Programming the NS32FX200 for Use with a Contact Image Sensor (CIS) Scanner

National Semiconductor Application Note 821 Varda Karpati April 1992

INTRODUCTION

The NS32FX200 is a highly integrated system chip designed especially for a FAX voice application based on a National Semiconductor NS32FX161, NS32FX164 or NS32FV16 embedded processor. The NS32FX200 provides a complete video (scanner) solution.

The main features of the scanner controller are:

- Programmable generation of synchronization signals for CIS or Charge Coupled Device (CCD) scanners
- Two on-chip Digital-to Analog Convertors (DAC) for shading correction, dithering and Gamma correction
- Automatic writing of scanned bitmap to memory via a DMA channel
- Support for line scan times of 2.5 ms, 5 ms, 10 ms and 20 ms
- Support for external image enhancement

The NS32FX200 system chip supports a wide range of CIS scanners. This application note uses the scanner input signals of the Seiko Epson LSA4U130 CIS scanner as an example.

This document describes how to program the NS32FX200 for use with your CIS scanner. It should be considered an addition to, and be used with, the NS32FX200 Data Sheet.

1.0 SCANNING WITH THE NS32FX200

The scanning process in the NS32FX200 includes the following operations:

- Synchronization Signals generation
- Video Signal processing
- Pixel digitization
- Pixel Bitmap generation

The software activates the signal generator block by setting the SCAN bit in the MCFG register to 1. The signal generator block then generates five synchronization pulses, SNH, SDIS, SLS, SPDW and SCLK2. See block diagram in *Figure 1.*

The Scan Line Synchronization (\overline{SLS}) signal indicates the beginning of a new scanned line. The frequency of the \overline{SLS} pulse is controlled by the Scanner Period Pulse (SPP) register, and may be 400 Hz (2.5 ms per line), 200 Hz (5 ms per line), 100 Hz (10 ms per line), or 50 Hz (20 ms per line).

When DMA channel 0 is enabled, it is synchronized by the NS32FX200 scanner controller to the internal Scanner Active Video Window (SAVW) signal, which defines the total time during which the scanner controller collects data. The NS32FX200 scanner controller outputs a Scanner Peak Detect Window (SPDW) signal to the sample and hold circuit. This signal defines the time period during which the scanner controller calculates the peak current of the input pixels. The time period defined by SPDW occurs during the time period defined by the SAVW signal.

When the software activates the DMA0 bit in the MCFG register and the CHEN bit in the CNTL0 register, it enables DMA channel 0 to operate with the internal scanner controller. The channel starts the required DMA operation, i.e., it requests the first two bytes, to fill the double buffer reference line. This line is then sent to the CIS scanner.

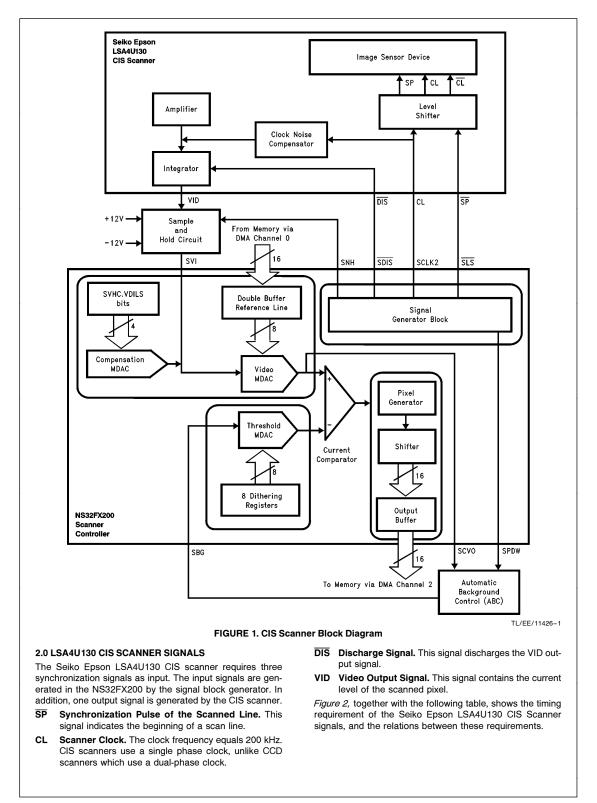
For each scanner pixel, the NSFAX software uses a successive approximation algorithm to evaluate the exact correction value needed to compensate for the difference between the maximum (white) analog value and the actual value of these pixels. These 8-bit correction values are stored in memory as "white line correction values". After the white line correction values are evaluated, scanning may start.

During scanning, the white line correction value for each pixel that was synchronized to the Sample and Hold (SNH) signal, is transferred to the double buffer reference line. The correction value from the compensation MDAC, and the analog input, Scanner Video Input (SVI) signal, are both fed into the video DAC from the sample and hold circuit. The video DAC then produces the compensated analog level of the pixel, Scanner Compensated Video Output (SCVO). The SVCO signal is input to the current comparator and to the Automatic Background Control (ABC) circuit.

