\title{

64275250039265 TアG \quad NECE μ PD78352 Family

\section*{(μ PD78350/352A/P352)

(μ PD78350/352A/P352)

 16-/8-Bit, K-Series Microcontrollers

 16-/8-Bit, K-Series Microcontrollers With Real-Time Output Ports

 With Real-Time Output Ports}

NEC Electronics Inc.

September 1993

Description

The $\mu \mathrm{PD} 78350, \mu \mathrm{PD} 78352 \mathrm{~A}$, and $\mu \mathrm{PD} 78 \mathrm{P} 352$ are members of the K-Series ${ }^{9}$ of microcontrollers. These 16-/8bit microcontrollers-with a minimum instruction time of 125 ns at 32 MHz (160 ns at 25 MHz for the μ PD78350)-are designed for high-speed, real-time process control. They feature a 16 -bit CPU , an 8 -bit external data bus, eight banks of main registers, an advanced interrupt handling facility, and a powerful set of memory-mapped on-chip peripherals. A 16-bit multiply and accumulate instruction provides hardware convolution capability. On-board memory includes 640 bytes of RAM, 32 K bytes of mask ROM in the μ PD78352A, and 32K bytes of UV EPROM or one-time programmable (OTP) ROM in the μ PD78P352.
The advanced interrupt handling facility has four levels of programmable hardware-priority control and three methods of servicing interrupt requests, including vectoring, hardware context switching, and macro service. The macro service facility reduces the CPU overhead involved in servicing peripheral interrupts by transferring data between the memory-mapped special function registers (SFRs) and memory without the use of time consuming interrupt service routines. In addition, the macro service facility can be used to perform certain CPU functions, such as event counting and math-oriented data alterations.

The combination of high-speed hardware convolution capability and context switching, eight register banks, and the macro service facility makes these devices ideal for applications in the hard-disk drive and tape drive markets as well as the automotive and industrial controlifrobotics markets.
K-Series is a registered trademark of NEC Electronios Inc.

Features

\beth Complete single-chip microcontroller

- 16-bit ALU
- 640 bytes of RAM
-32K bytes of mask ROM (μ PD78352A)
- 32K bytes of UV EPROM or OTP ROM (μ PD78P352)
= Powerful instruction set
- 16-bit unsigned and signed multiply
- 16-bit unsigned divide
- 16-bit multiply and accumulate instruction
- 1-bit and 8 -bit logic instructions
-String instructions
c. Minimum instruction time
-160 ns at 25 MHz (μ PD78350)
-125 ns at 32 MHz (μ PD78352A/P352)
a 5-byte instruction prefetch queue
- Memory expansion
- 8085 bus-compatible
-64K-byte address space
- Large I/O capacity
- Up to 30 I/O port lines (μ PD78350)
-Up to 50 I/O port lines (μ PD78352A/P352)
- Memory-mapped, on-chip peripherals
(special function registers)
- Timer/counter unit
- 16-bit free-running timer:

Two 16-bit capture registers;
Two external interrupt/capture lines

- 16-bit timer/event counter:

One 16-bit compare register;
One external event counter line

- 16-bit interval timer:

One 16-bit compare register

- Two 8-bit precision pulse-width modulated (PWM) output lines
- Programmable priority interrupt controller (four levels)
- Three methods of interrupt service
- Vectored interrupts
- Context switching with hardware register bank switch
- Macro service mode with choice of five different functions
$=$ Watchdog timer with dedicated output
I STOP and HALT standby functions
- Single 5 -volt power supply

Ordering Information

Part Number	ROM	Package	Package Drawing	
μ PD78350GC-3BE	ROMless	64-pin plastio QFP (3.0-mm height)	Po4GC-80-3BE	
μ PD78352AG-xxx-22	32K mask ROM	64-pin plastic QFP (1.7-mm height)	P64G-80-22-1	
μ PD78P352G-22	32 K OTP ROM		X80KW-80B	
μ PD78P352KK	$32 K$ UN EPROM	64-pin ceramio LCC with window		

xxx indicates ROM code suffix.

Pin Configurations

64-Pin Plastic QFP (μ PD78350)

67E D
6427525 003926? 849
NECE
μ PD78352 Family

Pin Configurations (cont)
64-Pin Plastic QFP and Ceramic LCC (μ PD78352A/P352)

Pin Functions; Normal Operating Mode

Symbol	Function	Alternate Symbol	Alternate Function
$\mathrm{PO}_{0}-\mathrm{PO}_{7}$	Port 0; 8-bit, bit-selectable 1/O port		
$\mathrm{P}_{10}-\mathrm{P}_{7}$	Port 1; 8-bit, bit-selectable 1/O port		
P 20	Port 2; 6-bit input port	NMI	External nonmaskable interrupt
$\begin{aligned} & \mathrm{P} 2_{1} \\ & \mathrm{P} 2_{2} \\ & \mathrm{P} 2_{3} \\ & \mathrm{P} 2_{4} \\ & \hline \end{aligned}$		INTPO INTP1 INTP2 INTP3	Maskable external interrupts
F_{5}		TI	External input for timer 1
$\begin{aligned} & P 3_{0} \\ & P 3_{1} \end{aligned}$	Port 3; 8-bit, bit-selectable I/O port	PWMO PWM1	Pulse-width modulated outputs
$\mathrm{P3}_{2}-\mathrm{P}_{3}$			
$\mathrm{P}_{40}-\mathrm{P} 47$	Port 4; byte-selectable I/O port (μ PD78352A/ P352)	$A D_{0}-A D_{7}$	Low-order 8 bits of the multiplexed external address/data bus
$\mathrm{P5}_{0}-\mathrm{P} 5_{7}$	Port 5; bit-selectable I/O port (μ PD78352A/P352)	$A_{8}-A_{15}$	High-order 8 bits of the external address bus
$\mathrm{P9}_{0}$	Port 9; 4-bit, bit-selectable I/O port (μ PD78352A/P352). For 78350, $\mathrm{P9}_{0}$ functions as $\overline{\mathrm{RD}}$ and Pg_{1} functions as $\overline{\mathrm{WR}}$ signals only. $\mathrm{P9}_{2}$ and $\mathrm{P9}_{3}$ are not provided for 78350 .	$\overline{\mathrm{RD}}$	External read strobe output
Pr_{1}		WR	External write strobe output
$\begin{aligned} & \mathrm{Pg}_{2} \\ & \mathrm{P} 9_{3} \end{aligned}$		$\begin{aligned} & \text { IC } \\ & \text { IC } \end{aligned}$	Internally connected; must be left open (μ PD78350).
ASTB	Address strobe output; used to latoh address for external memory.		
CLKOUT	Output of the system clock		
1 C	Internally connected; must be left open.		.
MODEO	Connect to $V_{D D}$ for μ PD78350 and μ PD78P352 in programing mode. Connect to $\mathrm{V}_{S S}$ for normal operation of μ PD78352A/P352. The level of this pin cannot be changed during normal operation.		
MODE1	Always connect to $V_{S S}$. The level of this pin cannot be changed during normal operation.		
RESET	External system reset input		
WAIT	A low-level input adds wait states to the external bus cycle; used by very-slow memory and/or peripherals (only for 78352A/P352).		
WDTO	Open-drain output from the watchdog timer		
X1	Crystal connection or external clock input		
X2	Crystal connection or open for external clock		
$\mathrm{V}_{\text {DD }}$	+5 -volt power input		
$V_{S S}$	Ground		

Block Diagram

FUNCTIONAL DESCRIPTION

Central Processing Unit

The central processing unit (CPU) of the μ PD78352 family features 16 -bit arithmetic including 16×16-bit multiply, both unsigned and signed, and 32×16-bit unsigned divide (producing a 32 -bit quotient and a 16-bit remainder). The signed multiply executes in 1.12 $\mu \mathrm{s}$ and the divide in $3.44 \mu \mathrm{~s}$ at 25 MHz (0.875 and 2.69 $\mu \mathrm{s}$, respectively, for μ PD78352A/P352 at 32 MHz).
Also, a multiply-and-accumulate instruction, "MACW n ," performs a signed multiply on factors from a pair of tables and sums the results in the 32-bit register AXDE. The total execution time for 10 terms is $17.2 \mu \mathrm{~s}$ at 25 MHz for the $\mu \mathrm{PD} 78350$ and $13.44 \mu \mathrm{~s}$ at 32 MHz for the μ PD78352A/P352.
A CALLT vector table and a CALLF area decrease the number of bytes in the call instructions for commonly used subroutines. A 1-byte call instruction can access up to 32 subroutines through their addresses in the CALLTvector table. A 2 -byte call instruction can access any routine beginning in a specific CALLF area.
The internal system clock (fcLK) is generated by dividing the oscillator frequency by 2 . Therefore, at the maximum oscillator frequency of 25 MHz for the μ PD78350, the clock is 12.5 MHz . Since instructions execute in two or more cycles, the minimum instruction time is 160 ns . For the μ PD78352A/P352 running at 32 MHz , the clock is 16 MHz and the minimum instruction time is 125 ns .

Internal RAM

The μ PD78352 family has total of 640 bytes of internal RAM. The upper 256 -byte area ($\mathrm{FE} 00 \mathrm{H}-\mathrm{FEFFH}$) features high-speed access of one or two internal system clocks per word of data depending on the addressing mode and is known as "Main RAM." The remainder ($\mathrm{FC8OH}-$ FDFFH) is accessed at the same speed as external memory (1 byte per three internal system clocks) and is known as "Peripheral RAM." The general register banks and the macro service control words are stored in Main RAM. The remainder of Main RAM and any unused register bank locations are available for general storage.

Main RAM Access Speed

| Access Mode | Internal System Clocks (fCLK) |
| :--- | :---: | :---: |
| Memory access | 2 |
| Saddr access | 1 |
| Register access | 1 |

Internal Program Memory

The μ PD78352A contains 32K bytes of mask ROM; μ PD78P352 contains 32K bytes of UV EPROM or onetime programmable ROM. Instructions are fetched from this program memory at a maximum rate of 1 byte every two internal system clocks. The μ PD78350 does not have internal program memory.

External Memory

The μ PD78352 family has a 64K-byte address space. The μ PD78352A/P352 can access $0,256,4 \mathrm{~K}, 16 \mathrm{~K}$, or 32K bytes of external memory in the area from 8000 H to FDFFH. External memory can be either ROM, RAM, or peripheral as required. The μ PD78352A/P352 has an 8 -bit wide external data bus and a 16 -bit wide external address bus. The low-order 8 bits of the address bus are multiplexed to provide the 8 -bit data bus at $1 / O$ port 4.

High-order address bits are taken from port 5 as required. Address latch, read, and write strobes are also provided. In the μ PD78352A/P352, the memory mode register (MM) controls the size of the external memory It can be programmed to use $0,4,6$, or 8 bits from port 5 for the high-order address. Any remaining port 5 bits can be used for $1 / O$.
The μ PD78350 does not have ports 4 and 5. It has eight dedicated high-order address lines and eight dedicated address/data lines. All memory below address FC8OH must be external, and the MM register is not used.
The programmable wait control register (PWC) allows the programmer to specify one or two additional wait states if they are required for slow-speed memory or external peripheral devices. These wait states for internal and external memory are specified independently in 16K-blocks. If additional wait states are required, an external WAIT pin is provided.
In addition, by using the AWO and AW1 bits of the PWC register, the width of the ASTB signal can be increased by one cycle to allow more precharge time for dynamic RAMs or more address decoding time. This address wait signal can be enabled in 32 K -byte blocks. See figure 1.

Figure 1．Programmed Wait Control Register

＊Data in the SFR external access area，FFDOH－FFDFH，cannot be fetched．

32K Memory Block	Wait Control Register Bits		Address Wait
$0000 \mathrm{H}-7 \mathrm{FFFH}$	AW0	0	Disabled
		1	Enabled
	AW1	0	Disabled
		1	Enabled

Program Fetch

The μ PD78352 family devices allow opcode fetch in the area between 0000 H and FDFFH; they contain a 5 -byte instruction prefetch queue.The bus control unit can fetch an instruction byte from memory during cycles in which the execution unit is not using the memory bus. If the instruction byte is fetched from on-chip memory, two internal system clocks are required for each byte, and the queue can hold 5 bytes. If the instruction is fetched from external memory, three internal system clocks are required for each byte, and the queue can hold 3 bytes. For programs located in internal memory, the PWC register also can be programmed to allow 1 byte to be fetched every two, three, four, or five internal system clocks.

CPU Control Registers

Program Counter. The program counter is a 16 -bit register that holds the address of the next instruction to be executed. After reset line goes high, the program counter is loaded with the address stored in locations 0000 H and 0001 H .

