
TL/DD10395

S
ig

n
e
d

In
te

g
e
r
A

rith
m

e
tic

o
n

th
e

H
P
C

A
N

-6
0
3

National Semiconductor
Application Note 603
Raj Gopalan
July 1989

Signed Integer Arithmetic
on the HPCTM

This report describes the implementation of signed integer

arithmetic operations on the HPC. HPC hardware support

for unsigned arithmetic operation. In order to support signed

integer arithmetic operations on the HPC, the user can rep-

resent negative numbers in two’s complement form and

perform the signed arithmetic operations explicitly through

software.

The following signed integer arithmetic routines are imple-

mented in the package:

Multiplication:

16 by 16 yielding 16-bit result

32 by 32 yielding 32-bit result

Division:

16 by 8 yielding 16-bit quotient and 16-bit remainder

32 by 16 yielding 16-bit quotient and 16-bit remainder

32 by 32 yielding 16-bit quotient and 16-bit remainder

Addition:

16 by 16 yielding 16-bit

Subtraction:

16 by 16 yielding 16-bit

Comparison:

16 by 16 for greater to, less than or equal to.

REPRESENTATION OF NEGATIVE NUMBERS:

For binary numbers, negative numbers are represented in

two’s complement form. In this system, a number is positive

if the MSB is 0, negative if it is 1.

The decimal equivalent of two’s complement number is

computed the same as for an unsigned number, except that

weight of the MSB is b2**n b 1 instead of a2**n b 1.

The range of representable numbers is b(2**n b 1)

through a(2**n b 1 b 1).

The two’s complement of a binary number is obtained by

complementing its individual bits and adding one to it.

The advantage of representing a negative number in two’s

complement form is that addition and subtraction can be

done directly using unsigned hardware.

.title SIMUSL

.sect code,rom8,byte,rel

;Signed multiply (16 by 16)

; B Multiplicand

; A Multiplier

; X;A return

;

.public signed mult 16

.local

signed mult 16:

st a,0.w

mult a,b ;do unsigned multiplication.

sc

ifbit 7,(1).b ;if multiplier is negative

subc x,b

sc

ifbit 7,(Ba1).b ;if multiplicand is negative

subc x,0.w

$exit:

ret

.endsect

HPCTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

MULTIPLICATION

Method 1:

Signed multiplication can be achieved by taking care of the

signs and magnitudes of the multiplicand and multiplier sep-

arately.

Perform the multiplication on the magnitudes alone.

The sign of the result can be set based on the signs of the

multiplier and the multiplicand.

Method 2:

This method does not require finding the magnitude of the

operands. Multiplication can be done using unsigned hard-

ware on the two’s complement numbers. The result will be

signed based on the signs of the operands.

The algorithm is as follows:

Step 1. Result e op1 * op2

Step 2. If op1 k 0 then subtract op2 from upper half of the

result.

Step 3. If op2 k 0 then subtract op1 from upper half of the

result.

Now the Result will yield the correct value of the multiplica-

tion on two’s complement numbers.

Method 3:

By sign extending the multiplier and multiplicand to the size

of the result one can always obtain the correct result of

signed multiplication using unsigned multiplication.

.title SIMULL

.sect code,rom8,byte,rel

;Multiply (Signed or Unsigned are the same)

;32 bit

; K:A Multiplicand

; 14:6[SP] Multiplier

; K:A return

;

.public multiply 32

.local

multiply 32:

push x ;(Argument now at 16:8[SP])

st a,0.w

ld a,k ;Multiply hi reg* lo stack

mult a,18[sp].w

x a,0.w ;hold, retrieve lo reg

push a ;(argument now at 18:10[SP])

mult a18[sp].w ;Multiply lo reg* hi stack

add 0.w,a ;add into hi partial

pop a ;(Argument now at 16:8[SP])

mult a,18[sp].w ;Multiply lo reg* lo stack

add x,0.w ;add in hi partial

ld k,x ;Position

pop x ;Restore

ret

.endsect

2

DIVISION

Similar to multiplication method 1, one can perform the division on the magnitudes of the dividend and divisor.