At the same time, for each pixel, 8-bit data from the eight dithering registers, and the Scanner Background (SBG) signal from the ABC circuit, are fed into a second Multiplying Threshold DAC (MDAC) that produces a darkness threshold level.

During bi-level dithering, each of the eight dithering registers contains a constant threshold value, and the peak detected value of the SCVO register is input to the MDAC via the SBG input signal.

During gray scale dithering, the eight dithering registers contain eight different threshold levels, and the SBG input signal is forced to a constant level.


The compensated analog value of a pixel, and its darkness threshold level, are fed to the current comparator that creates a digital 0 or 1 signal. This bit is input to a pixel generator. The output from the pixel generator is shifted into a shift register. When the shift register is full, and DMA channel 2 is enabled by setting the Channel Enable (CHEN) bit in the CNTL2 register, the shifted word is written to the output buffer, and via DMA channel 2 to memory.

rogramming the NS32FX200 for Use with a Contact Image Sensor (CIS) Scanner

AN-821

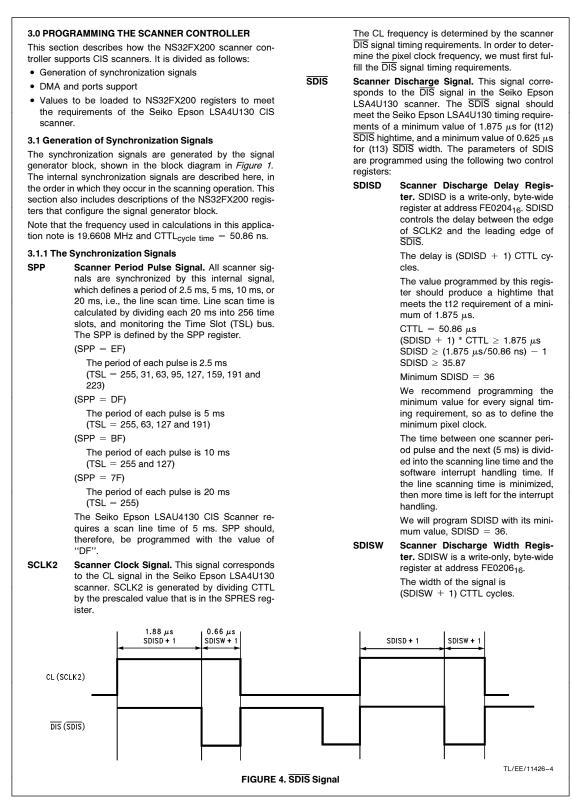
© 1995 National Semiconductor Corporation TL/EE11426

