
TL/F/11088

B
S
I
D

e
v
ic

e
S
o
ftw

a
re

D
e
s
ig

n
G

u
id

e
A

N
-7

3
0

National Semiconductor
Application Note 730
Robert Macomber, Mark Travaglio
November 1990

BSITM Device Software
Design Guide

Table of Contents
1.0 INTRODUCTION

2.0 INITIALIZATION

3.0 SERVICING INTERRUPTS

4.0 MEMORY MANAGEMENT SCHEMES

5.0 SENDING FRAMES

6.0 RECEIVING FRAMES

7.0 QUEUE MANIPULATION

1.0 INTRODUCTION

This application note describes how to initialize the National

Semiconductor BSI device (DP83265) and interact with it.

Initialization and data service support occur through the

Control Bus and via memory that is accessible by both the

BSI device and the host. The host processor must be able

to respond to interrupts and have access to both the BSI

device Control Bus and some mutually accessible memory.

This application note should be read in conjunction with the

BSI datasheet.

2.0 INITIALIZATION

Before BSI device operation can begin, the device must be

initialized. The BMACTM and PLAYERTM devices must also

be individually initialized. To initialize the BSI device, the

steps shown below should be followed. Each action is ex-

plained further in the subsections that follow.

Put the BSI Device in Stop Mode

Set the Mailbox Address Register

Load the Pointer RAM

Set the Event Notify Registers

Set the Mode Register

Set the Request Configuration Registers

Set the Request Expected Frame Status Registers

Set the Indicate Configuration Register

Set the Indicate Mode Register

Set the Indicate Threshold Register

Set the Indicate Header Length Register

Load the Limit RAM

Clear the Attention Register

Put the BSI Device in Run Mode

2.1 Put the BSI Device in Stop Mode

During initialization the BSI device must be in ‘‘Stop Mode’’.

This is necessary to prevent the device from attempting to

perform any actions or respond to any external stimulus pri-

or to the completion of the initialization sequence. The BSI

device may be placed in Stop Mode by setting three bits in

the State Attention Register (STAR).

Since the State Attention Register (STAR) is a conditional

write register, it must be read before it is written. By doing so

the original contents of the STAR register are loaded into

the Compare Register (CMP). When a subsequent write to

the STAR register occurs, only those bits that match the

corresponding bits in the CMP register will be actually

stored in STAR. With the BSI device in ‘‘Stop Mode’’, and

no intervening accesses to the BSI device Control Bus, it is

guaranteed that all 8 bits will match.

Finally, write 0x07 to the STAR. This clears all the error bits

and sets all the stop bits (the STAR is automatically loaded

with 0x07 upon reset of the BSI device).

2.2 Set the Mailbox Address Register

When loading Pointer RAM data into the BSI device, a

‘‘mailbox’’ mechanism is used. The mailbox is a 32-bit word

in off-chip memory which the BSI device uses to load or

dump the Pointer RAM Registers. This mailbox may be lo-

cated anywhere within the 28-bit ABus address space of the

BSI device and accordingly its address must be explicitly

defined. This is accomplished via the 8-bit Mailbox Address

Register (MBAR).

To load the Mailbox Address Register (MBAR) first load

0x00 into the Pointer RAM Control and Address Register

(PCAR). This tells the BSI device to internally point to the

first byte of the mailbox address. Then execute four succes-

sive writes to the MBAR to load the full mailbox address;

writing the most significant bytes first. Each write automati-

cally increments the byte pointer to the next byte.

When the BSI device is reset, the Mailbox Address Register

(MBAR) is loaded with a hardware revision code. The host

may obtain this revision code by sequentially reading four

bytes from the MBAR before loading the mailbox address.

2.3 Load the Pointer RAM

The BSI device maintains pointer registers for accessing

and manipulating the various queues. Prior to normal opera-

tion, some of these pointer registers must be initialized with

queue addresses (see Table I). For active Request queues

the host software must load the Confirmation Message

(CNF) Queue Pointer Register and the Request (REQ)

Queue Pointer Register. For Indicate queues the host soft-

ware must load the Indicate Data Unit Descriptor (IDUD)

Queue Pointer Register and the Pool Space (PSP) Queue

Pointer Register. For information about choosing initial

Pointer RAM values see Section 7 on Queue Manipulation.