Stack Pointer. The stack pointer is a 16 -bit register that holds the address of the last item pushed onto the stack. It is decremented before new data is pushed onto the stack and incremented after data is popped off the stack.
CPU Control Word. The CPU control word (CCW) selects the origin of the interrupt vector and CALLT tables. If the TPF bit (bit 1) is zero, the origin is 0000 H ; if the TPF bit is one, the origin is 8000 H . The CCW is a special function register located at address FFC1H. The addresses of the vectors for the RESET input, operation-code trap, and BRK instruction are fixed at $0000 \mathrm{H}, 003 \mathrm{CH}$, and 003 EH , respectively, and are not altered by the TPF bit.
Program Status Word. The program status word (PSW) is a 16 -bit register containing flags that are set or reset depending on the results of an instruction. This register can be written to or read from 8 bits at a time. The high-order 8 bits are called the PSWH and the low-order 8 bits are called the PSWL. The individual flags can also be manipulated on a bit-by-bit basis. The assignment of PSW bits follows.

UF	User flag
RBS2-RBSO	Active register bank number
S	Sign flag (1 if last result was negative)
Z	Zero flag (1 if last result was zero)
RSS	Register set selection flag
AC	Auxiliary carry flag (carry out of 3 bit)
IE	Interrupt enableflag
P/N	Parity or arithmetic overflow flag
CY	Carry bit (or 1-bit accumulator for logic)

General Registers

There are sixteen 8 -bit general registers, which can also be paired to function as 16 -bit registers. A complete set of 16 registers is mapped into each of eight program-selectable register banks stored in Main RAM. Three bits in the PSW specify the active register bank.
Registers have functional names (like A, X, B, C for 8-bit registers and $A X, B C$ for 16-bit registers) and absolute names (like R1, RO, R3, R2 for 8 -bit registers and RPO, RP1 for 16 -bit registers). Each instruction determines whether a register is referred to by functional or absolute name and whether it is 8 or 16 bits.

Two possible relationships may exist between the absolute and functional names of the first four register pairs. The RSS bit in the PSW determines which of these is active at any time. The effect is that the accumulator and counter registers can be saved, and a new set can be specified by toggling the RSS bit. Figure 2 illustrates the general register configuration.

Figure 2. General Registers
RE80H

Addressing

The μ PD78352 family features 1 -byte addressing of both the special function registers and the portion of on-chip RAM from FE20H to FEFFH. The 1-byte sfr addressing accesses the entire SFR area, while the 1-byte saddr addressing accesses the first 32 bytes of the SFR area and 224 bytes of the Main RAM.
The 16-bit SFRs and words of memory in these areas can be addressed by 1-byte saddrp addressing, which is valid for even addresses only. Since many instructions use 1-byte addressing, access to these locations is almost as fast and as versatile as access to the general registers.

There are nine addressing modes for data in main memory: direct, register, register indirect with autoincrement or autodecrement, saddr, saddr indirect, SFR, based, indexed, and based indexed. There are also 8 -bit and 16 -bit immediate operands. Figure 3 is the memory map of the μ PD78352 family.

Figure 3. Memory Map

Special Function Registers

The input/output ports, timers, capture and compare registers, and mode and control registers for both the peripherals and the CPU are collectively known as special function registers. They are all memorymapped between FFOOH and FFFFH and can be accessed either by main memory addressing or by 1-byte SFR addressing. All can be read under program control, and most can also be written. They are either 8 or

16 bits, as required, and many of the 8-bit registers are capable of single-bit access as well.
Locations FFDOH through FFDFH are known as the external access area. Registers in external circuitry, interfaced and mapped to these addresses, can be addressed with SFR addressing. Table 1 lists the special function registers.

Table 1. Special Function Registers

Address	Register (SFR)	Symbol	RNW	Access Units (Bits)			State After Reset
				1	8	16	
FFOOH	Porto	PO	RW	x	x	-	Undefined
FFO1H	Port 1	P1	RW	x	\times	-	Undefined
FF02H	Port 2	P2	R	x	x	-	Undefined
FFO3H	Port 3	P3	AW	x	x	-	Undefined
FF04H	Port 4 (Note 1)	P4	RW	x	x	-	Undefined
FFOSH	Port 5 (Note 1)	P5	R/W	x	x	-	Undofined
FFO9H	Port 9 (Note 1)	P9	RWW	x	\times	-	Undefined
FF10H-FF11H	Compare register 00	CTOO	RNW	-	-	x	Undefined
FF12H-FF13H	Compare register 01	CTO1	RW	-	-	x	Undefined
FF14H-FF15H	Compare register 10	CM10	RNW	-	-	x	Undefined
FF1EH-FF1FH	Compare register 20	CM2O	BM	-	-	x	Undefined
FF20H	Port 0 mode register	PMO	RN	x	x	-	FFH
FF21H	Port 1 mode register	PM1	AN	x	x	-	FFH
FF23H	Port 3 mode register	PM3	RW	x	\times	-	FFH
FF25H	Port 5 mode register (Note 1)	PM5	RN	x	x	-	FFH
FF29H	Port 9 mode register (Note 1)	PM9	RNW	x	x	-	xFH
FF30H-FF31H	Timer register 0	TMO	R	-	-	x	OOH
FF32H-FF33H	Timer register 1	TM1	R	-	-	x	OOH
FF34H-FF35H	Timer register 2	TM2	R	-	-	x	OOH
FF38H	Timer control register 0	TMC0	RW	x	x	-	OOH
FF39H	Timer control register 1	TMC1	R/W	x	x	-	OOH
FF3CH	External interrupt mode register 0	NTMO	R/W	x	x	-	00 H
FF3DH	External interrupt mode register 1	NTM1	RNW	x	x	-	00\%
FF43H	Port 3 mode control register 0	PMC3	RW	x	x	-	00H
FF62H	Port read control register	PRDC	RNW	x	x	-	OOH
FF64H	PWM control register	PWMC	RNW	x	x	-	OOH
FF66H	PWM buffer register 0	PWMO	RNI	x	x	-	Undefined
FF6EH	PWM buffer register 1	PWM1	RW	x	x	-	Undefined
$\overline{\mathrm{FFABH}}$	In-service priority register	ISPR	R	x	x	-	OOH
FFAAH	Interrupt mode control register	MC	R/W	x	x	-	80 H
FFACH	Interrupt mask flag register	MKL	RW	x	\times	-	7FH

Table 1. Special Function Registers (cont)

Address	Register (SFR)	Symbol	R/W	Access Units (Bits)			State After Reset
				1	8	16	
FFACH-FFADH	Interrupt mask flag register (Note 2)	MK	RNW	-	-	x	xx7FH
FFCOH	Standby control register (Note 3)	STBC	RNW	-	x	-	$0000 \times 000 \mathrm{~B}$
FFCiH	CPU control word	CCW	R/W	X	x	-	OOH
FFC2H	Watchdog timer mode register (Note 3)	WDM	RNW	-	x	-	OOH
FFCAH	Memory expansion mode register	MM	RNW	x	x	-	0 OH
FFC6H-FFC7H	Programmable wait control register	PWC	RM	-	-	x	COAAH
FFDOH-FFDFH	External access area	-	RNW	x	x	-	Undefined
FFEOH	Interrupt control register (INTOV)	OVIC	R/W	x	x	-	43 H
FFE1H	Interrupt control register (INTPO)	PICO	RW	X	X	-	43 H
FFE2H	Interrupt control register (NTP1)	PIC1	RNW	x	x	-	43H
FFE3H	Interrupt control register (INTCM10)	CMIG10	RNW	x	x	-	43 H
FFE4H	Interrupt control register (INTCM20)	CMIC20	RNW	x	X	-	43 H
FFE5H	Interrupt control register (INTP2)	PIC2	RNW	X	X	-	43 H
FFE6H	Interrupt control register (INTP3)	PIC3	RNW	x	X	-	43 H

Notes:
(1) μ PD78352A/P352 only.
(2) Used only when a word is accessed by an instruction with the sfrp operand.

Input/Output Ports

The μ PD78350 has four I/O ports providing a total of 30 I/O lines. The μ PD78352A/P352 have an additional three I/O ports for a total of $50 \mathrm{I} / \mathrm{O}$ lines.
Ports $\mathrm{PO}, \mathrm{P} 1$, and P 3 are 8 -bit input/output ports and P 2 is a 6 -bit input port. All the bits in P0, P1, and P3 can be individually selected for either input or output using port mode registers PMO, PM1, and PM3. Bits P_{0} and $\mathrm{P3}_{1}$ can also be programmed for use as PWM outputs PWM0 and PWM1 by using port 3 mode control register PMC3.
Port P2 functions only in the control mode as input pins for the NMI signal, the INTPO to INTP3 interrupt signals, and the external count clock for timer 1 (TI). However, any masked interrupt automatically becomes an input
(3) These are protected registers, which can be written by a special instruction only.

Figure 4. I/O Circuits
Type 1. WAST, mODEO, MODE1

The three additional input/output ports in the μ PD78352A/P352 are ports P4, P5, and P9. These ports are available if external memory or memory-mapped external circuitry is not being used. Port 4 is shared with the low-order address/data bus ($A D_{0}$ to $A D_{7}$) and is byte-selectable for input or output. Port 5 is shared with the high-order address bus (A_{8} to A_{15}). Depending on the amount of external memory used, either $8,6,4$, or 0 bits are available for bit-selectable I/O. Port 9 is a 4 -bit, bit-selectable I/O port. Two of its pins are shared with the read and write strobes.

Timers

The μ PD78352 family has three 16 -bit timers. Two of them count only the internal system clock; the third counts either the internal system clock or external events. Refer to the block diagram, figure 5 .
Timer 0 is a 16 -bit, free-running counter that counts the internal system clock (fclk/8) and generates an interrupt request (INTOV) when it overflows. It also has two associated capture registers, CT00 and CT01. The timer value can be captured in synchronization with external interrupt lines INTP0 and INTP1, respectively. These lines can be programmed to trigger interrupts as well.

Timer 1 is a 16 -bit counter serving as an interval timer or an event counter. It can count either the internal system clock ($\mathrm{f}_{\mathrm{CLK}} / 8$) or external events sensed on the Tiline. It has an associated comparator register, CM10. When the counter contents match the CM10 contents, the counter is cleared to 0 , and an interrupt request (INTCM10) is generated. The counter continues to count until disabled by software.

Timer 2 is a 16-bit counter that serves as an interval timer. It can be programmed to count the internal system clock (folk/4 or $\mathrm{f}_{\mathrm{clk}} / 8$). It also has an associated comparator register, CM20. When the counter contents match the CM20 contents, the counter is cleared to 0 and an interrupt request (INTCM20) is generated. The counter continues to count until disabled by software.

Figure 5. Timers Block Diagram

Pulse-Width Modulated Outputs

The μ PD78352 family has two high-speed, pulse-width modulated (PWM) outputs. A single 8-bit, free-running counter counts the internal system clock fcLk/2 and serves both outputs. For the μ PD78350 running at 25 MHz (fclK $=12.5 \mathrm{MHz}$), the resolution is 160 ns and the repetition rate is 24.4 kHz . For the μ PD78352A/P352 running at 32 MHz ($\mathrm{f}_{\mathrm{cLK}}=16 \mathrm{MHz}$), the resolution is 125 ns and the repetition rate is 31.25 kHz .
The polarity of each output can be selected under program control. Whenever the counter overflows, the CMPO and CMP1 registers are loaded from their respective PWM buffer registers and each output becomes active. When the counter value matches the value in the associated compare register, that output goes inactive. The two PWM outputs, PWMO and PWM1, share pins with port 3 bits 0 and 1 , respectively.

Figure 6. Pulse-Width Modulated Outputs

Interrupts

The μ PD78352 family has seven maskable hardware interrupt sources: four external and three internal. The four external maskable interrupts share pins with port 2. Two of them, INTPO and INTP1, can also be used to trigger capture events in registers CT00 and CT01
associated with timer 0 . In addition, there are two nonmaskable interrupts, three software interrupts, and reset. The software interrupts, generated by the BRK or BRKCS instruction and the operation code trap, are not maskable. See table 2.

Table 2. Interrupt Sources

| Type of |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Request |

Note:
(1) Initiates context switch

Interrupt Servicing

The μ PD78352 family provides four levels of programmable hardware priority control and three different methods of handling maskable interrupt requests: standard vectoring, context switching, and macro service. The programmer can choose the priority and mode of servicing each maskable interrupt by using the interrupt control registers.

Interrupt Control Registers

The μ PD78352 family has 10 interrupt control registers. Each maskable interrupt request has its own control register, which includes bits to specify interrupt request, interrupt mask, macro service enable, context switch enable, and priority. Priorities range from 0 (highest) to 3 . See figure 7 .
There is also a mask flag register, MKL, with a bit for each maskable interrupt. Since each interrupt has two mask bits, the masking of the interrupt is the "or" function of those two bits.

Interrupt mode control register IMC can be used to enable or disable nesting of interrupts set to the lowest priority level (level 3). Inservice priority register ISPR is used by the hardware to hold the priority level of the interrupt request currently being serviced. It is manipulated by hardware only, but it can be read by software.

Finally, the IE bit of the program status word also is used to control the interrupts. If the IE bit is 0 , all maskable interrupts, but not macro service, are disabled. The IE bit can be set or cleared by the EI or DI instruction, respectively, or by direct writing to the PSW. The IE bit is cleared each time an interrupt is accepted.

