
MOTOROW
m SEMICONDUCTOR

APPLICATION NOTE

Order this document
by AN947/D

AN947

MC68881 Floating-Point Coprocessor
as a Peripheral in an M68000 System

..!

,,..,.$:,!.‘\’iaJ+..~’$~,:,),.,.i’

INTRODUCTION
,+~1~’:.:,.;.....,,,,..

,&$;B:Y’“*
hexadecimal F (binary 11 11) in th~$~~~:~lgnificant nib-

The MC68881 floating-point coprocessor is a complete ble (Figure 1). When MC68000$:Q~~08, or MC6801 O
implementation of the proposed IEEE Standard for Binary processors encounter an F-lin~,in$truction, the current
Floating-Point Arithmetic (Task P754, Draft 10.0). All data processor status is saved, thd<F-liHWemulation trap vector
formats, data types, operations, modes, conversions, and is fetched, and instruction tsaution resumes in the trap
exception handling required in a conforming implemen- handler, When this tr,@~%~@ler is a software emulation
tation of the proposed standard are supported entirely in

“,,,:.
of the coprocessor.%~~~~$ace, object code containing

hardware. Additionally, a full library of fast elementary MC68881 instru~~~~$~~s upward compatible to an
transcendental functions is implemented in the hard- MC68020 syst~w #k~out recompiling, reassembling, or
ware. relinking. M~@@2 instruction performance will signifi-

The MC68881 is a high performance floating-point unit cantly in$~~~?~when such code is ported to a MC68020

designed to interface with the 32-bit MC68020 as a co- systen..w%~r~the coprocessor interface is implemented

processor; it provides a logical extension of the MC68020 by on-%~p hardware. However, a performance penalty is

instruction set and register set in a manner which is com- P@< for’~he upward compatibility provided by the F-line
pletely transparent to the programmer. The MC68020 mi- ,,,$,~@\@tion trap method.
coprocessor implements the M68000 coprocessor ,,w:J %he current processor status (either three or four words

. . ..i’*w@pending upon the M68000 processor being used) mustinterface enttrely In hardware. All Interprocessor tran~+;$~,~t+,
““be pushed onto the stack when the exception is taken,fers are initiated by the MC68020. During the processing “?!$~,,

of an MC68881 instruction, the MC68020 transf~rs i@ and popped off of the stack when the RTE (return from

struction information and data to the coproc~’’~%r via exception) instruction is executed. More significantly, the

standard M68000 write bus cycles and receiy~~j~at~, re- trap handler must decode the MC68881 instruction to

quests for service, and status informatioRifr&~ +Y%eco- determine the proper protocol for a given instruction. The

processor via standard M68000 read ~{~;~@)es. The performance penalty can become intolerable if the co-

MC68881 contains a number of co&+~~#5r interface processor emulation trap handler must support all M68000

registers which are addressed l$~~~&Xmory by the effective addressing modes. This can be relieved by uti-

MC68020 micromachine, These:r~s~$rs, which are not Iizing only specific addressing modes.

part of the MC68881 program~er-~~~ble register set, are Upward compatibility of object code is not relevant to

mapped into CPU address+~p@,@&%an MC68020 system. every M68000 system, especially when it incurs a signif-

The MC68020 distinguish@~,~,@ address space accesses icant performance penalty. Such systems can emulate

from program and d~yqk,cesses by a unique function the coprocessor interface using in-line code, macros, or

code encoding. (T$e M~@Q~81 registers that are used by subroutine calls. Macros are particularly attractive since

the floating-poi~~i~:$$~f uctions and hence visible to the they provide the performance of in-line code while al-

programrner ~re~~~!~oating-point registers, FPO-FP7, and lowing the source code to be upward compatible to an

the control?,l~~f~i and instruction address registers.) MC68020 system via re-compilation or reassembly. This

The M&Q$@? can also be used as a peripheral pre- application note provides both a discussion of the co-

cesso~Tti “~stems where the main processor does not processor interface protocol followed by detailed infor-

im@~&,@* the M68000 coprocessor interface on-chip (e.g. mation on both a macro technique and an example of an

@.@~O, MC68008, and MC68010 svstems). Since the F-1ine instruction trap technique for software emulation

${m~~~cessor interface is based solely on standard M68000 of the coprocessor interface.

“$~s” cycles, it is easily emulated by software in these
Systems. The MC68881 is considered to be a peripheral
processor in these systems because its coprocessor in- MC68881 AS AN MC68020
terface registers are memory-mapped in data address SYSTEM COPROCESSOR
space. Two methods of software emulation of the copro-
cessor interface are possible: 1) M68000 F-line instruction COPROCESSOR CONCEPT

trap (traps are exceptions caused by instructions), or 2) The M68000 coprocessor interface is the first general
in-line code implemented as either subroutine calls or purpose coprocessor interface. The main processor in-
macros.

d

struction set and internal details are unknown to the co-
.:], When assembled for execution in an MC68020 system, processor, and the coprocessor instruction set and internal

the first word of an MC68881 instruction always has a details are unknown to the main processor. The burden

@
MOTOROLA =

cMOTOROLA INC., 1987

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 “1 1
COPROCESSOR

IDENTIFICATION
TYPE TYPE DEPENOENT

CoprocessorlD .
Specifies which coprocessor in the system is to execute this instruction. Motorola assemblers default to ID = 1 for the MC68881. ?

,fi; ,
k:: :

Type
W* .,

Specifies the type of coprocessor instruction: “’:\.:$,(,“

000 – General Instruction (Arithmetics, FMOVE, FMOVEM)
?>..J.,\:<*;<>.,\:;:.:,.... ,,:.$.h..:..,,.,~$\,)+,.

001 — FDBcc, FSCC, FTRAPcc
~i.t.~*‘;..;~,:‘ ,,

,~,~>=’:{!. ~
010 — FBcc.W ,.}~,~a~..,~”.‘~.;*
011 — FBcc.L

*1‘>,.,.,.,~:.”:.~\.,jl/p!>~~.>.,~::,.
100 — FSAVE

~\%:;,,.,r+>1...f\i*s>

101 — FRESTORE “i{! *$
w’~k:.,,‘-,?,*P,..,?