TABLE I. Pointer Registers Used

during Queue Initialization

Pointer Registers Addr

CNF Queue Pointer Register (RCHN1) 0x02

REQ Queue Pointer Register (RCHN1) 0x03

CNF Queue Pointer Register (RCHN0) 0x06

REQ Queue Pointer Register (RCHN0) 0x07

IDUD Queue Pointer Register (ICHN2) 0x09

PSP Queue Pointer Register (ICHN2) 0x0a

IDUD Queue Pointer Register (ICHN1) 0x0d

PSP Queue Pointer Register (ICHN1) 0x0e

IDUD Queue Pointer Register (ICHN0) 0x11

PSP Queue Pointer Register (ICHN0) 0x12

Before loading a Pointer RAM Register, first read the Serv-

ice Attention Register (SAR) to verify that the PTOP bit is

BSITM and PLAYERTM are trademarks of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

set; signifying that a previous Pointer RAM operation has

completed. If this bit is not set wait for the previous opera-

tion to finish.

Write the value one wishes to store in the Pointer RAM

Register (i.e., the base address of the relevant queue) in the

memory location selected as the BSI device Mailbox.

Next configure the Pointer RAM Control and Address Regis-

ter (PCAR) with the PTRW bit cleared and the address of

the Pointer RAM Register placed in the least significant five

bits. A zero value in the PTRW bit specifies that the next

Pointer RAM operation will read from the Mailbox and write

to the Pointer RAM Register. The two most significant bits in

the PCAR (BP0, BP1) are not used in this context and may

be loaded with 0’s. For example, when loading the PSP

Queue Pointer for Indicate Channel 0, one would write 0x12

to the PCAR.

Finally, clear the PTOP bit in the Service Attention Register

(SAR). The SAR is a conditional write register, so it is nec-

essary to read it immediately before writing to it. Clearing

the PTOP bit causes the BSI device to perform the actual

Pointer RAM operation. The device signals the completion

of the operation by setting the PTOP bit in the SAR.

The above steps must be done for all pointers associated

with those channels that will be used.

2.4 Set the Event Notify Registers

You may specify which events will trigger an interrupt by

setting the corresponding bit in the Notify Registers; where

a 1 enables interrupts from that event and a 0 disables

those interrupts. The Notify Registers may be written with-

out being read previously (not conditional write registers).

See Section 3, Servicing Interrupts, for a more complete

treatment of this subject.

2.5 Set the Mode Register

Load the BSI device Mode Register (MR) to configure the

BSI device with global bus and queue parameters. For ex-

ample a value of 0x52 causes the BSI device to generate 32

byte bursts when accessing the data bus, use 1k (small)

queues, operate in a physical memory environment, use

‘‘big-endian’’ data alignment, check parity on access to the

ABus and Control Bus and optimize operation for clock

speeds over 12.5 MHz.

2.6 Set the Request Configuration Registers

Load the Request Configuration Registers (R0CR and

R1CR) for both Request Channels (RCHN0 and RCHN1) to

establish channel specific operating parameters; such as

Source Address and Frame Control Transparency.

2.7 Set the Request Expected Frame Status Registers

Load the Request Expected Frame Status Registers

(R0EFSR and R1EFSR) for both Request Channels

(RCHN0 and RCHN1) to set up the expected status for

frame confirmation services. A value of 0x00 in these regis-

ters means that any frame status is acceptable.

2.8 Set the Indicate Configuration Register

Load the Indicate Configuration Register (ICR) to establish

copy control parameters for each Indicate Channel. A typi-

cal register value is 0x49; which instructs the BSI device to

copy frames addressed for the owned MAC address or to

an externally matched group address.

2.9 Set the Indicate Mode Register

Load the Indicate Mode Register (IMR) to set the frame

sorting mode, skip option and the desired Indicate break-

points.

Indicate breakpoints are instances that generate interrupts.

You may configure the BSI device to interrupt at the end of

each service opportunity, at the end of a burst (i.e., channel

change) or after a user defined number of frames have

been received. Prudent use of Indicate breakpoints can sig-

nificantly reduce interrupt processing overhead by reducing

the number of interrupts generated by the BSI device.

2.10 Set the Indicate Threshold Register

The Indicate Threshold Register (ITR) specifies how many

frames must be received before a threshold breakpoint is

realized. The value in this register is only used when the

appropriate bits are set in the IMR.

Loading the ITR with 0x00 specifies a value of 256. This

value is loaded into an internal working register each time

the state of any Indicate Channels change.

2.11 Set the Indicate Header Length Register

If the Header/Info frame sorting mode is specified, one

must load the Indicate Header Length Register (IHLR) with

the length (in units of four byte words) of the header portion

of the frame. The FC field occupies an entire word. For ex-

ample, to separate an 8 octet header when using long, six-

octet MAC addresses, one would load a value of 6 (FC e 1,

DA/SA e 3, header e 2) into this register.