Figure 7. Interrupt Control Register (xxICx)

7	6	5	4
xxIFxx	xxMKxx	xxISMxx	xxCSExx
3	2	1	0
0	0	xxPRx1	$x \times P R x 0$
xxIFxx	Interrupt Request Flag		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No interrupt request Interrupt request received		
xxMKxx	Interrupt Mask Flag		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	interrupt request enabled interrupt will be pending		
xx1SMxx	Macro Service Enable		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Software service Macro service		
xxCSExx	Context Switch Enable		
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Vector service Context switch		
xxPRx1	xxPRx0 Priority Specification		
0	0 Priority 0 (highest)		
0	1 Priority 1		
1	$0 \quad$ Priority 2		
1	1 Priority 3		

Interrupt Priority

The two nonmaskable interrupts, NMI and INTWDT, have priority over all others. Their priority relative to each other is under program control.

Four hardware-controlled priority levels are available for the maskable interrupts. Any one of the four levels can be assigned by software to each of the maskable interrupt lines. Interrupt requests of a priority higher that the processor's current priority level are accepted; requests of the same or lower priority are held pending until the processor's priority state is lowered by a return instruction from the current service routine.

By setting the PRSL bit of the IMC register to zero, it is possible to specify in software that level 3 interrupts (the lowest level) can be accepted when the processor is operating at level 3 . This nesting within a level applies to level 3 only.
Interrupt requests programmed to be handled by macro service have priority over all software interrupt service regardless of the assigned priority level, and
macro service requests are accepted even when the interrupt enable bit in the PSW is set to the disable state. See figure 8.
The "Default Priorities" listed in table 2 are fixed by hardware; they are effective only when it is necessary to choose between two interrupt requests of the same software-assigned pricrity. For example, the default priorities would be used after the completion of a high-priority routine if two interrupts of the same lower priority were pending.
Software interrupts, the BRK and BRKCS instructions, and the operation code trap are executed regardless of the processor's priority level and the state of the IE bit. They do not alter the processor's pricrity level.

Figure 8. Interrupt Service Sequence

Vectored Interrupt

When vectored interrupt is specified for a given interrupt request, (1) the program status word and the program counter are saved on the stack, (2) the processor's priority is raised to that specified for the interrupt, (3) the IE bit in the PSW is set to zero, and (4) the routine whose address is in the interrupt vector table is entered. At completion of the service routine, the RETI instruction (or RETB instruction for software interrupts) reverses the process, and the $\mu \mathrm{PD} 78352$ family device resumes the interrupted routine.

Context Switch

When context switching (figure 9) is specified for a given interrupt, the active register bank is changed to the register bank specified by the three low-order bits of the word in the interrupt vector table. The program counter is loaded from RP2 of the new register bank,

μ PD78352 Family

the old program counter and program status word are saved in RP2 and RP3 of the new register bank, and the IE bit in the PSW is set to zero.

At completion of the service routine, the RETCS instruction for routines entered from hardware requests, or the RETCSB instruction for routines entered from the BRKCS instruction, reverse the process. The old program counter and program status word are restored from RP2 and RP3 of the new register bank. The entry address of the service routine, which must be specified in the 16 -bit immediate operand of these return instructions, is stored again in RP2.

Figure 9. Context Switching and Return

Macro Service

When macro service is specified for a given interrupt, the macro service hardware temporarily stops the executing program and transfers data between the special function register area and the memory space. Control is then returned to the executing program, providing a completely transparent method of interrupt service. Macro service significantly improves response time and makes it unnecessary to save any registers.

For each request on the interrupt line, one operation is performed, and an 8-bit counter is decremented. When
the counter reaches 0 , a software service routine is entered according to its specified priority. Either vectored interrupt or context switch can be specified for entry to this routine, which is known as the macro service completion routine.
Macro service is provided for all of the maskable interrupt requests, and each has a specific macro service control word stored in Main RAM. The function to be performed is specified in the control word.
The μ PD78352 family provides five different macro service functions.

Function	Description EvTCNT by incrementing or decrementing the macro service counter．When the counter reaches 00H，the software service routine is entered．
BLKTRS	Block transfer．Transfers a byte or word of data in either direction between a specified special function register and a buffer in Main RAM（FExx）．
BLKTRS－P \quadBlock transfer with memory pointer． Transfers a byte or word of data in either direction between a specified special function register and a buffer anywhere in the 64K－byte address space．	
Data difference．Stores the difference between the current value of a specified 16－bit special function register and its previous value in a word buffer in Main RAM（FExx）．	
DTADIF－PData difference with memory pointer． Stores the difference between the current value of a specified 16－bit special function register and its previous value in a word buffer anywhere in the 64K－byte address space．	

Standby Modes

The standby modes，HALT and STOP，reduce power consumption when CPU action is not required．In HALT mode，the CPU is stopped but the system clock con－ tinues to run．The HALT mode is released by any unmasked interrupt，an external NMI，or an external reset pulse．In STOP mode，both the CPU and the system clock are stopped，further minimizing power consumption．The STOP mode is released by either an external reset pulse or an external NMI．

The HALT and STOP modes are entered by program－ ming the standby control register STBC．This register is a protected location and can be written to only by a special instruction．If the third and fourth bytes of the instruction are not complements of each other，the data is not written and an operation code trap interrupt occurs．

Watchdog Timer

The watchdog timer protects against inadvertent pro－ gram loops．A nonmaskable interrupt occurs if the timer is not reset by the program before it overflows．At the same time，the watchdog timer output pin，WDTO， goes active low for a period of 32 system clocks．The WDTO can be connected to the RESET pin or used to control external circuitry．Three program－selectable intervals are available： $10.5,41.9$ ，and 167.8 ms at 25 $\mathrm{MHz} ; 8.2,32.8$ ，and 131.1 ms at 32 MHz ．
Once started，the timer can be stopped only by an external reset．Watchdog timer mode register WDM is used to select the time interval，to set the relative priority of the watchdog timer interrupt and NMI，and to clear the timer．This register is a protected location and can be written to only by a special instruction．If the third and fourth bytes of the instruction are not com－ plements of each other，the data is not written and an operation code trap interrupt occurs．

External Reset

The μ PD78352 family is reset by taking the $\overline{\text { RESET }}$ pin low．The reset circuit contains a noise filter to protect against spurious system resets caused by noise．On power－up，the RESET pin must remain low until the power supply reaches its operating voltage and the oscillator has stabilized．During reset，the program counter is loaded with the address contained in the reset vector table（addresses $0000 \mathrm{H}, 0001 \mathrm{H}$ ）；program execution starts at that address upon the RESET pin going high．While RESET is low，all external lines except WDTO，CLKOUT，$V_{S S}, V_{D D}, X 1$ ，and $X 2$ are in the high－impedance state．

ELECTRICAL SPECIFICATIONS

Note: Specifications are preliminary for μ PD78352A and final for μ PD78350/P352.

Absolute Maximum Ratings

$T_{A}=25^{\circ} \mathrm{C}$

Supply voltage, V_{DD}	-0.5 to +7.0 V
Supply voltage, V_{PP}	-0.5 to +13.5 V
Input voltage, V_{l}	
Except $\mathrm{F2} / \mathrm{NMMI}$ (A9) of μ PD78P352	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$\mathrm{P2}_{0} / \mathrm{NMI}(\mathrm{A} 9)$ of $\mu \mathrm{PD} 78 \mathrm{P} 352$	-0.5 to +13.5 V
Output voltage, V_{0}	-0.5 to $V_{\text {DD }}+0.5 \mathrm{~V}$
Output current, low; lol	
Each output pin	4.0 mA
Total	100 mA
Output current, high; l_{OH}	
Each output pin	-1.0 mA
Total	-20 mA
Operating temperature, $\mathrm{T}_{\text {OPT }}$	-10 to $+70^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{TSTG}_{\text {S }}$	-65 to $+150^{\circ} \mathrm{C}$

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC characteristics.

Capacitance

$T_{A}=25^{\circ} \mathrm{C} ; V_{D D}=V_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Max	Unit	Conditions
Input pin capacitance	C_{1}	20	pF	$\mathrm{f}=1 \mathrm{MHz} ;$ unmeasured pins returned to 0 V
Output pin capacitance	C_{O}	20	pF	
M O pin capacitance	C_{\wp}	20	pF	

Oscillator Conditions

$T_{A}=-10$ to $70^{\circ} \mathrm{C} ; V_{D D}=+5 \mathrm{~V} \pm 10 \%$

Oscillator	Parameter	Symbol	μ PD78350		μ PD78352A/P352		Unit
			Min	Max	Min	Max	
Ceramic resonator or crystal	Oscillation frequency	f_{XX}	8	25	8	32	MHz
External clock	X1 input frequency	f_{X}	8	25	8	32	MHz
	Xi clock cycle time	$\mathrm{tcyx}^{\text {che }}$	40	125	31.25	125	ns
	X1 input rise/fall time	${ }_{\text {t }}^{\text {Pr }}$, txF	0	10	0	10	ns
	X1 input high/low level width	${ }_{\text {W }}{ }^{\text {HH}}$, $t_{\text {WXL }}$	15	60	10	60	ns

External Clock

DC Characteristics

$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Input voltage, low	$V_{\text {IL }}$	0		0.8	V	
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	2.2			V	(Note 1)
	$\mathrm{V}_{\mathrm{iH} 2}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$			V	(Note 2)
Output voltage, low	$\mathrm{V}_{\text {OL }}$			0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output voltage, high	V_{OH}	$V_{D D}-1.0$			V	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Input leakage current	lil			± 10	$\mu \mathrm{A}$	$V_{1}=0$ to $V_{D D}$
Output leakage current	L_{L}			± 10	$\mu \mathrm{A}$	$V_{O}=0$ to $V_{D D}$
V_{DD} supply current	$\mathrm{l}_{\text {DD1 }}$		50	90	mA	Operating mode, μ PD78350
			60	87	mA	Operating mode, μ PD78352A; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
			80	120	mA	Operating mode, μ PD78P352; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
	$\mathrm{I}_{\mathrm{DD} 2}$		25	40	mA	HALT mode, μ PD78350; $f_{\mathrm{XX}}=25 \mathrm{MHz}$
			20	30	mA	HALT mode, μ PD78352A; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
			35	50	mA	HALT mode, μ PD78P352; $\mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz}$
Data retention voltage	$\mathrm{V}_{\text {DDaR }}$	2.5			V	STOP mode
Data retention current	IDDDA		2	10	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\mathrm{DDDR}}=2.5 \mathrm{~V}$
			10	50	$\mu \mathrm{A}$	STOP mode; $\mathrm{V}_{\text {DDDR }}=5.0 \mathrm{~V} \pm 10 \%$

Notes:

(1) All except pins in Note 2.

Power Consumption, 78352A

N E C ELECTRONICS INC
 6TE D 6427525 003928ь
 7TO CNECE
 μ PD78352 Family

AC Characteristics

$T_{A}=-10$ to $+70^{\circ} \mathrm{C} ; V_{D D}=+5.0 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

Parameter	Symbol	$\begin{gathered} \mu \mathrm{PD} 78350 \\ \mathrm{f}_{\mathrm{XX}}=25 \mathrm{MHz} \end{gathered}$		$\begin{gathered} \mu \text { PD78352A/P352 } \\ \mathrm{f}_{\mathrm{XX}}=32 \mathrm{MHz} \end{gathered}$		Unit	Conditions
		Min	Max	Min	Max		

External Memory Read/Write Operation

System clock cycle time (Note 1)	${ }^{\text {t }}$ CYK	80	250	62.5	250	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Address setup time to ASTB \downarrow	$\mathrm{t}_{\text {SAST }}$	16		7		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2)
Address hold after ASTB \downarrow	$t_{\text {HSTA }}$	26		11		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\operatorname{RD}} \downarrow$ to address floating	$\mathrm{t}_{\text {FRA }}$		0		0	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Address to data input valid	$t_{\text {DAID }}$		144		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Notes 2, 3)
$\overline{\mathrm{RD}} \downarrow$ to data input valid	$t_{\text {DRID }}$		76		49	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
ASTB \downarrow to $\overline{\text { RD }}+$ delay time	$t_{\text {DSTR }}$	24		15		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Data hold time from $\overline{\mathrm{R}}{ }^{\dagger}$	$\mathrm{t}_{\text {HRID }}$	0		0		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\mathrm{RD}} \uparrow$ to address active	$\mathrm{t}_{\text {DRA }}$	26		25		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
RD width low	$t_{\text {WRL }}$	90		63		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}($ Note 3)
ASTB width, high	${ }_{\text {W WSTH }}$	23		14		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2)
$\overline{\text { WR }}$ to data output	${ }_{\text {t }}$ WOOD		29		21	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
ASTB \downarrow to $\overline{W R} \downarrow$ delay	${ }^{\text {d DSTW }}$	24		15		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Data setup time to $\overline{W R} \uparrow$	tsonw	75		57		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
Data hold time after WR \uparrow	$\mathrm{t}_{\text {HWOD }}$	8		8		ns	$C_{L}=100 \mathrm{pF}$
WR width, low	$t_{\text {wWL }}$	90		57		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 3)
WAIT setup time from address	$t_{\text {SAWT }}$		-		107	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2, 4)
$\overline{\overline{\text { WAIT }}}$ setup time from $\overline{\mathrm{RD}} \downarrow$ or $\overline{\mathrm{WR}} \downarrow$	tsplwhy		-		37	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 4)
WAIT hold time from address	${ }_{\text {thawt }}$	-		149		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 2, 4)
$\overline{\text { WAIT }}$ hold time from $\overline{\mathrm{RD}} \downarrow$ or $\overline{\mathrm{WR}} \downarrow$	$t_{\text {HRWRY }}$	-		80		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Note 4)
ASTB \uparrow delay time from $\overline{\mathrm{WR}} \uparrow$	${ }_{\text {t }}$ WST	110		78		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Address to $\overline{\mathrm{RD}} \downarrow$ or $\overline{\mathrm{WR}} \downarrow$ delay	t Darw	89			69	ns	$C_{L}=100 \mathrm{pF}$

