K-Series

Data Sheet

The information in this document is subject to change without notice. NEC Electronics Inc. assumes no responsibility for any errors or omissions that may appear in this document. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc.

The uPD78350 is a product of the 16/8-bit single-chip microcomputer $78 \mathrm{~K} / 111$ series. It contains a $16-b i t h i g h-$ performance CPU.

The uPD78350 contains only hardware necessary for operating as an ASIC controller so that a unique application system with the ASIC connected can be developed. And, since the sum-of-products instruction is added to enhance operation functions, the uPD78350 can be used in many fields as high-speed, simple CPU.

Features

- 16-bit internal architecture, 8-bit external data bus
- High-speed data processing using the pipeline control system and high-speed operation clock
. Instruction cycle: 160 ns (internal clock frequency:

$$
12.5 \mathrm{MHz})
$$

o Internal memory: ROM: Not provided
RAM: 640 bytes

- An instruction set suited for control applications (upD78322 upward compatible)

Multiply/divide instruction (16 bits $x 16$ bits, 32 bits 16 bits)
. Sum-of-products operation instruction Bit manipulation instruction and so on

- Built-in high-speed interrupt controller
- A 4-level priority can be specified.
- One inter rupt processing mode can be selected out of three types: vector interrupt function, macro service function, and context switching function.
- Wait control for a bus cycle is possible from the external device.
. External wait pin
o 8-bit PWM signal output function: 2 channels

Application
o Office automation (OA) field such as for hard disk drive or floppy disk drive control

- Factory automation (FA) field

Ordering information
\qquad
uPD78350GC-3BE 64-pin plastic QFP (14 x 14 mm) Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)

Caution: Leave the IC pins open.

Function overview

Item	Description
Number of basic instructions	113
Minimum instruction execution time	160 ns (internal clock frequency: $12.5 \mathrm{MHz}^{2}$, external clock frequency: 25.0 MHz)
Internal memory	ROM: Not provided RAM: 640 bytes
Memory space	64K bytes (can externally be extended)
General register	8 bits $\times 16 \times 8$ banks
Instruction set	16-bit transfer or arithmetic/logical instruction Unsigned multiply/divide instruction (16 bits $\times 16$ bits, 32 bits $: 16$ bits) Bit manipulation instruction String instruction Sum-of-products instruction
Capture/timer unit	16 -bit timers: 3 channels 16 -bit capture registers: 2 16 -bit compare registers: 2
Interrupt function	A 4-level priority can be specified by software. One interrupt processing mode can be selected out of three types: vector interrupt function, macro service function, and context switching function.
1/0 line	- Input ports: 6 - 1/0 ports: 24
PWM unit	8-bit PWM outputs: 2 channels
Package	. 64-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
Others	Watchdog timer function Standby function (HALT, STOP) External wait pin

1. PIN FUNCTIONS
1.1 Port Pins

1.2 Non-port Pins

Pin name	$1 / 0$	Function	Dual-function pin
NMI	1	Nonmaskable interrupt request input	P20
INTPO		External interrupt request input	P21
INTP 1			P22.
INTP2			P23
INTP3			P24
TI		External count input to timer 1 (TM1)	P25
PWMO	0	PWM signal output	P30
PWM1			P31
$\overline{\text { WDTO }}$		Signal output which indicates the occurrence of a watchdog timer interrupt	-
MODE 0	1	Control signal input to set an operation mode. Normally, connect the MODEO to $V_{D D}$ and the MODE 1 to V_{SS}.	-
ADO-AD7	1/0	Multiplexed address/data bus when an external memory is expanded	-
A8-A15	0	Address bus when an external memory is expanded	-
ASTB	0	Address strobe signal output	-
$\overline{\mathrm{RD}}$		Read strobe signal output to the external device	-
$\overline{W R}$		Write strobe signal output to the external memory	-
CLKOUT		System clock output	-
WAIT	1	Control signal input to set a bus cycle to the wait state	-
RESET	1	System reset input	-

(to be continuec)
(Cont'd)

Pin name	1/0	Function	Dual-function pin
XI	1	Crystal input pin for system clock oscillation: A clock signal provided externally is input to the $X I$ pin.	-
X2	-		-
$V_{\text {DO }}$	-	Positive power supply	-
$v_{\text {SS }}$	-	Ground	*-
10	-	Internally connected pin. Leave open.	-

1.3 Input/Output Circuits of Each Pin

Table 1-1 and Figure $1-1$ show the input and output circuits of each pin in a simplified format.

Table 1-1 Input/Output Circuits of Each Pin

Pin	1/0 circuit type
P00-P07	5
P10-P17	
P30-P37	
ADO-AD7	
A8-A15	
P20-P25	2
ASTB	4
$\overline{\mathrm{RD}}$	
$\overline{W R}$	
WDTO	14
CLKOUT	3
MODEO, MODE 1	1
WAIT	
$\overline{\text { RESET }}$	2

Fig. 1-1 Input/Output Circuits of Each Pin

1.4 Handling Unused Pins

Table 1-2 Handling Unused Pins

2. CPU ARCHITECTURE
2.1 Memory Space

The uPD78350 can access memory of up to 64 K bytes. Figure 2-1 shows the memory map.

Fig. 2-1 Memory Map

Remark: Shaded portions indicate internal memory.

Various addressing modes are provided for the uPD78350 to improve memory operability or to enable the use of a highlevel language. Special addressing is applicable, in particular, to the space of data memory from FC8OH to FFFFH according to each function of the special function register (SFR) group and general register group.

Figure 2-2 shows the addressing space of data memory.

Fig. 2-2 Addressing Space of Data Memory

The uPD78350 contains three processor register groups.
2.3.1 Control registers
(1) Program counter (PC)

The program counter is a l6-bit register which" contains the address of the next instruction to be executed.
(2) Program status word (PSW)

The program status word is a 16 -bit register which contains the status of the CPU according to the instruction execution result.
(3) Stack pointer (SP)

The stack pointer is a register which contains the first address of the stack area (LIFO type) in memory.
(4) CPU control word (CCW)

The CPU control word is an 8-bit register which is related to CPU control.

Fig. 2-3 Control Register Configuration

Fig. 2-4 PSW Configuration
15
8

UF	RBS2	RBS 1	RBSO	0	0	0	0

7

S	Z	$R S S$	$A C$	$I E$	P / V	0	$C Y$

$\begin{cases}\text { UF: } & \text { User flag } \\ \text { RBSO-RBS2: } & \text { Register bank selectionflag } \\ \text { S: } & \text { Signflag (MSB after arithmetic/logical operation) } \\ \text { Z: } & \text { Zeroflag } \\ \text { RSS: } & \text { Registerset selection flag } \\ \text { AC: } & \text { Auxiliarycarry flag } \\ \text { IE: } & \text { Interruptrequest enable flag } \\ \text { P/V: } & \text { Parity/overflowflag } \\ \text { CY: } & \text { Carryflag }\end{cases}$

Fig. 2-5 CCW Configuration
ccw

TPF: Table position flag

2.3.2 General register

The general register group consists of eight banks cone bank: 8 words $\times 16$ bits). Figure $2-6$ shows general register configuration. The general register group is mapped into addresses from FE8OH to FFEFH, and functions as a l6-bit register as well as an 8-bit register (see Figure 2-7). The use of this register enables easy control of complicated multitask processing.

Fig. 2-6 General Register Configuration

Fig. 2-7 Bit Processing for General Register

2.3.3 Special function registers (SFR)

The special function register group consists of the registers for control of the peripheral hardware the uPD78350 contains. This register group. is mapped into addresses from $F F O O H$ to $F F F F H$. The operation of these registers enables control of ports, a timer, and PWM unit

Table 2-1 Special Function Registers

Address	Special function register (SFR) name	Abbreviation	R/W	Manipulation bit unit			At resetting
				1	8	16	
FFOOH	Port 0	PO	R/W	0	0	-	*
FFO1H	Port 1	P1		0	0	-	
FF02H	Port 2	P2	R	0	0	-	
FF03H	Port 3	P3	R/W	0	0	-	
FFIOH	Capture register 00	CTOO	R/W				
FFilH							
FF12H	Capture register 01	CTO1		-	-	0	Undefined
FFi 3H							
FFi4H							
FF 15H						0	
FFIEH							
FFiFH							
FF2OH	Port 0 mode register	PMO	R/W	0	0	-	FFH
FF21H	Port 1 mode register	PM 1		0	0	-	
FF23H	Port 3 mode register	PM3		0	0	-	
FF30H	Timer register 0	TMO	R	-	-	0	OOH
FF31H							
FF32H	Timer register 1	TM 1		-	-	0	
FF33H	Timer register 1						
FF34H	Timer register 2	TM2		-	-	0	
FF35H							
FF38H	Timer control register 0	TMCO	R/W	0	0	-	
FF39H	Timer control register 1	TMC1		0	0	-	
FF 3 CH	External interrupt mode regi.ster 0	INTMO		0	0	-	
FF3DH	External interrupt mode register 1	\| NTM 1		0	0	-	

