RESET signal is input, the ASIS register is set to 00H.

(3) Parity check for reception control

Reception control is executed according to the contents of the ASIM register. Received data is checked for parity errors. If an error is detected, the value corresponding to the error is set in the ASIS register.

(4) Shift register for reception

The shift register for reception converts the serial data received at the RxD pin to parallel data. Data is transferred to the receive buffer each time one byte of data has been received by the register. Note that the shift register for reception is not subject to direct control by the CPU.

(5) Receive buffer (RXB)

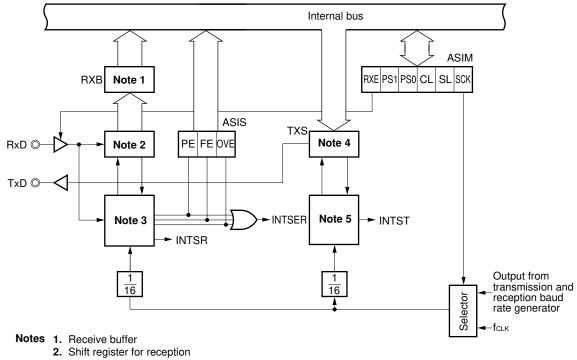
The receive buffer (RXB) retains data received from the shift register in 1-byte blocks. When the data length is seven bits, received data is transferred to bits 0 to 6 of the RXB and 0 is always set in the MSB section.

Only data writing is possible with 8-bit manipulation instructions. When the RESET signal is input, the contents of the buffer become undefined.

(6) Shift register for transmission (TXS)

The shift register for transmission (TXS) sets the data to be transmitted. The data written in this register is transmitted as serial data.

When the data length is seven bits, bits 0 to 6 of the TXS are to be transmitted. When data is written in the TXS, transmission begins. Data must not be written in the TXS during transmission.


Only data writing is possible with 8-bit manipulation instructions. When the RESET signal is input, the contents of the TXS become undefined.

(7) Parity bit addition for transmission control

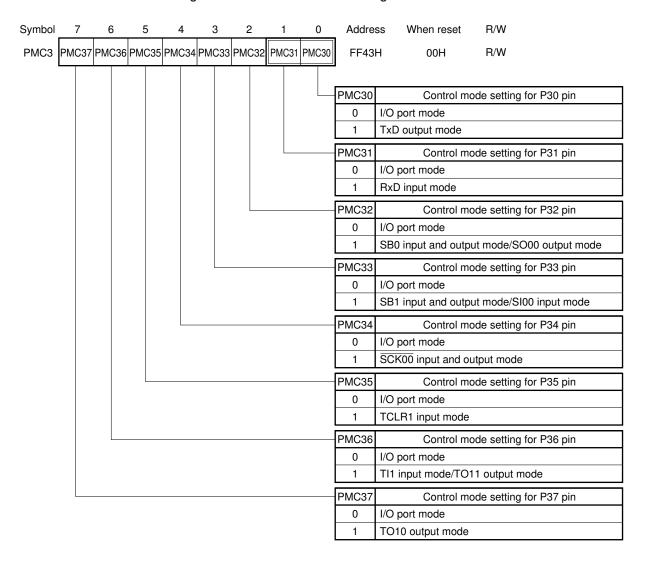
Transmission control is executed by automatically adding a start, parity or stop bit to the data written in the TXS register. Which bit is added depends on the contents of the ASIM register.

(8) Selector

The selector selects the clock source for baud rate generation.

Fig. 10-1. Block Diagram of the Asynchronous Serial Interface

- 3. Parity check for reception control
- 4. Shift register for transmission
- 5. Parity bit addition for transmission control



10.2 Setting Pins for Serial Transmission

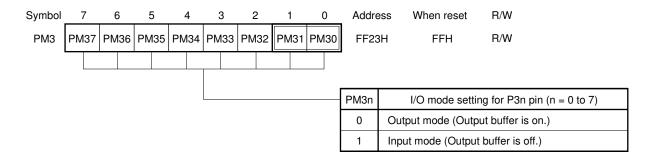
The RxD and TxD pins, which are also used as general purpose ports, must be set to the control mode before beginning serial transmission.

(1) Setting pins for serial transmission

In the asynchronous serial interface, the TxD pin is used for data transmission and the RxD pin for data reception. These pins also serve as general purpose ports P30 and P31, respectively. Therefore, before beginning serial transmission, these pins must be set to the control mode in the port 3 mode control register (PMC3).

(2) Reading pin levels

When port 3 (P3) has been set to the control mode using the port 3 mode control register (PMC3), the read instructions of P3 can read the following information:


(a) TxD/P30 pin

- When bit 0 of the port 3 mode register (PM3) is set to 1, the TxD pin level can be read.
- When bit 0 of the port 3 mode register (PM3) is set to 0 (reset), the level of the internal transmitted data can be read.

(b) RxD/P31 pin

• The RxD pin level can be read only when bit 1 of the PM3 is set to 1.

Reading pin levels allows pins checks, including the TxD pin check for collision. Writing data in P3 does not change the TxD or RxD pin level. (Data is written in the P3 output buffer.)

Fig. 10-3. Port 3 Mode Register Format

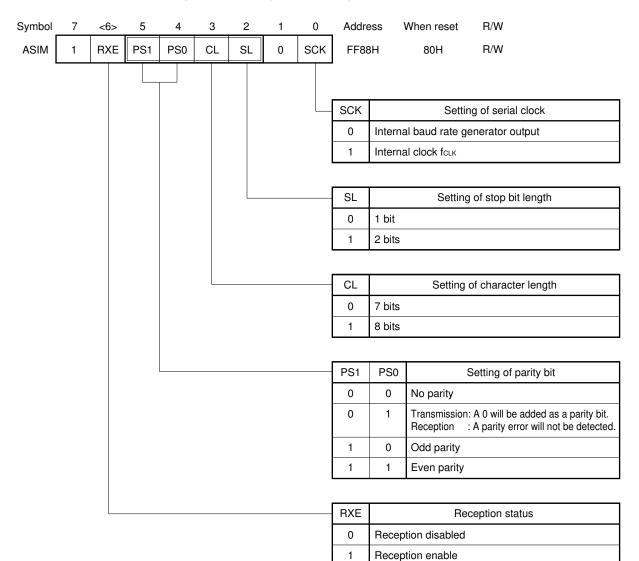
10.3 Setting Data Format

The character bit length, parity bit selection, and stop bit length can be set using the asynchronous serial interface mode register (ASIM).

(1) Setting data format

The transmit and receive data consists of a start bit, character bits, a parity bit, and a stop bit or bits per data frame, as shown in Fig. 10-4.

The character bit length, parity bit selection, and stop bit length can be set using the ASIM register (see **Fig. 10-5**).



- Start bit ... 1 bit
- · Characters bits ... 7 or 8 bits
- Parity bit ... Even parity/odd parity/zero parity/no parity
- Stop bits ... 1 or 2 bits

(2) Zero parity - useful option for starting up the system

The μ PD78356 includes zero parity in the parity options it offers for the asynchronous serial interface. When zero parity is selected, a 0 is added to the serial data to be transmitted. When receiving, data is accepted regardless of the status of the parity bit, and parity errors never occur.

Zero parity is useful in performing serial transmission in a situation, like system start-up, where a specific data format is yet to be defined.

Fig. 10-5. Setting of ASIM Register (Data Format)

Remark fclk: Internal system clock

10.4 Setting Baud Rate

Either the baud rate generator output or the internal clock fclk can be selected as the serial clock. The baud rate generator output can be set at any desired baud rate, independently of the operation clock frequency.

(1) Baud rate equal to serial clock/16

In the asynchronous serial interface, the signals on the RxD pin are sampled by the clock whose frequency is 1/16 of the serial clock specified in the asynchronous serial interface mode register (ASIM).

(2) Selecting serial clock

The SCK bit of the ASIM register is used for serial clock selection. (See **Fig. 10-6**.) Selecting the internal system clock f_{CLK} sets the baud rate at $f_{CLK}/16$. Therefore, when the internal system clock is 16 MHz, the baud rate is 1 Mbps.

Remark The baud rate generator is also used for clock synchronous serial interfaces with and without the pin switching function. (See **11.3** and **12.4**.)

Symbol	7	<6>	5	4	3	2	1	0	Addre	ess	When reset	R/W
ASIM	1	RXE	PS1	PS0	CL	SL	0	SCK	FF88	ЗH	80H	R/W
L									I			
									SCK		Setting	g of serial clock
									0	Interna	al baud rate ge	enerator output
									1	Interna	al clock folk	
									SL		Setting	of stop bit length
									0	1 bit		
									1	2 bits		
									CL		Setting c	of character length
									0	7 bits		
									1	8 bits		
									PS1	PS0	5	Setting of parity bit
									0	0	No parity	
									0	1	Transmission: Reception :	A 0 will be added as a parity bit. A parity error will not be detected.
									1	0	Odd parity	
									1	1	Even parity	
									RXE		Rec	eption status
									0	Recep	tion disabled	

1

Reception enabled

Fig. 10-6. Setting of ASIM Register (Serial Clock)

Remark fclk: Internal system clock

10.4.1 Configuration of baud rate generator

The baud rate generator uses timer 4 (TM4) in the real-time pulse unit (RPU). The TMC2 register and the 10-bit compare register (CM40) control this generator.

Fig. 10-7 shows the configuration of the baud rate generator.

(1) Timer control register 2 (TMC2)

TMC2 is an 8-bit register used for TM4 count clock selection and baud rate generator operation control. Both data reading and writing are possible with 8-bit and single-bit manipulation instructions. When the RESET signal is input, TMC2 is set to 00H. Fig. 10-8 shows the TMC2 register format.

(2) Selector

The selector selects the count clock of the 10-bit timer (TM4) according to the contents of the TMC2 register.

(3) 10-bit timer (TM4)

TM4 is a 10-bit timer that counts the count clocks selected by the selector. When a matching signal is issued by the CM40 register, this timer is cleared to zero at the next count clock. The TMC2 register controls the start and end of counting.

Only data reading is possible with 16-bit manipulation instructions.

(4) 10-bit compare register (CM40)

CM40 compares its data against the contents of TM4 and, when they match, issues a matching signal. TM4 is cleared to zero in response to the matching signal.

The signal output by the baud rate generator has a frequency 1/2 of the matching signal frequency. Both data reading and writing are possible with 16-bit manipulation instructions.

When the RESET signal is input, the contents of CM40 become undefined.

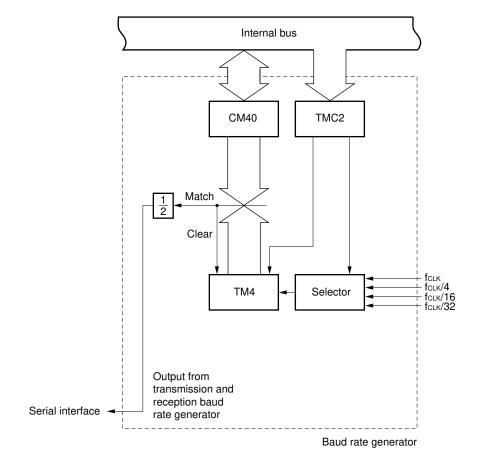


Fig. 10-7. Block Diagram of Baud Rate Generator

10.4.2 Setting a desired baud rate

Any desired baud rate can be selected for the serial clock by setting the timer control register 2 (TMC2) and 10-bit compare register (CM40).

(1) Baud rate equal to serial clock/16

In the asynchronous serial interface, the signals on the RxD pin are sampled by the clock whose frequency is 1/16 of the serial clock specified in the asynchronous serial interface mode register (ASIM).

(2) Setting a desired baud rate

The baud rate to be set can be obtained by the equation below. Set the CM40 register and TM4 counter values for the desired baud rate, then start the operation of the baud rate generator.

Equation to obtain baud rate

Baud rate (bps) = $\frac{f_{CLK}}{2^n} \times \frac{1}{(m+1)} \times \frac{1}{2} \times \frac{1}{16}$

fclk : Internal system clock (external oscillator frequency fosc/2)

m: Value set in CM40 (0 to 1023)

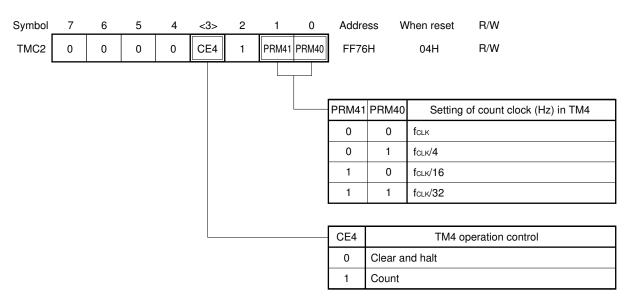

n: Value corresponding to TMC2 value (0, 2, 4, 5)

Table 10-1 shows baud rate setting examples.

(3) Baud rate difference

In the asynchronous serial interface, the RxD pin signals are sampled in synchronization with the start bit. If the difference between the receiving and transmission baud rates becomes greater than the value shown below, the start and stop bits are forced out of synchronization by more than 0.5 bits, degrading transmission quality.

Maximum tolerance = $\frac{0.5 \text{ bits}}{\text{Length of 1 data frame}} = \frac{0.5 \text{ bits}}{12 \text{ bits maximum}} = 4.1\%$

Fig. 10-8. Timer Control Register 2 Format

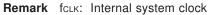


Table 10-1. Baud Rate Setting Examples (Asynchronous Serial Interface)

10	Baud rate difference (%)	0.03	0.16	0.03	0.16	0.16	1.37	1.36	1.73	1.73	1.73	1.73
	Count clock	fcLK/4	fcLK/4	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK
	E	520	259	520	259	129	64	32	15	7	С	-
12.5	Baud rate difference (%)	0.01	0.15	0.01	0.15	0.15	0.47	0.76	1.7	1.7	1.7	15.2 ^{Note}
	Count clock	fcLK/4	fcLk/4	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK
	E	650	325	650	325	162	80	40	19	9	4	N
14	Baud rate difference (%)	0.02	0.11	0.02	0.11	0.16	0.16	0.93	0.93	3.6	5.1 Note	I
	Count clock	fcLK/4	fcLk/4	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	I
	E	728	364	728	364	181	90	45	22	10	S	I
16	Baud rate difference (%)	0.04	0.08	0.04	0.08	0.16	0.16	0.16	0.16	0.16	7.0 ^{Note}	I
	Count clock	fcLK/4	fcLK/4	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	fcLK	I
	E	832	416	832	416	207	103	51	25	12	9	I
Internal system clock fcLk (MHz)	Baud rate (bps)	150	300	600	1200	2400	4800	9600	19200	38400	76800	153600
	16 14 12.5	16 14 12.5 m Count Baud rate difference m Count Baud rate difference m Count m clock (%) m clock (%) m clock m clock	If m161412.5mCountBaud rate differencemCountBaud rate differencemmclock(%)mCountBaud rate differencemCount832fcuk/40.04728fcuk/40.02650fcuk/40.01520fcuk/4	$m_{\rm m}$ 161412.5 $m_{\rm m}$ CountBaud rate difference $m_{\rm m}$ CountBaud rate difference $m_{\rm m}$ $m_{\rm clock}$ (%)mCountBaud rate difference $m_{\rm m}$ Count832fcLK/40.04728fcLK/40.02650fcLK/40.01520416fcLK/40.08364fcLK/40.11325fcLK/40.15259fcLK/4	m161412.5 m	M M	M M	Image: Market and the fight form of the fight for	1611.511.5mCountBaud rate differencemCountBaud rate differencemCountmCountBaud rate differencemCountBaud rate differencemCount832fcuk/dm004728fcuk/dm002650fcuk/dm001520fcuk/d816fcuk/dm008364fcuk/dm011325fcuk/dm011520fcuk/d816fcuk/dm008364fcuk/dm011325fcuk/dm011520fcuk/d817fcuk/dm008364fcuk/dm011325fcuk/dm0115520fcuk/d818fcuk/dm016361fcukm012325fcuk/dm0115520fcuk/d810fcukm016361fcukm016365fcuk/dm016520fcuk/d811fcukm016361fcukm016365fcuk/dm0175529fcuk/d812fcukm016361fcukm016365fcuk/dm016365fcuk/dm016365fcuk/d813fcukm016361fcukm016365fcukm016365fcuk/dm016365fcuk/d814fcukm016361fcukm016365fcukm016365fcukfcukfcuk815fcukm01	161412.5mCountBaud rate differencemCountBaud rate differencemCountbCountBaud rate differencemCountBaud rate differencemCount832fcu/d0.04728fcu/d0.02650fcu/d%%m816fcu/d0.04728fcu/d0.02650fcu/d%%m812fcu/d0.04728fcu/d0.01520fcu/d813fcu/d0.08364fcu/d0.01325fcu/d0.01520813fcu/d0.08364fcu/d0.01325fcu/d0.01520fcu/d814fcu/d0.01728fcu/d0.01325fcu/d0.01520fcu/d812fcu/d0.01131fcu/d0.01325fcu/d0.01520fcu/d813fcu/d0.016181fcu/d0.016162259fcu/d814fcu/d0.016181fcu/d0.016129fcu/d129fcu/d815fcu/d0.016181fcu/d0.016162fcu/d129fcu/d816fcu/d0.016181fcu/d0.016162fcu/d129fcu/d817fcu/d0.016181fcu/d0.016181fcu/d129fcu/d828 </td <td>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td></td>	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Note The difference is too great for proper operation.

Remark m: Value set in compare register (CM40)

10.5 Transmitting Data

Writing data to the shift register for transmission (TXS) activates transmission. The next block of data is written to the register in response to the transmission completion interrupt (INTST).

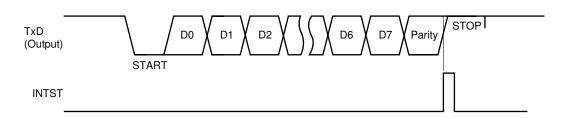
(1) Transmitting data

The asynchronous serial interface of the μ PD78356 always permits data transmission. Transmission is activated by writing data to the shift register for transmission (TXS). The start, parity and stop bits are automatically added.

As transmission proceeds, data is shifted in the TXS register. When the register becomes empty, the transmission completion interrupt (INTST) occurs.

Transmission is halted unless the next block of data is written to the register.

(2) Writing data to the TXS register


The transmission rate can be affected if the next block of data is not written to the TXS register immediately after transmitting the current register data.

The use of the block transfer (BLKTRS) mode of the macro service is recommended in writing transmission data to the TXS register. The macro service is immediately activated whenever INTST occurs, regardless of the priority. This ensures a higher transmission rate.

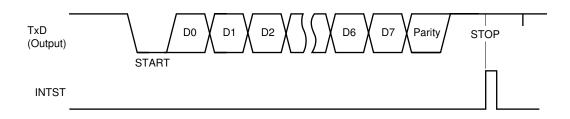

- Cautions 1. Usually, the transmission completion interrupt (INTST) occurs whenever the TXS register becomes empty. However, even when the RESET signal is input and the TXS becomes empty, INTST does not occur.
 - 2. Data written to the TXS register during transmission (before INTST occurs) is regarded as invalid.

Fig. 10-9. Transmission Completion Interrupt Timing for Asynchronous Serial Interface

(a) Stop bit length: 1

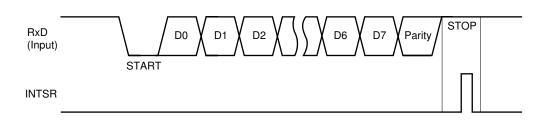
(b) Stop bit length: 2

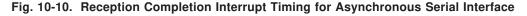
- **Remark** INTST... Vector table address: 002EH (TPF = 0), 802EH (TPF = 1) Macro service control word address: FE2EH
- Caution Usually, the transmission completion interrupt (INTST) occurs whenever the TXS register becomes empty. However, even when the **RESET** signal is input and the TXS becomes empty, INTST does not occur.

10.6 Receiving Data

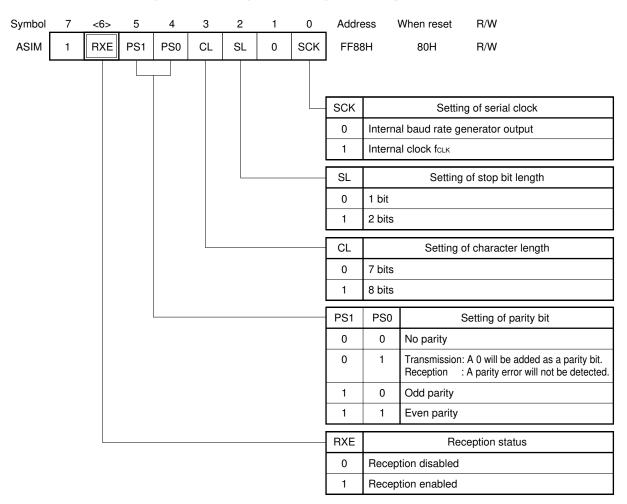
When reception is enabled, sampling starts on the RxD pin. Upon detection of a start bit, data reception begins. The reception completion interrupt (INTSR) occurs each time one frame of data has been received. Usually, the receive buffer (RXB) transfers the received data to the memory in response to this interrupt.

(1) Receiving data


Reception is enabled by setting the RXE bit of the asynchronous serial interface mode register (ASIM) to 1. Once reception is enabled, signal sampling starts on the RxD pin using the serial clock specified in the ASIM register.


When the input to the RxD pin becomes low, the divide-by-16 counter starts counting. When the counter has counted to eight, the start timing signal for data sampling is issued. The start timing signal is sampled at the RxD pin. When the start timing signal is low, it is recognized as the start bit and the counter is initialized and resumes counting for data sampling. When character data and parity and stop bits are detected following the start bit, the process of receiving one frame of data is completed.

Upon completion of the process of receiving one frame of data, the shift register for reception transfers the received data to the receive buffer (RXB). As a result, a reception completion interrupt (INTSR) occurs.


If an error occurs during data reception, the data associated with that error is transferred to the RXB. Then, INTSR and a reception error interrupt (INTSER) are issued at the same time.

Resetting the RXE bit to 0 during data reception immediately halts the reception process. However, the contents of the RXB and the asynchronous serial interface status register (ASIS) remain unchanged, and INTSR and INTSER do not occur.

Remark INTSR ... Vector table address: 002CH (TPF = 0), 802CH (TPF = 1) Macro service control word address: FE2CH

Fig. 10-11. Setting of ASIM Register (Reception Enabled)

Remark fclk: Internal system clock

(2) Transferring receive buffer (RXB) data to memory

If the data stored in the receive buffer (RXB) is not transferred to memory before the reception of the next data block is completed, an overrun error occurs.

The use of the block transfer mode (BLKTRS) of the macro service is recommended in transferring received data to memory. The macro service is immediately activated whenever INTSR occurs, regardless of the priority. This ensures that the RXB data is transferred to memory before the reception of the next data block is completed.

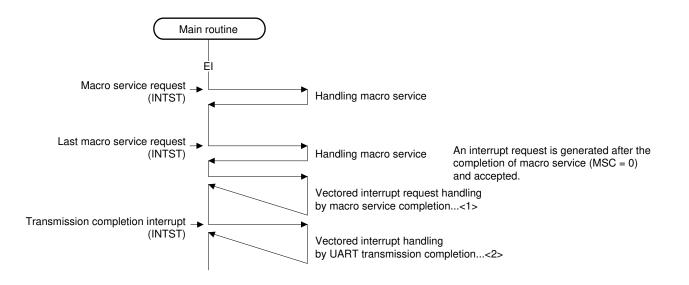
Caution In the event of a reception error, be sure to read the RXB data. Otherwise, an overrun error occurs when the next data block is received, leading to an endless error condition.

10.7 Transmitting/Receiving Data Using the Macro Service

When transmitting data using the macro service, two vectored interrupt requests occur while only one vectored interrupt request occurs during reception.

• Transmitting/receiving using the macro service

Transmission is started by writing data to the shift register for transmission (TXS). If transmission is executed using the macro service, data is written to TXS for the set number of times and then transmitted. The macro service processing to write the following data is executed by the transmission completion interrupt (INTST) occurring after the completion of the transmission. When the last data is written to TXS, the macro service is completed (MSC = 0), and a vectored interrupt request occurs (**Fig. 10-12** <1>).


Upon the completion of the process of transferring one frame of data, INTST occurs and a vectored interrupt request occurs again (**Fig. 10-12** <2>).

Therefore, if the macro service is started by the INTST, two vectored interrupts may occur by the single interrupt request (INTST in this case).

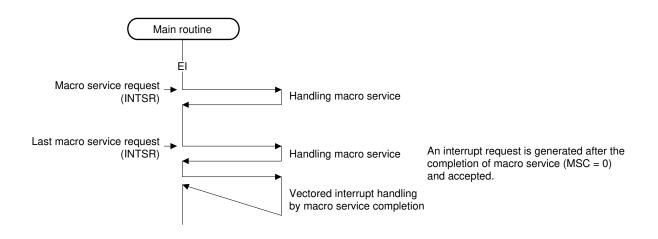

On the other hand, during reception no more than one vectored interrupt requests occurs. In case of reception, only one vectored interrupt request occurs upon the completion of the macro service because the macro service processing is excuted to transfer the received data to memory by reception completion interrupt (INTSR) occurring after the completion of reception.

Fig. 10-12. Transmitting/Receiving Data Using the Macro Service

(a) Transmission operation

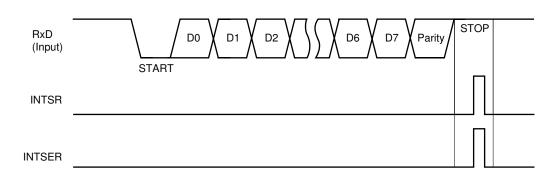
(b) Reception operation

10.8 Handling Reception Error

When a reception error has occurred, the user can find out what type of error it was by reading the data stored in the asynchronous serial interface status register (ASIS).

• Three types of reception errors

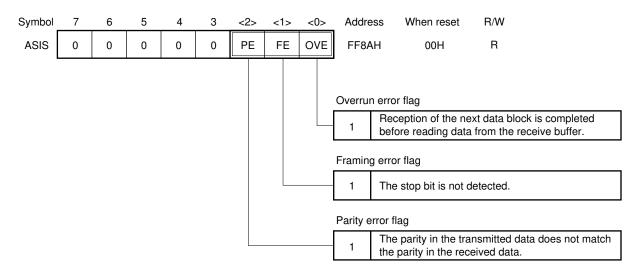
Three types of reception errors can occur during data reception: a parity error, framing error, and overrun error. If a reception error occurs, an error flag is set in the ASIS register and, at the same time, a reception error interrupt (INTSER) occurs. Table 10-2 lists the cause of each reception error.


By reading the ASIS register data during the INTSER process, the user can find out what type of reception error occurred. (See **Fig. 10-14**.)

The ASIS register is reset to 0 either by reading the RXB data or by transmitting the next data block. (If the next data block is erroneous, the error flag corresponding to that data block is set.)

Reception error	Cause
Parity error	The parity bit specified before transmission does not match the parity bit detected in received data.
Framing error	The stop bit is not detected.
Overrun error	The reception of the next data block is completed before reading the RXB data.

Table 10-2. Causes of Reception Errors


Fig. 10-13. Reception Error Timing

Remarks 1. INTSR ... Vector table address: 002CH (TPF = 0), 802CH (TPF = 1) Macro service control word address: FE2CH

> 2. INTSER .. Vector table address: 002AH (TPF = 0), 802AH (TPF = 1) Macro service control word address: FE2AH

Fig. 10-14. ASIS Register Format

Cautions 1. The ASIS register is reset to 0 when the RXB buffer is read or the next data block is received. To find out about the error, be sure to read the ASIS register before reading the RXB buffer.

In the case that the received data is transmitted to the memory by macro service, the reception buffer (RxB) is incidentally read out when receiving the serial data, and the ASIS register is reset to 0. Therefore, before using macro service, make sure this will not affect performance.

The error occurrence can be known when the reception error interrupt request flag (SERIF) is set to 1, or when the reception error interrupt (INTSER) is acknowledged.

2. In the event of a reception error, be sure to read the RXB data. Otherwise, an overrun error occurs when the next data block is received, leading to an endless error condition.

CHAPTER 11 CLOCK SYNCHRONOUS SERIAL INTERFACE

The μ PD78356 provides a clock synchronous serial interface. This interface operates in two modes: 3-wire serial I/O mode and serial bus interface (SBI) mode. This makes the interface capable of responding to a wide range of applications.

This interface operates independently of the asynchronous serial interface and the clock synchronous serial interface with the pin switching function.

11.1 Configuration of Clock Synchronous Serial Interface

The clock synchronous serial interface is controlled by the clock synchronous serial interface mode register 0 (CSIM0) and serial bus interface control register (SBIC). Data transmitted and received can be written to and read from the shift register (SIO0) register.

(1) Clock synchronous serial interface mode register 0 (CSIM0)

The CSIM0 register is an 8-bit register that controls the operation of the clock synchronous serial interface. Both data reading and writing are possible with 8-bit and single-bit manipulation instructions. When the $\overrightarrow{\text{RESET}}$ signal is input, CSIM0 is set to 00H.

(2) Serial bus interface control register (SBIC)

The SBIC register contains eight bits that control the serial bus status and indicate the status of data input from the serial bus. This register can be used in the SBI mode only (it cannot be used in the 3-wire serial I/O mode).

Both 8-bit and single-bit manipulation instructions are used to operate the register. Data reading and writing may or may not be possible, depending on the bit. When a bit for which only data write is allowed is read, 0 is returned.

When the $\overrightarrow{\text{RESET}}$ signal is input, the SBIC register is set to 00H.

The ACKD, CMDD and RELD flags are cleared to zero when data transmission and reception is prohibited (the CTXE0 and CRXE0 bits are both set to 0).

(3) Shift register (SIO0)

The SIO0 register is an 8-bit register that converts serial data to parallel data and vice versa. The register is used for both transmitting and receiving data.

Data is shifted in (received) or shifted out (transmitted) from the MSB or LSB side.

The transmitting and receiving of data is actually performed by writing data to and reading data from the SIO0 register.

For data writing and reading, 8-bit manipulation instructions are used.

When the RESET signal is input, the contents of SIO0 become undefined.

(4) SO latch

The SO latch maintains the level of the signal output on the SO00/SB0 pin. In the SBI mode, this can be directly controlled using software.

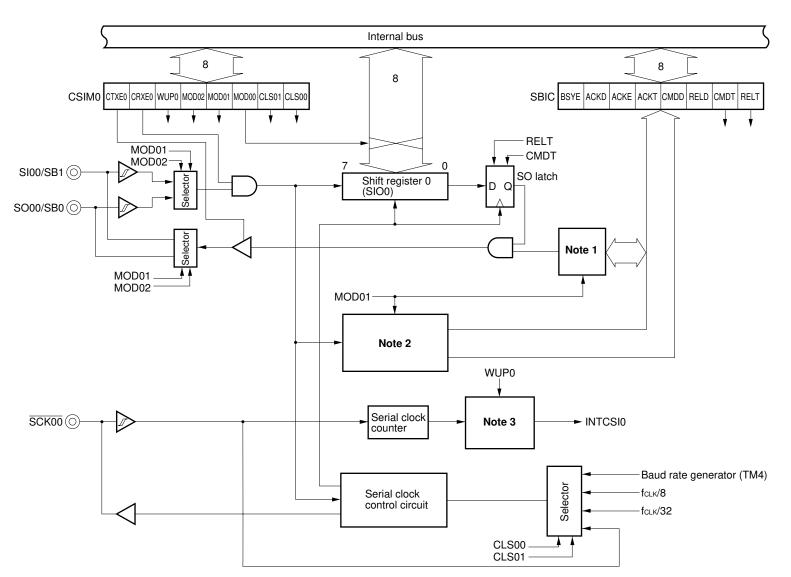
(5) Serial clock selector

This selector selects the serial clock to be used.

(6) Serial clock control circuit

This control circuit controls the supply of the serial clock to the shift register. When an internal clock is being used, it also controls the clock output to the $\overline{SCK00}$ pin.

(7) Serial clock counter


This counter counts serial clocks being output and input during data transmission and reception to check whether 8-bit data has been transmitted and received.

(8) Interrupt signal generation control circuit

This control circuit controls whether to make an interrupt request when the serial clock counter has counted eight serial clocks. In the 3-wire serial I/O mode, an interrupt request is made each time eight serial clocks have been counted. In the SBI mode, the request is made if the preset conditions are met.

(9) Busy/acknowledge signal detection circuit and bus release/command/acknowledge signal detection circuit

These circuits output and detect signals in the SBI mode. In the 3-wire serial I/O mode, these circuits are not used.

Notes 1. Busy/acknowledge signal detection circuit

- 2. Bus release/command/acknowledge signal detection circuit
- 3. Interrupt signal generation control circuit

Phase-out/Discontinued

11.2 Setting Pins for Serial Transmission

The SO00/SB0, SI00/SB1, and SCK00 pins, which are also used as general purpose ports, must be set to the control mode before beginning serial transmission.

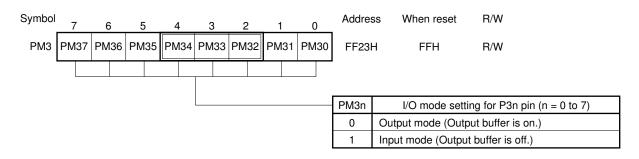
(1) Setting pins for serial transmission

The clock synchronous serial interface uses the SO00/SB0, SI00/SB1, and SCK00 pins. These pins also serve as general purpose ports P32, P33 and P34, respectively. Therefore, before beginning serial transmission, these pins must be set to the control mode in the port 3 mode control register (PMC3).

Symbol	7	6	5	4	3	2	1	0	Addre	ss When reset R/W	
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33		PMC31	PMC3	FF43	H 00H R/W	
									_		
									PMC30	Control mode setting for P30 pin	٦
									0	I/O port mode	
									1	TxD output mode	
									PMC31	Control mode setting for P31 pin	٦
									0	I/O port mode	
									1	RxD input mode	
									PMC32	Control mode setting for P32 pin	
									0	I/O port mode	
									1	SB0 input and output mode/SO00 output mode	
									PMC33	Control mode setting for P33 pin	
									0	I/O port mode	
									1	SB1 input and output mode/SI00 input mode	
									PMC34	Control mode setting for P34 pin	
									0	I/O port mode	
									1	SCK00 I/O mode	
									PMC35	Control mode setting for P35 pin	
									0	I/O port mode	
									1	TCLR1 input mode	
									PMC36	Control mode setting for P36 pin	
									0	I/O port mode	
									1	TI1 input mode/TO11 output mode	
									PMC37	5	
									0	I/O port mode	
									1	TO10 output mode	

Fig. 11-2. Port 3 Mode Control Register Format

(2) Reading pin levels


When port 3 (P3) has been set to the control mode in the port 3 mode control register (PMC3), the read instructions of P3 can read the following information:

Phase-out/Discontinued

- (a) When a bit of the port 3 mode register (PM3) is set to 1
 - The corresponding pin level can be read.
- (b) When a bit of the PM3 is set to 0 (reset)
 - The level of the internal signal can be read.

Reading pin levels allows pins checks, including the check for serial bus contention. Writing data in P3 does not change any pin level. (Data is written in the P3 output buffer.)

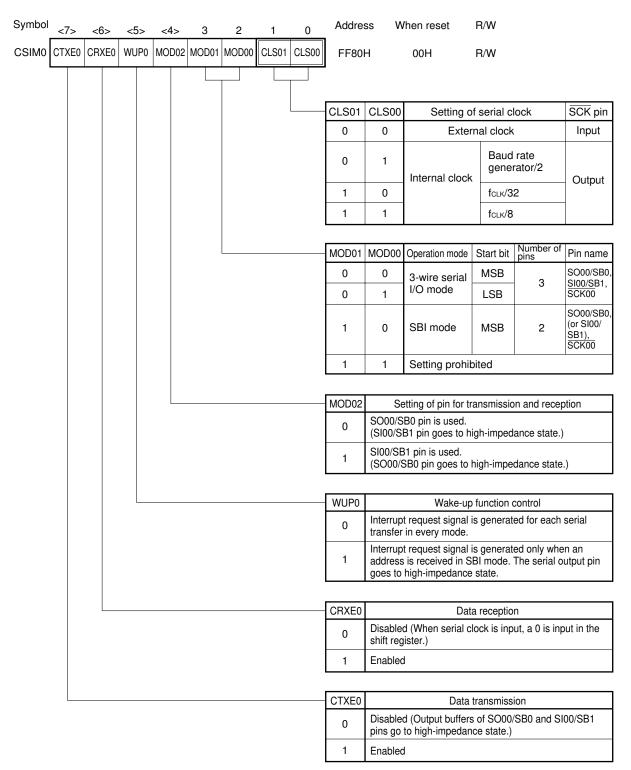
Fig. 11-3. Port 3 Mode Register Format

11.3 Setting Baud Rate

The baud rate generator output, internal clock fcLk/8 or fcLk/32, or the external clock can be selected as the serial clock. The baud rate generator output can be set at any desired baud rate, independently of the operation clock frequency.

(1) Baud rate equal to serial clock

In the clock synchronous serial interface, received data is sampled at the rising edge of the serial clock, which means the frequency of the serial clock is equal to the baud rate.


(2) Selecting serial clock

The serial clock can be selected using the CLS01 and CLS00 bits of the clock synchronous serial interface mode register 0 (CSIM0).

When an external clock is selected, the SCK00 pin is used for the input of the serial clock from the device with which communication is being performed.

With the 16-MHz internal system clock, fcLk/8 provides a baud rate of 2 Mbps and fcLk/32 provides a baud rate of 500 Kbps.

Remark The baud rate generator is also used for the asynchronous serial interface and the clock synchronous serial interface with the pin switching function. (See **10.4** and **12.4**.)

Fig. 11-4. Setting of CSIM0 Register (Serial Clock)

Remark fclk: Internal system clock

Caution Do not switch serial clocks during data transmission. Since the switching is performed asynchronously with the serial clock being supplied, doing this during data transmission can produces a serial clock of undefined frequency.

11.3.1 Configuration of baud rate generator

The baud rate generator uses timer 4 (TM4) in the real-time pulse unit (RPU), and is controlled by the timer control register 2 (TMC2) and 10-bit compare register (CM40).

Fig. 11-5 shows the configuration of the baud rate generator.

(1) Timer control register 2 (TMC2)

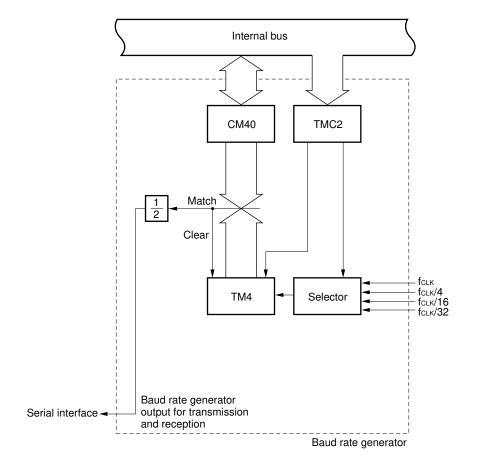
TMC2 is an 8-bit register used for TM4 count clock selection and baud rate generator operation control. Both data reading and writing are possible with 8-bit and single-bit manipulation instructions. When the RESET signal is input, TMC2 is set to 00H. Fig. 11-6 shows the TMC2 register format.

(2) Selector

The selector selects the count clock of the 10-bit timer (TM4) according to the contents of the TMC2 register.

(3) 10-bit timer (TM4)

TM4 is a 10-bit timer that counts the count clocks selected by the selector. When a matching signal is issued by the CM40 register, this timer is cleared to zero at the next count clock. The TMC2 register controls the start and end of counting.


Only data reading is possible with 16-bit manipulation instructions.

(4) 10-bit compare register (CM40)

CM40 compares its data against the contents of TM4 and, when they match, issues a matching signal. TM4 is cleared to zero in response to the matching signal.

The signal output by the baud rate generator, has a frequency 1/2 of the matching signal frequency. Both data reading and writing are possible with 16-bit manipulation instructions.

When the RESET signal is input, the contents of CM40 become undefined.

Fig. 11-5. Block Diagram of Baud Rate Generator

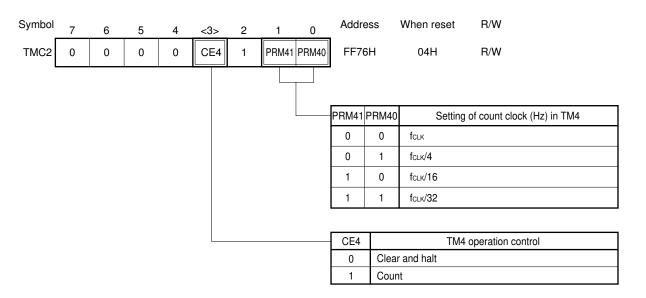
11.3.2 Setting a desired baud rate

Any desired baud rate can be selected for the serial clock by setting the timer control register 2 (TMC2) and 10-bit compare register (CM40).

(1) Baud rate equal to serial clock

In the clock synchronous serial interface, received data is sampled at the rising edge of the serial clock, which means the frequency of the serial clock is equal to the baud rate.

(2) Setting a desired baud rate


The baud rate to be set can be obtained by the equation below. Set the CM40 register and TM4 counter values for the desired baud rate, then start the operation of the baud rate generator.

Equation to obtain baud rate

Baud rate (bps) = $\frac{f_{CLK}}{2^n} \times \frac{1}{(m+1)} \times \frac{1}{2}$

fcLK : Internal system clock (external oscillator frequency fosc/2)

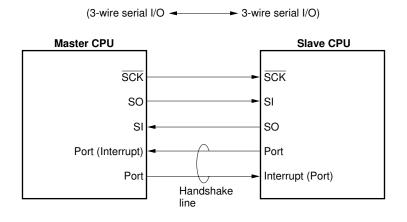
- m: Value set in CM40 (0 to 1023)
- n: Value corresponding to TMC2 value (0, 2, 4, 5)

Fig. 11-6. Timer Control Register 2 Format

Remark folk: Internal system clock

11.4 Two Operation Modes of Clock Synchronous Serial Interface

Using the 3-wire serial I/O mode is advantageous when communicating with a device having a conventional clock synchronous serial interface.


The serial bus interface (SBI) mode is an innovation of NEC that allows communication with multiple devices via two lines.

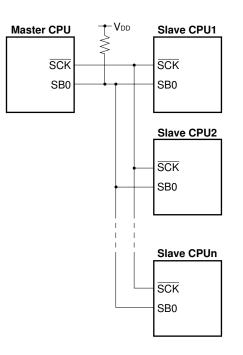
The μ PD78356 operates in the following two modes:

(1) Three-wire serial I/O mode

In the 3-wire serial I/O mode, 8-bit data communication is carried out using three lines: serial clock (SCK), serial input (SI), and serial output (SO). Using this mode is advantageous when connecting to a peripheral I/O device having a conventional clock synchronous serial interface or a display controller. To connect more than one device, another line is required for handshaking.

(2) Serial bus interface (SBI) mode

The SBI mode, which conforms to NEC's serial bus format, allows communication with multiple devices via two lines: serial clock (\overline{SCK}) and serial data bus (SB0 or SB1).


Phase-out/Discontinued

In the SBI mode, information called "address," "command," and "data" is output on the serial data bus. Address is used to select devices for serial communication; command gives instructions to the devices; and data is the actual data to be transmitted.

The use of the SBI mode eliminates the need for the handshake line that is necessary when connecting multiple devices through the conventional clock synchronous serial interface, thus ensuring more effective use of I/ O ports and reduced software load.

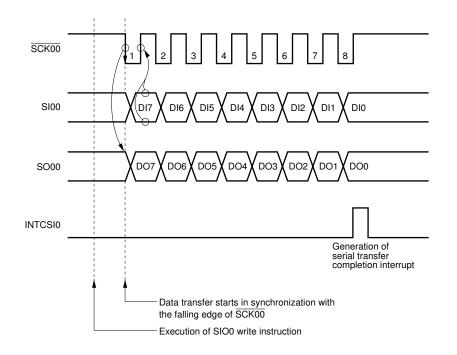
Since the serial data bus pins (SB0 and SB1) employ an open drain configuration for output in the SBI mode, the serial data bus line is provided in a wired OR state and therefore requires a pull-up resistor.

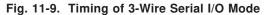
Fig. 11-8. Example of System Configuration in the SBI Mode

11.5 Setting 3-Wire Serial I/O Mode

The 3-wire serial I/O mode is set using the clock synchronous serial interface mode register 0 (CSIM0). Since this mode allows the selection of the start bit (MSB or LSB), communication can be performed with a variety of devices.

(1) Setting 3-wire serial I/O mode


The 3-wire serial I/O mode is set using the MOD01 and MOD00 bits of the CSIM0 register (see **Fig. 11-10**). Since this mode allows the selection of the start bit (MSB or LSB), communication can be performed with a variety of devices.


(2) Operation timing in 3-wire serial I/O mode

In the 3-wire serial I/O mode, data is transmitted and received in blocks of eight bits, with either the MSB or LSB as the start bit (specified in the CSIM0 register). The eight-bit data block is transferred bit by bit in synchronization with the serial clock.

Transmitted data is output in synchronization with the falling edge of the $\overline{SCK00}$ signal. Received data is sampled at the rising edge of the $\overline{SCK00}$ signal. At the rising edge of the 8th $\overline{SCK00}$ signal, interrupt request INTCSI0 is generated.

When the internal clock is used as the $\overline{SCK00}$ signal, the output is halted at the rising edge of the 8th $\overline{SCK00}$ signal. The $\overline{SCK00}$ pin maintains the high level until the transmission or reception of the next data block is activated.

Symbol R/W Address When reset <7> <6> <5> <4> 3 2 1 0 CSIM0 CTXE0 CRXE0 WUP0 MOD02 MOD01 MOD00 CLS01 CLS00 FF80H 00H R/W CLS01 CLS00 Setting of serial clock SCK pin Input 0 External clock 0 Baud rate 0 1 generator/2 Internal clock Output 1 0 fclk/32 1 1 fclk/8 Number of pins MOD01 MOD00 Pin name Operation mode Start bit SO00/SB0, 0 0 MSB 3-wire serial 3 SI00/SB1, I/O mode 0 1 LSB SCK00 SO00/SB0, (or SI00/ 0 SBI mode MSB 2 1 <u>SB1),</u> SCK00 1 1 Setting prohibited MOD02 Setting of pin for transmission and reception SO00/SB0 pin is used. 0 (SI00/SB1 pin goes to high-impedance state.) SI00/SB1 pin is used. 1 (SO00/SB0 pin goes to high-impedance state.) WUP0 Wake-up function control Interrupt request signal is generated for each serial 0 transfer in every mode. Interrupt request signal is generated only when an 1 address is received in SBI mode. The serial output pin goes to high-impedance state. CRXE0 Data reception Disabled (When serial clock is input, a 0 is input in the 0 shift register.) 1 Enabled CTXE0 Data transmission Disabled (Output buffers of SO00/SB0 and SI00/SB1 0 pins go to high-impedance state.) Enabled 1

Fig. 11-10. Setting of CSIM0 Register (3-Wire Serial I/O Mode)

11.5.1 Transmitting data in 3-wire serial I/O mode

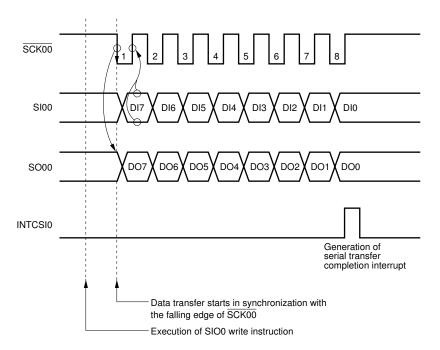
Writing data in the shift register (SIO0) after enabling transmission in the clock synchronous serial interface mode register 0 (CSIM0) activates transmission.

(1) Activating transmission

Transmission is activated by setting the CTXE0 bit of the CSIM0 register to 1 (set the CRXE0 bit to 0) and then writing transmission data to the SIO0 register. The block transfer (BLKTRS) mode of the macro service is useful in writing data to the SIO0 register.

While the CTXE0 bit is reset to 0, the output of the SO00 pin remains in the high-impedance state.


(2) Transmitting data in synchronization with the serial clock


(a) When an internal clock is selected as the serial clock

Once transmission is activated, the SCK00 pin starts the output of the serial clock. The SIO0 register then sequentially transfers data to the SO00 pin in synchronization with the falling edge of the serial clock.

