

MOS INTEGRATED CIRCUIT μ PD70P3000

V851™ 32-/16-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD70P3000 is a one-time PROM version of the μ PD703000. A program can be written only once to the PROM of the one-time PROM and this model is useful for small-scale production of a variety of application sets or early start of production.

Functions in detail are described in the following user's manuals. Be sure to read these manuals when you design your systems.

V851 User's Manual-Hardware : U10935E V850 Family™ User's Manual-Architecture: U10243E

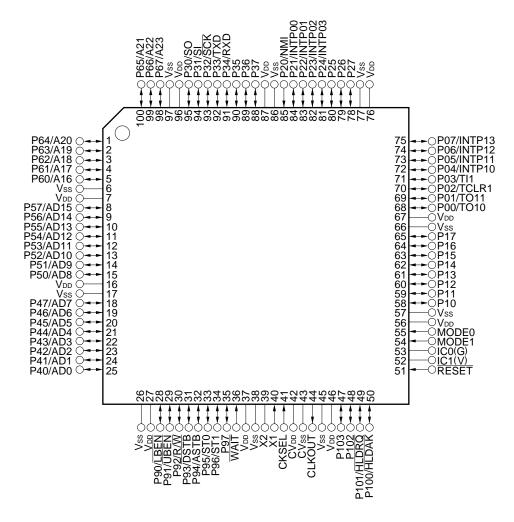
FEATURES

- Compatible with μPD703000
 - Can be replaced with mask ROM model, µPD703000, for mass production of application set
- Internal PROM: 32K bytes
 - · Can be written only once
- PROM programming characteristics: μPD27C1001A compatible
- QTOP™ microcomputer compatible

Remark QTOP microcomputer is NEC's microcomputer with one-time PROM, with total support of writing service (from program writing, to marking, screening, and verifying).

ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency (MHz)
μPD70P3000GC-25-7E	A 100-pin plastic QFP (fine pitch) (14 \times 14 mm)	25
μ PD70P3000GC-33-7E	A 100-pin plastic QFP (fine pitch) (14 \times 14 mm)	33


The one-time PROM model is referred to as "PROM" in this document.

The information in this document is subject to change without notice.

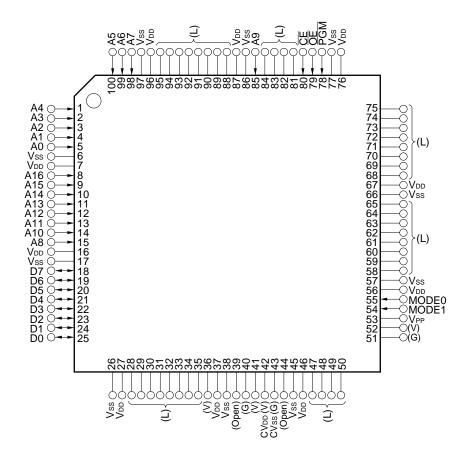
PIN CONFIGURATION (Top View)

(1) Normal operation mode

Caution The letters in brackets () indicate the processing of the pins not used in the normal operation mode.

G: Directly connect this pin to Vss.

V: Directly connect this pin to VDD.



P00-P07	: Port0	A16-A23	: Address Bus
P10-P17	: Port1	LBEN	: Lower Byte Enable
P20-P27	: Port2	UBEN	: Upper Byte Enable
P30-P37	: Port3	R/W	: Read/Write Status
P40-P47	: Port4	DSTB	: Data Strobe
P50-P57	: Port5	ASTB	: Address Strobe
P60-P67	: Port6	ST0, ST1	: Status
P90-P97	: Port9	HLDAK	: Hold Acknowledge
P100-P103	: Port10	HLDRQ	: Hold Request
TO10, TO11	: Timer Output	CLKOUT	: Clock Output
TCLR1	: Timer Clear	CKSEL	: Clock Select
TI1	: Timer Input	WAIT	: Wait
INTP00-INTP03	3,	MODE0, MODE	1: Mode
INTP10-INTP13	3: Interrupt Request From Peripheral	s RESET	: Reset
NMI	: Non-maskable Interrupt Request	X1, X2	: Crystal
SO	: Serial Output	CVDD	: Clock Generator Power Supply
SI	: Serial Input	CVss	: Clock Generator Ground
SCK	: Serial Clock	V_{DD}	: Power Supply
TXD	: Transmit Data	Vss	: Ground

AD0-AD15 : Address/Data Bus

(2) PROM programming mode

Caution The letters in brackets () indicate the processing of the pins not used in the normal operation mode.

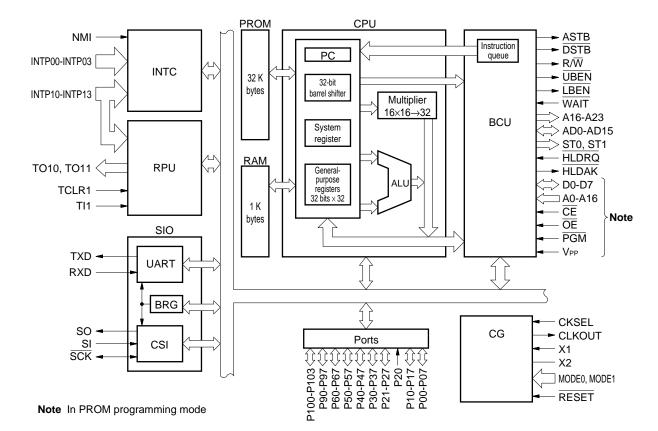
L : Individually connect to Vss via resistor.

G : Directly connect this pin to Vss.V : Directly connect this pin to VDD.

Open: Connect nothing.

A0-A16 : Address Bus MODE0, MODE1: Programming Mode Set

D0-D7 : Data Bus VDD : Power Supply


CE : Chip Enable Vss : Ground

OE : Output Enable VPP : Programming Power Supply

PGM : Programming Mode

INTERNAL BLOCK DIAGRAM

*

TABLE OF CONTENTS

1.	DIFFERENCES BETWEEN μ PD70P3000 and μ PD703000	7
2.	PIN FUNCTIONS	8
	2.1 Normal Operation Mode (MODE0 = L, MODE1 = H)	8
	2.1.1 Port pins	8
	2.1.2 Pins other than port pins	9
	2.2 PROM Programming Mode (MODE0 = H, MODE1 = H)	. 11
	2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins	12
3.	PROM PROGRAMMING	14
	3.1 Operation Mode	. 14
	3.2 PROM Writing Procedure	16
	3.3 PROM Reading Procedure	20
4.	SCREENING OF ONE-TIME PROM DEVICE	21
5.	NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED	21
6.	ELECTRICAL SPECIFICATIONS	22
	6.1 Normal Operating Mode	22
	6.1.1 When V _{DD} = 5.0 V ± 10 % ······	22
	6.1.2 When V _{DD} = 3.0 to 3.6 V	. 41
	6.2 PROM Programming Mode	59
7.	CHARACTERISTICS CURVES (reference)	65
8.	PACKAGE DRAWINGS	66
9.	RECOMMENDED SOLDERING CONDITIONS	67
ΑP	PPENDIX PROM WRITING TOOLS	68

1. DIFFERENCES BETWEEN μ PD70P3000 and μ PD703000

The μ PD70P3000 is a PROM version of the μ PD703000. Therefore, these two models are identical except for differences because of the ROM specifications (for example, specifications concerning writing and verifying). Table 1-1 shows the differences between the two.

Note that this document mainly describes the PROM specifications of the μ PD70P3000. For the other functions, refer to the documents on the μ PD703000.

Table 1-1. Differences between μ PD70P3000 and μ PD703000

Part Number Item	μPD70P3000	μΡD70Ρ3000				
Internal program memory (electrical writing)	One-time PROM (can be written only once)	Mask ROM				
PROM programming pin	Provided	None				
Setting of MODE0 and	In normal operation mode	In normal operation mode				
MODE1 pins	MODE0, 1 = LH	MODE0, 1 = LH				
	In PROM programming mode	In ROM-less mode				
	MODE0, 1 = HH	MODE0, 1 = LL				
Electrical specifications	Current consumption differs					
Others	Noise immunity and noise radiation differ because circuit scale and mask layout differ.					

- Cautions 1. The PROM and mask ROM models differ from each other in terms of noise immunity and noise radiation. When replacing the PROM model with the mask ROM model in the course of experimental production to mass production, perform thorough evaluation with the CS model (not ES model) of the mask ROM model.
 - 2. Directly connect the MODE0 and MODE1 pins to VDD or Vss.
 - 3. When replacing the PROM model with the mask ROM model, write the same code to the empty area of the on-chip ROM.

Remark L: low level

H: high level

2. PIN FUNCTIONS

2.1 Normal Operation Mode (MODE0 = L, MODE1 = H)

2.1.1 Port pins

(1/2)

Pin Name	I/O	Function	Shared with:
P00	I/O	Port 0	TO10
P01		8-bit I/O port.	TO11
P02		Can be set in input or output mode in 1-bit units.	TCLR1
P03			TI1
P04			INTP10
P05			INTP11
P06			INTP12
P07			INTP13
P10-P17	I/O	Port 1	_
		8-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	
P20	Input	Port 2	NMI
P21	I/O	P20 is an input-only port.	INTP00
P22		Operates as an NMI input when valid edge is input.	INTP01
P23		Bit 0 of the P2 register indicates NMI input status.	INTP02
P24		P21 through P27 are 7-bit I/O ports.	INTP03
P25-P27		Can be set in input or output mode in 1-bit units.	_
P30	I/O	Port 3	SO
P31		8-bit I/O port.	SI
P32		Can be set in input or output mode in 1-bit units.	SCK
P33			TXD
P34			RXD
P35-P37			_
P40-P47	I/O	Port 4	AD0-AD7
		8-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	
P50-P57	I/O	Port 5	AD8-AD15
		8-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	
P60-P67	I/O	Port 6	A16-A23
		8-bit I/O port.	
		Can be set in input or output mode in 1-bit units.	

(2/2)

Pin Name	I/O	Function	Shared with:
P90	I/O	Port 9	LBEN
P91		8-bit I/O port.	UBEN
P92		Can be set in input or output mode in 1-bit units.	R/W
P93			DSTB
P94			ASTB
P95			ST0
P96			ST1
P97			_
P100	I/O	Port 10	HLDAK
P101		4-bit I/O port.	HLDRQ
P102		Can be set in input or output mode in 1-bit units.	_
P103			_

2.1.2 Pins other than port pins

(1/2)

Pin Name	I/O	Function	Shared with:
TO10	Output	Pulse signal output of timer 1	P00
TO11			P01
TCLR1	Input	External clear signal input of timer 1	P02
TI1		External count clock input of timer 1	P03
INTP10	Input	External maskable interrupt request input and external capture trigger	P04
INTP11		input of timer 1	P05
INTP12			P06
INTP13			P07
NMI	Input	Non-maskable interrupt request input	P20
INTP00	Input	External maskable interrupt request input	P21
INTP01			P22
INTP02			P23
INTP03			P24
SO	Output	Serial transmit data output of CSI	P30
SI	Input	Serial receive data input of CSI	P31
SCK	I/O	Serial clock I/O of CSI	P32
TXD	Output	Serial transmit data output of UART	P33
RXD	Input	Serial receive data input of UART	P34
AD0-AD7	I/O	16-bit multiplexed address/data bus when external memory is connected	P40-P47
AD8-AD15			P50-P57
A16-A23	Output	High-order address bus when external memory is connected	P60-P67
LBEN	Output	Low-order byte enable signal output of external data bus	P90
UBEN		High-order byte enable signal output of external data bus	P91

(2/2)

Pin Name	I/O	Function	Shared with:
R/W	Output	External read/write status output	P92
DSTB		External data strobe signal output	P93
ASTB		External address strobe signal output	P94
ST0		External bus cycle status output	P95
ST1			P96
HLDAK	Output	Bus hold acknowledge output	P100
HLDRQ	Input	Bus hold request input	P101
CLKOUT	Output	System clock output	_
CKSEL	Input	Input specifying operation mode of clock generator	_
WAIT	Input	Control signal input inserting wait state in bus cycle	_
MODE0, MODE1	Input	Operation mode specification	_
RESET	Input	System reset input	_
X1	Input	System clock oscillator connection.	_
X2	_	Input external clock to X1 to supply external clock.	_
CV _{DD}	_	Positive power supply for internal clock generator	_
CVss	_	Ground potential for internal clock generator	_
V _{DD}	_	Positive power supply	_
Vss	_	Ground potential	_
IC0, IC1		Internally connected	

2.2 PROM Programming Mode (MODE0 = H, MODE1 = H)

Pin Name	Function	Corresponding Pin of μ PD27C1001A
P60-P67	Low-order address (A0 through A7) input	A0-A7
P50, P20, P51-P57	High-order address (A8 through A16) input	A8, A9, A10-A16
P40-P47	Data I/O	D0-D7
P25	CE (chip enable) input	CE
P26	OE (output enable) input	OE OE
P27	PGM (program) input	PGM
VPP	Power for program writing	VPP
MODE0, MODE1	Operation mode specification	_

2.3 I/O Circuits of Pins and Recommended Connections of Unused Pins

Table 2-1 shows the I/O circuit type of each pin in the normal operation mode, and the recommended connections of the unused pins. Figure 2-1 shows a partially simplified diagram of each circuit.