110 — (Undefined, Reserved} P$. ‘Y(
111 — (Undefined, Reserved)

“:?.!!,. ,,,*,.y

Type Dependent
~J$,+... .,~>+

.:.~:~i.,.,~}
,,p‘h~~~

Normally specifies the effective address or conditional predicate, but usage depends oR<[~&$~&pe field.
.,.$.ti;’,iy~~’

.;%,A>e ..%
Figure 1. MC68881 Coprocessor Operation ~~~~:~tifmat

~+,,+
%~!!~,t<p-t~.

,:.-.t,,.’:$t,....,.,\+,,>,,
of decoding the coprocessor instruction is not placed on CPU awksspace and do not infringe upon data or
the main processor, and the coprocessor does not mon- pro~~ma~~dress space. A portion of this CPU address
itor the main processor instruction stream. spd’~~fs allocated for coprocessor communication. The

The MC68881 instruction set and register set are logical ,wC6&620 outputs 0010 on bits 19-16 of the address bus
extensions of the MC68020 sets. The MC68020/MC68881 ,,jj~~,~~%,coprocessor accesses as shown in Figure 2. The
execution model appears to the programmer as if imple- j~, NC68020 also outputs the CP-ID field (bits 11-9 from the
mented on one chip. All data transfers are performedl,Q&~&& <first word of the coprocessor instruction of Figure 1) on

the main processor at the request of the MC68881; th~~~”’s
memory management, bus errors, address err,ors,.?~nd
bus arbitration all function as if MC68881 ig$~{uctions
were executed “by the main processor. Thee~~in’:proces-
sor also performs ail effective address .,~~~~8~ions and
processes all coprocessor-detected e~~~~~~tis at the re-

.&~~.T,:,,:,quest of the MC68881. ‘&,,:\,yy.F$;,.
The interface is designed to ~~~~~-the programmer

with a sequential instruction ex~,~t~~’hodel even though
main processor and copro~~s~~~~>]nstruction execution
overlap occurs. For som}~,~~~.~%tions this overlap to en-

hances throughput. ,, ~?,, ,3:~~ ~,~..

,.i?s~‘~~.k?,“’.l~~””.\.:\, .S.:.
“,i,!.,,.,,,,,+$*; ‘‘*\~’

MC6802Q$$~~PROCESSOR BUS TRANSFERS
‘~,$,~+~++.!

The caQ~%@sor interface is based upon standard
M68000’~/~$chronous read and write bus cycles. No new
bus,+~@#fl& are required by the MC68020 to initiate a
flof~ing~~oint instruction, and the MC68020 and MC68881