Other Operations

NMI high/low level width	${ }^{\text {WhNIH }}$ twNIL	2.5	2.0	$\mu \mathrm{s}$
INTPO high/low level width	${ }^{\text {WWIOH, }}$, WIOL	640	500	ns
INTP1 high/low level width	${ }^{\text {W/W1H, }}$ W W/1L	640	500	ns
INTP2 high/low level width	${ }_{\text {W12H, }}{ }^{\text {W W12L }}$	640	500	ns
INTP3 high/low level width	$t_{\text {WI3H, }}{ }_{\text {W }}$ W13L	640	500	ns
RESET high/low level width	WWRSH, 'WRSL		2.0	$\mu \mathrm{s}$
Ti high/low level width	${ }_{\text {WTHH, }}$ WTIL	640	500	ns

Notes:

(1) toyk equals twice the perlod of the crystal or external clock input.
(3) No wait states
(2) No address wait
(4) One external wait state and one internal wait state

N E C ELECTRONICS INC

Timing Dependent on tcyk

Symbol	Calculation Formula	Min/Max	Unit
${ }^{\text {tSAST }}$	(0.5 + a) T-24	Min	ns
${ }_{\text {HSTA }}$	$\begin{aligned} & 0.5 T-14 \\ & 0.5 T-20 \text { (Note 1) } \end{aligned}$	Min	ns
$\mathbf{t w S T H}$	(0.5 + a) T-17	Min	ns
$\mathrm{t}_{\text {DSTR }}$	0.5T-16	Min	ns
twRL	$(1.5+n) T-30$	Min	ns
${ }^{\text {DAID }}$	$(2.5+a+n) T-56$	Max	ns
${ }_{\text {tarid }}$	$(1.5+n) T-44$	Max	ns
tora	$\begin{aligned} & 0.5 \mathrm{~T}-14 \\ & 0.5 \mathrm{~T}-6 \text { (Note } 1) \end{aligned}$	Min	ns
$t_{\text {DSTW }}$	0.5T-16	Min	ns
${ }^{\text {twWL }}$	$\begin{aligned} & (1.5+n) T-30 \\ & (1.5+n) T-36(\text { Note } 1) \end{aligned}$	Min	ns
${ }^{\text {t }}$ DWOD	0.5T-10	Max	ns
${ }^{\text {t SODW }}$	$(1+n) T-5$	Min	ns
${ }^{\text {t }}$ SAWT	(a+n)T-18 (Note 1)	Max	ns
${ }^{\text {thawt }}$	(0.5 + a + n) T-7 (Note 1)	Min	ns
$t_{\text {SRWRY }}$	($\mathrm{n}-1$) $\mathrm{T}-25$ (Note 1)	Max	ns
$t_{\text {thavay }}$	($\mathrm{n}-0.5$) $\mathrm{T}-14$ (Note 1)	Min	ns
${ }^{\text {t DAR }}$ \%	$\begin{aligned} & (a+1) T+9 \\ & (a+1) T+7 \text { (Note 1) } \end{aligned}$	Max	ns
${ }_{\text {t }}$ WST	$\begin{aligned} & \text { 1.5T-10 } \\ & \text { 1.5T-15 (Note 1) } \end{aligned}$	Min	ns
$\mathrm{t}_{\text {Whor }}$	8 T	Min	ns
twol	8 T	Min	ns
${ }_{\text {twin }}$	8 T	Min	ns
${ }^{\text {tw/1L }}$	8 T	Min	ns
${ }^{\text {tw/2H }}$	$8 T$	Min	ns
twol	8 T	Min	ns
${ }^{\text {tivi3i }}$	8 T	Min	ns
tivi3L	$8 T$	Min	ns
${ }^{\text {twTiH }}$	8 T	Min	ns
twril	8 T	Min	ns

Notes:

(1) 78352A/P352 only
(2) $\mathrm{T}=\mathrm{t}_{\mathrm{CYK}}$ (ns)
(3) When an address wait is inserted, the value of letter "a" is 1 . Otherwise, it is 0 .
(4) Letter " n " is the number of wait cycles specified by the external wait pin WAIT and the PWC register.

AC Timing Test Points

Timing Waveforms

Read Operation

Timing Waveforms (cont)

Write Operation

Timing Waveforms（cont）

Interrupt Input

MMII		
INTPn		
$\mathrm{n}=0$ to 3		83C1－9462A

Reset Input

71 Input

PROM PROGRAMMING

The PROM in the μ PD78P352 is one－time programmable （OTP）or ultraviolet erasable（UV EPROM）．The 32，758x 8 －bit PROM has the programming characteristics of an NEC μ PD27C1001A，including both page and byte pro－ gramming modes．The MODEO $\mathrm{NPP}_{\mathrm{PP}}, \mathrm{MODE} 1_{1} \mathrm{P2}_{1}$ ，and RESET pins are used to place the μ PD78P352 into the PROM programmming mode．Table 3 shows the func－ tions of the μ PD78P352 pins in normal operating mode and PROM programming mode．

Table 3．Pin Functions During PROM Programming

Function	Normal Operating Mode	Programming Mode
Address input	$\begin{aligned} & \mathrm{PO}_{0}-\mathrm{P0}_{7}, \mathrm{P5}_{0}, \mathrm{P}_{0}, \\ & \mathrm{P5}_{1}-\mathrm{P5}_{7} \end{aligned}$	$\mathrm{A}_{0}-\mathrm{A}_{16}$
Data input	$\mathrm{P}_{0}-\mathrm{P}_{7}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Program pulse	Pl_{2}	$\overline{\text { PGM }}$
Chip enable	$\mathrm{P} 1_{1}$	$\overline{C E}$
Output enable	Pl_{0}	$\overrightarrow{O E}$
Program voltage	MODEO／VPP	MODEO／VPP
Mode voltage	$\frac{\text { MODE1, }}{\text { RESET }} \mathrm{P}_{1}$	$\frac{\text { MODE } 1, ~ P 2 ~}{\text { RESET }}$

PROM Programming Mode

When +6.5 V is applied to the $\mathrm{V}_{\mathrm{DD}} \mathrm{pin}$ and +12.5 V to the MODEONPP pin，the μ PD78P352 enters the PROM programming mode．Operation in this mode is deter－ mined by the setting of $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$ ，and $\overline{\mathrm{PGM}}$ pins as indicated in table 4.

Table 4．Operation Modes For Programming

Mode	MODE1	P2 ${ }_{1}$	RESET	$\overline{C E}$	$\overline{O E}$	PGM	MODEON $\mathrm{V}_{\text {PP }}$	V_{DD}	$\mathrm{D}_{0}-\mathrm{D}_{7}$
Page data latch	L	L	L	H	L	H	$+12.5 \mathrm{~V}$	$+6.5 \mathrm{~V}$	Data input
Page program	L	L	L	H	H	L	＋12．5V	$+6.5 \mathrm{~V}$	High impedance
Byte program	L	L	L	L	H	L	＋12．5V	$+6.5 \mathrm{~V}$	Data input
Program verify	L	L	L	L	L	H	＋12．5V	$+6.5 \mathrm{~V}$	Data output
Program inhibit	L	L	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	＋12．5 V	$+6.5 \mathrm{~V}$	High impedance
Read	L	L	L	L	L	H	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	Data output
Ouput disable	L	L	L	L	H	X	＋5．0 V	$+5.0 \mathrm{~V}$	High impedance
Standby	L	L	L	H	X	X	$+5.0 \mathrm{~V}$	$+5.0 \mathrm{~V}$	High impedance

X can be either H or L ．

Figure 10．Pin Functions in μ PD78P352 PROM Programming Mode

[^0]
PROM Byte Programming Procedure

Data can be written to the PROM one byte at a time by the following procedure．
（1）Set the pins not used for programming as indicated in figure 10 ．Set MODEO $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1， $\mathrm{P} 2_{1}$ ，and RESET pins to 0 V ．The CE， $\overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high．
（2）Supply +6.5 V to V_{DD} pin and +12.5 V to MODE0！ VPp pin．Set $\overline{C E}$ pin low and $\overline{O E}$ pin high．
（3）Provide initial address to pins $A_{0}-A_{16}$ ．
（4）Provide write data．
（5）Input a $0.1-\mathrm{ms}$ program pulse（active low）to $\overline{\mathrm{PGM}}$ pin．
（6）Use verify mode（pulse $\overline{\mathrm{OE}}$ low）to test data．If data has been written，proceed to step 8；if not，repeat steps 4－6．If data cannot be written in 10 attempts， go to step 7.
（7）Classify PROM as defective and cease write oper－ ation．
（8）Increment address．
（9）Repeat steps $4-8$ until last address is programmed．

PROM Page Programming Procedure

Data can be written to the PROM four bytes at a time （page programming）by the following procedure．
（1）Set the pins not used for programming as indicated in figure 10 ．Set MODEO $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1， P_{1} ，and RESET pins to 0 V ．The CE， $\overline{\mathrm{OE}}$ ，and $\overline{\mathrm{PGM}}$ pins should be high．
（2）Supply +6.5 V to V_{DD} pin and +12.5 V to MODE0／ $V_{P P}$ pin．Set $\overline{C E}$ pin low．
（3）Provide initial page address to pins $A_{0}-A_{16}$ ．
（4）Provide first byte of data and latch it into PROM by pulsing $\overline{\mathrm{OE}}$ low．Continue incrementing address and latching in data until four bytes have been loaded．
（5）Input a $0.1-\mathrm{ms}$ program pulse（active low）to $\overline{\mathrm{PGM}}$ pin．Data bus $D_{0}-D_{7}$ is in a high－impedance state．
(6) Use verify mode (pulse $\overline{\mathrm{OE}}$ low four times) to test four bytes of data. If all four bytes of data have been written, proceed to step 8; if not, repeat steps 4-6. If data cannot be written in 10 attempts, go to step 7.
(7) Classify PROM as defective and cease write operation.
(8) Increment address.
(9) Repeat steps 4-8 untill last address is programmed.

PROM Read Procedure

The contents of the PROM can be read out to the external data bus ($D_{0}-D_{7}$) by the following procedure.
(1) Set the pins not used for programming as indicated in figure 10. Set MODEO $N_{P P}$ and $V_{D D}$ pins to +5 V and MODE1, $P 2_{1}$, and RESET pins to 0 V . The $\overline{\mathrm{CE}}$, $\overline{\mathrm{OE}}$, and $\overline{\mathrm{PGM}}$ pins should be high.
(2) Supply +5 V to V_{DD} pin and MODEONPP pin.
(3) Input address of data to be read to pins $\mathrm{A}_{0}-\mathrm{A}_{16}$.
(4) Put an active-low pulse on $\overline{C E}$ and $\overline{O E}$ pins.
(5) Data is output to pins $D_{0}-D_{7}$.

Program Erasure

The UV EPROM can be erased by exposing the window to light having a wavelength shorter than 400 nm , including ultraviolet, direct sunlight, and fluoresecent light. To prevent unintentional erasure, mask the window.

Typically, data is erased by $254-\mathrm{nm}$ ultraviolet rays. A minimum lighting level of $15 \mathrm{Ws} / \mathrm{cm}^{2}$ (ultraviolet ray intensity x exposure time) is required to completely erase the written data. Erasure by an ultraviolet lamp rated at $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ takes 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

DC Programming Characteristics
$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbod	Min	Typ	Max	Unit	Condition
High-level input voltage	$\mathrm{V}_{1 \mathrm{H}_{1}}$	2.2		$V_{D D}$	V	(Note 1)
	$\mathrm{V}_{1 \mathrm{H} 2}$	0.8 V DD		$V_{D D}$	V	(Note 2)
VDDP power supply voltage	$V_{\text {DDP }}$	6.25	6.5	6.75	V	Memory program mode
		4.5	5.0	5.5	V	Memory read mode
$\mathrm{V}_{P P}$ power supply voltage	V_{PP}	12.2	12.5	12.8	V	Memory program mode
			$\mathrm{V}_{\text {DD }}$		V	Memory read mode
VDDP power supply current	$\mathrm{I}_{\text {DDP }}$			30	mA	Memory program mode
				100	mA	Memory read mode
$V_{P P}$ power supply current	$I_{\text {PP }}$			50	mA	Memory program mode
			1	100	$\mu \mathrm{A}$	Memory read mode

Notes:

(1) All except pins in Note 2.
(2) Pins $\overline{\text { RESET }}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{P} 2_{n}, \mathrm{INTPn}, \mathrm{NM}$ I, and TI .

