CMOS A/D Converter Chips Easily Interface to 8080A Microprocessor Systems

SUMMARY

This paper describes techniques for interfacing National Semiconductor's new ADC3511 and ADC3711 microprocessor compatible analog-to-digital converter chips to 8080A microprocessor systems. The hardware interface and the software interrupt service routine will be described for single and multiple A/D converter data acquisition systems.

INTRODUCTION

The recent introduction of monolithic digital voltmeter chips has encouraged designers to consider their use as analog-to-digital converters in data acquisition systems. While the high accuracy afforded at low cost was attractive, certain difficulties in applying these devices in digital systems were encountered. Most of these difficulties were due to the DVM chip's output structure being oriented towards driving 7-segment displays with internally generated digit scanning rates. National Semiconductor has recently introduced a family of monolithic CMOS A/D converters-2 of these devices are directed towards LED display DPM and DVM applications (ADD3501 $31 / 2$-digit DPM and ADD3701 $33 / 4$-digit DPM) while the other 2 (ADC3511 $31 / 2$-digit A/D and ADC3711 3 $3 / 4$-digit A/D) have addressable BCD outputs. These last 2 devices allow easy interface to microprocessor and calcula-tor-oriented (COPS) systems.

National Semiconductor
Application Note 200 March 1978

Single or multiple channel monitoring of physical variables can be achieved with high accuracy despite the lack of complexity and low overall cost.

A/D CONVERSION

All A/D converters in this family operate from a single 5 V supply and convert inputs from 0 to $\pm 2 \mathrm{~V}$. The converters use a pulse-width modulation technique which requires no precision components and exhibits low offset, low drift, high linearity and no rollover error. An additional advantage is that the voltage reference is of the same polarity as the supply.
Two resolutions are offered: the $31 / 2$-digit types divide the input into 2,000 counts plus sign, while the $33 / 4$-digit types provide 4,000 counts plus sign which is roughly equivalent to the resolution of a 12-bit plus sign binary converter. The 3 $1 / 2$-digit converters require 200 ms per conversion; $33 / 4$-digit types require 400 ms .
The converters handle negative inputs by internally switching the inputs and forcing the sign bit low. While this technique allows conversion of positive and negative inputs with only a single supply, the supply must be isolated from the inputs. Without an isolated supply, only positive voltages may be converted.
The basic converter is shown in Figure 1. The actual conversion technique is described in Appendix A.

TL/H/5616-1
FIGURE 1. Basic A/D Converter

BCD OUTPUT DESCRIPTION

The ADC3511 and ADC3711 present the output data in BCD form on a single 4 -line output port, plus a separate sign output. The desired digit is selected by a 2-bit address which is latched by a high level at the Digit Latch Enable input (DLE); a low level at DLE allows flow thru operation. Since the output is BCD, it is compatible with many standard instruments and can easily be converted into binary by the processor if this format should be desired. Overrange inputs are indicated by a hexidecimal "EEEE" plus an Overflow output.
A new conversion is begun by a positive pulse or high level at the Start Conversion (SC) input. The analog section of the converter continuously tracks the analog input. The Start Conversion command controls only the transfer of new data to the output latches, consequently the delay from the SC pulse to the Conversion Complete (CC) signal may vary from several milliseconds to several hundred milliseconds. In interrupt driven systems the delay is no problem, since the processor does not execute delay instructions while waiting for the data. However, if in-line or program I/O is used where the program waits for the data to be ready, the maximum delay between SC and CC must be programmed into the wait routine. This type of I/O is therefore not as efficient as interrupt I/O.
The CC output goes low immediately after the SC pulse. At the end of a conversion, CC goes high and remains high until a new conversion is initiated. Continuous conversion operation is obtained by tying the SC input to V_{CC}.

REFERENCE VOLTAGE

The 2.000 V reference is derived from the LM336, a recently announced monolithic reference which provides 2.5 V with low drift at low cost. This active reference is adjusted for minimum thermal drift of about $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ by using a third terminal on the device to adjust its output to 2.490 V .
Total reference current consumption is low, as the LM336 requires only 1 mA of bias current, and the resistor divider about 2 mA . The reference circuit is shown in Figure 2.