.f~~:~;?~n at different clock rates. The MC68881 is con-
.i,r,,,%~cted like a peripheral to the main processor and re-
~~~ulres one extra pin, chip select (CS), in order to be

~~accessed, Chip select is generated from the MC68020
function codes and address lines, similar to the way pe-
ripheral chip selects are generated. All other MC68881
pins connect to signals present on the M68000 Family
processors.

The MC68881 has a set of coprocessor interface reg-
isters by which the main processor and coprocessor com-
municate. When performing a coprocessor access, the
MC68020 outputs a 111 on its function code lines thus
specifying CPU address space. Therefore, the MC68881
coprocessor interface registers are memory-mapped into

tiOTOROLA
2

AN947/D

—

bits 15-13 of the address bus. The main processor selects
the appropriate coprocessor interface register within the
selected coprocessor via bits 4-O of the address bus as
shown in Figure 3. The MC68881 chip select is therefore
based upon three elements: the MC68020 three function ~“ “

)code outputs, the Cp-lD field (address bits 15-13 of the
address bus), and the CPU space type field (bits 19-16 of ‘i’
the address bus).

Notice, the MC68020 handles only four CPU address
space cycles:

CPU Space Type
Field (A19-A16] CPU Space Transaction

0000 Breakpoint Acknowledge
0001 ~ Access Level Control
0010 Coprocessor Communications
1111 Interrupt Acknowledge

Therefore, when decoding the chip select for the MC68881,

only two bits are needed (A18 and A17) to distinguish a
coprocessor operation from the other CPU address space
operations. A suggested method for connecting the
MC68881 to the MC68020 is illustrated in Figure 4.

Figure 5 illustrates the connection of an MC68881 to
an MC68000 or MC68010 as a peripheral processor over
a 16-bit data bus. The MC68881 is configured to operate
over a 16-bit data bus when the = pin is connected to
VCC, and the AO pin is connected to ground (GND). The
sixteen least significant data pins (DO-D I 5) must be con-

nected to the sixteen most-significant data pins (D16-D31 )
when the MC68881 is configured to operate over a 16-
bit bus (i.e., connect DO to D16, DI to D17,...and D15 to
D31 ). The DSACK1 pin of the MC68881 is connected to
the DTACK pin of the main processor, and the DSACKO ,,,1
pin is not used.

d

,.~..’,,



—

FCO-FC2 ~
CHIP

A20-A31 — SELECT
A16-A19 ~ DECODE ~

B

A13-A15 ~
A5-A12 — Vcc + m
A1-A4 * AI-A4

—

024-D31

E

D24-D31

D16-D23 D16-D23

D8-D15 D8-D15
DO-D7 DO-D7

DSACKO OSACKO

DSACK1 DSACKI

A
I

MAIN PROhESSOR COPROCESSOR MAIN PROkESSOR COPROCESSOR
CLOCK CLOCK CLOCK CLOCK

32-BITDATA BUS CONNECTION 16-BITOATA BUS CONNECTION

(p Figure 4. Suggested MC68020 to MC68881 Connections

AN947/D MOTOROLA
3



1 K
FCO-FC2 CHIP

A20-A23or A31 SELECT
DECODE

A16-A19
A13-A15 (SYSTEM

A5-A12 DEPENOENT)

— DSACKO

DTACK + DSACK1

“ *.$

When connected as a peripheral processor, the MC68881 *#&re6illustrates theconnection of an MC68881 to
chip select (~) decode is system dependent. If the ~ati$~~68008 as a peripheral processor over an 8-bit data*?’

MC68000 is used as the main processor, the MC68881 CS $$$@..@.The MC68881 is configured to operate over an 8-bit
must be decoded in the supervisor or user data spaces:-~: :*s“’’$%’’’’data bus when the SIZE pin is connected to ground (GND).
However, if the MC68010 is used for the main processor, “>P The eight least-significant data pins (DO-D7) must be con-
the MOVES instruction may be used to emulate a$~CPb netted to the twenty-fou r most-significant data pins (D8-
space access that the MC68020 generates for co~~e$sor D31 ) when the MC68881 is configured to operate over an
communications, Thus, the = decode logic fq~:s~~ sys- 8-bit data bus (i.e., connect DO to D8, D16, and D24; D1
terns may be the same as in an MC6802~$ys@, such to D9, D17, and D25; ,..and D7 to D15, D23, and D31), The
that the MC68881 will not use any part of~~:~&#~ address DSACKO pin of the MC68881 is connected to the DTACK
spaces,

@&,~;...>~’
~tst,~>..,,,>,,,..},~s>},,..L..SF pin of the MC68008, and the DSACKI pin is not used.!+..

‘S!,i>..+.%~$$t~?..‘$“’?~.:l,.,.*:,:: ~.
‘:j.’: ?;~,%.,. FCO-FC2

>+(:.t+$~$,t’+>..l:.a!’~
.:l~:$,

+ s

Y>*,~.,2\.c.
,1$* ~~@ I A5-A12 DEPENDENT}
,*;,,,*>. GND+ m,.:,.,.YIt.~,.$’ .. ..

g z

-E
E

g
w m m
z R/~ R/w

D24-D31

D16-D23
D8-D15

DO-D7 DO-D7

OTACK DSACKO

DSACK1
L

4
I L

4
J

MAIN PROCESSOR COPROCESSOR

CLOCK CLOCK

Figure 6. 8-Bit Data Bus Peripheral Processor Condition

,flJ /,.



When connected as a peripheral processor, the MC68881 ~ bythemain processor writing thecoprocessor command
chip select (~) decode is system dependent, and the ~ word (the second word of the instruction) to the MC68881
must be decoded in the supervisor or user data spaces. ‘ coprocessor interface command register. The format of

the MC68881 command word is shown in Figure 8, Gen-

MC68881 INSTRUCTION DEFINITION
eral type instructions are broken down into gr;ups, called
op-classes, based on the function of the instruction and

The MC68881 instructions can ~ubdivided according argument location (external or internal to the coproces-

to the type of coprocessor operation performed: general, sor). The values Rx, Ry, and the extension field depend

branch, save, restore, or conditional. Each instruction,
on the specific op-class. For instance, the val~~$$~quired

when assembled, consists of from one to eighj<words
for a floating-point register to floating-po~~$ ~~?~ter op-

(Figure 7). The first word (operation word) always has a
eration are as follows: Rx is the sour~~ ft~$ting-point

hexadecimal F (11 11) in the high-order nibble as seen in register, Ry is the destination floatin~~x~+$gister, and

Figure 1. The type field (bits 8-6) of the operation word the extension field is the operatio~.~d-~~>e’rformed (add,

indicates the coprocessor instruction type. For instruction
move, sin, etc.). Table 1 lists th~~@-?~asses, their defi-

types which require an effective address (general, save,
nitions, and their respective ~~’f~~p~rid extension fields.

restore, and conditional), the type-dependent field of the For the branch and the..Aco~~k#bnal type instructions,

operation word specifies the effective addressing mode. the main processor init~~~~, processing by writing the

For the conditional instruction type, this field specifies conditional predicatq.~~~~-from the six low-order bits

the condition to be evaluated by the coprocessor: the of either the first &~#~jnd word of the instruction, re-

conditional predicate (CPRED), spectively) to th@,&~Wtiessor for evaluation. These con-
ditional predicate~<?~found on lines 62-97 of the EQUATE
table liste~:#~;~QPP~NDIX A MACROS at the back of this

- ‘ocurn’2°

In th~ca~e’’:of an operating system context switch, the