67E D
6427525
003タ29ヨ
930
NECE

AC Programming Characteristics

Parameter	Symbot	Min	Typ	Max	Unit	Conditions
Byte Programming Mode						
Address setup time to $\overline{\mathrm{FGM}} \downarrow$	$t_{\text {AS }}$	2			$\mu \mathrm{s}$	
$\overline{\mathrm{CE}}$ setup time to $\overline{\mathrm{PGM}} \downarrow$	tces	2			$\mu \mathrm{s}$	
Input data setup time to $\overline{\mathrm{PGM}} \downarrow$	${ }^{\text {t }}$ S	2			$\mu \mathrm{s}$	
Address hold time after $\overline{\mathrm{OE}} \uparrow$	${ }^{\text {t }}$ A	2			$\mu \mathrm{s}$	
Input data hold time after $\overline{\text { PGM }} \uparrow$	${ }^{\text {t }}$ D	2			$\mu \mathrm{s}$	
Output data hold time after $\overline{O E} \uparrow$	${ }^{\text {t }}$ D	0		130	ns	
$\mathrm{V}_{\text {PP }}$ setup time before $\overline{\text { PGM }} \downarrow$	tVPS	2			$\mu \mathrm{s}$	
$V_{\text {DD }}$ setup time before $\overline{\text { PGM }} \downarrow$	VDS	2			$\mu \mathrm{s}$	
Program pulse width	tpun	0.095	0.1	0.105	ms	
Data to $\overline{\mathrm{OE}} \downarrow$ delay time	toes	2			$\mu \mathrm{s}$	
$\overline{\mathrm{OE}} \downarrow$ to data output time	toe			150	ns	

Page Programming Mode

Address setup time to $\overline{O E}+$	$t_{\text {AS }}$	2			μs
$\overline{\mathrm{CE}}$ setup time to $\overline{\mathrm{OE}} \downarrow$	$t_{\text {CES }}$	2			$\mu \mathrm{s}$
Input data setup time to $\overline{O E} \downarrow$	$\mathrm{t}_{\text {DS }}$	2			$\mu \mathrm{s}$
Address hold time from $\overline{\mathrm{OE}} \uparrow$	${ }^{t_{\text {AH }}}$	2			$\mu \mathrm{s}$
	$t_{\text {AHL }}$	2			$\mu \mathrm{s}$
	$t_{\text {AHV }}$	0			$\mu \mathrm{s}$
Input data hold time after $\overline{\mathrm{OE}} \uparrow$	${ }_{\text {DH }}$	2			$\mu \mathrm{s}$
Output data hold time after $\overline{\mathrm{OE}} \uparrow$	t_{DF}	0		130	ns
$\mathrm{V}_{\text {PP }}$ setup time to $\overline{\mathrm{OE}} \downarrow$	tVPS	2			$\mu \mathrm{s}$
$V_{\text {DD }}$ setup time to $\overline{O E} \downarrow$	tvDs	2			$\mu \mathrm{s}$
Program pulse width	tpw	0.095	0.1	0.105	ms
Address to $\overline{O E} \downarrow$ delay time	toes	2			$\mu \mathrm{s}$
$\overline{\mathrm{OE}}+$ to data output time	t_{OE}			150	nis
$\overline{\mathrm{OE}}$ pulse width during data latch	t_{L}	1			$\mu \mathrm{s}$
Data to $\overline{\mathrm{PGM}}+$ delay time	tpgems	2			$\mu \mathrm{s}$
$\overline{\text { CE }}$ hold time from $\overline{\text { PGM }} \mathbf{I}$	${ }_{\text {t }}$	2			$\mu \mathrm{s}$
	$\mathrm{t}_{\mathrm{OEH}}$	2			μs

Read Mode

Address to data output time	${ }^{\text {ta }}$ ACC		200	ns	$\overline{C E}=\overline{O E}=V_{\text {IL }}$
$\overline{\overline{C E}} \downarrow$ to data output time	${ }_{\text {teE }}$		200	ns	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
$\overline{\overline{O E} \downarrow \text { to data output time }}$	t_{OE}		75	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$
Data hold time from $\overline{\mathrm{OE}} \uparrow$	t_{DF}	0	60	ns	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$
Data hold time from address	${ }^{\text {toh }}$	0		ns	$\overline{C E}=\overline{O E}=V_{I L}$

PROM Timing Diagrams

Byte Programming Mode

PROM Timing Diagrams (cont)

Page Programming Mode; Page Data Latch \rightarrow Page Program

Notes:

[1] V_{DD} must be applied before V_{PP} and removed after V_{PP}
[2] VPP must not be greater than +13.5 V , fnctuofing overshoot.
[3] Removing and reinserting the device whise a voltage of +12.5 V is applied to ph V_{pp} may affect device rellabilty.

PROM Timing Diagrams (cont)
Page Programming Mode; Page Program \rightarrow Program Verify

Notes:

[1] $V_{D D}$ must be applied before $V_{P P}$ and removed after $V_{\text {Pp. }}$
[2] V_{PP} must not be greater than +13.5 V , Including overshoot.
[3] Removing and refnserting the device whlle a voltage of +12.5 V is applied to pin V_{P} may affect device rellablity.

PROM Timing Diagrams (cont)

Read Mode

INSTRUCTION SET

The instruction set of the μ PD78350／P352 is upward compatible with the μ PD78322 and μ PD78312A families． Two instructions have been added to facilitate digital signal processing．The convolution instruction，MACW， calculates the sum of the products of＂n＂pairs of terms stored in Main RAM．The value of＂n＂is limited only by the amount of Main RAM available．The MOVTBL in－ struction displaces a data table by one 16－bit word to make room for a new data word．
The instruction set features both 8 －and 16－bit data transfer，arithmetic，and logic instructions and single－ bit manipulation instructions．String manipulation in－ structions are also included．Branch instructions exist to test individual bits in the program status word，the 16－bit accumulator，the special function registers，and the saddr portion of on－chip RAM．Instructions range in length from 1 to 6 bytes depending on the instruction and addressing mode．

Flag Column Indicators

Symbol	Action
（blank）	No change
0	Set to 0
$\mathbf{1}$	Set to 1
X	Set or cleared according to result
P	P／V indicates parity of result
V	P／V indicates arithmetic overflow
R	Restored from saved PSW

Instruction Set Symbols

Symbol	Definition
r	R0，R1，R2，R3，R4，R5，R6，R7，R8，R9，R10，R11， R12，R13，R14，R15
r1	R0，R1，R2，R3，R4，R5，R6，R7
r2	C，B
rp	RPO，RP1，RP2，RP3，RP4，RP5，RP6，RP7＊
rp1	RPO，RP1，RP2，RP3，RP4，RP5，RP6，RP7＊
rp2	DE，HL，VP，UP
sfr	Special function register， 8 bits
sfrp	Special function register， 16 bits
post	RP0，RP1，RP2，RP3，RP4，RP5／PSW，RP6，RP7，Bits set to 1 indicate register pairs to be pushed／ popped to／from stack；RP5 pushed／popped by PUSH／POP，SP is stack pointer；PSW pushed／ popped by PUSHU／POPU，RP5 is stack pointer．

Instruction Set Symbols (cont)

Symbol	Definition
RP0-RP7	Register pair 0 to register pair 7
PC	Program counter
SP	Stack pointer
UP	User stack pointer (RP5)
PSW	Program status word
PSWH	High-order 8 bits of PSW
PSWL	Low-order 8 bits of PSW
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
P/V	Parity/overflow flag
S	Sign flag
TPF	Table position flag
RBS	Register bank select flag
RSS	Register set select flag
IE	Interrupt enable flag
STEC	Standby control register
WDM	Watchdog timer mode register
()	Contents of the location whose address is within parentheses; $(+)$ and $(-)$ indicate that the address is incremented after or decremented after it is used
(${ }^{\text {(})}$	Contents of the memory location defined by the quantity within the sets of parentheses
xxH	Hexadesimal quantity
$\underline{X_{H}, X_{L}}$	High-order 8 bits and low-order 8 bits of X
\triangle	Logical product (AND)
V	Logical sum (OR)
Ψ	Exclusive logical sum (exclusive O)
-	Inverted data

* rp and rp1 desoribe the same registers but generate different machine code.

E C ELECTRONICS INC

Instruction Set

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	PN	CY
8－Bit Data Transfer								
MOV	r1，\＃byte	$\mathrm{r} 1 \leftarrow$ byte	2					
	saddr，\＃byte	（saddr）\leftarrow byte	3					
	sfr，\＃byte（Note 1）	sfr \leftarrow byte	3					
	$\mathrm{r}_{\mathrm{r}} \mathrm{r} 1$	$r \leftarrow r 1$	2					
	A，r1	$A \leftarrow r 1$	1					
	A，saddr	$A \leftarrow$（saddr）	2					
	saddr，A	（saddr）$\leftarrow A$	2					
	saddr，saddr	（saddr）\leftarrow（saddr）	3					
	A，sfr	$\mathrm{A} \leftarrow \mathrm{sfr}$	2					
	$\mathrm{sfr}_{1} \mathrm{~A}$	sfr $\leftarrow A$	2					
	A，mem（Note 2）	$A \leftarrow($ mem $)$	1					
	A，mem	$A \leftarrow(\mathrm{mem})$	2－4					
	mem，A（Note 2）	$($ mem ）$\leftarrow A$	1					
	mem， A	$($ mem $) \leftarrow A$	2－4					
	A_{1}［saddrp］	$A \leftarrow($（saddrp $))$	2					
	［saddrp］，A	$(($ saddrp）$) \leftarrow$ A	2					
	A，laddr 6	$A \leftarrow($ addr 16$)$	4					
	！addr16，A	（addr16）$\leftarrow A$	4					
	PSWL，\＃byte	PSWL \leftarrow byte	3	X	X	X	X	X
	PSWH，\＃byte	PSWH \leftarrow byte	3					
	PSWL，A	PSWL $\leftarrow A$	2	X	X	X	X	X
	PSWH，A	PSWH $\leftarrow A$	2					
	A，PSWL	$A \leftarrow P S W L$	2					
	A，PSWH	$\mathrm{A} \leftarrow \mathrm{PSWH}$	2					
$\overline{\mathrm{XCH}}$	A，r1	$A \leftrightarrow r 1$	1					
	$\mathrm{r}_{1} \mathrm{r} 1$	$r \leftrightarrow r^{\prime}$	2					
	A，mem	$A \leftrightarrow(\mathrm{mem})$	2－4					
	A，saddr	$A \leftrightarrow$（saddr）	2					
	A，sfr	$A \leftrightarrow s \mathrm{fr}$	3					
	A，［saddrp］	$\mathrm{A} \leftrightarrow$（（saddrp））	2					
	saddr，saddr	（saddr）\leftrightarrow（saddr）	3					
16－Bit Data Transfer								
MOVW	rp1，\＃word	rp1 \leftarrow word	3					
	saddrp，\＃word	（saddrp）\leftarrow word	4					
	sfrp，\＃word	sfrp \leftarrow word	4					
	rp，rp1	$r p \leftarrow r p 1$	2					
	AX，saddrp	$\mathrm{AX} \leftarrow$（saddrp）	2					
	saddrp，AX	（ saddrp）$\leftarrow \mathrm{AX}$	2					
	saddrp，saddrp	（ saddrp）\leftarrow（saddrp）	3					

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	PN	CY
16-Bit Data Transfer (cont)								
MOVW (cont)	$A X, \operatorname{sfr}$	$A X \leftarrow \operatorname{sirp}$	2					
	strp, $A X$	sffp $\leftarrow A X$	2					
	rp1, !addr16	$\mathrm{rp1}$ ¢ (addr16)	4					
	!addr16, rp1	(addr16) $\leftarrow \mathrm{rp1}$	4					
	AX, mem	$A X \leftarrow($ mem $)$	2.4					
	mem, $A X$	$(\mathrm{mem}) \leftarrow \mathrm{AX}$	2-4					
XCHW	AX, saddrp	$A X \leftrightarrow$ (saddrp)	2					
	AX, strp	$A X \leftrightarrow s f r p$	3					
	saddrp, saddrp	(saddrp) \leftrightarrow (saddrp)	3					
	rp, rp1	$r \mathrm{p} \leftrightarrow \mathrm{rp} 1$	2					
	AX, mem	$A X \leftrightarrow$ (mem)	2-4					

