

D ■ 6427525 0039265 T76 ■ NECE µPD78352 Family (µPD78350/352A/P352) 16-/8-Bit, K-Series Microcontrollers With Real-Time Output Ports

September 1993

Description

The μ PD78350, μ PD78352A, and μ PD78P352 are members of the K-Series[®] of microcontrollers. These 16-/8bit microcontrollers—with a minimum instruction time of 125 ns at 32 MHz (160 ns at 25 MHz for the μ PD78350)—are designed for high-speed, real-time process control. They feature a 16-bit CPU, an 8-bit external data bus, eight banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals. A 16-bit multiply and accumulate instruction provides hardware convolution capability. On-board memory includes 640 bytes of RAM, 32K bytes of mask ROM in the μ PD78352A, and 32K bytes of UV EPROM or one-time programmable (OTP) ROM in the μ PD78P352.

The advanced interrupt handling facility has four levels of programmable hardware-priority control and three methods of servicing interrupt requests, including vectoring, hardware context switching, and macro service. The macro service facility reduces the CPU overhead involved in servicing peripheral interrupts by transferring data between the memory-mapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be used to perform certain CPU functions, such as event counting and math-oriented data alterations.

The combination of high-speed hardware convolution capability and context switching, eight register banks, and the macro service facility makes these devices ideal for applications in the hard-disk drive and tape drive markets as well as the automotive and industrial control/robotics markets.

K-Series is a registered trademark of NEC Electronics Inc.

Features

- □ Complete single-chip microcontroller
 - -16-bit ALU
 - 640 bytes of RAM
 - 32K bytes of mask ROM (µPD78352A)
 - 32K bytes of UV EPROM or OTP ROM (µPD78P352)
- □ Powerful instruction set
 - 16-bit unsigned and signed multiply
 - 16-bit unsigned divide
 - 16-bit multiply and accumulate instruction
 - 1-bit and 8-bit logic instructions
 - String instructions

- Minimum instruction time
 - --- 160 ns at 25 MHz (µPD78350) --- 125 ns at 32 MHz (µPD78352A/P352)
- 5-byte instruction prefetch queue
- □ Memory expansion

67E D

- 8085 bus-compatible
- -64K-byte address space
- Large I/O capacity
 Up to 30 I/O port lines (µPD78350)
 Up to 50 I/O port lines (µPD78352A/P352)
- Memory-mapped, on-chip peripherals (special function registers)
- Timer/counter unit
 - 16-bit free-running timer: Two 16-bit capture registers; Two external interrupt/capture lines
 - 16-bit timer/event counter: One 16-bit compare register; One external event counter line
 - 16-bit interval timer: One 16-bit compare register
- Two 8-bit precision pulse-width modulated (PWM) output lines
- Programmable priority interrupt controller (four levels)
- Three methods of interrupt service
 - Vectored interrupts
 - Context switching with hardware register bank switch
 - Macro service mode with choice of five different functions
- Watchdog timer with dedicated output
- STOP and HALT standby functions
- Single 5-volt power supply

67E D 🗰 6427525 0039266 902 🖬 NECE

µPD78352 Family

NEC

Ordering Information

Part Number	ROM	Package	Package Drawing P64GC-80-3BE	
µPD78350GC-3BE	ROMIess	64-pin plastic QFP (3.0-mm height)		
µPD78352AG-xxx-22	32K mask ROM	64-pin plastic QFP (1.7-mm height)	P64G-80-22-1	
µPD78P352G-22	32K OTP ROM	-		
μPD78P352KK	32K UV EPROM	64-pin ceramic LCC with window	X80KW-80B	

xxx indicates ROM code suffix.

Pin Configurations

64-Pin Plastic QFP (µPD78350)

Pin Configurations (cont)

64-Pin Plastic QFP and Ceramic LCC (µPD78352A/P352)

Pin Functions; Normal Operating Mode

Symbol	Function	Alternate Symbol	Alternate Function
P0 ₀ - P0 ₇	Port 0; 8-bit, bit-selectable I/O port		
P10 - P17	Port 1; 8-bit, bit-selectable I/O port		
P20	Port 2; 6-bit input port	NMI	External nonmaskable interrupt
P21 P22 P23 P24		INTPO INTP1 INTP2 INTP3	Maskable external interrupts
P25		TI	External input for timer 1
P3 ₀ P3 ₁	Port 3; 8-bit, bit-selectable I/O port	PWM0 PWM1	Pulse-width modulated outputs
P3 ₂ - P3 ₇			
P4 ₀ - P4 ₇	Port 4; byte-selectable I/O port (µPD78352A/ P352)	AD ₀ - AD ₇	Low-order 8 bits of the multiplexed external address/data bus
P5 ₀ - P5 ₇	Port 5; bit-selectable I/O port (µPD78352A/P352)	A ₈ - A ₁₅	High-order 8 bits of the external address bus
P90	Port 9; 4-bit, bit-selectable I/O port	RD	External read strobe output
P9 ₁	(µPD78352A/P352). For 78350, P9 ₀ functions as RD and P9 ₁ functions as WR signals only. P9 ₂	WR	External write strobe output
P9 ₂ P9 ₃	and $P9_3$ are not provided for 78350.		Internally connected; must be left open (μPD78350).
ASTB	Address strobe output; used to latch address for external memory.		
CLKOUT	Output of the system clock	-	
IC	Internally connected; must be left open.	-	
MODE0	Connect to V _{DD} for µPD78350 and µPD78P352 in programing mode. Connect to V _{SS} for normal operation of µPD78352A/P352. The level of this pin cannot be changed during normal operation.	-	
MODE1	Always connect to V _{SS} . The level of this pin cannot be changed during normal operation.	•	
RESET	External system reset input	•	
WAIT	A low-level input adds wait states to the external bus cycle; used by very-slow memory and/or peripherals (only for 78352A/P352).	-	
WDTO	Open-drain output from the watchdog timer	-	
X1	Crystal connection or external clock input	-	
X2	Crystal connection or open for external clock	-	
V _{DD}	+5-volt power input	-	
V _{SS}	Ground	-	

.

µPD78352 Family

NEC

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78352 family features 16-bit arithmetic including 16 x 16-bit multiply, both unsigned and signed, and 32 x 16-bit unsigned divide (producing a 32-bit quotient and a 16-bit remainder). The signed multiply executes in 1.12 μ s and the divide in 3.44 μ s at 25 MHz (0.875 and 2.69 μ s, respectively, for μ PD78352A/P352 at 32 MHz).

Also, a multiply-and-accumulate instruction, "MACW n," performs a signed multiply on factors from a pair of tables and sums the results in the 32-bit register AXDE. The total execution time for 10 terms is 17.2 μ s at 25 MHz for the μ PD78350 and 13.44 μ s at 32 MHz for the μ PD78352A/P352.

A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses in the CALLT vector table. A 2-byte call instruction can access any routine beginning in a specific CALLF area.

The internal system clock (f_{CLK}) is generated by dividing the oscillator frequency by 2. Therefore, at the maximum oscillator frequency of 25 MHz for the μ PD78350, the clock is 12.5 MHz. Since instructions execute in two or more cycles, the minimum instruction time is 160 ns. For the μ PD78352A/P352 running at 32 MHz, the clock is 16 MHz and the minimum instruction time is 125 ns.

Internal RAM

The μ PD78352 family has total of 640 bytes of internal RAM. The upper 256-byte area (FE00H-FEFFH) features high-speed access of one or two internal system clocks per word of data depending on the addressing mode and is known as "Main RAM." The remainder (FC80H-FDFFH) is accessed at the same speed as external memory (1 byte per three internal system clocks) and is known as "Peripheral RAM." The general register banks and the macro service control words are stored in Main RAM. The remainder of Main RAM and any unused register bank locations are available for general storage.

Main RAM Access Speed

Access Mode	Internal System Clocks (f _{CLK})
Memory access	2
Saddr access	1
Register access	1

Internal Program Memory

The μ PD78352A contains 32K bytes of mask ROM; μ PD78P352 contains 32K bytes of UV EPROM or onetime programmable ROM. Instructions are fetched from this program memory at a maximum rate of 1 byte every two internal system clocks. The μ PD78350 does not have internal program memory.

External Memory

The μ PD78352 family has a 64K-byte address space. The μ PD78352A/P352 can access 0, 256, 4K, 16K, or 32K bytes of external memory in the area from 8000H to FDFFH. External memory can be either ROM, RAM, or peripheral as required. The μ PD78352A/P352 has an 8-bit wide external data bus and a 16-bit wide external address bus. The low-order 8 bits of the address bus are multiplexed to provide the 8-bit data bus at I/O port 4.

High-order address bits are taken from port 5 as required. Address latch, read, and write strobes are also provided. In the μ PD78352A/P352, the memory mode register (MM) controls the size of the external memory It can be programmed to use 0, 4, 6, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for I/O.

The μ PD78350 does not have ports 4 and 5. It has eight dedicated high-order address lines and eight dedicated address/data lines. All memory below address FC80H must be external, and the MM register is not used.

The programmable wait control register (PWC) allows the programmer to specify one or two additional wait states if they are required for slow-speed memory or external peripheral devices. These wait states for internal and external memory are specified independently in 16K-blocks. If additional wait states are required, an external WAIT pin is provided.

In addition, by using the AW0 and AW1 bits of the PWC register, the width of the ASTB signal can be increased by one cycle to allow more precharge time for dynamic RAMs or more address decoding time. This address wait signal can be enabled in 32K-byte blocks. See figure 1.

Figure 1. Programmed Wait Control Register

15							8	7							0
AW1	AW0	0	0	0	0	0	0	PWC7	PWC6	PWC5	PWC4	PWC3	PWC2	PWC1	PWC0
16K Mem	ory Block	:	Wait Co	ontrol Re	egister l	Bits	Wait	States	Data Ac	cess Cl	ocks	Fetch Cy	cle Mod	e Fet	ch Cloci
0000H-3F	FFH		PWC	1, PWC0		00 01 10		0 1 2		3 4 5		No	rmal		3 4 5
						11		0		4		High-	speed		2
4000H-7F	FFH		PWC	3, PWC2		00 01 10		0 1 2		3 4 5		No	rmal		3 4 5
						11		0		4		High-	speed		2
3000H-BF	FFH		PWC	5, PWC4		00 01 10		0 1 2		3 4 5		No	rmal		3 4 5
					Ī	11	-			N/A		N	I/A		N/A
C000H-FC *FFD0H-F			PWC	7, PWC6		00 01 10		0 1 2		3 4 5		No	rmal		3 4 5
						11	-	-		N/A		N	I/A		N/A
FC80H-FI	OFFH		PWC	7, PWC6		00 01 10		0 0 0		3 3 3		No	rmal		3 3 3
						11	-	_		N/A		N	I/A		N/A

* Data in the SFR external access area, FFD0H-FFDFH, cannot be fetched.

32K Memory Block	Wait Control Register Bit	Address Wait	
0000H-7FFFH	AW0	0	Disabled
		1	Enabled
8000H-FC7FH	AW1	0	Disabled
		1	Enabled

N E C ELECTRONICS INC

67E D 🖬 6427525 0039272 106 MINECE

NFC

µPD78352 Family

Program Fetch

The μ PD78352 family devices allow opcode fetch in the area between 0000H and FDFFH; they contain a 5-byte instruction prefetch queue.The bus control unit can fetch an instruction byte from memory during cycles in which the execution unit is not using the memory bus. If the instruction byte is fetched from on-chip memory, two internal system clocks are required for each byte, and the queue can hold 5 bytes. If the instruction is fetched from external memory, three internal system clocks are required for each byte, and the queue can hold 5 bytes. If the instruction is fetched from external memory, three internal system clocks are required for each byte, and the queue can hold 3 bytes. For programs located in internal memory, the PWC register also can be programmed to allow 1 byte to be fetched every two, three, four, or five internal system clocks.