(b) When an external clock is selected as the serial clock

Upon the activation of transmission, data is sequentially transmitted from SIO0 to the SO00 pin in synchronization with the falling edge of the serial clock that is input to the $\overline{SCK00}$ pin. When transmission is not activated, sending the serial clock to the $\overline{SCK00}$ pin does not cause the SIO0 register to transfer data and the output level of the SO00 pin does not change.

Symbol <7>	<6>	<5>	<4>	3	2	1	0	Addre	ss W	/hen reset	R/W		
CSIM0 CTXE0	CRXE0	WUP0	MOD02	MOD01	MOD00	CLS01	CLS00	FF80	Н	00H	R/W		
								1					
								CLS01	CLS00	Setting c	of serial o	clock	SCK pin
								0	0	Exter	nal clock	Ĩ	Input
								0	1	Internal clock	Baud gene	rate rator/2	Output
								1	0		fclк/32		Culput
								1	1		fclk/8		
								MOD01	MOD00	Operation mode	Start bit	Number of pins	Pin name
								0	0	3-wire serial	MSB		SO00/SB0,
								0	1	I/O mode	LSB	3	<u>SI00/S</u> B1, SCK00
								1	0	SBI mode	MSB	2	SO00/SB0, (or SI00/ SB1), SCK00
								1	1	Setting prohib	ited	L	
								MOD02	Se	etting of pin for tra	ansmissio	on and recep	otion
								0		B0 pin is used. B1 pin goes to hi	gh-imped	ance state.)	
								1	SI00/SE (SO00/S	31 pin is used. SB0 pin goes to h	nigh-impe	dance state.	.)
								WUP0		Wake-up	function	control	
								0	Interrup transfer	t request signal is in every mode.			serial
								1	address	t request signal is is received in SI high-impedance	31 mode.	ed only whe The serial o	n an utput pin
								· · · · · · · · · · · · · · · · · · ·	1				
								CRXE0			a receptio		
								0	Disable shift reg	d (When serial cl ister.)	ock is inp	ut, a 0 is inp	out in the
								1	Enabled	1			
								CTXE0		Data t	ransmiss	ion	
								0	Disable pins go	d (Output buffers to high-impedand	of SO00		00/SB1
								1	Enabled		,		

Fig. 11-12. Setting of CSIM0 Register (Transmission Enabled)

11.5.2 Receiving data in 3-wire serial I/O mode

Reception is activated by setting the CRXE0 bit of the clock synchronous serial interface mode register 0 (CSIM0) to 1 (reception enabled) (when CTXE0 = 0) or, when reception is already enabled, by reading data from the shift register (SIO0).

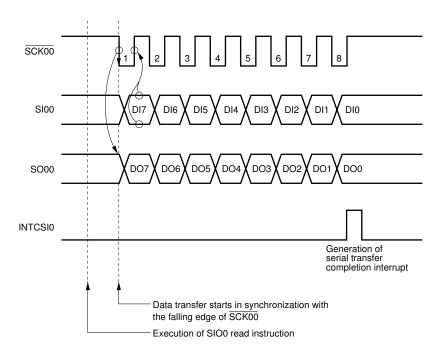
(1) Activating reception

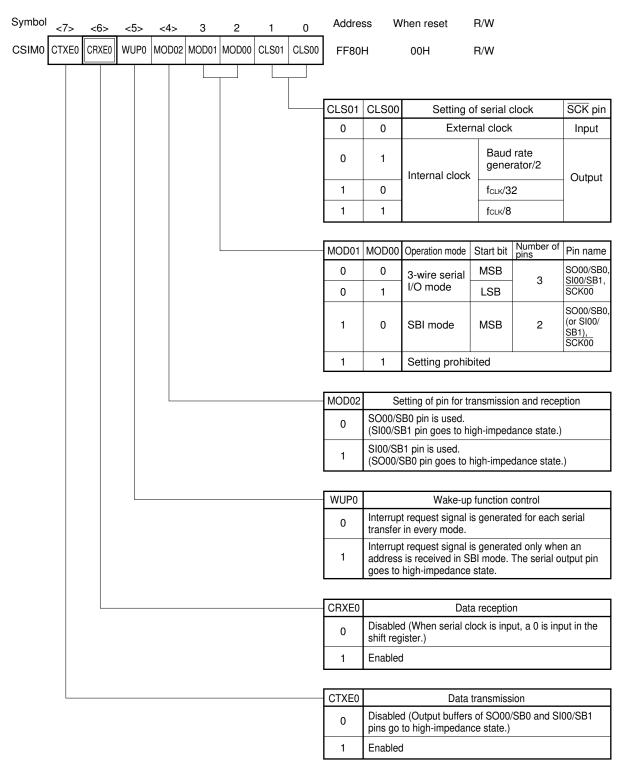
Reception can be activated in the following two ways:

- <1> When CTXE0 bit is 0, change the setting of the CRXE0 bit of the CSIM0 register from 0 (reception disabled) to 1 (reception enabled).
- <2> When the CRXE0 bit is already set to 1, read data from the SIO0 register.

The block transfer (BLKTRS) mode of the macro service is useful in reading received data from the SIO0 register. Attempting to set the CRXE0 bit to 1 when it is already set to 1 does not activate reception. Furthermore, attempting to set the CRXE0 bit to 1 from 0 when CTXE0 bit is 1 does not activate reception.

(2) Receiving data in synchronization with the serial clock


(a) When an internal clock is selected as the serial clock


Once reception is activated, the SCK00 pin starts the output of the serial clock. The data is sequentially read from the SI00 pin to SIO0 in synchronization with the rising edge of the serial clock.

(b) When an external clock is selected as the serial clock

Once reception is activated, the data is sequentially read from the SI00 pin to SIO0 in synchronization with the rising edge of the serial clock input to the $\overline{SCK00}$ pin. When reception is not activated, inputting the serial clock to the $\overline{SCK00}$ pin does not cause the SIO0 register to transfer the data.

Fig. 11-13. Timing of 3-Wire Serial I/O Mode (Reception)

Fig. 11-14. Setting of CSIM0 Register (Reception Enabled)

11.5.3 Transmitting and receiving data in 3-wire serial I/O mode

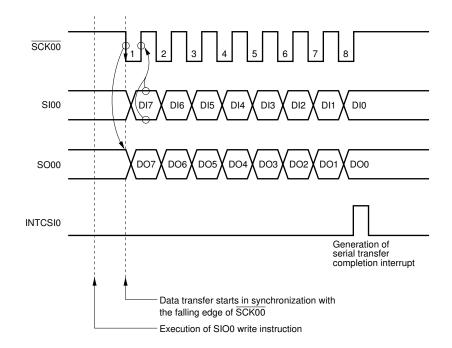
Enabling both transmission and reception using the clock synchronous serial interface mode register 0 (CSIM0) allows the two operations to be performed simultaneously.

(1) Activating transmission and reception

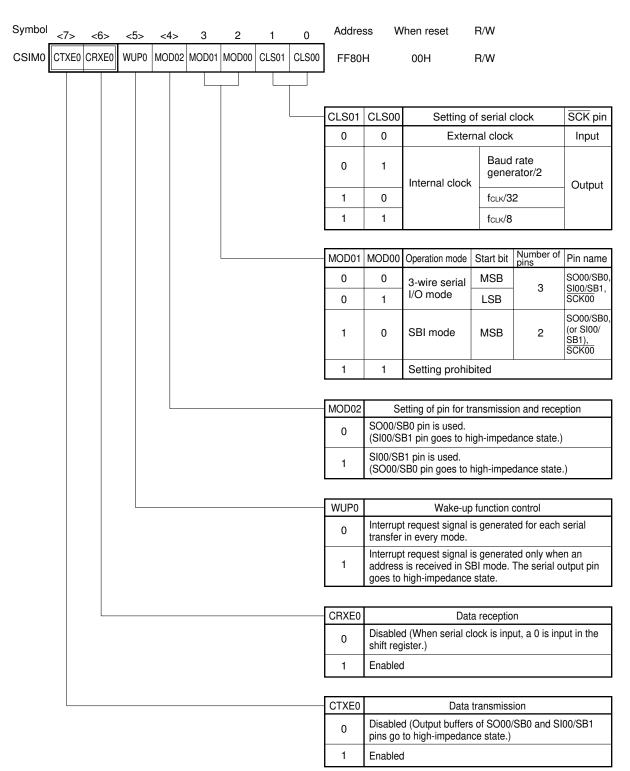
Transmission and reception can be performed simultaneously when the CTXE0 and CRXE0 bits of the CSIM0 register are both set to 1.

The transmission and reception can be activated by writing the transmitted data to the shift register 0 (SIO0) when both the CTXE0 and CRXE0 bits of the CSIM0 register become 1 (transmission/reception enable state). Attempting to set the CRXE0 bit to 1 when it is already set to 1 does not activate transmission or reception.

(2) Transmitting and receiving data in synchronization with the serial clock


(a) When an internal clock is selected as the serial clock

Once transmission and reception are activated, the SCK00 pin starts the output of the serial clock. The SIO0 register then sequentially transfers data to the SO00 pin in synchronization with the falling edge of the serial clock. At the same time, data is sequentially read from the SI00 pin to SIO0 in synchronization with the rising edge of the serial clock.


(b) When an external clock is selected as the serial clock

Upon the activation of transmission and reception, data is sequentially transmitted from SIO0 to the SO00 pin in synchronization with the falling edge of the serial clock that is input to the $\overline{SCK00}$ pin. At the same time, data is sequentially read from the SI00 pin to SIO0 in synchronization with the rising edge of the serial clock. When transmission and reception are not activated, sending the serial clock to the $\overline{SCK00}$ pin does not cause the SIO0 register to transfer data and the output level of the SO00 pin does not change.

Remark INTCSI0 ... Vector table address: 0030H (TPF = 0), 8030H (TPF = 1) Macro service control word address: FE30H

Fig. 11-16. Setting of CSIM0 Register (Transmission and Reception Enabled)

11.5.4 Action taken when shift operation is not in phase with serial clock

The synchronization of the shift operation with the serial clock can be restored by disabling both transmission and reception.

Action taken when shift operation is not in phase with serial clock

When an external clock is being used as the serial clock, a mismatch between the number of serial clock pulses and the shift operation can occur (for example because of noise). When this happens, disable both transmission and reception by setting the CTXE0 and CRXE0 bits to 0 (reset). This initializes the serial clock counter. Then, enable transmission or reception, and the first pulse input will be treated as the first serial clock. Based on this first clock, the synchronization between the shift operation and serial clock is restored.

11.6 Setting SBI Mode

In the serial bus interface (SBI) mode, a serial bus is configured with two lines: \overline{SCK} and SB0 (or SB1). This type of configuration reduces the number of ports and the software load.

Setting SBI mode

The SBI mode can be set using the MOD02, MOD01, and MOD00 bits of the clock synchronous serial interface mode register 0 (CSIM0).

In the SBI mode, either the SB0 or SB1 pin can be selected as the I/O pin for serial data. As a result, one of two different serial bus configurations can be selected.

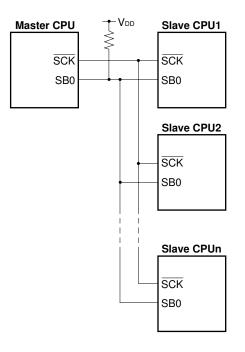


Fig. 11-17. Example of System Configuration in SBI Mode

- Cautions 1. Since the serial data bus pins (SB0 and SB1) employ an open drain configuration for output in the SBI mode, the serial data bus line is provided in a wired OR state and therefore requires a pull-up resistor.
 - 2. To switch between the master and slave CPUs, a pull-up resistor is also needed for the SCK line. This is because the SCK input/output switching is performed in the master and slave CPUs asynchronously.

Symbol R/W Address When reset <7> <6> <5> <4> 3 2 1 0 CSIM0 CTXE0 CRXE0 WUP0 MOD02 MOD01 MOD00 CLS01 CLS00 FF80H 00H R/W CLS01 CLS00 Setting of serial clock SCK pin 0 0 External clock Input Baud rate 0 1 generator/2 Internal clock Output 1 0 fclk/32 1 1 fclk/8 Number of pins MOD01 MOD00 Operation mode Start bit Pin name 0 0 SO00/SB0. MSB 3-wire serial SI00/SB1, З I/O mode 0 1 LSB SCK00 SO00/SB0 (or SI00/ 1 0 SBI mode MSB 2 SB1), SCK00 1 1 Setting prohibited MOD02 Setting of pin for transmission and reception SO00/SB0 pin is used. 0 (SI00/SB1 pin goes to high-impedance state.) SI00/SB1 pin is used. 1 (SO00/SB0 pin goes to high-impedance state.) WUP0 Wake-up function control Interrupt request signal is generated for each serial 0 transfer in every mode. Interrupt request signal is generated only when an 1 address is received in SBI mode. The serial output pin goes to high-impedance state. CRXE0 Data reception Disabled (When serial clock is input, a 0 is input in the 0 shift register.) Enabled 1 CTXE0 Data transmission Disabled (Output buffers of SO00/SB0 and SI00/SB1 0 pins go to high-impedance state.) Enabled 1

Fig. 11-18. Setting of CSIM0 Register (SBI Mode)

11.6.1 SBI data format

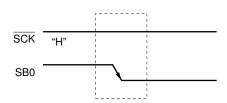
In the SBI mode, various control signals are defined using different combinations of the serial clock line (\overline{SCK}) and the serial data bus (SB0 or SB1).

(1) Control signals used in SBI mode

In the SBI mode, the following eight control signals are defined using different combinations of two lines (SCK and SB0 or SB1):

<1> Bus release signal (REL)

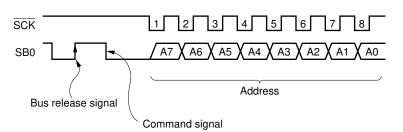
The master CPU sends this signal to the slave CPU to notify that an address is to be transmitted from master to slave. The slave CPU has a built-in hardware component to detect the REL signal.



<2> Command signal (CMD)

The master CPU sends this signal to the slave CPU to notify that an address or command is to be sent from master to slave. The slave CPU has a built-in hardware component to detect the CMD signal.

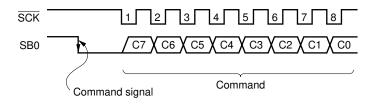
Fig. 11-20. Command Signal



<3> Address

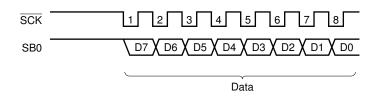
This is an 8-bit data section that follows the REL and CMD signals. The master CPU selects the slave signal using this address. The slave CPU compares the received address with its own address and, when they match, performs communication.

Phase-out/Discontinued



<4> Command

This 8-bit data section is transferred after the CMD signal when the REL signal is not output. The use of the command can be defined freely.


Fig. 11-22. Command

<5> Data

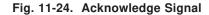
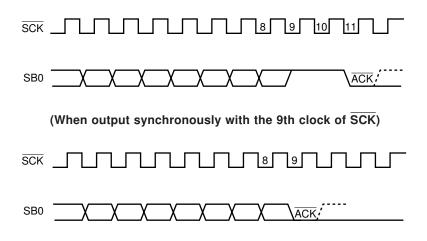

The master CPU outputs this 8-bit data section without the REL and CMD signals.

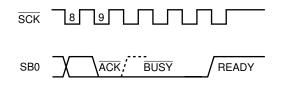
Fig. 11-23. Data



<6> Acknowledge signal (ACK)

This signal indicates the reception of data. The master CPU has a built-in hardware component to detect the ACK signal. If the ACK signal is not returned, the master CPU judges that the transmitted data has not been properly received by the slave CPU.

(When output synchronously with the 11th clock of SCK)


<7> Busy signal (BUSY)

The slave CPU sends this signal to the master CPU to notify that it is in the process of preparing to transmit and receive data. While the master CPU is sending the BUSY signal, the master CPU continues with the serial clock output but does not transfer data.

<8> Ready signal (READY)

The slave CPU sends this signal to the master CPU to indicate that it is ready to transmit and receive data.

(2) Data frame structure in SBI mode

In the SBI mode, one frame of serial data is configured as follows:

(REL) + (CMD) + 8-bit data section + $\overline{ACK} + (\overline{BUSY})$

Meaning	Indicates the completion of transfer to the slave CPU.	 i) Address is transmitted after the REL signal is output. ii) Command is transmitted when the REL signal is not output. 	Indicates the completion of data reception.	Indicates that the slave CPU cannot receive serial data because it is busy.	Indicates that the slave CPU is ready to receive data.
Influence on flags	RELD is set.CMDD is cleared.	CMDD is set.	ACKD is set.	1	I
Output conditions Influence on flags	• RELT is set.	• CMDT is set.	• ACKE = 1 • ACKT is set.	• BSYE = 1	 BSYE = 0 SIO data write instruction (transfer start instruction) is executed.
Timing chart	SCK "H" SB0 L	SCK "H" SB0	(Output of synchronous busy signal)	SB0 D0 C C C C C C C C C C C C C C C C C C	
Definition	Rising edge of the signal on SB0 when $\overline{SCK} = 1$	Master Falling edge of the signal on SB0 when $\overline{SCK} = 1$	Low-level signal on SB0 during one SCK clock after completion of serial data reception.	[Synchronous busy signal] Low-level signal applied on SB0 following the ACK signal.	High-level applied on SB0 before and after serial data transfer.
Output device	Master	Master	Slave	Slave	Slave
Signal name	Bus release signal (REL)	Command signal (CMD)	Acknowledge signal (<u>ACK</u>)	Busy signal (BUSY)	Ready signal (READY)

Table 11-1. Signals Used in SBI Mode (1/2)

Phase-out/Discontinued

Meaning	Provides timing for signal output to the serial data bus.	Note 2 Slave CPU address on the serial data bus.	Instruction messages for the slave CPU.	Actual data processed by master and slave CPUs.
Influence on flags	CSIIF ^{Note 1} is set at the rising edge of the 8th clock pulse.	Note 2	None	None
Output conditions Influence on flags	SIO data write instruction (serial data transfer start instruction) is executed when CTXE is 1. ^{Note 3}			
Timing chart	<u>sck</u> Т1Г2 [*] ไ2Г8Г9_10 sво <u>X X X X / X / 1</u>			sek
Definition	Synchronizing clock for output of address, command, data, and <u>ACK</u> and BUSY signals. The address, command, and data sections are transferred within the first 8 clock pulses.	8-bit data section that follows the REL and CMD signals. Transferred in synchronization with SCK.	Master 8-bit data section output after the CMD signal when the REL signal is not output. Transferred in synchronization with SCK.	Master/ 8-bit data output when the REL slave and CMD signals are not output. Transferred in synchronization with SCK.
Output device	Master	Master	Master	Master/ slave
Signal name	Serial clock (<u>SCK</u>)	Address (A0 to A7)	Command (D0 to D7)	Data (D0 to D7)

Table 11-1. Signals Used in SBI Mode (2/2)

Notes 1. Interrupt request flag that is set in response to serial data transmission/reception interrupt (INTCSI)

When WUP is 0, CSIIF is always set at the rising edge of the 8th clock pulse of the SCK signal. When WUP is 1, CSIIF is set only in response to address reception. ы.

3. If the slave CPU is BUSY, data transfer starts when it is READY.

Phase-out/Discontinued

The status of the serial bus can be controlled and detected using the serial bus interface control register (SBIC).

· Controlling and detecting the serial bus status

In the SBI mode, the SBIC register is used to control and detect the serial bus status.

The SBIC register is an 8-bit register that consists of bits to control the bus status and flags to indicate the status of input data from the serial bus.

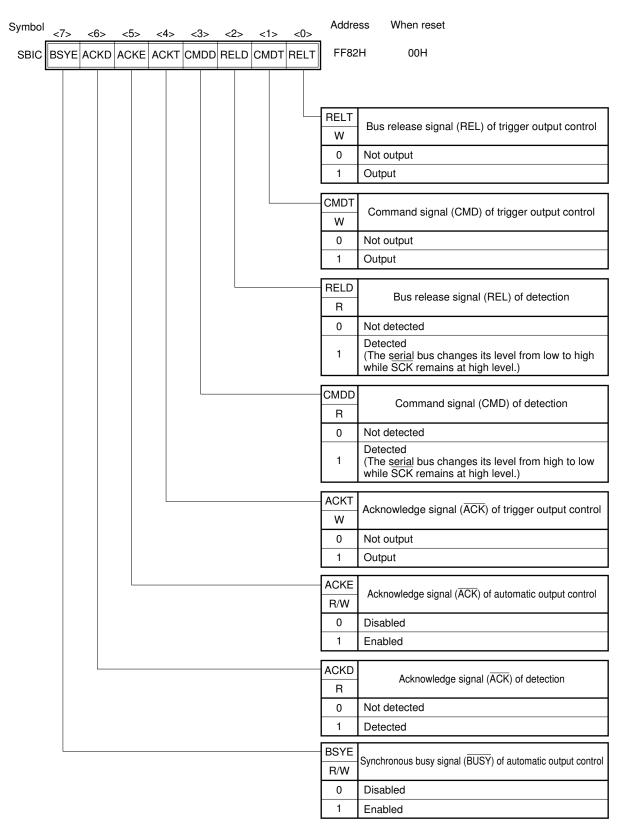
Both read and write operations are possible, however, with 8-bit and single-bit manipulation instructions. Notice that some of the bits are read-only or write-only. Reading a write-only bit results in the return of a 0.

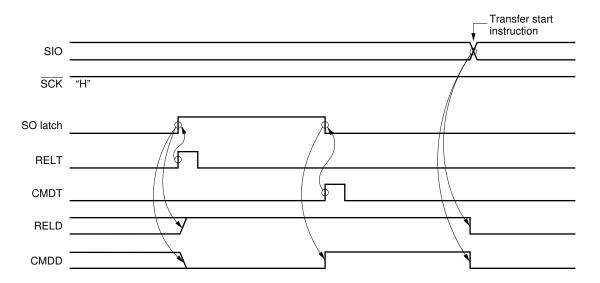
When the RESET signal is input, the SBIC register is set to 00H.

Fig. 11-26 shows the format of the SBIC register.

Fig. 11-27 to 11-31 show the operation of each bit.

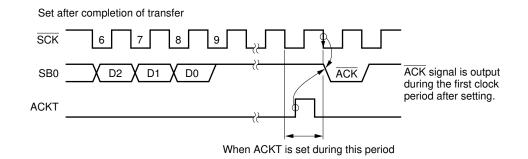
Although the explanations given in the following figures assume the use of the SB0 pin for serial data input and output, the same bit operations are performed when using the SB1 pin.

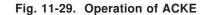



Fig. 11-26. Format of Serial Bus Interface Control Register

Remark R/W : Both read and write operations are enabled.

- R : Read only
- W : Write only





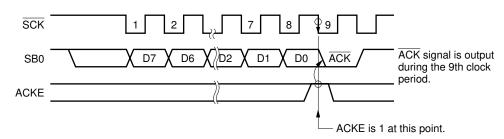
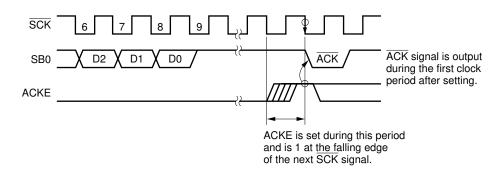
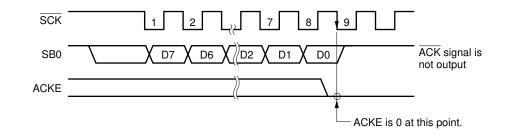
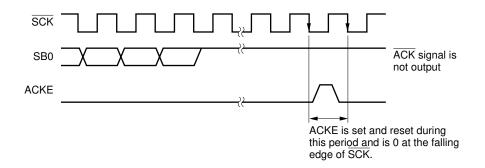
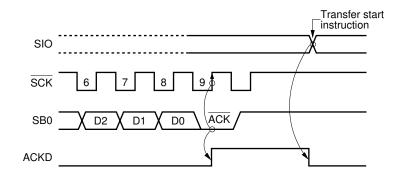

Caution Do not operate the RELT or CMDT bit during data transmission or reception.

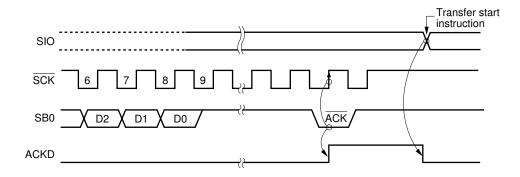
Fig. 11-28. Operation of ACKT

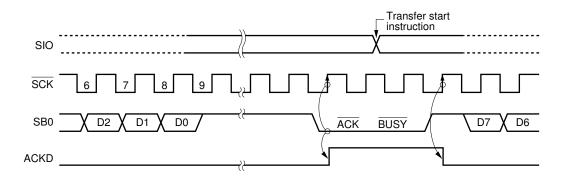


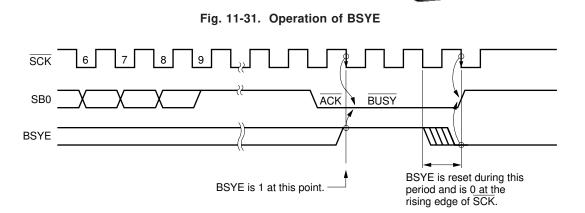

a. When ACKE is 1 at the time of data transfer


b. When ACKE is set after completion of transfer


c. When ACKE is 0 at transfer completion


d. When ACKE remains 1 for too short a period


- Fig. 11-30. Operation of ACKD
- a. When the \overline{ACK} signal is output during the 9th clock period of \overline{SCK}



b. When the \overline{ACK} signal is output after the 9th clock period of \overline{SCK}

c. Timing for clearing when a transfer start instruction is issued during BUSY state

11.6.3 Transmitting and receiving data in SBI mode

After controlling the serial bus status with the serial bus interface control register (SBIC), transmission and reception can be performed by writing data to the shift register (SIO).

Although the following text assumes the use of the SB0 pin, the same operation can be performed using the SB1 pin.

(1) Activating transmission

When the CTXE0 bit of the clock synchronous serial interface mode register 0 (CSIM0) is set to 1, writing data to the SIO0 register activates transmission.

The SIO0 register transfers its data in synchronization with the falling edge of the serial clock (SCK). Data is output from the SB0 pin, with the MSB as the start bit. After transmission, a 0 is written in the SIO0 register, and interrupt request INTCSI0 is generated.

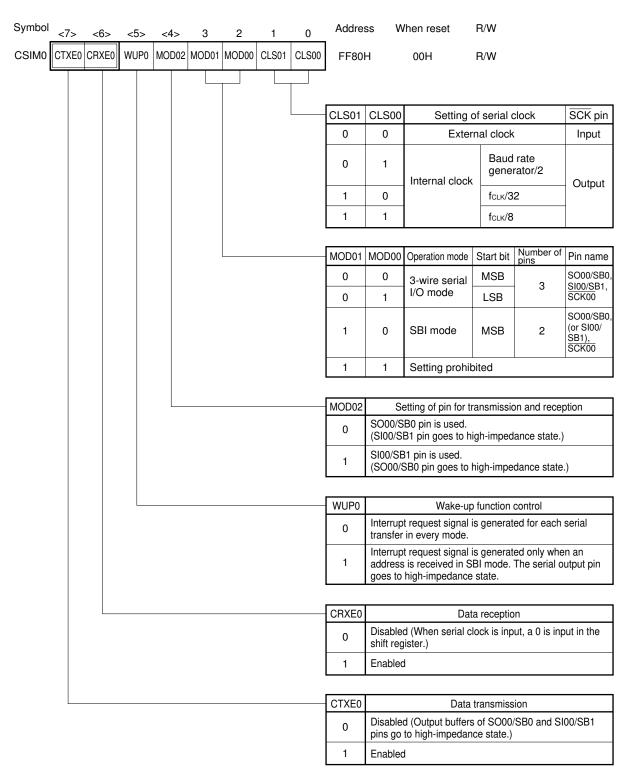
(2) Activating reception

Reception can be activated in the following two ways:

- <1> When CTXE0 bit is 0, change the status of the CRXE0 bit of the CSIM0 register from 0 (reception disabled) to 1 (reception enabled).
- <2> When the CRXE0 bit is set to 1, read received data from the SIO0 register.

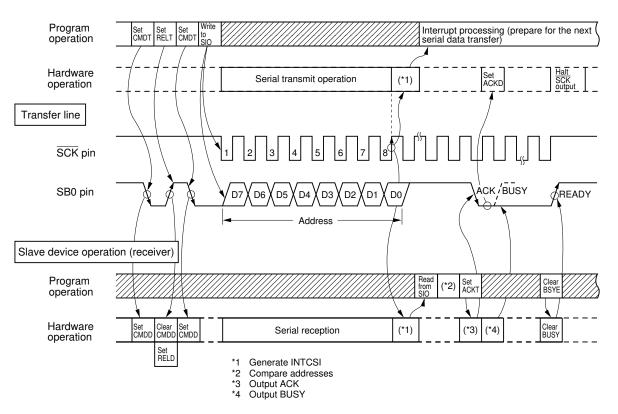
Attempting to set the CRXE0 bit to 1 when it is already set to 1 does not activate reception. Furthermore, attempting to set the CRXE0 bit to 1 from 0 when CTXE0 bit is 1 does not activate reception.

The 8-bit data that is input to the SB0 pin at the rising edge of the serial clock (\overline{SCK}) is latched by the SIO0 register. Then, interrupt request INTCSI0 is generated.

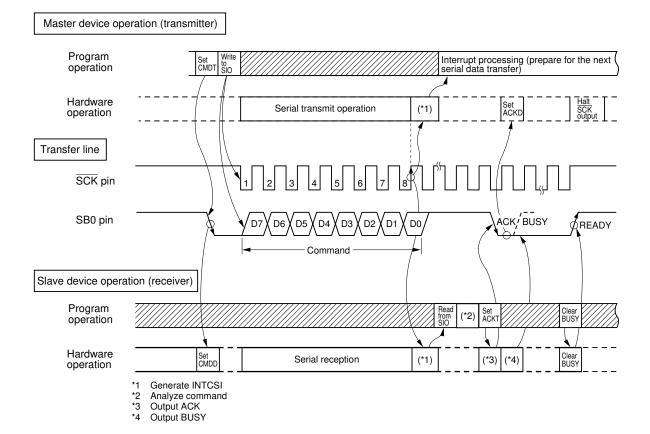

(3) Activating both transmission and reception

To activate both transmission and reception, write data to the SIO0 register when the CTXE0 and CRXE0 bits of the CSIM0 register are both set to 1.

The data on the serial bus is written to the SIO0 register unchanged. The bus status (e.g. bus contention) can be checked by comparing the data written in the SIO0 register against the data input from the serial bus.


Remark INTCSI0 ... Vector table address: 0030H (TPF = 0), 8030H (TPF = 1) Macro service control word address: FE30H

Caution When transferring data in the SBI mode, be sure to specify the pin and serial clock before setting the CTXE0 and CRXE0 bits.


Fig. 11-32. Setting of CSIM0 Register (Transmission/Reception Enabled)

Master device operation (transmitter)

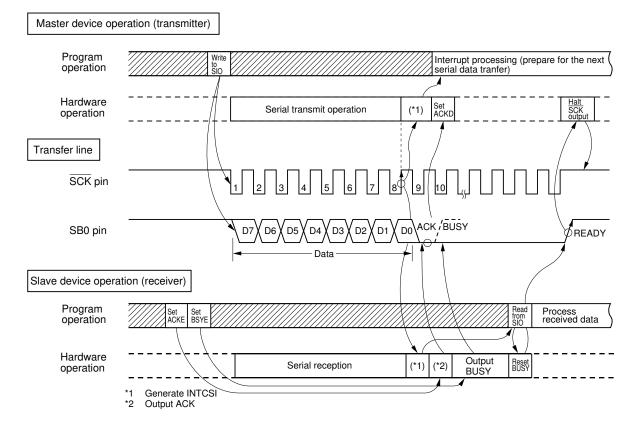
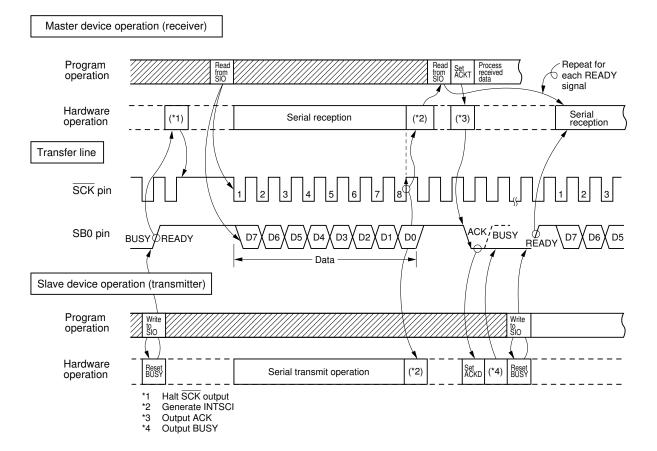
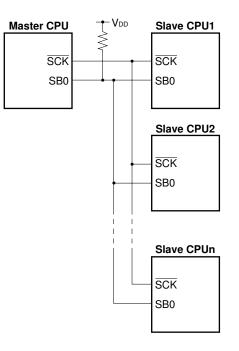



Fig. 11-35. Data Transfer from Master to Slave Device

11.6.4 Activating operation only when an address is received

The wake-up function, which activates the operation only in response to the reception of an address, ensures efficient use of the processing power of the slave CPUs.


• Use the wake-up function to improve the efficiency of the slave CPU processing


The SBI mode allows the use of the wake-up function, which generates interrupt request INTCSI0 only when an address is received.

In a system having a serial interface configuration as shown in Fig. 11-37, while the master CPU is engaged in serial data communication with one of the slave CPUs, the other slaves can perform their own operations. Without the wake-up function, an interrupt occurs each time data is received, affecting the operations of all the slave CPUs. The wake-up function eliminates this inconvenience and improves the efficiency of the slave CPU processing.

During the interrupt occurring in response to the reception of an address, the CPU compares the received address against its own address and, when they match, releases the wake-up function to proceed with data transfer. If the addresses fail to match, the wake-up function continues to be valid.

Remark INTCSI0 ... Vector table address: 0030H (TPF = 0), 8030H (TPF = 1) Macro service control word address: FE30H

Symbol <	7> <6>	<5>	<4>	3	2	1	0	Addre	ss W	/hen reset	R/W		
CSIM0 CT	KE0 CRXE0	WUP0	MOD02	MOD01	MOD00	CLS01	CLS00	FF80	Н	00H	R/W		
								J					
								CLS01	CLS00	Setting o			SCK pin
								0	0	Exter	ternal clock		Input
								0	1	Internal clock		rate rator/2	Output
								1	0		fclк/32		Output
								1	1		fclк/8		
								MOD01	MOD00	Operation mode	Start bit	Number of pins	Pin name
								0	0	3-wire serial	MSB	3	SO00/SB0, SI00/SB1,
								0	1	I/O mode	LSB	5	SCK00
								1	0	SBI mode	MSB	2	SO00/SB0, (or SI00/ <u>SB1),</u> SCK00
								1	1	Setting prohib	oited	1	
								MOD02	Se	etting of pin for tr	ansmissio	on and recep	otion
								0		B0 pin is used. B1 pin goes to hi	igh-imped		
								1		31 pin is used. SB0 pin goes to h	nigh-impe	.)	
								WUP0		Waka up	function	control	
								0	Interrup transfer	t request signal i in every mode.			serial
								1	Interrup address	t request signal i is received in Sl high-impedance	BI mode.		
								CRXE0		Data	a receptio	n	
								0	Disableo shift reg	d (When serial cl ister.)	lock is inp	ut, a 0 is inp	out in the
								1	Enabled	1			
								CTXE0		Data	transmiss	ion	
								0	Disable	d (Output buffers to high-impedan	of SO00/		00/SB1

Fig. 11-38. Setting of CSIM0 Register (Wake-Up Function)

CHAPTER 12 CLOCK SYNCHRONOUS SERIAL INTERFACE (WITH PIN SWITCHING FUNCTION)

The μ PD78356 offers the pin switching function for the clock synchronous serial interface that operates in the 3wire serial I/O mode. In the clock synchronous serial interface with the pin switching function, the pins used in the 3-wire serial I/O mode can be switched using software.

This interface operates independently of the asynchronous serial interface and the clock synchronous serial interface without the pin switching function.

12.1 Configuration of Clock Synchronous Serial Interface (with Pin Switching Function)

The clock synchronous serial interface is controlled by clock synchronous serial interface mode register 1 (CSIM1). Data transmitted and received can be written to and read from the shift register (SIO1).

(1) Clock synchronous serial interface mode register 1 (CSIM1)

The CSIM1 register is an 8-bit register that controls the operation of the clock synchronous serial interface with the pin switching function.

Both data reading and writing are possible with 8-bit and single-bit manipulation instructions. When the RESET signal is input, CSIM1 is set to 00H.

(2) Shift register (SIO1)

The SIO1 register is an 8-bit register that converts serial data to parallel data and vice versa. The register is used for both transmitting and receiving data.

Data is shifted in (received) or shifted out (transmitted) from the MSB or LSB side.

The transmitting and receiving of data is actually performed by writing data to and reading data from the SIO1 register.

For data writing and reading, 8-bit manipulation instructions are used.

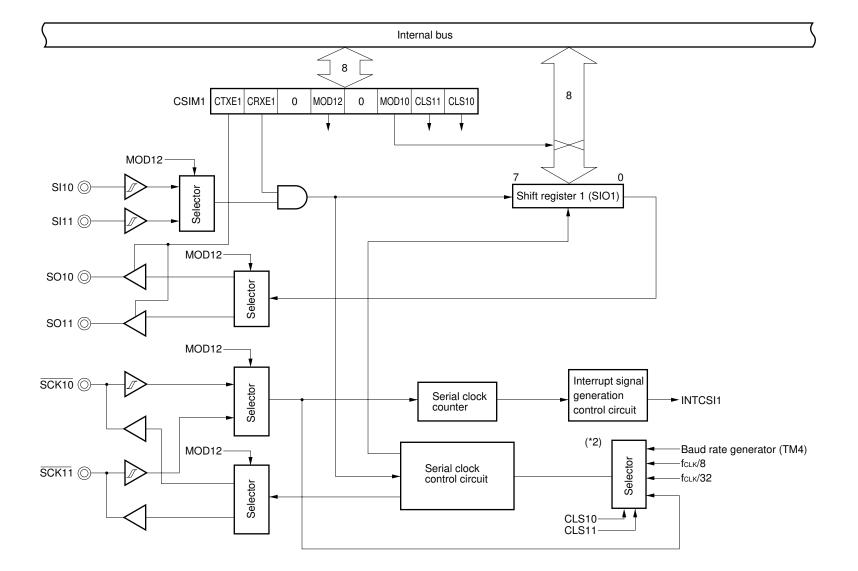
When the RESET signal is input, the contents of SIO1 become undefined.

(3) Serial clock selector

This selector selects the serial clock to be used.

(4) Serial clock control circuit

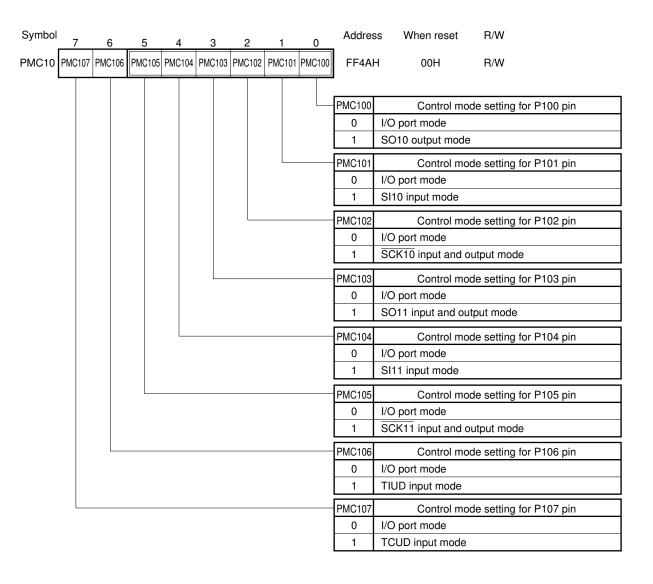
This control circuit controls the supply of serial clock to the shift register. When an internal clock is being used, it also controls the clock output to the $\overline{SCK10}$ or $\overline{SCK11}$ pin.


(5) Serial clock counter

This counter counts serial clocks being output and input during data transmission and reception to check whether 8-bit data has been transmitted and received.

(6) Interrupt signal generation control circuit

This control circuit controls whether to make an interrupt request when the serial clock counter has counted eight serial clocks.


Fig. 12-1. Block Diagram of Clock Synchronous Serial Interface (with Pin Switching Function)

12.2 Setting Pins for Serial Transmission

The SO10, SI10, SCK10 pins or SO11, SI11, SCK11 pins, which are also used as general purpose ports, must be set to the control mode before beginning serial transmission.

(1) Setting pins for serial transmission

The clock synchronous serial interface with the pin switching function uses two different sets of pins (SO10, SI10, SCK10 and SO11, SI11, SCK11). These pins also serve as general purpose ports P100, P101, P102 and P103, P104, P105, respectively. Therefore, before beginning serial transmission, these pins must be set to the control mode in the port 10 mode control register (PMC10).

Fig. 12-2. Port 10 Mode Control Register Format

(2) Reading pin levels

When port 10 (P10) has been set to the control mode using the port 10 mode control register (PMC10), the read instructions of P10 can read the following information:

(a) When a bit of the port 10 mode register (PM10) is set to 1

• The corresponding pin level can be read.

(b) When a bit of the PM10 is set to 0 (reset)

• The level of the internal signal can be read.

Reading pin levels allows pins checks, including the check for serial bus contention. Writing data in P10 does not change any pin level. (Data is written in the P10 output buffer.)

Symbol Address When reset R/W 7 6 5 4 3 2 1 0 PM106 PM105 PM104 PM103 PM102 PM101 PM100 FF2AH PM10 PM107 FFH R/W PM10n I/O mode setting for P10n pin (n = 0 to 7) 0 Output mode (Output buffer is on) 1 Input mode (Output buffer is off)

Fig. 12-3. Port 10 Mode Register Format

12.3 Switching Pins in 3-Wire Serial I/O Mode

In the clock synchronous serial interface operating in the 3-wire serial I/O mode, the pin switching function switches the pins using software.

The clock synchronous serial interface mode register 1 (CSIM1) can be used to switch between two sets of three pins.

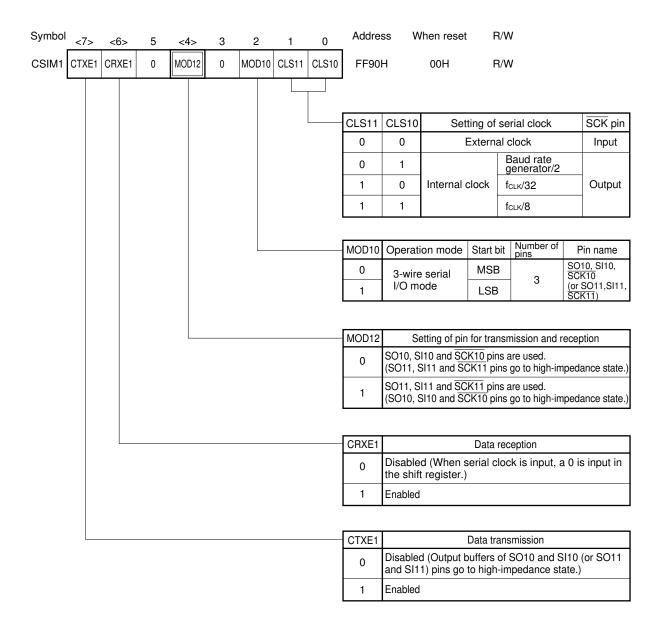
· Switching pins used for serial data transfer in 3-wire serial I/O mode

In the clock synchronous serial interface with the pin switching function, the pins used for serial data transfer in the 3-wire serial I/O mode can be switched using software.

The switching of the pins is performed using the MOD12 bit of the CSIM1.

The pins not being used are placed in a high-impedance state.

(a) When SCK10, SO10 and SI10 pins are specified


To specify the SCK10, SO10 and SI10 pins for the 3-wire serial I/O mode transmission, set the MOD12 bit of the CSIM1 register to 0 (reset).

When not specified, the pins are placed in a high-impedance state.

(b) When SCK11, SO11 and SI11 pins are specified

To specify the SCK11, SO11 and SI11 pins for the 3-wire serial I/O mode transmission, set the MOD12 bit of the CSIM1 register to 1.

When not specified, the pins are placed in a high-impedance state.

Fig. 12-4. Setting of CSIM1 Register (Pin Switching)

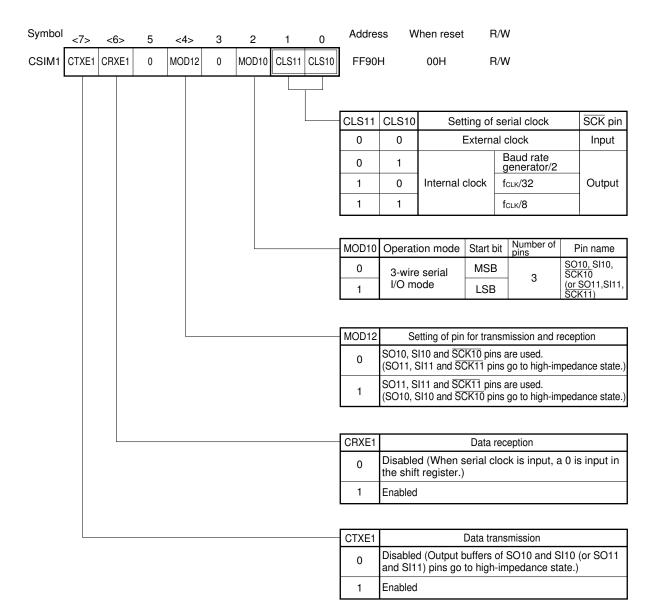
Remark fclk: Internal system clock

12.4 Setting Baud Rate

The baud rate generator output, internal clock fcLk/8 or fcLk/32, or external clock can be selected as the serial clock. The baud rate generator output can be set at any desired baud rate, independently of the operation clock frequency.

(1) Baud rate equal to serial clock

In the clock synchronous serial interface with the pin switching function, received data is sampled at the rising edge of the serial clock, which means the frequency of the serial clock is equal to the baud rate.


(2) Selecting serial clock

The serial clock can be selected using the CLS11 and CLS10 bits of the clock synchronous serial interface mode register 1 (CSIM1).

When the external clock is selected, the SCK10 or SCK11 pin is used for the input of the serial clock from the device with which communication is being performed.

With the 16-MHz internal system clock, fcLk/8 provides a baud rate of 2 Mbps and fcLk/32 provides a baud rate of 500 Kbps.

Remark The baud rate generator is also used for the asynchronous serial interface and the clock synchronous serial interface with the pin switching function. (See **10.4** and **11.3**.)

Fig. 12-5. Setting of CSIM1 Register (Serial Clock)

Remark fclk: Internal system clock

Caution Do not switch serial clocks during data transmission. Since the switching is performed asynchronously with the serial clock being supplied, doing this during data transmission can produce a serial clock of undefined frequency.

12.4.1 Configuration of baud rate generator

The baud rate generator uses timer 4 (TM4) in the real-time pulse unit (RPU), and is controlled by the timer control register 2 (TMC2) and 10-bit compare register (CM40).

Fig. 12-6 shows the configuration of the baud rate generator.

(1) Timer control register 2 (TMC2)

TMC2 is an 8-bit register used for TM4 count clock selection and baud rate generator operation control. Both data reading and writing are possible with 8-bit and single-bit manipulation instructions. When the RESET signal is input, TMC2 is set to 00H. Fig. 12-7 shows the TMC2 register format.

(2) Selector

The selector selects the count clock of the 10-bit timer (TM4) according to the contents of the TMC2 register.

(3) 10-bit timer (TM4)

TM4 is a 10-bit timer that counts the count clocks selected by the selector. When a matching signal is issued by the CM40 register, this timer is cleared to zero at the next count clock. The TMC2 register controls the start and end of counting.

Only data reading is possible with 16-bit manipulation instructions.

(4) 10-bit compare register (CM40)

CM40 compares its data against the contents of TM4 and, when they match, issues a matching signal. TM4 is cleared to zero in response to the matching signal.