FIGURE 2. A/D Converter Reference. The 10k Pot is Adjusted to a Voltage of 2.49 V on the Output; at this Voltage Minimum Drift Occurs. The Reference can Supply up to 8 A/D Converters.

One reference can be used for many A/D's. The values of the upper series resistor R1 depends on the number of converters used.

A SINGLE CHANNEL CONVERTER

A complete A/D port is seen in Figures 3 and 4. Figure 3 shows a Dual Polarity converter and Figure 4 a Positive Only Polarity converter. Each port contains an A/D converter, TRI-STATE ${ }^{\circledR}$ bus driver, and 2 gates to control I/O. This A/D port is easily used in single or multi-channel systems. In multichannel systems a converter is used on every channel allowing digital multiplexing of the outputs.
Data from the A/D converter in a single channel system is easily processed using an OUT command to start a conversion and IN commands to read the data after the microprocessor has been interrupted by a Conversion Complete.
As seen in Figure 5, a single channel A/D port uses a 6-bit bus comparator to decode its assigned peripheral address from the lower address bits of the 8080A address bus.
When an interrupt is received, the present status of the processor is stored on the stack memory by a series of push commands. The interrupt is serviced by reading digit 4 (MSD) into the processor and checking the overflow bit. If the overflow bit is high, the converter input has exceeded its range and an error signal is generated, indicating that scaling must be done to attenuate the input signal. If the OFL is low, the sign bit is then checked to determine the polarity of the conversion. If the sign bit is low, a " 1 " is added to the MSB of digit 4. Since this bit would normally be low, (maximum converter range allows $\mathrm{MSB} \leq 3$ or 0011) a " 1 " in this position is used to denote a negative input voltage. The 4 bits of digit 4 which now include the sign are shifted into the upper half of the first byte and the 4 bits of digit 3 are packed into the lower half. Similarly, digits 2 and 1 are packed into the second byte and both bytes stored in memory.
Figure 6 and routine 1 are the flow chart and assembly language routine used to implement this action.

8-CHANNEL A/D WITH SOFTWARE PRIORITY

The basic A/D port can easily be expanded to multiple channel systems. An 8-channel system is seen in Figure 7. This system interrupts the processor when one of the Conversion Complete outputs goes high. The processor saves the current status and reads the status word of the A/D system. The status word is then compared to a priority table. Each level in the table corresponds to a priority level with high priority converters which are first in the table. If 2 or more converters have the same priority and are ready at the same time, the converter with the highest number gets serviced first.
The program determines which service routine to use by the bit position of " 1 's" in the status word. The routine loads the address pointer to digit 4 of the selected converter. The
program then calls a subroutine which goes through the process of checking overflow, sign and packs 4 BCD digits into 2 bytes. These 2 bytes are then stored in a table in the memory directly above the converter addresses. After a
channel is serviced, the original processor status is restored and the interrupt enabled. If additional channels need service, they immediately interrupt so the new status word is then read and a new priority established.

FIGURE 3. Dual Polarity A/D Requires that Inputs are Isolated from the Supply. Input Range Is $\pm 1.999 \mathrm{~V}$.

FIGURE 4. Positive Polarity A/D Operating from 5V Supply. Input Range Is +1.999 V .