CPU Control Registers

Program Counter. The program counter is a 16-bit register that holds the address of the next instruction to be executed. After reset line goes high, the program counter is loaded with the address stored in locations 0000H and 0001H.

Stack Pointer. The stack pointer is a 16-bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.

CPU Control Word. The CPU control word (CCW) selects the origin of the interrupt vector and CALLT tables. If the TPF bit (bit 1) is zero, the origin is 0000H; if the TPF bit is one, the origin is 8000H. The CCW is a special function register located at address FFC1H. The addresses of the vectors for the RESET input, operation-code trap, and BRK instruction are fixed at 0000H, 003CH, and 003EH, respectively, and are not altered by the TPF bit.

Program Status Word. The program status word (PSW) is a 16-bit register containing flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The high-order 8 bits are called the PSWH and the low-order 8 bits are called the PSWL. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

	7	6	5	4	3	2	1	0
PSWH [UF	RBS2	RBS1	RBS0	0	0	0	0
	7	6	5	4	3	2	1	0
PSWL [S	z	RSS	AC	IE	P/V	0	CY
UF RBS2-1 S Z RSS AC IE P/V CY	7BS0	Acti Sigr Zerc Reg Aux Inte Pari	n flag (b flag) ister s iliary (rrupt e ty or a	ister b (1 if las (1 if las set sele carry f enable arithme (or 1-b	st resu st resu action lag (c .flag etic ov	ult was ult was flag arry o verflow	s nega s zero) ut of 3 v flag	,

General Registers

There are sixteen 8-bit general registers, which can also be paired to function as 16-bit registers. A complete set of 16 registers is mapped into each of eight program-selectable register banks stored in Main RAM. Three bits in the PSW specify the active register bank.

Registers have functional names (like A, X, B, C for 8-bit registers and AX, BC for 16-bit registers) and absolute names (like R1, R0, R3, R2 for 8-bit registers and RP0, RP1 for 16-bit registers). Each instruction determines whether a register is referred to by functional or absolute name and whether it is 8 or 16 bits.

Two possible relationships may exist between the absolute and functional names of the first four register pairs. The RSS bit in the PSW determines which of these is active at any time. The effect is that the accumulator and counter registers can be saved, and a new set can be specified by toggling the RSS bit. Figure 2 illustrates the general register configuration.

µPD78352 Family

Figure 2. General Registers

Addressing

The μ PD78352 family features 1-byte addressing of both the special function registers and the portion of on-chip RAM from FE20H to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of the Main RAM.

The 16-bit SFRs and words of memory in these areas can be addressed by 1-byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and as versatile as access to the general registers. There are nine addressing modes for data in main memory: direct, register, register indirect with autoincrement or autodecrement, saddr, saddr indirect, SFR, based, indexed, and based indexed. There are also 8-bit and 16-bit immediate operands. Figure 3 is the memory map of the μ PD78352 family. N E C ELECTRONICS INC 67E D 6427525 0039274 TA9 MECF

EC

µPD78352 Family

10

µPD78352 Family

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FF00H and FFFFH and can be accessed either by main memory addressing or by 1-byte SFR addressing. All can be read under program control, and most can also be written. They are either 8 or 16 bits, as required, and many of the 8-bit registers are capable of single-bit access as well.

Locations FFD0H through FFDFH are known as the external access area. Registers in external circuitry, interfaced and mapped to these addresses, can be addressed with SFR addressing. Table 1 lists the special function registers.

Table 1. Special Function Registers

				Acc	ess Units (Bits)		
Address	Register (SFR)	Symbol	R/W	1	8	16	State After Reset	
FF00H	Port 0	P0	R/W	х	x	_	Undefined	
FF01H	Port 1	P1	R/W	x	x		Undefined	
FF02H	Port 2	P2	R	x	x	_	Undefined	
FF03H	Port 3	P3	R/W	x	x	_	Undefined	
FF04H	Port 4 (Note 1)	P4	R/W	x	x	_	Undefined	
FF05H	Port 5 (Note 1)	P5	R/W	x	x	_	Undefined	
FF09H	Port 9 (Note 1)	P9	R/W	x	x	_	Undefined	
FF10H-FF11H	Compare register 00	CT00	R/W		_	x	Undefined	
FF12H-FF13H	Compare register 01	CT01	R/W	_	_	x	Undefined	
FF14H-FF15H	Compare register 10	CM10	R/W	_	-	x	Undefined	
FF1EH-FF1FH	Compare register 20	CM20	R/W	_		×	Undefined	
FF20H	Port 0 mode register	PMO	R/W	x	x		FFH	
FF21H	Port 1 mode register	PM1	R/W	x	x		FFH	
FF23H	Port 3 mode register	PM3	R/W	x	x		FFH	
FF25H	Port 5 mode register (Note 1)	PM5	R/W	x	x		FFH	
FF29H	Port 9 mode register (Note 1)	PM9	R/W	x	x		xFH	
FF30H-FF31H	Timer register 0	TMO	R	_	_	x	00H	
FF32H-FF33H	Timer register 1	TM1	R		-	x	00H	
FF34H-FF35H	Timer register 2	TM2	R	_	_	x	00H	
FF38H	Timer control register 0	TMCO	R/W	x	x		00H	
FF39H	Timer control register 1	TMC1	R/W	x	x		00H	
FF3CH	External interrupt mode register 0	INTMO	R/W	x	x		00H	
FF3DH	External interrupt mode register 1	INTM1	R/W	x	x		00H	
FF43H	Port 3 mode control register 0	PMC3	R/W	x	x		00H	
FF62H	Port read control register	PRDC	R/W	x	x		00H	
FF64H	PWM control register	PWMC	R/W	x	x		00H	
FF66H	PWM buffer register 0	PWM0	R/W	x	x		Undefined	
FF6EH	PWM buffer register 1	PWM1	R/W	x	x	_	Undefined	
FFA8H	In-service priority register	ISPR	R	x	x		OOH	
FFAAH	Interrupt mode control register	IMC	R/W	x	x		80H	
FFACH	Interrupt mask flag register	MKL	R/W	x	x		7 FH	

Table 1. Special Function Registers (cont)

				Acce	ss Units ((Bits)	
Address	Register (SFR)	Symbol	R/W	1.	8	16	State After Reset
FFACH-FFADH	Interrupt mask flag register (Note 2)	МК	R/W		-	х	xx7FH
FFCOH	Standby control register (Note 3)	STBC	R/W		x		0000 x000B
FFC1H	CPU control word	CCW	R/W	x	x		00H
FFC2H	Watchdog timer mode register (Note 3)	WDM	R/W	_	x	_	00H
FFC4H	Memory expansion mode register	MM	R/W	x	x	-	00H
FFC6H-FFC7H	Programmable wait control register	PWC	R/W	_		x	COAAH
FFD0H-FFDFH	External access area	_	R/W	x	x		Undefined
FFEOH	Interrupt control register (INTOV)	OVIC	R/W	x	x		43H
FFE1H	Interrupt control register (INTPO)	PICO	R/W	x	x	_	43H
FFE2H	Interrupt control register (INTP1)	PIC1	R/W	x	x	_	43H
FFE3H	Interrupt control register (INTCM10)	CMIC10	R/W	х	x		43H
FFE4H	Interrupt control register (INTCM20)	CMIC20	R/W	x	x		43H
FFE5H	Interrupt control register (INTP2)	PIC2	R/W	x	x		43H
FFE6H	Interrupt control register (INTP3)	PIC3	R/W	x	x	_	43H

67F D

Notes:

(1) µPD78352A/P352 only.

(2) Used only when a word is accessed by an instruction with the sfrp operand. (3) These are protected registers, which can be written by a special instruction only.

Input/Output Ports

The μ PD78350 has four I/O ports providing a total of 30 I/O lines. The μ PD78352A/P352 have an additional three I/O ports for a total of 50 I/O lines.

Ports P0, P1, and P3 are 8-bit input/output ports and P2 is a 6-bit input port. All the bits in P0, P1, and P3 can be individually selected for either input or output using port mode registers PM0, PM1, and PM3. Bits P3₀ and P3₁ can also be programmed for use as PWM outputs PWM0 and PWM1 by using port 3 mode control register PMC3.

Port P2 functions only in the control mode as input pins for the NMI signal, the INTP0 to INTP3 interrupt signals, and the external count clock for timer 1 (TI). However, any masked interrupt automatically becomes an input line and the state of all the pins can be read by the program using a read instruction to port 2. Each pin of P2 can be programmed for rising, falling, or both rising and falling edge detection.

The output level of the P0, P1, and P3 I/O pins can be tested to determine whether they agree with the contents of the output latch. When the low-order bit of port read control register PRDC is set to 1, the output level of the I/O pins can be read with the port still in the output mode. These data values can be compared with the data known to be in the output latch to determine if the port is functioning correctly. Figure 4 shows the structure of each port pin.

µPD78352 Family

Figure 4. I/O Circuits

NEC

The three additional input/output ports in the μ PD78352A/P352 are ports P4, P5, and P9. These ports are available if external memory or memory-mapped external circuitry is not being used. Port 4 is shared with the low-order address/data bus (AD₀ to AD₇) and is byte-selectable for input or output. Port 5 is shared with the high-order address bus (A₈ to A₁₅). Depending on the amount of external memory used, either 8, 6, 4, or 0 bits are available for bit-selectable I/O. Port 9 is a 4-bit, bit-selectable I/O port. Two of its pins are shared with the read and write strobes.

Timers

The μ PD78352 family has three 16-bit timers. Two of them count only the internal system clock; the third counts either the internal system clock or external events. Refer to the block diagram, figure 5.

Timer 0 is a 16-bit, free-running counter that counts the internal system clock ($f_{CLK}/8$) and generates an interrupt request (INTOV) when it overflows. It also has two associated capture registers, CT00 and CT01. The timer value can be captured in synchronization with external interrupt lines INTP0 and INTP1, respectively. These lines can be programmed to trigger interrupts as well.

Timer 1 is a 16-bit counter serving as an interval timer or an event counter. It can count either the internal system clock (f_{CLK} /8) or external events sensed on the TI line. It has an associated comparator register, CM10. When the counter contents match the CM10 contents, the counter is cleared to 0, and an interrupt request (INTCM10) is generated. The counter continues to count until disabled by software.

Timer 2 is a 16-bit counter that serves as an interval timer. It can be programmed to count the internal system clock ($f_{CLK}/4$ or $f_{CLK}/8$). It also has an associated comparator register, CM20. When the counter contents match the CM20 contents, the counter is cleared to 0 and an interrupt request (INTCM20) is generated. The counter continues to count until disabled by software.

Figure 5. Timers Block Diagram

N E C ELECTRONICS INC

µPD78352 Family

Pulse-Width Modulated Outputs

The µPD78352 family has two high-speed, pulse-width modulated (PWM) outputs. A single 8-bit, free-running counter counts the internal system clock for k/2 and serves both outputs. For the µPD78350 running at 25 MHz ($f_{CLK} = 12.5$ MHz), the resolution is 160 ns and the repetition rate is 24.4 kHz. For the µPD78352A/P352 running at 32 MHz (f_{CLK} = 16 MHz), the resolution is 125 ns and the repetition rate is 31.25 kHz.