RRD-B30M75/Printed in U. S. A

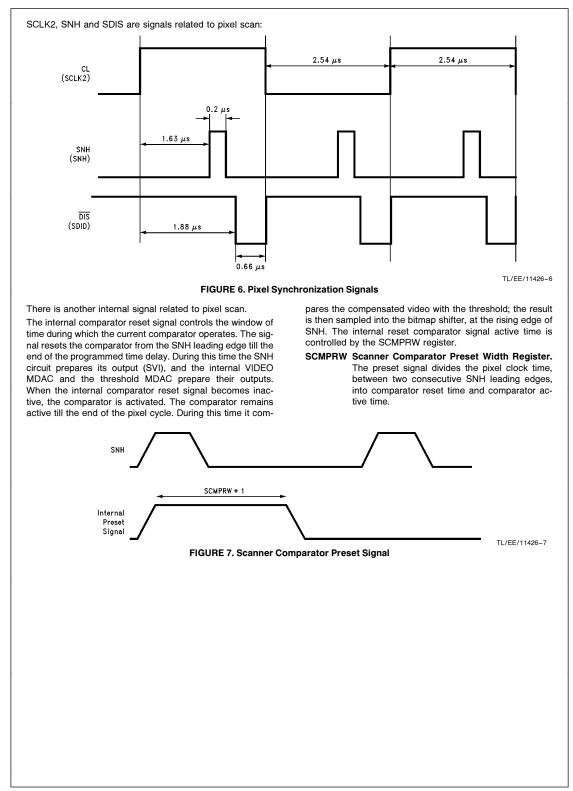
F F F F F F F F F F								
Item		Min	Max	Max Units Description				
CL Rise & Fall Time	t1, t2	600	100	ns	10 defines the time between the vising edge of CL and the			
CL Rise & Fall Time CL and SP Relationship	t1, t2 t3	600	100	ns ns	t3 defines the time between the rising edge of CL and the falling edge of SP.			
CL and SP		600 800	100					
CL and SP	t3		100	ns	falling edge of SP. t4 defines the time between the falling edge of CL and the			
CL and SP	t3 t4	800	100	ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the			
CL and SP	t3 t4 t5	800 800	100	ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the			
CL and SP Relationship	t3 t4 t5 t6	800 800		ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the			
CL and SP Relationship SP Rise & Fall Time	t3 t4 t5 t6 t7, t8	800 800 800		ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL.			
CL and SP Relationship SP Rise & Fall Time SP Pulse Width	t3 t4 t5 t6 t7, t8 t9	800 800 800	100	ns ns ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL.			
CL and SP Relationship SP Rise & Fall Time SP Pulse Width DIS Rise and Fall Time	t3 t4 t5 t6 t7, t8 t9 t10, t11	800 800 800 1000	100	ns ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL. t9 defines SP pulse width. t12 defines DIS high level time (The time between the rising			
CL and SP Relationship SP Rise & Fall Time SP Pulse Width DIS Rise and Fall Time	t3 t4 t5 t6 t7, t8 t9 t10, t11 t12	800 800 800 1000 1875	100	ns ns ns ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL. t9 defines SP pulse width. t12 defines DIS high level time (The time between the rising edge of CL and the falling edge of CL and the falling edge of DIS).			
CL and SP Relationship SP Rise & Fall Time SP Pulse Width DIS Rise and Fall Time DIS Pulse Width	t3 t4 t5 t6 t7, t8 t9 t10, t11 t12 t13	800 800 800 1000 1875 625	100	ns ns ns ns ns ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL. t9 defines SP pulse width. t12 defines DIS high level time (The time between the rising edge of CL and the falling edge of CL and the falling edge of CL and the falling edge of DIS).			
CL and SP Relationship SP Rise & Fall Time SP Pulse Width DIS Rise and Fall Time DIS Pulse Width DIS and CL Relate	t3 t4 t5 t6 t7, t8 t9 t10, t11 t12 t13 t14	800 800 800 1000 1875 625	100	ns ns ns ns ns ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL. t9 defines SP pulse width. t12 defines DIS high level time (The time between the rising edge of CL and the falling edge of CL and the falling edge of DIS). t13 defines DIS pulse width. t15 defines the time in which VID output changes from 0% to			
CL and SP Relationship SP Rise & Fall Time SP Pulse Width DIS Rise and Fall Time DIS Pulse Width DIS and CL Relate VID(0%–90%)	t3 t4 t5 t6 t7, t8 t9 t10, t11 t12 t13 t14 t15	800 800 800 1000 1875 625 0	100 100 100 1500	ns ns ns ns ns ns ns ns ns ns ns ns	falling edge of SP. t4 defines the time between the falling edge of CL and the rising edge of SP. t5 defines the time between the falling edge of SP and the rising edge of CL. t6 defines the time between the rising edge of SP and the falling edge of CL. t9 defines SP pulse width. t12 defines DIS high level time (The time between the rising edge of CL and the falling edge of CL and the falling edge of DIS). t13 defines DIS pulse width. t15 defines the time in which VID output changes from 0% to 90% of its value.			

The signal block generator also generates, in addition to the CIS scanner control signals, an SNH signal that is sent to the sample and hold circuit. The sample and hold circuit uses it to sample the VID signal that is output from the CIS scanner.

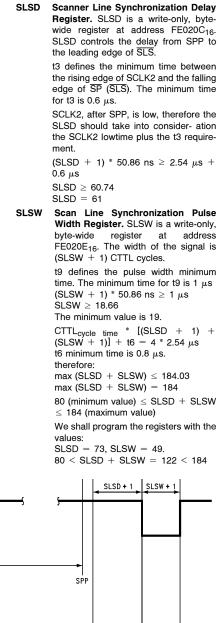
When the VID signal reaches about 90 percent of its maximum value, the sample and hold circuit generates a signal that holds the pixel value for approximately 80 per cent of the pixel cycle, in order to ease the digital and analog signal timing requirements of the internal NS32FX200 scanner controller. Approximately 90 per cent of the value of the pixel should be sampled and held. The SNH signal should not be active when the output line is discharged. The minimum delay between any edge of CL and the rising edge of SNH for the Seiko Epson LSA4U130 scanner is 1.6 μ s (t16).

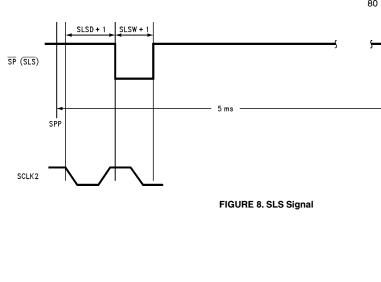

After the sample and hold operation is finished, the scanner output should be prepared for the next pixel by the $\overline{\rm DIS}$ signal.