The signal output by the baud rate generator has a frequency 1/2 of the matching signal frequency. Both data reading and writing are possible with 16-bit manipulation instructions.

When the RESET signal is input, the contents of CM40 become undefined.

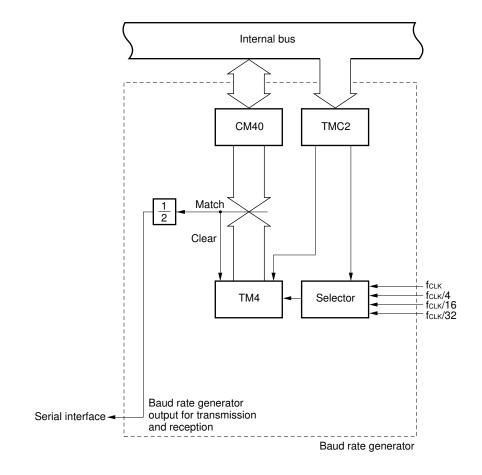


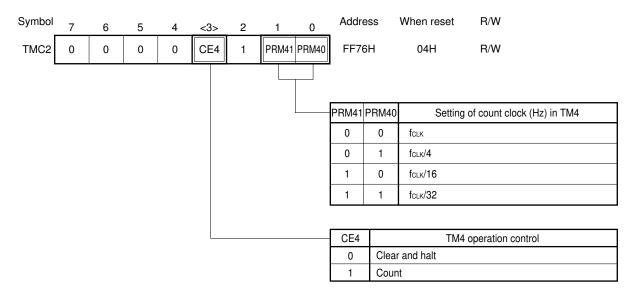
Fig. 12-6. Block Diagram of Baud Rate Generator

12.4.2 Setting a desired baud rate

Any desired baud rate can be selected for the serial clock by setting the timer control register 2 (TMC2) and 10-bit compare register (CM40).

(1) Baud rate equal to serial clock

In the clock synchronous serial interface, received data is sampled at the rising edge of the serial clock, which means the frequency of the serial clock is equal to the baud rate.


(2) Setting a desired baud rate

The baud rate to be set can be obtained by the equation below. Set the CM40 register and TM4 counter values for the desired baud rate, then start the operation of the baud rate generator.

Equation to obtain baud rate

Baud rate (bps) =
$$\frac{f_{CLK}}{2^n} \times \frac{1}{(m+1)} \times \frac{1}{2}$$

- fclk : Internal system clock (external oscillator frequency fosc/2)
 - m: Value set in CM40 (0 to 1023)
 - n: Value corresponding to TMC2 value (0, 2, 4, 5)

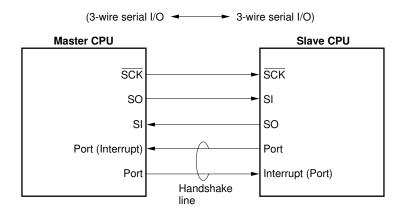
Fig. 12-7. Timer Control Register 2 Format

Remark fclk: Internal system clock

12.5 Operation Mode of Clock Synchronous Serial Interface (with Pin Switching Function)

The clock synchronous serial interface with the pin switching function operates in the 3-wire serial I/O mode only.


Using the 3-wire serial I/O mode is advantageous when communicating with a device having a conventional clock synchronous serial interface.


In the μ PD78356, the clock synchronous serial interface with the pin switching function operates in the 3-wire serial I/O mode only.

Three-wire serial I/O mode

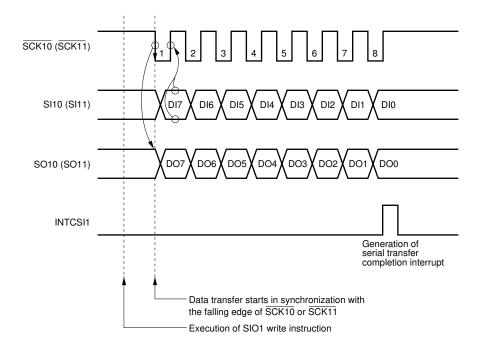
In the 3-wire serial I/O mode, 8-bit data communication is carried out using three lines: serial clock (SCK), serial input (SI), and serial output (SO). Using this mode is advantageous when connecting to a peripheral I/O device having a conventional clock synchronous serial interface or a display controller.

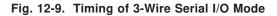
To connect more than one device, another line is required for handshaking.

12.6 Selecting Start Bit for 3-Wire Serial I/O Mode Transmission

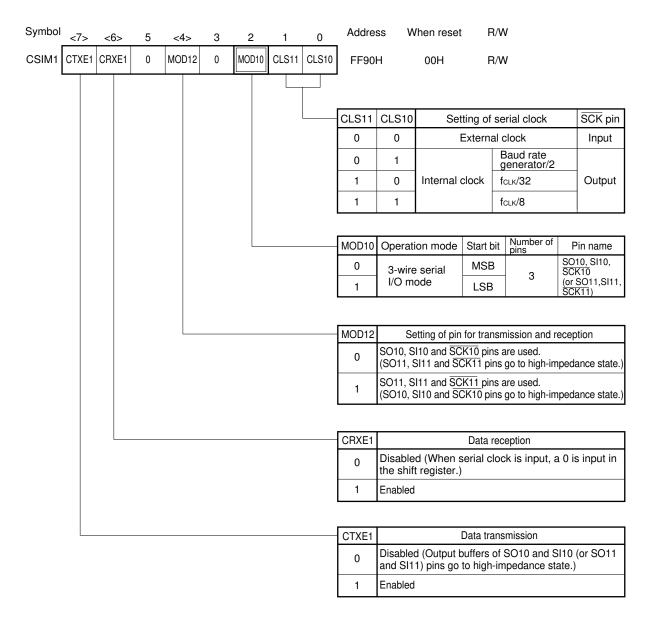
The start bit for the 3-wire serial I/O mode transmission can be selected using the clock synchronous serial interface mode register 1 (CSIM1). Since the MSB or LSB can be selected as the start bit, communication can be performed with a variety of devices.

(1) Selecting start bit for 3-wire serial I/O mode transmission


The start bit for the 3-wire serial I/O mode transmission is selected using the MOD10 bit of the CSIM1 register. (See **Fig. 12-10**.) Since the MSB or LSB can be selected as the start bit, communication can be performed with a variety of devices.


(2) Operation timing in 3-wire serial I/O mode

In the 3-wire serial I/O mode, data is transmitted and received in blocks of eight bits, with either the MSB or LSB as the start bit (specified in the CSIM1 register). The eight-bit data block is transferred bit by bit in synchronization with the serial clock.


Transmitted data is output in synchronization with the falling edge of the $\overline{SCK10}$ or $\overline{SCK11}$ signal. Received data is sampled at the rising edge of the $\overline{SCK10}$ or $\overline{SCK11}$ signal. At the rising edge of the 8th $\overline{SCK10}$ or $\overline{SCK11}$ signal, interrupt request INTCSI1 is generated.

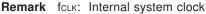

When the internal clock is used as the $\overline{SCK10}$ or $\overline{SCK11}$ signal, the output is halted at the rising edge of the 8th $\overline{SCK10}$ or $\overline{SCK11}$ signal. The $\overline{SCK10}$ or $\overline{SCK11}$ pin maintains the high level until the transmission or reception of the next data block is activated.

Fig. 12-10. Setting of CSIM1 Register (Start Bit for 3-Wire Serial I/O Mode)

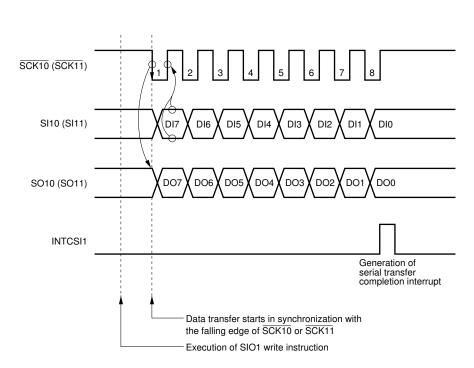
12.6.1 Transmitting data in 3-wire serial I/O mode

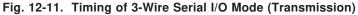
Writing data in the shift register (SIO1) after enabling transmission in the clock synchronous serial interface mode register 1 (CSIM1) activates transmission.

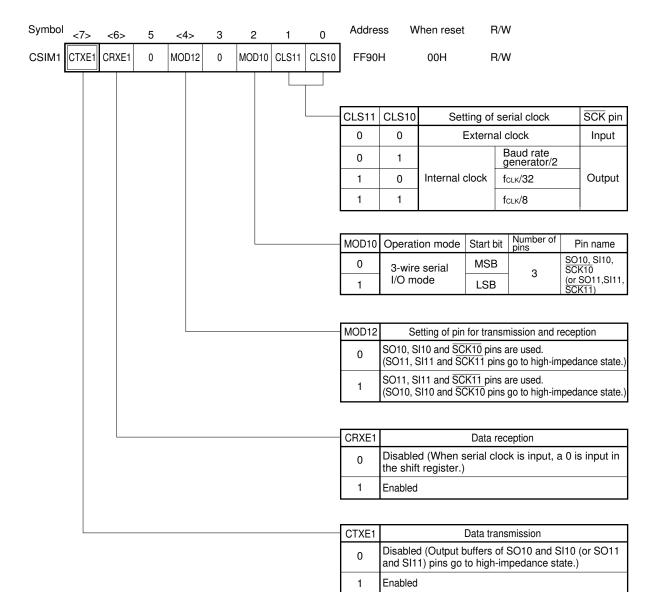
(1) Activating transmission

Transmission is activated by setting the CTXE1 bit of the CSIM1 register to 1 (set the CRXE1 bit to 0) and then writing transmission data to the SIO1 register. The block transfer (BLKTRS) mode of the macro service is useful in writing data to the SIO1 register.

While the CTXE1 bit is reset to 0, the output of the SO10 or SO11 pin remains in the high-impedance state.


(2) Transmitting data in synchronization with the serial clock


(a) When an internal clock is selected as the serial clock


Once transmission is activated, the SCK10 or SCK11 pin starts the output of the serial clock. The SIO1 register then sequentially transfers data to the SO10 or SO11 pin in synchronization with the falling edge of the serial clock.

(b) When an external clock is selected as the serial clock

Upon the activation of transmission, data is sequentially transmitted from SIO1 to the SO10 or SO11 pin in synchronization with the falling edge of the serial clock that is input to the $\overline{SCK10}$ or $\overline{SCK11}$ pin. When transmission is not activated, sending the serial clock to the $\overline{SCK10}$ or $\overline{SCK11}$ pin does not cause the SIO1 register to transfer data and the output level of the SO10 or SO11 pin does not change.

Fig. 12-12. Setting of CSIM1 Register (Transmission Enabled)

Remark fclk: Internal system clock

12.6.2 Receiving data in 3-wire serial I/O mode

The reception is activated by setting the CRXE1 bit of the clock synchronous serial interface mode register 1 (CSIM1) to 1 (reception enabled) (when CTXE1 = 0) or, when reception is already enabled, by reading data from the shift register (SIO1).

(1) Activating reception

Reception can be activated in the following two ways:

- <1> When CTXE1 bit is 0, change the setting of the CRXE1 bit of the CSIM1 register from 0 (reception disabled) to 1 (reception enabled).
- <2> When the CRXE1 bit is already set to 1, read data from the SIO1 register.

The block transfer (BLKTRS) mode of the macro service is useful in reading received data from the SIO1 register. Attempting to set the CRXE1 bit to 1 when it is already set to 1 does not activate reception. Furthermore, attempting to set the CRXE1 bit to 1 from 0 when CTXE1 bit is 1 does not activate reception.

(2) Receiving data in synchronization with the serial clock

(a) When an internal clock is selected as the serial clock

Once reception is activated, the SCK10 or SCK11 pin starts the output of the serial clock. The data is sequentially read from the SI10 or SI11 pin to SIO1 in synchronization with the rising edge of the serial clock.

(b) When an external clock is selected as the serial clock

Once reception is activated, the data is sequentially read from the SI10 or SI11 pin to SIO1 in synchronization with the rising edge of the serial clock input to the $\overline{SCK10}$ or $\overline{SCK11}$ pin. When reception is not activated, inputting the serial clock to the $\overline{SCK10}$ or $\overline{SCK11}$ pin does not cause the SIO1 register to transfer the data.

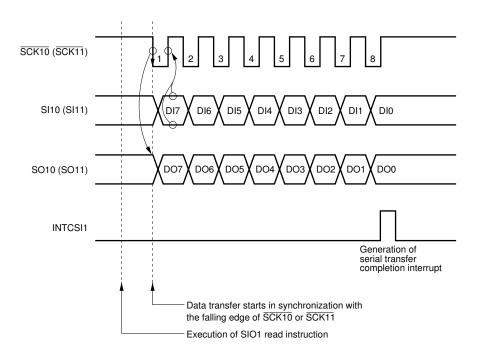
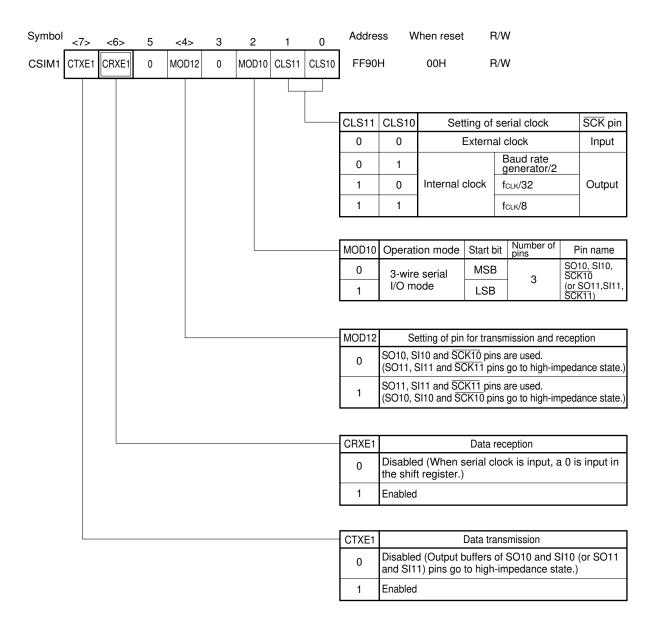



Fig. 12-13. Timing of 3-Wire Serial I/O Mode (Reception)

Fig. 12-14. Setting of CSIM1 Register (Reception Enabled)

Remark folk: Internal system clock

12.6.3 Transmitting and receiving data in 3-wire serial I/O mode

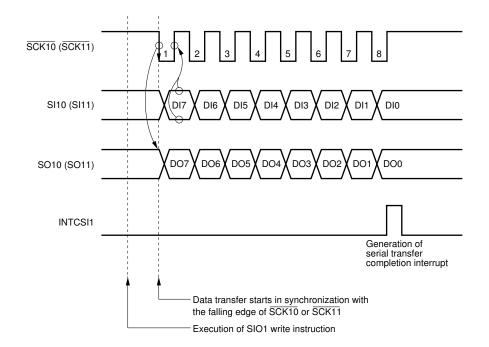
Enabling both transmission and reception using the clock synchronous serial interface mode register 1 (CSIM1) allows the two operations to be performed simultaneously.

(1) Activating transmission and reception

Transmission and reception can be performed simultaneously when the CTXE1 and CRXE1 bits of the CSIM1 register are both set to 1.

The transmission and reception can be activated by writing the transmitted data to the shift register 1 (SIO1) when both the CTXE1 and CRXE1 bits of the CSIM1 register become 1 (transmission/reception enable state). Attempting to set the CRXE1 bit to 1 when it is already set to 1 does not activate transmission or reception.

(2) Transmitting and receiving data in synchronization with the serial clock


(a) When an internal clock is selected as the serial clock

Once transmission and reception are activated, the SCK10 or SCK11 pin starts the output of the serial clock. The SIO1 register then sequentially transfers data to the SO10 or SO11 pin in synchronization with the falling edge of the serial clock. At the same time, data is sequentially read from the SI10 or SI11 pin to SIO1 in synchronization with the rising edge of the serial clock.

(b) When an external clock is selected as the serial clock

Upon the activation of transmission and reception, data are sequentially transmitted from SIO1 to the SO10 or SO11 pin in synchronization with the falling edge of the serial clock that is input to the $\overline{SCK10}$ or $\overline{SCK11}$ pin. At the same time, data is sequentially read from the SI10 or SI11 pin to SIO1 in synchronization with the rising edge of the serial clock. When transmission and reception are not activated, sending the serial clock to the $\overline{SCK10}$ or $\overline{SCK11}$ pin does not cause the SIO1 register to transfer data and the output level of the SO10 or SO11 pin does not change.

Remark INTCSI1: Vector table address: 0032H (TFP = 0), 8032H (TFP = 1) Macro service control word address: FE32H

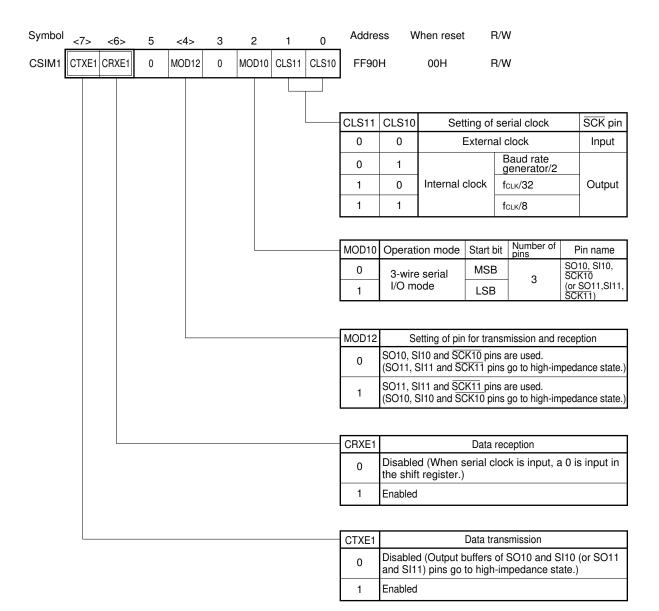


Fig. 12-16. Setting of CSIM1 Register (Transmission and Reception Enabled)

Remark fclk: Internal system clock

12.6.4 Action taken when shift operation is not in phase with serial clock

The synchronization of the shift operation with the serial clock can be restored by disabling both transmission and reception.

Action taken when shift operation is not in phase with serial clock

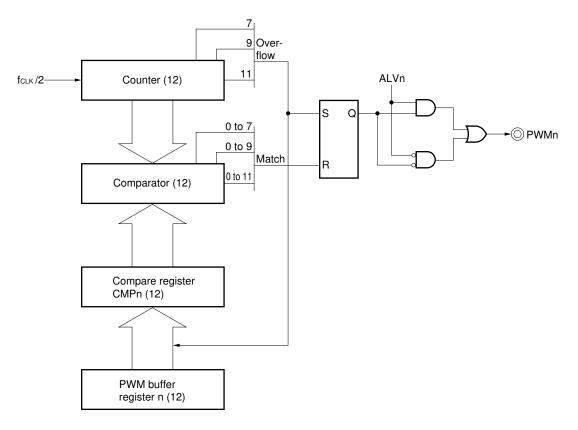
When an external clock is being used as the serial clock, a mismatch between the number of serial clock pulses and the shift operation can occur (for example because of noise). When this happens, disable both transmission and reception by setting the CTXE1 and CRXE1 bits to 0 (reset). This initializes the serial clock counter. Then, enable transmission and reception, and the first pulse input will be treated as the first serial clock. Based on this first clock, the synchronization between the shift operation and serial clock is restored.

CHAPTER 13 PWM SIGNAL OUTPUT FUNCTION

Phase-out/Discontinued

13.1 Configuration

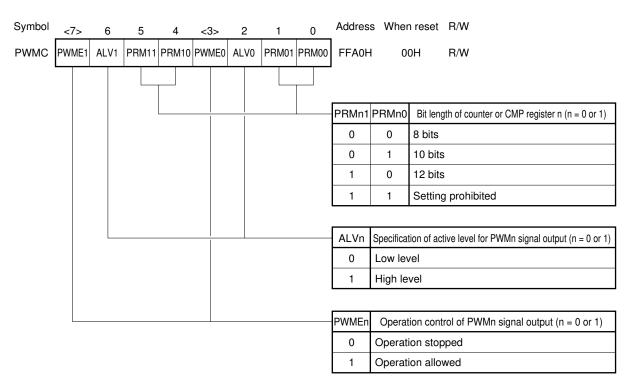
The μ PD78356 has two PWM signal outputs of 8-/10-/12-bit variable resolution. By externally connecting a lowpass filter, a PWM output can be used as a digital-to-analog conversion output. The PWM outputs are most suitable, for example, for a control signal for the actuator of a motor.


Table 13-1 lists PWM signal output repetition frequencies. Fig. 13-1 shows the block diagram of the PWM unit.

Resolution per bit	Bit length for PWM output	Repetition frequency
	8 bits	fc∟к/2 ⁹ (31.2 kHz)
2/fclк (125 ns)	10 bits	fськ/2 ¹¹ (7.8 kHz)
	12 bits	fclк/2 ¹³ (1.9 kHz)

Table 13-1. PWM Signal Repetition Frequencies

Remark The values in parentheses are for fclk = 16 MHz.


Remark n = 0 or 1

13.2 Control Register

13.2.1 PWM control register (PWMC)

The PWM control register controls PWM output. Fig. 13-2 shows the format of the PWMC register. When a $\overrightarrow{\text{RESET}}$ signal is input, the PWMC register is located at 00H.

Fig. 13-2. Format of PWM Control Register

13.2.2 PWM buffer registers (PWM0 and PWM1)

The PWM0 and PWM1 registers are 12-bit registers that set the data for controlling the active signal width of PWM output. Data can be read from or written into the registers in units of bytes or words by an instruction.

When an overflow occurs in the counter for PWM output control, the contents of the PWM0 or PWM1 register are transferred to compare register CMP0 or CMP1.

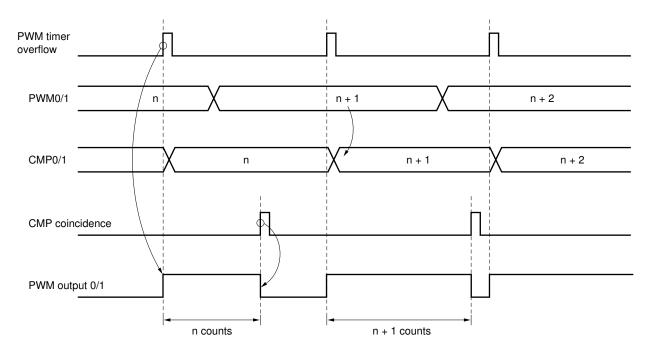
A RESET input signal makes the contents of the PWM buffer registers undefined.

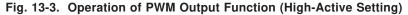
Caution Byte access/bit access is possible for the low-order of the PWM0/PWM1 register, but not for its high-order.

13.2.3 Compare registers (CMP0 and CMP1)

The CMP0 and CMP1 compare registers are 12-bit registers used to detect coincidence between the values of the register and counter for PWM output control.

The registers cannot be directly manipulated by an instruction.


13.3 Operation


The PWM output function is used in the following procedure:

- The PWM output signal period is specified by bit ALV0 or ALV1 of the PWMC register.
- The data for controlling the active signal width of PWM output is set in the PWM0 or PWM1 register.
- Bit PWME0 or PWME1 of the PWMC register is set to 1.

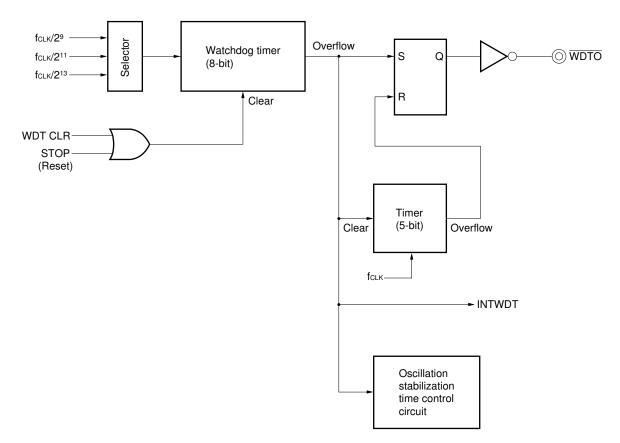
After these steps are completed, a PWM signal is output from port P86 or P87. The active signal width of PWM output can be changed by rewriting the contents of the PWM0 or PWM1 register.

The PWM output function sends the contents of the PWM0 or PWM1 register to the CMP0 or CMP1 register when the counter for PWM output control overflows. The PWM output signal goes inactive when the contents of the CMP0 or CMP1 register coincide with the value of the counter for PWM output control. The PWM output signal goes active when the counter for PWM output control overflows.

CHAPTER 14 WATCHDOG TIMER

Phase-out/Discontinued

14.1 Configuration


The watchdog timer prevents crashes or deadlocks.


If no watchdog timer interrupt occurs, the program or system is running normally. Each module of a program must have an instruction to clear the watchdog timer and to start counting.

If the instruction to clear the watchdog timer is not executed within a specified time period, an overflow occurs in the watchdog timer and a watchdog timer interrupt (INTWDT) is generated. At the same time, the \overline{WDTO} pin goes low to indicate that an error has occurred in the program.

The watchdog timer can also be used to guarantee a time required for the oscillator to perform stable operation when the STOP mode is released. (See **16.3.2**.)

Fig. 14-1 shows the block diagram of the watchdog timer.

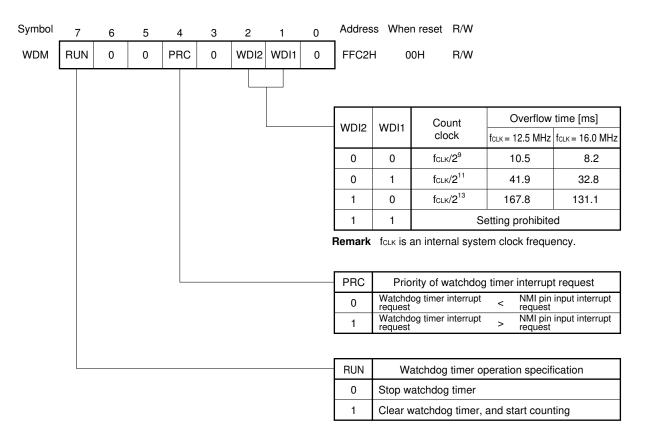
14.2 Watchdog Timer Mode Register (WDM)

The watchdog timer mode (WDM) register is an 8-bit register which controls the operation of the watchdog timer.

Data can be written into the WDM register only by a special instruction. This prevents the contents of the WDM register from being rewritten accidentally if the program crashes. The specialized instruction is MOV WDM, #byte instruction, consisting of special codes (4 bytes). Data is written only when the op-codes of bytes 3 and 4 complement each other.

Unless the op-codes of bytes 3 and 4 complement each other, data is not written and an op-code trap interrupt occurs. The address of the instruction causing the trap is saved in the stack area. When an RETB instruction is executed, the program can be restarted from the address of the instruction causing the trap.

If the RETB instruction is executed before a hardware error or other cause of the op-code trap is eliminated, the program enters an infinite loop.


If the watchdog timer is started after a system reset signal (RESET) is entered, the contents of the WDM register cannot be rewritten. Only the system reset signal can stop the watchdog timer. The watchdog timer can be cleared at any time by a special instruction.

The contents of the WDM register can be read at any time by a data transfer instruction.

When a RESET signal is input, the WDM register is located at 00H.

Fig. 14-2 shows the format of the WDM register.

Fig. 14-2. Format of the Watchdog Timer Mode Register

Cautions 1. Data can be written into the WDM register only by a dedicated instruction (MOV WDM, #byte).

- 2. Do not change the priority for interrupt requests dynamically, that is, when a program is being executed.
- 3. The RUN bit cannot be reset to 0 by software.
- 4. The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit to 1.

14.3 Watchdog Timer Output Pin

The watchdog timer output pin (\overline{WDTO}) is an open-drain output pin which can report a system error to the outside without software intervention. When the watchdog timer overflows, the watchdog timer output goes low for a period of 32 system clocks.

As the RESET pin can be directly connected, the watchdog timer output pin outputs a low-level signal for a period of 32 clocks even when a system reset occurs.

Caution Immediately after the power is turned on, the watchdog timer output pin may go low for a period of up to 32 clocks.

14.4 Example of Application

At an early stage in program development, a program is designed without the watchdog timer. After rough debugging is completed, the program is debugged with the watchdog timer.

The watchdog timer must be set in the mode of short overflow time if the response time after a system error is critical.

When the watchdog timer is not required, it can be used for nonmaskable time base interrupt.

CHAPTER 15 INTERRUPT FUNCTION

The μ PD78356 is provided with the following three modes for handling interrupt requests. (See **Table 15-1**). These three modes can be set freely in the program. Interrupt processes by macro service however can be selected only for the interrupt requests sources provided with the macro service processing modes shown in Table 15-2. Context switching cannot be selected for nonmaskable interrupt requests and op-code trap interrupt requests.

Interrupt request handling mode	Handled by	Contents of PC and PSW	Handling
Vectored interrupt	Software	Saving/restoring to stack	Branches into the addresses specified in the vector table and executes the interrupt processing routine.
Context switching		Saving/restoring to the fixed area in register bank	Automatically switched to the register bank specified in the vector table, branches to the addresses specified in the fixed area in the register bank, and executes the interrupt processing routine.
Macro service	Hardware (Firmware)	Retained	Executes preset processes such as data transfer between the memory and I/O.

Table 15-1. Interrupt Request Handling

For maskable vectored interrupts, multiple processing control with a 4-level priority order can be performed easily.

Default	terrint reducet	Internint recipect	Interrupt source	llnit raduacting	Macro service	Macro service control word	Vector table address	e address
nterrupt sig	rupt request signal	Interrupt request interrupt request signal	Source	unit requesting interrupt		address	TPF = 0	TPF = 1
			Op-code trap				800	003CH
			Execution of BRK instruction		Not provided		200	003EH
	IMN	1	Input to NMI pin	External			0002H	8002H
Z	INTWDT	1	Watchdog timer overflow	WDT			0004H	8004H
Ξ	INTOV0	OVIF0	Timer 0 overflow	-		FE06H	0006H	8006H
∣≥	INTOV3	OVIF3	Timer 3 overflow			FE08H	0008H	8008H
NTP(INTP0/INTCC00	PIFO	INTP0 pin input/CC00 match signal			FEOAH	000AH	800AH
NTP	INTP1/INTCC01	PIF1	INTP1 pin input/CC01 match signal			FEOCH	000CH	800CH
NTP2	INTP2/INTCC02	PIF2	INTP2 pin input/CC02 match signal	External/RPU		FEOEH	000EH	800EH
NTP	INTP3/INTCC30	PIF3	INTP3 pin input/CC30 match signal			FE10H	0010H	8010H
NTP.	INTP4/INTCC31	PIF4	INTP4 pin input/CC31 match signal			FE12H	0012H	8012H
Z	INTCM00	CMIF00	CM00 match signal		Provided	FE14H	0014H	8014H
Z	INTCM01	CMIF01	CM01 match signal			FE16H	0016H	8016H
Ē	INTCM02	CMIF02	CM02 match signal			FE18H	0018H	8018H
Z	INTCM03	CMIF03	CM03 match signal			FE1AH	001AH	801AH
Z	INTCM10	CMIF10	CM10 match signal	RPU		FE1CH	001CH	801CH
Ľ	INTCM11	CMIF11	CM11 match signal			FE1EH	001EH	801EH
Z	INTCM20	CMIF20	CM20 match signal			FE20H	0020H	8020H
Z	INTCM21	CMIF21	CM21 match signal			FE22H	0022H	8022H
≤	INTCM40	CMIF40	CM40 match signal			FE24H	0024H	8024H

Table 15-2. Interrupt Sources (1/2)

Remark Default priority: priority fixed by hardware

type priority Interrupt request signal Interrupt request flag Source Unit requesting Macro service 16 INTCMUD0 CMIFUD1 CMID0 match signal Unit requesting Macro service 17 INTCMUD0 CMIFUD1 CMUD1 match signal RPU RPU 18 INTSER SERIF CMUD1 match signal RPU RPU 19 INTSR SRIF Serial receive error UART Provided 20 INTST STIF Serial transmission completion UART Provided 21 INTCSI0 CSIFO reception completion CSI0 CSI0 22 INTCSI1 CAIIF1 Serial transmission/ CSI0 CSI0 23 INTAD ADIF A/D conversion completion MCI MCI 23 INTAD ADIF A/D conversion completion A/D MCI 23 INTAD ADIF Input to RESET pin MCI MI	Interrupt	Default			Interrupt source			Macro service	Vector table address	e address
	request type		Interrupt request signal	Interrupt request flag	Source	Unit requesting interrupt	Macro service	control word address	TPF = 0	TPF = 1
17 INTCMUD1 CMIFUD1 CMUD1 match signal 18 INTSER SERIF Serial receive error 19 INTSR SRIF Serial reception completion 20 INTST STIF Serial transmission completion 21 INTCSIO CSIIFO Serial transmission/ 22 INTCSI CAIIF1 Serial transmission/ 23 INTAD ADIF Serial transmission/ 23 INTAD ADIF A/D conversion completion ADIF A/D conversion completion A/D		16	INTCMUD0	CMIFUD0	CMUD0 match signal			FE26H	0026H	8026H
Image:		17	INTCMUD1	CMIFUD1	CMUD1 match signal	0		FE28H	0028H	8028H
19 INTSR SRIF Serial reception completion UART 20 INTST STIF Serial transmission completion UART 21 INTCSI0 CSIIF0 Serial transmission/ CSI0 22 INTCSI1 CAIIF1 Serial transmission/ CSI0 23 INTAD ADIF A/D conversion completion A/D - RESET - Input to RESET pin -		18	INTSER	SERIF	Serial receive error			FE2AH	002AH	802AH
ble 20 INTST STIF Serial transmission completion 21 INTCSI0 CSIIF0 Serial transmission/ CSI0 22 INTCSI1 CAIIF1 Serial transmission/ CSI0 23 INTAD ADIF A/D conversion completion A/D - RESET - Input to RESET pin -		19	INTSR	SRIF	Serial reception completion	UART		FE2CH	002CH	802CH
21 INTCSI0 CSIIF0 Serial transmission/ reception completion CSI0 22 INTCSI1 CAIIF1 Serial transmission/ reception completion CSI0 23 INTAD ADIF A/D conversion completion A/D - RESET - Input to RESET pin -	Maskable	20	INTST	STIF	Serial transmission completion	I	Provided	FE2EH	002EH	802EH
22 INTCSI1 CAIIF1 Serial transmission/ CSI1 23 INTAD ADIF A/D conversion completion A/D - RESET - Input to RESET pin -		21	INTCSI0	CSIIF0	Serial transmission/ reception completion	CSIO		FE30H	H0800	8030H
23 INTAD ADIF A/D conversion completion A/D - RESET - Input to RESET pin -		22	INTCS11	CAIIF1	Serial transmission/ reception completion	CSI1		FE32H	0032H	8032H
BESET Input to RESET pin -		23	INTAD	ADIF	A/D conversion completion	A/D		FE34H	0034H	8034H
	Reset		RESET		Input to RESET pin		Not provided		H0000	НО

Table 15-2. Interrupt Sources (2/2)

Remark Default priority: priority fixed by hardware

15.1 Interrupt Requests

With the μ PD78356, four types of interrupt requests are used:

- · Nonmaskable interrupt
- · Maskable interrupt
- · Software interrupt
- · Op-code trap interrupt

Each type of interrupt request is explained below.

15.1.1 Nonmaskable interrupt

The nonmaskable interrupt is generated by the NMI pin input or watchdog timer. The nonmaskable interrupt is accepted unconditionally^{Note} even in the interrupt disabled state. It is also not subjected to the interrupt priority level control and has priority over all the other interrupts.

Note Except while the same nonmaskable interrupt handling is being executed and while nonmaskable interrupt handlings with higher priority are being executed.

15.1.2 Maskable interrupt

The maskable interrupt is an interrupt which is mask controlled according to the setting of the interrupt mask flags. Acceptance able/disable can be specified for all the maskable interrupts using the PSW IE flag.

The maskable interrupt can also be accepted by context switching and macro service in addition to the normal vectored interrupt. (See **Table 15-2**).

The top priority of maskable interrupt is determined when several interrupt requests with the same priority as shown in Table 15-2 are generated together (Default priority level). The interrupt priority level can be divided into 4 groups of different levels and multiple handling control can be performed. The macro service however can be accepted regardless of the priority level control and IE flag.

The software interrupts consist of the BRK instruction which generates the vectored interrupt and BRKCS instruction which performs context switching.

The software interrupt can be accepted even in the interrupt disabled state. It is not subject to the interrupt priority level control.

15.1.4 Op-code trap interrupt

If a write to the watchdog timer mode register (WDM) or standby control register (STBC) is not executed normally, an op-code trap interrupt request is generated. (See **14.2** and **16.2**.)

The op-code trap interrupt can also be accepted in the DI state. It is not subject to the interrupt priority level control.

15.2 Interrupt Servicing Modes

With the μ PD78356, three interrupt servicing modes are available:

- · Vectored interrupt servicing
- · Macro service
- · Context switching

15.2.1 Vectored interrupt service

When an interrupt is acknowledged, the contents of program counter (PC) and program status word (PSW) are saved in the stack memory automatically. Then a branch is made to the address indicated by the data contained in the vector address table to execute the interrupt service routine.

RETI instruction is executed to the return from the interrupt service routine.

15.2.2 Macro service

When an interrupt is accepted, CPU execution is terminated temporarily to transfer data by hardware rather than by software. The macro service is performed without CPU involvement, so that the CPU statuses such as PC and PSW need not be saved or restored. Thus the macro service much increases CPU service time. (See **15.8**)

15.2.3 Context switching

When an interrupt is accepted, a specified register bank is selected by hardware. Then a branch is made to the already selected vector address in the register bank, and the current contents of PC and PSW are saved in the register bank at the same time. (See **15.5.2** and **15.6.2**)

Remark The context means CPU registers that can be accessed from a program being executed. The registers include general registers, PC, PSW, and stack pointer (SP).

15.3 Interrupt Control Registers

Responses to interrupts in the μ PD78356 are controlled according to the interrupt requests. This control is done using control registers that specify how interrupts are handled. Table 15-3 lists interrupt control registers.

Register	Symbol	Function
Interrupt control register	OVIC0	Each register indicates interrupt request generation, performs mask control,
	OVIC3	specified vectored interrupt handling or macro service processing, enables or
	PIC0	disables the context switching function, and specifies priority.
	PIC1	
	PIC2	
	PIC3	
	PIC4	
	CMIC00	
	CMIC01	
	CMIC02	
	CMIC03	
	CMIC10	
	CMIC11	
	CMIC20	
	CMIC21	
	CMIC40	
	CMICUD0	
	CMICUD1	
	SERIC	
	SRIC	
	STIC	
	CSIIC0	
	CSIIC1	
	ADIC	
Interrupt mask flag	MK0	Each register performs mask control for maskable interrupt requests and is set in
register	MK1	correspondence with the mask control flag of the interrupt control register. Each
		register can be accessed in words or in bytes.
In-service priority register	ISPR	Indicates priority of currently accepted interrupt request.
Interrupt mode control	IMC	Controls nesting of maskable interrupt for which lowest priority (level 3) is specified.
register		

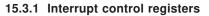

A control register is assigned to each interrupt source. The flags of each register are used to specify various types of control which are determined by the bit positions in the register.

Table 15-4 lists the flags in the interrupt control registers for the interrupt request signals.

Table 15-4. Interrupt Control Register Flags for the Interrupt Request Signals

Default			II	nterrupt control reg	ister		
priority	Interrupt request signal	Interrupt request flag	Interrupt mask flag	Macro service enable flag	Priority specification flag	Context switching enable flag	
0	INTOV0	OVIF0	OVMK0	OVISM0	OVPR00 OVPR01	OVCSE0	
1	INTOV3	OVIF3	OVMK3	OVISM3	OVPR30 OVPR31	OVCSE3	
2	INTP0/ INTCC00	PIF0	РМК0	PISM0	PPR00 PPR01	PCSE0	
3	INTP1/ INTCC01	PIF1	PMK1	PISM1	PPR10 PPR11	PCSE1	
4	INTP2/ INTCC02	PIF2	PMK2	PISM2	PPR20 PPR21	PCSE2	
5	INTP3/ INTCC30	PIF3	РМК3	PISM3	PPR30 PPR31	PCSE3	
6	INTP4/ INTCC31	PIF4	PMK4	PISM4	PPR40 PPR41	PCSE4	
7	INTCM00	CMIF00	CMMK00	CMISM00	CMPR000 CMPR001	CMCSE00	
8	INTCM01	CMIF01	CMMK01	CMISM01	CMPR010 CMPR011	CMCSE01	
9	INTCM02	CMIF02	CMMK02	CMISM02	CMPR020 CMPR021	CMCSE02	
10	INTCM03	CMIF03	CMMK03	CMISM03	CMPR030 CMPR031	CMCSE03	
11	INTCM10	INTCM10 CMIF10 CMMK10 (CMISM10	CMPR100 CMPR101	CMCSE10	
12	INTCM11	CMIF11	CMMK11	CMISM11	CMPR110 CMPR111	CMCSE11	
13	INTCM20	CMIF20	CMMK20	CMISM20	CMPR200 CMPR201	CMCSE20	
14	INTCM21	CMIF21	CMMK21	CMISM21	CMPR210 CMPR211	CMCSE21	
15	INTCM40	CMIF40	CMMK40	CMISM40	CMPR400 CMPR401	CMCSE40	
16	INTCMUD0	CMIFUD0	CMMKUD0	CMISMUD0	CMPRUD00 CMPRUD01	CMCSEUD0	
17	INTCMUD1	CMIFUD1 CMMKUD1 CM		CMISMUD1	CMPRUD10 CMPRUD11	CMCSEUD1	
18	INTSER	SERIF	SERMK	SERISM	SERPR0 SERPR1	SERCSE	
19	INTSR	SRIF	SRMK	SRISM	SRPR0 SRCSE SRPR1		
20	INTST	STIF	STMK	STISM	STPR0 STPR1	STCSE	
21	INTCSIO	CSIIF0	CSIMK0	CSIISM0	CSIPR00 CSIPR01	CSICSE0	
22	INTCSI1	CSIIF1	CSIMK1	CSIISM1	CSIPR10 CSIPR11	CSICSE1	
23	INTAD	ADIF	ADMK	ADISM	ADPR0 ADPR1	ADCSE	

The interrupt control registers are assigned to different interrupt sources. Each register is used to control priority and masking for its associated interrupt source. Fig. 15-1 shows the format of the interrupt control registers.

(1) Priority specification flag (xxPR1, xxPR0)

The priority specification flags specify the priority of the associated interrupt source for the twenty-four maskable interrupts.

Priority level 0 to 4 can be specified. More than one interrupt source can have the same priority level. Maskable interrupt sources with level 0 have the highest priority.

If more than one interrupt request is generated and the interrupt sources have the same priority level, the requests are accepted according to the default priority.

The flags are set or reset bit by bit by software.

RESET input sets all bits to 1.

(2) Context switching enable flag (xxCSE)

The context switching enable flag specifies whether to respond to a maskable interrupt request with context switching.

The context switching function selects the previously specified register bank on a hardware basis, makes a branch to the vector address stored in the register bank, and also saves the contents of the current program counter (PC) and program status word (PSW) in the register bank.

Context switching can start interrupt service at a higher speed than normal vectored interrupt handling. Context switching is therefore appropriate for real-time processing.

The flag is set or reset bit by bit by software.

RESET input sets all bits to 0.

(3) Macro service enable flag (xxISM)

The macro service enable flag specifies whether to respond to the associated interrupt request with vectored interrupt handling or macro service processing.

If macro service processing is selected, when macro service terminates (when the macro service counter overflows) and a vectored interrupt is generated, the flag is automatically reset to 0 by hardware (vectored interrupt handling).

The flag can be set or reset bit by bit by software.

RESET input sets all bits to 0.

(4) Interrupt mask flag (xxMK)

The interrupt mask flag enables or disables vectored interrupt processing or macro service processing for the associated interrupt request.

The interrupt mask flag is not changed by the activation of interrupt handling. The setting of the interrupt mask flag matches the contents of the interrupt mask flag register. (See **15.3.2.**)

As the macro service request is subject to mask control, the macro service request can also be masked by this flag.

This flag can be set or reset bit by bit by software.

RESET input sets all bits to 1.

The interrupt handling is determined by the combination of the interrupt mask flag (xxMK) and macro service enable flag (xxISM).

xxMK	xxISM	Interrupt handling
0	0	Handled by vectored interrupt
0	1	Handled by vectored interrupt after handling by macro service
1	х	Maskable interrupt requests are not accepted

(5) Interrupt request flag (xxIF)

The interrupt request flag is set to 1 when the associated interrupt request is generated. When the interrupt is accepted, the flag is automatically reset to 0 by hardware.

This flag can be set or reset bit by bit by software.

RESET input sets all bits to 0.

Symbol Address When reset R/W <7> <6> <5> <4> 3 2 <1> <0> OVIC0 OVIF0 OVMK0 OVISM0 OVCSE0 0 OVPR01 OVPR00 FFE0H R/W 0 43H OVIC3 OVIF3 OVMK3 OVISM3 OVCSE3 0 OVPR31 OVPR30 FFE1H 43H R/W 0 PIC0 PIF0 PMK0 PISM0 PCSE0 0 0 PPR01 PPR00 FFE2H 43H R/W PIC1 PIF1 PMK1 PISM1 PCSE1 0 0 PPR11 PPR10 FFE3H 43H R/W PIC2 PPR20 PIF2 PMK2 PISM2 PCSE2 0 0 PPR21 FFE4H 43H R/W PIC3 PIF3 PMK3 PISM3 PCSE3 0 0 PPR31 PPR30 FFE5H 43H R/W PPR41 PIC4 PIF4 PMK4 PISM4 PCSE4 PPR40 FFE6H 0 0 43H R/W CMMK CMISM CMCSE CMPR CMPR CMIC00 CMIF00 0 0 FFF7H R/W 43H 000 00 00 00 001 xxPR1 xxPR0 Priority specification 0 Priority 0 (highest priority) 0 0 1 Priority 1 1 0 Priority 2 1 1 Priority 3 xxCSE Context switching enable flag 0 Handled by vectored interrupt 1 Handled by context switching xxISM Macro service enable flag 0 Handled by vectored interrupt 1 Handled by macro service xxMK Interrupt request enable/disable specification 0 Enables interrupt handling 1 Disables interrupt handling xxIF Interrupt request flag No interrupt request. The interrupt request signal is not generated. 0 The interrupt request signal is generated, and an interrupt 1

is requested.