8-Bit Arithmetic

ADD	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte	2	X	X	X	v	X
	saddr, \#byte	(saddr), CY \leftarrow (saddr) + byte	3	X	X	x	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte	4	x	X	X	V	X
	$\mathrm{r}, \mathrm{r} 1$	$r, C Y \leftarrow r+r 1$	2	X	X	X	V	X
	A, saddr	A, $\mathrm{CY} \leftarrow \mathrm{A}+$ (saddr)	2	X	X	X	v	X
	A, sfr	A, $\mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}$	3	X	X	X	V	X
	saddr, saddr	(sadd:), $\mathrm{CY} \leftarrow$ (saddr) + (saddr)	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ (mem)	2-4	X	X.	X	V	X
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) +A	2-4	X	X	X	V	X
$\overline{\text { ADDC }}$	A, \#byte	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte +CY	2	X	x	X	V	X
	saddr, \#\#byte	(saddr), $\mathrm{CY}<$ (saddr) + byte +CY	3	X	X	X	V	X
	sfr, \#byte	sfr, $\mathrm{CY} \leftarrow \mathrm{sfr}+$ byte +CY	4	X	X	X	v	X
	$\mathrm{r}_{\mathrm{s}} \mathrm{r}$ 1	r, $\mathrm{CY} \leftarrow \mathrm{r}+\mathrm{r} 1+\mathrm{CY}$	2	X	X	X	V	X
	A, saddr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{saddr})+\mathrm{CY}$	2	x	X	X	V	X
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+\mathrm{sfr}+\mathrm{CY}$	3	X	X	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr) +CY	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{mem})+\mathrm{CY}$	2-4	X	x	x	V	X
	mem, A	$(\mathrm{mem}), \mathrm{CY} \leftarrow$ (mem) $+\mathrm{A}+\mathrm{CY}$	$2-4$	X	x	x	V	X
SUB	A, \#byle	A, CY \leftarrow A-byte	2	X	x	X	V	X
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte	3	X	x	X	v	x
	sfr, \#byte	sfr, CY \leftarrow sfr - byte	4	X	X	X	V	X
	r, r1	$r, C Y \leftarrow r-r 1$	2	X	x	X	V	X
	A, saddr	$A, C Y \leftarrow A-$ (saddr $)$	2	X	x	X	V	x
	A, sfr	$A, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}$	3	X	x	X	V	X
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr)	3	X	X	X	V	X
	A, mem	A, CY \leftarrow - - (mem)	2-4	X	x	X	V	X
	mem, A	(mem), $\mathrm{CY} \leftarrow(\mathrm{mem}$) -A	2-4	X	X	X	V	X

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
8-Bit Arithmetic (cont)								
SUBC	A, \#byte	A, CY $\leftarrow A-$ byte - CY	2	X	X	X	V	X
	saddr, \#byte	(saddr), CY \leftarrow (saddr) - byte - CY	3	X	X	X	V	X
	sfr, \#byte	sfr, CY \leftarrow sfr - byte - CY	4	X	X	X	V	X
	r, i1	$r, C Y \leftarrow r-r 1-C Y$	2	X	X	X	V	X
	A_{1} saddr	$A, C Y \leftarrow A-$ (saddr) $-C Y$	2	X	X	X	V	X
	A, sfr	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{sfr}-\mathrm{CY}$	3	X	X	X	V	x
	saddr, saddr	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr) - CY	3	X	X	X	V	X
	A, mem	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{mem})-\mathrm{CY}$	2-4	X	X	X	V	X
	mem, A	(mem), $\mathrm{CY} \leftarrow$ (mem) - $\mathrm{A}-\mathrm{CY}$	2-4	X	X	X	V	X
8-Bit Logic								
AND	A, \#byte	$A \leftarrow A \wedge$ byte	2	X	X		P	
	saddr, \#tbyte	(saddr) $<$ (saddr) \wedge byte	3	X	X		P	
	sfr, \#tbyte	sfr $\leftarrow \operatorname{sfr} \wedge$ byte	4	X	X		P	
	$\mathrm{r}_{\mathrm{s}} \mathrm{r} 1$	$r<r \wedge r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \wedge$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \wedge$ sfr	3	X	X		P	
	saddr, saddr	$($ saddr $) \leftarrow($ saddr $) \wedge$ (saddr)	3	X	X		P	
	A, mem	$\mathrm{A} \& \mathrm{~A} \wedge$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow($ mem $) \wedge A$	2-4	X	X		P	
OR	A, \#byte	$A \leftarrow A V$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) V byte	3	X	X		P	
	sfr, \#byte	sfr \leftarrow sfr V byte	4	X	X		P	
	r, r1	$r \leftarrow r \vee r 1$	2	X	X		P	
	A, saddr	$A<A \vee$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A V$ sfr	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \vee (saddr)	3	X	X		P	
	A, mem	$A \leftarrow A \vee$ (mem)	2-4	X	X		P	
	mem, A	$($ mem $) \leftarrow($ mem $) \vee A$	2-4	X	X		P	
XOR	A, \#byte	$A<A \forall$ byte	2	X	X		P	
	saddr, \#byte	(saddr) \leftarrow (saddr) \forall byte	3	X	X		P	
	sfr, \#byte	sfr \leftarrow str \forall byte	4	X	X		P	
	$r_{1} \mathrm{r} 1$	$r \leftarrow r \forall r 1$	2	X	X		P	
	A, saddr	$A \leftarrow A \forall$ (saddr)	2	X	X		P	
	A, sfr	$A \leftarrow A \forall s f r$	3	X	X		P	
	saddr, saddr	(saddr) \leftarrow (saddr) \forall (saddr)	3	X	X		P	
	A, mem	$\mathrm{A} \leftarrow \mathrm{A} \forall$ (mem)	2-4	X	X		P	
	mem, A	$(\mathrm{mem}) \ll$ (mem) $\forall \mathrm{A}$	2-4	X	X		P	

Instruction Set（cont）

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P／N	CY
8－Bit Logic（cont）								
CMP	A，\＃byte	A－byte	2	X	X	X	V	X
	saddr，\＃byte	（saddr）－byte	3	X	X	X	V	X
	sfr，\＃byte	sfr－byte	4	X	X	X	V	X
	r，r1	r－r1	2	X	X	X	V	X
	A，saddr	A－（saddr）	2	X	X	X	V	X
	A，sfr	A－sfr	3	X	X	X	V	X
	saddr，saddr	（saddr）－（saddr）	3	X	X	X	V	x
	A，mem	A－（mem）	2－4	X	X	X	V	X
	mem，A	（mem）－A	2－4	X	X	X	V	x
16－Bit Arithmetic								
ADDW	AX，\＃word	$A X, C Y \leftarrow A X+$ word	3	X	X	x	V	x
	saddrp，\＃word	（saddrp）， $\mathrm{CY} \leftarrow$（saddrp）＋word	4	X	X	X	V	X
	sfrp，\＃word	sfrp，CY sfir＋word	5	X	X	X	V	X
	rp，rp1	$r p_{1}, C Y \leftarrow r p+r p 1$	2	X	X	X	V	x
	AX，saddrp	$A X, C Y \leftarrow A X+$（saddrp）	2	X	X	X	V	x
	AX，sifp	$A X, C Y \leftarrow A X+$ sfrp	3	X	X	X	V	X
	saddrp，saddrp	（saddrp）， $\mathrm{CY} \leftarrow$（saddrp）＋（saddrp）	3	X	X	x	V	x
SUBW	AX，\＃word	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}$－word	3	X	X	X	V	x
	saddrp，\＃word	（saddrp）， $\mathrm{CY} \leftarrow$（saddrp）－word	4	X	X	X	V	x
	sfrp，\＃word	sfrp，CY \leftarrow sfrp－word	5	X	X	X	V	X
	rp，rp1	$r \mathrm{p}, \mathrm{CY} \leftarrow \mathrm{rp}-\mathrm{rp} 1$	2	X	X	X	V	X
	AX，sadd：p	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}$－（saddrp）	2	X	X	X	V	x
	$A X_{1}$ sfip	$A X, C Y \leftarrow A X-\operatorname{sfr} p$	3	X	X	X	V	X
	saddip，saddrp	（saddrp）， $\mathrm{CY} \leftarrow$（saddrp）－（saddrp）	3	X	X	X	V	X
CMPW	AX，\＃word	AX－word	3	x	X	X	V	x
	saddrp，\＃word	（sadd！p）－word	4	X	X	X	V	x
	sfrp，\＃word	sfrp－word	5	X	X	X	V	X
	rp，rp1	rp －rp1	2	X	X	X	V	X
	AX，sadd！p	AX－（saddrp）	2	X	X	X	V	X
	AX，sfrp	AX－sfrp	3	x	X	X	V	X
	sadd！p，sadd！p	（saddrp）－（saddrp）	3	X	X	X	V	x
Multiplication／Division								
MULU	r 1	$\mathrm{AX} \leftarrow \mathrm{AXX} 1$	2					
DNUW	r1	$A X$（quotienti， rl （remainder）$\leftarrow \mathrm{AX} \div \mathrm{r1}$	2					
MULUW	rp1	AX（high－order 16 bits），rp1（low－order 16 bits）\leftarrow AX \times rp1	2					
DNUX	rp1	AXDE（quotienti， $\mathrm{pp1}$（remaindsi）\leftarrow AXDE \div pp1	2					
MULW （Note 3）	rp1	AX（high－order 16 bits），rpi（low－order 16 bits）$\leftarrow A X \times r p 1$	2					

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/V	CY
Sum-of-Products								
MACW	n	$A X D E \leftarrow(B) \times(C)+A X D E, B \leftarrow B+2, C \leftarrow C+$ $2, \mathrm{n} \leftarrow \mathrm{n}-1$. End if $\mathrm{n}=0$ or $\mathrm{P} / \mathrm{V}=1$	3	X	X	X	V	X
Table Shift								
MOVTBLW	laddr 16, n (Note 4)	$\begin{aligned} & \text { (addr16 }+2 \text {) } \leftarrow \text { (addr16), } n \leftarrow n-1 \text {, addr1 } 6 \leftarrow \text { addr16 } \\ & -2 \text {. End if } n=0 \end{aligned}$	4					
Incrememt/Decrement								
INC	r1	$\mathrm{rl}<\mathrm{r} 1+1$	1	x	X	X	V	
	saddr	$($ saddr $) \leftarrow$ (saddr) +1	2	X	X	X	V	
DEC	r1	$\mathrm{r} 1 \leftarrow \mathrm{r} 1-1$	1	X	X	X	V	
	saddr	(saddr) \leftarrow (saddr) -1	2	X	X	X	V	
INCW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2+1$	1					
	saddrp	$($ saddrp) $<$ (saddrp) +1	3					
DECW	rp2	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2-1$	1					
	saddrp	$($ saddrp $)<($ saddrp $)-1$	3					
Shift/Rotate								
ROR	r1, n	$\left(\mathrm{CY}, \mathrm{r1}{ }_{7} \leftarrow \mathrm{rr}_{0}, \mathrm{r1} 1_{\mathrm{m}-1} \leftarrow \mathrm{r1} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	x
ROL	ri, n	$\left(\mathrm{CY}, \mathrm{r1}_{0} \leftarrow \mathrm{r1}, \mathrm{ra}_{\mathrm{m}+1} \leftarrow \mathrm{r} \mathrm{m}_{\mathrm{m}}\right) \times n$ times	2				P	x
RORC	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r1}_{0}, \mathrm{r1}_{7} \leftarrow \mathrm{CY}, \mathrm{r1} \mathrm{~m}_{\mathrm{m}} \leftarrow \leftarrow \mathrm{r1} \mathrm{~m}\right) \times \mathrm{n}$ times	2				P	X
ROLC	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 1_{7}, \mathrm{r1}_{0} \leftarrow \mathrm{CY}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2				P	X
SHR	r1, n	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 0_{0}, \mathrm{r1}_{7} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{ntimes}$	2	X	X	0	P	x
SHL	r, n	$\left(\mathrm{CY} \leftarrow \mathrm{r1} 7_{7} \mathrm{r}_{0} \leftarrow 0, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	x
SHRW	rp1, n	$\left(\mathrm{CY} \leftarrow \mathrm{rp} 1_{0}, \mathrm{rp} 1_{15} \leftarrow 0, \mathrm{rp} 1_{\mathrm{m}-1} \leftarrow \mathrm{rp} 1_{\mathrm{m}}\right) \times \mathrm{ntimes}$	2	X	X	0	P	X
SHLW	rp1, n	$\left(\mathrm{CY} \leftarrow \mathrm{rp1} 1_{15}, \mathrm{rp1}_{0} \leftarrow 0, \mathrm{rp1} 1_{\mathrm{m}+1} \leftarrow \mathrm{rp} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times	2	X	X	0	P	X
ROR4	[rp1]	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp} 1)_{3-0}(\mathrm{rp} 1)_{7-4} \leftarrow \mathrm{~A}_{3-01} \\ & (\mathrm{rp} 1)_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4} \end{aligned}$	2					
ROL4	[rpi]	$\begin{aligned} & A_{3-0} \leftarrow(\mathrm{rp} 1)_{7-4}(\mathrm{rp} 1)_{3-0} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{7-4} \leftarrow(\mathrm{rp} 1)_{3-0} \\ & \hline \end{aligned}$	2					
BCD Adjustment								
ADJBA		Decimal adjust accumulator after add	2	X	x	X	P	X
ADJBS		Decimal adjust accumulator after subtract	2	X	X	X	P	X
Data Expansion								
CVTBW		$X \leftarrow A, A_{6-0} \leftarrow A_{7}$	1					
Bit Manipulation								
MOV1	CY, saddrbit	$\mathrm{CY} \leftarrow$ (saddribit)	3					x
	CY, str,bit	$\mathrm{CY} \leftarrow$ sfrbit	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow$ A.bit	2					x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{X}$.bit	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow$ PSWH.bit	2					x