APPENDIX A

THEORY OF OPERATION

A schematic for the analog loop is shown in Figure A1. The output of SW 1 is either at $\mathrm{V}_{\text {REF }}$ or OV , depending on the state of the D flip-flop. If Q is at a high level, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}$ and if Q is at a low level $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. This voltage is then applied to the low pass filter comprised of R1 and C1. The output of this filter, V_{FB}, is connected to the negative input of the comparator, where it is compared to the analog input voltage, V_{IN}. The output of the comparator is connected to the D input of the D flip-flop. Information is then transferred from the D input to the Q and \bar{Q} outputs on the positive edge of clock. This loop forms an oscillator whose duty cycle is precisely related to the analog input voltage $\mathrm{V}_{\text {IN }}$.
An example will demonstrate this relationship. Assume the input voltage is equal to 0.500 V . If the Q output of the D flipflop is high, then $\mathrm{V}_{\text {OUT }}$ will equal ${ }_{\text {REF }}(2.000 \mathrm{~V})$ and V_{FB} will charge toward 2 V with a time constant equal to R1C1. At some time V_{FB} will exceed 0.500 V and the comparator output will switch to $0 V$. At the next clock rising edge, the Q output of the D flip-flop will switch to ground, causing VOUT to switch to OV. At this time, V_{FB} will start discharging toward 0 V with a time constant R1C1. When V_{FB} is less than 0.5 V , the comparator output will switch high. On the rising edge of the next clock, the Q output of the D flip-flop will switch high and the process will repeat. There exists at the output of SW 1 a square wave pulse train with positive amplitude $\mathrm{V}_{\text {REF }}$ and negative amplitude OV .

The DC value of this pulse train is:

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}} \frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}=\mathrm{V}_{\text {REF }}(\text { duty cycle })
$$

The low pass filter will pass the DC value and then:

$$
\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }} \text { (duty cycle) }
$$

Since the closed loop system will always force V_{FB} to equal V_{IN}, we can then say that:

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}} \text { (duty cycle) }
$$

or

$$
\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}=\text { (duty cycle) }
$$

The duty cycle is logically ANDed with the input frequency f_{I}. The resultant frequency f equals:

$$
f=(\text { duty cycle }) \times(f \mid N)
$$

Frequency f is accumulated by counter no. 1 for a time determined by counter no. 2. The count contained in counter no. 1 is then:

$$
\text { count }=\frac{f}{\left(f_{I N}\right) / N}=\frac{(\text { duty cycle }) \times\left(f_{I N}\right)}{\left(f_{I N}\right) / N}=\frac{V_{I N}}{V_{R E F}} \times N
$$

For the ADC3511 N = 2000.
For the ADC3711 N = 4000.

TL/H/5616-8
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }} \times$ (duty cycle)
$\mathrm{f}=($ duty cycle $) \times \mathrm{f}_{\mathrm{IN}}$

$$
\text { Count in Counter No. } 1=\frac{f}{f_{I N} / N}=\frac{(\text { duty cycle }) \times f_{I N}}{f_{I N} / N}=\frac{V_{I N}}{V_{R E F}} \times N
$$

FIGURE A1. Analog Loop Schematic Pulse Modulation A/D Converter

Electrical Characteristics

ADC3511CC, ADC3711CC $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}+85^{\circ} \mathrm{C}, \mathrm{f}=5 \mathrm{conv} . / \mathrm{sec}$ (ADC3511CC): 2.5 conv./sec (ADC3711CC); unless otherwise specified.

Parameter		Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
	Non-Linearity	(Note 3) $\mathrm{V}_{\text {IN }}=0-2 \mathrm{~V}$ Full-Scale $\mathrm{V}_{\mathrm{IN}}=0-200 \mathrm{mV}$ Full-Scale	-0.05	+0.025	0.05	\% of Full-Scale
	Organization Error		-1		0	Counts
	Offset Error	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, (Note 4)	-0.5	1.0	3.0	mV
	Rollover Error		-0		0	Counts
$\mathrm{V}_{\mathrm{IN}}+, \mathrm{V}_{\text {IN }}-$	Analog Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5	1	5	nA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not
meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: For the ADC3511CC: full-scale $=1999$ counts; therefore, 0.025% of full-scale $=1 / 2$ counts and 0.05% of full-scale $=1$ count. For the ADC3711CCL: fullscale $=3999$ counts; therefore, 0.025% of full-scale $=1$ count and 0.05% of full-scale $=2$ counts.
Note 4: For full-scale $=2.000 \mathrm{~V}: 1 \mathrm{mV}=1$ count for the ADC3511CC; $1 \mathrm{mV}=2$ counts for the ADC3711CC.

FIGURE A2. ADC3511 3½-Digit A/D (*ADC3711 3 3/4-Digit A/D) Block Diagram

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