COPROCESSORCOMMANOWORD{IF ANY] cop~,~s$or internal state can be saved by the FSAVE
EXTENSIONWORDS(IF ANY, 1-6 WOROS) ,:@tru~Jon. This MC68881 instruction only saves the in-

““V\$jble state of the machine (that which is not normally
Figure 7. General Format of

,..
., $r~viilable to the user). Thus ail control, status, instruction

Coprocessor Instruction ,,:,,}~~$~”%ddress, and floating-point data registers (the user-visi-
““.ST.,,Q:.J*R*,.Xble registers) must be saved by the user. Only the reg-

‘J)?,.
The format of the second word of the coprocesso$in-’ isters beneficial (those being used) to the programmer

struction varies with different instruction typ~~~, For the need to be stored. To initiate the FSAVE instruction se-

general instructions, the second word is the %~~?~essor quence, the main processor reads a word (the save for-

command word specifying the function ~o;~@rformed mat word) from the save interface register location of the

by the coprocessor. The MC68881 h~~ge~h designed coprocessor. The save format word provides the status

such that ail general type operationS?%~$&@$Secified bv a of the coprocessor state (the null state, the idle state, or

single command word: In order t~~~~@ss a conditional the busy state) and also the size (0 bytes, 24 bytes, or

instruction type, the main proce~s$~@tist deliver the con- 180 bytes respectively) of the internal state of the ma-

ditional predicate (cpRED) tqy~#M68881 for evaluation. chine to be saved. The save format word is written to the

Since the type-dependen}$~~k~$~$the operation word may effective address by the main processor at the end of the

specify the effective add~ss”?$g mode, the CPRED is found instruction execution no matter which state the copro-

in the low-order six,~~$~~$~he second word. The addi- cessor is in.

tional word(s) fo(lo’~$w}the second word in Figure 8 is The restore type instruction which resto~es a previ-

the extensionx,~~~$he effective addressing mode or the ously saved state is initiated by the main processor writ-

immediate o~,tws present in the instruction, In the ing a save format word to the coprocessor interface restore

branch, ,sq~~~i@d restore instructions, all information register. This informs the coprocessor which coprocessor

neede~it~,,~~%iate processing in the coprocessor is found internal state is to be restored. If visible registers are

in t~e B~er~tion word. Thus, the extension word(s) (if saved after the execution of the FSAVE command, they

a,n~]$d~~ctly follows the operation word (no coprocessor must be restored before the execution of the FRESTORE

,:#~~~~nd word). instruction.
,.....

When executing any MC68881 instruction, the MC68020‘*\\$t,\
lJ:yJe..k

~% .><$$$,”’

,It,.$t} follows a basic protocol, First, the coprocessor infor-.\v.
.,,., 15 13 12 10 9 65 0 mation (command word, conditional predicate, or format

OP-CLASS Rx RV EXTENSIONFIELO
word) is written to the appropriate coprocessor interface
register by the main processor (the FSAVE instruction is
initiated by a read). The main processor then reads the

Figure 8. MC68881 General Instruction appropriate coprocessor interface register to acquire the
Command Word coprocessor status and any service requests. The copro-

cessor may indicate that it is busy processing a previous
All of the MC68881 arithmetic, move, move multiple, instruction and ask the main processor to query again.

@

move constant, and transcendental instructions are of the (This is the mechanism by which the sequential instruc-,.>.,, general type. All general type instructions are initiated tion execution is maintained because the coprocessor



,. ... . . . . . . .. . ... . . . .. ..-—.. . .... .,, ,.... . ..“T-

able 1. Command Word Fields of General-Type Instructions

Op-Class Field Rx Field Ry Field Extension Field Instruction Class

000 Source FP Data Register Destination Fp Data Operation to Perform FP Data Register to FP Data
Register (MOVE, ADD, etc.) Register Instructions

001 — — Unused, Reserved—

010 Source Data Format Destination FP Data Operation to Perform
(see Note 2)

External Operand to FP
Register (MOVE, ADD, etc.) Register .~.~.l

., .~:,t.

010 111 Destination FP Data Constant ROM Offset Move Constan~t$~,~~~ata
Register Register ?,.,$$,, ,$J

011 Destination Data Format Source FP Data Register 0000000 (Unless packed Move ou~~~t~~xternal
(see Note 2) BCD, see Note 2) De$$tiqfi@,~

100 FPcr Select (see Note 1) 000 0000000 M@~~~*~ Multiple to

“~~q~ol Register

101 FPcr Select {see Note 1) 000
.}\ -x.~

0000000 \ qi~..MovelMove Multiple from
“‘“Control Register.“!’i:,i$,:~.~,,.\.

110 ND S/D O (see Note 3) 00m (see Note 4) Contains Register ~1$~~:~,,} ““ Move Multiple FP Data
‘~~J’qx..$+:b$~. Register to MC6888I

111 ND S/D O (see Note 3)
~,., ~

00m (see Note 4) Contains Regi+er Lbt Move Multiple FP Data
>Q.,<($,x*,,, Register from MC68881$,..$.

-~,,.,~i,.. ....
NOTES:

1, FPcr
000
001
010
011
100
101
110
111

2. Value
000
001
010
011
100
101
110
111

3. #D=O
A/D = 1

Extension

~’a:~..“;JA,

‘tpvf not execute a new instruction until finished process- INTERFACE REGISTERS
~ng the previous one). The coprocessor may indicate an
exceptional condition and request the main processor to

The MC68881 contains a number of interface registers

begin exception processing by providing the proper ex-
which are memory-mapped within the MC68020 CPU ad-
dress space. These are the registers identified by “*” and

ception vector. The coprocessor may request additional “**” in Figure 8. The coprocessor registers are memory-
service of the main processor, for example, evaluating mapped into the main processor’s system like any other
effective address and transferring data through the co- peripheral, although they are accessed in a different ad-
processor interface operand register. Finally, the copro- dress space.
cessor may indicate to the main processor that no further The main processor initiates communication with the

@

,f:
servicing is required. MC68881 by writing to (or reading from) a specific 16-bit

~



. . .

register, which is memory-mapped into the system. The
specific register chosen depends on the instruction type.
A general instruction coprocessor command word is writ-
ten to the command register, and a branch or conditional
instruction CPRED is written to the condition register. The
main processor must read the save interface register to
initiate the sequence of saving the internal state. To re-
store this state, the main processor writes to the restore
interface register. The save and restore functions support
virtual memory, demand paging, and task time-slicing.

After the initial write to the register in the general, con-
ditional, and branch instructions, the response register