The polarity of each output can be selected under program control. Whenever the counter overflows, the CMP0 and CMP1 registers are loaded from their respective PWM buffer registers and each output becomes active. When the counter value matches the value in the associated compare register, that output goes inactive, The two PWM outputs, PWM0 and PWM1, share pins with port 3 bits 0 and 1, respectively.

Figure 6. Pulse-Width Modulated Outputs

67E D

µPD78352 Family

Interrupts

The μ PD78352 family has seven maskable hardware interrupt sources: four external and three internal. The four external maskable interrupts share pins with port 2. Two of them, INTP0 and INTP1, can also be used to trigger capture events in registers CT00 and CT01

associated with timer 0. In addition, there are two nonmaskable interrupts, three software interrupts, and reset. The software interrupts, generated by the BRK or BRKCS instruction and the operation code trap, are not maskable. See table 2.

Table 2	Interrupt	Sources
	monape	0000000

Type of	Default	Signal			Macro Service	Vector	Address
Request	Priority	Name	Source	Location	Control Word	TPF = 0	TPF = 1
Software		—	Operation code trap	CPU	_	003	зсн
	_	_	BRK instruction	CPU	_	00:	3EH
	\rightarrow		BRKCS instruction (Note 1)	CPU	—	-	_
Nonmaskable		NMI	NMI input pin	External		0002H	8002H
		INTWDT	Watchdog timer overflow	Internal		0004H	8004H
Maskable	0	INTOV	Timer 0 overflow	Internal	FE06H	0006H	8006H
	1	INTPO	INTPO pin	External	FE08H	0008H	8008H
	2	INTP1	INTP1 pin	External	FEOAH	000AH	800AH
	3	INTCM10	CM10 coincidence	Internal	FE0CH	000CH	800CH
	4	INTCM20	CM20 coincidence	Internal	FEOEH	000EH	800EH
	5	INTP2	INTP2 pin	External	FE10H	0010H	8010H
	6	INTP3	INTP3 pin	External	FE12H	0012H	8012H
Reset	_	RESET	RESET pin	External	_		0000H

Note:

(1) Initiates context switch

Interrupt Servicing

The μ PD78352 family provides four levels of programmable hardware priority control and three different methods of handling maskable interrupt requests: standard vectoring, context switching, and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers

The μ PD78352 family has 10 interrupt control registers. Each maskable interrupt request has its own control register, which includes bits to specify interrupt request, interrupt mask, macro service enable, context switch enable, and priority. Priorities range from 0 (highest) to 3. See figure 7.

There is also a mask flag register, MKL, with a bit for each maskable interrupt. Since each interrupt has two mask bits, the masking of the interrupt is the "or" function of those two bits. Interrupt mode control register IMC can be used to enable or disable nesting of interrupts set to the lowest priority level (level 3). Inservice priority register ISPR is used by the hardware to hold the priority level of the interrupt request currently being serviced. It is manipulated by hardware only, but it can be read by software.

Finally, the IE bit of the program status word also is used to control the interrupts. If the IE bit is 0, all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared by the El or DI instruction, respectively, or by direct writing to the PSW. The IE bit is cleared each time an interrupt is accepted.

µPD78352 Family

Figure 7. Interrupt Control Register (xxlCx)

7	6	5	4
xxlFxx	ххМКхх	xxISMxx	xxCSExx
3	2	1	0
0	0	xxPRx1	xxPRx0

xxlFxx		Interrupt Request Flag
0 1		No interrupt request Interrupt request received
xxMKxx		Interrupt Mask Flag
0 1		Interrupt request enabled Interrupt will be pending
xxISMxx		Macro Service Enable
0 1		Software service Macro service
XXCSEXX		Context Switch Enable
0 1		Vector service Context switch
xxPRx1	xxPRx0	Priority Specification
0	0	Priority 0 (highest)
0	1	Priority 1
1	0	Priority 2
1	1	Priority 3

Interrupt Priority

The two nonmaskable interrupts, NMI and INTWDT, have priority over all others. Their priority relative to each other is under program control.

Four hardware-controlled priority levels are available for the maskable interrupts. Any one of the four levels can be assigned by software to each of the maskable interrupt lines. Interrupt requests of a priority higher that the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by a return instruction from the current service routine.

By setting the PRSL bit of the IMC register to zero, it is possible to specify in software that level 3 interrupts (the lowest level) can be accepted when the processor is operating at level 3. This nesting within a level applies to level 3 only.

Interrupt requests programmed to be handled by macro service have priority over all software interrupt service regardless of the assigned priority level, and macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state. See figure 8.

The "Default Priorities" listed in table 2 are fixed by hardware; they are effective only when it is necessary to choose between two interrupt requests of the same software-assigned priority. For example, the default priorities would be used after the completion of a high-priority routine if two interrupts of the same lower priority were pending.

Software interrupts, the BRK and BRKCS instructions, and the operation code trap are executed regardless of the processor's priority level and the state of the IE bit. They do not alter the processor's priority level.

Figure 8. Interrupt Service Sequence

Vectored Interrupt

When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is raised to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At completion of the service routine, the RETI instruction (or RETB instruction for software interrupts) reverses the process, and the μ PD78352 family device resumes the interrupted routine.

Context Switch

When context switching (figure 9) is specified for a given interrupt, the active register bank is changed to the register bank specified by the three low-order bits of the word in the interrupt vector table. The program counter is loaded from RP2 of the new register bank,

67E D 🗰 6427525 0039282 055 MINECE

µPD78352 Family

the old program counter and program status word are saved in RP2 and RP3 of the new register bank, and the IE bit in the PSW is set to zero.

At completion of the service routine, the RETCS instruction for routines entered from hardware requests, or the RETCSB instruction for routines entered from the BRKCS instruction, reverse the process. The old program counter and program status word are restored from RP2 and RP3 of the new register bank. The entry address of the service routine, which must be specified in the 16-bit immediate operand of these return instructions, is stored again in RP2.

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and transfers data between the special function register area and the memory space. Control is then returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8-bit counter is decremented. When

the counter reaches 0, a software service routine is entered according to its specified priority. Either vectored interrupt or context switch can be specified for entry to this routine, which is known as the macro service completion routine.

Macro service is provided for all of the maskable interrupt requests, and each has a specific macro service control word stored in Main RAM. The function to be performed is specified in the control word.

The μ PD78352 family provides five different macro service functions.

N E C ELECTRONICS INC

Described

67E D 🖿 6427525 0039283 T91 MINECE

NEC

µPD78352 Family

Function	Description
EVTCNT	Event counter. Counts up to 256 events by incrementing or decrementing the macro service counter. When the counter reaches 00H, the software service routine is entered.
BLKTRS	Block transfer. Transfers a byte or word of data in either direction between a specified special function register and a buffer in Main RAM (FExx).
BLKTRS-P	Block transfer with memory pointer. Transfers a byte or word of data in either direction between a specified special function register and a buffer anywhere in the 64K-byte address space.
DTADIF	Data difference. Stores the difference between the current value of a specified

between the current value of a specified 16-bit special function register and its previous value in a word buffer in Main RAM (FExx).

DTADIF-P Data difference with memory pointer. Stores the difference between the current value of a specified 16-bit special function register and its previous value in a word buffer anywhere in the 64K-byte address space.

Standby Modes

The standby modes, HALT and STOP, reduce power consumption when CPU action is not required. In HALT mode, the CPU is stopped but the system clock continues to run. The HALT mode is released by any unmasked interrupt, an external NMI, or an external reset pulse. In STOP mode, both the CPU and the system clock are stopped, further minimizing power consumption. The STOP mode is released by either an external reset pulse or an external NMI. The HALT and STOP modes are entered by programming the standby control register STBC. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

Watchdog Timer

The watchdog timer protects against inadvertent program loops. A nonmaskable interrupt occurs if the timer is not reset by the program before it overflows. At the same time, the watchdog timer output pin, WDTO, goes active low for a period of 32 system clocks. The WDTO can be connected to the RESET pin or used to control external circuitry. Three program-selectable intervals are available: 10.5, 41.9, and 167.8 ms at 25 MHz; 8.2, 32.8, and 131.1 ms at 32 MHz.

Once started, the timer can be stopped only by an external reset. Watchdog timer mode register WDM is used to select the time interval, to set the relative priority of the watchdog timer interrupt and NMI, and to clear the timer. This register is a protected location and can be written to only by a special instruction. If the third and fourth bytes of the instruction are not complements of each other, the data is not written and an operation code trap interrupt occurs.

External Reset

The μ PD78352 family is reset by taking the RESET pin low. The reset circuit contains a noise filter to protect against spurious system resets caused by noise. On power-up, the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized. During reset, the program counter is loaded with the address contained in the reset vector table (addresses 0000H, 0001H); program execution starts at that address upon the RESET pin going high. While RESET is low, all external lines except WDTO, CLKOUT, V_{SS}, V_{DD}, X1, and X2 are in the high-impedance state.

ELECTRICAL SPECIFICATIONS

Note: Specifications are preliminary for µPD78352A and final for µPD78350/P352.

Absolute Maximum Ratings

Supply voltage, V _{DD}	–0.5 to +7.0 V
Supply voltage, V _{PP}	-0.5 to +13.5 V
Input voltage, V ₁ Except P2 ₀ /NMI (A9) of µPD78P352 P2 ₀ /NMI (A9) of µPD78P352	–0.5 to V _{DD} + 0.5 V –0.5 to +13.5 V
Output voltage, V _O	-0.5 to V _{DD} + 0.5 V
Output current, low; l _{OL} Each output pin Total	4.0 mA 100 mA
Output current, high; i _{OH} Each output pin Total	–1.0 mA –20 mA
Operating temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-65 to +150°C

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Oscillator Conditions

 $T_A = -10$ to 70°C; $V_{DD} = +5 V \pm 10\%$

Parameter	Symbol	Max	Unit	Conditions
Input pin capacitance	C _I	20	pF	f = 1 MHz; unmeasured pins
Output pin capacitance	Co	20	pF	returned to 0 V
I/O pin capacitance	с _ю	20	pF	-

			μPD7	78350	μPD78352A/P352		
Oscillator	Parameter	Symbol	Min	Max	Min	Max	Unit
Ceramic resonator or crystal	resonator or crystal Oscillation frequency	fxx	8	25	8	32	MHz
External clock	X1 input frequency	fx	8	25	8	32	MHz
	X1 clock cycle time	tcyx	40	125	31.25	125	ns
	X1 input rise/fall time	t _{XR} , t _{XF}	0	10	0	10	ns
	X1 input high/low level width	^t WXH ^{, t} WXL	15	60	10	60	ns

67E D

External Clock

DC Characteristics

 $T_A = -10 \text{ to } +70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%; V_{SS} = 0 \text{ V}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage, low	VIL	0		0.8	v	· · · · · · · · · · · · · · · · · · ·
Input voltage, high	V _{IH1}	2.2			V	(Note 1)
	V _{IH2}	0.8 V _{DD}			v	(Note 2)
Output voltage, low	VOL			0.45	V	I _{OL} = 2.0 mA
Output voltage, high	V _{OH}	V _{DD} – 1.0			v	$I_{OH} = -400 \mu A$
Input leakage current	^ي ر			±10	μA	$V_{l} = 0$ to V_{DD}
Output leakage current	ILO			±10	μA	$V_{O} = 0$ to V_{DD}
V _{DD} supply current	I _{DD1}		50	90	mA	Operating mode, µPD78350
			60	87	mA	Operating mode, μ PD78352A; f _{XX} = 32 MHz
			80	120	mA	Operating mode, μ PD78P352; f _{XX} = 32 MHz
	IDD2		25	40	mA	HALT mode, μ PD78350; f _{XX} = 25 MHz
			20	30	mA	HALT mode, μ PD78352A; f _{XX} = 32 MHz
			35	50	mA	HALT mode, μ PD78P352; f _{XX} = 32 MHz
Data retention voltage	VDDDR	2.5			۷	STOP mode
Data retention current	RDCO		2	10	μA	STOP mode; V _{DDDR} = 2.5 V
			10	50	μA	STOP mode; V _{DDDR} = 5.0 V ±10%

Notes:

(1) All except pins in Note 2.