Fig. 15-1. Format of the Interrupt Control Registers (1/3)

Symbol <7		<6>	<5		<4	 3	2	<1>	<0>	Address	Wher	n reset	R/W
CMIC01 CMI	F01	CMMK 01	CM 0		CM(0 ⁻	0	0	CMPR 011	CMPR 010	FFE8H	43	3H	R/W
CMIC02 CMI	F02	CMMK 02	CM 0	IISM 2	CM0	0	0	CMPR 021	CMPR 020	FFE9H	43	3H	R/W
	F03	CMMK 03	CM 0	IISM 3	CM(0(0	0	CMPR 031	CMPR 030	FFEAH	43	3H	R/W
	F10	CMMK 10	CM	IISM 0	CM(1(0	0	CMPR 101	CMPR 100	FFEBH	43	3H	R/W
CMIC11 CMI	F11	CMMK 11	CM	IISM 1	СМ(1 ⁻	0	0	CMPR 111	CMPR 110	FFECH	43	3H	R/W
CMIC20 CMI	F20	CMMK 20	CM 2	IISM 0	CM(2(0	0	CMPR 201	CMPR 200	FFEDH	43	3H	R/W
CMIC21 CMI	F21	CMMK 21	CM 2	IISM 1	CM(2 ⁻	0	0	CMPR 211	CMPR 210	FFEEH	43	3H	R/W
	F40	CMMK 40	CM	IISM 0	CM(4)	0	0	CMPR 401	CMPR 400	FFEFH	43	3H	R/W
										xxPR1	xxPR0		Priority specification
										0	0	Priorit	y 0 (highest priority)
										0	1	Priorit	y 1
										1	0	Priorit	y 2
										1	1	Priorit	y 3
					Į	 				xxCSE		Con	text switching enable flag
										0	Handle	ed by ve	ectored interrupt
										1	Handle	ed by co	ontext switching
						 				xxISM		M	acro service enable flag
										0	Handle	ed by ve	ectored interrupt
										1	Handle	ed by m	acro service
						 				xxMK	Inte	rrupt re	equest enable/disable specification
										0	Enable	s interr	rupt handling
										1	Disable	es inter	rupt handling
Į						 				xxIF			Interrupt request flag
										0	generat	ed.	uest. The interrupt request signal is not
										1	The inte	errupt re ested.	quest signal is generated, and an interrupt

Fig. 15-1. Format of the Interrupt Control Registers (2/3)

Symbol Address When reset R/W <6> 3 2 <0> <7> <5> <4> <1> CMIF CMMK CMISM CMCSE CMPR CMPR 0 CMICUD0 0 FFF0H 43H R/W UD0 UD0 UD0 UD0 UD01 UD00 CMIF CMMK CMISM CMCSE CMPR CMPR CMICUD1 0 0 FFF1H 43H R/W UD1 UD1 UD1 UD1 UD11 UD10 SERIC SERIF SERMK SERISM SERCSE FFF2H 0 0 SERPR1 SERPR0 43H R/W SRISM SRCSE FFF3H SRIC SRIF SRMK 0 0 SRPR1 SRPR0 43H R/W FFF4H STIC STIF STMK STISM STCSE 0 0 STPR1 STPR0 43H R/W CSI CSI CSI CSI FFF5H CSIIC0 CSIIF0 CSIMK0 0 0 43H R/W ISM0 CSE0 PR01 PR00 CSI CSI CSI CSI CSIIC1 FFF6H CSIIF1 CSIMK1 43H R/W 0 0 ISM1 PR11 PR10 CSE1 ADIC ADIF ADMK ADISM ADCSE ADPR1 ADPR0 FFF7H 0 0 43H R/W xxPR1 xxPR0 Priority specification 0 0 Priority 0 (highest priority) 1 Priority 1 0 1 0 Priority 2 1 Priority 3 1 xxCSE Context switching enable flag 0 Handled by vectored interrupt 1 Handled by context switching xxISM Macro service enable flag Handled by vectored interrupt 0 1 Handled by macro service Interrupt request enable/disable specification **xxMK** 0 Enables interrupt handling 1 Disables interrupt handling xxIF Interrupt request flag No interrupt request. The interrupt request signal is not generated. 0 The interrupt request signal is generated, and an interrupt 1 is requested

Fig. 15-1. Format of the Interrupt Control Registers (3/3)

15.3.2 Interrupt mask flag register (MK0 and MK1)

The interrupt mask flag registers (MK0 and MK1) are made up of interrupt mask flags for the associated twentyfour maskable interrupt requests.

The MK0 register is a 16-bit register which can be manipulated in 16 bits. It can also be manipulated in 8 bits as MK0L and MK0H.

The MK1 register is a 16-bit register which can be manipulated in 16 bits. In addition, it can also be manipulated in 8 bits as MK1L. Each bit of the MK0 and MK1 registers can be manipulated in 1 bit by the bit manipulation instruction. Each interrupt mask flag controls the enable/disable of the corresponding interrupt request.

When the interrupt mask flag is set (1), the acceptance of the corresponding interrupt request is disabled.

When the interrupt mask flag is set (0), the acceptance of the corresponding interrupt request is enabled, as the vectored interrupt or macro service.

The interrupt mask flags of the MK0 and MK1 registers are the same as those of the interrupt control registers. The MK0 and MK1 registers are provided so that interrupt masks can be controlled together.

The RESET input sets the interrupt mask flags to "1" and disables all maskable interrupts.

Fig. 15-2 shows the format of the interrupt mask flag registers.

Fig. 15-2. Format of the Interrupt Mask Flag Registers (1/2)

Symbol <7> <6> <3> <2> <1> <0> Address When reset R/W MK0L CMMK 00 PMK4 PMK3 PMK2 PMK1 PMK0 OVMK3 OVMK0 FFACH FFH R/W	
MKOH CMMK CMMK CMMK CMMK CMMK CMMK CMMK CMM	
MK1L ADMK CSI CSI STMK SRMK SERMK CMMK CMMK UD1 UD0 FFAEH FFH R/W	
xxMK Interrupt request enable/disable specifica	tion
0 Enables interrupt handling	
1 Disables interrupt handling	

Fig. 15-2. Format of the Interrupt Mask Flag Registers (2/2)

	(Whe	n acc	essec	l in w	ords)														
Symbol	102													» <2>				When reset	R/W
MK0	CMMK 40	CMMK 21	CMMK 20	CMMK 11	CMMK 10	CMMK 03	CMMK 02	CMMK 01	CMMK 00	PMK4	PMK3	PMK2	PMK	1 PMK0	OVMK3	OVMK0	FFACH	FFFFH	R/W
									1								I		
MK1	0	0	0	0	0	0	0	0	ADMK	CSI MK1	CSI MK0	STMK	SRM	KSERMK	UD1	CMMK UD0	FFAEH	00FFH	R/W
												ххМ	к	Inte	rrupt i	reques	st enable/d	lisable specifi	cation
												0		Enable	es inte	rrupt l	nandling		
												1		Disable	es inte	errupt	handling		

Relationship between bits and interrupt requests (MK0 register)

Bit	Bit name	Interrupt request source
Bit 0	OVMK0	Timer 0 overflow (INTOV0)
Bit 1	OVMK3	Timer 3 overflow (INTOV3)
Bit 2	PMK0	INTP0 pin input/CC00 match (INTP0/INTCC00)
Bit 3	PMK1	INTP1 pin input/CC01 match (INTP1/INTCC01)
Bit 4	PMK2	INTP2 pin input/CC02 match (INTP2/INTCC02)
Bit 5	PMK3	INTP3 pin input/CC30 match (INTP3/INTCC30)
Bit 6	PMK4	INTP4 pin input/CC31 match (INTP4/INTCC31)
Bit 7	CMMK00	CM00 match (INTCM00)
Bit 8	CMMK01	CM01 match (INTCM01)
Bit 9	CMMK02	CM02 match (INTCM02)
Bit 10	CMMK03	CM03 match (INTCM03)
Bit 11	CMMK10	CM10 match (INTCM10)
Bit 12	CMMK11	CM11 match (INTCM11)
Bit 13	CMMK20	CM20 match (INTCM20)
Bit 14	CMMK21	CM21 match (INTCM21)
Bit 15	CMMK40	CM40 match (INTCM40)

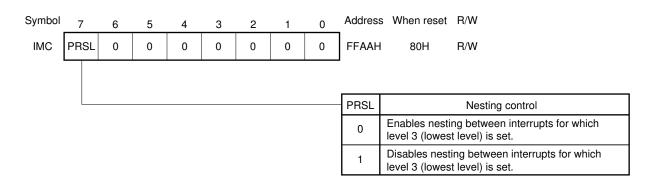
Relationship between bits and interrupt requests (MK1 register)

Bit	Bit name	Interrupt request source
Bit 0	CMMKUD0	CMUD0 match (INTCMUD0)
Bit 1	CMMKUD1	CMUD1 match (INTCMUD1)
Bit 2	SERMK	Serial receive error (INTSER)
Bit 3	SRMK	Serial reception completion (INTSR)
Bit 4	STMK	Serial transmission completion (INTST)
Bit 5	CSIMK0	Serial transmission/reception completion (INTCSI0)
Bit 6	CSIMK1	Serial transmission/reception completion (INTCSI1)
Bit 7	ADMK	A/D conversion completion (INTAD)

15.3.3 Interrupt mode control register (IMC)

The interrupt mode control register (IMC) has a PRSL flag. The PRSL flag enables or disables nesting of maskable interrupts for which the lowest priority (level 3) is specified.

For levels 0, 1, and 2, interrupts of the same levels cannot be nested regardless of the setting of the IMC register.


Before manipulating the IMC register, enter the interrupt disable status (DI state) to prevent an error.

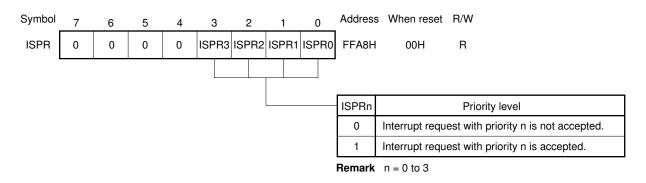
The register can be set or reset by software.

RESET input sets the PRSL flag to 1.

Fig. 15-3 shows the format of the IMC register.

Fig. 15-3. Format of the Interrupt Mode Control Register

15.3.4 In-service priority register (ISPR)


The in-service priority register (ISPR) holds the priority level of the interrupt request being serviced. When the interrupt request is accepted, the bit corresponding to the priority level for the request is set to (1), and the level is held during service.

When the RETI or RETCS instruction is executed, the bit for an interrupt request with the highest priority among the bits that are set to (1) in the ISPR register is reset to (0) automatically by hardware.

The ISPR register contents are not changed by the execution of the RETB or RETCSB instruction.

RESET input sets the register to 00H.

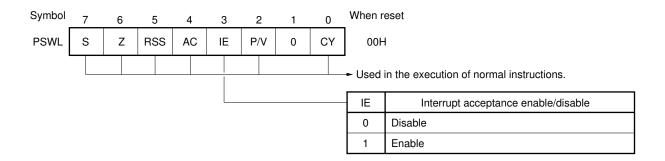
Fig. 15-4 shows the format of the ISPR register.

Fig. 15-4. Format of the In-service Priority Register

Caution The ISPR register can be accessed for read only. Write to the register may cause an error.

15.3.5 Program status word (PSW)

The PSW is a register which maintains the current state for the execution results of instructions and interrupt requests. The IE flag which sets the enable/disable of the maskable interrupt is mapped to the lower 8 bits (PSWL) of the PSW.


The PSWL can be read/written in 8 bits and can be manipulated by the bit manipulation instruction and dedicated instruction (EI, DI).

When the vectored interrupt is acknowledged or during the execution of the BRK instruction, it is saved in the stack area and the IE flag is reset (0). It is also saved in the stack area by the PUSH PSW instruction and restored from the stack area by the RETI, RETB, POP PSW instructions.

During context switching and BRKCS instruction execution, it is saved in the register bank fixed area and the IE flag is reset (0). It is restored from the fixed area in the register bank by the RETCS and RETCSB instructions.

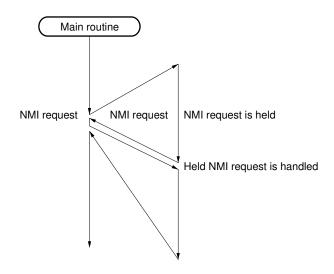
An interrupt request for a nonmaskable interrupt or macro service is acknowledged irrespective of the IE flag. The IE flag setting is not changed by macro service.

RESET input clears the PSWL to 00H.

Fig. 15-5. Format of the Program Status Word (PSWL)

15.4 Nonmaskable Interrupt Acknowledgement

The nonmaskable interrupt is acknowledged even in the interrupt disable state. The nonmaskable interrupt is always acknowledged except when the same nonmaskable interrupt or a high priority nonmaskable interrupt servicing is executed.


The priority level of the nonmaskable interrupts is set by the PRC bit of the watchdog timer mode register (WDM). (See **14.2**.)

The nonmaskable interrupt request is acknowledged promptly if the state is not the state described in section "15.9 When Interrupt Request and Macro Service are Held Temporarily". When the nonmaskable interrupt request is acknowledged, it is saved in the stack area in the order of PSW and PC. The PSW IE flag is reset (0), and the contents of the vector table are loaded to PC and branched.

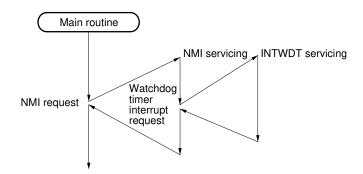
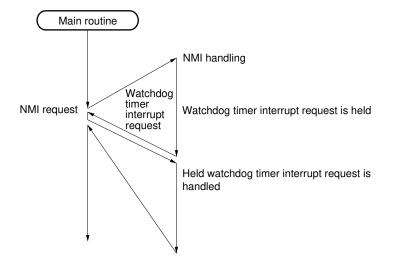

While the nonmaskable interrupt servicing is executed, requests for nonmaskable interrupts which are the same as the one currently executed and nonmaskable interrupt requests with lower priority than the one executed currently are put on hold. The held nonmaskable interrupt is acknowledged after the servicing of the currently executed nonmaskable interrupt ends (RETI instruction execution ends). However, if the same nonmaskable interrupt request is generated more than twice while a nonmaskable interrupt is being handled, only one nonmaskable interrupt will be acknowledged after the completion of the nonmaskable interrupt servicing.

Fig. 15-6. Nonmaskable Interrupt Request Acknowledgement (1/2)

(a) When a new NMI request is generated during NMI interrupt servicing


(b) When the watchdog timer interrupt request is generated during the NMI interrupt servicing (when the watchdog timer interrupt priority is high, the PRC bit of the WDM register = 1)

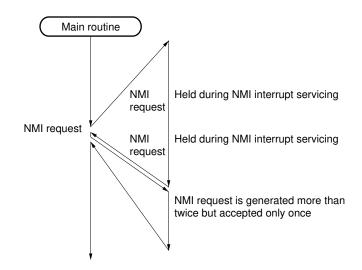


Fig. 15-6. Nonmaskable Interrupt Request Acknowledgement (2/2)

(c) When the watchdog timer interrupt request is generated during the NMI interrupt servicing (when the NMI interrupt priority is high, the PRC bit of the WDM register = 0)

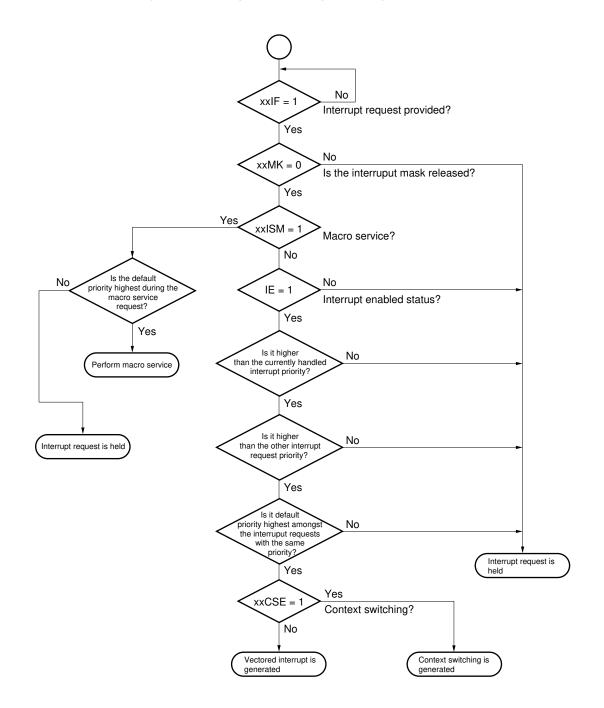
(d) When two new NMI requests are generated during NMI interrupt servicing

- Cautions 1. The macro service request is acknowledged and handled even during the nonmaskable interrupt servicing routine. If the macro service servicing is not to be performed during the nonmaskable interrupt servicing routine, manipulate the interrupt mask flag register during the nonmaskable interrupt servicing routine so that the macro service is not generated.
 - 2. Always use the RETI instruction to restore from the nonmaskable interrupt. Interrupts will not be acknowledged properly hereafter if other instructions are used.

3. The nonmaskable interrupt is always acknowledged except for while the nonmaskable interrupt servicing is being executed (excludes when a high priority nonmaskable interrupt request is generated during the execution of the low priority nonmaskable interrupt servicing) and during a certain period of time after the execution of special instructions shown in section 15.9. Therefore, nonmaskable interrupt is acknowledged even if stack pointer values after reset release, etc. are undefined. In such cases, depending on the stack pointer value, program counter (PC) and program status words (PSW) may be written in addresses (See Table 3-4 in 3.2.3.) which disable the writing of special function registers and cause the CPU to deadlock and unexpected signals to be output from pins, or PC and PSW may be written in addresses not mounted with the RAM, and as a result, the main routine cannot be returned normally from the nonmaskable interrupt servicing routine and the CPU overruns. Therefore, always set programs after the RESET release to as follows.

CSEGAT 0 DW STRT STRT: MOVW SP, #imm16

15.5 Maskable Interrupt Acknowledgement


The maskable interrupt can be acceptable when the interrupt request flag is set (1) and the interrupt mask flag is reset (0). When handled by macro service, it is acknowledged promptly and handled. For vectored interrupt or context switching, it is acknowledged if the interrupt enabled state (IE flag is set (1)) and the interrupt priority is acceptable.

If maskable interrupt request are generated simultaneously, these are acknowledged from those specified with the highest priority by the priority level specification flag. If interrupts have the same priority, the default priority level is followed.

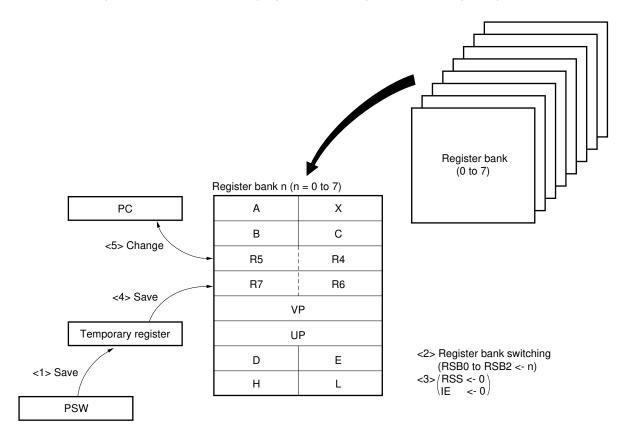
The held interrupt is acknowledged when it can be acknowledged.

The interrupt acceptance algorithm is shown in Fig. 15-7.

Fig. 15-7. Interrupt Acknowledgement Algorithm

15.5.1 Vectored interrupt

When the maskable interrupt request is acknowledged by vectored interrupt, it is saved in the stack area in the order of PSW and PC, the IE flag is reset (0) (interrupt disabled state), and the bit of the ISPR register corresponding to the priority of the acknowledged interrupt is set (1). In addition, the data in the vector table determined for each interrupt request is loaded in the PC and branched. Restoring from the vectored interrupt is performed by the RETI instruction.

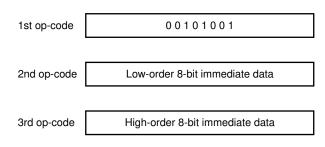

Caution When the maskable interrupt is acknowledged by the vectored interrupt, always restore using the RETI instruction. If other instructions are used, interrupt operations hereafter will not be performed properly.

15.5.2 Context switching

Setting the context switching enable flag of the interrupt control register (see **Table 15-4** and **Fig. 15-1**) to (1) enables the context switching function to be activated.

When an interrupt request which is not masked and for which the context switching function is enabled is generated in the EI status, the register bank specified by the low-order 3 bits of the lower address (even address) of the corresponding vector table addresses is selected.

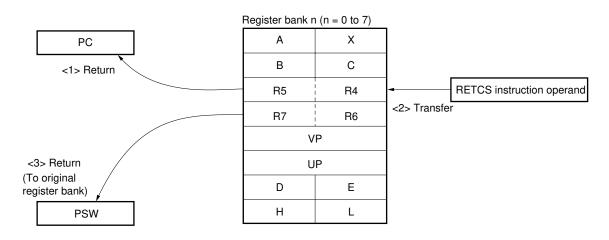
The vector address already stored in the selected register bank is transferred to the PC, and at the same time the PC and PSW contents present immediately before the transfer are saved in the register bank. Then, the function branches to the interrupt service routine.


Fig. 15-8. Context Switching Operation in Response to Interrupt Request

After an interrupt is made by context switching, control is returned by executing the RETCS or RETCSB instruction.

When the RETCS instruction is executed, the contents of the R4 and R5 registers in the selected register bank are transferred to the PC, and the contents of the R6 and R7 registers are transferred to the PSW. Then, the 16bit immediate data specified by the second and third op-codes of the RETCS instruction is stored in the R4 and R5 registers of the register bank.

When the same register bank is selected again by the context switching function, the 16-bit immediate data specified by the second and third op-codes of the RETCS instruction is used as the branch address.

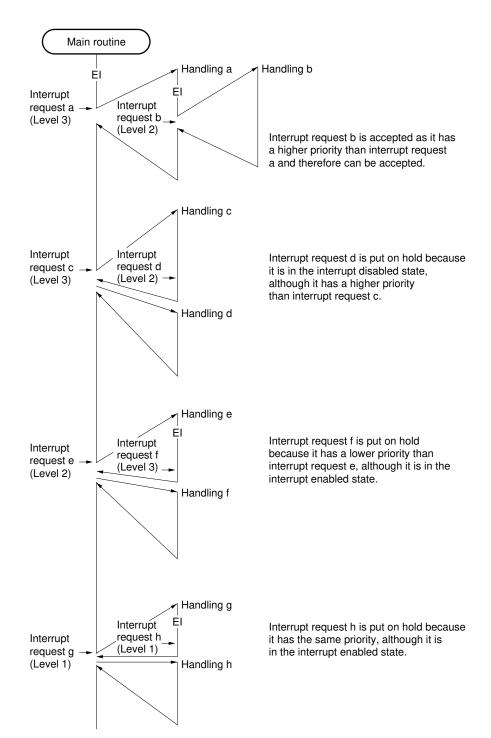

Fig. 15-9. Format of the RETCS Instruction

When control is returned by executing the RETCS instruction after branch operation, the bit for the highest priority among the bits set to (1) in the inservice priority register (ISPR) is reset to 0.

Caution Always use the RETCS instruction when restoring from interrupt by context switching. If other instructions are used, interrupt operations hereafter will not be performed properly.

Fig. 15-10. Return Operation from Interrupt Using Context Switching Function by RETCS Instruction

15.5.3 Maskable interrupt priority


The μ PD78356 performs multiple-interrupt servicing which can acknowledge different interrupts during an interrupt servicing.

Multiple interrupts can be handled by the priority level control. The priority order control consists of control according to default priority level and programmable priority level control by setting the priority level specification flag. For priority level control by default priority level, when several interrupts are generated simultaneously, they are handled according to the priority level (default priority level) preassigned to each interrupt request. (See **Table 15-2**). For the programmable priority level control, each interrupt request is divided into four levels by setting the priority level specification flag. Multiple-interrupt service requests are shown in Table 15-5.

As the IE flag is automatically reset (0) when the interrupt is acknowledged, to use Multiple-interrupt service, execute the EI instruction during the interrupt service routine, set the IE flag to (1) and set the interrupt enable state.

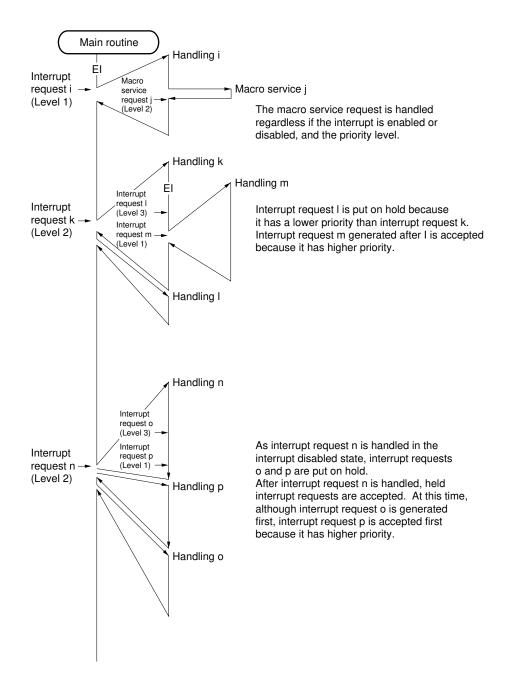
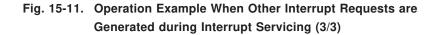

Priority of interrupt currently accepted	Value of ISPR	IE flag of PSW	PRSL flag of IMC register	Acceptable maskable interrupt
Interrupt accepted is not	0000000	0	x	All macro service only
provided		1	х	All maskable interrupt
3	00001000	0	х	All macro service only
		1	0	All maskable interrupt
		1	1	All macro service
				Maskable interrupts whose priority has been specified as 0, 1, and 2
2	0000x100	0	x	All macro service only
		1	x	All macro service
				 Maskable interrupts whose priority has been specified as 0, and 1
1	0000xx10	0	x	All macro service only
		1	x	All macro service
				 Maskable interrupts whose priority has been specified as 0
0	0000xxx1	x	Х	All macro service only

Table 13-3. Multiple-interrupt Servicing	Table 15-5.	Multiple-interrupt	Servicing
--	-------------	---------------------------	-----------



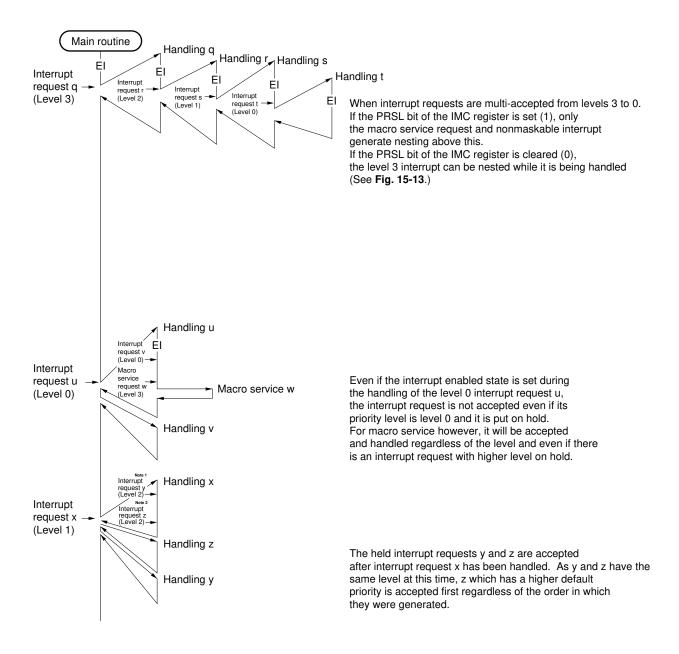
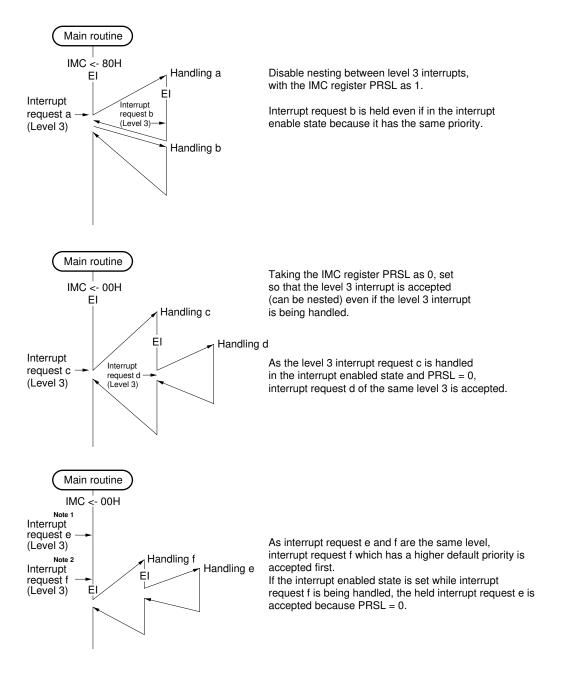

Fig. 15-11. Operation Example When Other Interrupt Requests are Generated during Interrupt Servicing (1/3)

Fig. 15-11. Operation Example When Other Interrupt Requests are Generated during Interrupt Servicing (2/3)

Notes 1. Default priority is low.


- 2. Default priority is high.
- **Remarks 1.** a to z in the figure is the temporary name given to classify the interrupt requests and the macro service requests.
 - 2. The high/low default priority in the figure indicates the relative priority level of two interrupt requests.

Main routine ΕI Handling macro service b Interrupt request a (Level 2) · When requests are generated simultaneously, they are accepted from the macro service ones first Macro service request b (Level 3) The macro service requests are accepted according Handling macro service c Macro service request c (Level 1) to their default priority level (b, c, f) (does not depend on Interrupt request d (Level 1) the programmable priority level) Handling macro service f Interrupt request e (Level 1) • As the interrupt requests which have higher Macro service request f (Level 1) priority are accepted first, d and e are accepted first Handling interrupt request d · As d and e have the same priority order level, d is accepted first because it has a higher default priority Handling interrupt request e Default priority Handling interrupt request a a > b > c > d > e > f

Fig. 15-12. Operation Example of Simultaneously Generated Interrupt Requests

Remark a to f in the figure is the temporary name given to classify the interrupt requests and the macro service requests.

Fig. 15-13. Level 3 Interrupt Acknowledgement Due to IMC Register Setting

Notes 1. Default priority is low.

2. Default priority is high.

Remarks 1. a to f in the figure is the temporary name given to classify the interrupt requests.

2. The high/low default priority in the figure indicates the relative priority level of two interrupt requests.

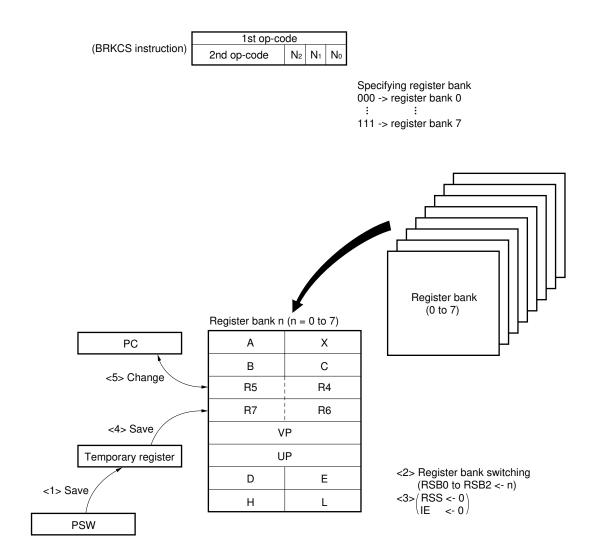
15.6 Software Interrupt Acknowledgement

The software interrupt is acknowledged when the BRK and BRKCS instructions are executed. The software interrupt cannot be disabled.

15.6.1 Software interrupt acknowledgement by the BRK instruction

When the BRK instruction is executed, PSW and PC are saved in the stack area in order, the IE flag is reset (0), and the contents of the vector table (003EH, 003FH) are loaded to the PC and branched.

To restore from a software interrupt by the BRK instruction, use the RETB instruction.


Caution To restore from a software interrupt by the BRK instruction, do not use the RETI instruction.

15.6.2 Software interrupt (context switching) acknowledgement by the BRKCS instruction

The context switching function can be activated by executing the BRKCS instruction.

The register bank used after context switching is specified by the immediate data (N_2 to N_0) in the low-order 3 bits of the second op-code of the BRKCS instruction.

When the BRKCS instruction is executed, a branch is made to the vector address stored in the register bank. At the same time the PC and PSW contents present immediately before the branch are saved in the register bank.

Fig. 15-14. Context Switching Operation by the BRKCS Instruction Execution

Execute the RETCSB instruction to restore from the software interrupt by the BRKCS instruction.

When the RETCSB instruction is executed, the contents of the R4 and R5 registers in the selected register bank are transferred to the PC, and the contents of the R6 and R7 registers are transferred to the PSW. Then, the 16bit immediate data specified by the third and fourth op-codes of the RETCSB instruction is stored in the R4 and R5 registers of the register bank.

When the same register bank is selected again by the context switching function, the 16-bit immediate data specified by the third and fourth op-codes of the RETCSB instruction is used as the branch address.

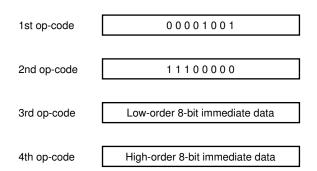
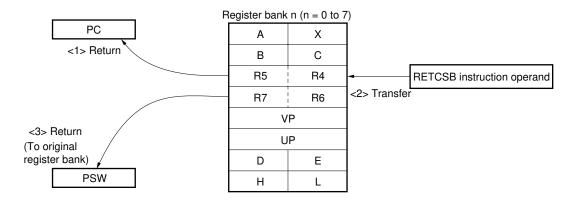



Fig. 15-15. Format of the RETCSB Instruction

Caution When the context switching function is activated by executing the BRKCS instruction, and if the RETCS instruction is executed and a bit of the ISPR register is reset to 0, interrupt nesting control is destroyed.

When returning from processing activated by the BRKCS instruction, be sure to use the RETCSB instruction.

Fig. 15-16. Restoring from Software Interrupt by BRKCS Instruction (RETCSB Instruction Operation)

15.7 Op-code Trap Interrupt Acknowledgement

The op-code trap interrupt is generated when the data obtained by reversing all the bits of the 3 byte operand of the MOV STBC, #byte instruction and MOV WDM, #byte instruction does not match the 4th byte of the operand. The op-code trap interrupt cannot be disabled.

When the op-code trap interrupt is generated, the head address of the instruction generating PSW and errors is saved in the stack, the IE flag is reset (0), the vector table values are loaded in the PC and branched.

As the address saved in the stack area is the head address of the instruction generating errors, if the RETB instruction is executed at the end of the op-code trap interrupt servicing routine, the op-code trap interrupt will be generated again.

15.8 Macro Service Function

15.8.1 Macro service overview

The macro service is a method of servicing interrupts. For normal interrupts, the program counter (PC) and program status word (PSW) are saved and the head address of the interrupt service program to PC is loaded. In macro service, a different servicing method is performed instead (mainly data transfer). Therefore, responses to interrupt requests can be given quickly. Furthermore, the servicing time is also reduced because high speed transfer servicing can be performed than the use of a program.

The vectored interrupt program can also be simplified because vectored interrupts are generated after the specified number of servicings have been performed.

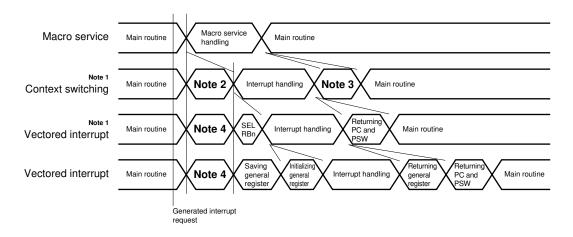


Fig. 15-17. Difference between Vectored Interrupt and Macro Service Servicing

- Notes 1. When register bank switching is used and initial values are preset in the register
 - 2. Register bank switching by context switching, save to PC and PSW
 - 3. Register bank by context switching, return to PC and PSW
 - 4. Save PC and PSW to stack, load vector address to PC

Default priority	Interrupt request	Interrupt source	Generation unit	Macro service control word address
0	INTOV0	Timer 0 overflow	Real-time pulse unit	FE06H
1	INTOV3	Timer 3 overflow		FE08H
2	INTP0/INTCC00	INTP0 pin input/CC00 match signal	External/Real-time	FE0AH
3	INTP1/INTCC01	INTP1 pin input/CC01 match signal	pulse unit	FE0CH
4	INTP2/INTCC02	INTP2 pin input/CC02 match signal	-	FE0EH
5	INTP3/INTCC30	INTP3 pin input/CC30 match signal	-	FE10H
6	INTP4/INTCC31	INTP4 pin input/CC31 match signal	-	FE12H
7	INTCM00	CM00 match signal	Real-time pulse unit	FE14H
8	INTCM01	CM01 match signal		FE16H
9	INTCM02	CM02 match signal		FE18H
10	INTCM03	CM03 match signal	-	FE1AH
11	INTCM10	CM10 match signal		FE1CH
12	INTCM11	CM11 match signal		FE1EH
13	INTCM20	CM20 match signal		FE20H
14	INTCM21	CM21 match signal		FE22H
15	INTCM40	CM40 match signal	-	FE24H
16	INTCMUD0	CMUD0 match signal	-	FE26H
17	INTCMUD1	CMUD1 match signal		FE28H
18	INTSER	Serial receiver error	Asynchronous serial	FE2AH
19	INTSR	Serial reception completion	interface	FE2CH
20	INTST	Serial transmission completion	-	FE2EH
21	INTCSI0	Serial transmission/reception completion	Clock synchronous serial interface	FE30H
22	INTCSI1	Serial transmission/reception completion	Clock synchronous serial interface (with pin switching function)	FE32H
23	INTAD	A/D conversion completion	A/D converter	FE34H

Table 15-6. Interrupt for Which Macro Service Can be Used

Remark The default priority level is a fixed value. It is the priority level when macro service requests are generated simultaneously.

The macro service operation has the following five modes.

(1) Counter mode: EVTCNT

The macro service counter (MSC) is increased (+1) or decreased (-1) every time an interrupt request is generated, and a vectored interrupt request is generated when MSC becomes 00H. This mode is used for dividing the number of interrupt request generated.

(2) Block transfer mode: BLKTRS

A 1-byte or 1-word data is transferred between the special function register (SFR) specified by the SFR pointer (SFRP) and buffer every time an interrupt request is generated, and a vectored interrupt request is generated when data transfer is performed for the number of times specified.

The buffer used in the transfer is limited to the FE00H to FEFFH main RAM.

The specification method is simple and this mode is used for the high speed data transfer of small volume data.

(3) Block transfer mode (with memory pointer): BLKTRS-P

Like the block transfer mode, a 1-byte or 1-word data is transferred between the SFR specified by the SFRP and buffer every time an interrupt request is generated, and a vectored interrupt request is generated when data transfer is performed for the number of times specified.

The buffer used in the transfer is specified by the memory pointer (MEM.PTR) (the memory used is the total 64 Kbyte space).

This mode is used generally for transferring large volume data.

(4) Data difference mode: DTADIF

The difference between the current value of the SFR specified by the SFRP and "the value immediately before" stored in the memory is written in the buffer every time an interrupt request is generated, and the current value is taken as "the value immediately before".

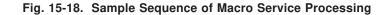
A vectored interrupt request is generated when data transfer is performed for the number of times specified. The buffer used in the transfer is limited to the FE00H to FEFFH main RAM.

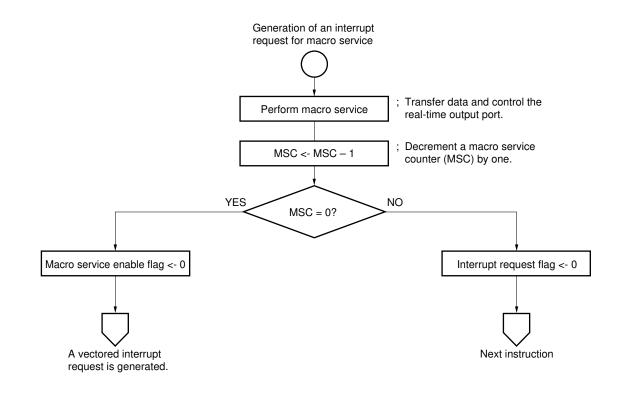
This mode is used for measuring the period of input pulses and pulse width by the capture register.

(5) Data difference mode (with memory pointer): DTADIF-P

Like the data difference mode, the difference between the current value of the SFR specified by the SFRP and "the value immediately before" stored in the memory is written in the buffer every time an interrupt request is generated, and the current value is taken as "the value immediately before".

Vectored interrupt request is generated when data transfer is performed for the number of times specified. The buffer used in the transfer is specified by the memory pointer (MEM. PTR) (the memory used is the total 64 Kbyte space).


This mode is used generally for transferring large volume data.



15.8.2 Basic operation of macro service

The macro service function is used to transfer data on a hardware basis between the special function register area and memory space in response to an interrupt request.

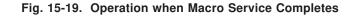
When a macro service request is generated, the CPU temporarily stops program execution, and one- or two-byte data is transferred automatically between special function registers (SFRs) and memory. When data transfer ends, the interrupt request flag is reset to 0, then the CPU restarts program execution. After data transfer is performed as many times as the value set in the macro service counter (MSC), a vectored interrupt request is generated.

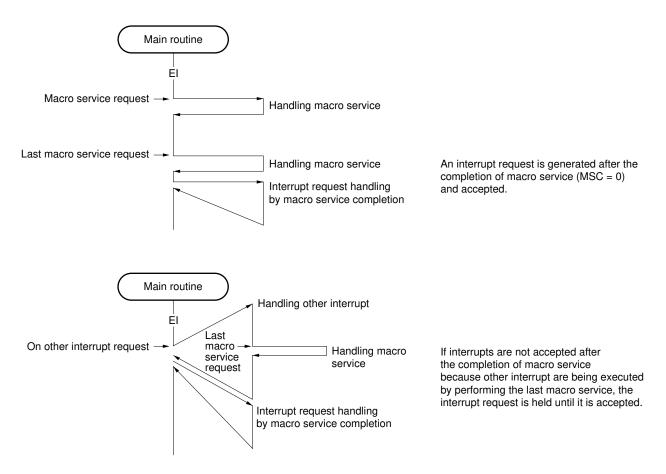
Unlike other interrupt servicing that is accompanied by the activation of an interrupt service routine, macro service is performed automatically. This means that macro service does not require a series of the operations of making a branch to an interrupt service routine, saving and restoring register contents, and returning from the interrupt service routine. It is therefore possible to improve the CPU service time and to reduce the number of program steps.

During macro service processing, the general-purpose registers and instruction queue in the CPU hold the data present immediately before macro service processing is activated.

Interrupt requests for which macro service processing is specified are not influenced by the status of the IE flag in the program status word (PSW). Macro service can be performed even in the interrupt disable status or while the interrupt service program is being executed. Macro service is disabled only when the corresponding bit of the interrupt mask flag registers (MK0 and MK1) is set to (1).

If more than one macro service request is present, the service order is determined by the default priority. Instruction execution is suspended until all of these macro service requests are processed.

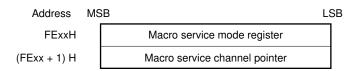

The μ PD78356 supports macro service for all included interrupt requests.


- The followings are two basic operations of macro service processing.
 - Data transfer from memory to special function registers (SFR)
 - Data transfer from special function registers (SFR) to memory

15.8.3 Macro service completion

After the macro service performs for the number of times specified during the execution of other programs, the macro service completes (when the macro service counter (MSC) becomes 0).

★ Caution When transmitting data by the UART using macro service, two vectored interrupt requests occur. (See 10.7)


15.8.4 Macro service control register

(1) Macro service control word

A macro service control word is made up of a macro service mode register which controls the macro service function and a macro service channel pointer. These control words are located in addresses FE06H to FE35H in the main RAM area. (See **Fig. 15-21.**)

Fig. 15-20 shows the basic structure of a macro service control word.

Fig. 15-20. Basic Structure of a Macro Service Control Word

The macro service mode register sets the macro service processing mode, and the macro service channel pointer specifies the address of a macro service channel.

Before macro service processing can be performed, values must be loaded into the macro service mode register and channel pointer corresponding to the interrupt request for which macro service processing can be specified.

Fig. 15-21. Macro Service Control Word Format

FE06H Mode register FE07H Channel pointer FE08H Mode register FE09H Channel pointer FE0AH Mode register FE0BH Channel pointer FE0BH Channel pointer FE0CH Mode register FE0CH Mode register FE0DH Channel pointer FE0EH Mode register INTP1/INTCC01 INTP1/INTCC01
FE07H Channel pointer FINTOVO FE08H Mode register INTOV3 FE09H Channel pointer INTOV3 FE0AH Mode register INTP0/INTCC00 FE0CH Mode register INTP1/INTCC01 FE0DH Channel pointer INTP1/INTCC01
FE08H Mode register INTOV3 FE09H Channel pointer INTOV3 FE0AH Mode register INTP0/INTCC00 FE0BH Channel pointer INTP1/INTCC01 FE0DH Channel pointer INTP1/INTCC01
FE09H Channel pointer INTOV3 FE0AH Mode register INTP0/INTCC00 FE0BH Channel pointer INTP1/INTCC01 FE0DH Channel pointer INTP1/INTCC01
FE0AH Mode register FE0BH Channel pointer FE0CH Mode register FE0DH Channel pointer
FE0BH Channel pointer INTP0/INTCC00 FE0CH Mode register INTP1/INTCC01 FE0DH Channel pointer INTP1/INTCC01
FE0CH Mode register FE0DH Channel pointer
FE0DH Channel pointer
FE0FH Channel pointer
FE10H Mode register
FE11H Channel pointer INTP3/INTCC30
FE12H Mode register
FE13H Channel pointer
FE14H Mode register
FE15H Channel pointer
FE16H Mode register
FE17H Channel pointer
FE18H Mode register
FE19H Channel pointer
NITCM03
FI > INTCM10
FE1DH Channel pointer
FE1EH Mode register
FE1FH Channel pointer
FE20H Mode register
FE21H Channel pointer
FE22H Mode register
FE23H Channel pointer
FE24H Mode register
FE25H Channel pointer
FE26H Mode register
FE27H Channel pointer
FE28H Mode register
FE29H Channel pointer
FE2AH Mode register
FE2BH Channel pointer
FE2CH Mode register
FE2DH Channel pointer
FE2EH Mode register
FE30H Mode register
FE3TH Channel pointer
FE32H Mode register
FE33H Channel pointer
FE34H Mode register
FE35H Channel pointer

The macro service mode registers are 8-bit registers that specify macro service operation. They are mapped as part of the macro service control words in the main RAM area (see **Fig. 15-20**).

Phase-out/Discontinued

15.8.5 Macro service mode

Operation of the macro service is specified by setting a macro service mode register. The macro service mode is determined by the low-order 6 bits of the macro service mode register. The modes are classified into two groups: Group 0 and group 1.

- · Group 0: Control word only; no channel provided
- Group 1: Control word and channel

The high-order 2 bits of the macro service mode register function as a subcommand (see Table 15-7).

15.8.6 Macro service operation

There are five modes of macro service operation.

Group	Macro service mode register	Function	
Group 0	CC000001	Counter mode	EVTCNT
Group 1	CC010011	Block transfer mode	BLKTRS
	CC010100	Block transfer mode (with memory pointer)	BLKTRS-P
	10011001	Data difference mode	DTADIF
	10011010	Data difference mode (with memory pointer)	DTADIF-P

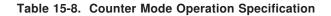
Table 15-7. Classification of Macro Service Modes

C in the most significant bit (MSB) of a macro service mode register indicates the length of the data to be operated on except for EVTCNT.

- C = 0: Byte data
- C = 1: Word data

As to BLKTRS and BLKTRS-P, byte buffer representation is always used. If word specification is made, byte buffers must be replaced by word buffers.

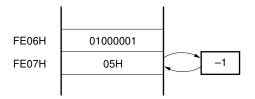
Caution Word buffers must be placed at even addresses.


(1) Counter mode: EVTCNT

[Macro service control word]

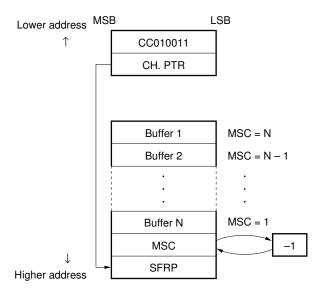
MSB			SB
Lower address	CC000001		
Higher address	MSC		

[Operation]


Every time the macro service is generated, the macro service counter (MSC) is incremented or decremented by one. When the MSC reaches 00H (overflow), a vectored interrupt request is generated.

CC	Operation
00	Increment
01	Decrement
10	Setting prohibited
11	

In the counter mode, the macro service function operates as a counter to divide the number of interrupt requests.


Example: Dividing the number of INTOV interrupt requests by five using macro service

[Application]

Event counter, or measurement of the number of capture times

(2) Block transfer mode: BLKTRS [Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). A buffer is addressed by the channel pointer (CH.PTR) and macro service counter (MSC).

Data is transferred between the SFR pointed to by the SFRP and buffers. Data transfer starts from buffer 1.

Every time transfer terminates, the MSC is decremented by one.

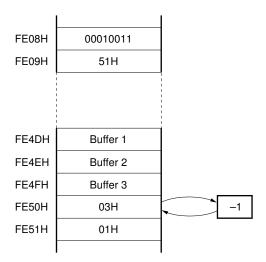
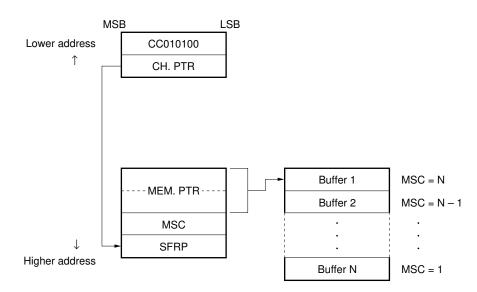

When the MSC reaches 0, a vectored interrupt request is generated.