Table 2-1 Special Function Registers (Cont'd)

Address	Special function register (SFR) name	Abbreviation	R/W	Manipulation bit unit			At resettins
				1	8	16	
FF43H	Port 3 mode control register	PMC3	R/W	0	0	-	OOH
FF62H	Port read control register	PROC		0	0	-	
FF64H	PWM control register	PWMC		0	0	-	
FF66H	PWM buffer register 0	PWMO		0	0	-	Undefined
FF6EH	PWM buffer register 1	PWM1		0	0	-	
FFA8H	In-service priority register	ISPR	R	0	0	-	OOH
FFAAH	Interrupt mode control register	IMC	R/W	0	0	-	80 H
FFACH	Interrupt mask flas resister	MKL		0	0	-	7FH
FFACH	Interrupt mask flag register	MK (*)		-	-	0	xx7FH
FFADH							
FFCOH	Standby control register	STBC		-	0	-	0000×0008
FFClH	CPU control word	CCW		0	0	-	OOH
FFC2H	```Watchdog timer mode register```	WDM		-	0	-	
FFC4H	Memory expansion mode register	MM		0	0	-	0xxx xxxx ${ }^{\text {c }}$
FFC6H	```Programmable wait control register```	PWC		-	-	\bigcirc	COAAH
FFC7H							
$\begin{aligned} & \text { FFDOH } \\ & \text { FFDFH } \end{aligned}$	External SFR area	-		0	0	-	Undefined
FFEOH	Interrupt control register (INTOV)	OVIC		\bigcirc	0	-	
FFEIH	Interrupt control register (INTPO)	PICO		\bigcirc	\bigcirc	-	
FFE2H	Interrupt control register (\|NTP1)	PICl		0	0	-	
FFE3H	Interrupt control resister (INTCM10)	CMIC1O		0	0	-	43H
FFE4H	Interrupt control register (INTCM20)	CMIC20		0	\bigcirc	-	
FFE5H	Interrupt control register (1NTP2)	PIC2		0	0	-	
FFE6H	Interrupt control register (INTP3)	PIC3		0	0	-	

[^0]
3. BLOCK FUNCTION

3.1 Bus Control Unit (BCU)

The bus control unit ($B C U$) activates a required bus cycle according to the physical address obtained from the execution unit (EXU). When the EXU does not issue a bus cycle activation request, the $B C U$ generates an address. required for prefetching an instruction. The prefetched instruction code is fetched into the instruction queue.
3.2 Execution Unit (EXU)

The execution unit (EXU) controls address calculation, arithmetic/logical operations, and data transfer by a microprogram. The EXU contains 256-byte main RAM.

The 256-byte main RAM in the EXU can be accessed at higher speed with an instruction than 384-byte peripheral RAM.

3.3 RAM

The builtin peripheral RAM consists of 384 bytes.
3.4 Interrupt Controller

The interrupt controller processes various interrupt requests (NMI and INTPO to 1 NTP3) issued from peripheral hardware and external device with the vector interrupt, macro service, or context switching.

The inter $u p t$ controller also specifies the 4-level interrupt priority.
3.5 Capture/Timer Unit

The capture/timer unit consists of the following hardware.

- 16-bit timers/counters: 3 channels

16-bit capture registers: 2
16-bit compare registers: 2

The capture/timer unit can output a programable pulse and measure a pulse width and frequency.
3.6 PWM Unit

The uPD78350 has two channels of 8-bit PWM signal outputs. By connecting an external low-pass filter, a PWM output can be used as an analog voltage output.
3.7 Watchdog Timer (WDT)

The 8-bit watchdog timer is built into the CPU to detect a program crash and system error. This microcomputer has the $\overline{W D T O}$ pin to notify the external device that a watchdog timer interrupt occurs.

The following ports having the general port function and control pin function are provided.

Table 3-1 Pin Function

Port	110	Function	
PO	8-bit 1/0	$\begin{aligned} & \text { General } \\ & \text { port } \end{aligned}$	-
PI	8-bit $1 / 0$		-
P2	6-bit input		External interrupt and capture trigger
P3	8-bit $1 / 0$		PWM signal output

4. PERIPHERAL HARDWARE FUNCTIONS
4.1 Port Functions
4.1.l Hardware configuration

As shown in Figure 4-1, three-state bidirectional ports are basically used for the ports of the uPD78350. .

A $\overline{R E S E T}$ input signal sets each bit of a port mode register to 1, specifying the port as an input port. All port pins go into the high-impedance state. A $\overline{R E S E T}$ input signal makes the contents of the output latch undefined.

Figure 4-2 shows the port configuration.

Fig. 4-1 Basic $1 / 0$ Port Configuration

* PMXn latch: Bit $n(n=0$ to 7) of port mode register PMX ($X=0,1,3$)

Remark: Port 2 is used only for 6-bit input.

Fig. 4-2 Port Configuration

4.1.2 Functions of the digital $1 / 0$ ports

Table 4-1 lists the ports of the uPD78350.

Each port allows bit manipulations as well as 8-bit data manipulations, thus enabling a wide variety of control. Each port functions as a digital port and also functions as $1 / O$ pins for internal hardware.

Table 4-1 Port Functions and Additional Functions of the Ports

Port name	Port function	Additional function
Port 0	8-bit $1 / 0$ port. Specifiable as input or output bit by bit.	-
Port 1	8-bit $1 / 0$ port. Specifiable as input or output bit by bit.	- *
Port 2	Port used only for 6-bit input	External interrupt input, capture trigger input, and count pulse input in control mode
Port 3	8-bit $1 / 0$ port. Specifiable as input or output bit by bit	PWM signal output in control mode

4.1.3 Port output check function

The uPD78350 has a function of reading pin state (pin access mode) to improve system application reliability in port output mode. With this function, output data coutput latch data) and actual pin state can be checked as required. For frequent port state checking, special instructions (CHKL and CHKLA) are available.

The clock generator generates and controls an internal system clock (CLK) supplied to the CPU.

The clock generator is configured as shown in Figure 4-3.

Fig. 4-3 Block Diagram of the Clock Generator .

Remarks 1. fyX: Crystal oscillator frequency
2. f_{X} : External clock frequency
3. fCLK: Internal system clock frequency

The system clock generator generates a clock signal with a crystal resonator connected to the X 1 and $\mathrm{X} 2 \mathrm{pins}$. The system clock generator stops oscillation when the standby mode (STOP) is set.

An external clock can be applied. In this case, a clock signal is to be applied to the XI pin, with the inverted signal to be applied to the $X 2$ pin.

Caution: When using an external clock, do not set the STOP mode.

The frequency divider divides system clock generator output (fXX for the crystal oscillator or f for an external clock) by two to produce an internal system clock (fCLK).

Fig. 4-4 External Circuitry of the System Clock Generator
(a)
Crystal oscillator
(b) External clock

Caution: When using the system clock generator, run wires in the shaded area (\square) in Figure 4-4 according to the following rules to avoid effects such as stray capacitance:
. Minimize the wiring.
. Never cause the wires to cross other signal lines or run near a line carrying a large varying current.
. Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as $V_{S S}$. Never connect the capacitor to a ground pattern carrying a large current.
. Never extract a signal from the oscillator.

4.3 Capture/Timer Unit

The capture/timer unit can output programmable pulses and can also measure pulse intervals and frequencies.

The capture/timer unit mainly consists of three timers and four registers.
4.3.1 Configuration of the capture/timer unit

The capture/timer unit consists of the hardware components listed in Table 4-2. Figure 4-5 shows the configuration of the capture/timer unit.

Table 4-2 Components of the Capture/Timer Unit

Timer	Count clock	Register	Compare register match interrupt	Capture trigger
16-bit timer (TMO)	${ }^{\text {f CLK }}$ / 8	16-bit capture register (CTOO) 16-bit capture register (CTO1)	-	$\begin{aligned} & \text { INTPO } \\ & \text { INTPI } \end{aligned}$
16-bit timer (TM1)		16-bit compare resister (CM1O)	INTCM10	-
16-bit timer (TM2)	$\begin{aligned} & { }^{\mathrm{f}} \mathrm{CLK} / 4 \\ & { }_{\mathrm{CLK}} / 8 \end{aligned}$	16-bit compare resister (CM2O)	INTCM20	-

Remarks 1. f CLK: Internal system clock
2. INTPO, INTPI: External interrupt
3. Timer 0 has an overflow interrupt function
4. Timer 1 is cleared by INTCMIO.
5. Timer 2 is cleared by INTCM2O.