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	PN	CY
Bit Manipulation (cont)								
MOV1 (cont)	CY, PSWL.bit	CY \leftarrow PSWL.bit	2					X
	saddribit, CY	(saddribit) $\leftarrow \mathrm{CY}$	3					
	sfribit, CY	sfr.bit $\leftarrow C Y$	3					
	A.bit, CY	A.bit $<$ CY	2					
	X.bit, CY	X.bit $<\mathrm{CY}$	2					
	PSWH.bit, CY	PSWH.bit $\leftarrow C$ CY	2					
	PSWL.bit, CY	PSWL.bit \leftarrow CY	2	X	X	X	X	
AND1	CY, saddrbit	$\mathrm{CY} \leftarrow \mathrm{CY} /($ (saddrbit)	3					X
	CY, /saddrbit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (saddrbit)	3					X
	CY, sfrbit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ sfrbit	3					X
	CY, /siribit	CY $-\mathrm{CY} \wedge \overline{\text { sfrbit }}$	3					X
	CY, A.bit	CY $-\mathrm{CY} \wedge$ A.bit	2					x
	CY, /A,bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ X.bit	2					X
	CY, XX,bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{X} . \mathrm{bit}}$	2					x
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					X
	CY, /PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWH.bit	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ PSWL.bit	2					x
	CY, /PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\text { PSWL.bit }}$	2					x
OR1	CY, saddribit	$\mathrm{CY} \leftarrow \mathrm{CY} \backslash$ (saddrbit)	3					X
	CY, /saddfibit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (saddr bit)	3					x
	CY, sf:bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ sfrbit	3					x
	CY, /sfribit	$\mathrm{CY} \leftarrow \mathrm{CY} \overline{\text { sfrbit }}$	3					x
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY}$ V A.bit	2					X
	CY,/A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{A} . \mathrm{bit}}$	2					x
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY}$ V Xbit	2					x
	CY, X .bit	$\mathrm{CY} \leftarrow \mathrm{CY} \vee \overline{\mathrm{X} . \mathrm{bit}}$	2					x
	CY, PSWH.bit	CY $\leftarrow C Y \vee$ PSWH.bit	2					x
	CY, /PSWH.bit	CY < CY V PSWH.bit	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY}$ V PSWL.bit	2					x
	CY, IPSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY}$ V PSWL.bit	2					X
XOR1	CY, saddrbit	$C Y \leftarrow C Y Y$ (saddrbit)	3					x
	CY, sfrbit	$C Y<C Y \forall$ sifbit	3					X
	CY, A.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{A} . \mathrm{bit}$	2					X
	CY, X.bit	$\mathrm{CY} \leftarrow \mathrm{CY}{ }^{+}$X.bit	2					X
	CY, PSWH.bit	$\mathrm{CY} \leftarrow \mathrm{CY}+$ PSWH.bit	2					X
	CY, PSWL.bit	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{PSWL} \mathrm{L}$ bit	2					X

Instruction Set（cont）

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P／N	CY
Bit Manipulation（cont）								
SET1	saddr．bit	（saddr：bit）$\leftarrow 1$	2					
	sfr．bit	sfr．bit <1	3					
	A．bit	A．bit $\leftarrow 1$	2					
	X．bit	X．bit <1	2					
	PSWH．bit	PSWH．bit $\leftarrow 1$	2					
	PSWL．bit	PSWL．bit $\leftarrow 1$	2	x	X	X	x	X
CLR1	saddr．bit	（saddr．bit）$\leftarrow 0$	2					
	sfr．bit	sfrbit $\leftarrow 0$	3					
	A．bit	A．bit $\leftarrow 0$	2					
	X．bit	X B bit $\leftarrow 0$	2					
	PSWH．bit	PSWH．bit $\leftarrow 0$	2					
	PSWL．bit	PSWL．bit <0	2	X	X	X	X	X
NOT1	saddr．bit	（saddr．bit）\leftarrow（saddr．bit）	3					
	sfrbit	sfr．bit $\leftarrow \overline{\text { sfr．bit }}$	3					
	A．bit	A．bit $\leftarrow \overline{\text { A．bit }}$	2					
	X．bit	X．bit $\leftarrow \overline{\text { X．bit }}$	2					
	PSWH．bit	PSWH．bit \leftarrow PSWH．bit	2					
	PSWL．bit	PSWL．bit $\leftarrow \overline{\text { PSWL．bit }}$	2	X	X	X	x	X
SET1	CY	$\mathrm{CY} \leftarrow 1$	1					1
CLR1	CY	$\mathrm{CY} \leftarrow 0$	1					0
NOT1	CY	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	1					X
Subroutine Linkage								
CALL	！addr16	$\begin{aligned} & (S P-1) \leftarrow(P C+3)_{H_{1}}(S P-2) \leftarrow(P C+3) L_{1}, \\ & P C \leftarrow \text { addr16, } S P \text { SP-2 } \end{aligned}$	3					
	rp1	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2)_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2)_{\mathrm{L}} \\ & \mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{rP} \mathrm{t}_{\mathrm{H}}, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{rPt} \mathrm{t}_{\mathrm{L}}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	2					
	［rp1］	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L} \\ & P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1), S P \leftarrow S P-2 \end{aligned}$	2					
CALLF	！addr11	$\begin{aligned} & (S P-1) \leftarrow(P C+2)_{H},(S P-2) \leftarrow(P C+2)_{L 1} \\ & P C_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \operatorname{addr11}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$	2					
CALLT	［addr5］	$\begin{aligned} & (S P-1) \leftarrow(P C+1)_{H_{1}}(S P-2) \leftarrow(P C+1)_{L}, \\ & \mathrm{PC}_{\mathrm{H}} \leftarrow(T \mathrm{PF} \times 8000 \mathrm{H}+2 \times \text { addr5 }+41 \mathrm{H}), \\ & \mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{TPFx} 8000 \mathrm{H}+2 \times \text { addr } 5+40 \mathrm{H}), \mathrm{SP} \leftarrow \\ & \mathrm{SP}-2 \end{aligned}$	1					
BRK		$\begin{aligned} & (S P-1) \leftarrow P S W H,(S P-2) \leftarrow P S W L,(S P- \\ & 3) \leftarrow(P C+1)_{H},(S P-4) \leftarrow(P C+1) L_{1} \\ & P_{L} \leftarrow(003 E H), P C_{H} \leftarrow(003 F H), S P \leftarrow S P-4, \\ & I E \leftarrow 0 \end{aligned}$	1					
RET		$\mathrm{PC}_{\mathrm{L}} \leftarrow(\mathrm{SP}), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	1					
RETB		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), P S W L \leftarrow(S P+2), \\ & P S W H \leftarrow(S P+3), S P \leftarrow S P+4 \end{aligned}$	1	R	A	R	R	R
RETI		$\begin{aligned} & \mathrm{PC}_{L} \leftarrow(S P), \mathrm{PC}_{H} \leftarrow(\mathrm{SP}+1), \mathrm{PSWL} \leftarrow(S P+2), \\ & \mathrm{PSWH} \leftarrow(S P+3), S P \leftarrow S P+4 \end{aligned}$	1	R	R	R	R	R

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	Z	AC	P/	CY
Stack Manipulation								
PUSH	sfip	$(\mathrm{SP}-1) \leftarrow \mathrm{sfr}_{\mathrm{H}},(\mathrm{SP}-2) \leftarrow \mathrm{sfr}_{\mathrm{L}}, \mathrm{SP} \leftarrow \mathrm{SP}-2$	3					
	post	$\begin{aligned} & \left\{(S P-1) \leftarrow r P P_{H},(S P-2) \leftarrow r P_{L}, S P \leftarrow S P-2\right\} x \\ & n(\text { Note } 5\} \end{aligned}$	2					
	PSW	$(S P-1) \leftarrow$ PSWH, $(S P-2) \leftarrow P S W L, S P \leftarrow S P-2$	1					
PUSHU	post	$\begin{aligned} & \left\{(U P-1) \leftarrow r P_{H},(U P-2) \leftarrow r P_{L}, U P \leftarrow U P-2\right\} x \\ & n(\text { Note } 5) \end{aligned}$	2					
POP	sfrp	sfr $_{L} \leftarrow(S P), \operatorname{sfr}_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	3					
	post	$\begin{aligned} & \left\{r p P_{L} \leftarrow(S P), r p P_{H} \leftarrow(S P+1), S P \leftarrow S P+2\right\} \times n \\ & \text { (Note } 5) \end{aligned}$	2					
	PSW	PSWL $\leftarrow(S P)$, PSWH $<-(S P+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	1	R	R	R	R	R
POPU	post	$\begin{aligned} & \left\{\text { rpp }_{L} \leftarrow(U P), r p P H_{H} \leftarrow(U P+1), U P \leftarrow U P+2\right\} \times n \\ & (\text { Note } 5) \end{aligned}$	2					
MOVW	SP, \#word	$S P \leftarrow$ word	4					
	SP, AX	$\mathrm{SP} \leftarrow \mathrm{AX}$	2					
	$A X, S P$	$A X \leftarrow S P$	2					
INCW	SP	$S P \leftarrow S P+1$	2					
DECW	SP	$S P \leftarrow S P-1$	2					

Pin Level Test

| CHKL | sfr | (Pin level) \forall (internal signal level) | 3 | X | X | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CHKLA | sfr | $A \leftarrow($ Pin leve! $) \forall$ (internal signal level) | 3 | X | X | P |

Unconditional Branch

BR	!addr15	PG \leftarrow addr16	3
	rp1	$P C_{H} \leftarrow r{ }^{1} 1_{H} \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{rp} 1_{\mathrm{L}}$	2
	[rpl]	$P \mathrm{O}_{\mathrm{H}} \leftarrow(\mathrm{rp1} 1+1), P \mathrm{C}_{L} \leftarrow(\mathrm{rp} 1)$	2
	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8	2
Conditional Branch			
BC, BL	\$add:16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 3$ if $\mathrm{CY}=1$	2
BNC, BNL	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{CY}=0$	2
BZ, BE	Saddri6	$P C \leftarrow P C+2+j$ jisps if $Z=1$	2
BNZ, BNE	\$addr16		2
BV, BPE	Saddr16	$P C \leftarrow P C+2+j d i s p B$ if $P / V=1$	2
BNV, BPO	\$addric	$P C \leftarrow P C+2+j$ disps if $P / V=0$	2
BN	Saddri6	$P C \leftarrow P C+2+$ jdispB if $S=1$	2
BP	Saddr16	$P C \leftarrow P C+2+$ jdisp8 if $S=0$	2
BGT	Saddr16	$P S \leftarrow P C+3+j d i s p 8$ if $(P / V \forall S) \backslash Z=0$	3
BGE	\$addit6	$P C \leftarrow P C+3+j d i s p 8$ if $P / V \forall S=0$	3
BLT	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if $\mathrm{P} / \mathrm{V}+\mathrm{S}=1$	3
BLE	\$addr16	$P C \leftarrow P C+3+j d i s p 8$ if $(P / V+s) \vee Z=1$	3
BH	\$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $Z / \mathrm{CY}=0$	3
BNH	\$addr16	$P C \leftarrow P C+3+j d i s p 3$ if $Z \vee C Y=1$	3