The sign of the quotient can be set based on the signs of the dividend and the divisor.

The sign of the remainder will be same as the dividend.

.title SIDVSS

.sect code,rom8,byte,rel

;Division & Remainder

;16,8 bit (signed only, unsigned uses inline code)

; A Dividend

; 14[SP] Divisor

; A return

;

.public signed divide 8,signed remainder 8

.public signed divide 16,signed remainder 16

.local

signed divide 8:

jsr $shared 8 ;Uses shared routine

ret

;

signed remainder 8:

jsr $shared 8 ;Uses shared routine

ld a,k ;Return remainder

ret

;

$shared 8:

ifgt a,#0x7f

or a,#0xff00

st a,k ;Get arguments

ld a,16[sp].w

ifgt a,#0x7f

or a,#0xff00

jp $shared

;

signed divide 16:

jsr $shared 16 ;Uses shared routine

ret

;

signed remainder 16:

jsr $shared 16 ;Uses shared routine

ld a,k ;Return remainder

ret

;

$share 16:

st a,k ;Get arguments

ld a,16[sp].w

$shared

ifeq a,#0

ret ;division by zero

push x

ifgt a,#0x7fff

jp $unknown negative ;unknown/negative

x a,k

ifgt a,#0x7fff

jp $negative positive ;negative/positive

div a,k ;Positive/positive is plus,plus

jp $positive positive

3

$unknown negative: ;Unknown/negative

comp a

inc a

x a,k

ifgt a,#0x7fff

jp $negative negative ; negative/negative

div a,k ;Positive/negative is minus,plus

comp a

inc a

$positive positive:

ld k,x

jp $exit

$negative positive: ;Negative/positive is minus,minus

comp a

inc a

div a,k

comp a

inc a

jp $negate remainder

$negative negative: ;Negative/negative is plus,minus

comp a

inc a

div a,k

$negate remainder:

x a,x

comp a

inc a

st a,k

ld a,x

$exit:

pop x

ret

.endsect

4

.title SIDVLS

.sect code,rom8,byte,rel

;Division & Remainder

;Signed 32 by 16 divide

; X;A Dividend

; K Divisor

; X,A return (remainder and quotient)

;

.public signed div 32

.local

signed div 32:

sc

ifeq k,#0

ret ;Divide by zero, set carry and return

$shared signed:

ifbit 7,x01.b

jp $negative dividend

jsr $process divisor ;Skipping return

ret ;0/040,0

$negate quotient:

comp a

inc a

ret ;0/14 1,0

$negative dividend;

comp a

add a,#01

x a,x

comp a

adc a,#0

x a,x

jsr $process divisor ;skipping return

jsr $negate quotient ;1/041,1

$negate remainder: ;1/140,1
x a,x

comp a

inc a

x a,x

ret

$process divisor:

ifbit 7,k01.b

jp $negative divisor

divd a,k ;?/0
ret

$negative divisor:

x a,k

comp a

inc a

x a,k

divd a,k ;?/1
retsk

.endsect

5

.title SUDVLL

.sect code,rom8,byte,rel

;Division & Remainder

;Signed 32 by 32 Divide

; K:A Dividend

; 14:6[SP] Divisor

; K:A return

;

;Stack frame as built and used consists of

;top:

; 0, initial subtrahend hi /dividend shifts into subtrahend

; 0, initial subtrahend lo /becomes remainder

; k, dividend hi /dividend shifts into subtrahend, and

; a, dividend lo /quotient shifts into dividend

; b preserved

; x preserved

; return address

; sp-4–12, divisor hi

; sp-6–12, divisor lo

;Sign flag (0 4 negative, 1 4 positive, for test sense at exit)

;bit 0, divisor sign (1 4 negative)

;bit 1, dividend sign (1 4 positive)

;Inc of flag causes bit 1 4 (bit 1 xor bit 0) by carry/nocarry out of bit 0

;so that two positives (010) or two negatives (001) indicate a positive

;quotient (011 or 010) in bit 1. Bit 1 always indicates sign if remainder.