Fig. 4-5 Configuration of the Capture/Timer Unit

(1) Timer 0 (TMO)

Timer 0 is a 16-bit free-running timer.

Timer O counts an internal clock, and generates an overflow interrupt (INTOV) when a timer overflow. occurs.
(2) Timer 1 (TM1)

Timer 1 is a 16 -bit timer/event counter. Timer 1 can count an internal clock or external event applied to the Tl pin.

Timer 1 can be by a match interrupt (INTCM10) from the compare register CM1O.
(3) Timer 2 (TM2)

Timer 2 is a 16-bit interval timer. Timer 2 counts an internal clock. Timer 2 is cleared by a match interrupt (INTCM2O) from the compare register CM2O.
(4) 16-bit compare registers (CM10 and CM20)

A 16-bit compare register compares the contents of each timer with the data held in the compare registe. at all times, and generates a match signal when a match is found.

See Table 4-2 for detailed information about the configuration of the timers and compare registers, and the correspondence between the compare registe. and interrupt sources.
(5)

16-bit capture registers (СТОО and CTO1)

A 16-bit capture register takes in (captures) the contents of timer 0 when a capture trigger signal occurs. As a capture trigger, an external interrupt (INTPO or INTPI) can be used.

See Table 4-2 for the correspondence between the registers and capture triggers.

The occurrence of a capture trigger also means the occurrence of an interrupt. By using a capture register, the pulse width and period of an externally applied pulses can be easily measured.

The uPD78350 has two PWM signal outputs of 8-bit resolution. By externally connecting a low-pass filter, a PWM output can be used as a digital-to-analog conversion output. The PWM outputs are most suitable, for example, for a control signal for the actuator of a motor.

Table 4-3 lists PWM signal output repetition frequencies. Figure 4-6 shows the configuration of the PWM output function.

Table 4-3 PWM Signal Repetition Frequencies

Resolution per bit	Repetition frequency
$2 / \mathrm{f} \mathrm{CLK}(0.16 \mathrm{us})$	${ }^{\mathrm{f}} \mathrm{CLK} / 2^{9}(24.4 \mathrm{kHz})$

Remark: The values in parentheses are for ${ }^{f} \mathrm{CLK}=12.5 \mathrm{MHz}$.

Fig. 4-6 Configuration of the PWM Output Function

4.5 Watchdog Timer (WDT)

The watchdog timer is a freerrunning counter with a nonmaskable interrupt function designed to prevent crashes or deadlocks. A program error can be detected when a watchdog timer overflow interrupt (INTWDT) is generated or when the watchdog timer output pin ($\overline{W D T O}$) goes low. By connecting this output to the $\overline{\operatorname{RESET}}$ pin, abnormal application system operation caused by a program error can be prevented.

The watchdog timer detects any programerror by hardware. So it ensures the detection of crashes and deadlocks for restarting the program. The watchdog timer can also be used to guarantee a time required for the oscillator to perform stable operation when the stop mode is released.
4.5.1 WDT configuration

Figure 4-7 shows the configuration of the watchdog timer.

Fig. 4-7 Configuration of the Watchdog Timer

4.5.2 WDT operation

The watchdog timer generates an interrupt at specified time intervals to detect a program error. So a program should be divided into modules so that the processing of each module can be completed within the WDT interval. Each module should contain an instruction to clear and restart the watchdog timer. For this control, the watchdog timer mode register (WDM) is used.

Once the watchdog timer is started after RESET signal input, it cannot be stopped with an instruction. This is intended to prevent a program error from stopping the watchdog timer. Only a $\overline{\operatorname{RESET}}$ input signal can stop the watchdog timer. As another means to prevent an error, a special instruction is used to write data into the watchdog timer.

When a WDT overflow occurs, the watchdog timer output pin (WDTO) allows the low level to be output for the period of 32 f CLK. This pin is externally connected with the RESET pin, and is used to reset the system automatically when a program error occurs

Cautions 1. $\overline{\text { WDTO }}$ is designed to output the low level for the period of 32 f CLK even after $\overline{R E S E T}$ input considering its direct connection to the RESET pin.
2. $\overline{W D T O}$ may go low for a maximum of 32 f CLK immediately after power-on.

Remark: fCLK: Internal system clock (oscillator frequency/2)
5. INTERRUPT FUNCTION

The $u P D 7835$ has a powerful interrupt function that can handle interrupt requests from the peripheral hardware or other external devices. Three interrupt handing modes are availab|e:
. Vectored interrupt handiing

- Macro service
. Context switching

With this interrupt function, complex multitask processing can be efficiently performed at high speed.

Table 5-1 Types of Interrupt Requests and Handling Modes

Interrupt requestHandling mode	Vectored interrupt handling	Macro service	Context switching
Nonmaskable interrupt	0	-	-
Maskable interrupt	0	0	\bigcirc
Software interrupt	0	-	0
Exception trap	0	-	-

5.1 Types of Interrupt Requests

With the uPD78350, four types of interrupt requests are used:

- Nonmaskable interrupt
- Maskable interrupt
- Software interrupt
- Exception trap

Each type of interrupt request is explained below.
(1) Nonmaskable interrupt

The nonmaskable interrupt is a type of interrupt whose acceptance cannot be disabled with an instruction. A nonmaskable interrupt can be accepted at all times. Nonmaskable interrupt requests are classified into the following two types:
. NMI pin input (NMI)
. Watchdog timer output (WDT)

For a nonmaskable interrupt, vectored interrupt handling can be performed.
(2) Maskable interrupt

The maskable interrupt is a type of interrupt whose acceptance can be masked with a control register. Seven interrupt sources are available. For a maskable interrupt, one of the following three handing modes can be selected:

- Vectored interrupt handling
- Macro service
. Context switching

Fig. 5-1 Maskable Interrupt Handling

If multiple maskable interrupts occur at the same time, their priorities are determined according to the default priorities. Besides the default priorities, four priority levels can be set by software.

The software interrupt request is an interrupt request made by executing a CPU break instruction, and can be accepted at all times. For a software interrupt, vectored interrupt handling is performed. The following two instructions can generate a software interrupt:

BRK: Causes a branch to the address indicated by the contents of memory addresses OO3EH and 003FH.

BRKCS:	Causes a branch by context switching
	processing for switching to the register
	bank specified in the instruction.

(4) Exception trap

For an exception trap, vectored interrupt handing can be performed. An exception trap occurs in the following case:

Invalid op code (TRAP):
Occurs when an instruction for writing to the standby control register and watchdog timer mode register is not executed normally.

5.2 Interrupt HandIing Modes

With the uPD78350, three interrupt handing modes are available:
. Vectored interrupt handling
. Macroservice
. Context switching
(1) Vectored interrupt handling

When an interrupt is accepted, the contents of PC and PSW are saved automatically. Then a branch is made to the address indicated by the data contained in the vector address table to execute the interrupt service routine.
(2) Macro service

When an interrupt is accepted, CPU execution is terminated temporarily to execute the service set by firmware. The macro service is performed without CPU involvement, so that the CPU statuses such as PC and PSW need not be saved or restored. Thus the macro service much increases CPU service time.
(3) Context switching

When an interrupt is accepted, a specified register bank is selected by hardware. Then a branch is made to the already selected vector address in the register bank, and the current contents of PC and PSW are saved in the register bank at the same time.

Remark: The context means CPU registers that can be accessed from a program being executed. The registers include general registers, $P C, P S W$, and $S P$.

Table 5-2 lists the interrupt sources.

Table 5-2 Interrupt Source List

Type	(*)	Interrupt source		Unit requesting interrupt	Vector table address	Macro service	Context switch
		Name	Trigger				
Non-maskable	-	NMI	NMI pin input	External	0002H	No	No
	-	WDT	Watchdog timer	WDT	0004H		
$\begin{aligned} & \text { Mask- } \\ & \text { able } \end{aligned}$	0	INTOV	Timer D overflow	Capture/ timer unit	0006H	Yes	Yes
	1	INTPO	INTPO pin input	External	0008H		
	2	\| NTP 1	INTPI pin input	External	OOOAH		
	3	INTCM10	CM1O match signal	Capture/ timer unit	000CH		
	4	INTCM20	CM20 match signal	Capture/ timer unit	OOOEH		
	5	INTP2	INTP2 pin input	External	OO10H		
	6	INTP3	INTP3 pin input	External	OO12H		
Software	-	BRK	BRK instruction	-	OO3EH	No	No
	-	BRKCS	BRKCS instruction	-	-		Yes
Exception	-	TRAP	Invalid op code trap	-	003 CH		No
Reset	-	RESET	RESET input	-	OOOOH		

- Default priority: Priority used when multiple maskable interrupts occur at the same time, with 0 for the highest priority and 6 for the lowest priority

The uPD78350 has five types of macro services. Each macro service is explained below.
(1) Counter mode: EVTCNT

- Operation
(a) This mode increments or decrements the 8-bit macro service counter (MSC).
(b) When the MSC reaches 0, a vectored interrupt request occurs.