Table 15-9.	. Specification of Block Transfer Mode Operation
-------------	--

CC	Operation	Transferred data	Buffer address
00	Buffer <- SFR	Byte	(CH.PTR content) - (MSC content) - 1
01	SFR <- buffer		
10	Buffer <- SFR	Word	(CH.PTR content) - (MSC content x 2) - 1
11	SFR <- buffer		

Example: Transferring the contents of port 1 (FF01H) to buffers in response to the INTP0 interrupt request



[Application]

This mode can be used for data transfer over a serial interface.

Caution Word buffers must be placed at even addresses.

(3) Block transfer mode (with a memory pointer): BLKTRS-P [Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). Data is transferred between the SFR pointed to by the SFRP and the buffer addressed by MEM.PTR. Data transfer starts from buffer 1.

When byte data transfer terminates, the MEM.PTR is incremented by one. When word data transfer terminates, the MEM.PTR is incremented by two.

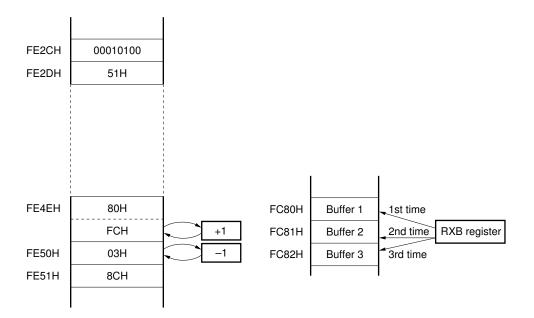
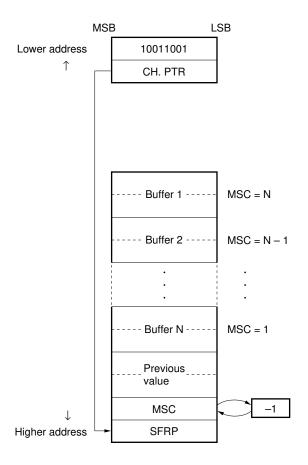

Every time transfer terminates, the macro service counter (MSC) is decremented by one. When the MSC reaches 0, a vectored interrupt request is generated.

Table 15-10.	Specification of	of Block	Transfer	Mode (with a	a Memory	/ Pointer) Op	eration
--------------	------------------	----------	----------	--------------	----------	---------------	---------

СС	Operation	Transferred data
00	Buffer <- SFR	Byte
01	SFR <- buffer	Byte
10	Buffer <- SFR	Word
11	SFR <- buffer	Word

Example: Transferring the contents of serial reception buffer RXB (FF8CH) to buffers in response to the INTSR interrupt request


[Application]

This mode is used for data transfer over a serial interface.

Cautions 1. Word buffers must be placed at even addresses.

2. MEM.PTR must be placed at an even address.

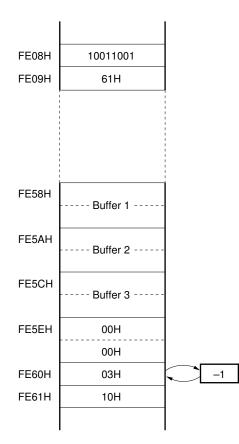
(4) Data difference mode: DTADIF [Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). A buffer is addressed by the channel pointer (CH.PTR) and macro service counter (MSC).

The difference between the current value of the SFR (especially capture register) pointed to by the SFRP and the previous value is written to the buffer. The current value of the SFR is then regarded as the new "previous value." Data write starts from buffer 1.

Every time data is written, the MSC is decremented by one.

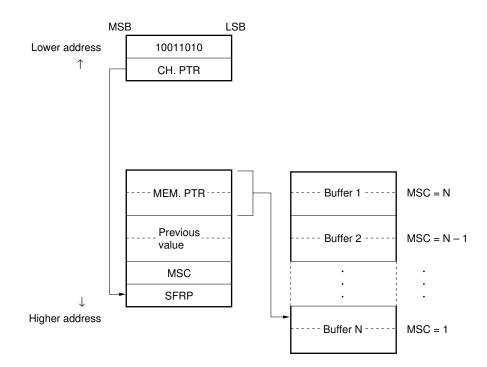

When the MSC reaches 0, a vectored interrupt request is generated.

The buffer address is obtained as follows:

(Buffer address) = (value of CH.PTR) - (value of MSC $\times 2$) - 3

Example: The difference between the current value and previous value of capture/compare register CC00 (FF10H) is written into a buffer with the INTP0 input signal used as the trigger signal. The period of the INTP0 input signal is then measured using the difference by the vectored interrupt service routine.

Phase-out/Discontinued


[Application]

This mode can be used to measure periods or pulse widths using a capture register.

Cautions 1. 00H must not be set in the MSC.

- 2. Buffers must be placed at even addresses.
- 3. The "previous value" must be initialized to dummy data in advance.
- 4. The SFRP can specify 16-bit SFRs only.

(5) Data difference mode (with a memory pointer): DTADIF-P [Macro service control word]

[Operation]

The channel pointer (CH.PTR) specifies the SFR pointer (SFRP). A buffer is addressed by the MEM.PTR and macro service counter (MSC).

The difference between the current value of the SFR (especially capture register) specified by the SFRP and the previous value is written to the buffer. The current value of the SFR is then regarded as the new "previous value." Data write starts from buffer 1.

Every time data is written, the MSC is decremented by one. When the MSC reaches 0, a vectored interrupt request is generated.

The MEM.PTR remains unchanged.

The buffer address is obtained as follows:

(Buffer address) = (value of MEM.PTR) - (value of MSC x 2) + 2

[Application]

This mode is used to measure periods and pulse widths using a capture register.

Cautions 1. 00H must not be set in the MSC.

- 2. Buffers must be placed at even addresses.
- 3. The MEM.PTR must be placed at an even address.
- 4. The "previous value" must be initialized to dummy data in advance.
- 5. The SFRP can specify 16-bit SFRs only.

15.9 When Interrupt Requests and Macro Service are Held Temporarily

(1) Instructions which the interrupt request is not acknowledged

When the following instructions are executed, the acceptance of interrupts and servicing of macro service are held temporarily. The software interrupt is however not held.

MOV1	PSWL. bit, CY	RETB	
MOV1	PSWH. bit, CY	RETI	
SET1	PSWL. bit	RETCS	laddr16
CLR1	PSWL. bit	RETCSB	!addr16
NOT1	PSWL. bit	POP	PSW
BFSET	PSWL. bit, \$addr16	POPU	post
BFSET	PSWH. bit, \$addr16	EI	
BTCLR	PSWL. bit, \$addr16	DI	
BTCLR	PSWH. bit, \$addr16		
BRK			
BRKCS	RBn		

(2) Instructions with which interrupt requests may not be acknowledged

The instructions shown in Table 15-11 mainly perform writing in various interrupt servicing control registers (INTCreg). When they are executed, the acceptance of interrupts and servicing of macro service may be held temporarily according to the CPU state.

Remark INTCreg: Registers MK0H, MK0L, MK1L, ISPR and IMC and interrupt control registers (OVIC0, OVIC3, PIC0 to PIC4, CMIC00 to CMIC03, CMIC10, CMIC11, CMIC20, CMIC21, CMIC40, CMICUD0, CMICUD1, SERIC, SRIC, STIC, CSIIC0, CSIIC1, ADIC)

Instrucitons	Mnemonic	Operand	Condition
8-bit data transfer	MOV	INTCreg, #byte	
		INTCreg, A	
		mem, A	To set mem to INTCreg address
		[saddrp], A	To set saddrp to INTCreg address
		!addr16, A	To set addr16 to INTCreg address
		PSWL, #byte	
		PSWH, #byte	
		PSWL, A	
		PSWH, A	
	ХСН	A, mem	To set mem to INTCreg address
		A, [saddrp]	To set saddrp to INTCreg address
16-bit data	MOVW	INTCreg, #word	
transfer		INTCreg, AX	
		INTCreg, rp1	
		mem, AX	To set mem to INTCreg address
	XCHW	AX, INTCreg	
		AX, mem	To set mem to INTCreg address
8-bit arithmetic/ logical operation	ALU	INTCreg, #byte	ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR
		mem, A	To set mem to INTCreg address
			ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR
16-bit arithmetic/ logical operation	ALUW	INTCreg, #word	ALUW: ADDW, SUBW
Bit manipulation	MOV1	INTCreg. bit, CY	
	BIT	INTCreg. bit	BIT: SET1, CLR1, NOT1
Stack manipulation	POP	INTCreg	
Branch with conditions	BTCLR	INTCreg. bit, \$addr16	
	BFSET	INTCreg. bit, \$addr16	
String	STRING	[DE+], A	To set INTCreg address to destination (DE register)
		[DE–], A	STRING: MOVM, MOVBK, XCHM, XCHBK, CMPME,
		[DE+], [HL+]	CMPBKE, CMPMNE, CMPBKNE, CMPMC,
		[DE–], [HL–]	CMPBKC, CMPMNC, CMPBKNC

Table 15-11. List of Instructions with which Interrupt Requests may not be Acknowledged

Cautions 1. When polling interrupt related registers using BTCLR instruction, etc., make sure one instruction is not branched to the same instruction. If programs in which instructions are branched to themselves are written, all interrupts and macro service are held until conditions with which the instructions will not branch to themselves are established.

LOOP:	Wrong example : BTCLR PIC0.7, \$LOOP xxx :	All interrupts and macro services are held until PIC0.7 becomes 1. <- The interrupts and macro services are handled first after the instruction after the BTCLR instruction is executed.
LOOP:	Correct example (1) : NOP BTCLR PIC0.7, \$LOOP :	<- As the interrupts and macro services are handled after the execution of the NOP instruction, they will not be held for a long period of time.
LOOP:	Correct example (2) : BTCLR PIC0.7, \$NEXT BR \$LOOP	<- As the interrupts and macro services are handled after the execution
NEXT:	: :	of the BR instruction, they will not be held for a long period of time.

Cautions 2. If the above instructions are to be used continuously due to the same reasons, and the interrupts and macro services are going to be held for a long time, insert NOP instruction, etc. halfway and create timings with which the interrupts and macro services can be acknowledged.

15.10 Instructions Which are Stopped Temporarily in Interrupts and Macro Services

The execution of the following instructions are stopped temporarily when acceptable interrupts and macro services are requested and these can be acknowledged. The stopped instructions are restarted after the completion of the interrupt servicing or macro service servicing.

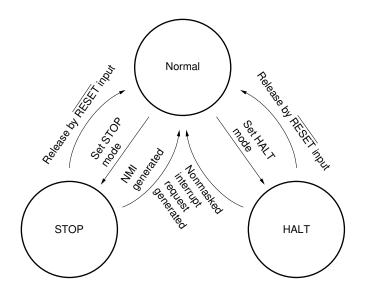
<Temporarily stopped instructions>

MOVM, XCHM, MOVBK, XCHBK CMPME, CMPMNE, CMPMC, CMPMNC CMPBKE, CMPBKNE, CMPBKC, CMPBKNC SACW

CHAPTER 16 STANDBY FUNCTION

Phase-out/Discontinued

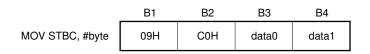
16.1 Function Overview


The μ PD78356 has a standby function to reduce power consumption of the system. With the standby function, two modes are available:

- HALT mode In this mode, the CPU operation clock is stopped. Intermittent operation, when combined with
 the normal operation mode, can reduce overall system power consumption.
- STOP mode In this mode, the oscillator is stopped to stop the entire system. Since only leakage currents
 may flow in this mode, system power consumption can be minimized.

Each mode is set by software.

Fig. 16-1 is the transition diagram of the standby modes (STOP and HALT modes).



16.2 Standby Control Register (STBC)

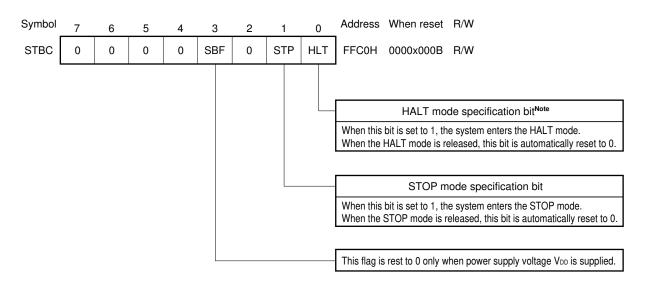
The standby control register (STBC) is an 8-bit register which controls the standby mode.

As the contents of the STBC register can only be changed by a dedicated instruction, it will not be changed by a program crash. The dedicated instruction MOV STBC, #byte is shown below.

This instruction has a data check function to prevent the application system stopping unintentionally by a program crash. Data can be written in the STBC register only when the last two bytes of the instruction are the complement of each other, i.e., when $\overline{data0} = data1$.

If they are not complementary, the STBC resister is not written to and an op-code trap interrupt occurs. In this case, the address of the instruction which causes the trap is saved in the stack area as return address. Therefore, the program can be restarted from the return address by checking the trap address or executing the RETB instruction. (See sections **15.1.4** and **15.7**.)

However, if the cause of an op-code trap cannot be removed due to a hardware error, the RETB instruction may cause an infinite loop.


The SBF bit of the STBC register is a standby flag. It is used to determine whether to release the STOP mode by the RESET input. This bit is reset to 0 only when the supply voltage (V_{DD}) is supplied (power-on reset). It cannot be reset by software. It is not affected simply by supplying the RESET signal.

The contents of the STBC register can be read by the data transfer instruction at any time.

RESET input sets the STBC register to 0000x000B.

Fig. 16-3. shows the format of the STBC register.

Caution After the SBF flag is read, set it to 1. Software can then discriminate a power-on reset from release of the STOP or HALT mode.

Fig. 16-3. Format of the Standby Control Register

- **Note** If the HALT mode is released by macro service activation, this bit is reset to 0 when a vectored interrupt request is issued at the end of the macro service.
- Caution When an external clock is used, do not set the STP bit of the standby control register (STBC) to 1.

16.3 Operation

16.3.1 HALT mode

(1) Setting the HALT mode and operation states in the HALT mode

In the HALT mode, the CPU clock is stopped.

The total power consumption of the system can be reduced by setting the system to the HALT mode during CPU dead time. The system is put in the HALT state by setting the HLT bit in the STBC register to 1. In the HALT mode, the CPU clock and program execution are stopped. Nevertheless, the contents of all registers and internal RAM immediately before the HALT mode is set are retained. On-chip peripheral hardware can operate. Hardware functions enter the states shown in Table 16-1.

Caution If the interrupt request flag (xxIF) is set to 1 and the interrupt is not masked (xxMK = 0), the system does not enter the HALT mode. When macro service processing (xxISM = 1) is performed, the system enters the HALT mode after the macro service terminates.

Function		Operation state	
Clock generator		Operating	
Internal system clock			
CPU		Stopped	
I/O line		Retained	
On-chip peripheral hardware		Operating	
Internal data		Internal data such as the CPU status, data, and contents of the internal RAM is retained as it was before setting the HALT mode.	
When external devices are	AD0 to AD7	High-impedance	
expanded	AD8 to AD15		
	ASTB	0	
RD		1	
	LWR, HWR		
	CLKOUT	Operating	

Table 16-1. Operation States in the HALT Mode

(2) Releasing the HALT mode

The HALT mode can be released by a nonmaskable interrupt request, nonmasked maskable interrupt request, nonmasked macro service request, or **RESET** input.

(a) Releasing the HALT mode by an interrupt request

The HALT mode is released by a nonmaskable interrupt request, a maskable interrupt request which is not masked, or macro service request, regardless of the priority of the request. If the HALT mode is set by the interrupt service routine, however, the following operation takes place (see **Table 16-2**):

- (i) When an interrupt request, having higher priority than the interrupt request being handled, is issued, the HALT mode is released, and this new interrupt request is accepted. Such interrupt requests include a non-maskable interrupt request. When the PRSL bit of an interrupt mode control register (IMC) is set to 0, however, the system only accepts multiple interrupt requests having the lowest priority.
- (ii) When an interrupt request, having the same priority as or lower priority than the interrupt request being handled, is issued, the HALT mode is only released. In this case, the new interrupt request is not accepted, and the next instruction is executed. The interrupt request is retained.

Priority of interrupt service routines	Priority and state of generated interrupts		
in the HALT mode	Accepted	Retained	
0	_	0 to 3	
1	0	1 to 3	
2	0, 1	2, 3	
3	0 to 2, 3 (PRSL = 0)	3 (PRSL = 1)	

Table 16-2. Acceptance of Interrupts Generated during Interrupt Handling

Table 16-3. Operations after the HALT Mode is Released by an Interrupt Request

Releasing request	EI state	DI state			
Nonmaskable interrupt	Branches to the vector address.				
Maskable interrupt	Branches to the vector address or Executes the next instruction executes the next instruction.				

Table 16-4. Releasing the HALT Mode by a Macro Service Request

Conditions for a vectored interrupt at the end of	HALT mode	Operations after releasing the HALT mode		
macro service		El state	DI state	
Satisfied	Released	Branches to the vector address or executes the next instruction ^{Note}	Executes the next instruction.	
Not satisfied	The system returns to the HALT mode.	_		

Note If the HALT mode is set by an interrupt service routine then an interrupt request which is not masked and has higher priority is generated, processing branches to the vector address.

(b) Releasing the HALT mode by $\overrightarrow{\text{RESET}}$ input

Same as the normal reset operation except that data in the internal RAM before setting the HALT mode is retained.

16.3.2 STOP mode

(1) Setting the STOP mode and operation states in the STOP mode

In the STOP mode, the oscillator is stopped.

Power consumption can be substantially reduced when the entire application system stops. The system is placed in the STOP state by setting the STP bit in the STBC register to 1.

In the STOP mode, generation of the internal clock is stopped when the oscillator stops operating. At the same time, the watchdog timer for reserving the oscillation stabilization time is automatically cleared by the hardware. Although program execution is stopped, the contents of all registers and internal RAM immediately before the STOP mode is set are retained. Hardware functions enter the states shown in Table 16-5.

Function		Operation state	
Clock generator		Stopped	
Internal system clock			
CPU			
I/O line		Retained when V_{DD} is within the operable range	
On-chip peripheral hardware		Stopped	
Internal data		Internal data such as the CPU status, data, and contents of the internal RAM is retained as it was before setting the STOP mode when V _{DD} is within the operating range ^{Note} .	
When external devices are	AD0 to AD7	High-impedance	
expanded	AD8 to AD15		
	ASTB	0	
	RD	1	
	LWR, HWR		
	CLKOUT	0	

Table 16-5. Operation States in the STOP Mode

Note Only the contents of internal RAM are retained by keeping the data retention voltage when V_{DD} is lower than the minimum operable voltage.

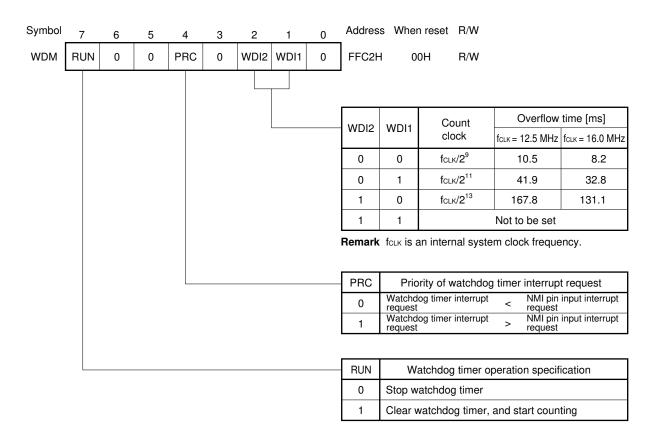
(2) Releasing the STOP mode

Operations after the STOP mode is released depend on the releasing conditions and the status of the system when it entered the STOP mode.

The STOP mode can be released by NMI or $\overline{\text{RESET}}$ input.

(a) Releasing the STOP mode by NMI input

The oscillator restarts when a valid edge is applied to the NMI input. While the NMI input is active, the watchdog timer remains cleared and does not start counting. When the NMI input level returns to the inactive level, the watchdog timer starts counting. When the watchdog timer overflows, generation of the internal system clock is started.


Therefore, the μ PD78356 is in the wait state during the following period:

(Active level duration after detecting a valid edge in NMI input)

(Watchdog timer overflow time)

The overflow time for the watchdog timer is specified using the WDM register.

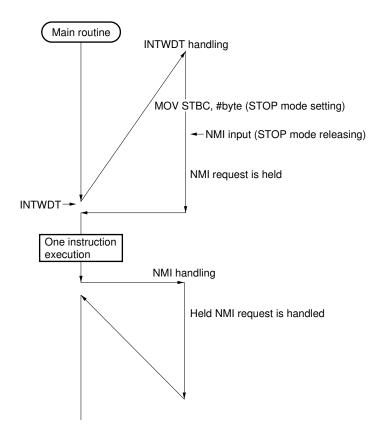
Operations after the STOP mode is released depend on the status of the system when it entered the STOP mode, and the priority level of the watchdog timer interrupt request and NMI interrupt request. Priority is specified for a watchdog timer interrupt request or interrupt request using the WDM register (see **Fig. 16-4**).

Fig. 16-4. Format of the Watchdog Timer Mode Register

Cautions 1. Data can be written into the WDM register only by a dedicated instruction (MOV WDM, #byte).

- 2. Do not change the priority for interrupt requests dynamically, that is, when a program is being executed.
- 3. The RUN bit cannot be reset to 0 by software.
- 4. The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit to 1.

(i) When the STOP mode is set during the watchdog timer interrupt handling routine

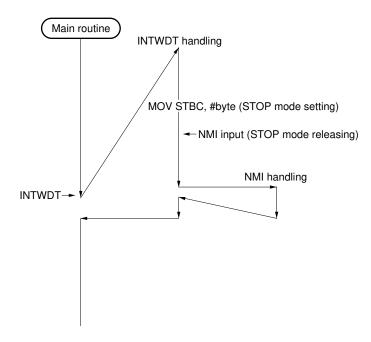

<1> When the priority level is set as watchdog timer interrupt request > NMI interrupt request (WDM register PRC bit = 1)

After the STOP mode is released by NMI input, operations are started from the instruction after the instruction setting the STOP mode (The NMI interrupt request is held.)

Phase-out/Discontinued

When the RETI instruction is executed in the watchdog timer interrupt handling routine, operations restore from the watchdog timer interrupt handling routine. After this, when one instruction is executed, operations branch to the NMI interrupt handling routine.

<2> When the priority level is set as watchdog timer interrupt request < NMI interrupt request (WDM register PRC bit = 0)

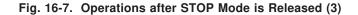

After the STOP mode is released by NMI input, operations branch into the NMI interrupt handling routine immediately.

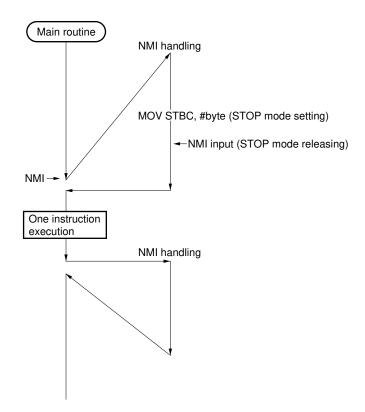
Phase-out/Discontinued

When the RETI instruction is executed in the NMI interrupt handling routine, operations restore from the instruction after the instruction setting the STOP mode during the watchdog timer interrupt handling routine.

After this, when the RETI instruction is executed, operations restore from the watchdog timer interrupt handling routine.

Fig. 16-6. Operations after STOP Mode is Released (2)

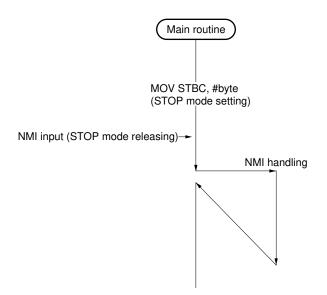



(ii) When the STOP mode is set during the NMI interrupt handling routine

After the STOP mode is released by NMI input, operations start from the instruction after the instruction setting the STOP mode.

When the RETI instruction is executed in the NMI interrupt handling routine, operations restore from the NMI interrupt handling routine.

After this, when one instruction is executed, operations branch to the NMI interrupt handling routine again.

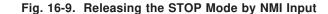


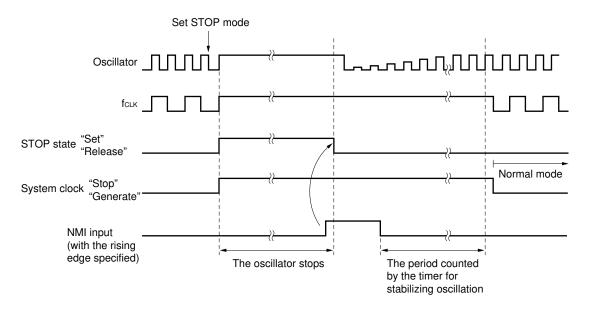
(iii) When the STOP mode is set in other than nonmaskable interrupt handling routine

After the STOP mode is released by NMI input, operations branch into the NMI interrupt handling routine immediately.

When the RETI instruction is executed in the NMI interrupt handling routine, operations restore from the instruction after the instruction setting the STOP mode.

Release source	STOP mode set status	PRC ^{Note}	Operations after STOP Mode is Released
RESET input	-	х	Operations are started from the reset address.
NMI input	INTWDT routine	1	Operations start from the instruction after the MOV STBC #byte instruction (The NMI interrupt request is held). The NMI interrupt request is accepted after the watchdog timer interrupt handling setting the STOP mode completes (See Fig. 16-5).
		0	The NMI interrupt request is accepted (See Fig. 16-6).
	NMI routine	x	Operations start from the instruction after the MOV STBC #byte instruction (The NMI interrupt request is held). The NMI interrupt request is accepted again after the NMI interrupt handling setting the STOP mode completes (See Fig. 16-7).
	Other than nonmaskable interrupt routine	x	The NMI interrupt request is accepted (See Fig. 16-8).


Table 16-6. Release of STOP Mode and Operations after Release


Note A priority level specification flag in the watchdog timer mode register (WDM).

PRC = 1 ... Watchdog timer interrupt request > NMI interrupt request

PRC = 0 ... Watchdog timer interrupt request < NMI interrupt request

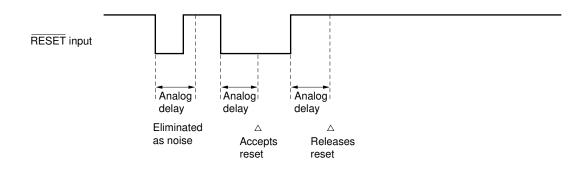
PRC = x ... don't care

(b) Releasing the STOP mode by $\overline{\text{RESET}}$ input

The oscillator restarts at the same time RESET input level is changed from high to low to put the system in the reset state.

Apply the $\overline{\text{RESET}}$ active period for the oscillation stabilization time. When $\overline{\text{RESET}}$ starts up, operations start from the addresses stored in the reset vector.

CHAPTER 17 RESET FUNCTION


Phase-out/Discontinued

When the signal applied to the RESET pin is low, the system is reset, and each hardware component is placed in the status indicated in Table 17-1.

When the signal applied to the RESET input port goes high, the reset status is released, and program execution starts. The contents of registers must be initialized in the program as required. In particular, the number of cycles specified in the programmable wait control register (PWC) must be changed as required. After resetting, the initial setting in the PWC register is effective: Three wait cycles are added to the bus cycle, and the fetch cycle mode is normal (see **Fig. 18-5**).

The RESET pin contains a noise eliminator based on analog delays to prevent abnormal operation due to noise.

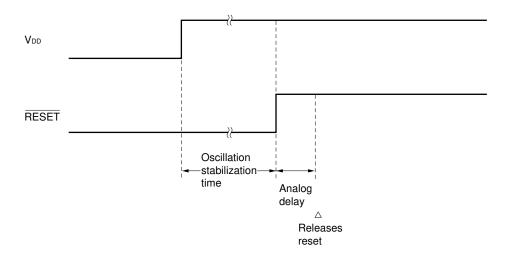

- Cautions 1. When RESET is active, all pins except WDTO, CLKOUT, AVREF, AVDD, AVSS, VDD, VSS, X1, and X2 go into the high-impedance state.
 - 2. When RAM is expanded externally, attach a pull-up resistor to the P90/RD pin, P91/LWR pin, and P92/HWR pin. Otherwise, these pins may go into the high-impedance state, and the contents of the external RAM may be lost. Or signal collision on the address/data bus may damage the input/output circuit.

Fig. 17-1. Acceptance of the RESET Signal

In reset operation at power-on, a time for stabilized operation between power-on to reset acceptance is required as shown in Fig. 17-2.

	Hardy	ware		Status after reset	
Control registers	Program counter (PC)			The contents of a reset vector table (0000H, 0001H) are set.	
	Stack pointer (SP)			Undefined ^{Note}	
	Program status word (PS	SW)		0000H	
	CPU control word (CCW))		00H	
Internal RAM	Data memory			Undefined ^{Note}	
	General registers (R0 to	R15)		_	
Ports	Output latches (P0 to P5	, P8 to P10)		Undefined	
	Mode registers (PM	10 to PM3, PM5,	PM8, PM10)	FFH	
	(PM	19)		0FH	
	Mode control registers	(PMC0, PMC	C3, PMC8, PMC10)	00H	
		(PMC2)	(PMC2)		
	Pull-up registor option re	up registor option registers (PUOL, PUOH)			
	Port read control register (PRDC)				
Real-time output ports	Real-time output prot registers (RTPL, RTPH)			Undefined	
(RTP)	Real-time output port mo	de register (RTF	PM)	00H	
Real-time pulse unit	Timers (TM0 to TM4)			0000H	
(RPU)	Up/down counter (UDC)				
	Timer unit mode registers	s (TUM0 to TUM	3)	00H	
	Timer control registers	(TMC0, TMC	;1)	00H	
		(TMC2)		04H	
	Up/down counter control	00H			
	Timer output control regis				
	Timer overflow status reg				
	Noise protection control				
Compare registers (CM00 to CM03, CM10, CM11, CM20, CM21, CMUD0, CMUD1)			10, CM11, CM20, CM21, CM40,	Undefined	
	Capture/compare register	rs (CC00 to CC0	2, CC30, CC31)		
A/D converter	A/D converter mode regis	sters	(ADM0)	00H	
			(ADM1)	07H	
	A/D conversion result reg	jisters (ADCR0 t	o ADCR7, ADCR0H to ADCR7H)	Undefined	
D/A converter	D/A converted data coeff	icient registers	(DACS0, DACS1)	00H	
			(DACS)	0000H	

Table 17-1	Hardware Statuse	e aftar	Rocot	(1/2)
	naruware Statuse	s aller	nesei	(1/2)

Note When the STOP mode is released by RESET input, the values before the STOP mode was set are restored.

	Hardware		Status after reset
Serial interface	Asynchronous serial interface n	node register (ASIM)	80H
	Asynchronous serial interface s	tatus register (ASIS)	00H
	Clock synchronous serial interfa		
	Serial bus interface control regi		
	Serial I/O shift registers (SIO0,	SIO1)	Undefined
	Serial reception buffer (RXB)		
	Serial transmission shift registe	r (TXS)	
PWM output function	PWM control register (PWMC)		00H
	PWM buffer registers (PWM0, F	Undefined	
Watchdog timer	Watchdog timer mode register (00H	
Interrupt function	External interrupt mode register	rs (INTM0, INTM1)	00H
	Interrupt mode control register	(IMC)	80H
	Interrupt mask flag registers	MK0L, MK0H, MK1L	FFH
		МКО	FFFFH
		MK1	00FFH
	Interrupt control registers (OVI CMI CMI CSII	43H	
	In-service priority register (ISPF	00H	
External expansion	Memory expansion mode regist	er (MM)	00H
function	Programmable wait control regi	ster (PWC)	COAAH ^{Note}
CPU control	Standby control register (STBC)	0000x000B

Table 17-1.	Hardware	Statuses	after	Reset	(2/2)	
	i la la la la la la	0.0.000	aitoi		\	

Note Becomes CFAAH only in the external 16-bit bus ROM-less mode (MODE0, 1 = HH).

CHAPTER 18 BUS INTERFACE FUNCTION

The µPD78356 has bus interface functions to control external memory (ROM, RAM) and I/O devices.

18.1 External Device Expansion Function for the μ PD78356

For the μ PD78356, external devices (data memory, program memory, and peripheral devices) can be assigned to the external memory area (C000H to F6FFH).

An external 8- or 16-bit data bus can be specified by setting the programmable wait control register (PWC).

(1) When an external 8-bit bus is specified

When an external device is connected, port 4 (P40 to P47) is used as the multiplexed address/data bus (AD0 to AD7) and port 5 (P50 to P57) is used as the address bus (AD8 to AD15) by setting the memory expansion mode register (MM). The \overline{RD} , \overline{LWR} , and ASTB signals are used to access the external device. Table 18-1 lists the pins used for access to an external device and indicate how to assign functions to the pins.

Table 18-1. Assigning Functions to Pins (for µPD78356 When an External 8-Bit Bus is Specified)

Memory expansion mode register	Pin funciton				
MM0 to MM2	P40 to P47	P50 to P57	P90	P91	
Port mode	General port				
Expansion mode	AD0 to AD7	Set to AD8 to AD15 according to the expanded memory size	RD	LWR	

Remark AD8 to AD15 are used as the address bus.

The number of port 5 pins which operate as the address bus can be changed according to the size of memory expanded externally. This feature allows memory to be expanded gradually as shown in the following table. Pins not used as the address bus can be used as general I/O ports. (See **Table 18-2**.)

P50	P51	P52	P53	P54	P55	P56	P57	External address space		
	:	C	General	I/O port		I/O port				Within 256 bytes
								Within 4 Kbytes		
AD8	AD9	AD10	AD11	AD12 AD13				Within about 16 Kbytes		
					1.010	AD14	AD15	Full expansion mode		

Table 18-2. Operation of Port 5 (Expansion Mode)

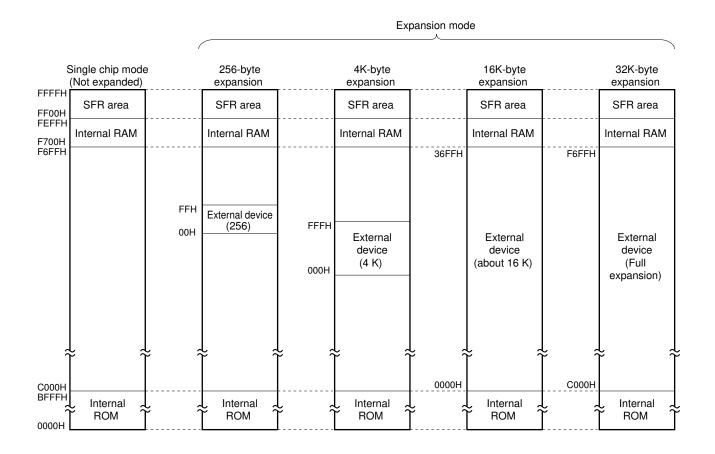
When an external device reference instruction is executed in the 256-, 4K-, or 16K-byte expansion mode, the system operates as follows. Fig. 18-1 shows the memory map for expansion mode.

(a) 256-byte expansion mode

Masks the 8 high-order bits of the 16 external reference address bits and outputs 00H to FFH as address information from pins AD0 to AD7.

(b) 4K-byte expansion mode

Masks the 4 high-order bits among 16 external reference address bits and outputs 000H to FFFH as address information from pins A8 to A11 and AD0 to AD7.


(c) 16K-byte expansion mode

Masks the 2 high-order bits of the 16 external reference address bits and output 0000H to 36FFH as address information from pins A8 to A13 and AD0 to AD7.

As described above, the 8, 4, and 2 high-order bits of the 16-bit address are masked in the 256-, 4K-, and 16Kbyte expansion modes, respectively.

Fig. 18-1. Memory Map for Expansion Mode (for μ PD78356 When an External 8-bit bus is Specified)

Caution The internal memory (ROM, RAM) capacity of the μ PD78356 can be changed by setting the memory expansion mode register (MM). (See Fig. 18-4.)

(2) When an external 16-bit bus is specified

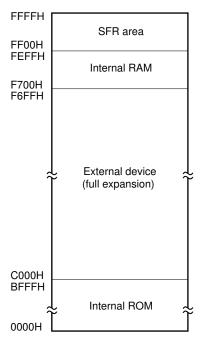

When an external device is connected, port 4 (P40 to P47) is used as the lower half (AD0 to AD7) of the multiplexed address/data bus and port 5 (P50 to P57) is used as the upper half (AD8 to AD15) of the multiplexed address/data bus by setting the memory expansion mode register (MM). The \overline{RD} , \overline{LWR} , \overline{HWR} , and ASTB signals are used to access the external device.

Table 18-3 lists the pins used for access to an external device and indicates how to assign functions to the pins.

Table 18-3. Assigning Functions to Pins (for µPD78356 When an External 16-Bit Bus is Specified)

Memory expansion mode register	Pin function						
MM0 to MM2	P40 to P47	P40 to P47 P50 to P57 P90					
Port mode	General port						
Expansion mode	AD0 to AD7	AD8 to AD15	RD	LWR	HWR		

Fig. 18-2. Memory Map for Expansion Mode (for μ PD78356 When an External 16-Bit Bus is Specified) Full expansion mode

Caution The internal memory (ROM, RAM) capacity of the μ PD78356 can be changed by setting the memory expansion mode register (MM). (See Fig. 18-4.)

18.2 Access to External Devices by the μ PD78355

The μ PD78355 does not contain ROM. External devices (data memory, program memory, and peripheral devices) can be assigned to the area (0000H to F6FFH) other than that used for the internal RAM.

An external 8- or 16-bit data bus can be specified by setting the programmable wait control register (PWC).

(1) When an external 8-bit bus is specified

When an external device is connected, AD0 to AD7 are used as the multiplexed address/data bus, and AD8 to AD15 are used as the address bus. To access the external device, RD, LWR, and ASTB signals are used.

(2) When an external 16-bit bus is specified

When an external device is connected, AD0 to AD7 are used as the lower half of the multiplexed address/ data bus, and AD8 to AD15 are used as the upper half of the multiplexed address/data bus. The \overline{RD} , \overline{LWR} , \overline{HWR} , and ASTB signals are used to access the external device.

In the μ PD78355, specification in the MM0 to MM2 bits of the memory expansion mode register (MM) is invalidated.

Unlike the μ PD78356, the memory of μ PD78355 cannot be expanded gradually.

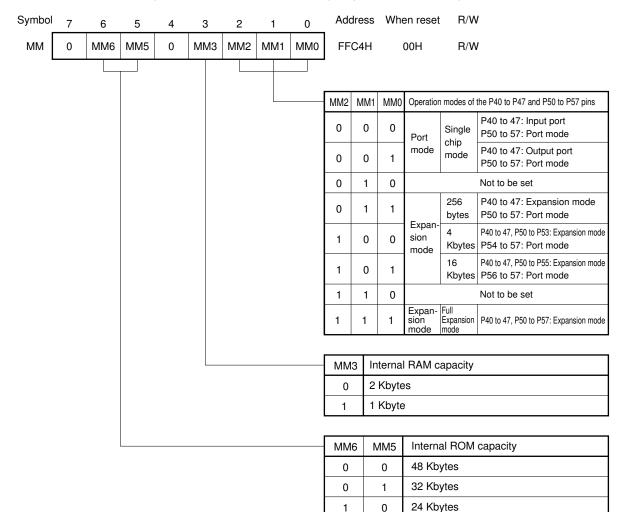
FFFFH FF00H FEFFH F700H	SFR area Internal RAM
66FFH 0000Н	External device

Fig. 18-3. Memory Map of the μ PD78355

18.3 Control Registers

18.3.1 Memory expansion mode register

The memory expansion mode register (MM) is an 8-bit register which controls the address/data bus and signals such as $\overline{\text{RD}}$, $\overline{\text{LWR}}$, and $\overline{\text{HWR}}$ when memory or I/O is externally expanded.


Bits MM0 to MM2 are valid only when MODE0 and MODE1 are LL. These bits are used to specify the functions of the pins of ports 4 and 5.

When the expansion mode is specified using bits MM0 to MM2, the P90 and P91 pins function as the $\overline{\text{RD}}$ and $\overline{\text{LWR}}$ pins automatically. When the 16-bit bus is specified for at least one memory space by the programmable wait control register (PWC), the P92 pin functions as the $\overline{\text{HWR}}$ pin. (The P92 pin functions as the $\overline{\text{HWR}}$ pin even when the 16-bit bus is specified for the internal memory space.)

In the expansion mode, when an external 16-bit bus is used for a memory configuration consisting of internal ROM and external memory, only the full expansion mode can be specified.

The MM register is set to 00H by RESET input.

Fig. 18-4 shows the format of the MM register.

Fig. 18-4. Format of the Memory Expansion Mode Register

Cautions 1. Be sure to write 0 in bits 4 and 7. If 1 is written in these bits, operation will not be normal. 2. Invalid combinations are specified as "Not to be set" in Fig. 18-4. Never write these combinations.

1

1

0

1

16 Kbytes

18.3.2 Programmable wait control register

The programmable wait control register (PWC) is a 16-bit register for programmable wait control to the bus cycle (internal^{Note} and external memory access) generated by the μ PD78356. This register also specifies the bus width when an external device is connected. This register enables low-speed memory and peripheral devices to be connected externally.

The PWC register cannot be accessed in 8-bit mode. Use a 16-bit data transfer instruction to access the PWC register.

The PWC register value after RESET input varies according to the operation mode specified with the MODE0 and MODE1 pins. (See **Table 18-4**.)

Fig. 18-5 shows the format of the PWC register.

Note The internal memory refers to the internal ROM area (only for the μ PD78356 and μ PD78P356) and internal RAM area (F700H to FEFFH).

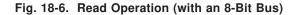
MODE0	MODE1	μPD78355	μPD78356	μPD78P356	PWC register value after reset		
L	L	Not to be set	COAAH				
L	Н		-				
н	L	Romless mode (E	C0AAH				
Н	Н	Romless	CFAAH				

Table 18-4. Status after PWC Register Reset

Symbol	15	14	13	12	11	10) 9)	8	7	6	5	4	3	2	2 1	0	Add	dress	R/W				
PWC	AW	AW	0 0	0	BW3	BW	/2 BW	/1 B	WOF	PWC7	PWC	SPWC	5 PWC	4 PWC	3PW	C2 PWC			C6H	R/W				
						<u> </u>]	0011					
																				Nun	nber of clocks	specified for the memory	space	
																		PWC1	/C1 PWC0	Wait cycle	Data access cycle	00H to 3FFFH) Fetch cycle mode	Fetch cycle	
																		0	0	0	3		3	
																		0	1	1	4	Normal fetch	4	
																		1	0	2 0	5	High-speed fetch	5 2	
																		PWC3	PWC2		(40	specified for the memory 00H to 7FFFH)		
																				Wait cycle	Data access cycle	Fetch cycle mode	Fetch cycle	
																		0	0	0	3	Normal fetch	3	
																		1	0	2	5	Normaneten	5	
																		1	1	0	3	High-speed fetch	2	
																				Nun	nber of clocks s	specified for the memory	space	
																		PWC5	PWC4	Wait	(80	00H to BFFFH)		
																				cycle	Data access cycle	Fetch cycle mode	Fetch cycle	
																		0	0	0	3	Normal fetch	3	
																		0	1	1	4 5	Normanetch	4 5	
																		1	1	0	3	High-speed fetch	2	
																			Number of clocks specified for the memory space					
										l								PWC7	PWC6	Wait cycle	Data access cycle	SFFH, FFD0H to FFDFH) Fetch cycle mode	Fetch	
																		0	0	0	3	mode	cycle 3	
																		0	1	1	4	Normal fetch	4	
																		1	0	2 0	5	High-speed fetch	5 2	
														BW0		•	-		_					
																		0		iutri (valio	address: 0000			
																		1	8 bits					
																			16 bits	5				
							L			-			-					BW1	Bus w	idth (valio	d address: 4000	0H to 7FFFH)		
																		0	8 bits					
																		1	16 bits	3				
						L												BW2	Bus w	idth (valio	d address: 8000	0H to BFFFH)		
																		0	8 bits					
																		1	16 bits	3				
																		BW3	Bus w	idth (valio	d address: C00	0H to F6FFH, FFD0H to	FFDFH)	
																		0	8 bits					
																		1	16 bits	6				
																					ntrol (velist estat			
																		AW0			ntrol (valid add	ress: 0000H to 7FFFH)		
																		1	Addres	ss wait is	audeu			
																		AW1	Addres	s wait cont	rol (valid address	: 8000H to F6FFH, FFD0H to	FFDFH)	
																		0	Addres	ss wait is	not added			
																		1	Addres	ss wait is	added			

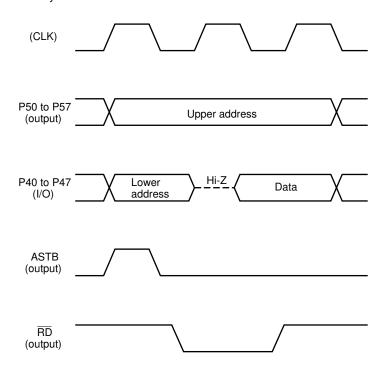
Fig. 18-5. Format of the Programmable Wait Control Register

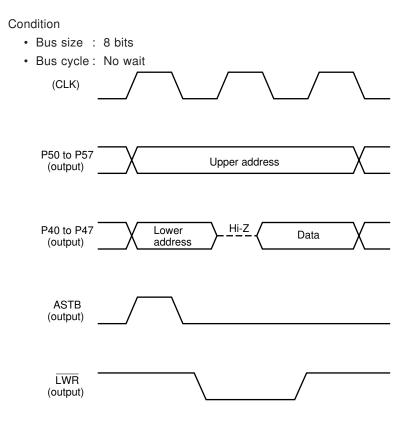
- Cautions 1. Cycle counts indicated in Fig. 18-5 do not contain any address wait. When an address wait is added, one cycle must be added to the indicated cycle count.
 - 2. Although instruction fetch and data access are allowed for the peripheral RAM area (F700H to FDFFH), the bus width specification and wait specification made by the PWC register are invalid for that area, and 16-bit bus operation is always performed. Every instruction fetch is performed in the high-speed fetch mode.


- 3. Instruction fetches cannot be performed for the main RAM area (FE00H to FEFFH). Data is always accessed in 16-bit units; the bus width specification and wait specification made by the PWC register are invalid at the time of data access. (In this case, a special bus cycle made up of two clock cycles is activated.)
- 4. The wait specification for the external SFR area (FFD0H to FFDFH) is made by the PWC7 and PWC6 bits.
- 5. For the internal ROM area, 16-bit bus operation is performed regardless of the PWC register setting. The wait specification for this area can be made using the PWC register. Note that, however, specifying a 16-bit bus for the internal ROM area makes the P92 pin function as the HWR pin even when only an 8-bit external memory is connected. The port function is then disabled. So, never specify the 16-bit bus for the internal ROM area.

18.4 Bus Timing

Fig. 18-6 to 18-11 show the timing charts for a read or write to the μ PD78356 memory and external I/O.


When a 16-bit bus is set for a memory area by the MODE0 and MODE1 pins, and the programmable wait control register (PWC), an access to an odd address of that area is performed in two bus cycles. In other cases, an access to memory or I/O is performed in one bus cycle. One bus cycle is made up of three clocks. When wait cycles are inserted according to the PWC register setting, the inserted wait cycles are added to the bus cycle. One clock period is 62.5 ns when an external 32-MHz clock is used.


In the μ PD78356, an instruction code is fetched on the same timing as data read.