2.12 Load the Limit RAM

During normal operation of the BSI device, the CNF and

IDUD queues must be given status space. This may be

done as part of the initialization procedure. For information

about choosing initial Limit RAM values see Section 7 on

Queue Manipulation.

Before loading a Limit RAM Register, first read the Service

Attention Register (SAR) to verify that the LMOP bit is set

(signifying that the previous Limit RAM operation has com-

pleted). If this bit is not set wait for the previous operation to

finish.

Next load the Limit Address Register (LAR). The top four

bits of the LAR define the target Limit RAM Register, the

LMRW bit specifies what the next Limit RAM operation will

be (LMRW e 0 means a write to the Limit RAM) and the

MSBD bit contains the most-significant data bit of the 9-bit

Limit value.

Next load the Limit Data Register (LDR) with the lower 8 bits

of the limit value.

Finally, write a 0 into the LMOP bit in the Service Attention

Register (SAR). The SAR is a conditional write register,

making it necessary to read it immediately before writing to

it. Clearing the LMOP bit causes the BSI device to perform

the actual Limit RAM operation. The BSI device signals the

completion of the operation by setting the LMOP bit in the

SAR.

Repeat the above steps for all desired limits.

2.13 Clear the Attention Registers

Clear the Request Attention (RAR) and Indicate Attention

Registers (IAR) by first reading the register, to load the

Compare Register (CMP), and then writing a 0x00 value to

the register. Both of these registers are automatically initial-

ized to 0 upon BSI device reset.

The No Space Attention Register (NSAR) should be initial-

ized to reflect the state of space of all the queues. If space

was given to all of the CNF and PSP queues, read and write

0x00 into NSAR.

2

2.14 Put the BSI Device in Run Mode

Initialization of the BSI device is now complete. The device

may be made fully operational by reading the State Atten-

tion Register (STAR) and immediately writing 0x00 to it. This

will clear the stop bits for the Indicate, Request and Status/

Space machines; putting them in ‘‘Run Mode’’.

The BSI device should immediately begin fetching PSP De-

scriptors for the Indicate Channels to use for frame recep-

tion. At this point a write to one of the REQ queue Limit

RAM Registers would cause the BSI device to begin fetch-

ing REQ Queue Descriptors for frame transmission.

3.0 SERVICING INTERRUPTS

The BSI device provides facilities for selecting which events

will generate an interrupt and a mechanism for determining

which events are present after an interrupt has been raised.

3.1 Event Registers

The BSI device supports a two-level hierarchy of Event Reg-

isters; where the presence of attention signals in lower level

attention registers is recorded in a single upper level atten-

tion register. Attention signals may be disabled at either of

the two levels. Events may only be cleared by resetting the

attention bits in the lower level registers.

The upper level attention register is called the Master Atten-

tion Register (MAR). It contains five attention bits that indi-

cate the presence or absence of any events recorded in

each of the five corresponding attention lower level regis-

ters. Those registers are listed in Table II.

TABLE II. Attention Registers

Master Attention Register (MAR)

State Attention Register (STAR)

No Space Attention Register (NSAR)

Service Attention Register (SAR)

Request Attention Register (RAR)

Indicate Attention Register (IAR)

The host may control which attention bits will generate an

interrupt by configuring the Notify Registers (see Table III).

TABLE III. Notify Registers

Master Notify Register (MNR)

State Notify Register (STNR)

No Space Notify Register (NSNR)

Service Notify Register (SNR)

Request Notify Register (RNR)

Indicate Notify Register (INR)

For each Attention Register a corresponding Notify Register

exists. Each Attention Register is ANDed with its corre-

sponding Notify Register and then all of the resulting signals

are ORed together and presented to the next level (see

Figure 1).

For example, to disable all interrupts caused by service

events: clear the Service Attention Register Notify (SVAN)

bit in the Master Notify Register (MNR). To disable only in-

terrupts caused by Pointer RAM Operations: set the SVAN

bit in the MNR and clear the PTOPN bit in the Service Notify

Register (SNR).

TL/F/11088–1

FIGURE 1. BSI Device Event/Notify Registers

3

When checking attention registers for the cause of an inter-

rupt, one should perform a bit-wise AND operation between

the attention and notify registers and examine the result.

Just checking the attention registers may be misleading. For

example, to disable an Indicate Channel one may wish to

leave its PSP queue empty and mask off the ‘‘Low Data

Space’’ attention bit for that channel; via the Indicate Notify

Register (INR). Under these circumstances the IAR, by it-

self, may contain misleading information.