(2) Pins RESET, X1, X2, INTPn, NMI, and TI.

Power Consumption, 78352A

67E D

■ 6427525 0039286 7TO ■ NECE

µPD78352 Family

NEC

AC Characteristics

 $T_A = -10 \text{ to } + 70^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\%; V_{SS} = 0 \text{ V}$

			78350 25 MHz		52A/P352 32 MHz		
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions
External Memory Read/Write	Operation						
System clock cycle time (Note 1)	tCYK	80	250	62.5	250	ns	C _L = 50 pF
Address setup time to ASTB I	t _{sast}	16		7		ns	C _L = 100 pF (Note 2)
Address hold after ASTB ↓	t _{HSTA}	26		11		ns	C _L = 100 pF
RD I to address floating	t _{FRA}		0		0	ns	C _L = 100 pF
Address to data input valid	t _{DAID}		144		100	ns	C _L = 100 pF (Notes 2, 3)
RD I to data input valid	t _{DRID}		76		49	ns	C _L = 100 pF (Note 3)
ASTB↓to RD↓delay time	t _{DSTR}	24		15		ns	C _L = 100 pF
Data hold time from RD †	t _{HRID}	0		0		ns	C _L = 100 pF
RD f to address active	t _{DRA}	26		25		ns	C _L = 100 pF
RD width low	t _{WRL}	90		63		ns	C _L = 100 pF (Note 3)
ASTB width, high	twsth	23		14		ns	C _L = 100 pF (Note 2)
VR to data output	tDWOD		29		21	ns	C _L = 100 pF
ASTB↓to ₩R↓delay	t _{DSTW}	24		15		ns	C _L = 100 pF
Data setup time to WR †	tSODW	75		57		ns	C _L = 100 pF (Note 3)
Data hold time after WR †	^t HWOD	8		8		ns	C _L = 100 pF
WR width, low	twwL	90		57		ns	C _L = 100 pF (Note 3)
VAIT setup time from address	^t SAWT				107	ns	C _L = 100 pF (Note 2, 4)
WAIT setup time from RD I or WR I	tsrwry		-		37	ns	C _L = 100 pF (Note 4)
WAIT hold time from address	^t HAWT	-		149		កទ	C _L = 100 pF (Note 2, 4)
WAIT hold time from RD I or WR I	tHRWRY			80		ns	C _L = 100 pF (Note 4)
ASTB t delay time from WR t	tDWST	110		78		ns	_C _L = 100 pF
Address to RD I or WR I delay	tDARW	89			69	ns	C _L = 100 pF
Other Operations							
NMI high/low level width	twnih twniL	2.5		2.0		μs	
NTP0 high/low level width	twich, twici	640		500		ns	-
NTP1 high/low level width	twitth, twitt.	640		500		ns	-
NTP2 high/low level width	^t W12H ^{, t} W12L	640		500		ns	_
NTP3 high/low level width	twish, twisiL	640		500		nŝ	-
RESET high/low level width	twrsh, twrsL	2.5		2.0		μs	-
'l high/low level width	twrih, twriL	640		500		ns	

Notes:

(1) t_{CYK} equals twice the period of the crystal or external clock input.

(3) No wait states

(4) One external wait state and one internal wait state

µPD78352 Family

Timing Dependent on t_{CYK}

N E C ELECTRONICS INC

Symbol	Calculation Formula	Min/Max	Unit
tSAST	(0.5 + a)T - 24	Min	ns
t _{HSTA}	0.5T – 14 0.5T – 20 (Note 1)	Min	ns
twsth	(0.5 + a)T - 17	Min	ns
t _{DSTR}	0.5T 16	Min	ns
t _{WRL}	(1.5 + n)T - 30	Min	ns
tDAID	(2.5 + a + n)T - 56	Max	ns
t _{DRID}	(1.5 + n)T – 44	Мах	ns
t _{DRA}	0.5T – 14 0.5T – 6 (Note 1)	Min	ns
tDSTW	0.5T – 16	Min	ns
t _{WWL}	(1.5 + n)T − 30 (1.5 + n)T − 36 (Note 1)	Min	ns
tDWOD	0.5T - 10	Max	ns
t _{SODW}	(1 + n)T – 5	Min	ns
tSAWT	(a + n)T - 18 (Note 1)	Max	ns
t _{HAWT}	(0.5 + a + n)T-7 (Note 1)	Min	ns
tSRWRY	(n – 1)T – 25 (Note 1)	Max	ns
t _{HRWRY}	(n - 0.5)T - 14 (Note 1)	Min	ns
^t DARW	(a + 1)T+9 (a +1)T+7 (Note 1)	Max	ns
tDWST	1.5T – 10 1.5T – 15 (Note 1)	Min	ns
twюн	8T	Min	П\$
twici	8T	Min	ns
twith	8T	Min	ns
twiiL	8T	Min	ns
twizh	8T	Min	ns
twi2L	8T	Min	ns
twish	8T	Min	ns
t _{WI3L}	8T	Min	ns
twri ll	8T	Min	ns
twril.	8T	Min	ns
-			

Notes:

(1) 78352A/P352 only

(2) $T = t_{CYK}$ (ns)

- (3) When an address wait is inserted, the value of letter "a" is 1. Otherwise, it is 0.
- (4) Letter "n" is the number of wait cycles specified by the external wait pin WAIT and the PWC register.

AC Timing Test Points

_

N E C ELECTRONICS INC 67E D 🖬 6427525 0039288 573 🖬 NECE

µPD78352 Family

NI EC

Timing Waveforms

Read Operation

µPD78352 Family

Timing Waveforms (cont)

Write Operation

67E D

NEC

µPD78352 Family

Timing Waveforms (cont)

Interrupt Input

Reset Input

TI Input

Table 4. Operation Modes For Programming

RESET PGM MODE1 P21 CE OE D₀ - D₇ Mode MODE0/Vpp VDD Page data latch L L L н L н +12.5 V +6.5 V Data input L L L н н L +12.5 V +6,5 V High impedance Page program Byte program L L L L Н L +12.5 V +6.5 V Data input L L L L L Program verify н +12.5 V +6.5 V Data output Program inhibit L L L Х L L +12.5 V +6.5 V High impedance Х н н L L L L L н +5.0 V +5.0 V Data output Read Ouput disable L L L L н х +5.0 V +5.0 V High impedance L н х х Standby L L +5.0 V +5.0 V High impedance

X can be either H or L.

PROM PROGRAMMING

The PROM in the μ PD78P352 is one-time programmable (OTP) or ultraviolet erasable (UV EPROM). The 32,758 x 8-bit PROM has the programming characteristics of an NEC μ PD27C1001A, including both page and byte programming modes. The MODE0/V_{PP}, MODE1, P2₁, and RESET pins are used to place the μ PD78P352 into the PROM programming mode. Table 3 shows the functions of the μ PD78P352 pins in normal operating mode and PROM programming mode.

🔲 6427525 0039290 121 🔳 NECE

Normal Operating Mode	Programming Mode				
P0 ₀ - P0 ₇ , P5 ₀ , P2 ₀ , P5 ₁ - P5 ₇	A ₀ - A ₁₆				
P4 ₀ - P4 ₇	D ₀ - D ₇				
P12	PGM				
P1 ₁	CE				
P1 ₀	ŌĒ				
MODE0/Vpp	MODE0/VPP				
MODE1, P2 ₁ , RESET	MODE1, P2 ₁ , RESET				
	Normal Operating Mode P00 - P07, P50, P20, P51 - P57 P40 - P47 P12 P11 P10 MODE0/Vpp MODE1, P21,				

Table 3. Pin Functions During PROM Programming

PROM Programming Mode

When +6.5 V is applied to the V_{DD} pin and +12.5 V to the MODE0/V_{PP} pin, the μ PD78P352 enters the PROM programming mode. Operation in this mode is determined by the setting of CE, OE, and PGM pins as indicated in table 4.

PROM Byte Programming Procedure

Data can be written to the PROM one byte at a time by the following procedure.

- (1) Set the pins not used for programming as indicated in figure 10. Set MODE0/ V_{PP} and V_{DD} pins to +5 V and MODE1, P2₁, and RESET pins to 0 V. The \overline{CE} , \overline{OE} , and \overline{PGM} pins should be high.
- (2) Supply +6.5 V to V_{DD} pin and +12.5 V to MODE0/ V_{PP} pin. Set CE pin low and OE pin high.
- (3) Provide initial address to pins A₀ A₁₆.
- (4) Provide write data.
- (5) Input a 0.1-ms program pulse (active low) to PGM pin.
- (6) Use verify mode (pulse OE low) to test data. If data has been written, proceed to step 8; if not, repeat steps 4–6. If data cannot be written in 10 attempts, go to step 7.
- (7) Classify PROM as defective and cease write operation.

- (8) Increment address.
- (9) Repeat steps 4-8 until last address is programmed.

PROM Page Programming Procedure

Data can be written to the PROM four bytes at a time (page programming) by the following procedure.

- (1) Set the pins not used for programming as indicated in figure 10. Set MODE0/ V_{PP} and V_{DD} pins to +5 V and MODE1, P2₁, and RESET pins to 0 V. The \overline{CE} , \overline{OE} , and \overline{PGM} pins should be high.
- (2) Supply +6.5 V to V_{DD} pin and +12.5 V to MODE0/ V_{PP} pin. Set CE pin low.
- (3) Provide initial page address to pins A₀ A₁₆.
- (4) Provide first byte of data and latch it into PROM by pulsing OE low. Continue incrementing address and latching in data until four bytes have been loaded.
- (5) Input a 0.1-ms program pulse (active low) to PGM pin. Data bus D₀ - D₇ is in a high-impedance state.

- (6) Use verify mode (pulse OE low four times) to test four bytes of data. If all four bytes of data have been written, proceed to step 8; if not, repeat steps 4–6. If data cannot be written in 10 attempts, go to step 7.
- (7) Classify PROM as defective and cease write operation.
- (8) Increment address.
- (9) Repeat steps 4-8 until last address is programmed.

PROM Read Procedure

The contents of the PROM can be read out to the external data bus $(D_0 - D_7)$ by the following procedure.

- (1) Set the pins not used for programming as indicated in figure 10. Set MODE0/ V_{PP} and V_{DD} pins to +5 Vand MODE1, P2₁, and RESET pins to 0 V. The \overline{CE} , \overline{OE} , and \overline{PGM} pins should be high.
- (2) Supply +5 V to V_{DD} pin and MODE0/V_{PP} pin.

DC Programming Characteristics

- (3) Input address of data to be read to pins A₀ A₁₆.
- (4) Put an active-low pulse on \overline{CE} and \overline{OE} pins.
- (5) Data is output to pins D₀ D₇.