Condition

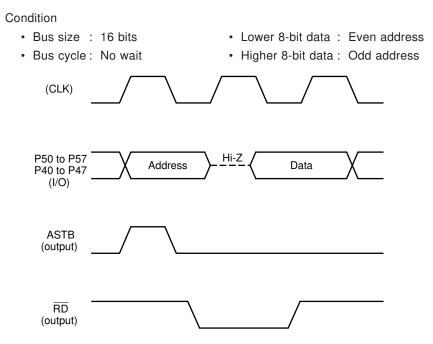

- Bus size : 8 bits
- · Bus cycle : No wait

Fig. 18-7. Write Operation (with an 8-Bit Bus)

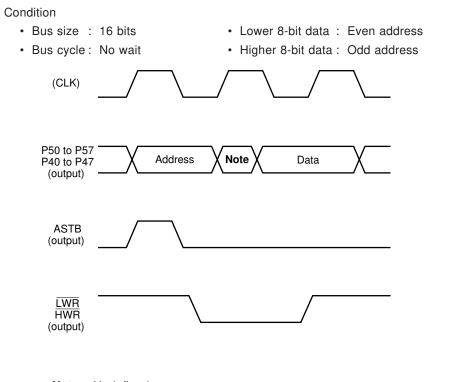
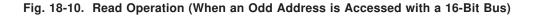
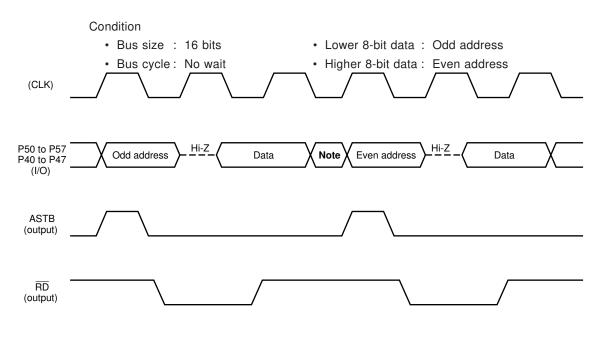
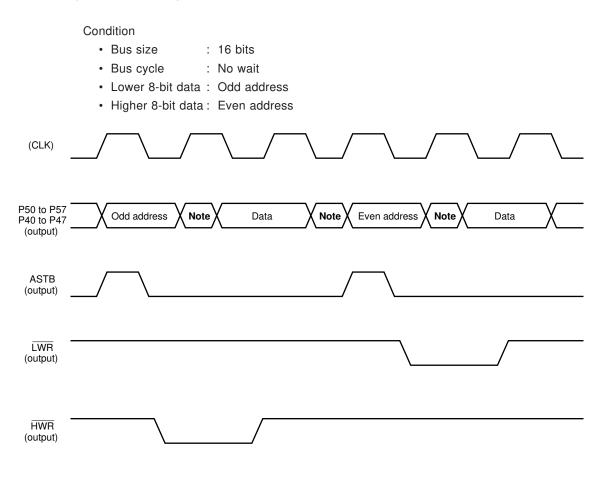
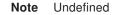
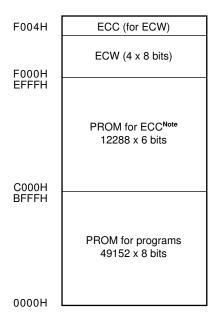
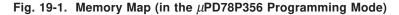




Fig. 18-9. Write Operation (When an Even Address is Accessed with a 16-Bit Bus)









CHAPTER 19 PROGRAMMING FOR THE μ PD78P356

The μ PD78P356 contains electrically writable PROM (49152 x 8 bits for programs and 12288 x 6 bits for ECC). Fig. 19-1 shows a memory map for the programming mode.

Note For the PROM for ECC, the low-order 6 bits are valid.

An error correction code (ECC) can be written to the space from C000H to EFFFH to improve the reliability of an electrically written program (0000H to BFFFH).

The ECC control word (ECW) is a 4-byte register to control the addition of an ECC circuit. When the ECC circuit is used, the least significant bit of the lowest byte (F000.0) of ECW must be reset. ECC and ECW are generated by ECCGEN, which is supplied with the RA78K3 assembler package. (ECC is generated in the least significant 6 bits, and the most significant 2 bits are fixed to 1.

Use the MODE0/V_{PP}, MODE1, P21, and $\overrightarrow{\text{RESET}}$ pins to set the μ PD78P356 to the PROM programming mode when programming on the PROM.

The μ PD78P356 provides programming characteristics compatibility with the μ PD27C1001A.

Function	Normal operating mode	Programming mode					
Address input	P00 to P07, P50, P20, P51 to P57	A0 to A16					
Data input	P40 to P47	D0 to D7					
Program pulse	P12	PGM					
Chip enable	P10	CE					
Output enable	P11	ŌĒ					
Program voltage	MODE0/V _{PP}						
Mode voltage	MODE1, P21, RESET						

Table 19-1. Functions of Pins in the Programming Mode

19.1 Operating Mode

When the MODE0/V_{PP} pin is set to H, the MODE1 pin is set to L, the P21 pin is set to L, and the RESET pin is set to L, the μ PD78P356 enters the programming write/verify mode. This mode varies to each operating mode shown in Table 19-2 according to how to set the \overline{CE} , \overline{OE} , and \overline{PGM} pins.

Setting the μ PD78P356 to the read mode enables it to read the contents of PROM. Connect unused pins as shown in **1.4 Pin Configuration (Top View)**.

Mode	MODE1	P21	RESET	CE	ŌĒ	PGM	V _{PP} / MODE0	Vdd	D0 to D7
Page data latch				Н	L	Н			Data input
Page program				Н	н	L			High-impedance
Byte program				L	н	L	+12.5 V	+6.5 V	Data input
Program verify	L	L	L	L	L	Н			Data output
Program inhibit	-			х	L	L			High-impedance
				х	н	н			
Read	-			L	L	Н			Data output
Output disable				L	н	х	+5 V	+5 V	High-impedance
Standby	-			Н	х	х			High-impedance

Table 19-2. Operating Modes for Programming on PROM

Remark L : Directly connected to the Vss pin.

H: Directly connected to the VDD pin.

x : Indicates L or H.

19.2 Procedure for Writing on PROM (Page Program Mode)

The following is a procedure for writing on PROM. (See Fig. 19-2.)

In the page program mode, data is written in units of pages (four bytes). When write data completes midway of a page, latch FFH after the data so that the data fits into pages.

- Always set each pin as follows: MODE0/VPP = H, MODE1 = L, P21 = L, and RESET = L. Connect unused pins as shown in 1.4 Pin Configuration (Top View).
- (2) Apply +6.5 V to the V_DD pin and +12.5 V to the MODE0/V_PP pin.
- (3) Input an initial address to the A0 to A16 pins.
- (4) Clear the page counter.
- (5) Data latch mode. Input write data to the D0 to D7 pins and input an active-low pulse to the \overline{OE} pin. Increment the address and the page counter.
- (6) Repeat step (5) for a page (four bytes).
- (7) Input a 0.1 ms program pulse (active low) to the \overline{PGM} pin.
- (8) Verify mode. Checks if data has been written in PROM.

Apply a low level to the \overline{CE} pin, input an active-low pulse to the \overline{OE} pin, and then read the write data from the D0 to D7 pins. Repeat this for a page (four bytes). When verification completes, apply a high level to the \overline{CE} pin.

- If data has been written, go to step (10).
- If not, repeat steps (7) and (8). If no data is written yet after the steps have been repeated 10 times, go to step (9).
- (9) Assume the device to be defective and stop write operation.
- (10) Increment the address.
- (11) Repeat steps (4) to (10) until the address exceeds the last address.
- Fig. 19-3 is a timing chart of these steps (2) to (9).

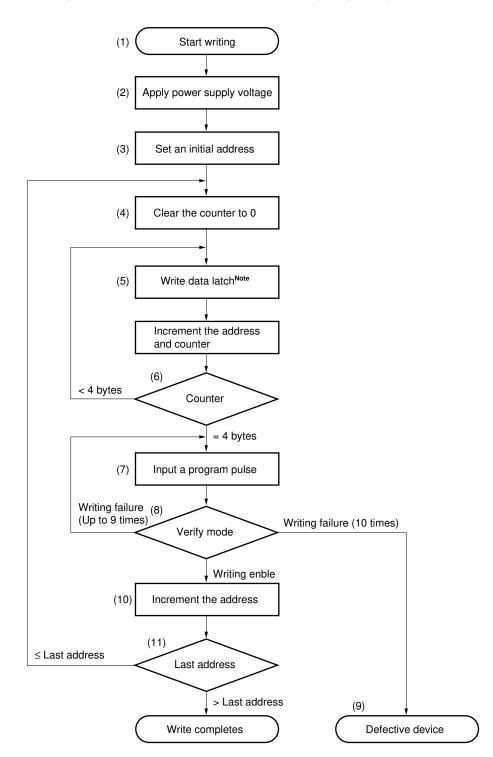


Fig. 19-2. Flowchart of Procedure for Writing (Page Program Mode)

Note When write data completes midway of a page, latch FFH after the data so that the data fits into pages.

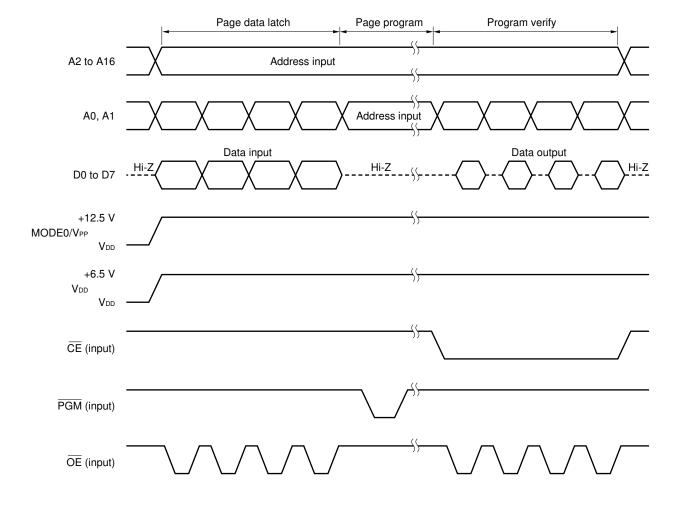


Fig. 19-3. Timing Chart of PROM Write and Verify Operation (Page Program Mode)

19.3 Procedure for Writing Data into PROM (Byte Program Mode)

The procedure for writing data into PROM is as follows (see Fig. 19-4).

- Always set each pin as follows: MODE0/VPP = H, MODE1 = L, P21 = L, and RESET = L. Connect unused pins as shown in 1.4 Pin Configuration (Top View).
- (2) Apply +6.5 V to the V_{DD} pin and +12.5 V to the MODE0/V_{PP} pin. Apply a low-level signal to the \overline{CE} pin.
- (3) Input an initial address to the A0 to A16 pins.
- (4) Input write data to the D0 to D7 pins.
- (5) Input a program pulse (active low) which has a period of 0.1 ms to the \overline{PGM} pin.
- (6) Verify mode. Check that data has been written in PROM.
 Input an active-low pulse to the OE pin and read the written data from the D0 to D7 pin.
 When data has been written, go to step (8).
 - If not, repeat steps (4) to (6). If no data is written after the steps are repeated ten times, go to step (7).
- (7) Assume the device to be defective and stop write operation.
- (8) Increment the address.
- (9) Repeat steps (4) to (8) until the address exceeds the last address.

Fig. 19-5 is a timing chart of steps (2) to (7) above.

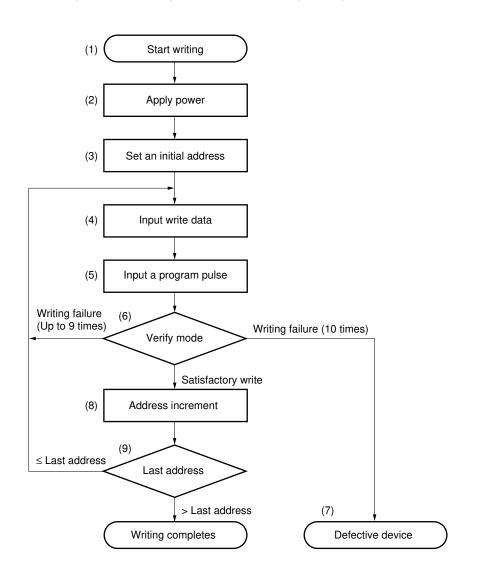
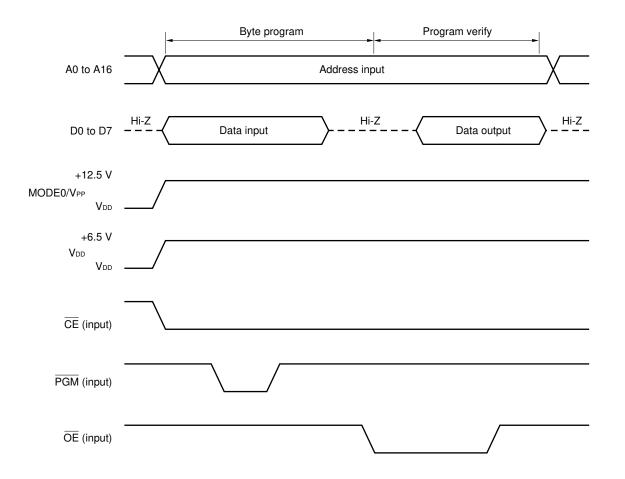
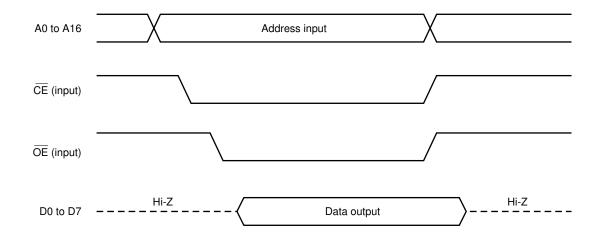



Fig. 19-4. Write Operation Flowchart (Byte Program Mode)

Fig. 19-5. Timing Chart of PROM Write and Verify Operation (Byte Program Mode)



19.4 Procedure for Reading from PROM

The contents of PROM can be read out to the external data bus (D0 to D7) in the following steps:

- (1) Always set the MODE0/VPP pin to H, the MODE1 pin to L, the P21 pin to L, and the RESET pin to L. Connect unused pins as shown in **1.4 Pin Configuration (Top View)**.
- (2) Apply +5 V to the VDD and MODE0/VPP pins.
- (3) Input the address of data to be read into the A0 to A16 pins.
- (4) Read mode ($\overline{CE} = L, \overline{OE} = L$)
- (5) Output the data on the D0 to D7 pins.

Fig. 19-6 is a timing chart of these steps (2) to (5).

Fig. 19-6. PROM Read Timing Chart

19.5 Erasure Characteristics (µPD78P356KP Only)

Data written in the μ PD78P356KP program memory can be erased (FFH); therefore users can write other data in the memory.

To erase the written data, expose the erasure window to light with a wavelength shorter than approx. 400 nm. Normally, ultraviolet light with a wavelength of 254 nm is employed. The amount of light required to completely erase the data is as follows:

- Intensity of ultraviolet light x erasing time: 15 W s/cm² min.
- Erasing time: 15 to 20 minutes (When using a 12000 μW/cm² ultraviolet lamp. It may, however, take more time due to lamp deterioration, dirt on the erasure window, or the like.)

The ultraviolet lamp should be placed within 2.5 cm from the erasure window during erasure. In addition, if a filter is attached to the ultraviolet lamp, remove the filter before erasure.

19.6 Protective Film Covering the Erasure Window (µPD78P356KP Only)

After the erasure window of the μ PD78P356KP has been exposed to sunlight or a fluorescent lamp for a long time, data in EPROM may be erased and the internal circuits may malfunction. To prevent these failures, the erasure window should be covered with a protective film when it is not used for erasure.

EPROM version devices with window are masked with an NEC-guaranteed protective film when they are delivered.

19.7 Screening of One-Time PROM Version Devices

The one-time PROM version (μ PD78P356GC-7EA, 78P356GD-5BB) cannot be fully tested before shipping due to its structure. It is therefore recommended that, after writing data, screening be performed to verify the PROM contents after storage in high temperature in the following conditions.

Storage temperature	Storage time
125 °C	24 hours

NEC provides services from one-time PROM writing under the name QTOP[™] microprocessor, to printing, screening, and verification at a charge. For details, contact your NEC dealer.

CHAPTER 20 INSTRUCTION SET

Phase-out/Discontinued

This chapter lists the operations of the μ PD78356 instructions.

For details of operations of the instructions, instruction codes and clock number, refer to the μ PD78356 User's Manual Instruction Volume.

20.1 Operand Identifier and Description

Operands are coded in the operand field of each instruction as listed in the description column of Table 20-1. For details of the operand format, refer to the relevant assembler specifications. When several coding forms are presented, any one of them is selected. Uppercase letters and the symbols, +, -, #, \$, !, and [], are keywords and must be written as they are.

For immediate data, an appropriate numeric or label must be written. The symbols #, \$, !, and [] must not be omitted when describing labels.

Table 20-1.	Operand	Identifier	and	Description
-------------	---------	------------	-----	-------------

Identifier	Description
r	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
r1	R0, R1, R2, R3, R4, R5, R6, R7
r2	C, B
rp	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rp1	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7
rp2	DE, HL, VP, UP
sfr	Special function register name (See Table 3-4 .)
sfrp	Special function register name (16-bit manipulation register. See Table 3-4 .)
post	RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7 (Can be coded more than once. However, RP5 can only be used in a PUSH or POP instruction and PSW can only be used in a PUSHU or POPU instruction.)
mem	[DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP]: Register indirect mode [DE + A], [HL + A], [DE + B], [HL + B], [VP + DE], [VP + HL]: Based indexed mode [DE + byte], [HL + byte], [VP + byte], [UP + byte], [SP + byte]: Based mode word[A], word[B], word[DE], word[HL]: Indexed mode
saddr	FE20H to FF1FH Immediate data or label
saddrp	FE20H to FF1EH Immediate data (bit 0 = 0, however) or label (for 16-bit manipulation)
\$addr16 !addr16 addr11	0000H to FDFFH Immediate data or label: Relative addressing 0000H to FDFFH Immediate data or label: Immediate addressing (Data at an address up to FFFFH can be coded in an MOV instruction. Data at an address from FE00H to FEFFH can be coded in an MOVTBLW instruction.) 800H to FFFH Immediate data or label
addr5	40H to 7EH Immediate data (bit 0 = 0, however) ^{Note} or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
n	3-bit immediate data (0 to 7)

Note Do not attempt to access word data at an odd-numbered address (bit 0 = 1).

Remarks 1. The same register name can be specified in rp and rp1, but different codes are generated.

2. Immediate addressing is effective for entire address spaces. Relative addressing is effective for the locations within a displacement range of -128 to +127 from the starting address of the next instruction.

The 8-bit registers (r, r1) and 16-bit register pairs (rp, rp1, post) can be represented by either absolute names (R0 to R15, RP0 to RP7) or function names. Table 20-2 lists the absolute names and corresponding function names of an 8-bit register. Table 20-3 lists those of a 16-bit register.

Absolute name	Function name		Absolute name	Function name			
Absolute flame	RSS = 0	RSS = 1	Absolute flame	RSS = 0	RSS = 1		
R0	Х		R8	VP∟	VP∟		
R1	А		R9	VPн	VРн		
R2	С		R10	UP∟	UP∟		
R3	В		R11	UPн	UPн		
R4		Х	R12	E	E		
R5		А	R13	D	D		
R6		С	R14	L	L		
R7		В	R15	Н	Н		

 Table 20-2.
 Absolute Names and Their Corresponding Function Names of an 8-bit Register

Absolute name	Function	n name
	RSS = 0	RSS = 1
RP0	AX	
RP1	BC	
RP2		AX
RP3		BC
RP4	VP	VP
RP5	UP	UP
RP6	DE	DE
RP7	HL	HL

RSS stands for the register set selection flag (bit 5 of PSW). Setting or resetting RSS switches function names for correspondence with an absolute name.

20.2 Legend

А	:	A register; 8-bit accumulator
Х	:	X register
В	:	B register
С	:	C register
D	:	D register
E	:	E register
Н	:	H register
L	:	L register
R0 to R15	:	Register 0 to register 15 (absolute name)
AX	:	Register pair (AX); 16-bit accumulator
BC	:	Register pair (BC)
DE	:	Register pair (DE)
HL	:	Register pair (HL)
RP0 to RP7	':	Register pair 0 to register pair 7 (absolute name)
PC	:	Program counter
SP	:	Stack pointer
UP	:	User stack pointer
PSW	:	Program status word
CY	:	Carry flag
AC	:	Auxiliary carry flag
Z	:	Zero flag
P/V	:	Parity/overflow flag
S	:	Sign flag
TPF	:	Table position flag
RBS	:	Register bank selecting flag
RSS	:	Register set selecting flag
IE	:	Interrupt request enable flag
STBC	:	Standby control register
WDM		Watchdog timer mode register
jdisp8	:	Signed 8-bit data (displacement value: -128 to +127)
()	:	Contents at an address enclosed in parentheses or at an address indicated in a register indicated in parentheses. (+) and (-) indicate that an address or the contents of a register indicated in parentheses are incremented and decremented by one after execution of the instruction, respectively.
(())	:	Contents at an address indicated by the contents at an address indicated in parentheses (()).
ххH	:	Hexadecimal number
XH, XL	:	High-order 8 bits and low-order 8 bits of 16-bit register

20.3 Notational Symbols in Flag Operation Field

Symbol	Explanation
(Blank)	No change
0	Cleared to zero.
1	Set to 1.
x	Set or reset according to the result.
Р	P/V flag operates as a parity flag.
V	P/V flag operates as an overflow flag.
R	Saved values are restored.

Table 20-4. Notational Symbols in Flag Operation Field

20.4 Differences between the μ PD78356 and μ PD78352A Instruction Sets

The μ PD78356 has the following two additional instructions comparing to the μ PD78352A. Except these instructions, the μ PD78356 and μ PD78352A instruction sets are identical.

- · Sum-of-products instruction with overflow and underflow indication function
- Correlation instruction

20.5 Operations of Basic Instructions

(1) 8-bit data transfer instructions: MOV, XCH

Mnemonic	Operand	Byte	Operation			Flag)	
WITEHTOTTIC		Dyte	Operation	S	Ζ	AC	P/V	CY
	r1, #byte	2	r1 <- byte					
	saddr, #byte	3	(saddr) <- byte					
-	sfr ^{Note} , #byte	3	sfr <- byte					-
	r, r1	2	r <- r1					
	A, r1	1	A <- r1					
	A, saddr	2	A <- (saddr)					
	saddr, A	2	(saddr) <- A					
	saddr, saddr	3	(saddr) <- (saddr)					
	A, sfr	2	A <- sfr					
	sfr, A	2	sfr <- A					
MOV	A, mem	1 to 4	A <- (mem)					
	mem, A	1 to 4	(mem) <- A					
_	A, [saddrp]	2	A <- ((saddrp))					
	[saddrp], A	2	((saddrp)) <- A					
	A, !addr16	4	A <- (addr16)					
	!addr16, A	4	(addr16) <- A					
	PSWL, #byte	3	PSW∟ <- byte	x	х	х	х	х
	PSWH, #byte	3	PSW _H <- byte					
	PSWL, A	2	PSW∟ <- A	x	х	х	х	х
	PSWH, A	2	PSW _H <- A					
	A, PSWL	2	A <- PSW∟					
	A, PSWH	2	A <- PSWH					
	A, r1	1	A <-> r1					
	r, r1	2	r <-> r1					
	A, mem	2 to 4	A <-> (mem)					
ХСН	A, saddr	2	A <-> (saddr)					
	A, sfr	3	A <> sfr					
	A, [saddrp]	2	A <-> ((saddrp))					
	saddr, saddr	3	(saddr) <-> (saddr)					

Note If STBC or WDM is coded in sfr, a different instruction having the different byte count is generated.

		_	Operation	Flag						
Mnemonic	Operand	Byte		s	Ζ	AC	P/V	CY		
	rp1, #word	3	rp1 <- word							
	saddrp, #word	4	(saddrp) <- word							
	sfrp, #word	4	sfrp <- word							
	rp, rp1	2	rp <- rp1							
	AX, saddrp	2	AX <- (saddrp)							
	saddrp, AX	2	(saddrp) <- AX							
MOVW	saddrp, saddrp	3	(saddrp) <- (saddrp)							
	AX, sfrp	2	AX <- sfrp							
	sfrp, AX	2	sfrp <- AX							
	rp1, !addr16	4	rp1 <- (addr16)							
	!addr16, rp1	4	(addr16) <- rp1							
	AX, mem	2 to 4	AX <- (mem)							
	mem, AX	2 to 4	(mem) <- AX							
	AX, saddrp	2	AX <-> (saddrp)							
	AX, sfrp	3	AX <-> sfrp							
XCHW	saddrp, saddrp	3	(saddrp) <-> (saddrp)							
	rp, rp1	2	rp <-> rp1							
	AX, mem	2 to 4	AX <-> (mem)							

(2) 16-bit data transfer instructions: MOVW, XCHW

(3) 8-bit arithmetic/logical instructions: ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP

(1/2)

Mnemonic	Operand	Byte	Operation			Flag		
	oporaria			S	Ζ	AC	P/V	CY
	A, #byte	2	A, CY <- A + byte	х	х	Х	V	Х
	saddr, #byte	3	(saddr), CY <- (saddr) + byte	х	х	Х	V	Х
	sfr, #byte	4	sfr, CY <- sfr + byte	х	х	Х	V	Х
	r, r1	2	r, CY <- r + r1	х	х	Х	V	Х
ADD	A, saddr	2	A, CY <- A + (saddr)	х	х	Х	V	Х
	A, sfr	3	A, CY <- A + sfr	х	х	Х	V	Х
-	saddr, saddr	3	(saddr), CY <- (saddr) + (saddr)	х	х	Х	V	Х
	A, mem	2 to 4	A, CY <- A + (mem)	х	х	х	V	х
	mem, A	2 to 4	(mem), CY <- (mem) + A	х	х	Х	V	Х
	A, #byte	2	A, CY <- A + byte + CY	х	х	х	V	х
	saddr, #byte	3	(saddr), CY <- (saddr) + byte + CY	х	х	х	V	х
	sfr, #byte	4	sfr, CY <- sfr + byte + CY	x	х	х	V	х
	r, r1	2	r, CY <- r + r1 + CY	х	х	х	V	х
ADDC	A, saddr	2	A, CY <- A + (saddr) + CY	х	х	х	V	х
	A, sfr	3	A, CY <- A + sfr + CY	х	х	х	V	х
	saddr, saddr	3	(saddr), CY <- (saddr) + (saddr) + CY	х	х	х	V	х
-	A, mem	2 to 4	A, CY <- A + (mem) + CY	х	х	х	V	х
	mem, A	2 to 4	(mem), CY <- (mem) + A + CY	х	х	х	V	х
	A, #byte	2	A, CY <- A – byte	х	х	х	V	х
	saddr, #byte	3	(saddr), CY <- (saddr) - byte	x	х	х	V	х
	sfr, #byte	4	sfr, CY <- sfr – byte	х	х	х	V	х
	r, r1	2	r, CY <- r − r1	х	х	х	V	х
SUB	A, saddr	2	A, CY <- A - (saddr)	x	х	х	V	х
	A, sfr	3	A, CY <- A – sfr	x	х	х	V	х
	saddr, saddr	3	(saddr), CY <- (saddr) - (saddr)	x	х	х	V	х
	A, mem	2 to 4	A, CY <- A – (mem)	х	х	х	V	х
	mem, A	2 to 4	(mem), CY <- (mem) – A	х	х	х	V	х
	A, #byte	2	A, CY <- A – byte – CY	x	х	х	V	х
	saddr, #byte	3	(saddr), CY <- (saddr) - byte - CY	х	х	х	V	х
	sfr, #byte	4	sfr, CY <- sfr – byte – CY	х	х	х	V	х
	r, r1	2	r, CY <- r – r1 – CY	x	х	х	V	х
SUBC	A, saddr	2	A, CY <- A – (saddr) – CY	х	Х	х	V	х
	A, sfr	3	A, CY <- A – sf – CY	x	Х	х	V	х
	saddr, saddr	3	(saddr), CY <- (saddr) - (saddr) - CY	x	х	х	V	х
	A, mem	2 to 4	A, CY <- A - (mem) - CY	x	х	х	V	х
	mem, A	2 to 4	(mem), CY <- (mem) – A – CY	x	х	х	V	х

(2/2)

Mnemonic	Operand	Byte	Operation			Flag		
Millerilonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
	A, #byte	2	A <- A ∧ byte	x	х		Ρ	
	saddr, #byte	3	(saddr) <- (saddr) < byte	x	х		Ρ	
	sfr, #byte	4	sfr <- sfr ∧ byte	x	х		Ρ	
	r, r1	2	r <- r ∧ r1	х	х		Ρ	
AND	A, saddr	2	A <- A ∧ (saddr)	x	х		Ρ	
	A, sfr	3	A <- A ∧ sfr	х	х		Ρ	
	saddr, saddr	3	(saddr) <- (saddr) < (saddr)	x	х		Ρ	
	A, mem	2 to 4	A <- A ^ (mem)	x	х		Ρ	
	mem, A	2 to 4	(mem) <- (mem) ^ A	x	х		Ρ	
	A, #byte	2	A <- A ∨ byte	x	х		Ρ	
	saddr, #byte	3	(saddr) <- (saddr) v byte	х	х		Ρ	
	sfr, #byte	4	sfr <- sfr ∨ byte	х	х		Ρ	
	r, r1	2	r <- r ∨ r1	x	х		Ρ	
OR	A, saddr	2	A <- A ∨ (saddr)	x	х		Ρ	
	A, sfr	3	A <- A ∨ sfr	x	х		Ρ	
	saddr, saddr	3	(saddr) <- (saddr) v (saddr)	x	х		Ρ	
	A, mem	2 to 4	A <- A ∨ (mem)	х	х		Ρ	
	mem, A	2 to 4	(mem) <- (mem) ∨ A	х	х		Ρ	
	A, #byte	2	A <- A ∀ byte	х	х		Ρ	
	saddr, #byte	3	(saddr) <- (saddr) ∀ byte	x	х		Ρ	
	sfr, #byte	4	sfr <- sfr → byte	х	х		Ρ	
	r, r1	2	r <- r ∀ r1	х	х		Ρ	
XOR	A, saddr	2	A <- A ∀ (saddr)	х	х		Ρ	
	A, sfr	3	A <- A ∀ sfr	x	х		Ρ	
	saddr, saddr	3	(saddr) <- (saddr) ↔ (saddr)	x	х		Ρ	
	A, mem	2 to 4	A <- A ∀ (mem)	х	х		Ρ	
	mem, A	2 to 4	(mem) <- (mem) → A	х	Х		Ρ	
	A, #byte	2	A – byte	х	Х	х	V	х
	saddr, #byte	3	(saddr) - byte	х	х	х	V	х
	sfr, #byte	4	sfr – byte	x	х	х	V	х
	r, r1	2	r – r1	x	Х	х	V	х
СМР	A, saddr	2	A – (saddr)	x	Х	х	V	х
	A, sfr	3	A – sfr	x	х	х	V	х
	saddr, saddr	3	(saddr) - (saddr)	х	х	х	V	х
	A, mem	2 to 4	A – (mem)	х	х	х	V	х
	mem, A	2 to 4	(mem) – A	x	х	х	V	х

(4) 16-bit arithmetic/logical instructions: ADDW, SUBW, CMPW

						Flag	I	
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
	AX, #word	3	AX, CY <- AX + word	x	х	х	V	х
ADDW	saddrp, #word	4	(saddrp), CY <- (saddrp) + word	x	х	х	V	х
	sfrp, #word	5	sfrp, CY <- sfrp + word	x	х	х	V	х
	rp, rp1	2	rp, CY <- rp + rp1	х	х	х	V	х
	AX, saddrp	2	AX, CY <- AX + (saddrp)	х	х	х	V	х
	AX, sfrp	3	AX, CY <- AX + sfrp	x	х	х	V	х
	saddrp, saddrp	3	(saddrp), CY <- (saddrp) + (saddrp)	х	х	х	V	х
	AX, #word	3	AX, CY <- AX – word	x	х	х	V	х
	saddrp, #word	4	(saddrp), CY <- (saddrp) - word	х	х	х	V	х
	sfrp, #word	5	sfrp, CY <- sfrp – word	x	х	х	V	х
SUBW	rp, rp1	2	rp, CY <- rp – rp1	x	х	х	V	х
	AX, saddrp	2	AX, CY <- AX – (saddrp)	х	х	х	V	х
	AX, sfrp	3	AX, CY <- AX – sfrp	x	х	х	V	х
	saddrp, saddrp	3	(saddrp), CY <- (saddrp) - (saddrp)	x	х	х	V	х
	AX, #word	3	AX – word	x	х	х	V	х
	saddrp, #word	4	(saddrp) – word	x	х	х	V	х
	sfrp, #word	5	sfrp – word	x	х	х	V	х
CMPW	rp, rp1	2	rp – rp1	х	х	х	V	х
	AX, saddrp	2	AX - (saddrp)	х	х	х	V	х
	AX, sfrp	3	AX – sfrp	x	х	х	V	х
	saddrp, saddrp	3	(saddrp) – (saddrp)	x	х	х	V	х

(5) Multiply/divide instructions: MULU, DIVUW, MULUW, DIVUX

		_				Flag	1	
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
MULU	r1	2	AX <- A x r1					
DIVUW	r1	2	AX (quotient) <- r1 (remainder) <- AX ÷ r1					
MULUW	rp1	2	AX (high-order 16 bits), rp1 (low-order 16 bits) <- AX x rp1					
DIVUX	rp1	2	AXDE (quotient), rp1 (remainder) <- AXDE ÷ rp1					

(6) Signed multiply instruction: MULW

						Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
MULW	rp1	2	AX (high-order 16 bits), rp1 (low-order 16 bits) <- AX x rp1					

(7) Sum-of-products instruction: MACW

	Quanta	Dute	Quantiza			Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
MACW	n	3	AXDE <- (B) x (C) + AXDE					
			B <- B + 2, C <- C + 2, n <- n − 1	х	х	Х	V	x
			End if $n = 0$ or $P/V = 1$					

(8) Sum-of-products instruction with overflow and underflow indication function: MACSW

					Flag							
Mnemonic Operand	Operand	Byte	Operation	S	Ζ	AC	P/V	CY				
MACSW	n	3	AXDE <- (B) x (C) + AXDE B <- B + 2, C <- C + 2, n <- n - 1 If overflow (P/V = 1) then AXDE <- 7FFFFFFH if underflow (P/V = 1) then AXDE <- 8000000H end if n = 0 or P/V = 1	x	x	x	V	x				

(9) Correlation instruction: SACW

				Flag							
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY			
SACW	[DE +], [HL +]	4	AX <- AX + (DE) - (HL) DE <- DE + 2, HL <- HL + 2, C <- C - 1 end if C = 0 or CY = 1	x	x	x	V	x			

(10) Table shift instruction: MOVTBLW

Managemein	Onevend	Byte Operation (addr16 + 2) <- (addr16), n <- n - 1			Flag	I		
Mnemonic	Operand	Буге	Operation	S	Ζ	AC	P/V	CY
MOVTBLW	!addr16, n	4	(addr16 + 2) <- (addr16), n <- n - 1 addr16 <- addr16 - 2, End if n = 0					

Remark The addressing range of the table shift instruction is FE00H to FEFFH.

(11) Increment/decrement instructions: INC, DEC, INCW, DECW

		D .				Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
	r1	1	r1 <- r1 + 1	х	х	х	V	
INC	saddr	2	(saddr) <- (saddr) + 1	х	х	х	V	
DEC	r1	1	r1 <- r1 – 1	х	х	х	V	
DEC	saddr	2	(saddr) <- (saddr) - 1	х	х	х	V	
INCW	rp2	1	rp2 <- rp2 + 1					
INCW	saddrp	3	(saddrp) <- (saddrp) + 1					
DEOW	rp2	1	rp2 <- rp2 – 1					
DECW	saddrp	3	(saddrp) <- (saddrp) - 1					

(12) Shift/rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

		_				Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
ROR	r1, n	2	$(CY, r1_7 \leftarrow r1_0, r1_{m-1} \leftarrow r1_m) \ge n \text{ times } (n = 0 \text{ to } 7)$				Ρ	х
ROL	r1, n	2	(CY, r1 ₀ <- r1 ₇ , r1 _{m+1} <- r1 _m) x n times (n = 0 to 7)				Ρ	х
RORC	r1, n	2	(CY <- r10, r17, <- CY, r1m-1 <- r1m) x n times (n = 0 to 7)				Ρ	x
ROLC	r1, n	2	(CY <- r17, r10, <- CY, r1 _{m+1} <- r1 _m) x n times (n = 0 to 7)				Ρ	x
SHR	r1, n	2	(CY <- r10, r17, <- 0, r1 _{m-1} <- r1 _m) x n times (n = 0 to 7)	х	х	0	Ρ	х
SHL	r1, n	2	(CY <- r17, r10, <- 0, r1 _{m+1} <- r1 _m) x n times (n = 0 to 7)	х	х	0	Ρ	x
SHRW	rp1, n	2	(CY <- rp10, rp115, <- 0, rp1m-1 <- rp1m) x n times (n = 0 to 7)	x	x	0	Ρ	x
SHLW	rp1, n	2	(CY <- rp1 ₁₅ , rp1 ₀ , <- 0, rp1 _{m+1} <- rp1 _m) x n times (n = 0 to 7)	х	x	0	Ρ	x
ROR4	[rp1]	2	$A_{3-0} <- (rp1)_{3-0}, (rp1)_{7-4} <- A_{3-0}, (rp1)_{3-0} <- (rp1)_{7-4}$					
ROL4	[rp1]	2	$A_{3-0} <- (rp1)_{7-4}, (rp1)_{3-0} <- A_{3-0}, (rp1)_{7-4} <- (rp1)_{3-0}$					

(13) BCD adjust instructions: ADJBA, ADJBS

	Quanta	Duta	Quanting	Flag						
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY		
ADJBA		0	Decimal Adjust Accumulator	x		х	Р	x		
ADJBS				~	~	~	Г	Â		

(14) Data conversion instruction: CVTBW

				S		Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
СVТВW		1	When A ₇ = 0, X <- A, A <- 00H When A ₇ = 1, X <- A, A <- FFH					

(15) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1

(1/2)

Mnemonic	Operand	Byte	Operation			Flag	-	
			0 Y (11 11)	S	Z	AC	P/V	
	CY, saddr.bit	3	CY <- (saddr.bit)					х
	CY, sfr.bit	3	CY <- sfr.bit	+				х
	CY, A.bit	2	CY <- A.bit					х
	CY, X.bit	2	CY <- X.bit					х
	CY, PSWH.bit	2	CY <- PSWH.bit	+				х
MOV1	CY, PSWL.bit	2	CY <- PSWL.bit					Х
	saddr.bit, CY	3	(saddr.bit) <- CY	+				
	sfr.bit, CY	3	sfr.bit <- CY					
	A.bit, CY	2	A.bit <- CY					
	X.bit, CY	2	X.bit <- CY					
	PSWH.bit, CY	2	PSWH.bit <- CY	<u> </u>				
	PSWL.bit, CY	2	PSW∟.bit <- CY	-				
	CY, saddr.bit	3	CY <- CY ∧ (saddr.bit)	<u> </u>				Х
	CY, /saddr.bit	3	CY <- CY ∧ (saddr.bit)	<u> </u>				Х
	CY, sfr.bit	3	CY <- CY ∧ sfr.bit					х
	CY, /sfr.bit	3	CY <- CY ∧ sfr.bit	<u> </u>				х
	CY, A.bit	2	CY <- CY ∧ A.bit					х
AND1	CY, /A.bit	2	$CY <- CY \land \overline{A.bit}$					х
	CY, X.bit	2	CY <- CY ∧ X.bit					х
	CY, /X.bit	2	$CY \leftarrow CY \land \overline{X.bit}$					х
	CY, PSWH.bit	2	CY <- CY ∧ PSW⊦.bit					х
	CY, /PSWH.bit	2	CY <- CY ∧ PSW⊢.bit					х
	CY, PSWL.bit	2	CY <- CY ∧ PSW∟.bit					х
	CY, /PSWL.bit	2	CY <- CY ∧ PSWL.bit					х
	CY, saddr.bit	3	CY <- CY ∨ (saddr.bit)					х
	CY, /saddr.bit	3	CY <- CY ∨ (saddr.bit)					х
	CY, sfr.bit	3	CY <- CY ∨ sfr.bit					х
	CY, /sfr.bit	3	CY <- CY v sfr.bit					х
	CY, A.bit	2	CY <- CY ∨ A.bit	<u> </u>				х
0.04	CY, /A.bit	2	CY <- CY v A.bit					х
OR1	CY, X.bit	2	CY <- CY ∨ X.bit					х
	CY, /X.bit	2	$CY \leftarrow CY \vee \overline{X.bit}$	1				Х
	CY, PSWH.bit	2	CY <- CY ∨ PSW⊦.bit	1				х
	CY, /PSWH.bit	2	CY <- CY ∨ PSW⊦.bit	+				х
	CY, PSWL.bit	2	CY <- CY ∨ PSW∟.bit	+				Х
	CY, /PSWL.bit	2	CY <- CY ∨ PSWL.bit	+				х

(2/2)

						Flag	1	
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
	CY, saddr.bit	3	CY <- CY ∀ (saddr.bit)					х
	CY, sfr.bit	3	CY <- CY ∨ sfr.bit					х
XOR1	CY, A.bit	2	CY <- CY ∨ A.bit					х
XUR I	CY, X.bit	2	CY <- CY ∨ X.bit					х
	CY, PSWH.bit	2	CY <- CY ∀ PSW⊦.bit					х
	CY, PSWL.bit	2	CY <- CY ∨ PSW∟.bit					х
	saddr.bit	2	(saddr.bit) <- 1					
	sfr.bit	3	sfr.bit <- 1					
	A.bit	2	A.bit <- 1					
SET1	X.bit	2	X.bit <- 1					
	PSWH.bit	2	PSW⊦.bit <- 1					
	PSWL.bit	2	PSW∟.bit <- 1	x	х	х	х	х
	CY	1	CY <- 1					1
	saddr.bit	2	(saddr.bit) <- 0					
	sfr.bit	3	sfr.bit <- 0					
	A.bit	2	A.bit <- 0					
CLR1	X.bit	2	X.bit <- 0					
	PSWH.bit	2	PSW⊦.bit <- 0					
	PSWL.bit	2	PSW∟.bit <- 0	x	х	х	х	х
	СҮ	1	CY <- 0					0
	saddr.bit	3	(saddr.bit) <- (saddr.bit)					
	sfr.bit	3	sfr.bit <- sfr.bit					
	A.bit	2	A.bit <- Ā.bit					
NOT1	X.bit	2	X.bit <- X.bit					
	PSWH.bit	2	PSWH.bit <- PSWH.bit					
	PSWL.bit	2	PSWL.bit <- PSWL.bit	x	х	х	х	х
	CY	1	CY <- CY					х

(16) Call/return instructions: CALL, CALLF, CALLT, BRK, RET, RETB, RETI

Manager	Quanta	Dute	Quanting			Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
	!addr16	3	(SP – 1) <- (PC + 3)н, (SP – 2) <- (PC + 3)L, PC <- addr16, SP <- SP – 2					
CALL	rp1	2	$ \begin{array}{l} (SP-1) <- (PC+2)_{H}, \ (SP-2) <- (PC+2)_{L}, \\ PC_{H} <- rp1_{H}, \ PC_{L} <- rp1_{L}, \ SP <- SP -2 \end{array} $					
	[rp1]	2	(SP - 1) <- (PC + 2)H, (SP - 2) <- (PC + 2)L, PCH <- (rp1 + 1), PCL <- (rp1), SP <- SP - 2					
CALLF	!addr11	2	$\begin{array}{l} (SP-1) <- (PC+2)_{H,} \; (SP-2) <- (PC+2)_{L,} \\ PC_{15\text{-}11} <- 00001, \; PC_{10\text{-}0} <- \; addr11, \; SP <- \; SP -2 \end{array}$					
CALLT	[addr5]	1	(SP – 1) <- (PC + 1)н, (SP – 2) <- (PC + 1)L, PCн <- (TPF, 00000000, addr5 + 1), PCL <- (TPF, 00000000, addr5), SP <- SP – 2					
BRK		1	(SP – 1) <- PSWH, (SP – 2) <- PSWL, (SP – 3) <- (PC + 1)H, (SP – 4) <- (PC + 1)L, PCL <- (003EH), PCH <- (003FH) SP <- SP – 4, IE <- 0					
RET		1	PCL <- (SP), PCн <- (SP + 1), SP <- SP + 2					
RETB		1	PCL <- (SP), PCH <- (SP + 1), PSWL <- (SP + 2), PSWH <- (SP + 3), SP <- SP + 4	R	R	R	R	R
RETI		1	$\begin{array}{l} PC_L <- (SP), \ PC_H <- (SP + 1), \ PSW_L <- (SP + 2), \\ PSW_H <- (SP + 3), \ SP <- \ SP + 4, \ ISPRn <- 0^{Note} \end{array}$	R	R	R	R	R

Note The bit corresponding to the interrupt request with the highest priority amongst the bits (n = 0 to 3) set to (1) in the ISPR register during RETI instruction is reset (0).