3.2 Example Procedure

A typical procedure for servicing BSI device interrupts is as

follows:

disable host interrupts

determine the event that triggered the interrupt by check-

ing the Master Attention Register and then querying the

appropriate lower level attention register

process the event (or post the event to a service queue)

clear the attention bit (or mask the attention bit)

enable host interrupts

4.0 MEMORY MANAGEMENT SCHEMES

The BSI device may be configured to use memory shared

between itself and the host or it may be configured to use

the host’s memory. In addition, it can be made to operate in

a vitural memory environment.

Although the BSI device manages space for incoming data

(from channel specific Pool Space (PSP) queues); the host

must implement a memory management mechanism to re-

plenish the PSP queues and manage the space needed to

hold output data (ODU) and ODU Descriptors (ODUDs).

4.1 Memory Requirements

Up to ten distinct queues may be established; two for each

channel. Depending upon the value of the Small Queue

(SMLQ) bit in the Mode Register (MR), these queues will

each consume 1k or 4k of memory; collectively occupying

either 10k or 40k of memory.

A 4 byte word must be allocated as the BSI device Mailbox.

This word is only used when accessing the BSI device

Pointer RAM Registers.

Space must also be allocated for buffering frames. Any buff-

ers drawn from this space must be no larger than 4 kbytes

and may not cross a 4 kbyte boundary. At the current time

the Count (CNT) field in the PSP Descriptor is ignored by the

BSI device. Pool space is intended to be allocated in

4 kbyte pages.

Space must be allocated for buffering ODU Descriptors

(ODUDs). As with frame data, buffers drawn from this space

must be no larger than 4 kbytes and may not cross a 4 kbyte

boundary.

4.2 Dedicated Buffer Pools

To simplify memory management, buffer pages may be ded-

icated to individual PSP queues. When using dedicated buff-

ers, the Indicate buffer management task becomes a matter

of:

detecting page boundary crosses; as an indication that

the BSI device has finished filling the previous page

obtaining confirmation that the host has finished pro-

cessing all frames in the previous page

attaching the previous page to a PSP Descriptor of the

same queue

incrementing the PSP Limit Register for that queue

The management of space for ODUs (outgoing frame data)

and ODU Descriptors (ODUDs) must be done by the host.

A fully allocated 1k PSP queue consumes 512 kbytes of

buffer space. A fully allocated 4k PSP queue uses 2 MB of

buffer space.

4.3 Shared Buffer Pool

To maximize memory utilization, multiple Indicate Channels

may share a single pool of data buffers. This does not mean

that Indicate Channels can be made to share a Pool Space

(PSP) queue, but rather that data buffers attached to the

various PSP queues are allocated and freed from a global

buffer pool on an ‘‘as needed’’ basis. When using a shared

buffer pool, the Indicate buffer management becomes the

following:

Detecting page boundary crosses; to determine when

the BSI device is finished filling the previous page

Obtaining confirmation that the host has finished pro-

cessing all frames in that page

Returning that page to a shared buffer pool or, upon de-

termining that the page has been dedicated to a given

channel, reattach the page to the channel’s PSP queue

Responding to interrupts caused by a ‘‘Low Space’’ con-

dition by allocating buffer space to one or more PSP De-

scriptors and incrementing the PSP Limit Register for

that queue

Again, the management of space for ODUs (outgoing frame

data) and ODU Descriptors (ODUDs) must be done by the

host.

One danger with sharing pool space is that a heavily used

low priority channel may starve a high priority channel by

consuming all of the buffer space. This is contrary to the

idea of priority. It is recommended that some mechanism be

implemented for reserving memory for a given channel and

that at least four buffer pages be dedicated to Indicate

Channel 0 (ICHN0). This is to ensure that FDDI-SMT frames

will not be dropped when there is a greal deal of activity on

the other Indicate Channels.

5.0 SENDING FRAMES

This section describes how to use the BSI device to queue a

frame for transmission on an FDDI ring. It is assumed that

the BSI device has been initialized and that the Request

Configuration Registers (R0CR and R1CR) and the Request

Expected Frame Status Registers (R0EFSR and R1EFSR)

have been previously loaded with the desired values.

The mechanism for sending a frame is as follows:

Obtain space for data structures

Load the ODU(s)

Process previous CNFs (optional)

Build the ODUD(s)

Build the REQ

Signal the BSI device

4

Subsection 5.7 describes some special considerations for

sending multiple frames in a single request object.

5.1 Obtain Space for Data Structures

BSI device addressable memory must be obtained to:

hold the frame data

hold the ODU Descriptor(s)

hold the Request Descriptor

It is the responsibility of the host software to manage space

for frame data and the ODUDs. Section 4, Memory Manage-

ment Schemes, describes two simple memory allocation

methods. If multiple ODUDs are required, these must be

contiguously allocated in the form of an array of ODUDs.