;Operation is indicated by bit 3 of the flag, 1 4 remainder.

;

.public signed divide 32, signed remainder 32

.public unsigned divide 32, unsigned remainder 32

.local

signed divide 32:

ld 1.b,#0x02

jp $shared signed

;

signed remainder 32:

ld 1.b,#0x0a

$shared signed:

ifbit 7,k01.b ;Check dividend

jsr $negate ;Negate dividend and note sign

ifbit 7,1603[sp].b ;Check divisor

jp $negate divisor

jmp $shared

;

$negate divisor:

x a,16[sp].w ;Negate divisor and note sign

comp a

add a,#1

x a,16[sp].w

x a,14[sp].w

comp a

adc a,#0

x a,14[sp].w

sbit 0,1.b

jp $shared

;

unsigned divide 32:

ld 1.b,#0x02

jp $shared

;

unsigned remainder 32:

ld 1.b,#0x0a

6

$shared:

push x ;Preserve registers

push b

ld b,sp ;Place dividend, becomes quotient

push a

push k

ld x,sp ;Set subtrahend, becomes remainder

clr a

push a

push a

ld k,#118 ;Access divisor argument

add k,sp

ld a,[k].w

or a,2[k].w

ifeq a,#0

jmp $zero ;division by zero

ld 0.b,#32 ;Set counter

$loop:

ld a,[b].w ;Shift Dividend:Quotient

shl a

xs a,[b0].w

nop

ld a,[b].w

rlc a

xs a,[b1].w

nop

ld a,[x].w

rlc a

x a,[x0].w

ld a,[x].w

rlc a

x a,[x1].w

ifc

jp $subtract ;Carry out 1 dividend divisor

sc ;Check for dividend divisor

ld a,[x0].w

subc a,[k].w

ld a,[x1].w

subc a,2[k].w

ifnc

jp $count ;dividend divisor

$subtract:

ld a,[x].w ;Subtract out divisor (c is set)

subc a,[k].w

x a,[x0].w

ld a,[x].w

subc a,2[k].w

x a,[x1].w

sbit 0,[b].b ;Set quotient bit

$count:

decsz 0.b ;Count 32 shifts

jmp $loop

$zero:

pop k ;Get Remainder and/or Quotient

pop a ;and clear working off stack

pop x

pop b

ifbit 3,1.b

jp $exit ;want remainder, have it

ld a,b ;Want Quotient

ld k,x

inc 1.b ;Divisor’s sign Xors Dividend’s

7

$exit:

pop b ;Restore registers

pop x

ifbit 1,1.b

ret ;positive result

$negate:

comp a ;Negate K:A

add a,#1

x a,k

comp a

adc a,#0

x a,k

rbit 1,1.b ;Note sign (for entrance)

ret

.endsect

8

ADDITION

Two’s complement numbers can be added by ordinary binary addition, ignoring any carries beyond the MSB. The result will

always be the correct sum as long as the result doesn’t exceed the range.

If the result is the same as for the subtrahend, then overflow has occurred.