In the PROM programming mode, process the unused pins by referring to the diagram in PIN CONFIGURATION.

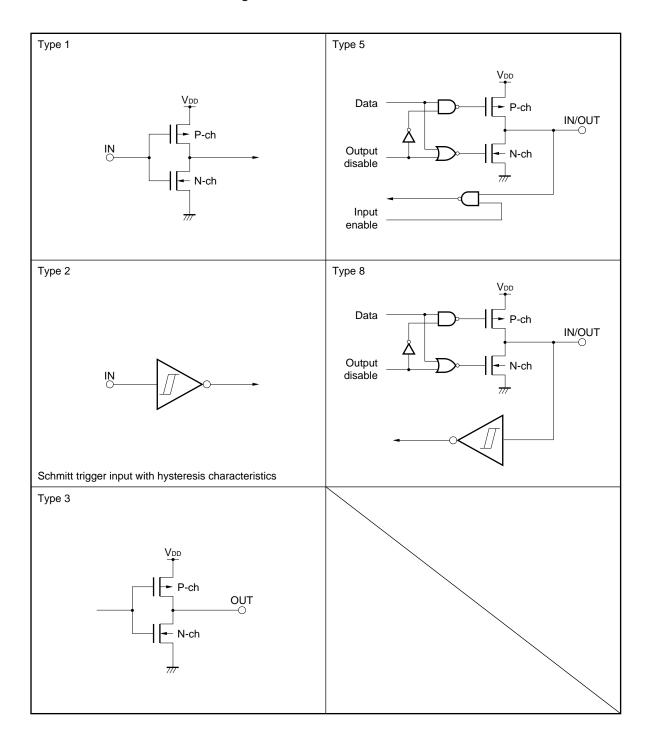

When connecting a pin to VDD or Vss via resistor, use of a resistor of 3 to 10 $k\Omega$ is recommended.

Table 2-1. I/O Circuit Types of Each Pin and Recommended Connections of Unused Pins

Pin	I/O Circuit Type	Recommended Connections
P00/TO10, P01/TO11	5	Input : Individually connect to VDD or Vss via resistor.
P02/TCLR1, P03/TI1	8	Output: Open
P04/INTP10-P07/INTP13		
P10-P17	5	
P20/NMI	2	Directly connect to Vss.
P21/INTP00-P24/INTP03	8	Input : Individually connect to VDD or Vss via resistor.
P25	5	Output: Open
P26, P27	8	
P30/SO	5	
P31/SI, P32/SCK	8	
P33/TXD, P34/RXD, P35	5	
P36, P37	8	
P40/AD0-P47/AD7	5	
P50/AD8-P57/AD15		
P60/A16-A67/A23		
P90/LBEN		
P91/UBEN		
P92/R/W		
P93/DSTB		
P94/ASTB		
P95/ST0, P96/ST1		
P97		
P100/HLDAK		
P101/HLDRQ		
P102		
P103		
CLKOUT	3	Open
CKSEL	2	_
WAIT	1	Directly connect to VDD.
MODE0, MODE1	2	_
RESET		
IC0	_	Directly connect to Vss.
IC1	_	Directly connect to V _{DD} .

Figure 2-1. I/O Circuits of Pins

3. PROM PROGRAMMING

The μ PD70P3000 has a 32K \times 8 bit PROM that can be electrically written. To program this PROM, set the PROM programming mode by using the V_{PP}, MODE0, and MODE1 pins.

The programming characteristics are compatible with those of the μ PD27C1001A.

Table 3-1. Pin Functions in PROM Programming Mode

Function	Normal Operation Mode	PROM Programming Mode
Address input	P60/A16-P67/A23, P50/AD8, P20/NMI, P51/AD9-P57/AD15	A0-A16
Data I/O	P40/AD0-P47/AD7	D0-D7
Program input	P27	PGM
Chip enable input	P25	CE
Output enable input	P26	ŌE
Program voltage	VPP	
Mode specification	MODE0, MODE1	

3.1 Operation Mode

To set the programming writing/verify mode, set as follows: $V_{PP} = + 12.5 \text{ V}$, MODE0 = H, MODE1 = H In this mode, the modes shown in Table 3-2 can be selected by using the \overline{CE} , \overline{OE} , and \overline{PGM} pins.

To read the contents of the PROM, set the read mode.

Connect the unused pins by referring to the diagram in PIN CONFIGURATION.

Table 3-2. Operation Modes for PROM Programming

Operation Mode	MODE0	MODE1	CE	ŌE	PGM	V _{PP}	V _{DD}	D0-D7
Page data latch mode	Н	Н	Н	L	Н	+ 12.5 V	+ 6.5 V	Data input
Page write mode			Н	Н	L			High impedance
Byte write mode			L	Н	L			Data input
Program verify mode			L	L	Н			Data output
Program inhibit mode			Х	L	L			High impedance ^{Note}
			х	Н	Н			
Read mode			L	L	Н	+ 5.0 V	+ 5.0 V	Data output
Output disable mode			L	Н	х			High impedance ^{Note}
Standby mode			Н	Х	Х			High impedance ^{Note}

Note L or H can be input (address input is invalid).

Remark x: L or H

(1) Page data latch mode

The page data latch mode can be set by making the \overline{CE} and \overline{PGM} pins high and \overline{OE} pin low at the beginning of the page write mode.

In the page data latch mode, 1 page or 4 bytes of data are latched to the internal address/data latch circuit.

(2) Page write mode

In this mode, page write is executed by applying a program pulse of 0.1 ms to the \overline{PGM} pin when $\overline{CE} = H$ and $\overline{OE} = H$ after 1 page or 4 bytes of addresses and data have been latched in the page data latch mode. After that, the program is verified when $\overline{CE} = L$ and $\overline{OE} = L$.

If the program cannot be written by applying the program pulse once, writing and verification are repeatedly executed X times ($X \le 10$).

(3) Byte write mode

Byte write is executed by applying a program pulse (active low) of 0.1 ms to the \overrightarrow{PGM} pin when $\overrightarrow{CE} = L$ and $\overrightarrow{OE} = H$. After that, the program is verified when $\overrightarrow{OE} = L$.

If the program cannot be written by applying the program pulse once, writing and verification are repeatedly executed X times ($X \le 10$).

(4) Program verify mode

The program verify mode is set when $\overline{CE} = L$, $\overline{OE} = L$, and $\overline{PGM} = H$.

Check to see if the program has been correctly written, in this mode.

(5) Program inhibit mode

The program inhibit mode is used to write a program to one of several μ PD70P3000s whose \overline{OE} , V_{PP} and D0 through D7 pins are connected in parallel.

To write a program, either the page write mode or byte write mode above is used. At this time, the program is not written to any device whose $\overline{\text{PGM}}$ pin is made high.

(6) Read mode

The read mode is set when $\overline{CE} = L$, $\overline{OE} = L$, and $\overline{PGM} = H$.

(7) Output disable mode

The data output goes into a high-impedance state and the output disable mode is set by making \overline{CE} low and \overline{OE} high.

When two or more μ PD70P3000s are connected to the data bus, any one of the devices can be selected and data can be read by controlling the \overline{OE} pin.

(8) Standby mode

The standby mode is set by making CE high.

In this mode, the data output goes into a high-impedance state regardless of the status of OE.

3.2 PROM Writing Procedure

Figure 3-1. Flowchart in Page Program Mode

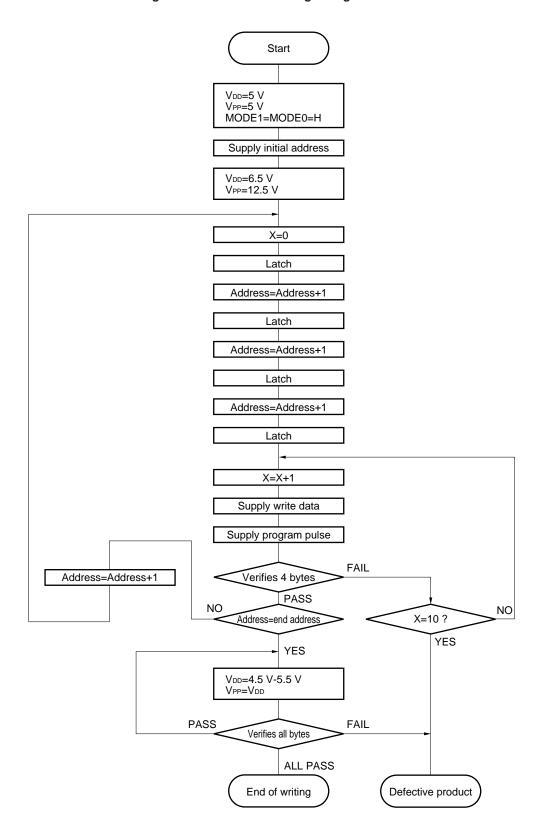
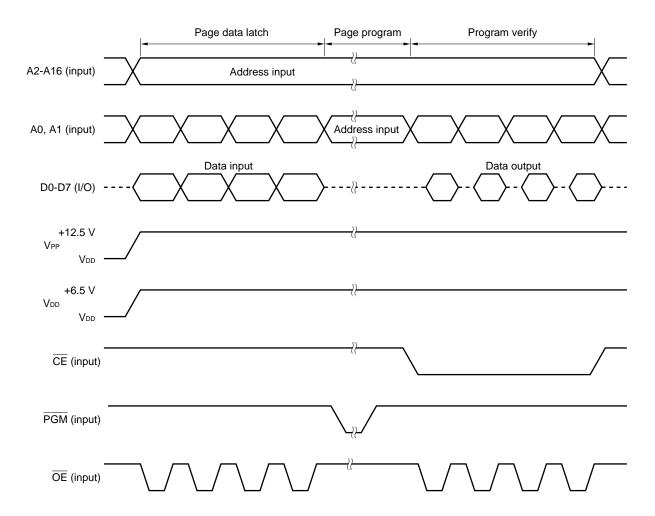



Figure 3-2. PROM Writing/Verify Timing (page program mode)

Remark The broken line indicates the high-impedance state.

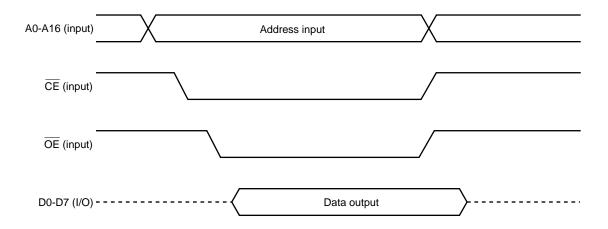
Start V_{DD}=5 V V_{PP}=5 V MODE1=MODE0=H Supply initial address V_{DD}=6.5 V V_{PP}=12.5 V X=0 X=X+1Supply write data Supply program pulse FAIL Address=Address+1 Verify PASS NO NO X=10? Address=end address YES YES V_{DD}=4.5 V-5.5 V V_{PP}=V_{DD} **PASS** FAIL Verifies all bytes ALL PASS End of writing Defective product

Figure 3-3. Flowchart in Byte Program Mode

Byte program Program verify A0-A16 (input) Address input D0-D7 (I/O) -Data input Data output +12.5 V V_{PP} $V_{\text{DD}} \\$ +6.5 V V_{DD} V_{DD} CE (input) PGM (input) OE (input)

Figure 3-4. PROM Writing/Verifying Timing (byte program mode)

Remark The broken line indicates the high-impedance state.


3.3 PROM Reading Procedure

The procedure to read the contents of the PROM to the external data bus (D0 through D7) is as follows:

- (1) Fix the MODE0 and MODE1 pins to low level. Connect the unused pins by referring to the diagram in PIN CONFIGURATION.
- (2) Supply + 5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0 through A16 pins.
- (4) Set the read mode ($\overline{CE} = L$, $\overline{OE} = L$).
- (5) Data are output to pins D0 through D7.

Figure 3-5 shows the timing of steps (2) through (5) above.