Space for the Request Descriptor must be located within

the area designated as the Request queue (see Section

2.3). It must also be allocated in a serially contiguous fash-

ion; immediately following the previously allocated descrip-

tor. All BSI device queue pointers ‘‘wrap’’ to the first loca-

tion upon reaching the end of the queue area.

The frame data may need to be divided between multiple

ODUs. Each ODU may start anywhere within a 4k page, but

it must end at or before the next 4k boundary. Multiple

ODUs must be generated for frames over 4k in length.

For each ODU, space must be allocated for a correspond-

ing ODU Descriptor (ODUD). System configurations in

which the BSI device directly addresses host memory, may

be able to contrive ODU Descriptors (ODUDs) that refer di-

rectly to host specific memory buffers.

5.2 Process Confirmation Status Message Descriptors

(CNF)ÐOptional

When the BSI device processes a request it places confir-

mation messages in the CNF queue for that Request Chan-

nel. By examining these messages, the host may determine

when the BSI device has finished using ODU, ODUD and

REQ queue space.

If the BSI device has been instructed to generate interrupts

after writing confirmation messages, then an autonomous

interrupt handler should be available to asynchronously pro-

cess CNFs. Conversely, if these interrupts have been dis-

abled, then CNFs should be processed when attempting to

send a frame.

5.3 Copy Frame Data to Buffer

If the ODU buffers are distinct from the host specific memo-

ry buffers, copy the frame data from the host buffer(s) to the

ODU buffer(s).

5.4 Build the ODU Descriptor(s)

An ODU Descriptor (ODUD) must be written for each ODU.

The address and size of the ODU must be recorded in the

ODUD.LOC and ODUD.CNT fields, respectively.

When only a single ODUD is needed both the First and Last

bits should be set (only). With multiple ODUDs the first

ODUD should has the just First bit set (first) and the last

ODUD should have the just Last bit set (last). Any interven-

ing ODUDs should have both bits cleared (middle).

5.5 Build the Request Descriptor

A Request Descriptor must be constructed which refer-

ences the ODUD(s) that were just built.

The User Identification (UID) field may be assigned a host

defined value. This UID value will reemerge in one or more

CNFs and may be useful when processing a CNF (i.e., de-

allocating ODUD and buffer space). The SIZE field should

be set to a value of 1; since, in this case, only a single frame

will be transmitted.

The Confirmation Class (CNFCLS) field defines the level of

request confirmation that the BSI device will use and should

be set as needed. To turn off request confirmation put a hex

value of 0x4 in the CNFCLS field; although, the BSI device

will always generate CNF Descriptors whenever an excep-

tion is encountered. Please note that request processing will

halt for a given channel should that channel’s CNF queue

become full. Thus, a provision for processing CNF Descrip-

tors must be included in all applications; even those applica-

tions that do not wish to receive confirmation for most re-

quests.

The Request Class (RQCLS) field defines the class of the

request (i.e., asynchronous, synchronous, restricted token,

etc.). The FC field should be loaded with an appropriate

FDDI Frame Control value.

When sending a single frame, both bits in the First and Last

bits should be set; indicating that this is the only REQ De-

scriptor in this request object. Finally, the address of the first

ODUD should be put into the LOC field.

5.6 Signal the BSI Device about the Request

The BSI device may be caused to examine either of its REQ

queues by writing to the corresponding Limit RAM Register

with a value that raises the limit to reference the new REQ

Descriptor.

5.7 Sending Multiple Frames in a Single Request Object

The BSI device is capable of transmitting multiple frames in

a single service opportunity. This feature becomes impor-

tant on a heavily loaded FDDI ring, with relatively infrequent

service opportunities. The BSI device can be caused to pro-

cess multiple frames by:

building an ODUD list that contains multiple frames

building a request object that contains multiple REQ De-

scriptors or

a combination of the above two methods.

The first method is extremely simple. Allocate and fill the

ODU buffers for all of the frames. Build multiple ODU De-

scriptor objects (demarcated by the First and Last bits in

each ODUD) and concatenate the ODUDs together into one

array of descriptors. Build the REQ Descriptor, as before,

except load the frame count into the SIZE field.

The second method consists of a creating a REQ Descriptor

marked as being ‘‘first’’, zero or more REQ Descriptors

marked as ‘‘middle’’ descriptors and an ending REQ De-

scriptor marked as being ‘‘last’’. The Limit RAM Register, for

the given request queue, must be set beyond the last REQ

Descriptor. The parameter fields in first REQ Descriptor are

used for the entire request object.

5.8 Batching Single Frame Requests

On a heavily loaded FDDI ring service opportunities occur

less frequently than on an FDDI ring with only light traffic.