is read by the processor to determine its next action (e.g.,
come-again or evaluate effective address and transfer
data to/from the coprocessor).

An example of the communication sequence may be
demonstrated with the memory to floating-point register
add instruction. The main processor first writes the co-
processor command to the command interface register
and queries the response register until requestad to pass
data. At which time, the host reads the data from memory
and writes it to the operand register, four bytes at a time.
The response register is re-read until the coprocessor
signals the main processor to stop, The MC68020 is then
free to process the next main processor instruction, while
the MC68881 Derforms the floatinq-~oint add on the data.

The MC68881 utilizes only six of the possible re-
sponses. These are the primitives noted by an “*” in
Figure 9. The transfer multiple coprocessor registers pri-
mitive allows the transfer of multiple coprocessor reg-
isters to or from memory. The dr bit specifies in which
direction the transfer is to be made: from the coprocessor
to memory if the bit is set, or from the memory into the
coprocessor if the bit is cleared. The transfer single main
processor register requests the main processor ~~,,~ans-
fer the contents of one of its registers to .Q~~~~% the
coprocessor. If D/A equals one, the transf~rt~ “Wgister
is an address register. If D/A equals ze$~%’~~~ata register
is transferred. The register number,j,s$~,~a~kd in the reg-

,,.~,~
ister field, ‘.,;::~~a,....!>*..

The evaluate effective addr~~~$~~%ransfer data pri-

mitive re4uests the main pro)~~s~$r to evaluate the ef-
fective address specified k~:@e ?Sating-point instruction
and to transfer data to.Q$$@& that address (from or tO

the coprocessor}, Th#\@l~@EA type field indicates which
addressing modes~~~,,,:$~lid for the transfer, while the
length field give%$%a.wumber of bytes to be transferred.

The Null ~qit~v~ alerts the main processor to the co-
processq$.S[&$~9 after all other service requests (exclud-
ing e~p~ti$$ tequests) have been granted by the main

pro~~.d$~ti the CA bit is set, the main processor queries
IK r%onse register until the bit is cleared, at which

[n this case, as in all normal proc;ssor/coprocessor com- .,.j%~~~ the main processor is released by the coprocessor.
‘+’a’@en though the main processor may be signaled formunications, the host processor processes only the re- S

auests sDecified in the coprocessor ~rimitives unli}:&?%ii$Pelease (when CA eauals zero). it can still ~ass the ~ro-........1,..:~j.’~~~~
released by the MC68881. . ....-,,.\.,3,$>.

“?*,
The MC68881 uses only three registers other than th:~se

previously mentioned. These are: the register,}~~ect reg-
ister used in the move multiple instructions;%~ ev~~struc-
tion address register used only when ,,~k&:~ions are
enabled, and the control register use$~~~l$~ main pro-
cessor either to handshake the pr~c,%R8’”of the copro-
cessor exception or to abort inv+l~$wrocessor service

.,, “)~.‘~\,@.

requests.

!,
,%

‘~>;...,,,:,.;l~
Response primiti$~~?$w service requests from the. co-

processor to th~. m~~$~rocessor: These primitives have
capabilities w#@ @now for the synchronization of the ~~
main proGe~?@;iprocessor general, conditional, and
branch L@~~@@40nexecutions. Also the coprocessor may
requ%t$w~ices such as external memory accesses,*$)7;+
trao%fehal ‘gf data, and exce~tion ~rocessing bv the main

,..,Qj~$.~@Or.Figure g is a Iis} of ail possibl; coprocessor
Ji~t~&@onse primitives recognized by the MC68020. If the

t$jr:,+%~ome-again(CA) bit is set, the main processor processes
‘~~’lhe primitive and then reads the response register again

““ to seek further service requests. If the CA bit is not set,
the main processor ;s released from further services (ex-
cept when the MC68020 is in trace mode). If the PC bit
is set, the main processor writes the program counter
position of the first word of the coprocessor instruction
to the instruction address interface register prior to per-
forming the requested service. In the event that the
MC68881 generated a trap exception, this PC value is
required by the exception trap handler to determine which
instruction caused the exception,

gram counter (PC ea’uals one) ’and/or accept pendin~ in-
terrupts (1Aequals on’eand CA equals one). The proces;rrg
finished (PF) bit is a status bit which indicates whether
or not the coprocessor has finished its instruction. The
MC68020 tests the bit only while in trace mode to ensure
that the instruction processing is complete, In the case
of a conditional instruction the null primitive also con-
tains a TIF bit [bit 0), This bit is tested by the main pro-
cessor to determine whether or not the conditional
predicate is true (one) or false (zero).

For all the MC68881 primitive responses, the CA bit is
always set (CA equals one) with the exception of the null
and exception request primitives. Both the take pre-in-
struction exception and the take mid-instruction excep-
tion primitives contain the exception vector number. Pre-
instruction exceptions occur under two conditions: 11after
no further information is needed from the main processor
in a previous floating-point instruction, and 2) before the
coprocessor begins processing the present instruction.
These pre-existing exceptions represent either an illegal
command word for the present instruction, or the ter-
mination of previous instruction with an exception. This
delayed reporting allows for synchronization between the
host and the coprocessor in the event of any pre-existing
exceptions. A floating-point register to memory move
(op-class 001) operation is the only instruction capable
of generating a mid-exception primitive. It is detected in
the last read of the response register during instruction
execution because the MC68881 performs the’ floating-
point calculation and releases the main processor only
after the data transfer to memory. With the memory to
floating-point register (op-class 010) or the floating-point
register to floating-point register (op-class 000), the main



BUSY
15 14 13 12 11 10. 9 8 7 6 5 4 3 2 1 0

010/1 Iol o \ 1 I o I 01 01 01 0 I o I o I o I o I o

*TRANSFER MULTIPLE COPROCESSORREGISTERS

TRANSFER MAIN PROCESSORCONTROL REGISTER
15 14 13 12 11 10 9 8765432 1 0

[ CA IPCldrl Oll[l10 1110101010101 01010

Figure 9. Coprocessor Response Primitives (Sheet 1 of 2)

MOTOROLA AN947/D

,.



. .. . .....”. . . . . . . . . . . . . . . . .

. . .

TRANSFER TOP-OF-STACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA IPCldrl Ollllll/ 01010101010[11 010 1

1 = Out of Coprocessor 001 = Data Alterable
OIO=Memory Alterable

D/A: O= Data 011 =Alterable
1 = Address 100 = Control

101 = Data
* Supported by MC68881 110= Memory