Figure 3-5. PROM Reading Timing

Remark The broken line indicates the high-impedance state.

4. SCREENING OF ONE-TIME PROM DEVICE

Because of its structure, the one-time PROM cannot be completely tested by NEC before shipment. It is recommended to perform screening to verify the PROM, after writing the necessary data to the PROM and storing the device under the following conditions:

Storage Temperature	Storage Time
125 °C	24 hours

NEC offers a service, at a charge, called QTOP microcontroller, for writing, marking, screening, and verifying one-time PROMs. For details, consult NEC.

5. NOTES ON RELEASING STOP MODE WHEN EXTERNAL CLOCK IS USED

When an external clock is used, the clock is supplied by an external system.

To release the STOP mode (by RESET or NMI input), therefore, resume clock supply at least 100 μ s before inputting the $\overline{\text{RESET}}$ or NMI signal to make sure that a sufficiently long time elapses to allow the PROM to stabilize.

6. ELECTRICAL SPECIFICATIONS

6.1 Normal Operation Mode

Corresponding Electrical Specifications

Part Number	$V_{DD} = 5.0 \text{ V} \pm 10 \%$	V _{DD} = 3.0 to 3.6 V
μPD70P3000GC-25-7EA	Electrical specifications specified	Outside guaranteed operating range
μPD70P3000GC-33-7EA	Electrical specifications specified	Electrical specifications specified

6.1.1 When $V_{DD} = 5.0 \text{ V} \pm 10 \%$

Absolute Maximum Ratings (T_A = 25 °C)

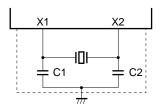
Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} pin	-0.5 to +7.0	V
	CV _{DD}	CV _{DD} pin	-0.5 to +7.0	V
	CVss	CVss pin	-0.5 to +0.5	V
Input voltage	VII	Except X1 pin, V _{DD} = 5.0 V ± 10 %	-0.5 to V _{DD} + 0.3	V
	Vı2	V _{PP} pin in PROM programming mode,	-0.5 to +13.5	V
		V _{DD} = 5.0 V ± 10 %		
Clock input voltage	Vx	X1 pin, V _{DD} = 5.0 V ± 10 %	-0.5 to V _{DD} + 1.0	V
Output current, low	loL	1 pin	4.0	mA
		Total of all pins	100	mA
Output current, high	Іон	1 pin	-4.0	mA
		Total of all pins	-100	mA
Output voltage	Vo	V _{DD} = 5.0 V ± 10 %	-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	TA	When operating at 25 MHz	-40 to +85	°C
		When operating at 33 MHz	-20 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

- Cautions 1. Do not directly connect the output (or I/O) pins of two or more IC products, and do not directly connect them to VDD, VCC, or GND pin. Open-drain pins and open-collector pins may be directly connected to one another however. Moreover, an external circuit that is designed to prevent contention of output can be connected to pins that go into a high-impedance state.
 - 2. Should the absolute maximum rating of even one of the above parameters be exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are, therefore, the values exceeding which the product may be physically damaged. Use the product so that these values are never exceeded.

The normal operating ranges of ratings and conditions in which the quality of the product is guaranteed are specified in the following DC Characteristics and AC Characteristics.

Capacitance (Ta = 25 $^{\circ}$ C, V_{DD} = Vss = 0 V)

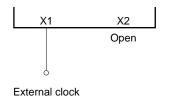
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	С	fc = 1 MHz			15	pF
I/O capacitance	Сю	Pins other than tested pin: 0 V			15	pF
Output capacitance	Со				15	pF


Operating Conditions

Operation Mode	Internal Operating Clock Frequency (ϕ)	Operating Temperature (T _A)	Supply Voltage (VDD)
Direct mode	0 to 25 MHz	−40 to +85 °C	5.0 V ± 10 %
	0 to 33 MHz	−20 to +70 °C	
PLL mode	Self oscillation frequency to 25 MHz	−40 to +85 °C	5.0 V ± 10 %
	Self oscillation frequency to 33 MHz	−20 to +70 °C	

Recommended Oscillation Circuit

(a) Ceramic resonator connection (TDK, Murata Mfg.: $T_A = -40$ to +85 °C, Kyocera: $T_A = -20$ to +80 °C)



Manufacturer	Part Number	Oscillation Frequency		mended onstants	Oscillation V	oltage Renge	Oscillation Stabilization Time (MAX.)
Mandidotalo	1 dit i vanibei	fxx (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	Tost (ms)
TDK Corp.	FCR2.0MC3	2.0	Provided	Provided	4.5	5.5	0.26
	CCR3.2MC3	3.2	Provided	Provided	4.5	5.5	0.62
	FCR5.0MC5	5.0	Provided	Provided	4.5	5.5	0.30
	CCR5.0MC3	5.0	Provided	Provided	4.5	5.5	0.38
	CCR6.6MC3	6.6	Provided	Provided	4.5	5.5	0.32
Kyocera	KBR-2.0MS	2.0	82	82	4.5	5.5	1.2
Corp.	KBR-2.7MS	2.7	68	68	4.5	5.5	0.8
	KBR-3.2MS	3.2	47	47	4.5	5.5	0.3
	KBR-5.0MSA	5.0	33	33	4.5	5.5	0.4
	KBR-6.6MS	6.6	33	33	4.5	5.5	0.2
Murata Mfg.	CSA5.00MG	5.0	30	30	4.5	5.5	0.13
Co., Ltd.	CST5.00MGW	5.0	Provided	Provided	4.5	5.5	0.13
	CSA6.60MTZ	6.6	30	30	4.5	5.5	0.10
	CST6.60MTW	6.6	Provided	Provided	4.5	5.5	0.10

Cautions 1. Connect the oscillation circuit as closely to X2 pin as possible.

- 2. Do not route any other signal lines in the range indicated by the broken line in the above figure.
- 3. Thoroughly evaluate the matching between the $\mu \mbox{PD70P3000}$ and resonator.

(b) External clock input

Caution Input CMOS level voltage to the X1 pin.

DC Characteristics (TA = -40 to +85 °C, VDD = 5.0 V \pm 10 %, Vss = 0 V): μ PD70P3000GC-25 (TA = -20 to +70 °C, VDD = 5.0 V \pm 10 %, Vss = 0 V): μ PD70P3000GC-33

Paramet	ter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high		VIH	Except X1 and Note 1	2.2		V _{DD}	V
			Note 1	0.8 V _{DD}		V _{DD}	V
Input voltage, low		VIL	Except X1 and Note 1	0		+0.8	V
			Note 1	0		0.2 V _{DD}	V
X1 clock input voltage	e, high	Vхн	Direct mode	0.8 V _{DD}		V _{DD}	V
			PLL mode	0.8 V _{DD}		V _{DD}	V
X1 clock input voltage, low		VxL	Direct mode	0		0.6	V
			PLL mode	0		0.6	V
Schmitt trigger input threshold voltage		V _T +	Note 1, rising		3.0		V
		V _T -	Note 1, falling		2.0		V
Schmitt trigger input hysteresis width		V _T +- V _T -	Note 1	0.5			V
Output voltage, high	Output voltage, high		Iон = −2.5 mA	0.7 V _{DD}			V
			Іон = -100 μΑ	V _{DD} - 0.4			V
Output voltage, low		Vol	loc = 2.5 mA			0.45	V
Input leakage current,	, high	Ішн	VI = VDD			10	μΑ
Input leakage current,	, low	ILIL	Vı = 0 V			-10	μΑ
Output leakage currer	nt, high	Ісон	Vo = VDD			10	μΑ
Output leakage currer	nt, low	ILOL	Vo = 0 V			-10	μΑ
Supply current	Operating	I _{DD1}	Direct mode		$1.6 \times \phi + 14$	$2.5 \times \phi + 15$	mA
			PLL mode		$1.7 \times \phi + 16$	$2.7 \times \phi + 18$	mA
	In HALT mode	I _{DD2}	Direct mode		$0.5 \times \phi + 3$	$0.7 \times \phi + 10$	mA
			PLL mode		$0.6 \times \phi + 5$	$0.9 \times \phi + 13$	mA
In IDLE mode		I _{DD3}	Direct mode		8 × φ + 300	$10 \times \phi + 500$	μΑ
			PLL mode		$0.1 \times \phi + 2$	$0.2 \times \phi + 3$	mA
	In STOP mode	I _{DD4}	Note 2		1	50	μΑ
			Note 3			200	μΑ

Notes 1. RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INTP03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL

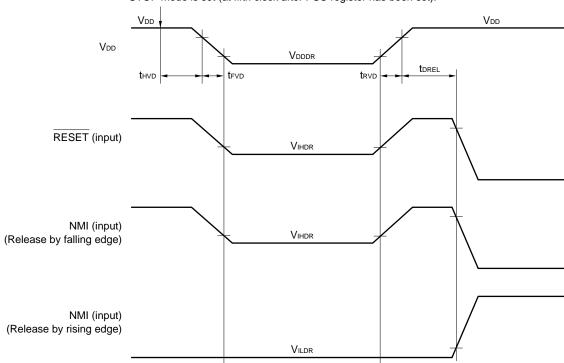
2. When operating at 25 MHz: $-40~^{\circ}C \le T_A \le +50~^{\circ}C$ When operating at 33 MHz: $-20~^{\circ}C \le T_A \le +50~^{\circ}C$

3. When operating at 25 MHz: $50 \, ^{\circ}\text{C} < \text{T}_{\text{A}} \le 85 \, ^{\circ}\text{C}$ When operating at 33 MHz: $50 \, ^{\circ}\text{C} < \text{T}_{\text{A}} \le 70 \, ^{\circ}\text{C}$

Remarks 1. TYP. value is a value for your reference at $T_A = 25$ °C and $V_{DD} = 5.0$ V.

2. ϕ : Internal operating clock frequency

Data Retention Characteristics (T_A = -40 to +85 $^{\circ}$ C): μ PD70P3000GC-25 (T_A = -20 to +70 $^{\circ}$ C): μ PD70P3000GC-33

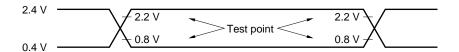

Parameter	Symbol	(Condition	MIN.	TYP.	MAX.	Unit
Data hold voltage	V _{DDDR}	STOP mode		1.5		5.5	V
Data hold current	Idddr	VDD = VDDDR	Note 1		0.2 VDDDR	50	μΑ
			Note 2		0.2 VDDDR	200	μΑ
Supply voltage rise time	t RVD			200			μs
Supply voltage fall time	t FVD			200			μs
Supply voltage hold time (vs. STOP mode setting)	t HVD			0			ms
STOP mode release signal input time	t DREL			0			ns
Data hold input voltage, high	VIHDR	Note 3		0.9 VDDDR		VDDDR	V
Data hold input voltage, low	VILDR	Note 3		0		0.1 Vdddr	V

Notes 1. When operating at 25 MHz: -40 °C \leq T_A \leq +50 °C When operating at 33 MHz: -20 °C \leq T_A \leq +50 °C

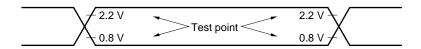
- 2. When operating at 25 MHz: $50 \, ^{\circ}\text{C} < \text{T}_{A} \le 85 \, ^{\circ}\text{C}$ When operating at 33 MHz: $50 \, ^{\circ}\text{C} < \text{T}_{A} \le 70 \, ^{\circ}\text{C}$
- **3.** RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INT03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL, X1

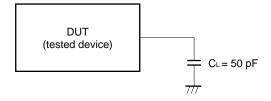
Remark TYP. value is a value for your reference at $T_A = 25$ °C and $V_{DD} = 5.0$ V.

STOP mode is set (at fifth clock after PSC register has been set).


AC Characteristics (TA = -40 to +85 °C, VDD = 5.0 V
$$\pm$$
 10 %, Vss = 0 V): μ PD70P3000GC-25 (TA = -20 to +70 °C, VDD = 5.0 V \pm 10 %, Vss = 0 V): μ PD70P3000GC-33

AC test input wave

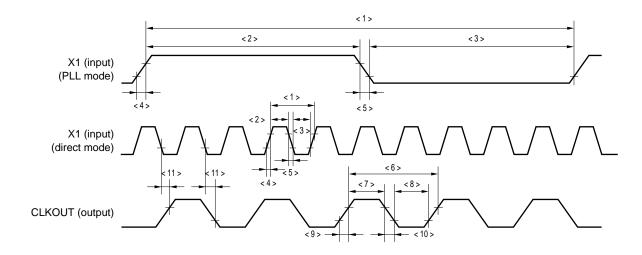

(a) RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INTP03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL, X1


(b) Other than (a)

AC test output test point

Load condition

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, decrease the load capacitance of this device to less then 50 pF by using a buffer.