On a loaded network it makes sense to send multiple

frames per service opportunity. However, many network

communication systems send only a single frame at a time.

This subsection tells how one may use the capabilities of

the BSI device to batch single frame requests into a larger

request object.

The BSI device will only attempt to send a single request

object in any given service opportunity. A request object is

defined here to consist of one or more REQ Descriptors

delimited using the First and Last bits found inside each

5

descriptor. The BSI device interface software needs to build

different types of REQ Descriptors when queuing a frame

such that:

A single frame request object is generated when the

queue is empty

The resulting request object is limited to a maximum size

Optionally the resulting request object is closed whenev-

er a service opportunity is detected.

The following pseudo-code may be used to satisfy the

above requirements.

Transmit Logic

ReqÐSize e ReqÐSize a 1

if QueuedÐCnt e 0

mark as REQ.ONLY

OpenÐReq e FALSE

QueuedÐCnt e 1

REQÐSize e 0

else

if OpenÐReq e FALSE

mark as REQ.FIRST

OpenÐReq e TRUE

QueuedÐCnt e QueuedÐCnt a 1

ReqÐSize e 1

else

if ReqÐSize t MaxÐReq

mark as REQ.LAST

OpenÐReq e FALSE

ReqÐSize e 0

else

mark as REQ.MIDDLE

endif

endif

endif

Interrupt Service Routine Logic (Optional)

if OpenÐReq e TRUE

generate empty REQ.LAST

OpenÐReq e FALSE

ReqÐSize e 0

endif

QueueÐCnt is the number of queued request objects on

the request queue and is set to 0 queue initialization time.

ReqÐSize is the number of frames in the currently open

request object and is set to 0 at queue initialization time.

OpenÐReq is a boolean variable indicating the presence or

absence of an open request object and is set to FALSE at

queue initialization time. MaxÐReq is a maximum number

of frames per request object defined by the host software.

Please note that the BSI device will not hold the token un-

necessarily when processing an open request object. It will

only hold the token when explicitly instructed to do so, via

the RQCLS field in the Request Descriptor (REQ).

6.0 RECEIVING FRAMES

This section describes how to process incoming frames, us-

ing the BSI device’s data structures. It is assumed that the

Indicate Mode Register (IMR), Indicate Threshold Register

(ITR), Indicate Configuration Register (ICR) and Indicate

Header Length Register (IHLR) have been previously con-

figured. It is also assumed that the host has already select-

ed a particular Indicate Channel for processing; perhaps by

examining the attention register hierarchy.

The host must maintain a minimum of two variables depict-

ing the state of the Indicate machine: current IDUD queue

pointer and the current buffer page address. To reduce ac-

cesses to the BSI device Control Bus, the host software

may wish to also keep its own copy of the channel’s Limit

RAM Register.

For a visual description of the Indicate machine, seeFigures
2, 3, and 4.

TL/F/11088–2

FIGURE 2. BSI Device Indicate Memory Structure

6

TL/F/11088–3

FIGURE 3. BSI Device Indicate Memory Structure

TL/F/11088–4

FIGURE 4. BSI Device Indicate Memory Structure

Figures 2 through 4 describe the operation of an Indicate Channel when receiving two frames.

Key for Figures 2–4

IQLI ÐIDUD Queue Limit .O ÐOnlyPQPI ÐPSP Queue Pointer
IPI ÐIDU Pointer .F ÐFirstPQLI ÐPSP Queue Limit
NPI ÐNext PSP Pointer .L ÐLastIQPI ÐIDUD Queue Pointer

7

6.1 Disable Interrupts for the Indicate Channel

Host manipulation of BSI device queues must be atomic;

meaning, in this context, that only a single host agent (pro-

cess, task, thread, etc.) may actively dequeue frames from a

given Indicate Channel at a given time. In support of atomic-

ity, four different granularities of interrupt masking may be

achieved: host level, BSI device level, Indicate service level

or Indicate Channel level. To mask interrupts at the Indicate

Channel level, modify the Indicate Notify Register (INR) to

clear the breakpoint and exception bits for the target chan-

nel.

6.2 Collect an Indicate Object

Indicate objects may be represented by one or more IDU

Descriptors (IDUDs) on the given channel’s IDUD queue.

The host must maintain a queue pointer for the next queue

position. When collecting an Indicate object the host should

scan forward from this position until an entire Indicate object

has been found. If a null descriptor is found in the first posi-

tion, there are no Indicate objects on the queue. The begin-

ning of an Indicate object is marked by an IDUD with the

‘‘First’’ bit set and, conversely, the end is marked by an

IDUD with the ‘‘Last’’ bit set. An IDUD with both of these

bits set (‘‘Only’’) completely describes an incoming frame.