The minimum delay between an edge of CL and the falling edge of $\overline{\text{DIS}}$, for the LSA4U130 scanner, is 1.875 μ s (t12). The minimum width of the $\overline{\text{DIS}}$ signal is 0.625 μ s (t13). The delay plus the width of the $\overline{\text{DIS}}$ signal is 2.5 μ s, i.e., CL

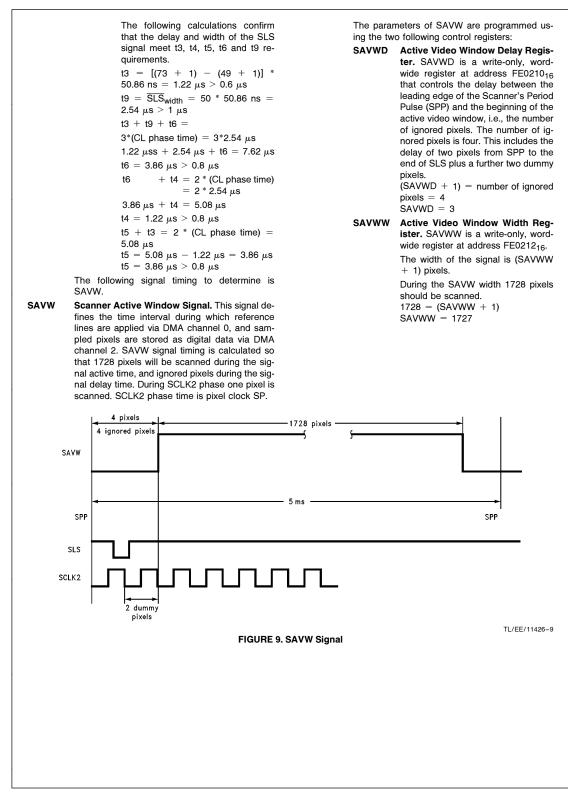

phase width.

- Note 1: The frequency of the SNH and DIS signals (400 kHz) is twice that of the CL signal (200 kHz).
- Note 2: The minimum time required by the scanner to scan one pixel is 2.5 μ s. The maximum time per pixel is limited by the maximum time from the beginning of one line to the beginning of the next line, which may not exceed 5 ms. There may be up to 1728 pixels plus four to six dummy pixels in a line.


SNH The value programmed by this register should Sample and Hold Pulse. This signal correproduce a Scanner Discharge width time that sponds to the SNH in the Seiko Epson meets the t13 requirements of a minimum of LSA4U130 scanner. The SNH signal should 0.625 μs. meet the Seiko Epson LSA4U130 timing requirements of a maximum t15 (VID 0%-90%) of (SDISW + 1) * CTTL \geq 0.625 μ s 1.5 μ s, and a t16 (VID sampling period) which SDISW \geq (0.625 μ s/50.86 ns) - 1 extends from a minimum of 1.6 μ s to a maximum SDISW \geq 11.28 of 1.87 μ s. The parameters of SNH are pro-We will program the minimum SDISW value = grammed using the following two control regis-12. ters: The programmed values define delay and width SNHD Sample and Hold Delay Register. times of: SNHD is a write-only, byte-wide reg- $SDIS_{delay} = (36 + 1) * 50.86 \text{ ns} = 1.88 \ \mu \text{s}$ ister at address FE020816. SNHD $SDIS_{width} = (12 + 1) * 50.86 \text{ ns} = 0.66 \ \mu \text{s}$ controls the delay between the edge of SCLK2 and the leading edge of The pixel clock is, therefore: SNH. $\overline{\text{SDIS}}_{\text{hightime}} + \overline{\text{SDIS}}_{\text{width}} = 1.88 \ \mu\text{s} + 0.66 \ \mu\text{s}$ The delay is (SNHD + 1) CTTL cycles. = 2.54 μs (SNHD + 1) * 50.86 ns \geq 1.6 μs The pixel clock cycle time defines CL (SCLK2) SNHD ≥ 30.46 phase time. SCLK2 cycle time is 5.08 µs. SCLK2 Min SNHD = 31 (CL) frequency is defined by using the prescale Programmed value should be 31 value programmed in the SPRES register. $\text{SNH}_{\text{delay}}$ = 32 * 50.86 ns = 1.63 μs Scanner Prescale Register. SPCLK SPRES Sample and Hold Width Register. SNHW = CTTL/(SPRES + 1). SPRES is a SNHW is a write-only, byte-wide regwrite-only, byte-wide register at adister at address FE020A₁₆. dress FE022216. The width of the signal is (SNHW + 1) CTTL $\begin{array}{l} \text{SPCLK}_{\text{cycle time}} = \text{CTTL}_{\text{cycle time}} * \left[2 * (\text{SPRES} + 1)\right] = 2 * 2.54 \ \mu \text{s} = 5.08 \ \mu \text{s} \end{array}$ cycles. The SNH signal should be deactivated before $5.08 \ \mu s = 50.86 \ ns * [2 * (SPRES + 1)]$ $\overline{\text{SDIS}}$ goes low-1.88 μs after the edge of SPRES = $(5.08 \ \mu s/2 \ ^{*} \ 50.86 \ ns) - 1 = 49$ SCLK2. The timing requirements of t1, t2, t7, t8, t10, t11 SNH_{delay} + SNH_{width} should not exceed are guaranteed by design. 1.88 µs. The next signal to determine is the Sample and $[(SNHD + 1) + (SNHW + 1)] * 50.86 \text{ ns} \leq$ Hold (SNH) pulse. 1.88 µs SNHW < 3.864SNHW will be programmed with the value of 3. $SNH_{width} = (3 + 1) * 50.86 \text{ ns} = 0.2 \ \mu \text{s}$ $\frac{1}{1.83 \ \mu s} + \frac{1}{1.83 \ \mu s} = \frac{1}{1.83 \ \mu s} + \frac{1}{1.83 \ \mu s} = \frac{1}{1.83 \$ SNHD + 1 SNHW + 1 SNHD + 1 SNH₩ + 1 CL (SCLK2) SNH (SNH) TL/EE/11426-5 FIGURE 5. SNH Signal