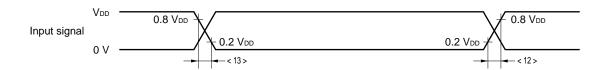


(1) Clock timing

Parameter	S	ymbol	Condition	μPD70P	μPD70P3000-25		μPD70P3000-33	
				MIN.	MAX.	MIN.	MAX.	
X1 input cycle	<1>	tcyx	Direct mode	20	DC	15	DC	ns
			PLL mode	200	315	150	334	ns
X1 input width, high	<2>	twxн	Direct mode	7		6		ns
			PLL mode	80		60		ns
X1 input width, low	<3>	twxL	Direct mode	7		6		ns
			PLL mode	80		60		ns
X1 input rise time	<4>	txR	Direct mode		7		7	ns
			PLL mode		15		10	ns
X1 input fall time	<5>	txF	Direct mode		7		7	ns
			PLL mode		15		10	ns
CPU operating frequency	_	φ		0	25	0	33	MHz
CLKOUT output cycle	<6>	tcyk		40	DC	30	DC	ns
CLKOUT width, high	<7>	twкн		0.5 T – 5		0.5 T – 5		ns
CLKOUT width, low	<8>	twkl		0.5 T – 5		0.5 T – 5		ns
CLKOUT rise time	<9>	txR			5		5	ns
CLKOUT fall time	<10>	txF			5		5	ns
X1 $\downarrow \rightarrow$ CLKOUT delay time	<11>	toxk	Direct mode	3	17	3	17	ns

Remark T = tcyk

Parameter	Symbol		Condition	μPD70P3000-25	μPD70P3000-33	Unit
	,			TYP.	TYP.	
Self oscillation frequency	_	<i>ф</i> Р	PLL mode	2.8	2.8	MHz

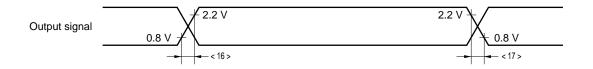


(2) Input waveform

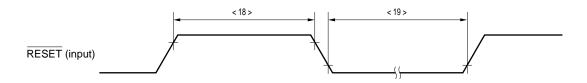
(a) RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INTP03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL, X1

Parameter	Sy	/mbol	Condition	μPD70P3000-25		μ PD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
Input rise time	<12>	t _{IR2}			20		20	ns
Input fall time	<13>	t _{IF2}			20		20	ns

(b) Other than (a)


Parameter	Symbol		Condition	μPD70P3000-25		μPD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
Input rise time	<14>	t _{IR1}			10		10	ns
Input fall time	<15>	t _{IF1}			10		10	ns

(3) Output waveform (other than CLKOUT)

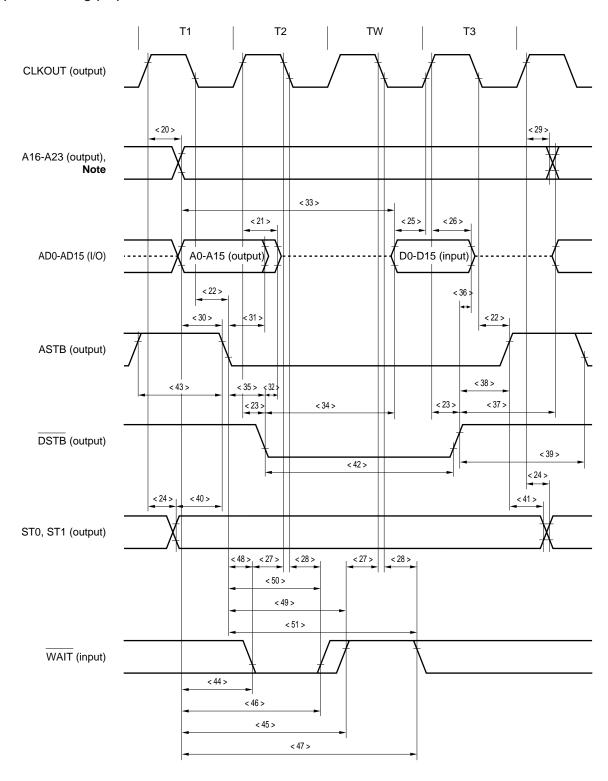

Parameter	Symbol		Condition	μPD70P3000-25		μPD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
Output rise time	<16>	tor			10		10	ns
Output fall time	<17>	tof			10		10	ns

(4) Reset timing

Parameter	Symbol		ol Condition		μPD70P3000-25		μΡD70Ρ3000-33	
				MIN.	MAX.	MIN.	MAX.	
RESET width, high	<18>	twrsh		500		500		ns
RESET width, low	<19>	twrsl	On power application, or on releasing STOP mode	500 + Tost		500 + Tоsт		ns
			Except on power application, or except on releasing STOP mode	500		500		ns

Remark Tost: oscillation stabilization time

(5) Read timing (1/2)


Parameter	Sy	/mbol	Condition	μPD70F	3000-25	μPD70P	3000-33	Unit
				MIN.	MAX.	MIN.	MAX.	
CLKOUT ↑→ address delay time	<20>	t dka		3	20	3	20	ns
CLKOUT ↑→ address float delay time	<21>	t FKA		3	15	3	15	ns
CLKOUT ↓→ ASTB delay time	<22>	t DKST		3	15	3	15	ns
CLKOUT ↓→ DSTB delay time	<23>	t DKD		3	15	3	15	ns
CLKOUT ↑→ status delay time	<24>	toks		3	15	3	15	ns
Data input setup time (vs. CLKOUT ↑)	<25>	tsidk		5		5		ns
Data input hold time (vs. CLKOUT ↑)	<26>	t HKID		5		5		ns
WAIT setup time (vs. CLKOUT ↓)	<27>	t swtk		5		5		ns
WAIT hold time (vs. CLKOUT ↓)	<28>	tнкwт		5		5		ns
Address hold time (vs. CLKOUT 1)	<29>	t HKA		0		0		ns
Address setup time (vs. ASTB ↓)	<30>	t sast		0.5 T – 10		0.5 T – 10		ns
Address hold time (vs. ASTB ↓)	<31>	t HSTA		0.5 T – 10		0.5 T – 10		ns
$\overline{\text{DSTB}}\downarrow \to \text{address float delay time}$	<32>	t fda			0		0	ns
Data input setup time (vs. address)	<33>	tsaid			(2 + n) T – 20		(2 + n) T – 20	ns
Data input setup time (vs. DSTB ↓)	<34>	tsdid			(1 + n) T – 20		(1 + n) T – 20	ns
ASTB $\downarrow \rightarrow \overline{\text{DSTB}} \downarrow \text{delay time}$	<35>	tosto		0.5 T – 10		0.5 T – 10		ns
Data input hold time (vs. DSTB ↑)	<36>	thdid		0		0		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{address output delay time}$	<37>	tdda		(1 + i) T		(1 + i) T		ns
DSTB ↑→ ASTB ↑ delay time	<38>	todsth		0.5 T – 10		0.5 T – 10		ns
DSTB ↑→ ASTB ↓ delay time	<39>	todstl		(1.5 + i) T – 10		(1.5 + i) T – 10		ns
Status setup time (vs. ASTB ↓)	<40>	tssst		0.5 T – 10		0.5 T – 10		ns
Status hold time (vs. ASTB ↑)	<41>	thsts		0.5 T – 10		0.5 T – 10		ns
DSTB width, low	<42>	twdl		(1 + n) T – 10		(1 + n) T – 10		ns
ASTB width, high	<43>	twsтн		T – 10		T – 10		ns
WAIT setup time (vs. address)	<44>	tsawt1	n ≥ 1		1.5 T – 20		1.5 T – 20	ns
	<45>	tsawt2			(1.5 + n) T – 20		(1.5 + n) T – 20	ns
WAIT hold time (vs. address)	<46>	thawt1	n ≥ 1	(0.5 + n) T		(0.5 + n) T		ns
	<47>	thawt2		(1.5 + n) T		(1.5 + n) T		ns
WAIT setup time (vs. ASTB ↓)	<48>	tsstwt1	n ≥ 1		T – 15		T – 15	ns
	<49>	tsstwt2			(1 + n) T – 15		(1 + n) T – 15	ns
WAIT hold time (vs. ASTB ↓)	<50>	thstwt1	n ≥ 1	nT		nT		ns
	<51>	thstwt2		(1 + n) T		(1 + n) T		ns

Remarks 1. T = tcyk

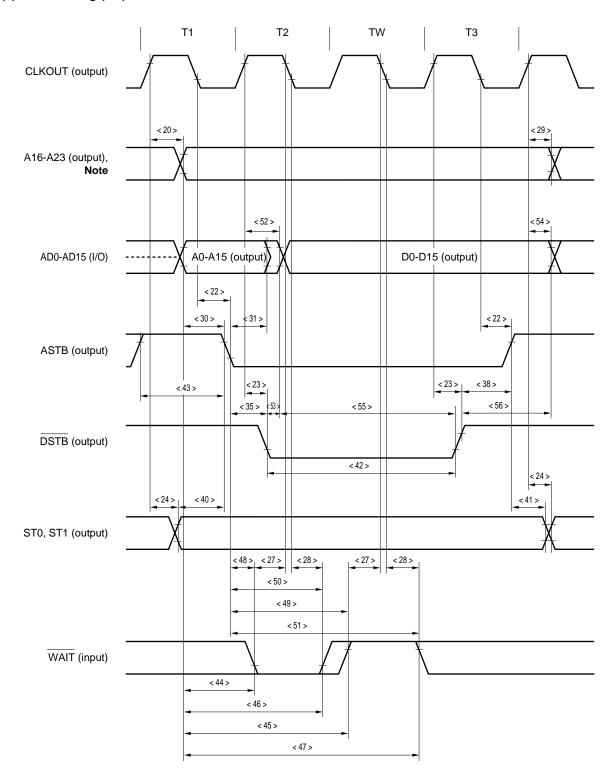
- 2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
- 3. i indicates the number of idle states (0 or 1) t be inserted in the read cycle.
- 4. Be sure to observe at least one of data input hold times thkiD (<26>) and thDID (<36>).

(5) Read Timing (2/2): 1 wait

Note R/W (output), UBEN (output), LBEN (output)

Remark The broken line indicates the high-impedance state.

(6) Write timing (1/2)


Parameter	Symbol		Condition	μPD70P	μPD70P3000-25		μPD70P3000-33	
				MIN.	MAX.	MIN.	MAX.	
CLKOUT ↑→ address delay time	<20>	t DKA		3	20	3	20	ns
CLKOUT $\downarrow \rightarrow$ ASTB delay time	<22>	t DKST		3	15	3	15	ns
CLKOUT ↑→ DSTB delay time	<23>	t DKD		3	15	3	15	ns
CLKOUT ↑→ status delay time	<24>	toks		3	15	3	15	ns
WAIT setup time (vs. CLKOUT ↓)	<27>	t swtk		5		5		ns
WAIT hold time (vs. CLKOUT ↓)	<28>	tнкwт		5		5		ns
Address hold time (vs. CLKOUT ↑)	<29>	t HKA		0		0		ns
Address setup time (vs. ASTB ↓)	<30>	t sast		0.5 T – 10		0.5 T – 10		ns
Address hold time (vs. ASTB \downarrow)	<31>	t HSTA		0.5 T – 10		0.5 T – 10		ns
ASTB $\downarrow \rightarrow \overline{\text{DSTB}} \downarrow \text{delay time}$	<35>	tosto		0.5 T – 10		0.5 T – 10		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \uparrow \text{ delay time}$	<38>	todsth		0.5 T – 10		0.5 T – 10		ns
Status setup time (vs. ASTB ↓)	<40>	tssst		0.5 T – 10		0.5 T – 10		ns
Status hold time (vs. ASTB ↑)	<41>	thsts		0.5 T – 10		0.5 T – 10		ns
DSTB width, low	<42>	twdl		(1 + n) T – 10		(1 + n) T – 10		ns
ASTB width, high	<43>	twsтн		T – 10		T – 10		ns
WAIT setup time (vs. address)	<44>	tsawt1	n ≥ 1		1.5 T – 20		1.5 T – 20	ns
	<45>	tsawt2			(1.5 + n) T – 20		(1.5 + n) T – 20	ns
WAIT hold time (vs. address)	<46>	thawt1	n ≥ 1	(0.5 + n) T		(0.5 + n) T		ns
	<47>	thawt2		(1.5 + n) T		(1.5 + n) T		ns
WAIT setup time (vs. ASTB ↓)	<48>	tsstwt1	n ≥ 1		T – 15		T – 15	ns
	<49>	tsstwt2			(1 + n) T – 15		(1 + n) T – 15	ns
WAIT hold time (vs. ASTB ↓)	<50>	t _{HSTWT1}	n ≥ 1	nT		nT		ns
	<51>	thstwt2		(1 + n) T		(1 + n) T		ns
CLKOUT $\uparrow \rightarrow$ data output delay time	<52>	t DKOD			20		20	ns
$\overline{\text{DSTB}}\downarrow \to \text{data output delay time}$	<53>	tddod			10		10	ns
Data output hold time (vs. CLKOUT ↑)	<54>	thkod		0		0		ns
Data output setup time (vs. DSTB ↑)	<55>	tsodd		(1 + n) T – 15		(1 + n) T – 15		ns
Data output hold time (vs. DSTB 1)	<56>	thdod		T – 10		T – 10		ns