Note that it is the responsibility of the host to nullify descrip-

tors after processing the frame.

6.3 Determine Acceptability of the Frame

There are three fields defined in the IDU Descriptor (IDUD)

that are of use in determining the acceptability of a given

frame. These fields are valid in the last IDUD in the Indicate

object.

The Frame Status field may be examined to determine valid-

ity of the data length and FDDI FCS fields; as well as the

values of the E, A, and C Indicators in the FDDI Frame

Status field.

The Frame Attribute field can be queried to determine how

the frame was recognized (MFLAG, AFLAG) and what the

terminating condition was.

The Indicate Status field contains encoded status informa-

tion (See Table IV).

TABLE IV. Indicate Status Codes

Code Status

0x0 Last IDUD of Queue, Page Cross

0x1 Page Cross

0x2 Header End

0x3 Page Cross and Header End

0x4 Intermediate Frame

0x5 Burst Boundary

0x6 Threshold

0x7 Service Opportunity

0x8 Insufficient Data Space

0x9 Insufficient Header Space

0xa Successful Header Copy, No Info Copy

0xb No Info Space

0xc FIFO Overrun

0xd Bad Frame

0xe Parity Error

0xf Internal Error

6.4 Process the Frame Data

The Location (IDUD.LOC) and Byte Count (IDUD.CNT)

fields in each IDUD describe the address and length of each

Indicate Data Unit (IDU). There may be multiple IDUDs in a

given Indicate object. The frame data referenced by these

IDUDs must be logically concatenated to construct a single

frame. The method of presenting frame data to upper level

software is highly host dependent.

6.5 Reclaim Data Buffer Space

A 4 kbyte data page is available for reuse when the BSI

device has filled it with IDUs and the host has finished pro-

cessing all the IDUs on the page. The BSI device is guaran-

teed to consume space on a channel’s PSP queue in a

serial manner; thus it is possible to tell when the BSI device

has finished using a page by detecting when the device

starts filling a new page. When the host is also done pro-

cessing all of the IDUs on the given page that data space

may be reused. See Section 4 on Memory Management

Schemes for ideas on managing buffer space for the BSI

device.

6.6 Update IDUD Queue Pointers

After extracting all of the needed data from an Indicate

Channel, that channel’s IDUD queue may be updated to

allow reuse of queue space. Three operations should be

performed:

Mark the processed IDU Descriptors (IDUDs) as null de-

scriptors. A safe method is overlaying the eight byte

queue slot with binary zeros.

Update the host resident current IDUD queue pointer to

point beyond the processed IDUDs.

Update the Limit RAM Register for the given channel. If

this value is maintained by the host, the value may be

incremented and stored in the channel’s Limit RAM Reg-

ister; otherwise it is necessary to read the register first.

The Limit RAM Operation (LMOP) is described above in

Section 2.12.

6.7 Enable Interrupts for the Indicate Channel

Now that the given channel’s queues have been updated,

interrupts may be enabled again. If interrupts were masked

at the Indicate Channel level, the Indicate Notify Register

(INR) should be modified to set the breakpoint and excep-

tion bits for the target channel.

7.0 QUEUE MANIPULATION

The BSI device has two basic classes of queues: those that

it uses to consume descriptors (REQ, PSP) and those that it

uses to produce descriptors (IDUD, CNF). Conversely, the

host software must consume descriptors (IDUD, CNF) and

produce descriptors (REQ, PSP) on the opposite queues.

For Request Channel operation the BSI device reads from

the channel’s Request Descriptor (REQ) queue and writes

to the channel’s Confirmation Message (CNF) queue. For

Indicate Channel operation the BSI device reads from the

channel’s Pool Space (PSP) queue and writes to the chan-

nel’s Indicate Data Unit Descriptor (IDUD) queue.

It is necessary to understand how the BSI device interacts

with each type of queue so that one may design host soft-

ware that interacts with the queues in a complementary

fashion. When writing software that interfaces with the BSI

device, one minimally needs to understand the following:

How the queues are organized

How to initialize each type of queue

8

How to handle queue ‘‘wraps’’

How to detect boundary conditions (empty queue, full

queue)

7.1 Queue Organization

A BSI device queue consists of a contiguous block of BSI

device addressable memory logically sub-divided into eight

byte queue slots. Queues sized at 1 kbytes must be aligned

on 1 kbyte boundaries, while queues sized at 4 kbytes must

be aligned on 4 kbytes boundaries.