The internal analog reset width (SCMPRW + 1) is equal to, or greater than the SVI set-up time plus 200 ns. The SVI set-up time is determined by the performance of the SNH circuit. The analog reset should be terminated at least 300 ns before the next SNH leading edge. min SCMPRW \rightarrow (SCMPRW + 1) * $CTTL_{cycle time} \ge SVI_{setup} + 200 \text{ ns}$ max SCMPRW \rightarrow [(SPRES + 1) -(SCMPRW + 1)] * CTTL_{cycle time} \geq 300 ns min SCMPRW = (SVI_{setup}/CTTL_{cycle time}) + 3 max SCMPRW \rightarrow SCMPRW \leq 50 - 1 -(300 ns/50.86 ns) = 43.1 max SCMPRW = 43 To achieve the highest possible speed and accurately the reset signal should be active during 70 percent of the pixel cycle, starting from the leading edge of SNH SCMPRW + 1 = 70% (SPRES + 1) \rightarrow SCMPRW = 50 * 0.7 - 1 = 34SCMPRW = 34

The next stage, after the signals related to pixel processing have been calculated, is to calculate the signals related to the whole line.


SLS Scan Line Synchronization Pulse. This pulse indicates the beginning of a new scan line. SLS corresponds to the SP signal in the Seiko Epson LSA4U130 scanner. SLS signal timing is determined according to Seiko Epson LSA4U130 timing requirements t3, t4, t5, t6, and t9 (see *Figure* 2). SLS parameters are programmed using the following two control registers:

TL/EE/11426-8

SPDW	Scanner		
	signal en which the To achie only whe following the narro page, and er mecha to either the ABC	Peak Detection Window Signal. This ables definition of a time interval during e peak detector of the ABC is changed. ve the best results, charge the ABC in the real document is scanned. In the example, we assume that the width of west document scanned is half an A4 d that the document is centered. In oth- nical set-ups, the document is adjusted the left or the right of the scanner, and window will be shifted accordingly meters of SPDW are programmed us-	BY 3.2 Scanner (This section of channels 0 ar configured, Di troller with ref bitmap data. 3.2.1 Configu
	•	blowing two control registers:	To configure
SPDWD	SPDWD i dress FE the leadin (SPP) an window. SPDWD	etection Window Delay Register. s a write-only, word-wide register at ad- 0214 ₁₆ that controls the delay between ng edge of the scanner's period pulse d the beginning of the peak detector + 1 = (1728/4) + 4 ignored pixels = SPDWD = 435	function as in tions: 1. Define DN DMA0, in t 2. Define sca outputs fro bits 4, 6, 9 register to
SPDWW	Peak De write-only	tection Window Width. SPDWW is a v, word-wide register at address	3. Enable sca
	FE0216 ₁₀ The width 1728/2 =	5	B Output E 4. Define SN controller Select (PC
3.1.2 Sigr	863 Ial Genera	tion Block	5. Enable the 2 of the Po
•	ation Regi		3.2.2 Program
generatio	n block of	bed in this section configure the signal the NS32FX200 for use with a Seiko	ADCA0, ADC
•	U4130 CIS		De 0 :
SGC	-	Generator Control Register. The po- ne synchronization signals is controlled	
		amming the SGC register.	de
7		Imming the SGC register.	de cle
7			rei de cle bit sp
7	by progra	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low	de cle bit sp AL the be
7	reserved	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high	de cle bit sp A[th be BLTC0, BLTC
7	by progra	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low	de cle bit sp Al th be BLTC0, BLT(BI
7	by progra reserved DISP SNHP	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity.	de cle bit sp AI th: be BLTC0, BLTC BI an
7	reserved	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Sample and Hold Pulse Polarity. 0 = Active high Powe Powe Active low 1 Active high Peak Detector Window Polarity.	de cle sp Al be BLTC0, BLT(BI ar nu re
7	by progra reserved DISP SNHP	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active low 1 = Active low 1 = Active low 1 = Active high	de cle bit sp AI th be BLTCO, BLT(BI an nu re pr ea
7	by progra reserved DISP SNHP	4 3 2 1 0 4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Sample and Hold Pulse Polarity. 0 = Active high Petector Window Polarity. 0 = Active low 1 = Active low 1 = Active high Line Synchronization Pulse Polari- Polari-	de cle bit sp AI th be BLTC0, BLT(BI ar nu re pr ea MODE0, MOI
7	by progra reserved DISP SNHP PDWP	4 3 2 1 0 4 3 2 1 0 1 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active low 1 = Active high Line Synchronization Pulse Polarity, 0 0 = Active low 1 = Active high Line Synchronization Pulse Polarity, 0 0 = Active low	de cle bit sp Al th be BLTC0, BLT(BI an nu re mu re MODE0, MOI Mu an
	reserved DISP SNHP PDWP LSPP	4 3 2 1 0 4 3 2 1 0 1 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Detector Window Polarity. 0 = Active high Line Synchronization Pulse Polarity 0 = Active high Line Synchronization Pulse Polarity 0 = 0 = Active low 1 = Active high	de cle bit sp AL tha
SVHC	by progra reserved DISP SNHP PDWP LSPP Scanner	4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Sample and Hold Pulse Polarity. 0 = Active low 1 = Active high Peak Detector Window Polarity. 0 = Active low 1 = Active high Line Synchronization Pulse Polarity. 0 = Active low 1 = Active low 1 = Active low 1 = Active low 1 = Active high Video Handling Control Register.	de ch bit sp AI BLTC0, BLTC BI an nu re pr ea MODE0, MOI an re
SVHC 7	reserved DISP SNHP PDWP LSPP	4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Sample and Hold Pulse Polarity. 0 = Active low 1 = Active low 1 = Active low 1 = Active low 1 = Active high Line Synchronization Pulse Polarity. 0 = Active low 1 = Active logh Video Handling Control Register. 4 0	de cle bit sp AI th be BLTC0, BLTC BI ar nu re pr ea MODE0, MOI MM ar re ea
SVHC	by progra reserved DISP SNHP PDWP LSPP Scanner 6 5 PASS INVER	4 3 2 1 0 4 3 2 1 0 1 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active low 1 = Active high Detector Window Polarity. 0 = Active high Line Synchronization Pulse Polarity (SLS). 0 = Active high Video Handling Control Register. 4 0 T VDILS	de cle bit sp Al BLTCO, BLTC BI an nu re mon ea MODEO, MOI Mu an re ea 15
SVHC	reserved DISP SNHP PDWP LSPP Scanner 6 5	4 3 2 1 0 4 3 2 1 0 1 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Powe Polarity. 0 = Active high Powe Polarity. 0 = Active high Detector Window Polarity. 0 = Active high Line Synchronization Pulse Polarity 0 = Active high Line Synchronization Pulse Polarity 0 = Active high Video Handling Control Register. 4	de cle bit sp Al BLTCO, BLTC BI an nu re mon ea MODEO, MOI Mu an re ea 15
SVHC	by progra reserved DISP SNHP PDWP LSPP Scanner 6 5 PASS INVER	4 3 2 1 0 LSPP PDWP SNHP DISP Scanner Discharge Pulse Polarity. 0 = Active low 1 = Active high Sample and Hold Pulse Polarity. 0 = Active high Detector Window Polarity. 0 = Active high Peak Detector Window Polarity. 0 = Active high Line Synchronization Pulse Polarity (SLS). 0 = Active low 1 = Active low 1 <td>de cla bit sp AE thi be BLTC0, BLTC BI an nu rea MODE0, MOE MODE0, MOE an rea</td>	de cla bit sp AE thi be BLTC0, BLTC BI an nu rea MODE0, MOE MODE0, MOE an rea

YPASS	The SBYPS input signal is selected
	by the pixel generator, and the com-
	parator output is ignored, if this bit is
	set to 1.