111 =Any Mode Allowed (No Restrictions)

:,,
D\ Rgure 9, Coprocessor Response Primitives (Sheet 2 of 2)



processor is freed to execute the next instruction as the bit of this byte represents a type of coprocessor detected
coprocessor performs the requested operation. exception. Figure 10 identifies all coprocessor detected

The save, restore, and move multiple instructions do exceptions, their corresponding vector number (passed
not generate exceptions. to the MC68020 in an exception primitive), and their po-

sition in the ENABLE byte. Two exceptions are not rep-
resented in this b~e: the protocol violation and the illegal

SOFWARE TO EMULATE THE coprocessor command. This demonstration software ig-

COPROCESSORINTERFACE nores all take exception responses from the MC68881
(generated by/to the conditions specified in the.~WBLE

DEFINITIONS AND ASSUMPTIONS byte) which reduces the overhead required ~~f~~~~ec-
ognition in the software. An exception prim~~i~~~ due to

In order to utilize the floating-point coprocessor in a a floating-point operation, will be genq&@$~&~ly if the
MC68000/MC68008/MC6801 O system, a software emu- MC68881 records an exception and th,$ %$?~~ponding bit
Iation of the coprocessor interface must be developed. in the ENABLE byte is also set. Th~~~a~&xception pri-
There are two possible methods of software emulation: mitive cannot be generated if thg~wf~ condition ($00)
1) in-line code such as macros or subroutine calls, or 2) in the ENABLE byte is neve[ ~~r+@ by the user. This
the M68000 F-line emulation trap. eliminates the need for mo~~f&ring the response register

The coprocessor must reside in adifferent address space ~ for pre-instruction or rni@\,~~*tion exceptions, If a co-
than in a MC68020 system. When the MC68020 accesses processor-detected ex@o@i~# occurs, it will never be de-
the coprocessor, it does so in CPU space by outputting tected by the main @~&@or.
a 111 on the function code lines. The equivalent function Note that two c~~essor detected exceptions, the

{!!?..*.?r:+l.

codes generated on either MC68000, MC68008, or protocol violalid$ an%the illegal coprocessor command,
MC68010 signify an interrupt acknowledge bus cycle, i.e. are not rep$~~~$f$dby a bit in the ENABLE byte. A pro-
these processors do not implement CPU space. Thus the tocol viol~to~,o~curs anytime communication between
MC68881 must be accessed as a peripheral with the co- the m@4:~~@&essor and coprocessor is improper and is
processor interface registers memory-mapped in data rep,~rte~~~y the MC68881 as a mid-instruction exception.
address space in these systems, not in CPU space. Ati’%~~gal coprocessor command is a coprocessor com-

To accommodate the practical use of this application, ~;mdrnot implemented by the MC68881 and is reported
the demonstration software will perform a floating-point t$,,~~~~ pre-instruction exception. Therefore, by not checking
instruction in the fastest way possible while not violating’&&~for exceptions, a protocol violation or and illegal copro-

the safety provided in the IEEE standard and the MC68881 ~ ““3 cessor command may occur without being detected,
TO do this, a number of factors are first considere~. Th#’ Another consequence of the previously mentioned
interprocessor protocol used. with all instrucQ,~~%J~pe simplification is that the program counter will never be
classes may be minimized to include only thoq~cking requested of the main processor if exceptions are dis-. .2>;:..*vi>
mechanisms necessary to perform the basi~~n~{.on, The abled, The PC bit of the responses will never be set if the
most significant simplification is to rest~~~~~~e:@seof the bits in the ENABLE byte are not set. Therefore, the over-
ENABLE byte of the floating-point co~$~~~gister. Each head for testing of this bit can be saved.

‘.,.,.,’~..“’i)i*-t3,:$,$,,, +“*...,:$-
,y*~ .’$$*,,
\t \~

,&>$;~p$
,~. 14 13 12 11 10 9~, ,i. 8

ENABLE BYTE ~i~i)’$ >’#SUN SNAN OPERR OVFL UNFL Oz INEX2
~*.\?,, INEX1

\ ,,:!}.%.+):,.. ,*
.,.$’”,..,\.~,,,,.

,,.EfiiB$%$* “ECTOR NUMBER VECTOR

4 ?.~@lON
OFFSET

DEC HEX OEC HEX
ASSIGNMENT

IBIT.:!**,,..<tl..,
.:,i. .,..,,!,..)!,<~+;... ,.l,,:’,+$

:,$ ““~wSUN 48 $30 192 $Oco BRANCH ORSETONUNORDEREOCONDITION
,b.\\\ ‘::.,,

.f.i$,,<$~ *\“’’”*$> INEXVINEX1 49 $31 196 $OC4 INEXACT RESULT
‘~’~l.ls..y:’~$~k+,

$;+,.\ “:%’> DZ 50 $32 200 $OC8 FLOATING-POINT OIVIDE BY ZERO
~$~p’a+.

UNFL~,.~.. 51 $33 204 $Occ UNOERFLOW

OPERR 52 $34 208 $000 OPERAND ERROR

OVFL 53 $35 212 $OD4 OVERFLOW

SNAN 54 $36 216 $OD8 SIGNALING NAN

NONE 11 $OB 44 $02C F-LINE EMULATOR

NONE 13 $oD 52 $034 COPROCESSOR PROTOCOL VIOLATION

figure 10. MC68881 ENABLE Byte and Coprocessor Exceptions



IN-LINE CODE, MACROS, OR SUBROUTINES cases, more information. This data is ~assed to the macro

The first approach discussed is the one to directly drive
the MC68881 as a peripheral from the user program in
user data space. This approach is used when speed of
the MC68881 instruction execution is more important than
upward compatibility of the object code. Two methods
are available to drive the peripheral in user data space:
in-line code (macros) or run-time libraries (subroutines).
The trade-off between the two approaches concerns time
versus space. Each time a macro is used the length of
the source code increases by the size of the macro. When
a subroutine is called, the overhead of the subroutine call
and the execution of the RTS instruction must be in-
curred. No F-line trap is taken in either method, which
saves the time to perform the corresponding stacking and

instruction decodina.

by parameters. An example of a general instruction class
macro call is:

MACRONAME FUNCTION, SOURCE, DESTINATION
MACRONAME specifies the method of operand trans-

fer, the FUNCTION is the general operation to be per-
formed, the SOURCE is the location of the source operand,
and the DESTINATION is the location of the destination
operand. Different macros request different ~~$~.~ation
of the user. For instance, the FSAVE instr~$~~~:~dhly re-
quires one parameter to be passed to ,~$~,,~~cro. Basi-
cally, each macro follows a similar for~at~~q~’~s described
in Functional Description. The met@o%~~@y of these ma-

cro definitions can be employ e,d,{~~$$fi~.programmer who
wishes to develop a separate.J@a~&~or each instruction,

“$~:,.,{*..,.4,,..
“4

Macros allow the coding of a repeated pattern of in-
.,‘$,.t.’t~,,...*.>~-,..,~;.:,,,...,,1,1,~.$$

structions which may contain variable entries at each
Functional Descripti~ X?S

,4:’,,),j~.-$
iteration of the pattern. By incorporating the use of ma- The following pd~~~$$hs provide the programmer with
cros with conditional assembly instructions, some of the information on figw~ use the macros. All of the macros