	Quantum	Dute	Quantiza			Flag		
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
	sfrp	3	(SP – 1) <- sfr⊣, (SP – 2) <- sfr∟, SP <- SP – 2					
PUSH	post	2	{(SP − 1) <- post _H , (SP − 2) <- post _L , SP <- SP − 2} x n times					
	PSW	1	(SP - 1) <- PSW _H , (SP - 2) <- PSW _L , SP <- SP - 2					
PUSHU	post	2	{(UP − 1) <- postH, (UP − 2) <- postL, UP <- UP − 2} x n times					
	sfrp	3	sfrL <- (SP), sfrH <- (SP + 1), SP <- SP + 2					
РОР	post	2	{post∟ <- (SP), post⊢ <- (SP + 1), SP <- SP + 2} x n times					
	PSW	1	PSWL <- (SP), PSWH <- (SP + 1), SP <- SP + 2	R	R	R	R	R
POPU	post	2	{post∟ <- (UP), postн <- (UP + 1), UP <- UP + 2} x n times					
	SP, #word	4	SP <- word					
MOVW	SP, AX	2	SP <- AX					
	AX, SP	2	AX <- SP					
INCW	SP	2	SP <- SP + 1					
DECW	SP	2	SP <- SP – 1					

(17) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVW, INCW, DECW

Remark n indicates the number of registers specified

(18) Special instructions: CHKL, CHKLA

Mnemonic	Operand	Byte	Operation			Flag
Winemonic	Operand	Dyte	Operation	S	Ζ	AC P/V CY
CHKL	sfr	3	(Pin level) v (Signal level before output buffer)	х	х	Р
CHKLA	sfr	3	A <- {(Pin level) ∀ (Signal level before output buffer)}	х	х	Р

(19) Unconditional branch instruction: BR

	Operand		Operation			Flag		
Mnemonic		Byte		S	Ζ	AC	P/V	CY
	!addr16	3	PC <- addr16					
	rp1	2	РСн <- rp1н, PCL <- rp1L					
BR	[rp1]	2	РСн <- (rp1 + 1), РСL <- (rp1)					
	\$addr16	2	PC <- PC + 2 + jdisp8					

(20) Conditional branch instructions: BC, BL, BNC, BNL, BZ, BE, BNZ, BNE, BV, BPE, BNV, BPO, BN, BP, BGT, BGE, BLT, BLE, BH, BNH, BT, BF, BTCLR, BFSET, DBNZ

(1/2)

Mnemonic	Operand	Byte	Operation			Flag		
		2,10		S	Ζ	AC	P/V	CY
вс	- \$addr16	2	PC <- PC + 2 + jdisp8 if CY = 1					
BL	-							
BNC	\$addr16	2	PC <- PC + 2 + jdisp8 if CY = 0					
BNL	4444	_						
BZ	\$addr16	2	PC <- PC + 2 + jdisp8 if Z = 1					
BE		_						
BNZ	\$addr16	2	PC <- PC + 2 + jdisp8 if Z = 0					
BNE		_						
BV	\$addr16	2	PC <- PC + 2 + jdisp8 if P/V = 1					
BPE	· · · · ·							
BNV	\$addr16	2	PC <- PC + 2 + jdisp8 if P/V = 1					
BPO								
BN	\$addr16	2	PC <- PC + 2 + jdisp8 if S = 1					
BP	\$addr16	2	PC <- PC + 2 + jdisp8 if S = 0					
BGT	\$addr16	3	PC <- PC + 3 + jdisp8 if (P/V ∀ S) ∨ Z = 0					
BGE	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $P/V \neq S = 0$					
BLT	\$addr16	3	PC <- PC + 3 + jdisp8 if P/V ∀ S = 1					
BLE	\$addr16	3	PC <- PC + 3 + jdisp8 if (P/V \forall S) \lor Z = 1					
BH	\$addr16	3	$PC \leftarrow PC + 3 + jdisp8$ if $Z \lor CY = 0$					
BNH	\$addr16	3	PC <- PC + 3 + jdisp8 if Z ∨ CY = 1					
	saddr.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if (saddr.bit) = 1					
	sfr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if sfr.bit = 1					
вт	A.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if A.bit = 1					
ы	X.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if X.bit = 1					
	PSWH.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWH.bit = 1					
	PSWL.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWL.bit = 1					
	saddr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if (saddr.bit) = 0					
	sfr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if sfr.bit = 0					
DE	A.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if A.bit = 0					
BF	X.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if X.bit = 0					
	PSWH.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWH.bit = 0					
	PSWL.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWL.bit = 0					

(2/2)

Manageria	Oregrend	Durte	Or cretier			Flag)	
Mnemonic	Operand	Byte	Operation	S	Z	AC	P/V	CY
	saddr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if (saddr.bit) = 1 then reset (saddr.bit)					
	sfr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if sfr.bit = 1 then reset sfr.bit					
BTCLR	A.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if A.bit = 1 then reset A.bit					
	X.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if X.bit = 1 then reset X.bit					
	PSWH.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWH.bit = 1 then reset PSWH.bit					
	PSWL.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWL.bit = 1 then reset PSWL.bit	x	х	x	x	x
	saddr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if (saddr.bit) = 0 then set (saddr.bit)					
	sfr.bit, \$addr16	4	PC <- PC + 4 + jdisp8 if sfr.bit = 0 then set sfr.bit					
BFSET	A.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if A.bit = 0 then set A.bit					
BFSET	X.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if X.bit = 0 then set X.bit					
	PSWH.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSWH.bit = 0 then set PSWH.bit					
	PSWL.bit, \$addr16	3	PC <- PC + 3 + jdisp8 if PSW⊾.bit = 0 then set PSW⊾.bit	x	х	x	х	х
	r2, \$addr16	2	r2 <- r2 - 1, then PC <- PC + 2 + jdisp8 if r2 \neq 0					
DBNZ	saddr, \$addr16	3	(saddr) <- (saddr) - 1, then PC <- PC + 3 + jdisp8 if (saddr) ≠ 0					

(21) Context switching instructions: BRKCS, RETCS, RETCSB

						Flag		
Mnemonic	Mnemonic Operand	Byte	Operation	S	Ζ	AC	P/V	CY
BRKCS	RBn	2	RBS2 – 0 <- n, PCн <> R5, PCL <> R4, R7 <- PSWн, R6 <- PSWL, RSS <- 0, IE <- 0					
RETCS	!addr16	3	РСн <- R5, PCL <- R4, R5 <- addr16н, R4 <- addr16∟, PSWн <- R7, PSW∟ <- R6	R	R	R	R	R
RETCSB	!addr16	4	РСн <- R5, PCL <- R4, R5 <- addr16н, R4 <- addr16∟, PSWн <- R7, PSW∟ <- R6	R	R	R	R	R

(22) String instructions: MOVM, MOVBK, XCHM, XCHBK, CMPME, CMPBKE, CMPMNE, CMPBKNE, CMPBKNE, CMPBKNC, CMPBKNC, CMPBKNC

Mnemonic	Operand	Byte	Operation			Flag		
Millemonic	Operand	Буге	Operation	S	Ζ	AC	P/V	CY
ΜΟΥΜ	[DE+], A	2	(DE+) <- A, C <- C - 1, End if C = 0					
MO VIVI	[DE–], A	2	(DE–) <- A, C <- C – 1, End if C = 0					
МОУВК	[DE+], [HL+]	2	(DE+) <- (HL+), C <- C - 1, End if C = 0					
	[DE–], [HL–]	2	(DE-) <- (HL-), C <- C - 1, End if C = 0					
хснм	[DE+], A	2	(DE+) <-> A, C <- C - 1, End if C = 0					
	[DE–], A	2	$(DE-) \iff A, C \iff C - 1$, End if C = 0					
хснвк	[DE+], [HL+]	2	(DE+) <-> (HL+), C <- C - 1, End if C = 0					
	[DE–], [HL–]	2	(DE–) <–> (HL–), C <- C – 1, End if C = 0					
СМРМЕ	[DE+], A	2	(DE+) - A, C <- C - 1, End if C = 0 or Z = 0	х	х	х	V	х
•	[DE–], A	2	(DE-) - A, C <- C - 1, End if $C = 0$ or $Z = 0$	х	х	х	V	х
СМРВКЕ	[DE+], [HL+]	2	(DE+) - (HL+), C <- C - 1, End if C = 0 or Z = 0	х	х	х	V	х
	[DE–], [HL–]	2	(DE-) - (HL-), C <- C - 1, End if C = 0 or Z = 0	х	х	х	V	х
CMPMNE	[DE+], A	2	(DE+) - A, C <- C - 1, End if C = 0 or Z = 1	х	х	х	V	х
	[DE–], A	2	(DE-) - A, C <- C - 1, End if C = 0 or Z = 1	х	х	х	V	х
СМРВКИЕ	[DE+], [HL+]	2	(DE+) - (HL+), C <- C - 1, End if C = 0 or Z = 1	x	х	х	V	х
•••••	[DE–], [HL–]	2	(DE–) – (HL–), C <- C – 1, End if C = 0 or Z = 1	х	х	х	V	х
СМРМС	[DE+], A	2	$(DE+) - A, C \leftarrow C - 1$, End if $C = 0$ or $CY = 0$	х	х	х	V	х
	[DE–], A	2	(DE-) - A, C <- C - 1, End if $C = 0$ or $CY = 0$	х	х	х	V	х
СМРВКС	[DE+], [HL+]	2	(DE+) - (HL+), C <- C - 1, End if C = 0 or CY = 0	х	х	х	V	х
CWFBRC	[DE–], [HL–]	2	(DE-) - (HL-), C <- C - 1, End if C = 0 or CY = 0	х	х	х	V	х
CMPMNC	[DE+], A	2	(DE+) - A, C <- C - 1, End if C = 0 or CY = 1	х	х	х	V	х
	[DE–], A	2	(DE–) – A, C <- C – 1, End if C = 0 or CY = 1	х	х	х	V	х
СМРВКИС	[DE+], [HL+]	2	(DE+) - (HL+), C <- C - 1, End if C = 0 or CY = 1	х	х	х	V	х
	[DE–], [HL–]	2	(DE–) – (HL–), C <- C – 1, End if C = 0 or CY = 1	х	х	х	V	х

(23) CPU control instructions: MOV, SWRS, SEL, NOP, EI, DI

Manager	Quanta	Durte	Quantiza			Flag)	
Mnemonic	Operand	Byte	Operation	S	Ζ	AC	P/V	CY
моу	STBC, #byte	4	STBC <- byte ^{Note}					
WOV	WDM, #byte	4	WDM <- byte ^{Note}					
SWRS		1	RSS <- RSS					
SEL	RBn	2	RSS2 – 0 <- n, RSS <- 0					
SEL	RBn, ALT	2	RSS2 – 0 <- n, RSS <- 1					
NOP		1	No Operation					
EI		1	IE <- 1 (Enable Interrupt)					
DI		1	IE <- 1 (Disable Interrupt)					

Note An op-code trap interrupt occurs if an invalid op-code is specified in an STBC or WDM register manipulation instruction.

CHAPTER 21 INSTRUCTION EXECUTION RATE

21.1 Memory Space and Access Speed

21.1.1 Main RAM and peripheral RAM

The μ PD78356 has 2048-byte internal RAM in the area from F700H to FEFFH. The internal RAM is divided into two sections, main RAM and peripheral RAM, according to the access speed.

Main RAM is accessed at the highest speed, because it is located in the execution unit (EXU).

- Main RAM (FE00H to FEFFH) 1 clock per word

Caution When executing word access (including stack manipulation) in the main RAM area (FE00H to FEFFH), only even addresses can be specified with the operand.

Remark n is a wait count specified by the programmable wait control register (PWC).

21.1.2 Memory access

(1) Op-code fetch

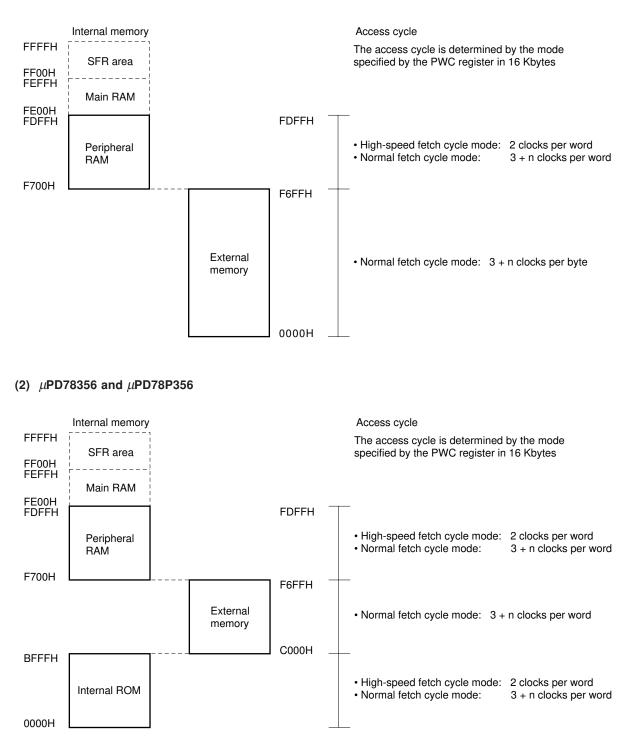
(a) Access range

The μ PD78356 allows op-code fetch in the area from 0000H to FDFFH (see **Fig. 21-1**). Op-code fetch is not allowed in the area from FE00H to FFFFH.

(b) Number of clocks required for access

The number of clocks required for op-code fetch can be specified by the PWC register in units of 16 Kbytes. The number of clocks vary according to the area accessed. Only an area in internal memory can be specified in the high-speed fetch cycle mode.

Access area		Access cycle	
Peripheral RAM	Normal fetch	3 + n clocks per word	
	High-speed fetch	2 clocks per word	
External memory		3 + n clocks per word	
Internal ROM ^{Note}	Normal fetch	3 + n clocks per word	
	High-speed fetch	2 clocks per word	


Note μPD78356 and 78P356 only

Remark n is a wait count specified by the PWC register.

Caution The PWC register specifies the mode of an area, irrespective of whether the area is in internal memory or external memory. After reset, the whole space is set in the normal fetch cycle mode.

Fig. 21-1. Concept of Memory Access in Op-Code Fetch

(1) μ**PD78355**

Caution When executing word access (including stack manipulation) in the main RAM area (FE00H to FEFFH), only even addresses can be specified with the operand.

Remark n is the wait count specified by the PWC register.

(c) Bus control signals for memory access (ASTB, \overline{RD} , \overline{LWR} and \overline{HWR})

When an op-code is fetched, the μ PD78356 outputs the ASTB, \overline{RD} , \overline{LWR} and/or \overline{HWR} bus control signals. The signals to be output vary according to the area accessed. (See **Table 21-2**.)

Table 21-2. Bus Control Signals in Op-Code Fetch

(1) μ**PD78355**

Access area		Address	ASTB	RD	LWR	HWR
Peripheral RAM	Normal fetch	F700H to FDFFH	0	-	-	-
	High-speed fetch		_Note	_	-	-
External memory		0000H to F6FFH	0	0	-	-

Remark O: Outputs the signal.

- : Does not output the signal (outputs the inactive level).

Note The ASTB signal is output only when the BR instruction is issued.

(2) μ PD78356 and μ PD78P356

Access area		Address	ASTB	RD	LWR	HWR
Peripheral RAM	Normal fetch	F700H to FDFFH	0	-	-	-
	High-speed fetch		_Note	-	-	-
External memory		C000H to F6FFH	0	0	-	-
Internal ROM	Normal fetch	0000H to BFFFH	0	-	-	-
	High-speed fetch		_Note	-	-	-

Remark O: Outputs the signal.

- : Does not output the signal (outputs the inactive level).

Note The ASTB signal is output only when the BR instruction is issued.

(3) Data access

While instructions such as MOV A, [HL] and SUB [DE+], A are being executed, data is read from or written into memory.

Phase-out/Discontinued

(a) Access range

The μ PD78356 allows data access to the whole 64K-byte range. In the address range from FE00H to FFFFH, access to internal memory has precedence. In the 16-byte external SFR area from FFD0H to FFDFH, however, external memory is accessed. (See **Fig. 21-2**.)

(b) Number of clocks required for access

The number of clocks required for data access depends on the area to be accessed.

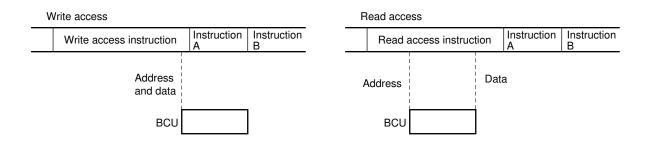
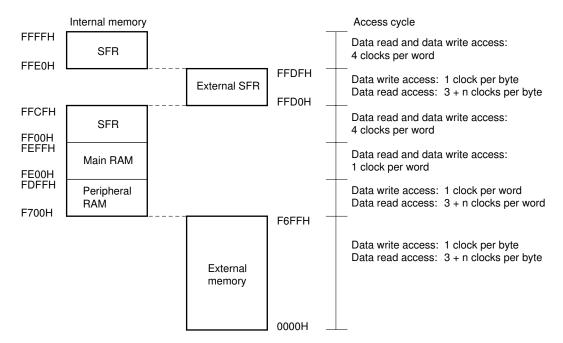
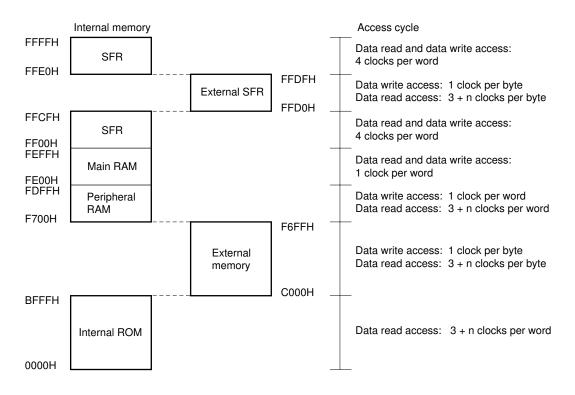
Area to be accessed	Address	Read access	Write access
Main RAM	FE00H to FEFFH	1 Clock per word	1 Clock per word
SFR	FF00H to FFFFH	4 Clocks per word	4 Clocks per word
Internal ROMNote 1	0000H to BFFFH	3 + n clocks per word	—
Peripheral RAM	F700H to FDFFH		1 Clock per word ^{Note 2}
External SFR, external memory	FFD0H to FFDFH —	3 + n clocks per byte	1 Clock per byte ^{Note 2}

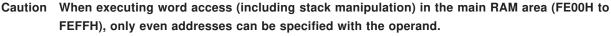
Table 21-3. Number of Clocks Required for Data Access

Remark n is the wait count specified by the PWC register.

Notes 1. μ PD78356 and μ PD78P356 only

2. One clock is required to execute data write access to peripheral RAM, external SFR or external memory, in which only the address and data are passed to the bus control unit (BCU). However, the bus is occupied for the same time period as in data read access (3 + n clocks). When data access to this area is executed after data write access, more clocks than indicated in the table may be required.


Fig. 21-2. Concept of Memory Access in Data Access

(1) μ**PD78355**

(2) μ PD78356 and μ PD78P356

Remark n is the wait count specified by the PWC register.

(c) Bus control signals for memory access (ASTB, RD, LWR, HWR)

When data is accessed, the μ PD78356 outputs the ASTB, \overline{RD} , \overline{LWR} , and/or \overline{HWR} bus control signals. The signals to be output vary according to the area accessed. (See **Tables 21-4**, **21-5**.)

Phase-out/Discontinued

Table 21-4. Bus Control Signals in Data Access (When Specified External 8-bit Bus)

(1) μ**PD78355**

Access area	Address	ASTB	RD	LWR	AD0 to AD7	A8 to A15
SFR	FFE0H to FFFFH FF00H to FFCFH	0	-	-	Address/ data	Address
External SFR	FFD0H to FFDFH	0	0	0	Address/ data	Address
Main RAM	FE00H to FEFFH	-	-	-	Undefined	Undefined
Peripheral RAM	F700H to FDFFH	0	-	-	Undefined	Undefined
External memory	0000H to F6FFH	0	0	0	Address/ data	Address

Remark \bigcirc : Outputs the signal.

- : Does not output the signal (outputs the inactive level).

(2) μ PD78356 and μ PD78P356

Access area	Address	ASTB	RD	LWR	AD0 to AD7	A8 to A15
SFR	FFE0H to FFFFH FF00H to FFCFH	0	-	-	Address/ data	Address
External SFR	FFD0H to FFDFH	0	0	0	Address/ data	Address
Main RAM	FE00H to FEFFH	-	-	_	Undefined	Undefined
Peripheral RAM	F700H to FDFFH	0	_	_	Undefined	Undefined
External memory	C000H to F6FFH	0	0	0	Address/ data	Address
Internal ROM	0000H to BFFFH	0	-	_	Undefined	Undefined

Remark \bigcirc : Outputs the signal.

- : Does not output the signal (outputs the inactive level).

Table 21-5. Bus Control Signals in Data Access (When Specified External 16-bit Bus)

(1) μ**PD78355**

Access area	Address	ASTB	RD	LWR	HWR	AD0 to AD7	AD8 to AD15
SFR	FFE0H to FFFFH FF00H to FFCFH	0	-	_	_	Address/ data	Address/ data
External SFR	FFD0H to FFDFH	0	0	0	0	Address/ data	Address/ undefined
Main RAM	FE00H to FEFFH	-	-	-	-	Undefined	Undefined
Peripheral RAM	F700H to FDFFH	0	_	_	_	Undefined	Undefined
External memory	0000H to F6FFH	0	0	0	0	Address/ data	Address/ data

Remark \bigcirc : Outputs the signal.

- : Does not output the signal (outputs the inactive level).

(2) μ PD78356 and μ PD78P356

Access area	Address	ASTB	RD	LWR	HWR	AD0 to AD7	AD8 to AD15
SFR	FFE0H to FFFFH FF00H to FFCFH	0	-	-	-	Address/ data	Address/ data
External SFR	FFD0H to FFDFH	0	0	0	0	Address/ data	Address/ data
Main RAM	FE00H to FEFFH	-	-	-	-	Undefined	Undefined
Peripheral RAM	F700H to FDFFH	0	_	-	_	Undefined	Undefined
External memory	C000H to F6FFH	0	0	0	0	Address/ data	Address/ data
Internal ROM	0000H to BFFFH	0	-	-	-	Undefined	Undefined

 $\label{eq:Remark} \textbf{Remark} ~~\bigcirc:~ \text{Outputs the signal.}$

- : Does not output the signal (outputs the inactive level).

The following tables list interrupt execution rates. The time required to determine the priority is ignored in the tables. The priority is determined every two clocks. The time required to determine the priority ranges from zero to two clocks, depending on when the interrupt occurs.

n is the wait count specified by the PWC register.

(1) Vectored interrupt handling

Stack	Number of clocks			
Main RAM (FE00H to FEFFH)	21 + 2n			
Peripheral RAM (F700H to FDFFH)	25 + 2n/33 + 2n ^{Note}			
External memory	33 + 6n			

Note Values before slash are for even addresses. Values after slash are for odd addresses.

(2) Context switching

Number of clocks: 17 + 2n clocks

(3) Macro service

Macro service		Number	of clocks
		Byte operation	Word operation
EVTCNT		1	2
BLKTRS mem -> SFR BLKTRS SFR -> mem	18 17	19 18	
BLKTRS-P mem -> SFR BLKTRS-P SFR -> mem	(IRAM) (PRAM) (EMEM) (IRAM) (PRAM) (EMEM)	20 22 22 + n 20 22 22 + n	21 23/27 ^{Note} 27 + 2n 21 23/27 ^{Note} 27 + 2n
DTADIF		_	22
DTADIF-P	(IRAM) (PRAM) (EMEM)	_	26 28/32 ^{Note} 32 + 2n

Note Values before slash are for even addresses. Values after slash are for odd addresses.

21.3 Calculating the Number of Execution Clocks

This section describes the procedure for calculating the number of instruction execution clocks.

(1) Calculating the number of basic clocks

(a) When a program is held in internal ROM or peripheral RAM (F700H to FDFFH) in the high-speed fetch mode

The total number of clocks is the number of basic clocks.

- (b) When a program is usually held in external memory in the normal fetch mode The larger value of the following two is taken as the number of basic clocks:
 - Total number of clocks
 - Total number of bytes of executed instructions x (3 + n)
 n is the wait count specified by the PWC register.

When the high-speed fetch mode is not specified, the number of basic clocks is calculated according to procedure (b) above even if the program is in internal ROM or peripheral RAM.

Example of calculation: µPD78356 (Internal clock of 16 MHz, wait 0, main RAM specified by [HL])

		Number of bytes	Number of clocks
MOV	A, [HL]	1	6
ADD	А, В	2	3
MOV	[HL], A	1	5
		4	14

The time to execute this program is calculated as follows: However, when the program is in the external memory, the calculation is when the external 8-bit is specified.

(a) When the program is held in internal ROM

Number of execution clocks: 14 14 x 0.0625 μ s = 0.875 μ s

(b) When the program is held in external memory

Number of execution clocks: $4 \times 3 = 12 < 14$ Taking the number of execution clocks as 14, the calculation shown in (a) above is performed. The calculated execution time is 0.875 μ s.

(2) Adding a correction factor to the number of basic clocks

(a) Accessing the SFR area (FF00H to FF1FH) by an instruction having saddr or saddrp as an operand Each time an access is made, four clocks are added.

	Instruction	Number of accesses
MOV	saddr, #byte	1
	A, saddr	
	saddr, A	
	saddr, saddr	1/2 ^{Note 2}
	A, [saddrp]	1
	[saddrp], A	
ХСН	A, saddr	2
	A, [saddrp]	1
	saddr, saddr	2/4 ^{Note 2}
MOVW	saddr, #word	1
	AX, saddrp	
	saddrp, AX	
	saddrp, saddrp	1/2 ^{Note 2}
XCHW	AX, saddrp	2
	saddrp, saddrp	2/4 ^{Note 2}
ALU ^{Note 1}	saddr, #byte	2
	A, saddr	1
	saddr-D, saddr-S	1/2/3 ^{Note 3}
CMP	saddr, #byte	1
	A, saddr	
	saddr, saddr	1/2 ^{Note 2}

Table 21-6.	Number of	of saddr	Accesses	by	Instruction (1/2)	
-------------	-----------	----------	----------	----	-------------------	--

Notes 1. ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR

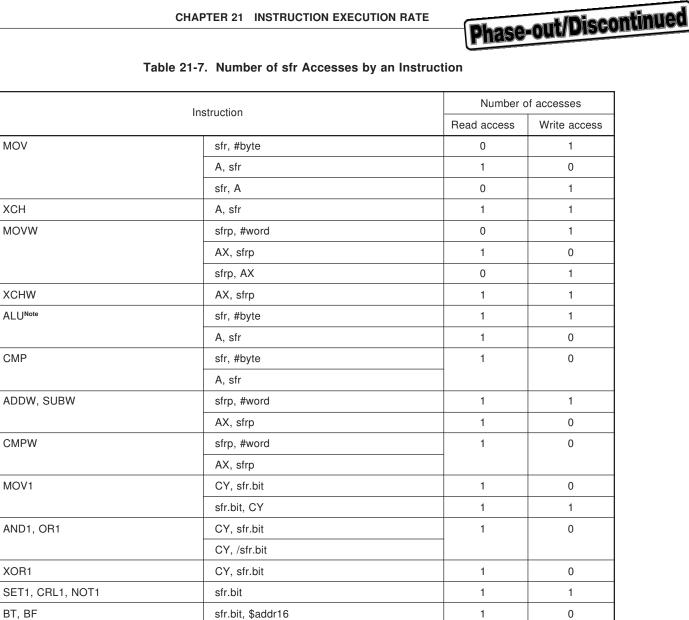
- 2. When either or both are in the SFR area
- 3. When only the source (saddr-S), only the destination (saddr-D), or both are in the SFR area

	Instruction	Number of accesses
ADDW, SUBW	saddrp, #word	2
	AX, saddrp	1
	saddrp-D, saddrp-S	1/2/3 ^{Note 1}
CMPW	saddrp, #word	1
	AX, saddrp	
	saddrp-D, saddrp-S	1/2 ^{Note 2}
INC, DEC	saddr	2
INCW, DECW	saddrp	2
MOV1	CY, saddr.bit	1
	saddr.bit, CY	2
AND1, OR1	CY, saddr.bit	1
	CY, /saddr.bit	
XOR1	CY, saddr.bit	1
SET1, CLR1, NOT1	saddr.bit	2
BT, BF	saddr.bit, \$addr16	1
BTCLR, BFSET	saddr.bit, \$addr16	2
DBNZ	saddr.bit, \$addr16	2

Table 21-6.	Number	of saddr	Accesses	by	Instruction	(2/2)
-------------	--------	----------	----------	----	-------------	-------

Notes 1. When only the source (saddr-S), only the destination (saddr-D), or both are in the SFR area2. When either or both are in the SFR area

(b) Accessing the following SFR area by an instruction having sfr or sfrp as an operand


Correction factor = Number of clocks to be increased per access x Number of accesses

SFR to be accessed	Number of clocks to be increased per access		
	Read access	Write access	
ТМО	1 to 2	_	
TM1, TM2	1 to 4	_	
ТМЗ	1 to 8	_	
UDC	1 to 8	0 to 7	
CM00, CM01, CM02, CM03, CM10, CM11, CM20, CM21, CC00, CC01, CC02	1 to 2	0 to 1	
CMUD0, CMUD1, CC30, CC31	1 to 6	0 to 5	
TMC0, TMC1	0	0 to 1	
UDCC	0	0 to 3	
OVIC0, OVIC3, PIC0, PIC1, PIC2, PIC3, PIC4, CMIC00, CMIC01, CMIC02, CMIC03, CMIC10, CMIC11, CMIC20, CMIC21, CMIC40, CMICUD0, CMICUD1, SERIC, SRIC, STIC, CSIIC0, CSIIC1, ADIC, IMC, MK0L MK0, MK0H, MK1L, MK1, ISPR	2	1	
External SFR (FFD0H to FFDFH)	n/0 ^{Note}		
PWC	0	1	

Note Normal fetch/high-speed fetch

Remark n is the wait count specified by the PWC register.

The number of clocks to be increased depends on the state of the peripheral hardware at the time of access and varies within the range shown in the table above.

Note ALU: ADD, ADDC, SUB, SUBC, AND, OR, XOR

(c) Branch instruction and CALL instruction

A branch or CALL instruction clears the instruction queue. Before the instruction following the branch instruction is executed, the additional clocks shown below are required:

1

1

In the high-speed fetch mode : 7 to 8 clocks In the normal fetch mode : 7 to 10 + n clocks

sfr.bit, \$addr16

The number of clocks to be added depends on when op-code fetch is executed and varies in the range shown above.

BTCLR, BFSET

CHAPTER 22 CAUTIONS

Phase-out/Discontinued

This chapter collects the cautions described in each chapter. Read this chapter before developing application products. The number enclosed in parentheses represents the page on which the caution is initially described.

22.1 Cautions for Chapter 2

- (1) When the RESET signal is input, all the pins of P00 to P07 (port 0), P10 to P17 (port 1), P20 to P27 (port 2), P30 to P37 (port 3), P80 to P87 (port 8), and P100 to 107 (port 10) are set to the input mode (output high to impedance). The contents of the output latch becomes undefined. (p. 21-23, 26, 28)
- (2) When the RESET signal is input, pins P40 to P47 (port 4), P50 to P57 (port 5), and P90 to P93 (port 9) are set to the input mode (output high-impedance) in either port or external memory expansion mode. The contents of the output latch becomes undefined. (p. 24, 25, 27)
- (3) Connect the MODE0 and MODE1 pins directly to VDD or Vss. (p. 29)

22.2 Cautions for Chapter 3

- (1) When executing word access (including stack manipulation) in the main RAM area (FE00H to FEFFH), only even addresses can be specified with the operand. (p. 36, 50, 61)
- (2) When executing word access (including stack manipulation) in the main RAM area (FE00H to FEFFH), access operations will differ according to if the reference address is even or odd. If both even and odd addresses are accessed together, operations may not be performed correctly. Therefore, specify only even addresses for the reference address. When executing the 16-bit data transfer instruction, specify even addresses with the operand. If odd addresses are specified, errors will generate in the assembler package (RA78K/III). (p. 39)
- (3) Do not perform word access covering both the peripheral RAM area and main RAM area. (p. 39)
- (4) Unmapped addresses of the special function register cannot be accessed (except the external access area.)
 (p. 43)
- (5) Pins P50/AD8 to P57/AD15 function as address buses when 8-bit external buses are specified. (p. 43)
- (6) The vector tables for the reset input, BRK instruction, and op-code trap interrupt are fixed to 0000H, 003EH, and 003CH, respectively. They are not affected by the TPF. (p. 50)
- (7) Write 0 or 1 into any bit of the special function register (SFR) correctly whenever it is predetermined to be so. (p. 54)
- (8) Do not write data into the register which is only used for data reading. Writing data into such registers may result in an error. (p. 54)

- Phase-out/Discontinued
- (9) The SFR area (FF00H to FFFFH) addresses to which a special function register is not assigned cannot be accessed (except the external access area). Accessing these addresses may result in an error. (p 54)

22.3 Cautions for Chapter 5

- (1) For the μPD78355 and for the μPD78356 and μPD78P356 in the ROM-less mode, ports 4, 5, and 9 (low-order 3 bits) do not function as ports. (p. 69)
- (2) Pins functioning as input pins in the control mode may not operate correctly if corresponding bits of the port mode control register are rewritten during operations. therefore, write in the port mode control register during the initial settings of the system. (p. 73)
- (3) If the port read control register (PRDC) is in the pin access mode (PRDC0 = 1), no bit manipulation instruction for a port operates normally. After a port check is completed, be sure to reset the mode to the normal mode (PRDC0 = 0). (p. 75)
- (4) If an interrupt occurs when the PRDC register is in the pin access mode, a bit manipulation instruction may be executed in the same mode. This will cause an error. Before starting a check, be sure to set the DI state. In addition, do not use macro services that manipulate ports. (p. 75)
- (5) Nonmaskable interrupts are unavoidable if the PRDC register is in the pin access mode. So, the following provisions should be made in the program as required: (p. 75)
 - The nonmaskable interrupt routine is to perform no port manipulation.
 - The level of PRDC.0 is to be saved at the start of the nonmaskable interrupt routine, then is restored when control is returned.
- (6) Use the CHKL or CHKLA instruction only when the PRDC0 bit of the PRDC register is set to 0 (normal mode).
 (p. 76)
- (7) For input/output port pins set to the input port mode, the results of the CHKL or CHKLA instruction is always found to agree with the control output level, regardless of the setting of the port mode/control mode. For the input dedicated port, as there is not output latch, the input pin level is read when the CHKL or CHKLA instruction is executed. Therefore, as the CHKL and CHKLA instructions for the input dedicated port are essentially ineffective, do not use them. (p. 76)
- (8) Set control output pins to the input mode before executing the CHKL or CHKLA instruction to check the output level of the pin of a port where control and port output pins are used together. (The output level of a control pin cannot be checked with the CHKL or CHKLA instruction because the output level varies asynchronously.) (p. 76)
- (9) Bit 0 of the port 2 mode register (PM2) is always one. (p. 80)
- (10) Bit 0 of the port 2 mode control register (PMC2) is always one. (p. 85)
- (11) Be sure to write 0 in bits 4 and 7 of the memory expansion mode register (MM). If 1 is written in these bits, operation will not be normal. (p. 89)

(12) Invalid combinations are specified as "Not to be set" in Fig. 5-21. Never write these combinations. (p. 89)

Phase-out/Discontinued

(13) In μ PD78356 emulation using the IE-78350-R, the use of the built-in, pull-up resistors of port 1, 4, 5, or 9 is disabled even if the PUO1, PUO4, PUO5, or PUO9 bit of the PUOL and PUOH registers is set to 1. When using a pull-up resistor, first set the corresponding bit to 1 to use software common to the IE-78350-R and μ PD78356, then externally attach a pull-up resistor. (p. 90)

22.4 Cautions for Chapter 6

- (1) When using an external clock, do not set the STP bit of the standby control register (STBC) to 1. (p. 93)
- (2) When using the system clock oscillator, run wires according to the following rules to avoid effects such as stray capacitance: (p. 94)
 - Minimize the wiring.
 - · Never cause the wires to cross other signal lines or run near a line carrying a large varying current.
 - Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss. Never connect the capacitor to a ground pattern carrying a large current.
 - Never extract a signal from the oscillator.
- (3) When applying external clocks, do not connect a wire or a similar capacitive load to the X2 pin. (p. 94)

22.5 Cautions for Chapter 7

- When the compare register function is selected, the capture/compare registers (CC00 to CC02, CC30, and CC31) cannot generate interrupts based on the corresponding external interrupt (capture trigger signal). (p. 105)
- (2) Before changing the timer output mode (setting of the TOM00, TOM02, or TOM04 bit) with the TUM0 register, disable the timer output for the corresponding timer output pin. (p. 107)
- (3) Timer output (TO21) is impossible when a clear operation by a TCLR2 pin input is enabled by the TUM1 register. (p. 107)
- (4) When the operating mode for the UDC is specified as mode 4 by the UDCC register, the specification of an edge for the TIUD pin (by the TUM2 register) becomes ineffective. (p. 108, 113, 148, 151)
- (5) Timer output (TO03) is impossible when the input of an external count clock to TM0 (TI0) is specified by the TMC0 register. Timer output (TO11) is impossible when the input of an external count clock to TM1 (TI1) is specified by the TMC0 register. (p. 110)
- (6) Before changing the active state (setting of the ALV00, ALV01, ALV02, or ALV03 bit) with the TOC0 register, disable the timer output for the corresponding timer output pin. (p. 115)
- (7) Before changing the active state (setting of the ALV04, ALV05, ALV10, or ALV11 bit) with the TOC1 register, disable the timer output for the corresponding timer output pin. (p. 117)

(8) When the timer outputs for the TO04 and TO05 pins are disabled by the TOC1 register, external interrupt request inputs (INTP0 and INTP1) are assumed for these pins. (p. 117)

Phase-out/Discontinued

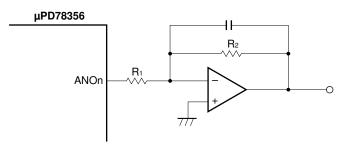
- (9) Before changing the active state (setting of the ALV10 or ALV20 bit) with the TOC2 register, disable the timer output for the corresponding timer output pin. (p. 118)
- (10) Each flag of TOVS is reset in a different way. Only software can reset the OVF1, OVF2, OVFUD, and UDFUD bits. Reset these flags after testing them. The OVF0 and OVF3 bits are read-only bits. These flags are cleared to 0 when the interrupt request flags (OVIF0 and OVIF3) of the interrupt control registers (OVIC0 and OVIC3) are reset to 0 or TM0 and TM3 overflow interrupts (INTOV0 and INTOV3) are received. (p. 120)
- (11) Before changing the noise elimination time (the setting of the NI0, NR0, NI1, NR1, NR2, NIUD, NCUD, or NRUD bit) with the NPC register, disable the counting of the corresponding timer. (p. 123)
- (12) If the count clock for timer 0 (TM0) is specified as the external clock (TI0 input) and count operations are performed, when bit 1 (PMC81) of the port 8 mode control register (PMC8) is rewritten from 0 to 1 or vice versa, the TM0 may start counting up. Therefore, perform PMC81 bit rewriting after stopping the TM0 count operations first. (p. 124)
- (13) When 00H is set in compare register CM02, CM10, CM20, or CM40 in the interval timer mode, TM0 performs interval operation at each count clock input.
 The interval time at the first match is different from that at the second or subsequent matches. (p. 127, 133, 137, 143)
 - Time until the first match
 Value of the compare register x count clock period
 Time until the second match or subsequent matches
 (Value of the compare register + 1) x count clock period
- (14) If the count clock for timer 1 (TM1) is specified as the external clock (TI1 input) and count operations are performed, when bit 6 (PMC36) of the port 3 mode control register (PMC3) is rewritten from 0 to 1 or vice versa, the TM1 may start counting up. Therefore, perform PMC36 bit rewriting after stopping the TM1 count operations first. (p. 130)
- (15) If clear operations by the TCLR2 pin input are enabled, when bit 6 (PMC26) of the port 2 mode control register (PMC2) is rewritten from 0 to 1 or vice versa, TM2 may be cleared. Therefore, rewrite the PMC26 bit after stopping the TM2 count operations first. (p. 134)
- (16) When 00H is set in capture/compare register CC30 in the interval timer mode, TM3 performs interval operation at each count clock input.
 The interval time at the first match is different from that at the second or subsequent matches. (p. 140)

•	Time until the first match	:	Value of the capture/compare register x count
			clock period
•	Time until the second match or subsequent matches	:	(Value of the capture/compare register + 1) x
			count clock period

- (17) If timer output by the TO04 and TO05 pins are enabled, when the output level is changed, the interrupt request flag (PIC0.7, PIC1.7) is set (1). Therefore, when using as the timer output, preset the interrupt mask flag (PIC0.6, PIC1.6) to "1" and set the interrupt mask state. (p. 152)
- (18) 0 is always read when the RTPM register specifies data of the RTPH and RTPL registers that is not connected to any pin. (p. 158)
- (19) When a software trigger is specified as an output trigger to the real-time output port, the contents of RTPH and RTPL are output to the pins. Before specifying a software trigger, write data in RTPH and RTPL. (p. 158)

22.6 Cautions for Chapter 8

- The A/D trigger mode, timer trigger mode, or external trigger mode can be specified for each pin ANI0 to ANI3. However, the A/D trigger mode is always specified for the ANI4 to ANI7 pins. (p. 159)
- (2) Apply the reference voltage to the ANI0 to ANI7 pins. If a voltage in the range of V_{DD} to V_{SS} inclusive (even in the range of the absolute maximum ratings) is applied to these pins, the converted values of the channels are undefined, and the converted values of other channels may also be affected. (p. 161)
- (3) The order in which the ANI0 to ANI3 bits are scanned is specified according to the order in which the match signals from compare registers or external trigger signals are generated in the timer trigger mode or external trigger mode for the scan mode. As a result, the ANIS2 to ANIS0 bits specify no analog input pin, they specify the number of trigger inputs. (p. 165)
- (4) Apply a voltage in the range of AVss to AVDD to the pins used as the input pins of the A/D converter. (p. 171)
- (5) When directly using the A/D conversion results to perform branching, if programs which branch only when the conversion results become the specified value are created, the conversion results will not become the specified value due to the effects of conversion difference and operations will not branch to the specified routine. Therefore, develop programs that will branch when the conversion results are in ranges that include the width for overall error difference. (p. 174)
- (6) Before specifying the timer trigger mode, specify that the capture/compare registers (CC00 and CC01) function as a compare register. (p. 181)
- (7) The timer trigger mode is effective for ANI0 to ANI3 analog inputs only. (p. 181)
- (8) When the next trigger signal is input during A/D conversion in the timer trigger mode or external trigger mode, the conversion is stopped and an A/D conversion corresponding to the new trigger signal is performed. The result of the stopped A/D conversion is undefined. (p. 182, 183, 185, 186, 190, 191, 195, 197, 198, 200, 202, 204)
- (9) When several triggers are input simultaneously, the smallest analog input of the analog input pin (ANIn) number is converted. Other trigger signals input at the same time are ignored and the number of triggers input is not counted. Therefore, the INTAD interrupt is not generated and the A/D conversion results become undefined. (p. 185, 186, 190, 191, 195, 198, 200, 204)


- (10) When the following modes are selected, only a single INTCM00 interrupt occurs in the one-shot mode for timer
 0. No A/D conversion is therefore terminated. To prevent this, be sure to put timer 0 in the loop mode. (p. 188, 193)
 - Select mode + four-buffer mode + one-trigger mode
 - Scan mode + one-trigger mode
- (11) When an INTCM00 interrupt occurs during A/D conversion of the analog inputs in the higher four channels (ANI4 to ANI7), the conversion is stopped and the AN0 channel and subsequent channels are scanned again. The results of the stopped A/D conversions are undefined. (p. 193)
- (12) The external trigger mode is effective for analog inputs ANI0 to ANI3 only. (p. 196)
- (13) When bits 0 to 3 (PMC00 to PMC03) of the port 0 mode control register (PMC0) are rewritten from 0 to 1 or vice versa during A/D conversion in the external trigger mode, external triggers may be generated. Therefore, rewrite the PMC00 to PMC03 bits after stopping the A/D converter operations first. (p. 196)
- (14) When an ADTRG0 signal is input during A/D conversion of the analog inputs in the higher four channels (ANI4 to ANI7), the conversion is stopped and the AN0 channel and subsequent channels are scanned again. The results of the stopped A/D conversions are undefined. (p. 202)
- (15) When ADTRG0 to ADTRG3 signals are input during A/D conversion of analog inputs in the higher four channels (ANI4 to ANI7), the conversion is stopped and the ANI0 channel and subsequent channels are scanned again. The results of the stopped A/D conversions are undefined. (p. 204)

22.7 Cautions for Chapter 9

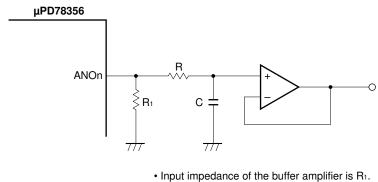

- The ANOn pin (n = 0 or 1) cannot source a current due to the high output impedance of the D/A converters. When connecting a load with a low input impedance, insert a buffer amplifier between the load and ANOn pin. Keep the wire to the buffer amplifier or load as short as possible (because the output impedance is high). If this is impossible, surround the wire with the ground pattern. (p. 211)
- (2) The output voltage of each D/A converter changes step by step. In general, use the signal output from a D/A converter after passing it through a low-pass filter. (p. 211)
- (3) The D/A converters contained in the μ PD78356 have high-impedance output while the RESET signal input is low. Arrange the load circuit so that it can accept high-impedance input. (p. 211)

Fig. 22-1. Examples of Buffer Amplifier Connection

(a) Inverting amplifier

• Input impedance of the buffer amplifier is $R_1 + R_2$.

(b) Voltage follower

Input impedance of the buffer amplifier is R1.
Be sure to connect R1. Otherwise, the output when RESET is low level becomes undefined.

(4) After a reset is released, the D/A converter outputs the voltage whose level is the same as the AVREF3 pin. Arrange the D/A converter output so that the converter outputs the same voltage as the voltage on the AVREF3 pin. (p. 211)

22.8 Cautions for Chapter 10

- Usually, the transmission completion interrupt (INTST) occurs whenever the TXS register becomes empty. However, even when the RESET signal is input and TXS becomes empty, INTST does not occur. (p. 227, 228)
- (2) Data written to the TXS register during transmission (before INTST occurs) is regarded as invalid. (p. 227)
- (3) In the event of a reception error, be sure to read the RXB data. Otherwise, an overrun error occurs when the next data block is received, leading to an endless error condition. (p. 230, 234)
- (4) The ASIS register is reset to 0 when the RXB buffer is read or the next data block is received. To find out about the error, be sure to read the ASIS register before reading the RXB buffer.
 When received data is being transferred to the memory using macro service, the receive buffer (RXB) may be read during serial data reception and as a result, the ASIS register may be reset (0). So, it is only detected that an error occurs. Before use, make sure that this will not cause any serious problems.
 An error can be detected by the setting condition (1) of the reception error interrupt request flag (SERIF) or the reception of the reception error interrupt (INTSER). (p. 234)

22.9 Cautions for Chapter 11

- Do not switch serial clocks during data transmission. Since the switching is performed asynchronously with the serial clock being supplied, doing this during data transmission can produce a serial clock of undefined frequency. (p. 242)
- (2) Since the serial data bus pins (SB0 and SB1) employ an open drain configuration for output in the SBI mode, the serial data bus line is provided in a wired OR state and therefore requires a pull-up resistor. (p. 259)
- (3) To switch between the master and slave CPUs in the SBI mode, a pull-up resistor is also needed for the SCK line. This is because the SCK input/output switching is performed in the master and slave CPUs asynchronously.
 (p. 259)
- (4) Do not operate the RELT or CMDT bit of the serial bus interface control register (SBIC) during data transmission or reception. (p. 268)
- (5) When transferring data in the SBI mode, be sure to specify the pin and serial clock before setting the CTXE0 and CRXE0 bits. (p. 272)

22.10 Cautions for Chapter 12

Do not switch serial clocks during data transmission. Since the switching is performed asynchronously with the serial clock being supplied, doing this during data transmission can produce a serial clock of undefined frequency. (p. 287)

22.11 Cautions for Chapter 13

Byte access/bit access can be performed for the lower side of the PWM0/PWM1 register but not for the higher side. (p. 304)

22.12 Cautions for Chapter 14

- (1) Data can be written into the WDM register only by a dedicated instruction (MOV WDM, #byte). (p. 309)
- (2) Do not change the priority for interrupt requests specified in the WDM register dynamically, that is, when a program is being executed. (p. 309)
- (3) The RUN bit of the watchdog timer mode register (WDM) cannot be reset to 0 by software. (p. 309)
- (4) The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit of the WDM register to 1. (p. 309)
- (5) Immediately after the power is turned on, the watchdog timer output pin (WDTO) may go low for a period of up to 32 clocks. (p. 310)

22.13 Cautions for Chapter 15

- The in-service priority register (ISPR) can be accessed for read only. Write to the register may cause an error. (p. 327)
- (2) Macro service requests are accepted and handled even during the nonmaskable interrupt handling routine. If macro service handling is not to be performed during this routine, manipulate the interrupt mask flag register during the routine so that the macro service is not generated. (p. 332)
- (3) Always use the RETI instruction to restore from the nonmaskable interrupt. Interrupts will not be accpeted properly hereafter of other instructions are used. (p. 332)
- (4) The nonmaskable interrupt is always accepted except for while the nonmaskable interrupt handling is being executed (excludes when a high priority nonmaskable interrupt request is generated during the execution of the low priority nonmaskable interrupt handling) and during a certain period of time after the execution of special instructions shown in 15.9. Therefore, nonmaskable interrupt is accepted even if stack pointer values after reset release, etc. are undefined. In such cases, depending on the stack pointer value, program counter (PC) and program status words (PSW) may be written in addresses (See Table 3-4 in 3.2.3.) which disable the writing of special function registers and cause the CPU to deadlock and unexpected signals to be output from terminals, or PC and PSW may be written in addresses not mounted with the RAM, and as a result, the main routine cannot be returned to normally from the nonmaskable interrupt handling routine and the CPU overruns.

Therefore, always set programs after the RESET release to as follows. (p. 332)

CSEG AT 0 DW STRT STRT: MOVW SP, #imm16

- (5) When the maskable interrupt is accepted using the vectored interrupt, always restore using the RETI instruction. Interrupt operations will not be performed properly hereafter if other instructions are used. (p. 335)
- (6) Always use the RETCS instruction to restore from interrupts by context switching. Interrupt operations will not be performed properly hereafter is other instructions are used. (p. 336)
- (7) Do not use the RETI instruction to restore from the software interrupt by the BRK instruction. (p. 343)
- (8) When the context switching function is started up by executing the BRKCS instruction, if the bit of the ISPR register is reset (0) following the execution of the RETCS instruction, the interrupt nesting control may destroyed.