Controller DMA and Ports Support

describes how to configure and program DMA nd 2 to function as internal channels. When so MA channels 0 and 2 provide the scanner conerence lines, and enable the scanner to output

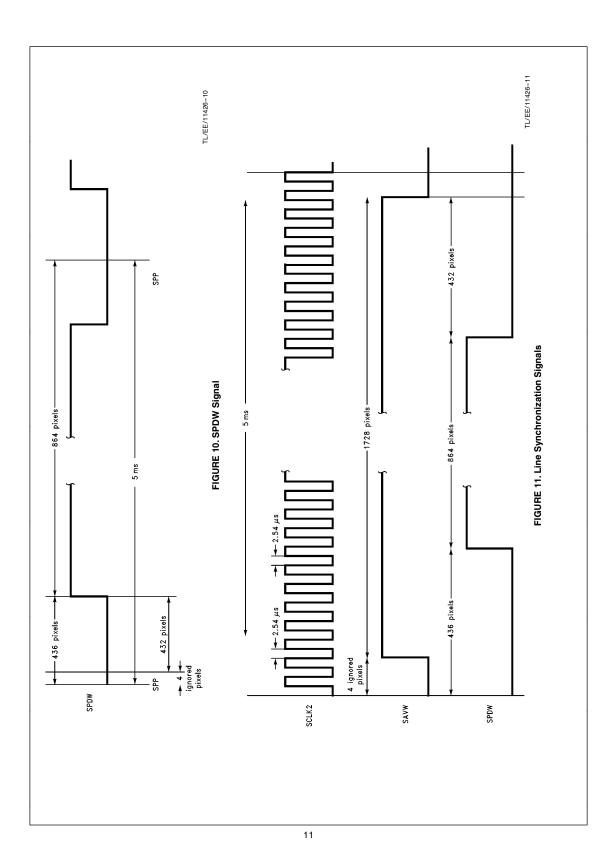
ring DMA Channels 0 and 2 as Internal

DMA channels 0 and 2, of the NS32FX200, to ternal channels, perform the following opera-

- IA channel 0 as internal, by setting bit 4, the MCFG register to 1.
- inner signals SCLK, SDIS, SPDW and SLS as om the scanner controller module, by setting and 11 of the Port B Module Select (PBMS) 1.
- anner output signals by setting bit 0 of the Port Enable (PBEN) register to 1.
- H scanner signal as output from the scanner module by setting bit 2 of the Port C Module MS) register) to 1.
- scanners SNH signal as output by setting bit ort C Output Enable (PCEN) register to 1.

nming Internal DMA Channels 0 and 2 A2

evice Address Counters for DMA Channels and 2, respectively. Bits 0-23 hold the curnt address of the source data in the addressed vice. Bits 24-31 are reserved, and should be eared to 0. After each DMA transfer, if the ADA of the MODE0 register or MODE2 correonding register is set to 1, the corresponding DCA is updated as defined by the DEC bit in at MODE register. ADCA0 and ADCA2 should programmed to have even addresses.


22

ock Length Counters for DMA Channels 0 d 2, respectively. Bits 0-23 hold the current mber of bytes to be transferred. Bits 24-31 are served, and should be cleared to 0. The approiate BLTC counter is decremented by 2 after ch DMA transfer.

DE2

ode Control Registers for DMA Channels 0 d 2, respectively. The appropriate MODE gister is used to specify the operating mode of ch channel.

		~							
5		10	9	8 4	з	2	1	0	
	reserved		ADA	reserved	DIR	res	DEC	res	
	DEC Decrement/Increment the appro- priate ADCA Register.								
			0 =	Increment ADC after each transf is set to 1.		÷.			
			1 =	Decrement ADCA0 or ADCA after each transfer cycle, if AD is set to 1.					