necessary floating-point instruction decode can be done for the gen,@~ /,n&fruction which transfer a source op-
during assembly time, reducing the run-time overhead. erand to,,:~~$~~b~focessor (move-in) are listed below:
Assuming that the assembler used has the ability to pass M$,M~~~B Function, SourceEA,FPn
parameters and manipulate them within the macro dur- ~~~tiEGW Function, SourceEA,FPn
ing assembly, the programmer need not generate the ,, WFMREGL Function, SourceEA,FPn
code to parse the floating-point instruction to detect the +,: tiEMREGS.t\/i:.+‘.’< Function, SourceEA,FPn
addressing mode used — it is passed directly by the ma- ~,rw’$i+* MEMREGD Function, (An),FPn
cro into the assembled code. Subroutines can also act a%~,%k.,,$;~ MEMREGX Function, (An),FPn..*, ~.,,.,...
an extension to the in-line routine to perform. functi-i$, MEMREGP Function, (An),FPn
common to each instruction type (exception handl!n@ They only differ by the precision of the data transferred.
routines, error checking routines, etc.). The maj~ adti$n- Each macro of this class transfers a source operand (spec-
tages of using these methods over the F-li~$R~ap ap- ified by SourceEA or (An)) of a specific precision to the
preach are: 1) the time saved by not ta$~~@$$~e’F-1ine MC68881 and performs the operation specified by func-
trap, and 2) the time saved by assembl~,k~rn~~~nktruction tion. A list of the functions describing the supported
decode. .. -}>.~$,:<.~ ~.$**?Y:<l,‘*.:}~$. MC68881 instructions and their functions can be found

This application note includes sa~w;~ ‘for the macro on lines 25-61 of the EQUATE table of the demonstration
approach to drive the code in u~er:~~~$~space. The same software found in APPENDIX A MACROS.
code would be pertinent if i,m~wnting a run-time li- The macros which transfer data from a single floating-
brary approach. .,:?

i$~, ii point register to an effective address (move out) are:

There are different wa~~~{~efine the macros to drive REGMEMB FMOVE,FPm,DestinationEA

the MC68881 depeq$~~~aes the particular application. REGMEMW FMOVE,FPm,DestinationEA

The ideal method ti~/.$be to write a macro supporting ~ REGMEML FMOVE,FPm,DestinationEA

each floating-po,~’i~nstruction employed to achievesource. - REGMEMS FMOVE,FPm,DestinationEA
code compati~~~,,~ith the MC68020. In order to support REGMEMD FMOVE,FPm,(An)

the cornp!~,~,~&68881 instruction set, the library of ma- REGMEMX FMOVE,FPm,(An)

cro defl~]k{~s ‘would be quite large. For conciseness, REGMEMP FMOVE,FPm,(An), [k-factor]
$?i.,,

mult~~%,,&o$rocessor instructions are consolidated into The MC68881 FMOVE command is the only MC68881
sinq~e $hro instructions, collected by the method of instruction supporting this direction of transfer. These

.@~~’~%d transfer required of the instruction (located in macros request the passing of the instruction as a pa-

‘3’&*NDIX A MACROS), As an example, all MOVE-INS, rameter to be consistent with the other macros. The k-

‘$$~~VE-OUTS, etc. have their own macros corresponding factor, requested by ‘REGMEMP, may be passed in data
Y to their res~ective directions and ~recisions. Most register DO or as immediate data. Thus:

MC68881 instructions are supported; but source code - [k-factor]= DO
compatibility with the standard MC68881 instruction set
is lost due to consolidation of specific instructions into [k-fa;;or] = #xxxx
single macros. The conditional trap and the move mul- A k-factor in the range + 1 to +17 indicates the desired
tiple coprocessor sy5tem register instructions are not in- number of significant digits in the decimal mantissa after
eluded in this example set, conversion to packed decimal format. A k-factor in the

Every macro requires at least the same amount of in- range -64 to O indicates the desired number of significant
formation supplied by the programmer as the repre- digits to the right of the decimal ~oint in a fixed-point
sented MC68881 floating-point instruction and, in some fo;mat. -

AN9471D MOTOROLA
11



The general instruction macro which performs “floa- Iines 67-98 of the EQUATE table found in APPENDIX A
ting-point register to floating-point register” operations MACROS. If after execution, the condition is satisfied, the
is: I macro will cause a branch to label,

REGREG Function, FPn,FPm,[FPq] The two macros which support the MC68881 decre-
Since the MC68881 performs all data manipulations in ment and branch and the conditional set instructions are:

extended precision (no user-specified precision), only FDBCC Condition, Dn,Label a’
one macro is needed to support these general instruc- FSCC Condition, Label
tions. The new parameter introduced, [FPq], supports the In both macros, the condition and label para~eters
one special case general instruction’’FSlNCOS” which serve the same purpose as those of the FBCC m~@+i~he
generates the sine placing it in FPm and generates the conditions are listed on lines 67-98 of the EQW’~i~t&ble
cosine and placing it in FPq. found in APPENDIX A MACROS. Note tha&@q~$FDBCC

The constants supported on-chip by theMC68881 are cannot be equal to DObecause it is used ?se h~;~ register
available to the programmer from the coprocessor ROM by the macro. Any other data registes ~~~$e used.
with the macro: The save or restore of the interna~~” i$visible state of

FMOVEROM #CC,FPn
CC is the hex number representing the constant to be

the coprocessor is executed by $H~’~~ros:

FSAVEST – (An) “$$k$$$
accessed. A list of the constants and their corresponding FRESTRST (An)+ ‘ ‘“~.
identification numbers is found on lines 660-681.of the

%$...,.&

EQUATE table in the demonstration software found in
To ensure proper rest~~~~~~of the MC68881 state, the

APPENDIX A MACROS,
FRESTRST command$,$~~$be used only on data stacked

The two macros which move data into or out of the
by the FSAVEST cqw*,?~. One exception to this rule is
for a software ~e,se~.~ software reset of the MC68881

coprocessor control, status, and instruction address reg- occurs if a nu~~~~~j$ format word is stored on the stack
isters are:

MOVINCSI SourceEA,Register
and then r<~@?~ into the MC68881. This can be used

MOVOUCSI Register, DestinationEA
by the qpd~tj:~~ system to initialize the MC68881 when

MOVINCSI moves data into the control, status, or in-
startin@~~new task.

~+\\\~,’.,,y
struction address registers, and MOVOUCSI moves data ,t~*...::t

.+,,
out. The register field is specified by CONTROL, STATUS,

,,~..~.,~.:.. .ts::,,

~,$~h~ry of Operation
or IADDRESS corresponding to the register to be trans-
ferred. t:$~~~~~~he following paragraphs provide information on how

As the M68000 microprocessors use the MOVEM in- *5 to develop macros for the user who will either create his
struction to move multiple registers into and out of~ern~ own, or need to modify the demonstration software to