Program Erasure

The UV EPROM can be erased by exposing the window to light having a wavelength shorter than 400 nm, including ultraviolet, direct sunlight, and fluoresecent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by 254-nm ultraviolet rays. A minimum lighting level of 15 Ws/cm² (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at 12,000 μ W/cm² takes 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

Parameter	Symbol	Min	Тур	Max	Unit	Condition
High-level input voltage	V _{IH1}	2.2		V _{DD}	V	(Note 1)
	V _{IH2}	0.8 V _{DD}		V _{DD}	v	(Note 2)
V _{DDP} power supply voltage	V _{DDP}	6.25	6.5	6.75	v	Memory program mode
		4.5	5.0	5,5	v	Memory read mode
Vpp power supply voltage	V _{PP}	12.2	12.5	12.8	v	Memory program mode
			V _{PP} = V _{DDP}		V	Memory read mode
V _{DDP} power supply current	IDDP			30	mA	Memory program mode
				100	mA	Memory read mode
Vpp power supply current	IPP			50	mA	Memory program mode
			1	100	μA	Memory read mode

Notes:

(1) All except pins in Note 2.

(2) Pins RESET, X1, X2, P2n, INTPn, NMI, and TI.

AC Programming Characteristics $T_A = 25^{\circ}C \pm 5^{\circ}C$; $V_{DD} = 6.5 \pm 0.25$ V; $V_{PP} = 12.5 \pm 0.3$ V

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Byte Programming Mode						
Address setup time to PGM	t _{AS}	2			μs	
CE setup time to PGM I	tCES	2			μs	
Input data setup time to PGM I	t _{DS}	2			μs	
Address hold time after OE t	t _{AH}	2			μs	
Input data hold time after PGM f	t _{DH}	2			μs	
Output data hold time after $\overline{\text{OE}}$ †	t _{DF}	0		130	ns	·
Vpp setup time before PGM 4	tVPS	2			μs	
V _{DD} setup time before PGM 4	typs	2			μs	
Program pulse width	tpw	0.095	0.1	0.105	ms	
Data to OE ↓ delay time	t _{OES}	2			μs	
DE ↓ to data output time	toE			150	ns	
Page Programming Mode						
Address setup time to OE I	tAS	2			μs	
CE setup time to OE ↓	tCES	2			μs	
Input data setup time to OE +	t _{DS}	2			μs	
Address hold time from OE †	t _{AH}	2			μs	
	^t AHL	2			μs	
	tAHV	0			μs	
Input data hold time after $\overrightarrow{\text{OE}}$ f	t _{DH}	2			μs	· · · · ·
Output data hold time after OE t	t _{DF}	0		130	ns	
Vpp setup time to OE ↓	typs	2			μs	
V _{DD} setup time to OE ↓	typs	2			μs	
Program pulse width	tpw	0.095	0.1	0.105	ms	
Address to OE ↓ delay time	toes	2			μs	
OE I to data output time	toE			150	ns	
OE pulse width during data latch	t _{LW}	1			μs	
Data to PGM 4 delay time	^t PGMS	2			μs	
CE hold time from PGM t	[†] CEH	2			μs	·
CE hold time from OE t	t _{OEH}	2			μs	
Read Mode						
Address to data output time	tacc			200	ns	$\overline{CE} = \overline{OE} = V_{IL}$
CE I to data output time	t _{CE}			200	ns	$\overline{OE} = V_{1L}$
OE I to data output time	toE			75	ns	$\overline{CE} = V_{IL}$
Data hold time from OE †	t _{DF}	0		60	лs	$\overline{CE} = V_{IL}$
Data hold time from address	tон	0			ns	$\overline{CE} = \overline{OE} = V_{IL}$

67E D 🖬 6427525 0039294 877 MINECE

NEC

µPD78352 Family

PROM Timing Diagrams

Byte Programming Mode

µPD78352 Family

PROM Timing Diagrams (cont)

Page Programming Mode; Page Data Latch → Page Program

. ...

31

N E C ELECTRONICS INC

67E D 🔳 6427525 0039296 64T MMNECE

NFC

µPD78352 Family

PROM Timing Diagrams (cont)

Page Programming Mode; Page Program → Program Verify

N E C ELECTRONICS INC 67E D 6427525 0039297 586 MINECE

µPD78352 Family

PROM Timing Diagrams (cont)

Read Mode

NEC

µPD78352 Family

INSTRUCTION SET

The instruction set of the μ PD78350/P352 is upward compatible with the μ PD78322 and μ PD78312A families. Two instructions have been added to facilitate digital signal processing. The convolution instruction, MACW, calculates the sum of the products of "n" pairs of terms stored in Main RAM. The value of "n" is limited only by the amount of Main RAM available. The MOVTBL instruction displaces a data table by one 16-bit word to make room for a new data word.

The instruction set features both 8- and 16-bit data transfer, arithmetic, and logic instructions and singlebit manipulation instructions. String manipulation instructions are also included. Branch instructions exist to test individual bits in the program status word, the 16-bit accumulator, the special function registers, and the saddr portion of on-chip RAM. Instructions range in length from 1 to 6 bytes depending on the instruction and addressing mode.

Flag Column Indicators

Symbol	Action
(blank)	No change
0	Set to 0
1	Set to 1
x	Set or cleared according to result
Р	P/V indicates parity of result
v	P/V indicates arithmetic overflow
R	Restored from saved PSW

Instruction Set Symbols

Symbol	Definition
r	R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15
r1	R0, R1, R2, R3, R4, R5, R6, R7
r2	С, В
rp	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp1	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7*
rp2	DE, HL, VP, UP
sfr	Special function register, 8 bits
sfrp	Special function register, 16 bits
post	RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7. Bits set to 1 indicate register pairs to be pushed/ popped to/from stack; RP5 pushed/popped by PUSH/POP, SP is stack pointer; PSW pushed/ popped by PUSHU/POPU, RP5 is stack pointer.

Instruction Set Symbols (cont)

Symbol	Definition			
mem	Register indirect: [DE], [HL], [DE+], [HL+], [DE–], [HL–], [VP], [UP]			
	Base Index Mode: [DE+A], [HL+A], [DE+B], [HL+B], [VP+DE], [VP+HL]			
	Base Mode: [DE+ byte], [HL+ byte], [VP+ byte], [UP+ byte], [SP+ byte]			
	Index Mode: word [A], word [B], word [DE], word [HL]			
saddr	FE20-FF1FH: Immediate byte addresses one byte in RAM, or label			
saddrp	FE20-FF1FH: Immediate byte (bit 0=0) addresses one word in RAM, or label			
word	16 bits of immediate data, or label			
byte	8 bits of immediate data, or label			
jdisp8	8-bit two's complement displacement (immediate data, displacement value –128 to +127)			
bit	3 bits of immediate data (bit position in byte), or label			
n	3 bits of immediate data			
laddr16	16-bit absolute address specified by an immediate address or label			
\$addr16	Relative branch address or label			
addr16	16-bit address			
laddr11	11-bit immediate address or label			
addr11	0800H-0FFFH: 0800H + (11-bit immediate address), or label			
addr5	0040H-007EH: 0040H + 2 X (5-bit immediate address), or label			
A	A register (8-bit accumulator)			
x	X register			
В	B register			
с	C register			
D	D register			
E	E register			
н	H register			
L	L register			
R0-R15	Register 0 to register 15			
AX	Register pair AX (16-bit accumulator)			
вс	Register pair BC			
DE	Register pair DE			
HL	Register pair HL			

N E C ELECTRONICS INC

67E D 🖬 6427525 0039299 359 🖬 NECE

. .

. _ -

µPD78352 Family

Instruction Set Symbols (cont)

NEC

Symbol	Definition			
RP0-RP7	Register pair 0 to register pair 7			
PC	Program counter			
SP	Stack pointer			
UP	User stack pointer (RP5)			
PSW	Program status word			
PSWH	High-order 8 bits of PSW			
PSWL	Low-order 8 bits of PSW			
CY	Carry flag			
AC	Auxiliary carry flag			
z	Zero flag			
P/V	Parity/overflow flag			
S	Sign flag			
TPF	Table position flag			
RBS	Register bank select flag			
RSS	Register set select flag			
IE	Interrupt enable flag			
STBC	Standby control register			
WDM	Watchdog timer mode register			
()	Contents of the location whose address is within parentheses; (+) and (-) indicate that the address is incremented after or decremented after it is used			
(())	Contents of the memory location defined by the quantity within the sets of parentheses			
xxH	Hexadecimal quantity			
X _H , X _L	High-order 8 bits and low-order 8 bits of X			
Λ	Logical product (AND)			
$\frac{A}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\frac{\Lambda}{\sqrt{\Lambda}}}}}}}}}}$	Logical sum (OR)			
\mathbf{A}	Exclusive logical sum (exclusive OR)			
_	Inverted data			

* rp and rp1 describe the same registers but generate different machine code.

N E C ELECTRONICS INC

....

67E D 🗰 6427525 0039300 9TO MBNECE

µPD78352 Family

Instruction Set

					Flags			
Mnemonic	Operand	Operation	Bytes	s	z	AC	P/V	CY
8-Bit Data	Transfer							
MOV	r1, #byte	r1 ← byte	2					
	saddr, #byte	(saddr) ← byte	3					-
	sfr, #byte (Note 1)	sfr ← byte	3					
	r, r1	r ← ri	2					
	A, r1	A ← r1	1			•		
	A, saddr	A ← (saddr)	2					
	saddr, A	(saddr) ← A	2					
	saddr, saddr	(saddr) ← (saddr)	3					
	A, sfr	A ← sfr	2					
	sfr, A	sfr ← A	2					
	A, mem (Note 2)	A ← (mem)	1					
	A, mem	A ← (mem)	2-4					
	mem, A (Note 2)	(mem) ← A	1					
	mem, A	(mem) ← A	2-4					
	A, [saddrp]	A ← ((saddrp))	2					
	[saddrp], A	((saddrp)) ← A	2					
	A, laddr16	A ← (addr16)	4					
	laddr16, A	(addr16) ← A	4					
	PSWL, #byte	PSWL ← byte	3	х	х	Х	Х	х
	PSWH, #byte	PSWH ← byte	3	-				
	PSWL, A	PSWL ← A	2	х	x	Х	X	х
	PSWH, A	PSWH ← A	2					
	A, PSWL	A ← PSWL	2					
	A, PSWH	A ← PSWH	2					
ХСН	A, r1	A ↔ r1	1					
	τ, r1	r⇔ri	2					
	A, mem	A ↔ (mem)	2-4					
	A, saddr	A ↔ (saddr)	2					
	A, sfr	A ↔ sfr	3					
	A, [saddrp]	A ↔ ((saddrp))	2					
	saddr, saddr	(saddr) ↔ (saddr)	3				-	
16-Bit Data	Transfer	· · · · · · · · · · · · · · · · · · ·						
MOVW	rp1, #word	rp1 ← word	3					
	saddrp, #word	(saddrp) ← word	4					
	sfrp, #word	sfrp ← word	4					
	rp, rp1	rp ← rp1	2					
	AX, saddrp	AX ← (saddrp)	2					
	saddrp, AX	(saddrp) ← AX	2					
	saddrp, saddrp	(saddrp) ← (saddrp)	3					

67E D 🖿 6427525 0039301 837 MINECE

µPD78352 Family

Instruction Set (cont)