- Sample application

This mode can be used as the event counter or capture counter.
(2) Block transfer mode:BLKTRS

Operation
(a) This mode transfers a data block between the buffer and the SFR pointed to by the SFR pointer (SFRP).
(b) Either an SFR or buffer area can be specified as a transfer source or transfer destination In addition, either the byte or word can be selected as the length of transfer data.
(c) The MSC is used to specify the number of data transfers (block size).
(d) Each time the macro service is executed, the MSC is automatically decremented by one.
(e) When the MSC reaches 0 , vectored interrupt handling is activated.

- Sample application

This mode can be used to read port data in response to an external interrupt request.
(3) Block transfer mode (with memory pointer): BLKTRS-P

- Operation

This mode is the block transfer mode with a memory pointer (MEMP) added. The additional buffer area for MEMP can be freely set in memory space.

Remark: Each time the macro service is executed, the MEMP is automatically incremented (by one for a byte-data transfer or by two for a word-data transfer).

Sample application

Same as (2) above
(4) Data difference mode:DTADIF

Operation
(a) This mode calculates the difference between the contents (current value) of the SFR pointed to by the SFRP and the contents of the SFR already held in the last data buffer (LDB).
(b) The result of calculation is stored in a buffer area specified beforehand.
(c) The current value of the $S F R$ is loaded into the LDB.
(d) The MSC is used to specify the number of data transfers (block size). Each time the macro service is executed, the MSC is automatically decremented by one.
(e) When the MSC reaches 0 , vectored interrupt handling is activated.

Remark: The difference can be calculated only for a 16-bit SFR.

Sample application

This mode can be used to measure periods or pulse widths of the capture/timer unit.
(5) Data difference mode (with memory pointer):DTADIF-P

- Operation

This mode is the data difference mode with a memory pointer (MEMP) added. With this MEMP addition, a buffer area for storing difference data can be freely set in memory space.

Remark: A buffer is specified by the result of operation on the MEMP and MSC(Note). The MEMP is not updated after data transfer

Note: MEMP - (MSC $\times 2)+2$

Sample application

Same as (4) above

5.4 Context Switching

The context switching is a function that selects a specified register bank by hardware when an interrupt occurs or a BRKCS instruction is executed, then causes a branch to the vector address set beforehand in the register bank and saves the current contents of PC and PSW in the register bank at the same time.
5.4.1 Context switching function based on an interrupt request

The context switching function can be activated when the context switching enable register corresponding to each maskable interrupt request is set to 1 in the Eli (interrupt enable) state.

Context switching operation based on an interrupt request is performed as described below.
(1) When an interrupt request occurs, a register bank subject to context switching is specified from the contents of the lower three bits of the row address (even address) of the corresponding vector table.
(2) The vector address set beforehand in the register bank subject to context switching is transferred to PC, and the contents of PC and PSW present immediately before switching operation are saved in the register bank.
(3) A branch is made to the address pointed to by the newly set contents of PC.

Fig. 5-2 Context Switching Operation

5.4.2 Context switching function based on the BRKCS instruction

The context switching function can be activated with the BRKCS instruction.

Context switching operation based on an interrupt request is performed as described below.
(1) An 8-bit register is specified in an operand of the BRKCS instruction. The contents of the register determine a register bank subject to context switching. (Only the low-order three bits of the eight bits are used.)
(2) The vector address set beforehand in the register bank subject to context switching is transferred to PC, and the contents of $P C$ and PSW. present immediately before switching operation are saved in the register bank at the same time.
(3) A branch is made to the address pointed to by the newly set contents of $P C$.
5.4.3 Return from context switching

To return from context switching, one of the following two instructions is used. The source of context switching activation determines which instruction to use.

Table 5-3 Return from Context Switching

Return instruction	Context switching activation source
RETCS	Activation based on interrupt occurrence
RETCSB	Activation based on BRKCS instruction

6. EXTERNAL DEVICE EXPANSION FUNCTION

The uPD78350 does not contain ROM, but has extended built-in functions to connect external devices.

Connectable external devices are a general-purpose memory and $1 / O$ device.

Table 6-1 Pin Functions Assigned when External Devices are Connected

Pin	Function
ADO-AD7	Multiplexed address/data bus
$A 8-A 15$	Data bus
$\overline{R D}$	Read strobe
$\overline{W R}$	Write strobe
ASTB	Address strobe
CLKOUT	System clock output

The uPD78350 has a standby function to reduce power consumption of the system. With the standby function, two modes are available:

- HALT mode: In this mode, the CPU operation clock is stopped. Intermittent operation, when combined with the normal operation mode, can reduce overall system power consumption.
. STOP mode: In this mode, the oscillator is stopped to stop the entire system.

Since only leakage currents may flow in this mode, system power consumption can be minimized.

Each mode is set by software. Figure 7-1 is the transition diagram of the standby modes (STOP and HALT modes).

Fig. 7-1 Transition Diagram of the Standby Modes

When the signal applied to the $\overline{R E S E T}$ input pin is low, the system is reset, and each hardware component is placed in the status indicated in Table 8-1. When the signal applied to the RESET input port goes high, the reset status is released, and program execution starts. The contents of registers must be initialized in the program as required.

In particular, the number of cycles specified in the programmable wait control register must be changed as required.

The RESET input pin contains a noise eliminator based on analog delays to prevent abnormal operation due to noise.

Cautions 1. When RESET is active (low level), all pins except WDTO, CLKOUT, $V_{D D}, V_{S S}, X 1$, and $X 2$ go into the high-impedance state.
2. When RAM is expanded externally, attach a pullup resistor to the $\overline{R D}$ pin and $\overline{W R}$ pin. Otherwise, these pins may go into the highimpedance state, and the contents of the external RAM may be lost or the pins may be damaged.

Fig. 8-1 Acceptance of the $\overline{\text { RESET }}$ Signal

In reset operation at power-on, a time for stabilized operation between power-on to reset acceptance is required as shown in Figure 8-2.

Fig. 8-2 Reset Operation at Power-on

Table 8-1 Hardware Statuses after Reset

	Hardware	Status after reset
$\begin{aligned} & \text { Control } \\ & \text { registers } \end{aligned}$	Program counter (PC)	The contents of a reset vector table (0000H, 0001H) are set.
	Stack pointer (SP)	Undefined
	Program status word (PSW)	OOOOH
	CPU control word (CCW)	OOH
Internal RAM	Data memory	Undefined
	General registers (RO-R15)	
Ports	Output latches (PO, P1, P3)	Undefined
	Mode registers (PMO, PM1. PM3)	FFH
	Mode control register (PMC3)	OOH
	Port read control register (PRDC)	OOH
Capture/ timer unit	Timers ($T M O, ~ T M 1, ~ T M 2) ~$	OOH
	Timer control registers (TMCO, TMC1)	OOH
	Capture registers (CTOO, CTO1)	Undefined
	Compare registers (CM10, CM20)	Undefined
PWM output function	PWM control register (PWMC)	OOH
	PWM buffer registers (PWMO, PWM1)	Undefined
External expansion function	Memory expansion mode resister (MM)	Oxxx xxxx
	Programmable wait control register (PWC)	COAAH
Watchdog timer	Watchdog timer mode register (WDM)	OOH

(to be contınue::

Table 8-1 Hardware Statuses after Reset (Cont'd)

Hardware			Status after reset
Interrupt function	External interrupt mode registers (INTMO, INTM1)		OOH
	Interrupt mode control register (IMC)		8 OH
	Interrupt mask flag registers	(MKL)	7FH
		(MK)	$x \times 7 \mathrm{FH}$
	Interrupt control registers (OVIC. PICO, PIC1, CMIC1O, CMIC20, PIC2, PIC3)		43H
	In-service priority register (ISPR)		OOH
CPU control	Standby control register (STBC)		0000 xOOOH

9. INSTRUCTION SET

(1) Operand identifier and description

Operands are coded in the operand field of each
instruction as listed in the description column of Table
9-1. For details of the operand format, refer to the
relevant assembler specifications. When several coding
forms are presented, any one of them is selected.
Uppercase letters and the symbols, +, -, \#, \$, !, and
[], are keywords and must be written as they are.