Remarks 1. $T = t_{CYK}$

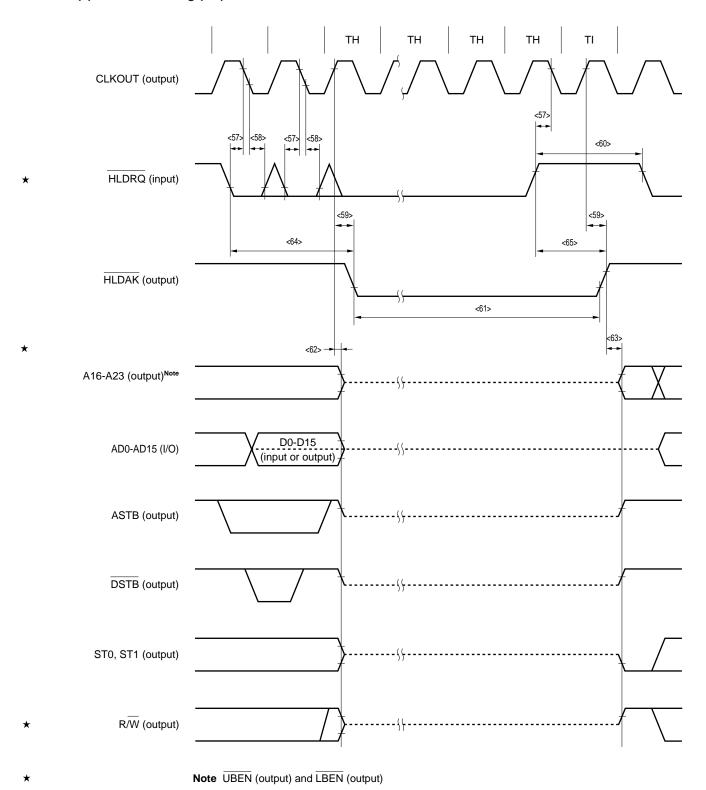
2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

(6) Write timing (2/2): 1 wait

Note R/W (output), UBEN (output), LBEN (output)

Remark The broken line indicates the high-impedance state.

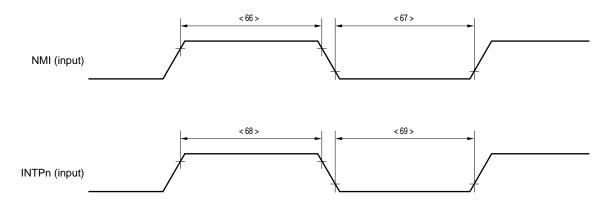
(7) Bus hold timing (1/2)


Parameter	Symbol		Condition	μPD70P3000-25		μPD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
HLDRQ setup time (vs. CLKOUT ↓)	<57>	tsнок		5		5		ns
$\overline{\text{HLDRQ}}$ hold time (vs. CLKOUT \downarrow)	<58>	tнкна		5		5		ns
CLKOUT ↑→ HLDAK delay time	<59>	t DKHA			20		20	ns
HLDRQ width, high	<60>	twhqh		T + 10		T + 10		ns
HLDAK width, low	<61>	twhal		T – 10		T – 10		ns
CLKOUT $\uparrow \rightarrow$ bus float delay time	<62>	t DKF			20		20	ns
$\overline{HLDAK} \uparrow \to bus$ output delay time	<63>	t DHAC		-3		-3		ns
$\overline{HLDRQ}\downarrow\to\overline{HLDAK}\downarrowdelay\ time$	<64>	tdhqha1			(2 n + 7.5) T + 20		(2 n + 7.5) T + 20	ns
$\overline{HLDRQ} \uparrow \to \overline{HLDAK} \uparrow delay time$	<65>	tdhqha2		0.5 T	1.5 T + 20	0.5 T	1.5 T + 20	ns

Remarks 1. $T = t_{CYK}$

2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

(7) Bus hold timing (2/2)

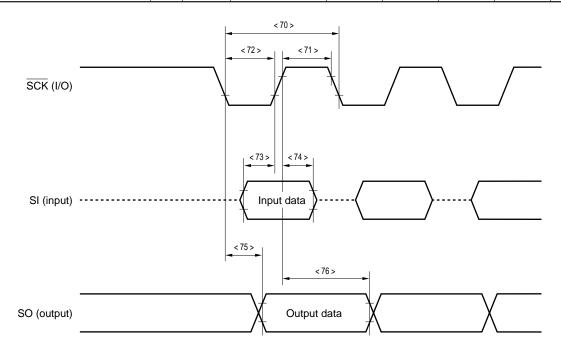

Remark The broken line indicates the high-impedance state.

(8) Interrupt timing

Parameter	Symbol		Condition	μPD70P	3000-25	μPD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
NMI width, high	<66>	twnih		500		500		ns
NMI width, low	<67>	twnil		500		500		ns
INTPn width, high	<68>	twiтн	n = 00, 01, 02, 03, 10, 11, 12, 13	3 T + 10		3 T + 10		ns
INTPn width, low	<69>	twitl	n = 00, 01, 02, 03, 10, 11, 12, 13	3 T + 10		3 T + 10		ns

Remark T = tcyk

 $\textbf{Remark} \ \ n = 00, \, 01, \, 02, \, 03, \, 10, \, 11, \, 12, \, 13$

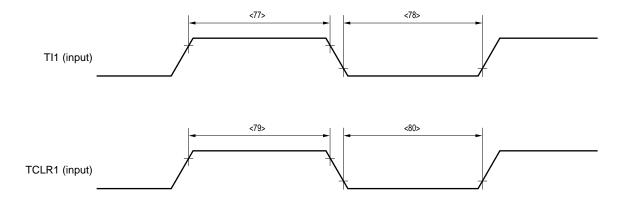

(9) CSI timing

(a) Master mode

Parameter	Symbol		Condition	μPD70P	3000-25	μPD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK cycle	<70>	tcysk	Output	160		120		ns
SCK width, high	<71>	twsкн	Output	0.5 tcysk - 20		0.5 tcysk - 20		ns
SCK width, low	<72>	twsĸL	Output	0.5 tcysk - 20		0.5 tcysk - 20		ns
SI setup time (vs. SCK ↑)	<73>	tssisk		30		30		ns
SI hold time (vs. SCK ↑)	<74>	thsksi		0		0		ns
SO output delay time (vs. $\overline{\text{SCK}} \downarrow$)	<75>	toskso			18		18	ns
SO output hold time (vs. SCK ↑)	<76>	thskso		0.5 tcүsк – 5		0.5 tcysк – 5		ns

(b) Slave mode

Parameter	Sy	/mbol	Condition	μPD70P3000-25		μPD70P3000-33		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK cycle	<70>	tcysk	Input	160		120		ns
SCK width, high	<71>	t wsĸн	Input	50		30		ns
SCK width, low	<72>	twskL	Input	50		30		ns
SI setup time (vs. SCK ↑)	<73>	tssisk		10		10		ns
SI hold time (vs. SCK ↑)	<74>	thsksi		10		10		ns
SO output delay time (vs. SCK ↓)	<75>	toskso			30		30	ns
SO output hold time (vs. SCK ↑)	<76>	thskso		twskH		twsкн		ns


Remark The broken line indicates the high-impedance state.

(10) RPU timing

Parameter	Symbol		Condition	μPD70P	μPD70P3000-25		μPD70P3000-33	
				MIN.	MAX.	MIN.	MAX.	
TI1 width, high	<77>	twтıн		3 T + 10		3 T + 10		ns
TI1 width, low	<78>	twtil		3 T + 10		3 T + 10		ns
TCLR1 width, high	<79>	twтсн		3 T + 10		3 T + 10		ns
TCLR1 width, low	<80>	twtcl		3 T + 10		3 T + 10		ns

Remark T = tcyk

6.1.2 When $V_{DD} = 3.0 \text{ to } 3.6 \text{ V}$

Absolute Maximum Ratings (T_A = 25 °C)

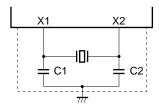
Parameter	Symbol	Condition	Ratings	Unit
Supply voltage	V _{DD}	V _{DD} pin	-0.5 to +7.0	V
	CV _{DD}	CV _{DD} pin	-0.5 to +7.0	V
	DVss	CVss pin	-0.5 to +0.5	V
Input voltage	VII	Except X1 pin, VDD = 3.0 to 3.6 V	-0.5 to V _{DD} + 0.3	V
	V _{I2}	V _{PP} pin in PROM programming mode,	-0.5 to +13.5	V
		V _{DD} = 3.0 to 3.6 V		
Clock input voltage	Vx	X1 pin, V _{DD} = 3.0 to 3.6 V	-0.5 to V _{DD} + 1.0	V
Output current, low	loL	1 pin	4.0	mA
		Total of all pins	100	mA
Output current, high	Іон	1 pin	-4.0	mA
		Total of all pins	-100	mA
Output voltage	Vo	V _{DD} = 3.0 to 3.6 V	-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	TA		-20 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

- Cautions 1. Do not directly connect the output (or I/O) pins of two or more IC products, and do not directly connect them to VDD, VCC, or GND pin. Open-drain pins and open-collector pins may be directly connected to one another however. Moreover, an external circuit that is designed to prevent contention of output can be connected to pins that go into a high-impedance state.
 - 2. Should the absolute maximum rating of even one of the above parameters be exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are, therefore, the values exceeding which the product may be physically damaged. Use the product so that these values are never exceeded.

The normal operating ranges of ratings and conditions in which the quality of the product is guaranteed are specified in the following DC Characteristics and AC Characteristics.

Capacitance (T_A = 25 °C, V_{DD} = V_{SS} = 0 V)

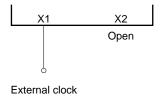
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	fc = 1 MHz			15	pF
I/O capacitance	Сю	Pins other than tested pin: 0 V			15	pF
Output capacitance	Со				15	pF


Operating Conditions

Operation Mode	Internal Operating Clock Frequency (ϕ)	Operating Temperature (T _A)	Supply Voltage (VDD)
Direct mode	0 to 12 MHz	−20 to +70 °C	3.0 to 3.6 V
PLL mode	Self oscillation frequency to 12 MHz	−20 to +70 °C	3.0 to 3.6 V

Recommended Oscillation Circuit

(a) Ceramic resonator connection (T_A = -40 to + 85 °C)



Manufacturer	Manufacturer Part Number	Oscillation Frequency		mended onstants	Oscillation V	oltage Renge	Oscillation Stabilization Time (MAX.)
Manufacturer	i ait ivuilibei	fxx (MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	Tost (ms)
TDK Corp	FCR2.0MC3	2.0	Provided	Provided	3.0	3.6	0.26
	CCR3.2MC3	3.2	Provided	Provided	3.0	3.6	0.62
Murata Mfg.	CSA2.00MG	2.0	30	30	2.7	3.6	0.24
Co., Ltd.	CST2.00MG	2.0	Provided	Provided	2.7	3.6	0.24
	CSA2.70MG	2.7	30	30	2.7	3.6	0.16
	CST2.70MGW	2.7	Provided	Provided	2.7	3.6	0.16
	CSA3.20MG	3.2	30	30	2.7	3.6	0.13
	CST3.20MGW	3.2	Provided	Provided	2.7	3.6	0.13

Cautions 1. Connect the oscillation circuit as closely to X2 pin as possible.

- 2. Do not route any other signal lines in the range indicated by the broken line in the above figure.
- 3. Thoroughly evaluate the matching between the μ PD70P3000 and resonator.

(b) External clock input

Caution Input CMOS level voltage to the X1 pin.