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	PN	CY
Conditional Branch								
BT	saddr.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if (saddr.bit) $=1$	3					
	sfribit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisps if sfrbit $=1$	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if A.bit $=1$	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X. bit $=1$	3					
	PSWH.bit, \$addr16	PC $\leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if PSWH.bit $=1$	3					
	PSWL.bit, \$addri6	PC \leftarrow PC + 3 + jdisp8 if PSWL.bit $=1$	3					
BF	saddr:bit, \$addr16	$P C \leftarrow P C+4+$ jdisp8 if (saddr.bit) $=0$	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr,bit $=0$	4					
	A.bit, \$addri6	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=0$	3					
	X.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if X $\mathrm{Cbit}=0$	3					
	PSWH.bit, \$addr16	PC $\leftarrow P C+3+j d i s p 8$ if PSWH.bit $=0$	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWL.bit $=0$	3					
BTCLR	saddribit, \$addri6	$\begin{aligned} & \text { PC } \leftarrow P C+4+\text { jdisp8 if (saddr:bit) }=1 \text { then reset } \\ & \text { (saddr.bit) } \end{aligned}$	4					
	sfribit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+\mathrm{jdisp} 8$ if sfr:bit $=1$ then reset sfr.bit	4					
	A.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if $\mathrm{A} . \mathrm{bit}=1$ then reset A.bit	3					
	X.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if $\mathrm{X} . \mathrm{bit}=1$ then reset X .bit	3					
	PSWH.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWH.bit $=1$ then reset PSWH.bit	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=1$ then reset PSWL.bit	3	X	X	X	X	X
BFSET	saddr.bit, §addr16	\qquad (saddrbit)	4					
	sfr.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+4+\mathrm{jdisp8}$ if sfrbit $=0$ then set sfrbit	4					
	A.bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if $A . b i t=0$ then set $A . b i t$	3					
	X.bit, \$addr16	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if X . $\mathrm{bit}=0$ then set X . bit	3					
	PSWH, bit, \$addr16	$P C \leftarrow P C+3+$ jdisp8 if PSWH.bit $=0$ then set PSWH.bit	3					
	PSWL.bit, \$addr16	$P C \leftarrow P C+3+j d i s p 8$ if PSWL.bit $=0$ then set PSWL.bit	3	X	X	X	X	X
$\overline{\text { DBNZ }}$	12, \$addr16	r ¢ $-\mathrm{r} 2-1$, then $\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{r} 2=0$	2					
	saddr, \$addr16	$\begin{aligned} & \text { (saddr) } \leftarrow \text { (saddr) }-1 \text {, then } P C \leftarrow P C+3+\text { jdisp8 } \\ & \text { if (saddr) }=0 \end{aligned}$	3					

Context Switching

BRKCS	RBn	$\begin{aligned} & \mathrm{RBS}_{2-0} \leftarrow n, P C_{H} \leftrightarrow R 5, P C_{L} \leftrightarrow R 4, R 7 \leftarrow P S W H, \\ & R 6 \leftarrow P S W L, R S S \leftarrow 0, I E \leftarrow 0 \end{aligned}$	2					
RETCS	!addr16	$\begin{aligned} & \mathrm{PC}_{H} \leftarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow \text { addr1 }_{H}, \\ & \mathrm{R} 4 \leftarrow \text { addr16 } \\ & \mathrm{PSWH} \leftarrow \mathrm{R} 7, \mathrm{PSWL} \leftarrow \mathrm{R} 6 \end{aligned}$	3	R	R	R	R	R
RETCSB	!addr16	$\begin{aligned} & \mathrm{PC}_{\mathrm{H}} \leftarrow \mathrm{R} 5, \mathrm{PC}_{\mathrm{L}} \leftarrow \mathrm{R} 4, \mathrm{R} 5 \leftarrow \text { addr16 } 6_{\mathrm{H}} \\ & \mathrm{R} 4 \leftarrow \text { addir16 } \\ & \mathrm{PSWH} \leftarrow \mathrm{R} 7, \mathrm{PSWL} \leftarrow \mathrm{R} 6 \end{aligned}$	4	R	R	R	R	R

Instruction Set (cont)

Mnemonic	Operand	Operation	Bytes	Flags				
				S	z	AC	P/N	CY
String Manipulation								
MOVM	[DE+], A	$(\mathrm{DE}+) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], A	$(\mathrm{DE}-) \leftarrow \mathrm{A}, \mathrm{C}<-\mathrm{C}-1$ End if $\mathrm{C}=0$	2					
MOVBK	[$\mathrm{DE}+\mathrm{]}$, [$\mathrm{HL}+\mathrm{]}$]	$(\mathrm{DE}+) \leftarrow(\mathrm{HL}+$) , $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[$\mathrm{DE}-\mathrm{]}$ [[$\mathrm{HL}-\mathrm{]}$	$(\mathrm{DE}-) \leftarrow(\mathrm{HL}-), \mathrm{C}<-\mathrm{C}-1$ End if $\mathrm{C}=0$	2					
XC:M	[DE+], A	$(\mathrm{DE}+) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], A	(DE-) $\leftrightarrow A, C \leftarrow C-1$ End if $C=0$	2					
XCHEK	[DE+], [HL+]	$(\mathrm{DE}+) \leftrightarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
	[DE-], [HL-]	$(\mathrm{DE}-) \leftrightarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$	2					
CMPME	[$\mathrm{DE}+\mathrm{]}$, A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	x
	[DE-], A	$(\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=0$	2	X	X	X	V	X
CMPBKE	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=0$	2	X	X	X	V	X
	[DE-], [HL-]	$(\mathrm{DE}-)-(\mathrm{HL}-$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=0$	2	X	X	x	V	X
CMPMNE	[DE+1, A	($\mathrm{DE}+$) - $\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X
	[DE-], A	(DE-) $-\mathrm{A}, \mathrm{C}<\mathrm{C-1}$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	x
CMPBKNE	[DE+], [HL+]	(DE +) - ($\mathrm{HL}+$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{Z}=1$	2	X	X	X	V	X
	[DES-], [HL-]	(DE-) - (HL-), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $Z=1$	2	X	X	X	V	x
CMPMC	[$\mathrm{D} 5+\mathrm{]}$, A	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
	[DE-], A	$(D E-)-A, C \leftarrow C-1$ End if $C=0$ or $C Y=0$	2	X	X	X	V	X
CMPBKC	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
	[DE-], [HL-]	(DE-) $-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	2	X	X	X	V	X
CMPMNC	$[\mathrm{DE}+], \mathrm{A}$	$(\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], A	$(\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C-1}$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	x
CMPBKNO	[DE+], [HL+]	$(\mathrm{DE}+)-(\mathrm{HL}+$), $\mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
	[DE-], [HL-]	$(\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	2	X	X	X	V	X
CPU Control								
MOV	STBC, \#byte	STEC ¢ byte (Note 6)	4					
	WDM, \#byte	WDM ¢ byte (Note 6)	4					
SWRS		RSS $\leftarrow \overline{\text { RSS }}$	1					
Sㄷㄴ	RBn	FES $\mathrm{S}_{2-0} \leftarrow \mathrm{n}$, $\mathrm{HSS} \leftarrow 0$	2					
	RBn, ALT	R $\mathrm{SS}_{2-0} \leftarrow \mathrm{n}$, $\mathrm{PSS} \leftarrow 1$	2					
NOP		No operation	1					
EI		EEヶ1 (Enable interrupt)	1					
D1		$\underline{\text { I }} \leftarrow 0$ (Disable interrupt)	1					

Instruction Set (cont)

Notes:

(1) A special instruction is used to write to STBC and WDM.
(2) One byte move instruction when [DE], [HL], [DE +], [DE-], $[H L+]$, or $[H L-]$ is specified for mem.
(3) 16-bit signed multiply instruction
(4) Addressing range is $O F E O O H$ to OFEFFH.
(5) rpp refers to register pairs specified in post byte. " n " is the number of register pairs specified in post byte.
(6) Trap if data bytes in operation code are not one's complement. if trap, then:
$(\mathrm{SP}-1) \leftarrow \mathrm{PSWH},(\mathrm{SP}-2) \leftarrow \mathrm{PSWL},(\mathrm{SP}-3) \leftarrow(\mathrm{PC}-4)_{\mathrm{H}}$,
$(\mathrm{SP}-4) \leftarrow(\mathrm{PC}-4)_{\mathrm{L}}, \mathrm{PC}_{\mathrm{L}} \leftarrow(003 \mathrm{CH}), \mathrm{PG}_{\mathrm{H}} \leftarrow(003 \mathrm{DH})$.
$S P \leftarrow S P-4, I E \leftarrow 0$.

SOLDERING

Packaging and Soldering Information

Part Number	Package	Package Drawing	Recommended Soldering Code (Note 1)
μ PD78350GC-38E	64-pin plastic QFP (3.0-mm height)	P64GC-80-35E	1R30-107-1 VP15-107-1 WSE0-107-1
μ PD78P352AG-xxx-22	64-pin plastic QFP ($1.7-\mathrm{mm}$ height)	P64G-80-22-1	Contast NEC
$\mu \mathrm{PD78P352G-22}$			$\begin{aligned} & \text { IR30-107-2 } \\ & \text { VP15-107-2 } \end{aligned}$
$\underline{\mu \text { PD78P352KK }}$	64-pin ceramic LCC with window	X80KW-80B	Not intended for soldering

Soldering Conditions

Method (Note 1)	Code (Note 2)	Soldering Conditions	Exposure Limit (Note 3)
Infrared ray reflow	$\begin{aligned} & \text { IR30-107-1 } \\ & \text { IR } 30-107-2 \end{aligned}$	Package peak temp: $230^{\circ} \mathrm{C}$ Time: $30 \mathrm{sec}\left(210^{\circ} \mathrm{C}\right.$ min)	Max no. of days: 7 (thereafter, 10 hours baking at $125^{\circ} \mathrm{C}$ is required)
Vapor phase reflow	VP15-107-1 VP15-107-2	Package peak temp: 215 C Time: $40 \mathrm{sec}\left(200^{\circ} \mathrm{C}\right.$ min)	Max no. of days: 7 (thereafter, 10 hours baking at $125^{\circ} \mathrm{C}$ is required)
Wave soldering	W560-107-1	Solder bath temp: $260^{\circ} \mathrm{C}$ max Time: 10 sec max	
Pin partial heating	-	Temperature: $300^{\circ} \mathrm{C}$ max Time: 3 sec max (per device side)	

Notes:

(1) Do not use different soldering methods together. However, on all devices, the pin partial heating method can be used alone or in combination with other soldering methods.
(2) The maximum number of soldering operations is one or two as indicated by the last digit of the soldering code: -1 or -2
(3) Maximum no. of days refers to the number of days after unpacking the dry pack. Storage conditions are $25^{\circ} \mathrm{C}$ and 65% RH max.

PACKAGE DRAWINGS

64－Pin Plastic QFP（3．0－mm height）（Dwg No．P64GC－80－3BE）

Hem	Millimeters	Inches
\mathbf{A}	17.6 ± 0.4	$.693 \pm .016$
B	14.0 ± 0.2	$.551 \pm .009$
\mathbf{C}	14.0 ± 0.2	$.551 \pm .009$
D	17.6 ± 0.4	$.693 \pm .016$
F	1.0	.039
G	1.0	.039
H	0.35 ± 0.10	$.014 \pm .004$
I	0.15	.006
J	$0.8(\mathrm{TP})$	$.031(\mathrm{TP})$
K	1.8 ± 0.2	$.071 \pm .008$
L	0.8 ± 0.2	$.031 \pm .009$
M	0.15 ± 0.10	$.006 \pm .004$
N	0.15	.006
P	2.7	.106
\mathbf{Q}	0.1 ± 0.1	$.004 \pm .004$
R	0.1 ± 0.1	$.004 \pm .004$
S	3.0 max	.118 max

Enlarged detall of lead end

P6490．603BE
$83 \mathrm{CLO1598}$（1282）

64－Pin Plastic QFP（1．7－mm height）（Dwg No．P64G－80－22－1）

Hem	Millimeters	Inches
A	18.4 ± 0.4	$\begin{array}{r} .724+.017 \\ -.016 \\ \hline \end{array}$
B	14.0 ± 0.2	$\begin{array}{r} .551+.009 \\ -.008 \\ \hline \end{array}$
C	14.0 ± 0.2	$\begin{array}{r} .551+.009 \\ -.008 \\ \hline \end{array}$
D	18.4 ± 0.4	$\begin{array}{r} .724+.017 \\ -.016 \end{array}$
F	1.0	． 039
G	1.0	． 039
H	0.35 ± 0.10	$\begin{aligned} & .014+.004 \\ & -.005 \end{aligned}$
I	0.15	． 006
J	0.8 （1P）	． 031 （TP）
K	2.2 ± 0.2	$\begin{gathered} .087+.008 \\ -.009 \\ \hline \end{gathered}$
L	$1.0 \div 0.2$	$.029+.009$ -.008
M	$\begin{array}{r} +0.15+0.10 \\ -0.05 \\ \hline \end{array}$	$\begin{array}{r} .006 \\ +.004 \\ \hline \end{array}$
N	0.15	． 006
P	$1.5=0.1$	． $059 \pm .004$
Q	0.0 ± 0.1	． $000 \pm .004$
5	1.7 max	． 067 max

P84G－ $00-22-1$ μ PD78352 Family NEC

64-Pin Ceramic LCC With Window (Dwg No. X80KW-80B)

Item	Millimeters	Inches
A	14.00 ± 0.18	$.551 \pm .007$
B	13.60 ± 0.15	$.535 \pm .006$
C	13.60 ± 0.15	$.535 \pm .006$
D	9.0	.354 Typ.
E	4.0	.157 Typ.
F	C 0.3	C.012
G	3.185 ± 0.371	$.125 \pm .015$
H	0.8 ± 0.1	$.031 \pm .004$
I	12.0 ± 0.15	$.472 \pm .006$
J	0.51 ± 0.1	$.020 \pm .004$
K	R 2.0	R .079
N	0.08	.003

X60KW-80B

[^0]: L Connect these pins separately to $V_{S S}$ through reststors．
 G Connect this pin to VSS．
 OPEN Do not connect these plns．