The BSI device embodies two indexing variables for each

queue: a pointer to the next available queue position to

read or write (stored in BSI device Pointer RAM) and a

queue limit (stored in BSI device Limit RAM). The BSI de-

vice increments the pointer variable after reading from a

queue or writing to a queue. The host software may control

channel operation by manipulating the value of the limit vari-

able. With this in mind there are a few simple rules govern-

ing queue manipulation by the BSI device.

1. Pointer and limit variables reference a given queue slot by

pointing to the first word of the descriptor.

2. The pointer variable always points to the next available

position on the queue.

3. The BSI device always increments the pointer variable

after a read or write operation.

4. The BSI device halts channel processing when the point-

er and limit variables are logically equal.

5. The BSI device tests for pointer/limit equality during

queue read operations (REQ, PSP) and after queue write

operations (IDUD, CNF). When detecting pointer/limit

equality during a read operation, the current read opera-

tion and no further read operations are made.

6. Read operations are triggered by Limit RAM updates.

There are also some special considerations caused by the

pipelined processing of CNF, IDUD and PSP Descriptors.

The BSI device may generate two additional CNF/IDUD

Descriptors after detecting pointer/limit equality. It is

necessary to set the limit value such that it references

the penultimate available queue slot.

Each active Indicate Channel should have at least two

buffers placed on its PSP queue. With only one buffer,

the BSI device will immediately raise the Low Data Space

attention bit for that channel.

The host software must maintain its own pointer and limit

variables for each queue. For REQ and PSP queues, the

limit variable should reference the next available queue slot

for writing a new descriptor; while the pointer variable

should correspond to the pointer variable on BSI device. For

CNF and IDUD queues, the software pointer should refer-

ence the next queue slot to be used when reading a new

descriptor. The software limit variable must always reflect

the limit variable on the BSI device. The software pointer

variable must be maintained independently from the BSI de-

vice queue pointer.

7.2 Queue Initialization

To initialize queues that the BSI device reads (REQ, PSP)

simply set the pointer (BSI device and software versions)

and software limit to reference the first queue slot. Do not

update the queue’s Limit RAM Register until actually queu-

ing the queue’s first descriptor.

To initialize queues that the BSI device writes (IDUD, CNF)

one must set the limit variable to reference the penultimate

available queue slot (required due to pipelining). For exam-

ple, to make all but one of the queue slots available one

could set the pointer variable to reference the first queue

slot and the limit variable to reference the ‘‘next to the next

to the last’’ queue slot. Also, one should clear the queue

area by overwriting it with binary zeroes; effectively marking

all queue slots as ‘‘null descriptors’’.

See Figure 5 for a pictorial description of initialized queues.

7.3 Queue ‘‘Wraps’’

Upon reaching the end of the queue memory block, queue

indexing variables ‘‘wrap’’ to the beginning of the queue

memory block. The BSI device automatically performs

queue ‘‘wraps’’ for pointer variables; while the host software

must perform queue ‘‘wraps’’ for limit variables and soft-

ware queue pointers. The method for calculating the next

TL/F/11088–5

FIGURE 5. Suggested Queue Initialization

9

A
N

-7
3
0

B
S
I
D

e
v
ic

e
S
o
ft

w
a
re

D
e
s
ig

n
G

u
id

e
queue position is dependent upon the form of data repre-

sentation that the host software uses (i.e., BSI device ad-

dressable pointers, queue byte offset, . . .). For example,

when representing the limit variable as a queue offset one

could use simple modulo arithmetic. When the limit variable

is maintained as a pointer into BSI device addressable

memory the host software might use the following method

to increment the variable (specified with C code using

4 kbyte queues).

new e ((olda8)& 0xfff)a(old & 0x0ffff000)

7.4 Detecting Boundary Conditions

The BSI device detects both queue empty (when reading)

and queue full conditions (when writing) by testing for point-

er/limit variable equality. As noted above, this test is done

during read operations and after write operations.

When reading, a queue empty condition cannot be deter-

mined by comparing the pointer and limit variables. Instead

the host software may recognize the presence of a ‘‘null

descriptor’’ on the queue. To ensure that there will always

be at least one ‘‘null descriptor’’ to demarcate the queue

empty condition; the host software must never set the limit

variable to indicate that all of the queue slots are available

and must mark each available queue slot as a ‘‘null descrip-

tion’’ (binary zeroes are recommended).

The host software can detect a queue full condition using

the same basic mechanism as the BSI device. When writing,

a queue may be considered full when the software limit

pointer references the queue slot immediately ‘‘before’’ the

slot referenced by the software pointer variable. Queue

‘‘wraps’’ must be taken into account in the queue variable

arithmetic.

See Figure 6 for a graphical representation of the various

queue boundary conditions.

TL/F/11088–6

FIGURE 6. Queue Boundary Conditions

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