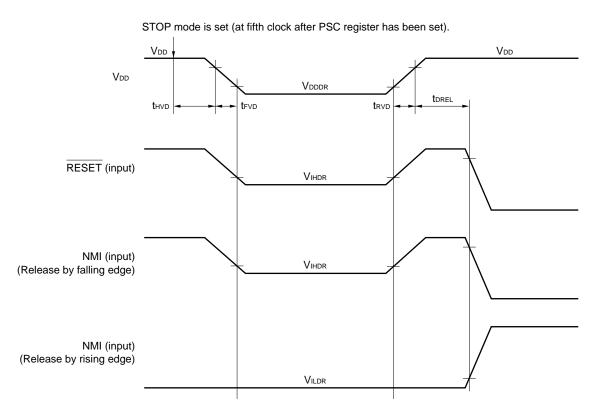
DC Characteristics (TA = -20 to +70 $^{\circ}$ C, VDD = 3.0 to 3.6 V, Vss = 0 V)

Parame	eter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high		VIH	Except X1 and Note	0.7 Vdd		V _{DD}	V
			Note	0.8 V _{DD}		V _{DD}	V
Input voltage, low		VIL	Except X1 and Note	0		0.2 V _{DD}	V
			Note	0		0.2 V _{DD}	V
X1 clock input voltage	e, high	Vхн	Direct mode	0.8 V _{DD}		V _{DD}	V
			PLL mode	0.8 V _{DD}		V _{DD}	V
X1 clock input voltag	e, low	VxL	Direct mode	0		0.6	V
			PLL mode	0		0.6	V
Schmitt trigger input threshold voltage		V _T +	Note, rising		3.0		V
		V _T -	Note, falling		2.0		V
Schmitt trigger input	hysteresis width	V _T +- V _T -	Note	0.5			V
Output voltage, high		Vон	Iон = −2.5 mA	0.7 Vdd			V
			Іон = -100 μΑ	V _{DD} - 0.5			V
Output voltage, low		Vol	loc = 2.5 mA			0.45	V
Input leakage current	t, high	Ішн	VI = VDD			10	μΑ
Input leakage current	t, low	ILIL	Vı = 0 V			-10	μΑ
Output leakage curre	nt, high	Ісон	Vo = VDD			10	μΑ
Output leakage curre	nt, low	ILOL	Vo = 0 V			-10	μΑ
Supply current	Operating	I _{DD1}	Direct mode		$1.0 \times \phi + 9.5$	$1.5 \times \phi + 10$	mA
			PLL mode		$1.1 \times \phi + 11$	$1.8 \times \phi + 12$	mA
	In HALT mode	I _{DD2}	Direct mode		$0.3 \times \phi + 2$	$0.5 \times \phi + 6.5$	mA
			PLL mode		$0.4 \times \phi + 3.5$	$0.6 \times \phi + 8.5$	mA
	In IDLE mode	IDD3	Direct mode		$5.3 \times \phi + 200$	$6.5 \times \phi + 325$	μΑ
			PLL mode		$0.07 \times \phi + 1.5$	$0.15 \times \phi + 2$	mA
	In STOP mode	I _{DD4}	-20 °C ≤ T _A ≤ 50 °C		1	40	μΑ
			50 °C < T _A ≤ 70 °C			200	μΑ

Note RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INTP03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL

Remarks 1. TYP. value is a value for your reference at $T_A = 25$ °C and $V_{DD} = 3.3$ V.

2. ϕ : Internal operating clock frequency

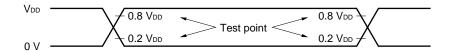


Data Retention Characteristics ($T_A = -20 \text{ to } +70 ^{\circ}\text{C}$)

Parameter	Symbol	(Condition	MIN.	TYP.	MAX.	Unit
Data hold voltage	VDDDR	STOP mode		1.5		3.6	V
Data hold current	Idddr	$V_{DD} = V_{DDDR}$ $-20 ^{\circ}\text{C} \le T_{A} \le +50 ^{\circ}\text{C}$			0.2 VDDDR	40	μΑ
			50 °C < T _A ≤ 70 °C		0.2 VDDDR	200	μΑ
Supply voltage rise time	trvd			200			μs
Supply voltage fall time	trvd			200			μs
Supply voltage hold time (vs. STOP mode setting)	t HVD			0			ms
STOP mode release signal input time	torel			0			ns
Data hold input voltage, high	VIHDR	Note		0.9 VDDDR		VDDDR	V
Data hold input voltage, low	VILDR	Note		0		0.1 VDDDR	V

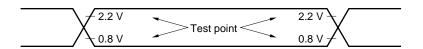
Note RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INT03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL, X1

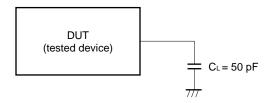
Remark TYP. value is a value for your reference at $T_A = 25$ °C and $V_{DD} = 3.3$ V.



AC Characteristics (T_A = -20 to +70 °C, V_{DD} = 3.0 to 3.6 V, V_{SS} = 0 V)

AC test input wave

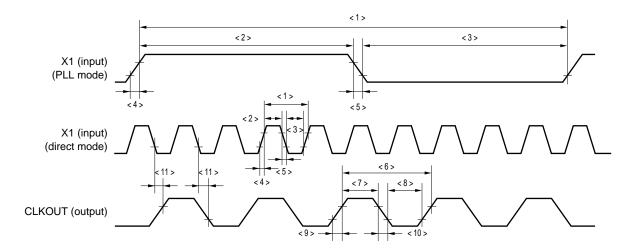

(a) RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INTP03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL, X1


(b) Other than (a)

AC test output test point

Load condition

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, decrease the load capacitance of this device to less then 50 pF by using a buffer.

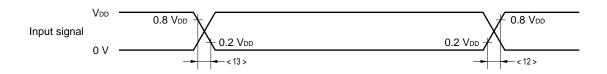


(1) Clock timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
X1 input cycle	<1>	tcyx	Direct mode	41	DC	ns
			PLL mode	416	500	ns
X1 input width, high	<2>	twxн	Direct mode	7		ns
			PLL mode	170		ns
X1 input width, low	<3>	twxL	Direct mode	7		ns
			PLL mode	170		ns
X1 input rise time	<4>	txr	Direct mode		7	ns
			PLL mode		15	ns
X1 input fall time	<5>	txF	Direct mode		7	ns
			PLL mode		15	ns
CPU operating frequency	_	φ		0	12	MHz
CLKOUT output cycle	<6>	t cyk		82	DC	ns
CLKOUT width, high	<7>	twкн		0.5 T – 15		ns
CLKOUT width, low	<8>	twkL		0.5 T – 15		ns
CLKOUT rise time	<9>	txr			15	ns
CLKOUT fall time	<10>	txF			15	ns
X1 ↓→ CLKOUT delay time	<11>	tdxk	Direct mode	3	30	ns

Remark T = tcyk

Parameter	Symbol		Condition	TYP.	Unit
Self-running oscillation frequency	_	φP	PLL mode	2.8	MHz

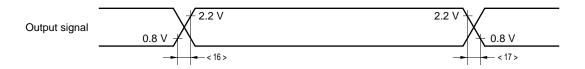


(2) Input waveform

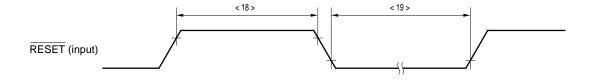
(a) RESET, P02/TCLR1, P03/TI1, P04/INTP10 through P07/INTP13, P20/NMI, P21/INTP00 through P24/INTP03, P26, P27, P31/SI, P32/SCK, P36, P37, MODE0, MODE1, CKSEL, X1

Parameter	Symbol		Condition	MIN.	MAX.	Unit
Input rise time	<12>	t _{IR2}			20	ns
Input fall time	<13>	t _{IF2}			20	ns

(b) Other than (a)


Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
Input rise time	<14>	t _{IR1}			10	ns
Input fall time	<15>	t _{IF1}			10	ns

(3) Output waveform (other than CLKOUT)


Parameter	Sym	nbol	Condition	MIN.	MAX.	Unit
Output rise time	<16> to	tor			20	ns
Output fall time	<17> to	tor			20	ns

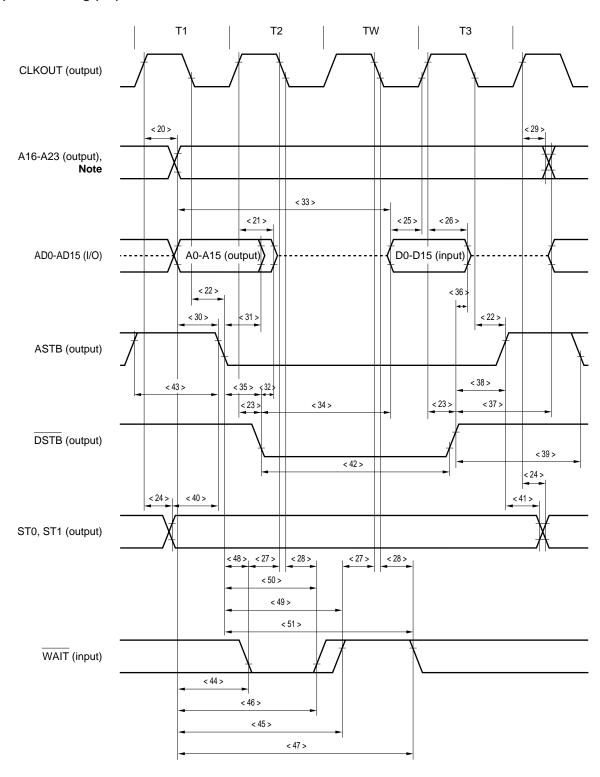
(4) Reset timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
RESET width, high	<18>	twrsh		500		ns
RESET width, low	<19>	twrsl	On power application, or on releasing STOP mode	500 + Тоsт		ns
			Except on power application, or except on releasing STOP mode	500		ns

Remark Tost: oscillation stabilization time

[MEMO]

(5) Read timing (1/2)


Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
CLKOUT $\uparrow \rightarrow$ address delay time	<20>	t DKA		3	32	ns
CLKOUT $\uparrow \rightarrow$ address float delay time	<21>	t FKA		3	32	ns
CLKOUT $\downarrow \rightarrow$ ASTB delay time	<22>	t DKST		3	32	ns
CLKOUT $\downarrow \rightarrow \overline{\text{DSTB}}$ delay time	<23>	t DKD		3	32	ns
CLKOUT $\uparrow \rightarrow$ status delay time	<24>	t DKS		3	32	ns
Data input setup time (vs. CLKOUT 1)	<25>	tsidk		5		ns
Data input hold time (vs. CLKOUT ↑)	<26>	t HKID		5		ns
$\overline{\text{WAIT}}$ setup time (vs. CLKOUT \downarrow)	<27>	t swtk		7		ns
$\overline{\text{WAIT}}$ hold time (vs. CLKOUT \downarrow)	<28>	tнкwт		7		ns
Address hold time (vs. CLKOUT 1)	<29>	t HKA		0		ns
Address setup time (vs. ASTB \downarrow)	<30>	t sast		0.5 T – 25		ns
Address hold time (vs. ASTB \downarrow)	<31>	t HSTA		0.5 T – 25		ns
$\overline{\text{DSTB}}\downarrow \to \text{address float delay time}$	<32>	t FDA			0	ns
Data input setup time (vs. address)	<33>	t SAID			(2 + n) T – 45	ns
Data input setup time (vs. $\overline{\text{DSTB}} \downarrow$)	<34>	tsdid			(1 + n) T – 35	ns
ASTB $\downarrow \rightarrow \overline{\text{DSTB}} \downarrow \text{delay time}$	<35>	tosto		0.5 T – 15		ns
Data input hold time (vs. DSTB ↑)	<36>	thdid		0		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{address output delay time}$	<37>	t dda		(1 + i) T		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \uparrow \text{delay time}$	<38>	t DDSTH		0.5 T – 15		ns
$\overline{\text{DSTB}} \uparrow \rightarrow \text{ASTB} \downarrow \text{delay time}$	<39>	t DDSTL		(1.5 + i) T – 15		ns
Status setup time (vs. ASTB \downarrow)	<40>	tssst		0.5 T – 15		ns
Status hold time (vs. ASTB ↑)	<41>	thsts		0.5 T – 20		ns
DSTB width, low	<42>	twdl		(1 + n) T – 15		ns
ASTB width, high	<43>	twsth		T – 20		ns
WAIT setup time (vs. address)	<44>	tsawt1	n ≥ 1		1.5 T – 50	ns
	<45>	tsawt2			(1.5 + n) T – 50	ns
WAIT hold time (vs. address)	<46>	thawt1	n ≥ 1	(0.5 + n) T		ns
	<47>	thawt2		(1.5 + n) T		ns
WAIT setup time (vs. ASTB ↓)	<48>	tsstwt1	n ≥ 1		T – 35	ns
	<49>	tsstwt2			(1 + n) T – 35	ns
WAIT hold time (vs. ASTB ↓)	<50>	thstwt1	n ≥ 1	nT		ns
	<51>	tHSTWT2		(1 + n) T		ns