For immediate data, an appropriate numeric or label must be written. The symbols \#, \$, !, and [] must not be omitted when describing labels.

Table 9-1 Operand Identifier and Description

$\begin{aligned} & \text { Identi- } \\ & \text { fier } \end{aligned}$	Description
$\begin{aligned} & \text { r } \\ & \text { r1 } \\ & \text { r2 } \end{aligned}$	```R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15 R0, R1, R2, R3, R4, R5, R6, R7 C, B```
$\begin{aligned} & r p \\ & r p 1 \\ & r p 2 \end{aligned}$	RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7 RPO, RP1, RP2, RP3, RP4, RP5, RP6, RP7 $D E, H L, V P, U P$
$\begin{aligned} & s f r \\ & s f r p \end{aligned}$	Special function register abbreviation (See Table 2-1.) Special function register abbreviation (16-bit manipulation register. See T-ble 2-1.)
post	RPO, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7 (Can be coded more than once. However, RP5 can only be used in a PUSH or POP instruction and PSW can only be used in a PUSHU or POPU instruction.)

Table 9-1 Operand Identifier and Description (Cont'd)

$\begin{aligned} & \text { Identi- } \\ & \text { fier } \end{aligned}$	Description
mem	[DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP]: Resister in$[D E+A],[H L+A],[D E+B],[H L+B],[V P+D E],[V P+H L]: \quad B a s e d$ indexed mode [DE+byte], [HL+byte], [VP+byte], [UP+byte], [SP+byte]: Based mode word[A], word[B], word[DE], word[HL]: Indexed mode
$\begin{aligned} & \text { saddr } \\ & \text { saddrp } \end{aligned}$	FE2OH-FFIFH Immediate data or label FE2OH-FFIEH Immediate data (bit $0=0$, however) or label (for 16-bit manipulation)
\$addr 16 !addrl6 $\operatorname{addr} 11$ addr5	$0000 H-F D F F H$ Immediate data or label: Relative addressing 0000H-FDFFH Immediate data or label: Immediate addressing (Data at an address up to FFFFH can be coded in an MOV instruction. Data at an address from FEOOH to FEFFH can be coded in an MOVTBLW instruction.) $\begin{array}{ll}800 H-F F F H & \text { Immediate data or label } \\ 40 H-7 E H & \text { Immediate data (bit } 0=0 \text {, however) (*) or label }\end{array}$
$\begin{aligned} & \text { word } \\ & \text { byte } \\ & \text { bit } \\ & \text { n } \end{aligned}$	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label 3-bit immediate data (0 to 7)

* Do not attempt to access word data at an odd-numbered address (bit $0=1$).

Remarks 1. The same register name can be specified in rp and rpl, but different codes are generated
2. Functional names $(X, A, C, B, E, D, L, H$, $A X, B C, D E, H L, V P$, and $U P)$ can be specified in $r, r l, r p, r p l$, and post, as well as absolute names (RO to R15 and RPO to RP7).
3. Immediate addressing is effective for entire address spaces. Relative addressing is effective for the locations within a displacement range of - 128 to +127 from the starting address of the nex: instruction.
(2) Legend

A:	A register: 8-bit accumulator
$X:$	X register

X. $\quad X$ register

B: B register
C: C register
D: $\quad D$ register
E: E register
H: H register
$L: \quad L$ register
RO-R15 Register 0 to register 15 (absolute name)
AX: Register pair (AX): 16 bit accumulator
BC: Register pair (BC)
DE: Register pair (DE)
HL: Register pair (HL)
RPO-RP7: Register pair 0 to register pair 7 (absolute name)

PC: Program counter
SP: Stack pointer
UP: User stack pointer
PSW: Program status word
CY: Carry flag
AC: Auxiliary carry flag
Z: Zeroflag
P/V: Parity/overflow flag
S: Sign flag
TPF: Table position flag
RBS: Register bank selecting flag
RSS: Register set selecting flag
IE: Interrupt enable flag
STBC: Standby control register
WDM: Watchdog timer mode register
jdisp8: Signed 8-bit data (displacement value: - 128 to 0 127)

Contents at an address enclosed in parentheses or at an address indicated in a register indicated in parentheses. $\quad(+)$ and (-) indicate that an address or the contents of a register indicated in parentheses are incremented and decremented by one after execution of the instruction, respectively.
(()) : Contents at an address indicated by the contents at an address indicated in parentheses (()) .
xxi: Hexadecimal number
x_{H}. x_{L} : High-order 8 bits and low-order 8 bits of 16-bit register
(3) Notational symbols in flag operation field

Table 9-2 Notational Symbols in Flag Operation Field

Symbol	Explanation
(Blank)	No change
0	Cleared to zero.
1	Set to l.
x	Set or reset according to the result.
P	P/V flag operates as a parity flag.
V	P/V flag operates as an overflow flag.
R	Saved values are restored.

* If STBC or WDM is coded in sf, a different instruction having the different byte count is generated.
(Cont'd)

$$	Mnemonic	Operand	Byte	Operation	Flas
					S Z AC P/V CY
dofsuedf efep f!9-8	XCH	A, r 1	1	$A \longleftrightarrow r 1$	
		$r, r 1$	2	$r \longleftrightarrow r 1$	
		A, mem	2-4	$A \longleftrightarrow(\mathrm{mem})$	
		A, saddr	2	$A \longleftrightarrow(s a d d r)$	
		A,sfr	3	$A \longleftrightarrow s f r$	
		A, [saddrp]	2	$A \longleftrightarrow((s a d d r p))$	
		saddr, saddr	3	$(\operatorname{saddr}) \longleftrightarrow(\operatorname{saddr})$	
	MOVW	rpl, \#word	3	rpl*word	
		saddrp, \#word	4	(saddrp) ¢word	
		sfrp.\#word	4	sfrp<word	
		rp,rpl	2	$r p \leftarrow r p l$	
		$A X$, saddr ${ }^{\text {P }}$	2	$A X \leftarrow(s a d d r p)$	
		saddrp,AX	2	$(s a d d r p) \leftarrow A X$	
		saddrposaddrp	3	$(s a d d r p) \leftarrow(s a d d r p)$	
		$A X, s f r p$	2	$A X \leftarrow s f r p$	
		sfrp, AX	2	sfrp $\leftarrow A X$	-
		rpl. !addr16	4	$r p l \leftarrow(a d d r 16)$	
		!addr16.rpl	4	$(\operatorname{addr16)} \leftarrow \mathrm{rol}$	
		AX,mem	2-4	$A X \leftarrow($ mem $)$	
		mem, AX	2-4	$(m e m) \leftarrow A X$	
	XCHW	$A X, s a d d r p$	2	$A X \longleftrightarrow(s a d d r p)$	
		AX,sfrp	3	$A X \longleftrightarrow s f r p$	
		saddrp.saddrp	3	$(s a d d r p) \longleftrightarrow(s a d d r p)$	
		rp,rpl	2	$r \mathrm{p} \leftrightarrow \mathrm{r} \mathrm{P}$ I	
		AX,mem	2-4	$A X \leftrightarrow(\mathrm{mem})$	

(to be continued)
(Cont'd)