NEC

	. .	A		_	_	Flag		
Mnemonic	Operand	Operation	Bytes	S	Z	AC	P/V	CY
• • • • • • • • • • • • • • • • • • • •	a Transfer (cont)							
MOVW (cont)	AX, sfrp	AX ← sfrp	2					
(com	sfrp, AX	sfrp ← AX	2					
	rp1, laddr16	rp1 ← (addr16)	4					
	laddr16, rp1	(addr16) ← rp1	4					
	AX, mem	AX ← (mem)	2-4					
	mem, AX	(mem) ← AX	2-4					
XCHW	AX, saddrp	AX ↔ (saddrp)	2					
	AX, sfrp	AX ⇔ sfrp	3					
	saddrp, saddrp	(saddrp) ↔ (saddrp)	3					
	rp, rp1	rp ↔ rp1	2					
	AX, mem	AX ↔ (mem)	2-4					
8-Bit Arith	metic							
ADD	A, #byte	A, CY ← A + byte	2	х	х	Х	v	Х
	saddr, #byte	(saddr), CY ← (saddr) + byte	3	х	x	Х	٧	х
	sfr, #byte	sfr, CY ← sfr + byte	4	х	х	Х	v	х
	r, r1	r, CY ← r + r1	2	х	х	Х	٧	Х
	A, saddr	A, CY ← A + (saddr)	2	х	Х	X	٧	х
	A, sfr	A, CY ← A + sfr	3	Х	Х	х	٧	x
	saddr, saddr	(saddr), CY ← (saddr) + (saddr)	3	Х	х	х	٧	х
	A, mem	A, CY ← A + (mem)	2-4	Х	X.	х	v	Х
	mem, A	(mem), CY ← (mem) + A	2-4	Х	x	X	٧	Х
ADDC	A, #byte	A, CY ← A + byte + CY	2	Х	x	Х	٧	х
	saddr, #byte	(saddr), CY ← (saddr) + byte + CY	3	Х	х	Х	٧	Х
	sfr, #byte	sfr, CY ← sfr + byte + CY	4	х	x	Х	v	х
	r, r1	r, CY ← r + r1 + CY	2	х	x	х	v	х
	A, saddr	A, CY	2	х	х	х	v	х
	A, sfr	A, CY \leftarrow A + sfr + CY	3	X	Х	Х	٧	х
	saddr, saddr	(saddr), CY ← (saddr) + (saddr) + CY	3	х	х	x	٧	х
	A, mem	A, CY ← A + (mem) + CY	2-4	х	х	x	v	x
	mem, A	(mem), CY ← (mem) + A + CY	2-4	Х	х	х	٧	х
SUB	A, #byte	A, CY ← A - byte	2	х	х	х	v	x
	saddr, #byte	(saddr), CY ← (saddr) – byte	3	х	X	X	٧	х
	sfr, #byte	sfr, CY ← sfr - byte	4	х	x	х	v	x
	r, rt	r, CY ← r – r1	2	x	x	x	٧	х
	A, saddr	A, CY ← A – (saddr)	2	x	x	х	V	X
	A, sfr	A, CY ← A – sfr	3	х	x	x	v	х
	saddr, saddr	(sadd:), CY - (saddr) - (saddr)	3	X	x	х	v	X
	A, mem	A, CY ← A – (mem)	2-4	x	x	x	V	X
	mem, A	(mem), CY ← (mem) – A	2-4	X	X	X	v	X

N E C ELECTRONICS INC 67E D 🖬 6427525 0039302 773 🖬 NECE

NEC

µPD78352 Family

						5		
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
8-Bit Arith	metic (cont)							
SUBC	A, #byte	A, CY ← A – byte – CY	2	х	х	x	v	x
	saddr, #byte	(saddr), CY ← (saddr) – byte – CY	3	х	x	Х	v	х
	sfr, #byte	sfr, CY ← sfr – byte – CY	4	х	х	Х	V	Х
	r, r1	r, CY ← r - r1 - CY	2	х	х	х	V	х
	A, saddr	A, CY ← A – (saddr) – CY	2	х	Х	Х	V	х
	A, sfr	A, CY ← A – sfr – CY	3	х	х	Х	٧	х
	saddr, saddr	(saddr), CY ← (saddr) – (saddr) – CY	3	х	Х	Х	V	Х
	A, mem	A, CY ← A – (mem) – CY	2-4	x	х	Х	٧	x
	mem, A	(mem), CY ← (mem) – A – CY	2-4	х	х	Х	٧	х
8-Bit Logic								
AND	A, #byte	A ← A ∧ byte	2	x	x		Р	
	saddr, #byte	(saddr) ← (saddr) ∧ byte	3	х	х		Р	
-	sfr, #byte	sfr ← sfr ∧ byte	4	x	x		P	
	r, r1	r ← r ∧ rt	2	x	х		P	
	A, saddr	A ← A ∧ (saddr)	2	х	x		P	
	A, sfr	A ← A ∧ sfr	3	x	x		P	
	saddr, saddr	(saddr) ← (saddr) ∧ (saddr)	3	x	x		P	
	A, mem	A ← A ∧ (mem)	2-4	х	х		Р	
	mem, A	(mem) ← (mem) ∧ A	2-4	x	x		Р	
OR	A, #byte	A ← A ∨ byte	2	х	x		Р	
	saddr, #byte	(saddr) ← (saddr) ∨ byte	3	х	х	• •	Р	
	sfr, #byte	sfr ← sfr V byte	4	х	х		Р	
	r, r1	r ← r ∨ r1	2	х	х		P	
	A, saddr	A ← A ∨ (saddr)	2	x	х		P	
	A, sfr	A ← A ∨ sfr	3	х	X		Р	
	saddr, saddr	(saddr)← (saddr) ∨ (saddr)	. 3	х	х		Р	
	A, mem	A ← A ∨ (mem)	2-4	х	х		Р	
	mem, A	(mem) ← (mem) ∨ A	2-4	х	х		P	
XOR	A, #byte	A ← A ∀ byte	2	х	х		Р	
	saddr, #byte	(saddr) ← (saddr) ∀ byte	3	x	x	-	Р	
	sfr, #byte	sfr ← sfr ∀ byte	4	х	x		Р	
	r, r1	r←r∀ri	2	Х	х		Р	
	A, saddr	A ← A ∀ (saddr)	2	х	х		P	
	A, sfr	A ← A ∀ sfr	3	х	х		Р	
	saddr, saddr	(saddr) ← (saddr) ∀ (saddr)	3	х	х		Р	
	A, mem	A ← A ∀ (mem)	2-4	х	х		Р	
	mem, A	(mem) ← (mem) ∀ A	2-4	x	x		P	

N E C ELECTRONICS INC 67E D 6427525 0039303 60T NECE

NEC

µPD78352 Family

						Flag		
Mnemonic	Operand	Operation	Bytes	S	Z	AC	P/V	CY
8-Bit Logic	(cont)				_			
CMP	A, #byte	A – byte	2	х	х	Х	٧	х
	saddr, #byte	(saddr) – byte	3	х	X	Х	٧	х
	sfr, #byte	sfr-byte	4	х	х	Х	٧	X
	r, r1	r-r1	2	х	х	х	V	х
	A, saddr	A (saddr)	2	х	х	Х	V	x
	A, sfr	A – sfr	3	х	X	Х	٧	х
	saddr, saddr	(saddr) — (saddr)	3	Х	х	х	٧	Х
	A, mem	A – (mem)	2-4	Х	х	Х	٧	х
	mem, A	(mem) – A	2-4	х	х	Х	v	х
16-Bit Ariti	hmetic							
ADDW	AX, #word	AX, CY - AX + word	3	x	х	х	v	x
	saddrp, #word	(saddrp), CY	4	х	x	Х	٧	X
	sfrp, #word	sfrp, CY ← sfrp + word	5	х	x	х	٧	х
	rp, rp1	rp, CY ← tp + rp1	2	х	х	х	٧	х
	AX, saddrp	AX, CY - AX + (saddrp)	2	Х	х	Х	٧	х
	AX, sfrp	AX, CY ← AX + sfrp	3	Х	х	х	٧	X
	saddrp, saddrp	(saddrp), CY - (saddrp) + (saddrp)	3	х	x	х	٧	х
SUBW	AX, #word	AX, CY ← AX – word	3	х	x	Х	٧	х
	saddrp, #word	(saddrp), CY ← (saddrp) – word	4	х	x	х	V	x
	sfrp, #word	sfrp, CY ← sfrp – word	5	х	x	х	v	х
	rp, rp1	rp, CY ← rp - rp1	2	Х	x	X	۷	х
	AX, sadd:p	AX, CY ← AX (saddrp)	2	Х	x	Х	٧	х
	AX, sfrp	AX, CY ← AX – sfrp	3	Х	х	х	٧	х
	saddrp, saddrp	(saddrp), CY ← (saddrp) – (saddrp)	3	Х	X	Х	٧	х
CMPW	AX, #word	AX – word	3	Х	х	Х	٧	х
	saddrp, #word	(saddrp) – word	4	Х	Х	Х	٧	х
	sfrp, #word	sfrp – word	5	х	х	Х	٧	х
	rp, rp1	rp – rp1	2	Х	X	Х	٧	х
	AX, saddrp	AX – (saddrp)	2	Х	х	Х	V	х
	AX, sfrp	AX – sfrp	3	Х	Х	Х	٧	х
	saddrp, saddrp	(saddrp) – (saddrp)	3	Х	Х	Х	٧	Х
Multiplica	tion/Division							
MULU	r1	AX ← AX x r1	2					
DIVUW		AX (quotient), r1 (remainder) ← AX ÷ r1	2					
MULUW	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) ← AX x rp1	2					
DIVUX	rp1	AXDE (quotient), rp1 (remainder)	2	<u>_</u>		-		
MULW (Note 3)	rp1	AX (high-order 16 bits), rp1 (low-order 16 bits) ← AX x rp1	2					

67E D 🗰 6427525 0039304 546 🎟 NECE

µPD78352 Family

NEC

						Flage	3	
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
Sum-of-Pro	oducts							
MACW	n	$\begin{array}{l} AXDE \leftarrow (B) \; x \; (C) \; + \; AXDE, \; B \leftarrow B \; + \; 2, \; C \leftarrow C \; + \\ 2, \; n \leftarrow n 1. \; End \; if \; n \; = \; 0 \; or \; P/V \; = \; 1 \end{array}$	3	x	х	X	v	х
Table Shift	t							
MOVTBLW	laddr 16, n (Note 4)	(addr16 + 2) \leftarrow (addr16), n \leftarrow n–1, addr16 \leftarrow addr16 – 2. End if n = 0	4					
Increment	/Decrement							
INC	r1	r1 ← r1 + 1	1	X	х	х	V	
	saddr	(saddr) ← (saddr) + 1	2	x	х	Х	V	
DEC	r1	r1 ← r1 – 1	1	x	x	Х	v	
	saddr	(saddr) ← (saddr) - 1	2	x	х	х	v	
INCW	rp2	rp2 ← rp2 + 1	1				_	
	saddrp	(saddrp) ← (saddrp) + 1	3					
DECW	rp2	rp2 ← rp2 – 1	1					
	saddrp	(saddrp) ← (saddrp) – 1	3					
Shift/Rotat	e							
ROR	r1, n	(CY, r1 ₇ ← r1 ₀ , r1 _{m−1} ← r1 _m) x n times	2				Р	х
ROL	r1, n	(CY, $r_1 \leftarrow r_7$, $r_{1m+1} \leftarrow r_{1m}$) x n times	2				Р	х
RORC	r1, n	(CY \leftarrow r1 ₀ , r1 ₇ \leftarrow CY, r1 _{m-1} \leftarrow r1 _m) x n times	2				Р	х
ROLC	r1, n	(CY \leftarrow r1 ₇ , r1 ₀ \leftarrow CY, r1 _{m+1} \leftarrow r1 _m) x n times	2				P	Х
SHR	r1, n	$(CY \leftarrow r_{10}, r_{17} \leftarrow 0, r_{1m-1} \leftarrow r_{1m}) \times n \text{ times}$	2	х	х	0	P	x
SHL	r1, n	$(CY \leftarrow r_{17}, r_{10} \leftarrow 0, r_{1m+1} \leftarrow r_{1m}) \times n \text{ times}$	2	x	х	0	Р	х
SHRW	rp1, n	$(CY \leftarrow rp1_0, rp1_{15} \leftarrow 0, rp1_{m-1} \leftarrow rp1_m) \times n \text{ times}$	2	x	х	0	P	х
SHLW	rp1, n	(CY \leftarrow rp1 ₁₅ , rp1 ₀ \leftarrow 0, rp1 _{m+1} \leftarrow rp1 _m) x n times	2	X	х	0	P	х
ROR4	[rp1]	$A_{3-0} \leftarrow (rp1)_{3-0}, (rp1)_{7-4} \leftarrow A_{3-0}, (rp1)_{3-0} \leftarrow (rp1)_{7-4}$	2					
ROL4	[rp1]	$A_{3-0} \leftarrow (rp1)_{7-4}, (rp1)_{3-0} \leftarrow A_{3-0}, (rp1)_{7-4} \leftarrow (rp1)_{3-0}$	2					
BCD Adjus	tment							
ADJBA		Decimal adjust accumulator after add	2	x	х	Х	P	х
ADJBS	· · · ·	Decimal adjust accumulator after subtract	2	х	х	X	P	х
Data Expai	nsion	· · · · · · · · · · · · · · · · · · ·						
CVTBW		X ← A, A ₆₋₀ ← A ₇	1					i
Bit Manipu	lation	· ·						
 MOV1	CY, saddr,bit	CY ← (saddr.bit)	3					х
	CY, sfr.bit	CY ← sfr.bit	3					х
	CY, A.bit	CY ← A.bit	2					х
	CY, X.bit	CY ← X.bit	2					x
	CY, PSWH.bit	CY ← PSWH.bit	- 2				_	х