Remarks 1. $T = t_{CYK}$

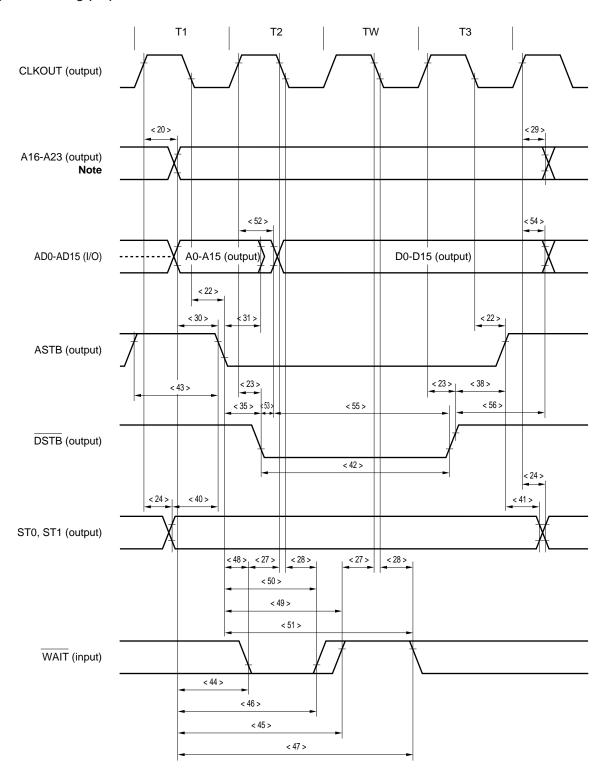
- 2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.
- 3. i indicates the number of idle states (0 or 1) t be inserted in the read cycle.
- 4. Be sure to observe at least one of data input hold times thkiD (<26>) and thDID (<36>).

(5) Read Timing (2/2): 1 wait

Note R/W (output), UBEN (output), LBEN (output)

Remark The broken line indicates the high-impedance state.

(6) Write timing (1/2)


Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
CLKOUT ↑→ address delay time	<20>	t dka		3	32	ns
CLKOUT $\downarrow \rightarrow$ ASTB delay time	<22>	t DKST		3	32	ns
	<23>	t DKD		3	32	ns
CLKOUT ↑→ status delay time	<24>	toks		3	32	ns
WAIT setup time (vs. CLKOUT ↓)	<27>	t swtk		7		ns
$\overline{\text{WAIT}}$ hold time (vs. CLKOUT \downarrow)	<28>	tнкwт		7		ns
Address hold time (vs. CLKOUT 1)	<29>	t HKA		0		ns
Address setup time (vs. ASTB ↓)	<30>	t sast		0.5 T – 25		ns
Address hold time (vs. ASTB ↓)	<31>	t HSTA		0.5 T – 15		ns
	<35>	tosto		0.5 T – 15		ns
DSTB ↑→ ASTB ↑ delay time	<38>	t DDSTH		0.5 T – 15		ns
Status setup time (vs. ASTB ↓)	<40>	tssst		0.5 T – 15		ns
Status hold time (vs. ASTB ↑)	<41>	thsts		0.5 T – 20		ns
DSTB width, low	<42>	twdl		(1 + n) T – 15		ns
ASTB width, high	<43>	twsтн		T – 20		ns
WAIT setup time (vs. address)	<44>	tsawt1	n ≥ 1		1.5 T – 50	ns
	<45>	tsawt2			(1.5 + n) T – 50	ns
WAIT hold time (vs. address)	<46>	thawt1	n ≥ 1	(0.5 + n) T		ns
	<47>	thawt2		(1.5 + n) T		ns
WAIT setup time (vs. ASTB ↓)	<48>	tsstwt1	n ≥ 1		T – 35	ns
	<49>	tsstwt2			(1 + n) T – 35	ns
WAIT hold time (vs. ASTB ↓)	<50>	thstwt1	n ≥ 1	nT		ns
	<51>	tHSTWT2		(1 + n) T		ns
CLKOUT $\uparrow \rightarrow$ data output delay time	<52>	t DKOD			32	ns
$\overline{\text{DSTB}}\downarrow o$ data output delay time	<53>	tddod			20	ns
Data output hold time (vs. CLKOUT ↑)	<54>	tнкор		0		ns
Data output setup time (vs. DSTB ↑)	<55>	tsodd		(1 + n) T – 30		ns
Data output hold time (vs. DSTB 1)	<56>	thdod		T – 15		ns

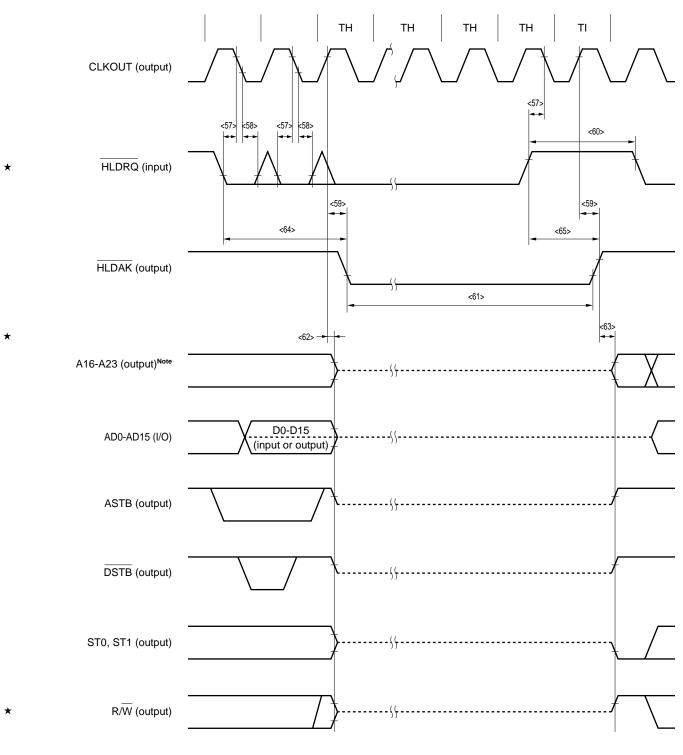
Remarks 1. $T = t_{CYK}$

2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

(6) Write timing (2/2): 1 wait

Note R/W (output), UBEN (output), LBEN (output)

Remark The broken line indicates the high-impedance state.


(7) Bus hold timing (1/2)

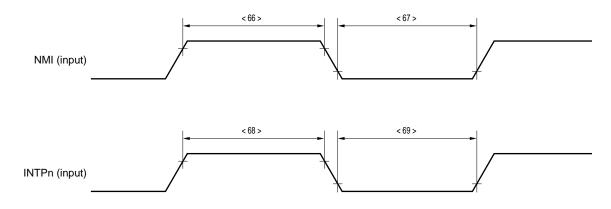
Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
HLDRQ setup time (vs. CLKOUT ↓)	<57>	tsнок		7		ns
$\overline{\text{HLDRQ}}$ hold time (vs. CLKOUT \downarrow)	<58>	tнкна		7		ns
	<59>	t DKHA			32	ns
HLDRQ width, high	<60>	twнqн		T + 15		ns
HLDAK width, low	<61>	twhal		T – 15		ns
CLKOUT ↑→ bus float delay time	<62>	tokf			32	ns
$\overline{HLDAK} \uparrow \to bus$ output delay time	<63>	t DHAC		-5		ns
$\overline{HLDRQ} \downarrow \to \overline{HLDAK} \downarrow delay\ time$	<64>	tdhqha1			(2 n + 7.5) T + 40	ns
$\overline{HLDRQ} \uparrow \to \overline{HLDAK} \uparrow delay\ time$	<65>	tdhqha2		0.5 T	1.5 T + 40	ns

Remarks 1. $T = t_{CYK}$

2. n indicates the number of wait clocks inserted in the bus cycle. The sampling timing differs when the programmable wait state is inserted.

(7) Bus hold timing (2/2)

Note UBEN (output) and LBEN (output)

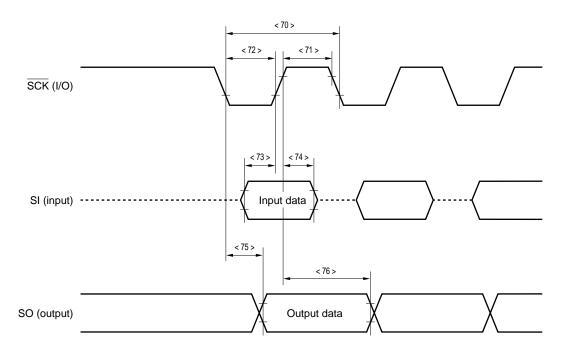

Remark The broken line indicates the high-impedance state.

(8) Interrupt timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
NMI width, high	<66>	twnih		500		ns
NMI width, low	<67>	twnil		500		ns
INTPn width, high	<68>	twiтн	n = 00, 01, 02, 03, 10, 11, 12, 13	3 T + 10		ns
INTPn width, low	<69>	twitl	n = 00, 01, 02, 03, 10, 11, 12, 13	3 T + 10		ns

Remark T = tcyk

 $\textbf{Remark} \ \ n = 00, \, 01, \, 02, \, 03, \, 10, \, 11, \, 12, \, 13$

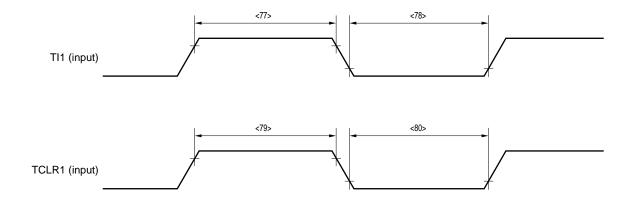

(9) CSI timing

(a) Master mode

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
SCK cycle	<70>	tcysk	Output	330		ns
SCK width, high	<71>	twsĸн	Output	0.5 tcysk - 40		ns
SCK width, low	<72>	twskL	Output	0.5 tсүзк – 40		ns
SI setup time (vs. SCK ↑)	<73>	tssisk		60		ns
SI hold time (vs. SCK ↑)	<74>	thsksi		0		ns
SO output delay time (vs. $\overline{\text{SCK}} \downarrow$)	<75>	t DSKSO			40	ns
SO output hold time (vs. SCK ↑)	<76>	thskso		0.5 tсүзк – 15		ns

(b) Slave mode

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
SCK cycle	<70>	tcysk	Input	330		ns
SCK width, high	<71>	twsĸн	Input	110		ns
SCK width, low	<72>	twskL	Input	110		ns
SI setup time (vs. SCK ↑)	<73>	tssisk		20		ns
SI hold time (vs. SCK ↑)	<74>	thsksi		20		ns
SO output delay time (vs. $\overline{\text{SCK}} \downarrow$)	<75>	toskso			60	ns
SO output hold time (vs. SCK ↑)	<76>	thskso		twsкн		ns


Remark The broken line indicates the high-impedance state.