(to be continued)
（Cont＇d）

	Mnemonic	Operand	Byte	Operation	Flag			
volfe10do 100！801／0！70w47！18 7！9－8		A，\＃byte	2	A．CYヶA－byte	x \times	$\times \times$	V	\times
		saddr，\＃byte	3	（saddr），CY	$\mathrm{x} \times$	$\times \times$	V	x
		sfr，\＃byte	4	sfr，CY ¢ fr－byte		$\times \times$	V	x
		$r, r 1$	2	$r . C Y \leftarrow r-r i$		\times x	V	x
	SUB	A，saddr	2	$A, C Y \leftarrow A-(s a d d r)$	$\times \times$	$\times \times$	V	x
		A，sfr	3	A，CY $-A-s f r$		$\times \times$	V	x
		saddr，saddr	3	（ saddr），CY－（saddr）－（saddr）		$\times \times$	V	x
		A，mem	2－4	A，CY $\leftarrow A-($ mem $)$		$\times \times$	V	x
		mem，A	2－4	（mem）， $\mathrm{CY} \leftarrow$（mem）－ A		$\times \times$	V	\times
		A，\＃byte	2	A，CY - －byte－CY		$\times \times$	V	\times
		saddr，\＃byte	3	（saddr），CY（ saddr）－byte－CY		$\times \quad \times$	V	x
		sfr，\＃byte	4	sfr，CY ¢fr－byte－CY		$x \quad \times$	V	\times
		r，r 1	2	$r, C Y \leftarrow r-r i-C Y$	x \times	$\times \times$	V	\times
	SUBC	A，saddr	2	$A, C Y \leftarrow A-(\operatorname{saddr})-C Y$	x \times	$\times \mathrm{x}$	V	x
		A，sfr	3	A，CY $-A-s f r-C Y$	$\mathrm{x} \times$	$\times \times$	V	\times
		saddr，saddr	3	（saddr）， $C Y \leftarrow(\operatorname{saddr} ;-(\operatorname{saddr})-C Y$			V	x
		A．mem	2－4	$A, C Y \leftarrow A-($ mem $)-C Y$	$\times \times$	$\times \times$	V	\times
		mem．A	2－4	（mem），CYヶ（mem）－A－CY	\times	$\times \times$	V	\times
	AND	A，\＃byte	2	$A \leftarrow A \wedge$ byte	x	\times	P	
		saddr，\＃byte	3	$(\operatorname{saddr}) \leftarrow(\operatorname{saddr}) \wedge$ byte	x	x	P	
		sfr．\＃byte	4	sfr↔sfrへbyte	x	x	P	
		$r, r 1$	2	$r \leftarrow r \wedge r 1$	x	x	P	
		A，saddr	2	$A \leftarrow A \wedge(s a d d r)$	$\mathrm{x} \times$	x	P	
		A，sfr	3	$A \leftarrow A \wedge s f r$	x	x	P	
		saddr，saddr	3	$(\operatorname{saddr}) \leftarrow(\operatorname{saddr}) \wedge(\operatorname{saddr})$	x	x	P	
		A，mem	2－4	$A \leftarrow A \wedge(m e m)$	x	\times	P	
		mem，A	2－4	$($ mem $) \leftarrow($ mem $) \wedge A$	x	x	p	

（to be contire：
(Contr)

(to be con:
(Contr)

(to be continued)
(Contr)

Remark: The addressing range of the table shift instruction is FEOOH to FEFFH.
(Contd)

(to be continues)
Remark: n in the shift/rotate instructions indicates the number of shifts or rotations.
(Cont'd)

	Mnemonic	Operand	Byte	Operation	Flag
					S Z AC P/V CY
	MOV 1	CY, saddr.bit	3	$C Y \leftarrow(s a d d r . b i t)$	x
		CY, sfr.bit	3	CY*sfr.bit	x
		CY, A.bit	2	$C Y \leftarrow A . b i t$	x
		CY, X,bit	2	$C Y \leftarrow X . b i t$	\times
		CY, PSWH.bit	2	$C Y \leftarrow P S W_{H} . b i t$	\times
		CY, PSWL.bit	2	$\mathrm{CY} \leftarrow$ PSW ${ }_{\text {L }} . \mathrm{bit}$	x
		saddr.bit. CY	3	(saddr.bit) ¢CY	
		sfr.bit.cy	3	sfr.bit $\leftarrow c y$	
		A.bit.cy	2	A.bit $\leftarrow c y$	
		X.bit, cy	2	X.bit $\leftarrow c y$.
		PSWH.bit, CY	2	$\mathrm{PSW}_{\mathrm{H}} \cdot \mathrm{bit} \leftarrow \mathrm{CY}$	
		PSWL.bit, cY	2	PSW ${ }_{L} \cdot \mathrm{bit} \leftarrow \mathrm{CY}$	$\mathrm{x} \times \mathrm{x}$ x
	ANDI	CY, saddr.bit	3	$C Y \leftarrow C Y \wedge(s a d d r . b i t) ~$	\times
		CY, /saddr.bit	3	$C Y \leftarrow C Y \wedge(\overline{s a d d r . b i t})$	\times
		CY, sfr.bit	3	$C Y \leftarrow C Y \wedge s f r . b i t$	x
		CY,/sfr.bit	3	$C Y \leftarrow C Y \wedge \overline{s f r . b i t}$	\times
		CY, A.bit	2	$C Y \leftarrow C Y \wedge A . b i t$	\times
		CY, /A.bit	2	$\mathrm{CY} \sim \mathrm{CY} \wedge \overline{\mathrm{A} . \mathrm{bit}}$	x
		CY, X.bit	2	$C Y \leftarrow C Y \wedge X . b i t$	\times
		CY, IX.bit	2	$C Y \leftarrow C Y \wedge \overline{X . b i t}$	\times
		CY, PSWH.bit	2	$C Y \leftarrow C Y \wedge P S W_{H} \cdot b i t$	\times
		CY, /PSWH.bit	2	$\mathrm{CY} \sim \mathrm{CY} \wedge{\overline{\mathrm{PSW}} \mathrm{H}^{\prime} \cdot \mathrm{bit}}^{\text {c }}$	\times
		CY,PSWL.bit	2	$C Y \leftarrow C Y \wedge P S W_{L}$.bit	\times
		CY,/PSWL.bit	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge \overline{\mathrm{PSW}} \mathrm{L}_{\text {L }} \cdot \mathrm{bIt}$	\times

(to be continued)
(Cont'd)

(to be continued)
(Cont'd)

(to be cont rusc)
(Cont'd)

(to be continued)
Remark: n in the stack manipulation instructions indicates the number of registers specified in post.
(Cont'd)

	Mnemonic	Operand	Byte	Operation	Flag
					$S ~ Z ~ A C ~ P / V ~ C Y ~ F$
$\begin{aligned} & \bar{\infty} \\ & \underset{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	CHKL	$s f r$	3	(Pin level) \forall (Signal level before output buffer)	$x \times \quad P$
	CHKLA	$s f r$	3	$A \leftarrow\{(P$ in level $) \forall(S i g n a l$ level before output buffer) \}	$x \times \quad P$
	BR	!addr 16	3	$\mathrm{PC} \leftarrow \mathrm{addr} 16$	
		rpl	2		
		[rap]]	2	$P C_{H} \leftarrow(r p 1+1), P C_{L} \leftarrow(r p 1)$	
		Saddr 16	2	$P C \leftarrow P C+2+j d i s p 8$	
	BC	\$addr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $C Y=1$	
	BL				
	BNC	Saddr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $C Y=0$	
	BNL				
	BZ	\$addr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $Z=1$	
	BE				
	BNZ	\$addr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $Z=0$	
	BNE				
	BV	\$addr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $P / V=1$	
	BPE				
	BNV	Saddr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $P / V=0$	
	BPO				
	BN	Saddr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $S=1$	
	BP	\$addr 16	2	$P C \leftarrow P C+2+j d i s p 8$ if $S=0$	
	BGT	\$addr 16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if }(P / V \forall S) \vee Z=0 \end{aligned}$	
	BGE	Saddr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if $P / V \nabla S=0$	
	BLT	Saddr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if $P / V \forall S=1$	
	BLE	\$addr 16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if }(P / V \forall S) \vee Z=1 \end{aligned}$	
	BH	Saddr 16	3	$P C-P C+3+j d i s p 8$ if $Z \vee C Y=0$	
	BNH	\$addr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if $Z \vee C Y=1$	

(Cont'd)

号莈					Flag
$\stackrel{\text { c }}{\sim}$					$S Z A C P / V C Y$
	BT	$\begin{aligned} & \text { saddr.bit, } \\ & \$ \text { addri6 } \end{aligned}$	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if }(s a d d r \cdot b i t)=1 \end{aligned}$	
		$\begin{aligned} & \text { sfr.bit, } \\ & \text { \$addrl } 6 \end{aligned}$	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if sfr.bit=1 } \end{aligned}$	
		A.bit, \$addr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if A.bit $=1$	
		X.bit, saddr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if X.bit $=1$	
		PSWH.bit. \$addrl6	3	$\begin{aligned} & P C \leftarrow P C+3+j d i \operatorname{sp8} \\ & \text { if } P S W_{H} \cdot b i t=1 \end{aligned}$	
		PSWL.bit, \$addr16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if PSW } / \text { bit }=1 \end{aligned}$	
	BF	$\begin{aligned} & \text { saddr.bit. } \\ & \text { \$addri6 } \end{aligned}$	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if }(s a d d r \cdot b i t)=0 \end{aligned}$	
		$\begin{aligned} & \text { sfr.bit, } \\ & \text { \$addri6 } \end{aligned}$	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if sfr.bit=0 } \end{aligned}$	
		A.bit. 5 addr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if A.bit $=0$	
		X.bit, Saddr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if X.bit $=0$	
		PSWH.bit, Saddrl6	3	$\begin{aligned} & P C \longleftarrow P C+3+j d i s p 8 \\ & \text { if } P S W_{H} \cdot b i t=0 \end{aligned}$	
		PSWL.bit, \$addr16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if } P S W_{L} \cdot b i t=0 \end{aligned}$	
	BTCLR	$\begin{aligned} & \text { saddr.bit, } \\ & \text { \$addri6 } \end{aligned}$	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if (saddr.bit) }=1 \\ & \text { then reset (saddr.bit) } \end{aligned}$	
		$\begin{aligned} & \text { sfr.bit, } \\ & \$ \text { addri6 } \end{aligned}$	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if sfr.bit=1 } \\ & \text { then reset sfr.bit } \end{aligned}$	
		A.bit.\$addr 16	3	$P C \leftarrow P C+3+j d i s p 8 \text { if A.bit }=1$ then reset A.bit	
		X.bit, Saddr 16	3	$P C \leftarrow P C+3+j d i s p 8 \text { if X.bit }=1$ $\text { then reset } X . b i t$	
		PSWH.bit, \$addr16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if } P S W_{H} \cdot b i t=1 \\ & \text { then reset } P S W_{H} \cdot \text { bit } \end{aligned}$	
		PSWL.bit, \$addr16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \\ & \text { if } P S W_{L} \cdot b i t=1 \\ & \text { then reset } P S W_{L} \cdot b i t \end{aligned}$	$\mathrm{x} \times \mathrm{x} \times \mathrm{x}$