.title SIADD

.sect code,rom8,byte,rel

;Signed add (16 by 16)

; A Operand1

; B Operand2

; Carry Return

.public sign add

.local

sign add:

ld 0.b,#00

ifbit 7,(A01).b

inc 0.b

ifbit 7,(B01).b

inc 0.b

;if bit 0 of 0.b 4 1 then op1 and op2 have different sign

;if bit 0 of 0.b 4 0 then op1 and op2 sign are same

;then if bit 1 of 0.b 4 0 both operands are positive

;else both operands are negative.

add a,b ;Perform unsigned addition

rc

ifbit 0,0.b ;both operands are different sign

ret

ifbit 1,0.b ;both op1 and op2 are negative

jp $negatives

$positives: ;both op1 and op2 are positive

ifbit 7,(A01).b ;if result sign is negative then

set overflow bit

sc ;overflow

ret

$negatives:

ifbit 7,(A01).b ;if sign bit of result is

negative, then no overflow

ret

sc ;overflow

$exit:

ret

.endsect

9

SUBTRACTION

Subtraction can be achieved by negating the subtrahend and perform the addition operation.

Overflow can be detected as mentioned before by checking the signs of minuhend and the negation of the subtrahend and that

of the sum.

.title SISUB

.sect code,rom8,byte,rel

;Signed subtract (16 by 16)

; B Operand1

; A Operand2

; Carry,A Return

.public sign sub

.local

sign sub:

ld 0.b,#00 ;initialize sign flags

ifbit 7,(B01).b

inc 0.b

$negate A:

comp A

inc A

$ngative comp A:

ifbit 7,(A01).b

inc 0.b

;if bit 0 of 0.b 4 1 then op1 and op2 have different sign

;if bit 0 of 0.b 4 0 then op1 and op2 sign are same

;then if bit 1 of 0.b 4 0 both operands are positive

;else both operands are negative.

add A,B ;Perform unsigned addition

rc

ifbit 0,0.b ;both operands are different sign

ret

ifbit 1,0.b ;both op1 and op2 are negative

jp $negatives

$positives: ;both op1 and op2 are positive

if bit 7, (A01).b ;if result sign is negative then

set overflow bit

sc ;bit 0 of byte 0.b is set to

indicate overflow

ret

$negatives:

ifbit 7, (A01).b ;if sign bit of result is

negative, then no overflow

ret

sc ;sign bit of result is positive,

hence overflow.

$exit:ret

.endsect

10

.title NSISUB

.sect code,rom8,byte,rel

;Signed sub (16 by 16)

; A Operand1

; B Operand2

; Carry Return

.public sign sub

.local

sign sub:

ld 0.b,#00

ifbit 7,(A01).b

inc 0.b

ifbit 7,(B01).b

inc 0.b

;if bit 0 of 0.b 4 1 then op1 and op2 have different sign

;if bit 0 of 0.b 4 0 then op1 and op2 sign are same

;then if bit 1 of 0.b 4 0 both operands are positive

;else both operands are negative.

sc

subc a,b ;Perform unsigned addition

rc

ifbit 0,0.b ;both operands are different sign

jp $chkovf

ret ;both operands are same sign,

can’t produce overflow

$chkovf:

ifbit 7,(B01).b

jp $negminu

$posminu:

ifbit 7,(A01).b

sc

ret

$negminu:

ifbit 7,(A01).b

sc

ret

.endsect

11

A
N

-6
0
3

S
ig

n
e
d

In
te

g
e
r
A

ri
th

m
e
ti
c

o
n

th
e

H
P
C

COMPARISON

To do signed comparison on n bit two’s complement numbers first add 2**(n b 1) to the numbers. This will basically shift

the numbers from b(2**n b 1) to a(2**n b 1 b 1) range to 0 to 2**n b 1.

Now comparison operations on the numbers will produce the correct result.

.title SICMP

.sect code,rom8,byte,rel

;Signed compare (16 by 16)

; A Operand1

; B Operand2

; 0.b Return400 if a 4 b

; 02 if a l b

; 01 if a k b

signed compare:

push a

push b

add a,#08000

add b,#08000

ifgt a,b

jp $great

ifeq a,b

jp $equ

$less:

ld 0.b,#01

pop b

pop a

ret

$great:

ld 0.b,#02

pop b

pop a

ret

$equ:

ld 0.b,#00

pop b

pop a

ret

.endsect

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