67E D 🖬 6427525 0039305 482 🛤 NECE

µPD78352 Family

Instruction Set (cont)

NEC

						Flage	5	
Mnemonic	Operand	Operation	Bytes	S	Z	AC	P/V	CY
Bit Manipul	lation (cont)							
MOV1 (cont)	CY, PSWL.bit	CY ← PSWL.bit	2					Х
	saddr.bit, CY	(saddr.bit) ← CY	3					
	sfr.bit, CY	sfr.bit ← CY	3					
	A.bit, CY	A.bit ← CY	2					
	X.bit, CY	X.bit ← CY	2					
	PSWH.bit, CY	PSWH.bit ← CY	2					
	PSWL.bit, CY	PSWL.bit ← CY	2	х	x	х	х	
AND1	CY, saddr.bit	CY ← CY ∧ (saddr.bit)	3					х
	CY, /saddr.bit	CY ← CY ∧ (saddr.bit)	3					х
	CY, sfr.bit	CY ← CY ∧ sfr.bit	3					Х
	CY, /sfr.bit	CY ← CY ∧ sfr.bit	3					х
	CY, A.bit	CY ← CY ∧ A.bit	2					х
	CY, /A.bit	CY ← CY ∧ Ā.bit	2					х
	CY, X.bit	CY ← CY ∧ X.bit	2					х
	CY, /X.bit	CY ← CY ∧ X.bit	2					Х
	CY, PSWH.bit	CY ← CY ∧ PSWH.bit	2					Х
-	CY, /PSWH.bit	CY ← CY /\ PSWH.bit	2					х
	CY, PSWL.bit	CY ← CY ∧ PSWL.bit	2					Х
	CY, /PSWL.bit	CY - CY / PSWL.bit	2					Х
OR1	CY, saddr.bit	CY ← CY V (saddr.bit)	3					Х
	CY, /saddr.bit	CY ← CY V (saddr.bit)	3					X
	CY, sfr.bit	CY ← CY V sfr.bit	3					Х
	CY, /sfr.bit	CY ← CY V sfr.bit	3					Х
	CY, A.bit	CY ← CY ∨ A.bit	2					х
	CY, /A.bit	CY ← CY V A.bit	2					x
	CY, X.bit	CY ← CY ∨ X.bit	2					X
	CY, /X.bit	$CY \leftarrow CY \lor \overline{X.bit}$	2					х
	CY, PSWH.bit	CY ← CY V PSWH.bit	2					х
	CY, /PSWH.bit	CY ← CY V PSWH.bit	2			-		х
	CY, PSWL.bit	CY ← CY V PSWL.bit	2					x
	CY, /PSWL.bit	CY ← CY V PSWL.bit	2					х
XOR1	CY, saddr.bit	CY ← CY → (saddr.bit)	3					Х
	CY, sfr.bit	CY ← CY ∀ sfr.bit	3					Х
	CY, A.bit	CY ← CY ∀ A.bit	2					Х
	CY, X.bit	CY ← CY → X.bit	2					Х
	CY, PSWH.bit	CY ← CY → PSWH.bit	2					X
	CY, PSWL.bit	CY ← CY → PSWL.bit	2					Х
	CY, PSWL.bit	CY ← CY → PSWL.bit	2					

.....

67E D 🗰 6427525 0039306 319 🛤 NECE

µPD78352 Family

				Flags				
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
Bit Manipu	lation (cont)							
SET1	saddr.bit	(saddr.bit) ← 1	2					
	sfr.bit	sfr.bit ← 1	3					
	A.bit	A.bit ← 1	2					
	X.bit	X.bit ← 1	2					
	PSWH.bit	PSWH.bit ← 1	2					
_	PSWL.bit	PSWL.bit ← 1	2	х	х	х	Х	Х
CLR1	saddr.bit	(saddr.bit) ← 0	2					
	sfr.bit	sfr.bit ← 0	3				-	
	A.bit	A.bit ← 0	2					
	X.bit	X.bit ← 0	2					
	PSWH.bit	PSWH.bit ← 0	2					
	PSWL.bit	PSWL.bit ← 0	2	x	х	Х	х	Х
NOT1	saddr.bit	(saddr.bit) ← (saddr.bit)	3					
	sfr.bit	sfr.bit ← sfr.bit	3					
	A.bit	A.bit ← Ā.bit	2					
	X.bit	X.bit ← X.bit	2					
	PSWH.bit	PSWH.bit ← PSWH.bit	2					
	PSWL.bit	PSWL.bit ← PSWL.bit	2	x	х	Х	Х	Х
SET1	CY	CY ← 1	1					1
CLR1	CY	CY ← 0	1				-	0
NOT1	CY	CY ← C Y	1					х
Subroutine	Linkage							
CALL	laddr16	$(SP-1) \leftarrow (PC + 3)_{H_i} (SP - 2) \leftarrow (PC + 3)_{L_i}$ PC \leftarrow addr16, SP \leftarrow SP - 2	3					
	rp1	$(SP-1) \leftarrow (PC + 2)_{H}, (SP - 2) \leftarrow (PC + 2)_{L}, PC_{H} \leftarrow rp1_{H}, PC_{L} \leftarrow rp1_{L}, SP \leftarrow SP - 2$	2					
	[rp1]	$(SP-1) \leftarrow (PC + 2)_{H}, (SP - 2) \leftarrow (PC + 2)_{L}, PC_{H} \leftarrow (rp1 + 1), PC_{L} \leftarrow (rp1), SP \leftarrow SP - 2$	2					
CALLF	laddr11	(SP-1) ← (PC + 2) _H , (SP - 2) ← (PC + 2) _L , PC ₁₅₋₁₁ ← 00001, PC ₁₀₋₀ ← addr11, SP ← SP - 2	2					
CALLT	[addr5]	$(SP-1) \leftarrow (PC + 1)_{H}, (SP - 2) \leftarrow (PC + 1)_{L},$ $PC_{H} \leftarrow (TPFx8000H + 2 x addr5 + 41H),$ $PC_{L} \leftarrow (TPFx8000H + 2 x addr5 + 40H), SP \leftarrow$ SP - 2	1					
BRK		$\begin{array}{l} (\text{SP-1}) \leftarrow \text{PSWH}, \ (\text{SP}-2) \leftarrow \text{PSWL}, \ (\text{SP}-3) \leftarrow (\text{PC}+1)_{\text{H}}, \ (\text{SP}-4) \leftarrow (\text{PC}+1)_{\text{L}}, \\ \text{PC}_{\text{L}} \leftarrow (003\text{EH}), \ \text{PC}_{\text{H}} \leftarrow (003\text{FH}), \ \text{SP} \leftarrow \text{SP}-4, \\ \text{IE} \leftarrow 0 \end{array}$	1					
RET		$PC_{L} \leftarrow (SP), PC_{H} \leftarrow (SP + 1), SP \leftarrow SP + 2$	1					
RETB		PC _L ← (SP), PC _H ← (SP + 1), PSWL ← (SP + 2), PSWH ← (SP + 3), SP ← SP + 4	1	R	R	R	R	R
RETI		PC _L ← (SP), PC _H ← (SP + 1), PSWL ← (SP + 2), PSWH ← (SP + 3), SP ← SP + 4	1	R	R	R	R	R

N E C ELECTRONICS INC 67E D 6427525 0039307 255 MINECE

µPD78352 Family

						Flags		
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
Stack Man	ipulation							
PUSH	sfrp	$(SP - 1) \leftarrow sfr_H, (SP - 2) \leftarrow sfr_L, SP \leftarrow SP - 2$	3					
	post	{(SP − 1) ← rpp _H , (SP − 2) ← rpp _L , SP ← SP − 2} x n (Note 5)	2					
	PSW	$(SP - 1) \leftarrow PSWH, (SP - 2) \leftarrow PSWL, SP \leftarrow SP - 2$	1					
PUSHU	post	{(UP - 1) \leftarrow rpp _H , (UP - 2) \leftarrow rpp _L , UP \leftarrow UP - 2} x n (Note 5)	2					
POP	sfrp	$sfr_{L} \leftarrow (SP), sfr_{H} \leftarrow (SP + 1), SP \leftarrow SP + 2$	3					
	post	{rpp}_L \leftarrow (SP), rpp_H \leftarrow (SP + 1), SP \leftarrow SP + 2} x n (Note 5)	2					
	PSW	$PSWL \leftarrow (SP), PSWH \leftarrow (SP + 1), SP \leftarrow SP + 2$	1	R	R	R	R	R
POPU	post	{rpp}_L \leftarrow (UP), rpp_H \leftarrow (UP + 1), UP \leftarrow UP + 2} x n (Note 5)	2					
MOVW	SP, #word	SP ← word	4					
	SP, AX	SP ← AX	2					
	AX, SP	AX ← SP	2					
INCW	SP	SP ← SP + 1	2					
DECW	SP	SP ← SP – 1	2					
Pin Level 1	Test							
CHKL	sfr	(Pin level) ∀ (internal signal level)	3	х	х		P	
CHKLA	sfr	A ← (Pin level) ∀ (internal signal level)	3	х	х		Р	
Unconditio	onal Branch							
BR	laddr16	PC ← addr16	3					
	rp1	PC _H ← rp1 _H , PC _L ← rp1 _L	2					
	[rp1]	$PO_{H} \leftarrow (rp1 + 1), PO_{L} \leftarrow (rp1)$	2					
	\$addr16	PC ← PC + 2 + jdisp8	2					
Conditiona	al Branch							
BC, BL	\$addr16	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$	2					
BNC, BNL	\$addr16	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$	2					
BZ, BE	\$addr16	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$	2					
BNZ, BNE	\$addr16	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	2					
BV, BPE	\$addr16	$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 1$	2					
BNV, BPO	\$addr16	$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 0$	2					
BN	\$addr16	PC ← PC + 2 + jdisp8 if S = 1	2					
BP	\$addr16	$PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 0$	2					
BGT	\$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \forall S) \forall Z = 0$	3					
BGE	\$addr16	$PC \leftarrow PC + 3 + jdisp8$ if $P/V \forall S = 0$	3					
BLT	\$addr16	$PC \leftarrow PC + 3 + jdisp8$ if $P/V \neq S = 1$	3					
BLE	\$addr16	$PC \leftarrow PC + 3 + jdisp8$ if $(P/V \forall S) \lor Z = 1$	3					
вн	\$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 0$	3					
BNH	\$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 1$	3					

.