(Cont'd)

	Mnemonic	Operand	Byte	Operation	Flag			
					$S 2$ AC P/V CY			
5 0 0 0 0 0	BFSET	$\begin{aligned} & \text { saddr.bit, } \\ & \$ a d d r i 6 \end{aligned}$	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if (saddr.bit) }=0 \\ & \text { then set }(s a d d r . b i t) \end{aligned}$				
		sfr.bit. \$addr16	4	$\begin{aligned} & P C \leftarrow P C+4+j d i s p 8 \\ & \text { if sfr.bit=0 } \\ & \text { then set sfr.bit } \end{aligned}$	-			
		A.bit.\$addr 16	3	$P C \leftarrow P C+3+j d i s p 8$ if $A . b i t=0$ then set A.bit				
		X.bit, Saddr 16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s p 8 \text { if X.bit }=0 \\ & \text { then set X.bit } \end{aligned}$				
		PSWH.bit, Saddrl6	3	$\begin{aligned} & \text { PC } \leftarrow P C+3+j d i s p 8 \\ & \text { if } P S W_{H} \cdot b i t=0 \\ & \text { then set } P S W_{H} \cdot b i t \end{aligned}$				
		PSWL.bit. Saddr 16	3	$\begin{aligned} & P C \leftarrow P C+3+j d i s P 8 \\ & \text { if } P S W_{L} \cdot b i t=0 \\ & \text { then set } P S W_{L} \cdot b i t \end{aligned}$		x	x x ${ }^{\text {x }}$	\times
	DBNZ	r2,\$addr 16	2	$r 2 \leftarrow-2-1$, then $P C \leftarrow P C+2+j d i s p 8$ if $\mathrm{r} 2 \neq 0$				
		saddr, \$addr 16	3	```(saddr)\leftarrow(saddr)-1, then PC\leftarrowPC+3+jdisp8 if (saddr)\not=0```				
	BRKCS	RBn	2	$\begin{aligned} & P C_{H} \leftrightarrows R 5, P C_{L} \leftrightarrows R 4, R T \leftarrow P S W_{H}, \\ & R 6 \leftrightarrows P S W_{L}, R B S 2-0 \leftrightarrows n, R S S \leftarrow 0, \\ & I E \leftrightarrows 0 \end{aligned}$				
	RETCS	!addr 16	3	$\begin{aligned} & P C_{H} \leftarrow R 5, P C_{L} \leftarrow R 4, R 5, \\ & R 4 \leftarrow \text { addri } 6, P S W_{H} \leftarrow R 7, \\ & P S W_{L} \leftarrow R 6 \end{aligned}$		R	$R \quad \mathrm{R}$	R
	RETCSB	!addr 16	4	$\begin{aligned} & P C_{H} \leftarrow R 5, P C_{L} \leftarrow R 4, R 5, \\ & R 4 \leftarrow \text { addri } 6, P S W_{H} \leftarrow R 7, \\ & P S W_{L} \leftarrow R 6 \end{aligned}$		R	$R \quad R$	R

(to be continued)
(Cont'd)

(to be cont:m.e.)
(Cont'd)

	Mnemonic	Operand	Byte	Operation	Flas
					S Z AC P/V CY
	CMPBKC	[$\mathrm{DE}+$], [$\mathrm{HL}+$]	2	$(D E+)-(H L+), C \leftarrow C-1$ $\text { End if } C=0 \text { or } C Y=0$	$\mathrm{x} \times \mathrm{x}$ V x
		[DE-], [HL-]	2	$\begin{aligned} & (D E-)-(H L-), C \leftarrow C-1 \\ & \text { End if } C=0 \text { or } C Y=0 \end{aligned}$	$x \times \mathrm{x}$ ¢ x
	CMPMNC	$[D E+], A$	2	$(D E+)-A, C \leftarrow C-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	$x \times \mathrm{x}$ - x
		[DE-], A	2	$(D E-)-A, C \leftarrow C-1$ End if $C=0$ or $C Y=1$	$\mathrm{x} \times \mathrm{x}$ V x
	CMPBKNC	[DE+], [HL +]	2	$(D E+)-(H L+), C \leftarrow C-1$ $\text { End if } C=0 \text { or } C Y=1$	$x \times \times \mathrm{x}$
		[DE-], [HL-]	2	$\begin{aligned} & (D E-)-(H L-), C \leftarrow C-1 \\ & \text { End if } C=0 \text { or } C Y=1 \end{aligned}$	$\mathbf{x} \times \mathrm{x}$ V x
$\begin{aligned} & \overline{0} \\ & \text { 2 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	MOV	STBC,\#byte	4	STBC↔byte (*)	
		WDM, \#byte	4	WOM - byte (*)	
	SWRS		1	RSS↔-	
	SEL	RBn	2	RSS $\leftarrow 0, R B S 2-0 \leftarrow n$	
		RBn, ALT	2	RSS $-1, R B S 2-0 \leftarrow n$	
	NOP		1	No Operation	
	El		1	IE $\leftarrow 1$ (Enable Interrupt)	
	DI		1	$1 E \leftarrow 0$ (Disable Interrupt)	

* An op-code trap interrupt occurs if an invalid op-code is specified in an STBC or WDM register manipulation instruction.

Trap operation: $\quad(S P-1) \leftarrow P S W_{H},(S P-2) \leftarrow P S W_{L}$,
$(S P-3) \leftarrow(P C-4)_{H},(S P-4) \leftarrow(P C-4)_{L}$.
$P C_{L} \leftarrow(003 C H), P C_{H} \leftarrow(003 D H)$,
$S P \leftarrow S P-4,1 E \leftarrow 0$
10. ELECTRICAL CHARACTERISTICS

Absolute maximum ratings $\left(T_{a}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Condition	Rating	Unit
Supply voltage	$V_{\text {DD }}$		-0.5 to $0+7.0$	\checkmark
Input voltage	v_{1}		-0.5 to $V_{D D}+0.5$	V
Output voltage	v_{0}		-0.5 to $V_{O D}+0.5$	V
Low-level output current	${ }^{1} \mathrm{OL}$	Each pin	4.0	mA
		Total of all output pins	100	mA
High-level output current	${ }^{1} \mathrm{OH}$	Each pin	-1.0	mA
		Total of all output pins	-20	mA
Operating temperature	Topt		-10 to +70	- C
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	- C

Recommended operating conditions

Oscillator frequency	$T_{\mathbf{a}}$	$V_{D D}$
$8 \mathrm{MHz}<\mathrm{f}_{\mathrm{XX}} \leqq 25 \mathrm{MHz}$	$-10 \mathrm{to}+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$

Capacitance $\left(T_{a}=25^{\circ} \mathrm{C}, V_{S S}=V_{D D}=0 \mathrm{~V}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Input capacitance	C_{1}	f $=1$ MHz 0 V on pins other than measured pins			20	$p F$
Output capacitance	C_{0}				20	$p F$
I/O capacitance	C_{10}				20	$p F$

DC characteristics

$$
\left(T_{\mathbf{a}}=-10 \text { to }+70^{\circ} \mathrm{C}, V_{D D}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}\right)
$$

*1 Other than pins in *2.
*2 RESET, $\mathrm{X} 1, \mathrm{X} 2, \mathrm{P} 20 / \mathrm{NM} 1, \mathrm{P} 21 / / \mathrm{NTPO}, \mathrm{P} 22 / \mid \mathrm{NTP} 1, \mathrm{P} 23 / I N T P 2$, P24/INTP3, P25/TI.
$A C$ characteristics $\left(T_{a}=-10\right.$ to $+70^{\circ} \mathrm{C}, V_{D D}=+5.0 \mathrm{~V} \pm 10 \%$,

$$
\left.V_{S S}=0 \mathrm{~V}, C_{L}=100 \mathrm{pF}, \mathrm{f}_{X}=25 \mathrm{MHz}\right)
$$

Read/write operation (when the general memory is connected)

${ }^{t}$ CYK -dependent bus timing definition

Remarks 1. $T=t^{t} \mathrm{CYK}=1 / f \mathrm{CLK}$ (f CLK is the internal system clock frequency.)
2. When an address wait is inserted, the value of a is 1. Otherwise, it is 0 .
3. The number n represents the number of wait cycles specified by the external wait pin ($\overline{W A T T}$) or PWC register.
4. Only the bus timing items listed above are dependent on ${ }^{t}$ CYL.