	DIR	Transfer Direction. In MODE0 this	3.3.1 The	Signal Generation Block Registers
		bit should be cleared to 0. Implied I/O is the destination. In MODE2 this bit should be set to 1. Implied I/O is	SPP	= DF ₁₆ A period pulse is issued every 5 ms (TSL = 255,63, 127 and 191).
		the source.	SPRES	= 49
	ADA	Device Address Control. The ADA bit controls updating of the corre- sponding ADCA counter, after each transfer cycle, as follows:	of fillo	SPCLK = CTTL/(SPRES + 1) = 19.6608/(49 + 1) = 0.394 MHz = 394 kHz CTTL/2(SPRES + 1) = 19.6608/2 (49 + 1)
		0 = Do not change the address		= 0.197 MHz = 197 kHz
		stored in the relevant ADCA. 1 = Change the address stored in the relevant ADCA.	SLSD	= 73 The delay from SPP is (SLSD + 3) CTTL cy- cles, or 3.87 μ s.
STATO, S	TAT2		SLSW	= 49
	respectiv	egister for DMA Channels 0 and 2, ely. These registers hold status infor-		The width of \overline{SLS} is (SLSW $+$ 1) CTTL cycles, or 2.54 $\mu s.$
	and are us	r DMA channels 0 and 2 respectively, sed to enable or mask the appropriate rrupt when the corresponding counter	SDISD	= 36 The delay from SCLK2 edge is (SDISD + 1)
		, i.e., when the transfer is completed.	SDISW	CTTL cycles, or 1.88 μ s. = 12
7 res	5 served	4 3 2 1 0 ETC CHAC reserved TC	02.011	The width of $\overline{\text{SDIS}}$ is (SDISW + 1) CTTL cycles, or 0.66 μ s.
	тс	Terminal Count. The appropriate TC is set to 1 when its corresponding	SNHD	= 31 The delay from SCLK2 edge is (SNHD + 1) CTTL cycles, or 1.63 μ s.
		BLTC counter reaches 0, i.e., when the transfer is completed.	SNHW	= 3
	CHAC	Channel Active. The appropriate CHAC bit is set to 1 when DMA chan-		The width of SNH is (SNHW $+$ 1) CTTL cycles, or 0.20 $\mu s.$
		nel 0 or 2 is active, i.e., when the CHEN bit in the corresponding CNTL register is set to 1, and the corre-	SGC	= 6 SDIS active low
		sponding BLTC counter is greater than 0. CHAC is read only.		SNH active high SPDW active high
	ETC	Enable Terminal Count. ETC en-		SLS active low
		ables an interrupt when its corre- sponding BLTC counter reaches 0.	SAVWD	= 3 The delay in CTTL cycles from first SCLK2
		0 = Disable interrupt.		rising edge is ((SAVWD * (SPRES + 1)) -
	.	1 = Enable interrupt.	SAVWW	1), or 7.58 μs. = 1727
CNTL0	CHEN, is	number 0, the Channel Enable bit, used to enable or disable DMA chan- bit should only be set to 1 after all the	SAVWW	The width of SAVW is (SAVWW + 1) SPCLK cycles, or 4.39 ms.
		isters for the relevant channel have	SPDWD	= 435
	CHEN	Channel Enable.		The delay in CTTL cycles, from the first rising edge of SCLK2 is (SPDWD * (SPRES + 1)),
		0 = Disable channel 0.1 = Enable channel 0.	SPDWW	or 1.11 ms. = 863
0.01.004	na tha NCO		01 21111	Width of SPDW is (SPDWW + 1) SPCLK cy-
Use the v	alues provid	2EX200 Registers led in this section to program the regis-	SCMPRW	cles, or 2.19 ms.
requireme for scann the synch ner, SNH	ents of the ing at 19.6 ronization s circuit and	00 CIS scanner controller to meet the Seiko Epson LSA4U130 CIS scanner 608 MHz. These values will generate ignals that are output to the CIS scan- the ABC circuit, and will provide the	SCMPHW	 S4 It is recommended the internal comparator reset signal be activated when: SPCLK reaches 70 per cent of its cycle time or:
Four grou	ips of regist n block reg	DMA support. ers should be programmed: the signal isters, the frequency controller regis- sters and the DMA controller registers.		(SPRES + 1) * 70% = (SCMPRW + 1) or: (49 + 1) * 70% = 35 = (34 + 1)

3.3.2 The Frequency Controller Registers	3.3.4 The DMA Controller Registers
MCLON and MCLOFF define the frequency as	$MODE0 = 200_{16}$
19.6608 MHz. MCLON = 7_{16}	ADCA is incremented after each transfer cycle, if $ADA = 1$. Implied 1/0 is destination. ADCA ad-
$MCLOFF = 7_{16}$	dress is updated.
3.3.3 The I/O Port Registers	$CNTL0 = 1_{16}$
PBMS = Logical OR between PBMS and A50 ₁₆	Enable DMA channel 0.
Bits 4, 6, 9 and 11 should be set to 1. Scanner	$MODE2 = 208_{16}$
signals SCLK2, SDIS, SPDW and SLS are de- fined as outputs from the scanner controller	ADCA is incremented after each transfer cycle, if ADA = 1. Implied 1/0 is source. ADCA address updated.
module.	$CNTL2 = 1_{16}$
$PBEN = 1_{16}$	Enable DMA channel 2.
Enable scanner signals as output.	MCFG = Logical OR between MCFG and 19_{16}
PCMS = Logical OR between PCMS and 4_{16}	DMA channel 0 is defined as internal channel.
Port C module select register bit 2 (SNH port) must be set to 1. Scanner signal SNH is defined as output from the scanner controller module.	Scanner Controller (SCANC) module and coun- ters module are both active.
$PCEN = Logical OR between PCEN and 4_{16}$	
Enable scanner signal SNH as output.	

AN-821

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

2900 Se P.O. Boy Santa Cl Tel: 1(80	miconductor Drive Livry-Gargan-Str. 10	Japan Ltd. Sumitomo Chemical	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120:34 Sao Paulo-SP Brazil 05418-000 Tei: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 Fax: (55-11) 212-1181	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghil, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998
--	--	---------------------------------	--	--	---

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.