N E C ELECTRONICS INC 67E D 🖬 6427525 0039308 191 🖬 NECE

NEC

µPD78352 Family

Instruction Set (cont)

				Flags					
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY	
Condition	al Branch								
BT	saddr.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if (saddr.bit)} = 1$	3						
	sfr.bit, \$addr16	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$	4						
	A.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$	3						
	X.bit, \$addr16	PC ← PC + 3 + jdisp8 if X.bit = 1	3						
	PSWH.bit, \$addr16	PC ← PC + 3 + jdisp8 if PSWH.bit = 1	3						
	PSWL.bit, \$addr16	PC ← PC + 3 + jdisp8 if PSWL.bit = 1	3						
BF	saddr.bit, \$addr16	$PC \leftarrow PC + 4 + jdisp8 $ if (saddr.bit) = 0	4						
	sfr.bit, \$addr16	PC ← PC + 4 + jdisp8 if sfr.bit = 0	4						
	A.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$	3						
	X.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 0$	3						
	PSWH.bit, \$addr16	PC ← PC + 3 + jdisp8 if PSWH.bit = 0	3						
	PSWL.bit, \$addr16	PC ← PC + 3 + jdisp8 if PSWL.bit = 0	3						
BTCLR	saddr.bit, \$addr16	$PC \leftarrow PC + 4 + jdisp8$ if (saddr.bit) = 1 then reset (saddr.bit)	4						
	sfr.bit, \$addr16	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1 then reset sfr.bit	4						
	A.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1 then reset A.bit	3						
	X.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8$ if X.bit = 1 then reset X.bit	3						
	PSWH.bit, \$addr16	PC ← PC + 3 + jdisp8 if PSWH.bit = 1 then reset PSWH.bit	3						
	PSWL.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8$ if PSWL.bit = 1 then reset PSWL.bit	3	х	x	х	x	х	
BFSET	saddr.bit, \$addr16	PC ← PC + 4 + jdisp8 if (saddr.bit) = 0 then set (saddr.bit)	4						
	sfr.bit, \$addr16	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 0 then set sfr.bit	4						
	A.bit, \$addr16	PC ← PC + 3 + jdisp8 if A.bit = 0 then set A.bit	3						
	X.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8 \text{ if } X.bit = 0 \text{ then set } X.bit$	3						
	PSWH.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8$ if PSWH.bit = 0 then set PSWH.bit	3						
	PSWL.bit, \$addr16	$PC \leftarrow PC + 3 + jdisp8$ if $PSWL.bit = 0$ then set $PSWL.bit$	3	х	х	х	х	х	
DBNZ	r2, \$addr16	$r2 \leftarrow r2 - 1$, then PC \leftarrow PC + 2 + jdisp8 if $r2 = 0$	2						
	saddr, \$addr16	(saddr) ← (saddr) – 1, then PC ← PC + 3 + jdisp8 if (saddr) = 0	3						
Context Sv	vitching								
BRKCS	RBn	$\begin{array}{l} RBS_{2\text{-}0} \ \leftarrow \ n, \ PC_{H} \Leftrightarrow R5, \ PC_{L} \Leftrightarrow R4, \ R7 \leftarrow PSWH, \\ R6 \leftarrow PSWL, \ RSS \leftarrow 0, \ IE \leftarrow 0 \end{array}$	2					-	
RETCS	laddr16	PC _H ← R5, PC _L ← R4, R5 ← addr16 _H , R4 ← addr16 _L , PSWH ← R7, PSWL ← R6	3	R	R	R	R	R	
RETCSB	laddr16	PC _H ← R5, PC _L ← R4, R5 ← addr16 _H , R4 ← addr16 _L , PSWH ← R7, PSWL ← R6	4	R	R	R	R	R	

N E C ELECTRONICS INC 67E D 🖬 6427525 0039309 028 🖿 NECE

.

NEC

µPD78352 Family

						Flage	3	
Mnemonic	Operand	Operation	Bytes	S	z	AC	P/V	CY
String Man	ipulation							
MOVM	[DE+], A	(DE+) ← A, C ← C-1 End if C = 0	2					
	[DE], A	(DE–) ← A, C ← C–1 End if C = 0	2					
моувк	[DE+], [HL+]	$(DE+) \leftarrow (HL+), C \leftarrow C-1 End if C = 0$	2					
	[DE-], [HL]	(DE-) ← (HL-), C ← C-1 End if C = 0	2					
XCHM	[DE+], A	$(DE+) \Leftrightarrow A, C \leftarrow C-1 \text{ End if } C = 0$	2					
	[DE-], A	$(DE_{-}) \Leftrightarrow A, C \leftarrow C_{-1} \text{ End if } C = 0$	2					
ХСНВК	[DE+], [HL+]	$(DE+) \Leftrightarrow (HL+), C \leftarrow C-1 \text{ End if } C = 0$	2					
	[DE], [HL]	(DE-) ↔ (HL-), C ← C-1 End if C = 0	2					
CMPME	[DE+], A	$(DE+) - A, C \leftarrow C-1$ End if $C = 0$ or $Z = 0$	2	х	х	Х	٧	Х
	[DE-], A	$(DE-) - A, C \leftarrow C-1$ End if $C = 0$ or $Z = 0$	2	х	х	Х	٧	х
CMPBKE	[DE+], [HL+]	$(DE+) - (HL+), C \leftarrow C-1$ End if $C = 0$ or $Z = 0$	2	Х	Х	Х	٧	Х
	[DE-], [HL-]	$(DE \rightarrow) \rightarrow (HL \rightarrow), C \leftarrow C \rightarrow 1 \text{ End if } C = 0 \text{ or } Z = 0$	2	х	х	Х	v	Х
CMPMNE	[DE+], A	$(DE+) - A, C \leftarrow C-1$ End if $C = 0$ or $Z = 1$	2	х	x	X	v	X
	[DE], A	$(DE_{-}) - A, C \leftarrow C_{-}1 \text{ End if } C = 0 \text{ or } Z = 1$	2	х	х	х	٧	х
CMPBKNE	[DE+], [HL+]	$(DE+) - (HL+), C \leftarrow C-1$ End if $C = 0$ or $Z = 1$	2	х	х	х	v	х
	[DE-], [HL-]	(DE-) - (HL-), C ← C-1 End if C = 0 or Z = 1	2	х	х	Х	V	Х
CMPMC	[DE+], A	$(DE+) - A$, C \leftarrow C-1 End if C = 0 or CY = 0	2	Х	х	х	V	Х
	[DE-], A	$(DE) - A, C \leftarrow C-1$ End if $C = 0$ or $CY = 0$	2	Х	х	Х	V	х
CMPBKC	[DE+], [HL+]	$(DE+) - (HL+), C \leftarrow C-1 \text{ End if } C = 0 \text{ or } CY = 0$	2	Х	х	Х	٧	Х
	[DE-], [HL-]	$(DE) - (HL), C \leftarrow C-1$ End if $C = 0$ or $CY = 0$	2	Х	х	X	V	х
CMPMNC	[DE+], A	$(DE+) - A, C \leftarrow C-1$ End if $C = 0$ or $CY = 1$	2	х	х	х	V	Х
	[DE-], A	(DE-) – A, C ← C-1 End if C = 0 or CY = 1	2	Х	х	Х	۷	Х
CMPBKNC	[DE+], [HL+]	$(DE+) - (HL+), C \leftarrow C-1$ End if $C = 0$ or $CY = 1$	2	Х	х	Х	۷	х
	[DE-], [HL-]	(DE-) – (HL-), C \leftarrow C-1 End if C = 0 or CY = 1	2	х	х	х	٧	Х
CPU Contr	rol							
MOV	STBC, #byte	STBC ← byte (Note 6)	4					
	WDM, #byte	WDM ← byte (Note 6)	4					
SWRS		RSS ← RSS	1					
SEL	RBn	RBS ₂₋₀ ← n, RSS ← 0	2					
	RBn, ALT	RBS ₂₋₀ ← n, RSS ← 1	2					
NOP		No operation	1	_				
El		IE ← 1 (Enable interrupt)	1					
D!		IE ← 0 (Disable interrupt)	1					

NEC

µPD78352 Family

Instruction Set (cont)

Notes:

- (1) A special instruction is used to write to STBC and WDM.
- (2) One byte move instruction when [DE], [HL], [DE+], [DE-], [HL+], or [HL-] is specified for mem.

67E D

- (3) 16-bit signed multiply instruction
- (4) Addressing range is OFE00H to OFEFFH.
- (5) rpp refers to register pairs specified in post byte. "n" is the number of register pairs specified in post byte.
- (6) Trap if data bytes in operation code are not one's complement. If trap, then: (SP-1) ← PSWH, (SP-2) ← PSWL, (SP-3) ← (PC-4)_H,

 $(SP-4) \leftarrow (PC-4)_L, PC_L \leftarrow (003CH), PC_H \leftarrow (003DH).$ SP \leftarrow SP-4, IE $\leftarrow 0$. -----

NEC

µPD78352 Family

SOLDERING

Packaging and Soldering Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
µPD78350GC-3BE	64-pin plastic QFP (3.0-mm height)	P64GC-80-3BE	IR30-107-1 VP15-107-1 WS60-107-1
µPD78P352AG-xxx-22	64-pin plastic QFP (1.7-mm height)	P64G-80-22-1	Contact NEC
µPD78P352G-22	-		IR30-107-2 VP15-107-2
µPD78P352KK	64-pin ceramic LCC with window	X80KW-80B	Not intended for soldering

Soldering Conditions

Method (Note 1)	Code (Note 2)	Soldering Conditions	Exposure Limit (Note 3)
Infrared ray reflow	IR30-107-1 IR30-107-2	Package peak temp: 230°C Time: 30 sec (210°C min)	Max no. of days: 7 (thereafter, 10 hours baking at 125°C is required)
Vapor phase reflow	VP15-107-1 VP15-107-2	Package peak temp: 215°C Time: 40 sec (200°C min)	Max no. of days: 7 (thereafter, 10 hours baking at 125°C is required)
Wave soldering	WS60-107-1	Solder bath temp: 260°C max Time: 10 sec max	
Pin partial heating		Temperature: 300°C max Time: 3 sec max (per device side)	-

Notes:

 Do not use different soldering methods together. However, on all devices, the pin partial heating method can be used alone or in combination with other soldering methods.

- (2) The maximum number of soldering operations is one or two as indicated by the last digit of the soldering code: -1 or -2
- (3) Maximum no. of days refers to the number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.

......

67E D ■ 6427525 0039312 612 ■ NECE

NEC

µPD78352 Family

PACKAGE DRAWINGS

64-Pin Plastic QFP (3.0-mm height) (Dwg No. P64GC-80-3BE)

......

NEC

µPD78352 Family

64-Pin Plastic QFP (1.7-mm height) (Dwg No. P64G-80-22-1)

µPD78352 Family

64-Pin Ceramic LCC With Window (Dwg No. X80KW-80B)