Therefore, always use the RETCSB instruction to restore from the handling started up by the BRKCS instruction. (p. 345)

- (9) When transmitting data by the UART using macro service, two vectored interrupt requests occur. (p. 352)
- (10) Word buffers must be placed at even addresses in the block transfer mode. (p. 358)
- (11) Word buffers must be placed at even addresses in the block transfer mode (with a memory pointer). (p. 360)

- (12) MEM.PTR must be placed at an even address in the block transfer mode (with a memory pointer). (p. 360)
- (13) 00H must not be set in the MSC in the data difference mode. (p. 362)
- (14) Buffers must be placed at even addresses in the data difference mode. (p. 362)
- (15) The "previous value" must be initialized to dummy data in advance in the data difference mode. (p. 362)
- (16) The SFRP can specify 16-bit SFRs only in the data difference mode. (p. 362)
- (17) 00H must not be set in the MSC in the data difference mode (with a memory pointer). (p. 363)
- (18) Buffers must be placed at even addresses in the data difference mode (with a memory pointer). (p. 363)
- (19) The MEM.PTR must be placed at an even address in the data difference mode (with a memory pointer). (p. 363)
- (20) The "previous value" must be initialized to dummy data in advance in the data difference mode (with a memory pointer). (p. 363)
- (21) The SFRP can specify only 16-bit SFRs in the data difference mode (with a memory pointer). (p. 363)
- (22) When polling interrupt related registers using BRCLR instructions, make sure one is not branched to the same instruction. If programs in which instructions are branched to themselves are written, all interrupts and macro services are held until conditions with which the instructions will not branch to themselves are established. (p. 365)

	Wrong example		
LOOP:	ETCLR PIC0.7, \$LOOP x x x		All interrupts and macro services are held until PIC0.7 becomes 1. The interrupts and macro services are handled first after the instruction after the BTCLR instruction is executed.
	Correct example (1)		
LOOP:	: NOP		
	BTCLR PIC0.7, \$LOOP	<-	As the interrupts and macro services are handled after the execution of the NOP instruction, they will not be held for a long period of time.
	Correct example (2)		
1005			
LOOP:	BTCLR PIC0.7, \$NEXT BR \$LOOP	<-	As the interrupts and macro services are handled after the execution of the BR
NEXT:			instruction, they will not be held for a long period of time.

(23) If the above instructions are to be used continuously due to the same reasons as (22), and the interrupts and macro services are going to be held for a long time, insert NOP instructions, etc. halfway and create timings with which the interrupts and macro services can be accepted. (p. 366)

22.14 Cautions for Chapter 16

- (1) After the SBF flag in the standby control register (STBC) is read, set it to 1. Software can then discriminate a power-on reset from release of the STOP or HALT mode. (p. 370)
- (2) When an external clock is used, do not set the STP bit of the standby control register (STBC) to 1. (p. 371)
- (3) If the interrupt request flag (xxIF) is set to 1 and the interrupt is not masked (xxMK = 0), the system does not enter the HALT mode. When macro service processing (xxISM = 1) is performed, the system enters the HALT mode after the macro service terminates. (p. 372)
- (4) Data can be written into the WDM register only by a dedicated instruction (MOV WDM, #byte). (p. 377)
- (5) Do not change the priority for interrupt requests specified in the WDM register dynamically, that is, when a program is being executed. (p. 377)
- (6) The RUN bit of the watchdog timer mode register (WDM) cannot be reset to 0 by software. (p. 377)
- (7) The count clock is not reset even when the watchdog timer is cleared by setting the RUN bit of the WDM register to 1. (p. 377)

22.15 Cautions for Chapter 17

- (1) When RESET is active, all pins except WDTO, CLKOUT, AVREF, AVDD, AVSS, VDD, VSS, X1, and X2 go into the high-impedance state. (p. 385)
- (2) When RAM is expanded externally, attach a pull-up resistor to the P90/RD pin, P91/LWR pin, and P92/HWR pin. Otherwise, these pins may go into the high-impedance state, and the contents of the external RAM may be lost. Or signal collision on the address/data bus may damage the input/output circuit. (p. 385)

22.16 Cautions for Chapter 18

- The internal memory (ROM, RAM) capacity of the µPD78356 can be changed by setting the memory expansion mode register (MM). (p. 391, 392)
- (2) Be sure to write 0 in bits 4 and 7 of the memory expansion mode register (MM). If 1 is written in these bits, operation will not be normal. (p. 395)
- (3) Invalid combinations are specified as "Not to be set" in Fig. 18-4. Never write these combinations. (p. 395)
- (4) Cycle counts indicated in Fig. 18-5 do not contain any address wait. When an address wait is added, one cycle must be added to the indicated cycle count. (p. 398)
- (5) Although instruction fetch and data access are allowed for the peripheral RAM area (F700H to FDFFH), the bus width specification and wait specification made by the PWC register are invalid for that area, and 16-bit bus operation is always performed. Every instruction fetch is performed in the high-speed fetch mode. (p. 398)

- Phase-out/Discontinued
- (6) Instruction fetches cannot be performed for the main RAM area (FE00H to FEFFH). Data is always accessed in 16-bit units; the bus width specification and wait specification made by the PWC register are invalid at the time of data access. (In this case, a special bus cycle made up of two clock cycles is activated.) (p. 398)
- (7) The wait specification for the external SFR area (FFD0H to FFDFH) is made by the PWC7 and PWC6 bits.(p. 398)
- (8) For the internal ROM area, 16-bit bus operation is performed regardless of the PWC register setting. The wait specification for this area can be made using the PWC register. Note that, however, specifying a 16-bit bus for the internal ROM area makes the P92 pin function as the HWR pin even when only an 8-bit external memory is connected. The port function is then disabled. So, never specify the 16-bit bus for the internal ROM area. (p. 398)

22.17 Cautions for Chapter 21

- (1) When executing word access (including stack manipulation) in the main RAM area (FE00H to FEFFH), only even addresses can be specified with the operand. (p. 435, 437, 440)
- (2) The PWC register specifies the mode of an area, irrespective of whether the area is in internal memory or external memory. After reset, the whole space is set in the normal fetch cycle mode. (p. 436)

APPENDIX A DIFFERENCES BETWEEN THE $\mu \text{PD78356}$ AND $\mu \text{PD78334}$

The following pages list the functions of the μ PD78356 sub-series (μ PD78355, 78356, 78P356) and μ PD78334 sub-series (μ PD78330, 78334, 78P334).

Functions (1/2)

Item	Product	μPD78355	μ PD78356	μPD78P356			
Minimum instruciton	execution	125 ns (Internal clock: 16 MH	Iz operation, External clock: 3	2 MHz operation			
Internal memory	ROM	_	48 Kbytes	_			
	PROM	_	_	48 Kbytes			
	RAM		2 Kbytes				
Memory space	1	64 Kbytes (can externally be	extended)				
General register		8 bits x 16 x 8 banks					
Number of basic inst	ructions	115					
Instruction set		 16-bit transfer or arithmetic/logical operation Multiply/divide operation (16 bits x 16 bits, 32 bits ÷ 16 bits) Bit manipulation String Sum-of-products operation (16 bits x 16 bits + 32 bits) Correlation operation 					
I/O line	Input		9 (8 ports for analog input)				
I/O		48	6	67			
Real-time pulse unit		 16-bit timers : 5 10-bit timer : 1 16-bit compare registers : 10 10-bit compare register : 1 16-bit capture/compare registers : 5 Timer outputs : 10 					
Real-time output por	t	Pulse outputs synchronized with real-time pulse unit: 8					
PWM unit		8/10/12-bit variable PWM outputs: 2 channels					
A/D converter		10-bit resolution: 8 channels					
D/A converter		8-bit resolution: 2 channels					
Serial interface		Serial interface with a dedicated baud rate generator UART: 1 Clock synchronous serial interface/SBI: 1 Clock synchronous serial interface (with pin switching function): 1					
Interrupt function		 External: 5, internal: 25 (5 pins are also used for external interrupts.) Four levels of priorities can be specified according to software types. One interrupt processing mode can be selected out of three types: vectored interrupt function, macro service function, and context switching function. 					
Test factor		Not provided					
Bus sizing function		8-bit/16-bit external data bus width can be selected					
ECC circuit		Not pro	ovided	Provided			
Package	Without a window	 100-pin plastic QFP (14 x 14 mm) 120-pin plastic QFP (28 x 28 mm) 					
	With a window	-	-	• 120-pin ceramic WQFN			
Others	1	Watchdog timer function Standby function (HALT/STOP)					

Functions (2/2)

Item		μPD78330 μPD78334 μPD78P334					
Minimum instruciton execution		250 ns (Internal clock: 8 MHz operation, External clock: 16 MHz operation					
Internal memory ROM		_	— 32 Kbytes				
	PROM	_	_	32 Kbytes			
	RAM		1 Kbytes				
Memory space		64 Kbytes (can externally be	extended)				
General register		8 bits x 16 x 8 banks					
Number of basic inst	ructions	111					
Instruction set		 16-bit transfer or arithmetic, Multiply/divide operation (16) Bit manipulation String 	/logical operation 5 bits x 16 bits, 32 bits ÷ 16 bit	s)			
I/O line	Input		24 (16 ports for analog input)				
	I/O	28	4	6			
Real-time pulse unit		 18/16-bit timer/counter 18/16-bit compare registers 18/16-bit capture registers 18/16-bit capture/compare registers 16-bit timers/counters 16-bit compare registers 16-bit capture registers 16-bit capture registers Timer outputs Programmanble pulse output 	: 3 registers : 2 : 3 : 5 : 1 : 5				
Real-time output port	t	Pulse outputs synchronized with real-time pulse unit: 8					
PWM unit		8-bit PWM outputs: 2 channels					
A/D converter		10-bit resolution: 16 channels					
D/A converter		—					
Serial interface		Serial interface with a dedicated baud rate generator UART: 1 Clock synchronous serial interface/SBI: 1					
Interrupt function		 External: 8, internal: 15 (2 pins are also used for external interrupts.) Three levels of priorities can be specified according to software types. One interrupt processing mode can be selected out of three types: vectored interrupt function, macro service function, and context switching function. 					
Test factor		Internal 1					
Bus sizing function		Not provided					
ECC circuit		Not provided Provided					
Package Without a window		 84-pin PLCC (1150 mil) 94-pin plastic QFP (20 x 20 mm) 					
	With a window	• 84-pin ceramic WQFN • 94-pin ceramic WQFN					
Others		Watchdog timer function Standby function (HALT/STOP)					

Phase-out/Discontinued

APPENDIX B TOOLS

B.1 Development Tools

The following tools are provided for developing a system that uses the μ PD78356:

Language Processor

78K/III series relocatable assembler (RA78K/III)	This relocatable program can be used for all 78K/III series emulators, With its macro functions, it allows the user to improve program development efficiency. A structured-programming assembler is also provided, which enables explicit description of program control structures. This assembler could improve productivity in program production and maintenance.				
	Host machine			Part number	
		OS	Distribution media	Fait number	
	PC-9800 series	MS-DOS TM	3.5-inch 2HD	μS5A13RA78K3	
			5-inch 2HD	μS5A10RA78K3	
	IBM PC/AT and	PC DOS TM	3.5-inch 2HC	μS7B13RA78K3	
	compatible units		5-inch 2HC	μS7B10RA78K3	
	HP9000 series 700 TM	HP-UX [™]	DAT	μS3P16RA78K3	
	SPARCstation TM	SunOS™	Cartridge tape	μS3K15RA78K3	
	NEWS TM	NEWS-OS TM	(QIC-24)	μS3R15RA78K3	
78K/III series C compiler (CC78K/III)	in C language into obje	converts programs written age (RA78K/III) is needed.			
	Host machine	OS	Distribution media	- Part number	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13CC78K3	
			5-inch 2HD	μS5A10CC78K3	
	IBM PC/AT and	PC DOS	3.5-inch 2HC	μS7B13CC78K3	
	compatible units		5-inch 2HC	μS7B10CC78K3	
	HP9000 series 700	HP-UX	DAT	μS3P16CC78K3	
	SPARCstation	SunOS	Cartridge tape	μS3K15CC78K3	
	NEWS	NEWS-OS	(QIC-24)	μS3R15CC78K3	

* * *

Remark The operations of the relocatable assembler and C compiler are assured only on the OS with the above host machines.

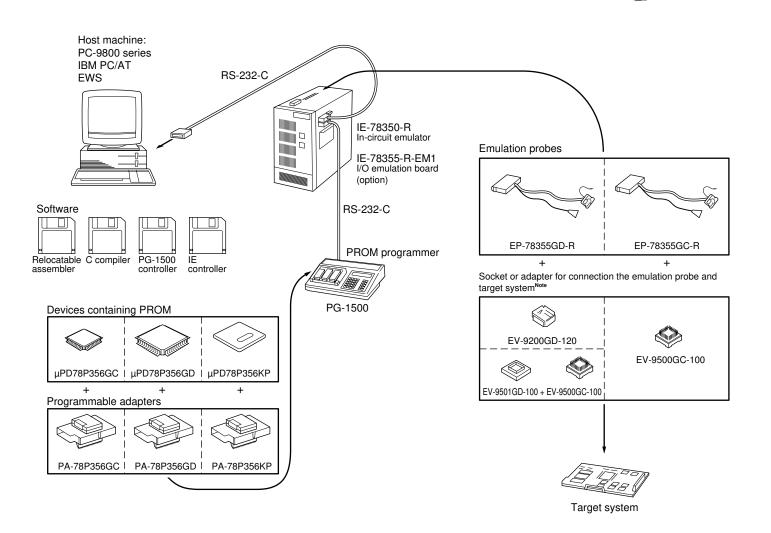
Connections between Development Tools and Target Devices

Development Target device	In-circuit emulator	Emulaiton probe and EPROM product	Conversion adapter	Conversion socket or conversion adapter
	IE-78350-R +	EP-78355GC-R		
GC package (100-pin QFP)	т IE-78355-R-ЕМ1	EP-78355GD-R		EV-9500GC-100
(100-pin Qr F)	—	μPD78P356KP (120-pin WQFN)	EV-9501GC-100	
GD package	IE-78350-R + IE-78355-R-EM1	EP-78355GD-R	_	EV-9200GD-120
(120-pin QFP)	_	μPD78P356KP (120-pin WQFN)		

PROM Writing Tools

Hardware	PG-1500	By connecting the provided board and optional programmer adapter, can be used as a PROM programmer which can program the single-chip microcontroller incorporated in the PROM by stand-alone or operations through the host machine. Can also program typical PROMs from 256 Kbits to 4 Mbits.				
	PA-78P356GC PA-78P356GD PA-78P356KP	P356GD programmers such as the PG-1500.				
Software	PG-1500 controller		00 on the host mac serial interface and p	hine when the PG-1500 parallel interface.	and host machine are	
		Host machine			Part number	
			OS	Distribution media	Fait number	
		PC-9800 series	MS-DOS	3.5 inch 2HD	μS5A13PG1500	
				5 inch 2HD	μS5A10PG1500	
		IBM PC/AT and	PC DOS	3.5 inch 2HD	μS7B10PG1500	
		compatible units		5 inch 2HC	μS7B10PG1500	

Remark The operations of the PG-1500 controller are assured only on the above host machines and the OS.


 \star

Hardware	IE-78350-R	In-circuit emulator for developing and debugging application systems. For debugging, connect the emulator to the host machine.						
	IE-78355-R-EM1	I/O emulation boar µPD78356.	d for emulating the p	peripheral functions (the	I/O port, etc.) of the			
	EP-78355GC-R	μ PD78356 100-pin QFP emulation probe for connecting the IE-78350-R and target system. One EV-9500GC-100 conversion adapter is provided for connection to the target						
	EV-9500GC-100	system.						
	EP-78355GD-R	μPD78356 120-pin (QFP emulation probe for	or connecting the IE-7835	0-R and target system.			
	EV-9200GD-120		One EV-9200GD-120 conversion socket is provided for connection to the target syst					
	EV-9501GC-100	connecting the 100-pin QFP conversion adapter EV-9501GC-100 (optional), this emulation probe can also be used to develop the 100-pin QFP of the μ PD78356. However, for connection to the target system, use the EV-9500GC-100 (optional) conversion adapter.						
	EV-9500GC-100							
Software	IE-78350-R Control program	This program controls the IE-78350-R on the host machine. Its automatic command execution function ensures more efficient debugging.						
	(IE controller)							
		Host machine	OS	Distribution media	Part number			
		PC-9800 series	C-9800 series MS-DOS	3.5 inch 2HD	μS5A13IE78355			
				5 inch 2HD	μS5A10IE78355			
		IBM PC/AT and	PC DOS	3.5 inch 2HC	μS7B13IE78355			
		compatible units		5 inch 2HC	μS7B10IE78355			

Debugging Tools (When Using the IE Controller)

Remark The operations of the IE controller are assured only on the above host machines and the OS.

Remarks 1. The PG-1500 can be directly connected to the host machine via the RS-232-C interface.

2. In this figure, the distribution media for software is represented by 3.5-inch floppy disk.

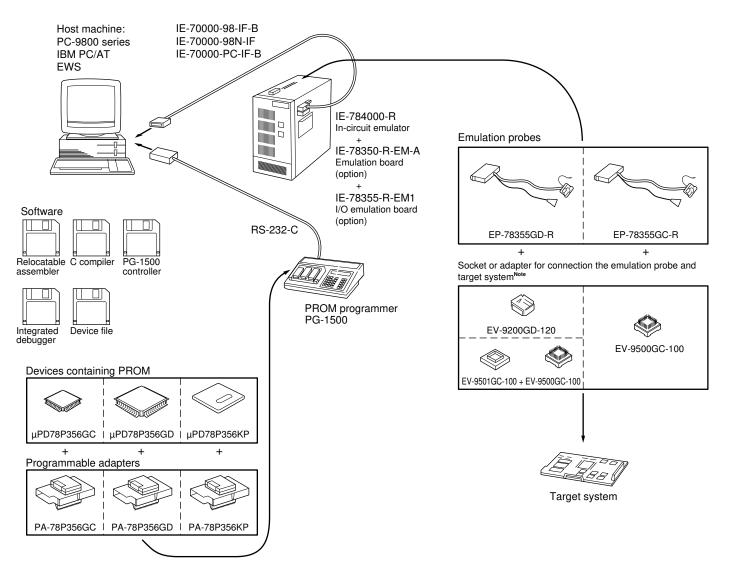
*

Hardware	IE-784000-R	In-circuit emulator for developing and debugging application systems. For debugging, connect the emulator to the host machine.			
	IE-78350-R-EM-A ^{Note}	Emulation board for emulating the peripheral functions (the I/O port, etc.) of the target device.			
	IE-78355-R-EM1	I/O emulation board for emulating the peripheral functions (the I/O port, etc.) of the target device.			
EP-78355GC-R		100-pin QFP emulation probe for connecting the IE-784000-R and target system. One EV-			
	EV-9500GC-100	9500GC-100 conversion adapter is provided for connection to the target system.			
	EP-78355GD-R	120-pin QFP emulation probe for connecting the IE-784000-R and target system. One EV-			
	EV-9200GD-120 EV-9501GC-100	9200GD-120 conversion socket is provided for connection to the target system. By connecting to the EV-9501GC-100 100-pin QFP conversion adapter (option), this emulation probe can be used for developing the μPD78356 100-pin QFP. Use EV-9500GC-100			
	EV-9500GC-100	conversion adapter (option) for connection to the target system.			
	IE-70000-98-IF-B	Interface adapter to use the PC-9800 series (except notebook personal computers) as the host machines.			
	IE-70000-98N-IF	Interface adapter and cable to use the PC-9800 series notebook personal computers as the host machines.			
	IE-70000-PC-IF-B	Interface adapter to use the IBM PC/AT as the host machine.			
	IE-78000-R-SV3	Interface adapter and cable to use the EWS as the host machine.			

Debugging Tools (When Using the Integrated Debugger) (1/2)

Note Under development

★ Debugging Tools (When Using the Integrated Debugger) (2/2)


Software	Integrated Debugger (ID78K/III) ^{Note}	Program to control the 78K/III series in-circuit emulator. Used in combination with the device file (DF78355). This debugger enables debugging in the source program level written in the C language, structured assembly language, and assembly language. As various information can be displayed simultaneously by dividing the screen of the host machine, very efficient debugging is possible.				
		Host machine	OS	Distribution media	Part number	
			03	Distribution media		
		PC-9800 series	MS-DOS	3.5-inch 2HD	μSAA13ID78K3	
			+ Windows™	5-inch 2HD	μSAA10ID78K3	
		IBM PC/AT and compatible units (Japanese Windows)		3.5-inch 2HC	μSAB13ID78K3	
			PC DOS	5-inch 2HC	μSAB10ID78K3	
		IBM PC/AT and compatible units (English Windows)	Windows	3.5-inch 2HC	μSBB13ID78K3	
				5-inch 2HC	μSBB10ID78K3	
	Device file (DF78355) ^{Note}	File containing the information inherent to the device. Used in combination with the assembler (RA78K/III), C compiler (CC78K/III), and integrated debugger (ID78K/III).				
				_		
		Host machine	OS	Distribution media	Part number	
		PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13DF78355	
				5-inch 2HD	μS5A10DF78355	
		IBM PC/AT and	PC DOS	3.5-inch 2HC	μS7B13DF78355	
		compatible units		5-inch 2HC	μS7B10DF78355	

Note Under development

Remark The operations of the integrated debugger and device file are assured only on the above host machines and the OS.

Configuration

of Development Tools (When Using the Integrated Debugger)

Note The conversion socket or the conversion adapter is supplied with the emulation probe.

Remarks 1. In this figure, the distribution media for software is represented by 3.5-inch floppy disks.

2. In this figure, the host machines are represented by desk-top personal computers.

B.2 Embedded Software

The following software are available for programs development and maintenance to be performed more effectively.

Real-time OS

Real-time OS (RX78K/III) ^{Note}	idle time can be allotte The RX78K/III provide The RX78K/III packag	The aim of RX78K/III to realize multi-task environments targeting real-time control fields. The CPU idle time can be allotted to other processes to improve the overall performance of the system. The RX78K/III provides system call conforming to the ITRON specifications. The RX78K/III package provides the tools (configuration) for creating the RX78K/III nucleus and several information tables.					
	Host machine						
		OS	Distribution media				
	PC-9800 series	MS-DOS	3.5-inch 2HD	Undefined			
			5-inch 2HD	Undefined			
	IBM PC/AT and	PC DOS	3.5-inch 2HC	Undefined			
	compatible units		5-inch 2HC	Undefined			

Note Under development

Caution To purchase, the purchasing application must be filled in advance and a using conditions agreement signed.

Remark The RA78K/III assembler package (optional) is required when using the RX78K/III real-time OS.

Fuzzy Inference Development Support System

Fuzzy knowledge data compilation tool	1 0 11	This program supports the input/editing and simulation of fuzzy knowledge data (fuzzy rules and membership functions).				
(FE9000, FE9200)	Host machine		1	- Part number		
		OS	Distribution media	Part number		
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13FE9000		
			5-inch 2HD	μS5A10FE9000		
	IBM PC/AT and	PC DOS	3.5-inch 2HC	μS7B13FE9200		
	compatible units	Windows	5-inch 2HC	μS7B10FE9200		
Translator (FT78K3) ^{Note}		s fuzzy knowledge data embler source program	a obtained using the fuzzy kn s.	owledge data compilation		
	Host machine			- Part number		
		OS	Distribution media	i art number		
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13FT78K3		
			5-inch 2HD	μS5A10FT78K3		
	IBM PC/AT and	PC DOS	3.5-inch 2HC	μS7B13FT78K3		
	compatible units		5-inch 2HC	μS7B10FT78K3		
Fuzzy inference module	This program executes fuzzy inference by linking fuzzy knowledge data converted by the translator.					
(FI78K/III) ^{Note}	Host machine	Dort number				
	HOST Machine	OS	Distribution media	Part number		
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13FI78K3		
			5-inch 2HD	μS5A10FI78K3		
	IBM PC/AT and	PC DOS	3.5-inch 2HC	μS7B13FI78K3		
	compatible units		5-inch 2HC	μS7B10FI78K3		
Fuzzy inference debugger	This support software circuit emulator.	simulates and adjust fu	uzzy knowledge data in the ha	ardware level using the in-		
(FD78K/III)	Host machine			- Dart number		
	nost machine	OS	Distribution media	Part number		
	PC-9800 series	MS-DOS	3.5-inch 2HD	μS5A13FD78K3		
			5-inch 2HD	μS5A10FD78K3		
	IBM PC/AT and	PC DOS	3.5-inch 2HC	μS7B13FD78K3		
	compatible units		5-inch 2HC	μS7B10FD78K3		

Note Under development

Phase-out/Discontinued

APPENDIX C REGISTER INDEX

C.1 Register Name Index (Alphabetic Order)

[A]

Asynchronous serial interface mode register: ASIM 214
Asynchronous serial interface status register: ASIS 214
A/D conversion result register 0: ADCR0 169
A/D conversion result register 1: ADCR1 169
A/D conversion result register 2: ADCR2 169
A/D conversion result register 3: ADCR3 169
A/D conversion result register 4: ADCR4 169
A/D conversion result register 5: ADCR5 169
A/D conversion result register 6: ADCR6 169
A/D conversion result register 7: ADCR7 169
A/D conversion result register 0H: ADCR0H 170
A/D conversion result register 1H: ADCR1H 170
A/D conversion result register 2H: ADCR2H 170
A/D conversion result register 3H: ADCR3H 170
A/D conversion result register 4H: ADCR4H 170
A/D conversion result register 5H: ADCR5H 170
A/D conversion result register 6H: ADCR6H 170
A/D conversion result register 7H: ADCR7H 170
A/D converter mode register 0: ADM0 164
A/D converter mode register 1: ADM1 167

[C]

Capture/compare register 00: CC00 105
Capture/compare register 01: CC01 105
Capture/compare register 02: CC02 105
Capture/compare register 30: CC30 105
Capture/compare register 31: CC31 105
Clock synchronous serial interface mode register 0: CSIM0 236
Clock synchronous serial interface mode register 1: CSIM1 280
Compare register 00: CM00 104
Compare register 01: CM01 104
Compare register 02: CM02 104
Compare register 03: CM03 104
Compare register 10: CM10 104
Compare register 11: CM11 104
Compare register 20: CM20 104
Compare register 21: CM21 104
Compare register 40: CM40 104, 222, 243, 288
CPU control word: CCW 50

[D]

D/A-converted data coefficient register: DACS ... 210 D/A-converted data coefficient register 0: DACS0 ... 210 D/A-converted data coefficient register 1: DACS1 ... 210

[E]

External interrupt mode register 0: INTM0 ... 121 External interrupt mode register 1: INTM1 ... 121

[I]

۰.	
	Interrupt control register (INTAD): ADIC 317, 323
	Interrupt control register (INTCM00): CMIC00 317, 321
	Interrupt control register (INTCM01): CMIC01 317, 322
	Interrupt control register (INTCM02): CMIC02 317, 322
	Interrupt control register (INTCM03): CMIC03 317, 322
	Interrupt control register (INTCM10): CMIC10 317, 322
	Interrupt control register (INTCM11): CMIC11 317, 322
	Interrupt control register (INTCM20): CMIC20 317, 322
	Interrupt control register (INTCM21): CMIC21 317, 322
	Interrupt control register (INTCM40): CMIC40 317, 322
	Interrupt control register (INTCMUD0): CMICUD0 317, 323
	Interrupt control register (INTCMUD1): CMICUD1 317, 323
	Interrupt control register (INTCSI0): CSIIC0 317, 323
	Interrupt control register (INTCSI1): CSIIC1 317, 323
	Interrupt control register (INTOV0): OVIC0 317, 321
	Interrupt control register (INTOV3): OVIC3 317, 321
	Interrupt control register (INTP0/INTCC00): PIC0 317, 321
	Interrupt control register (INTP1/INTCC01): PIC1 317, 321
	Interrupt control register (INTP2/INTCC02): PIC2 317, 321
	Interrupt control register (INTP3/INTCC30): PIC3 317, 321
	Interrupt control register (INTP4/INTCC31): PIC4 317, 321
	Interrupt control register (INTSER): SERIC 317, 323
	Interrupt control register (INTSR): SRIC 317, 323
	Interrupt control register (INTST): STIC 317, 323
	Interrupt mask flag register: MK0 317, 324
	Interrupt mask flag register: MK1 317, 324
	Interrupt mask flag register: MK0H 324
	Interrupt mask flag register: MK0L 324
	Interrupt mask flag register: MK1L 324
	Interrupt mode control register: IMC 317, 326
	In-service priority register: ISPR 317, 327

[M]

Memory expansion mode register: MM ... 89, 394

[N]

Noise protection control register: NPC ... 123

[P]

Port 0: P0 ... 78 Port 1: P1 ... 78 Port 2: P2 ... 78 Port 3: P3 ... 78 Port 7: P7 ... 78 Port 8: P8 ... 78 Port 9: P9 ... 78 Port 10: P10 ... 78 Port 0 mode control register: PMC0 ... 84 Port 2 mode control register: PMC2 ... 85 Port 3 mode control register: PMC3 ... 86, 216, 239 Port 8 mode control register: PMC8 ... 87 Port 10 mode control register: PMC10 ... 88, 282 Port 0 mode register: PM0 ... 79 Port 1 mode register: PM1 ... 79 Port 2 mode register: PM2 ... 80 Port 3 mode register: PM3 ... 80, 217, 240 Port 5 mode register: PM5 ... 80 Port 8 mode register: PM8 ... 80 Port 9 mode register: PM9 ... 81 Port 10 mode register: PM10 ... 81, 283 Port read control register: PRDC ... 74 Programmable wait control register: PWC ... 396 Pull-up resistor option register H: PUOH ... 91 Pull-up resistor option register L: PUOL ... 91 PWM buffer register 0: PWM0 ... 304 PWM buffer register 1: PWM1 ... 304 PWM buffer register 0L: PWM0L ... 304 PWM buffer register 1L: PWM1L ... 304 PWM control register: PWMC ... 304

[R]

Real-time output port mode register: RTPM ... 156 Real-time output port register H: RTPH ... 157 Real-time output port register L: RTPL ... 157

[S]

Serial bus interface control register: SBIC ... 236 Serial I/O shift register 0: SIO0 ... 236 Serial I/O shift register 1: SIO1 ... 280 Serial reception buffer: RXB ... 215 Serial transmission shift register: TXS ... 215 Standby control register: STBC ... 370

[T]

Timer 0: TM0 ... 102, 124 Timer 1: TM1 ... 102, 130 Timer 2: TM2 ... 102, 134

Timer 3: TM3 ... 103, 138 Timer 4: TM4 ... 103, 142, 222, 243, 288 Timer control register 0: TMC0 ... 109 Timer control register 1: TMC1 ... 109 Timer control register 2: TMC2 ... 109, 222, 243, 288 Timer output control register 0: TOC0 ... 114 Timer output control register 1: TOC1 ... 114 Timer output control register 2: TOC2 ... 114 Timer overflow status register: TOVS ... 119 Timer unit mode register 0: TUM0 ... 106 Timer unit mode register 2: TUM2 ... 106 Timer unit mode register 3: TUM3 ... 106

[U]

Up/down counter: UDC ... 103, 144 Up/down counter compare register 0: CMUD0 ... 104 Up/down counter compare register 1: CMUD1 ... 104 Up/down counter control register: UDCC ... 109

[W]

Watchdog timer mode register: WDM ... 308, 377

C.2 Register Symbol Index (Alphabetic Order)

[A]	
ADCR0	: A/D conversion result register 0 169
ADCR1	: A/D conversion result register 1 169
ADCR2	: A/D conversion result register 2 169
ADCR3	: A/D conversion result register 3 169
ADCR4	: A/D conversion result register 4 169
ADCR5	: A/D conversion result register 5 169
ADCR6	: A/D conversion result register 6 169
ADCR7	: A/D conversion result register 7 169
ADCR0H	: A/D conversion result register 0H 170
ADCR1H	: A/D conversion result register 1H 170
ADCR2H	: A/D conversion result register 2H 170
ADCR3H	: A/D conversion result register 3H 170
ADCR4H	: A/D conversion result register 4H 170
ADCR5H	: A/D conversion result register 5H 170
ADCR6H	: A/D conversion result register 6H 170
ADCR7H	: A/D conversion result register 7H 170
ADIC	: Interrupt control register (INTAD) 317, 323
ADM0	: A/D converter mode register 0 164
ADM1	: A/D converter mode register 1 167
ASIM	: Asynchronous serial interface mode register 214
ASIS	: Asynchronous serial interface status register 214

[C]

CC00	: Capture/compare register 00 105
CC01	: Capture/compare register 01 105
CC02	: Capture/compare register 02 105
CC30	: Capture/compare register 30 105
CC31	: Capture/compare register 31 105
CCW	: CPU control word 50
CM00	: Compare register 00 104
CM01	: Compare register 01 104
CM02	: Compare register 02 104
CM03	: Compare register 03 104
CM10	: Compare register 10 104
CM11	: Compare register 11 104
CM20	: Compare register 20 104
CM21	: Compare register 21 104
CM40	: Compare register 40 104, 222, 243, 288
CMIC00	: Interrupt control register (INTCM00) 317, 321
CMIC01	: Interrupt control register (INTCM01) 317, 322
CMIC02	: Interrupt control register (INTCM02) 317, 322
CMIC03	: Interrupt control register (INTCM03) 317, 322
CMIC10	: Interrupt control register (INTCM10) 317, 322
CMIC11	: Interrupt control register (INTCM11) 317, 322
CMIC20	: Interrupt control register (INTCM20) 317, 322

CMIC21 CMIC40 CMICUD0 CMICUD1 CMUD0 CMUD1 CSIIC0 CSIIC1 CSIM0 CSIM1	 Interrupt control register (INTCM21) 317, 322 Interrupt control register (INTCM40) 317, 322 Interrupt control register (INTCMUD0) 317, 323 Interrupt control register (INTCMUD1) 317, 323 Up/down counter compare register 0 104 Up/down counter compare register 1 104 Interrupt control register (INTCSI0) 317, 323 Interrupt control register (INTCSI1) 317, 323 Clock synchronous serial interface mode register 1 280
(D)	
[D] DACS DACS0 DACS1	: D/A-converted data coefficient register 210 : D/A-converted data coefficient register 0 210 : D/A-converted data coefficient register 1 210
[1]	
IMC INTM0 INTM1 ISPR	 : Interrupt mode control register 317, 326 : External interrupt mode register 0 121 : External interrupt mode register 1 121 : In-service priority register 317, 327
[M]	
MK0 MK1 MK0H MK0L MK1L MM	 : Interrupt mask flag register 317, 324 : Interrupt mask flag register 317, 324 : Interrupt mask flag register 324 : Interrupt mask flag register 324 : Interrupt mask flag register 324 : Memory expansion mode register 89, 394
[N]	
NPC	: Noise protection control register 123
[O] OVIC0 OVIC3	: Interrupt control register (INTOV0) 317, 321 : Interrupt control register (INTOV3) 317, 321
[P]	
P0 P1 P2 P3 P7 P8 P9 P10 PIC0 PIC1	: Port 0 78 : Port 1 78 : Port 2 78 : Port 3 78 : Port 7 78 : Port 8 78 : Port 9 78 : Port 9 78 : Port 10 78 : Interrupt control register (INTP0/INTCC00) 317, 321 : Interrupt control register (INTP1/INTCC01) 317, 321

PIC2	: Interrupt control register (INTP2/INTCC02) 317, 321
PIC3	: Interrupt control register (INTP3/INTCC30) 317, 321
PIC4	: Interrupt control register (INTP4/INTCC31) 317, 321
PM0	: Port 0 mode register 79
PM1	: Port 1 mode register 79
PM2	: Port 2 mode register 80
PM3	: Port 3 mode register 80, 217, 240
PM5	: Port 5 mode register 80
PM8	: Port 8 mode register 80
PM9	: Port 9 mode register 81
PM10	: Port 10 mode register 81, 283
PMC0	: Port 0 mode control register 84
PMC2	: Port 2 mode control register 85
PMC3	: Port 3 mode control register 86, 216, 239
PMC8	: Port 8 mode control register 87
PMC10	: Port 10 mode control register 88, 282
PRDC	: Port read control register 74
PUOH	: Pull-up resistor option register H 91
PUOL	: Pull-up resistor option register L 91
PWC	: Programmable wait control register 396
PWM0	: PWM buffer register 0 304
PWM1	: PWM buffer register 1 304
PWM0L	: PWM buffer register 0L 304
PWM1L	: PWM buffer register 1L 304
PWMC	: PWM control register 304
[R]	
RTPH	: Real-time output port register H 157
RTPL	: Real-time output port register L 157
RTPM	: Real-time output port mode register 156
RXB	: Serial reception buffer 215
[S]	
SBIC	: Serial bus interface control register 236
SERIC	: Interrupt control register (INTSER) 317, 323
SIO0	: Serial I/O shift register 0 236
SIO1	: Serial I/O shift register 1 280
SRIC	: Interrupt control register (INTSR) 317, 323
STBC	: Standby control register 370
STIC	: Interrupt control register (INTST) 317, 323
[Т]	
TMO	: Timer 0 102, 124
TM1	: Timer 1 102, 130

TM1: Timer 1...102, 130TM2: Timer 2...102, 134TM3: Timer 3...103, 138TM4: Timer 4...103, 142, 222, 243, 288TMC0: Timer control register 0...109TMC1: Timer control register 1...109

TMC2	: Timer control register 2 1	09, 222, 243, 288
------	------------------------------	-------------------

TOC0	: Timer output control register 0	114
TOCI	. Timer output control register 1	4 4 4

TOC1	: Timer	output	control	register	1	114

- TOC2 : Timer output control register 2 ... 114
- TOVS : Timer overflow status register ... 119
- TUM0 : Timer unit mode register 0 ... 106 TUM1
- : Timer unit mode register 1 ... 106 TUM2
- : Timer unit mode register 2 ... 106
- TUM3 : Timer unit mode register 3 ... 106
- TXS : Serial transmission shift register ... 215

[U]

UDC	: Up/down counter 103, 144
UDCC	: Up/down counter control register 109

[W]

WDM	: Watchdog timer mode register	308, 377
-----	--------------------------------	----------

Phase-out/Discontinued

APPENDIX D FUNCTION INDEX

[A]

A/D converter basic operation ... 171
Address wait control .. 397
Addressing
Based addressing ... 61
Based indexed addressing ... 61
Direct addressing ... 61
Implied addressing ... 51, 62
Register addressing ... 51, 61, 62
Register indirect addressing ... 53, 61, 63
Special function registers (SFRs) addressing ... 53, 61, 63

[C]

Calculating number of instruction execution clocks ... 444 Capture operation Timer 0 (TM0) ... 128 Timer 3 (TM3) ... 141 Checking port output data ... 74 Clear operation control Timer 0 (TM0) ... 107 Timer 1 (TM1) ... 107 Timer 2 (TM2) ... 107 Up/down counter (UDC) ... 107 Compare operation Timer 0 (TM0) ... 125 Timer 1 (TM1) ... 131 Timer 2 (TM2) ... 135 Timer 3 (TM3) ... 139 Timer 4 (TM4) ... 143 Up/down counter (UDC) ... 145 Connecting unused pins ... 32 Context switching Activating context switching service ... 335, 343 Return from context switching service ... 336, 345 Specifying context switching service ... 319 Controlling and detecting serial bus status ... 266 Controlling bus cycle wait ... 397

[D]

D/A converter operation ... 210 Data access ... 439

[E]

External device expansion ... 385, 389, 393

[H]

HALT mode Releasing HALT mode ... 373 Setting HALT mode ... 372

[I]

Interrupt Controlling nesting operation ... 326 Holding interrupt priority level ... 327 Multiple-interrupt handling ... 337 Return from non-maskable interrupt ... 332 Specifying interrupt request enable/disable ... 320, 324, 325 Specifying maskable interrupt priority level ... 319, 337 Specifying non-maskable interrupt priority level ... 309, 329, 377 Interrupt accepted level operation Maskable interrupt ... 329 Op-code trap interrupt ... 346 Software interrupt ... 343

[M]

Macro service Operation when macro service completion ... 352 Setting macro service mode ... 353 Specifying address of macro service channel ... 353 Specifying counter mode operation ... 356 Specifying block transfer mode operation ... 357 Specifying block transfer mode (with a memory pointer) operation ... 359 Specifying service ... 319

[0]

One-shot operation Timer 0 (TM0) ... 129 Op-code fetch ... 435 Operation control A/D converter ... 164 PWM0 and PWM1 ... 304 Timer 0 (TM0) ... 110 Timer 1 (TM1) ... 110 Timer 2 (TM2) ... 111 Timer 3 (TM3) ... 111 Timer 4 (TM4) ... 112, 225, 246, 291 Up/down counter (UDC) ... 113 Watchdog timer (WDT) ... 309, 377

[P]

PROM
Procedure for reading from PROM ... 411
Procedure for writing data into PROM (Byte program mode) ... 408
Procedure for writing data into PROM (Page program mode) ... 405
Setting PROM programming mode ... 31, 403
Setting PROM programming operation mode ... 31, 404
PWM output operation ... 305

[R]

Reading A/D conversion result ... 169, 170
Real-time output function ... 155
Specifying port 0 output bit ... 156
Reception
3-wire serial I/O mode (CSI0) ... 253
3-wire serial I/O mode (CSI1) ... 297
Asynchronous serial interface ... 229
Detecting reception error ... 233
SBI mode (CSI0) ... 272
Reset
Releasing reset ... 385
System reset ... 385

[S]

Selecting analog input ... 164 Selecting serial clock Asynchronous serial interface ... 220 Clock synchronous serial interface ... 241 Clock synchronous serial interface with pin switching function ... 286 Setting baud rate Asynchronous serial interface ... 220, 224 Clock synchronous serial interface ... 241, 245 Clock synchronous serial interface with pin switching function ... 286, 290 Setting µPD78356 operation mode ... 12, 29 Setting pins for serial transmission Asynchronous serial interface ... 216 Clock synchronous serial interface ... 239 Clock synchronous serial interface with pin switching function ... 282 Setting serial data format ... 218 Setting serial transmission start bit Clock synchronous serial interface with pin switching function ... 293 Specifying A/D conversion time ... 167 Specifying active level for output pins PWM0 and PWM1 pins ... 304 TO00 to TO03 pins ... 115 TO04, TO05, TO10 and TO11 pins ... 116 TO20 and TO21 pins ... 118

Specifying buffer mode A/D converter ... 164 Specifying count clock Timer 0 (TM0) ... 110 Timer 1 (TM1) ... 110 Timer 2 (TM2) ... 111 Timer 3 (TM3) ... 111 Timer 4 (TM4) ... 112, 225, 246, 291 Up/down counter (UDC) ... 113 Watchdog timer (WDT) ... 309, 377 Specifying counter bit length for PWM output control ... 304 Specifying edge of external signal ADTRG0 to ADTRG3 ... 167 INTP0 to INTP2 ... 121 INTP3 and INTP4 ... 122 NMI ... 121 TCLR0 to TCLR2 and TCLRUD ... 108 TI0, TI1 and TIUD ... 108 Specifying external data bus width ... 397 Specifying general register ... 47, 51 Specifying internal memory capacity ... 89, 395 Specifying noise elimination time ... 123 Specifying operation mode 3-wire serial I/O mode (CSI0) ... 249 A/D converter ... 164 Capture/compare register (CC00 to CC02, CC30 and CC31) ... 107 SBI mode (CSI0) ... 259 Timer 0 (TM0) ... 110 Timer 1 (TM1) ... 110 Timer 2 (TM2) ... 111 Timer 3 (TM3) ... 111 Specifying output mode for output pins TO00, TO02 and TO04 pins ... 107 TO10 and TO20 pins ... 118 Specifying output pins operation TO00 to TO03 pins ... 115 TO04, TO05, TO10 and TO11 pins ... 116 TO20 and TO21 pins ... 118 Specifying pins control mode P00 to P07 pins ... 84 P21 to P27 pins ... 85 P30 to P37 pins ... 86, 216, 239 P40 to P47 and P50 to P57 pins ... 82, 89, 395 P80 to P87 pins ... 87 P90 to P92 pins ... 83 P100 to P107 pins ... 88, 282 Specifying pins input/output mode P00 to P07 pins ... 79

Phase-out/Discontinued

P10 to P17 pins ... 79 P21 to P27 pins ... 80 P30 to P37 pins ... 80, 217, 240 P50 to P57 pins ... 80 P80 to P87 pins ... 80 P90 to P93 pins ... 81 P100 to P107 pins ... 81, 283 Specifying pull-up resistor ... 90 Specifying timer 0 (TM0) operation Free running mode ... 107 Specifying trigger mode A/D converter ... 167 Specifying trigger signal Real-time output port ... 156 Stack pointer (SP) ... 50 STOP mode Releasing STOP mode ... 376 Setting STOP mode ... 375 Switching pins for serial transmission Clock synchronous serial interface with pin switching function ... 284

[T]

Timer basic operation Timer 0 (TM0) ... 124 Timer 1 (TM1) ... 130 Timer 2 (TM2) ... 134 Timer 3 (TM3) ... 138 Timer 4 (TM4) ... 142 Up/down counter (UDC) ... 144 Timer output function ... 152 Transmission and reception 3-wire serial I/O mode (CSI0) ... 255 3-wire serial I/O mode (CSI1) ... 299 SBI mode (CSI0) ... 272 Transmission 3-wire serial I/O mode (CSI0) ... 251 3-wire serial I/O mode (CSI1) ... 295 Asynchronous serial interface ... 227 SBI mode (CSI0) ... 272

[U]

Up/down count operation Specifying up/down count operation ... 113 Up/down counter (UDC) ... 148

[V]

Vectored interrupt Return from vectored interrupt service ... 316, 335

Specifying vectored interrupt service ... 319, 320

[W]

Wake up function ... 276
Writing by special instruction
Stand-by control register (STBC) ... 370
Watchdog timer mode register (WDM) ... 308

APPENDIX E REVISION HISTORY

Phase-out/Discontinued

The history of revisions made up to now is shown in the following. The Application column shows in which chapters these revisions were made in.

Edition No.	Revisions	Application
2nd Edition	Addition of µPD78355 (A), 78355 (A1), 78355 (A2), 78356 (A), 78356 (A1), 78356 (A2), 78P356 (A), 78P356 (A1) and 78P356 (A2) to applied models.	Throughout
	Addition of cautions for word access to the main RAM area	CHAPTER 3 CPU ARCHITECTURE
	Addition of cautions and program examples for branch processes using A/D conversion results.	CHAPTER 8 A/D CONVERTER
	Addition of cautions when several triggers are input simultaneously in timer trigger mode and external trigger mode.	
	Change of explanation on reception operation start up in 3-wire serial I/O mode, and SBI mode and delete cautions.	CHAPTER 11 CLOCK SYNCHRONOUS SERIAL INTERFACE
	Change of explanation on reception operation start up in 3-wire serial I/O mode, and delete cautions.	CHAPTER 12 CLOCK SYNCHRONOUS SERIAL INTERFACE (WITH PIN SWITCHING FUNCTION)
	Addition of 15.4 Nonmaskable Interrupt Acknowledgement, 15.5 Maskable Interrupt Acknowledgement, 15.9 When Interrupt Requests and Macro Service are Held Temporarily and 15.10 Instructions Which are Stopped Temporarily in Interrupts and Macro Services	CHAPTER 15 INTERRUPT FUNCTION
	Deletion of 19.2 Handling Unused Pins	CHAPTER 19
	Addition of 19.7 Screening of One-Time PROM Version Devices	PROGRAMMING FOR THE μ PD78P356
	Deletion of 20.2 Instruction Codes, 20.3 Number of Clocks of the Instructions, 20.4 Instruction Addressing, 20.5 Operand Addressing and 20.6 Explanation of Instructions	CHAPTER 20 INSTRUCTION SET
	Deletion of 21.1 Instruction Execution Rate	CHAPTER 21 INSTRUCTION EXECUTION RATE
	Addition of B.2 Embedded Software	APPENDIX B TOOLS
3rd Edition	"The following products are under development" -> changed to "already developed" $\mu {\rm PD78355},~78356,~78P356,~78356,~(A),~78P356$ (A)	Throughout
	Addition of description of the external 8-bit bus to 5.2.3 (4) Port 9	CHAPTER 5 PORT FUNCTIONS
	Addition of 10.7 Transmitting/Receiving Data Using the Macro Service	CHAPTER 10 ASYNCHRONOUS SERIAL INTERFACE
	Addition of description when using the integrated debugger	APPENDIX B TOOLS

Facsimile	e Message	

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

From:

Name

Company

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: +1-800-729-9288	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: +82-2-551-0451	Japan NEC Corporation Semiconductor Solution Engineering Division Technical Information Support Dept. Fax: +81-44-548-7900
South America NEC do Brasil S.A. Fax: +55-11-889-1689	Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-719-5951	

I would like to report the following error/make the following suggestion:

Document title:

Document number: _____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				