(10) RPU timing

Parameter	Sy	/mbol	Condition	MIN.	MAX.	Unit
TI1 width, high	<77>	twтıн		3 T + 10		ns
TI1 width, low	<78>	twtil		3 T + 10		ns
TCLR1 width, high	<79>	twтсн		3 T + 10		ns
TCLR1 width, low	<80>	t wTCL		3 T + 10		ns

Remark T = tcyk

6.2 PROM Programming Mode

DC Programming Characteristics

PROM write mode (Ta = 25 \pm 5 $^{\circ}\text{C}, \, \text{V}_{\text{DD}}$ = 6.5 \pm 0.25 V, VpP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	VIH		0.7 V _{DD}		V _{DD}	٧
Input voltage, low	VIL	VIL		0		0.3 VDD	V
Output voltage, high	Vон	Vон	Iон = −1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	Li	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	I _{PP}	IPP	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

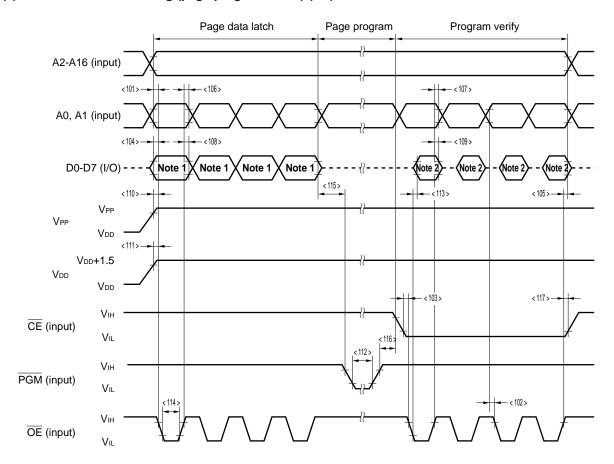
Note Symbol of corresponding μ PD27C1001A

PROM read mode (Ta = 25 \pm 5 °C, VdD = 5.0 \pm 0.5 V, VpP = VdD \pm 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	VIH		0.7 V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3 VDD	V
Output voltage, high	V _{OH1}	V _{OH1}	Iон = −1 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{OH2}	Іон = -100 μА	V _{DD} - 0.5			V
Output voltage, low	Vol	VoL	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	Іьо	ILO	$0 \le V_{\text{OUT}} \le V_{\text{DD}}$,	-10		+10	μΑ
			OE = VIH				
VPP supply voltage	V _{PP}	V _{PP}		V _{DD} - 0.6	V _{DD}	V _{DD} + 0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
V _{PP} supply current	I PP	IPP	VPP = VDD			100	μΑ
V _{DD} supply current	IDD	ICCA1	CE = VIL, VIN = VIH			50	mA

Note Symbol of corresponding μ PD27C1001A

AC Programming Characteristics


(1) PROM write mode timing (page program mode) (TA = 25 \pm 5 °C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V) (1/2)

Parameter	Sym	bol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Address setup time (vs. $\overline{\sf OE}\ \downarrow$)	<101>	tas	tas		2			μs
OE setup time	<102>	toes	toes		2			μs
$\overline{\sf CE}$ setup time (vs. $\overline{\sf OE} \downarrow$)	<103>	tces	tces		2			μs
Input data setup time (vs. OE ↓)	<104>	tos	tos		2			μs
Address hold time (vs. OE ↑)	<105>	t AH	tан		2			μs
	<106>	t AHL	tahl		2			μs
	<107>	t ahv	tahv		0			μs
Input data hold time (vs. OE ↑)	<108>	tон	tон		2			μs
$\overline{\text{OE}} \uparrow \rightarrow$ data output float delay time	<109>	tof	tor		0		250	ns
V_{PP} setup time (vs. $\overline{OE} \downarrow$)	<110>	tvps	tvps		1.0			ms
V_{DD} setup time (vs. $\overline{OE} \downarrow$)	<111>	tvos	tvcs		1.0			ms
Program pulse width	<112>	tpw	tpw		0.095	0.1	0.105	ms
$\overline{\text{OE}}\downarrow \rightarrow \text{valid data delay time}$	<113>	toe	toe				1	μs
OE pulse width in data latch	<114>	t∟w	tьw		1			μs
PGM setup time	<115>	t PGMS	tрвмs		2			μs
CE hold time	<116>	tсен	tсен		2			μs
OE hold time	<117>	tоен	tоен		2			μs

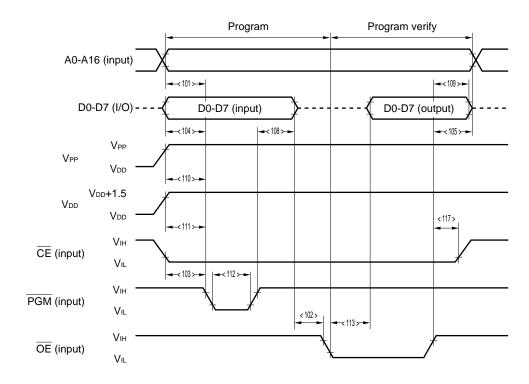
Note Symbol of corresponding μ PD27C1001A

(1) PROM write mode timing (page program mode) (2/2)

Notes 1. D0-D7 (input)

2. D0-D7 (output)

Remark The broken line indicates the high-impedance state.



(2) PROM write mode timing (byte program mode)

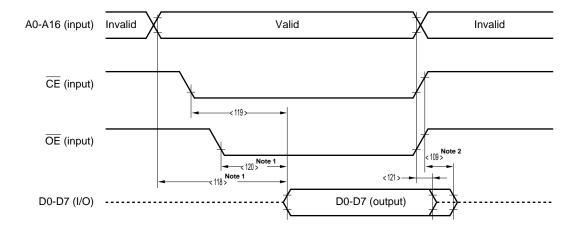
(Ta = 25 \pm 5 °C, Vdd = 6.5 \pm 0.25 V, Vpp = 12.5 \pm 0.3 V)

Parameter	Sym	bol	Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
Address setup time (vs. $\overline{\text{PGM}} \downarrow$)	<101>	tas	tas		2			μs
OE setup time	<102>	toes	toes		2			μs
CE setup time (vs. PGM ↓)	<103>	tces	tces		2			μs
Input data setup time (vs. $\overline{PGM} \downarrow$)	<104>	tos	tos		2			μs
Address hold time (vs. OE ↑)	<105>	tан	tah		2			μs
Input data hold time (vs. PGM ↑)	<108>	tон	tон		2			μs
$\overline{\text{OE}} \uparrow \rightarrow$ data output float delay time	<109>	tof	tof		0		250	ns
V_{PP} setup time (vs. $\overline{PGM} \downarrow$)	<110>	tvps	tvps		1.0			ms
V _{DD} setup time (vs. $\overline{\text{PGM}}$ ↓)	<111>	tvds	tvos		1.0			ms
Program pulse width	<112>	tpw	tpw		0.095	0.1	0.105	ms
$\overline{\text{OE}}\downarrow \to \text{valid data delay time}$	<113>	toe	toe				1	μs
OE hold time	<117>	tоен	_		2			μs

Note Symbol of the corresponding μ PD27C1001A

Cautions 1. Apply VDD before VPP, and turn off VDD after VPP.

- 2. Keep $\ensuremath{V_{\text{PP}}}$ to less than +13.5 V including overshoot.
- 3. If the device is pulled out of the socket while +12.5 V is applied to V_{PP} , the reliability may be degraded.

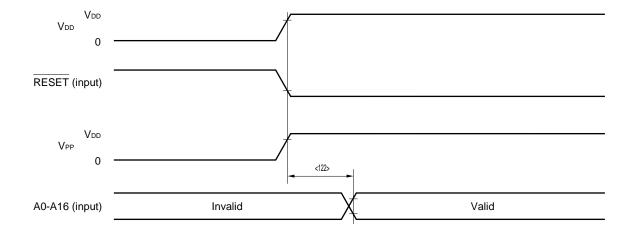

Remark The broken line indicates the high-impedance state.

(3) PROM read mode timing (TA = 25 \pm 5 °C, VDD = 5.0 \pm 0.5 V, VPP = VDD \pm 0.6 V)

Parameter	Symbol		Symbol ^{Note}	Condition	MIN.	TYP.	MAX.	Unit
$Address \to data \ output \ delay \ time$	<118>	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			1	μs
$\overline{CE} \downarrow \to data$ output delay time	<119>	tce	tce	OE = VIL			1	μs
$\overline{\text{OE}}\downarrow \to$ data output delay time	<120>	toe	toe	CE = VIL			1	μs
$\overline{\text{OE}} \uparrow \rightarrow$ data output float delay time	<109>	tor	tor	CE = VIL	0		60	ns
Address → data hold time	<121>	tон	tон	CE = OE = VIL	0			ns

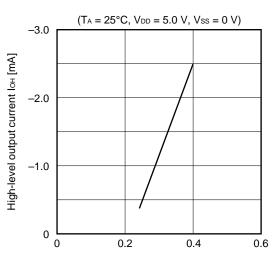
Note Symbol of the corresponding μ PD27C1001A

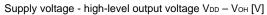
Notes 1. To read within the range of tacc (< 118 >), the delay time of \overline{OE} input from the falling of \overline{CE} must be tacc-toe (< 118 > - < 120 >) max.

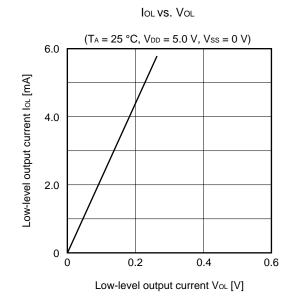

2. t_{DF} (< 109 >) is the time after either \overline{OE} or \overline{CE} first reaches V_{IH}.

Remark The broken line indicates the high-impedance state.

(4) PROM programming mode setting timing (TA = 25 $^{\circ}$ C, Vss = 0 V)

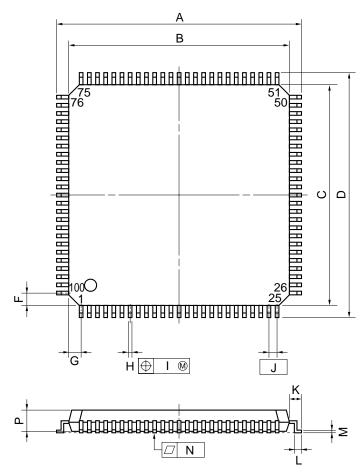

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	<122>	tsма		10			μs

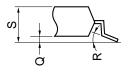




7. CHARACTERISTICS CURVES (reference)

IOH VS. (VDD - VOH)





8. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (FINE PITCH) (\square 14)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	16.0±0.2	0.630±0.008
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	16.0±0.2	0.630±0.008
F	1.0	0.039
G	1.0	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
ı	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	0.17 +0.03 -0.07	0.007+0.001
N	0.10	0.004
Р	1.45	0.057
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
N P Q R	0.10 1.45 0.125±0.075 5°±5°	0.004 0.057 0.005±0.003 5°±5°

P100GC-50-7EA-2

9. RECOMMENDED SOLDERING CONDITIONS

Solder this product under the following recommended conditions.

For the details of the recommended soldering conditions, refer to Information Document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and soldering conditions other than those recommended, consult NEC.

Table 9-1. Soldering Conditions of Surface Mount Type

Soldering Method	Soldering Condition	Symbol of Recommended Condition
Infrared reflow	Package peak temperature: 235 °C, Time: 30 seconds max. (210 °C min.), Number of times: 2 max., Number of days: 7 ^{Note} (after that, prebaking is necessary at 125 °C for 10 hours) <pre> <pre> <pre></pre></pre></pre>	IR35-107-2
VPS	Package peak temperature: 215 °C, Time: 40 seconds max. (200 °C min.), Number of times: 2 max., Number of days: 7 ^{Note} (after that, prebaking is necessary at 125 °C for 10 hours) <pre> <precaution> Products other than those supplied in thermal-resistant tray (magazine, taping, and non-thermal-resistant tray) cannot be baked in their packs.</precaution></pre>	VP15-107-2
Partial heating	Pin temperature: 300 °C max., Time: 3 seconds (per side of device)	-

Note The number of days during which the product can be stored at 25 °C, 65 % RH max. after the dry pack has been opened.

Caution Do not use two or more soldering methods in combination (except partial heating).

APPENDIX PROM WRITING TOOLS

(1) Hardware tools

Product	Product Name	Description
PROM programmer	PG-1500	NEC PROM programmer.
		The NEC PROM programmer can program PROM-contained single-
		chip microcontrollers in stand-alone mode or under control of a host
		machine when connected with an optional PROM programmer
		adapter.
		This programmer can also program representative PROMs from
		256K-bit to 4M-bit models.
	UNISITE	Data I/O Japan Co., Ltd. PROM programmers
	2900	
	3900	
	MODEL1890A	Minato Electronics Inc. PROM programmers
*	AF-9705 Rev.01.37 or higher	Ando Electric Co., Ltd. PROM programmers
	Algorithm Rev.02.40 or higher	
PROM programmer	PA-70P3000GC	PROM programmer adapter to write program to μ PD70P3000 on
* adapter		general-purpose PROM programmer such as PG-1500

(2) Software tools

Product	Host Machine	os	Supply Medium	Part Number	Description
PG-1500 controller	PC-9800 series	MS-DOS	3.5" FD	μS5A13PG1500	Controls PG-1500 on host machine
			5" FD	μS5A10PG1500	by connecting PG-1500 and host
	IBM PC/AT™	PC DOS	3.5" FD	μS7B13PG1500	machine with serial or parallel
	and compatible		5" FD	μS7B10PG1500	interface.
	machines				

Remark The operations of the PG-1500 controller are guaranteed only on the above host machine and OS.

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Related documents: μPD703000, 703001 Data Sheet (U10987E) V850 Family Instruction Table (U10229E) V851 Register Table (U10662J) (Japanese version)

Some of the related documents are preliminary editions but are not so specified here.

V850 Family, V851, and QTOP are trademarks of NEC Corporation. PC/AT is a trademark of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5