Other operations
$\left(T_{a}=-10\right.$ to $\left.+70^{\circ} \mathrm{C}, V_{D D}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}\right)$

1 tem	Symbol	Condition	Min.	Max.	Unit
NMI high/low level width	${ }^{t_{\text {WNIH }}}$ ${ }^{t}$ WNIL		2.5		us
INTPO high/low level width	$\begin{aligned} & { }^{{ }^{W} \text { WIOH }} \\ & { }^{t_{W I O L}} \end{aligned}$		640	-	ns
INTP1 high/low level width	${ }^{t_{W}} 11 \mathrm{H}$ ${ }^{t_{W}}$ IIL		640		ns
INTP2 high/low level width	${ }^{t_{W I 2 H}}$ ${ }^{t}$ WI2L		640		ns
INTP3 high/low level width	$t_{W / 3 H}$ ${ }^{t}$ WI3L		640		ns
$\overline{\text { RESET }}$ high/low level width	${ }^{t_{\text {WRSH }}}$ ${ }^{t_{\text {WRSL }}}$		2.5		us
TI high/low level width	${ }^{t_{\text {WTIH }}}$ ${ }^{t}$ WTIL		640		ns

Other ${ }^{t}$ CYK-dependent operations

1 tem	Expression	Min. /Max.	Unit
${ }^{\text {twIOH }}$	8 T	Min.	ns
${ }^{\text {WIOL }}$	$8 T$	Min.	ns
${ }^{\text {W W }} 1$ H	8 T	Min.	ns
${ }^{t_{W} \text { I1L }}$	8 T	Min.	ns
$t_{W \mid 2 H}$	8 T	Min.	ns
${ }^{t_{W / 2 L}}$	8 T	Min.	ns
${ }^{t}$ W/ 3H	$8 T$	Min.	ns
${ }^{t_{W} \text { \| 3L }}$	8 T	Min.	ns
${ }^{\text {t WTIH }}$	8 T	Min.	ns
${ }^{t_{\text {WT I I }}}$	8 T	Min.	ns

Remarks $1 . \quad T=t^{t} C Y K=1 / f C L K(f C L K$ is the internal system clock frequency.)
2. Besides the bus timing items, only the items listed above are dependent on ${ }^{t} C Y K$.

Read operation:

Write operation:
(CLK)

Interrupt input timing:

INTPn

Remark: $n=0$ to 3

Reset input timing:

TI pin input timing:

11. PACKAGE DIMENSION

12. RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) shall be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

Table 12-1 Recommended Soldering Conditions

Product	Package	Symbol
uPD78350GC-3BE		IR30-107
	64-pin plastic QFP	VP15-107
		Partial heating method

Table 12-2 Soldering Conditions

* Exposure limit before soldering after dry-pack package is opened.

Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution: Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

Remark: For details of the recommended soldering conditions for surface mount type products, refer to our document "SMT MANUAL" (IEI-1207)

```
APPENDIX A DIFFERENCE BETWEEN UPD78350 AND UPD78322
```

Item			UPD78350	uPD78322	UPD78320	
Number of basic instructions			113	111		
Minimum instruction execution time			160 ns (when internal clock operates at 12.5 MHz or when external clock operates at 25.0 MHz)	250 ns (when internal clock openates at 8 MHz or when external clock operates at $16 \mathrm{MHz}^{\text {) }}$		
Internal memory		ROM	-	$16384 \times 8 \mathrm{bits}$	-	
		RAM	$640 \times 8 \mathrm{bits}$			
Memory space			64K bytes			
$\begin{aligned} & 1 / 0 \\ & \text { line } \end{aligned}$	Input		6	24 (analog input: 8)		
	Output		-			
	$1 / 0$		24	39	21	
Real-time pulse unit (Capture) timer unit)			. 16-bit timers/ counters: . 16-bit capture registers: - 16-bit compare registers:	18/16-bit free running timer: 16-bit timer/event counter: 16-bit compare registers: 18-bit capture registers: 18-bit capture/compare registers: Real-time output ports:		
Serial interface			-	Serial interface with dedi- cated baud rate generator: 2 channels UART: 1 channel Clock synchronous serial interface/SBI: 1 channel		
A/D converter			-	10-bit resolution, 8 inputs		

(to be continued)
(Cont'd)

APPENDIX B TOOLS

The following tools are provided for. developing a system that uses the uPD78350:

	IE-78350-R(*)	In-circuit emulator for developing and debugging the application system. For debugging, connect the emulator to the host machine. Since object files can be transferred between them and symbolic debugging can be performed, it enables "effective debugging results. IE-78350-R has two channels of RS-232-C serial interfaces so that it can be connected to the PROM programmer such as PG-1500. The $1 E-78350-R$ also has the Centronics interface so that files in the object/symbol/debugging environment can be downloaded at high speed.			
	$\text { IE-78350-R-EM } 1$	Emulation board for emulating the peripheral hardware such as the $1 / 0$ port of the uPD78350.			
	EP-78240GC-R	Emulation probe for connecting the $1 E-78350-R$ to the user system. Use it with the IE-78350-R-EM1.			
$\begin{aligned} & 0 \\ & \vdots \\ & 3 \\ & 3 \\ & 4 \\ & 0 \\ & 0 \end{aligned}$	```IE-78350-R control program (IE- controller)(*)```	Host machine $0 S$ PC-9800 series $M S-D O S^{T M}$		Media	Order code (part no.)
				3.5-inch 2HD	US5A131E78350
				5-inch 2 HD	US5A10IE78350
		IBM PC series	PC DOS ${ }^{\text {TM }}$	5-inch 2HC	US7B10IE78350
	$78 \mathrm{~K} / 111$ series relocatable assembler	Host machine			Order code (part no.)
			OS	Media	
		PC-9800 series	MS-DOS	3.5-inch 2HD	US5A1 3RA78K3
				5-inch $2 H D$	US5AIORA78K3
		IBM PC series	PC DOS	5-inch 20	US7B1IRAT8K3

* Under development

Remark: Operations of each software are guaranteed only on the host machine and by the $O S$ mentioned above.

The following evaluation tools are provided for evaluating the function of the uPD78350:

EB-78350-98 (applicable for PC-9800 series) or $E B-78350-P C$ (applicable for IBM PC series)	When the evaluation tool is connected to the host machine (PC-9800 series or IBM PC series), the function of the uPD78350 can easily be evaluated. As the command system of these products conforms to that of the IE-78350-R, the migration can easily be made to the development of the application system with the $1 E-78350-R$.

Caution: These products are not tools for the application system that uses the uPD78350.

In-circuit emulator

For literature, call toll-free 8 a.m. to 4 p.m. Pacific time:
1-800-632-3531

CORPORATE HEADQUARTERS
401 Ellis Street
P.O. Box 7241

Mourtain View, CA 94039
TEL 415-960-6000
TLX 3715792
01992 NEC Electronics inc.PPinted in U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior writen consemt of NEC Electronics inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics inc. are covered by the warranty and patent indermilication provisions appearing in NEC Electronics Inc. Terms and Condikions of Sale only. NEC Elsctronlics inc. makes no warranty, express, statutory, hmplied, or by description, regarding the information set torth herein or regarding the freedorm of the described devices from patent infringement. NEC Electronics Inc. makes no warranty of merchantabiliky or ftrness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document NEC Electronics inc. makes no commitment to update or to keep current intormation errors that may appear in this

[^0]: * Used only when a word is accessed by an instruction with the sfrp operand