ory, the MC68881 also supports moving multiple$t$~~g- suit a particular application. The coprocessor recognizes
point registers. The macros which suppotithe ~~went a)

,~:; ‘
each coprocessor instruction by the specific bit pattern

of multiple floating-point data registers ar$~J ~‘+$>,. written to the various coprocessor registers. The save
FM OVEMMR SourceEA,fpO,fpl ,fp2,.@:~$,@fP5, instruction is an exception because it is initiated with a

fp6,fp7,Postincrement ,<~::.y.,.~~~.\~,...ek read from the save interface register. For each coproces-
FMOVEMRM fp0,fpl,fp2,fp3,fpA~%~ sor instruction type class, a unique format for the bit

fp6,fp7,DestinationEA, Pre+$$&~,$nt pattern exists which is the basis for instruction grouping
Each parameter of the fpO, f@~l...@7 string ,represents into macros. A detailed description of the macro devel-

the selection bit for that fl~W~~~&nt register. If a reg- opment as well as a general discussion of each type in-
ister is to be moved, the,Q,Jfi$,<.$&rresponding parameter- struction class follows.
in the macro call must ~,,s~to a one (otherwise, thebit:. All macros are developed following a simple protocol:
must be set to a zer,@]:If t%~programmer:decidest ouse. 1) know the bit pattern of the information to be written
the indirect addr$~{$~iwith postincrement mode in the to the coprocessor (the instruction to be performed) and
FMOVEMMR q~~%,’?hen the postincrement field must write it to the appropriate interface register, 2) test for
be set to a Y$~~~~%ise, this parameter must be set to a -the known possible responses from the coprocessor, 3)
N. The sa~~~~~~em applies to the FMOVEMRM macro perform requested operation (if any), and 4) test for the‘-*.;h
with ra$~kqt?$o the predecrement field (Y if addressing release of the main processor. If it is necessary to add
mo$@j/$~~~$d, N if not). exception detection, the programmer must add sofiware

w~~b operation or synchronizing instruction is sup- to compare the response to the appropriate pre-excep-
&@~~&by the macro: tion or post-exception bit pattern and call a user-specified
‘~ ~NOPP exception processing macro or subroutine if the result is

No parameters are necessary to perform this fu nction. positive.
Only one macro is needed to support the branch in- Each- MC68881 instruction follows a specific protocol

struction class, the conditional branch: starting from the write of the operation until the receipt
FBCC.[Size] Condition, Label of the null primitive. MEMREGn (n=B, W, L, S, D, X, P)

The size specification allows the macro to distinguish and MOVINCSI follow the sequence shown in Figure 11.
between a long branch and a short branch. If the size is REGMEMn (n= B, W, L, S, D, X, P) and MOVOUCSI follow
not specified, the default is long. The user must specify the sequence shown in Figure 12. Instructions repre-
the condition to be tested in the condition field. A list of sented by these REGMEMn macros generate at least one
the conditions and their corresponding label is found on null come-again response after the initial write to the

MOTOROLA AN947/D
12

, ,,*,.r/,*-7,7~7--
,.

,’ .,,.



..,...- .

@

B ‘

.,,

T 1

WRITECOMMAND WRITECOMMAND

REGISTER REGISTER

~,
NULL
COME-AGAIN

EVALUATEEAANDTRANSFER
DATATOCOPROCESSOR/COME-AGAIN DAT~F~W:#OPROCESSOR/COME-AGAIN

,
EVALUATEEA

TRANSFEROATA

WRITEOPERAND
REGISTER

,i
,F~}

.,S.,,:,...::$~
~*,~>:,.$/i9’.+. . .,.,,

NULL :l?.\$by?$$ NULL
COME-AGAIN >.~r,,..w:),<: COME-AGAIN

.‘“’4/;‘~>!<:.$,r.t;
““% ?

,>~,
..~~.. ,-’

....

..*+>
?..

Figure 11. Move-In S~,~~~$$ ‘“ Figure 12. Move-Out Sequence
:+,* *?,
:1,($,

command interface ~m$~~o ,allow. the coprocessor to ‘result in a specified floating-point register. The macro call
perform the specifi~,,peration before the transfer’ of takes the form:
data tb’ memory.Y,~MO~EMMR and FMOVEMRM’follow
the protocols @~j@ Figures 13 and 14, respectively. The MEMREGW Function, SourceEA,FPn

demonstr~iw~o’hare only supports the static forms of The funct~n, SourceEA, and FPn are all parameters
the inst~~ti~.e. the bit mask is transferred in the in- passed to the macro. Function is the operation of the
struct~&RjfMer than in a main processor data register MC688814nstruction, and FPn (n equals O-7) is the specific
(as~n t~~dynamic form). Thus, Figures 13 and 14 rep- floating-point register used. Both of these parameters ~

.tm~~~nly the static forms of the move multiple floating- represent a binary bit pattern. Thus, the need for an

~*~~fi~ re9ister instructions. The REGREG macro follows EQUATE table arises. An “EQU” statement (refer to the
~~.~e sequence of Figure 15. The FDBCC, FBCC, and FSCC M68000Assembler Manual) defines a symbol as a binary

‘; macros basically execute the same code exc~~t for the value when referenced anywhere in the source code. In
function to be performed after evaluating of the result of the EQUATE table (lines 25-61 ) found in APPENDIX A
the conditional test as seen in Figure 16, Figures 17 and MACROS, all general floating-point instructions are as-
18 represent the protocol followed by the FSAVE and signed the appropriatebit pattern (e.g. FMOVE EQU $00)
FRESTORE instruction, respectively. to represent the extension field of the command word in

The macro detail will be explained by discussing an Figure 8. Also, as seen on lines 119-126, each floating-
example of a general coprocessor instruction, the MEM- point register (FPn) is equated to its corresponding nu-
REGW (lines 435-47o) macro. This macro performs a merical value (e.g. FP6 EQU $06). The other parameter

9

floating-point operation on a word datum at an effective passed to the MEMREGW macro is the effective address
address pointed to by source EA add~ess, and leaves the (SourceEA),

>.

AN947/D MOTOROLA
13

..,2:.:,..Y.....,,..,:.,,..:.. ,.,,. ,1~ ,.



7 START

T

START

m m

@

NULL COME-AGAIN

TRANSFERMULTIPLECOPROCESSORREGISTE
TO COPROCESSOR/COME-AGAIN

READREGISTER
BIT MAP FROM

REGISTER SELECT
REGISTER

I

NULL COME-AGAIN

Rgure 14. Move-Multiple-Out Sequence

Sip4~~tarneters are separated by commas in the for- address mode. This test is done by comparing this pa-
m.&~~~~!~ese macro calls, the indexed register indirect rameter (’”4) against a null character string (“). If a fourth

,;~~~.~qffsetaddressing mode, (d(An,Dn)), cannot be passed parameter is present, a separate routine (lines 461-469)
~YasingIe parameter. The comma between An and Dn will be used to combine parameters “2 and “3 to recon-
c~uses the assembler to see this effective address as two struct the effective address parameter.
parameters; Therefore, the macro will be passed one ad-

Once the assembler has chosen which routine to as-
ditionai parameter for this case. Anticipating this case,

semble, the next task entails developing the command
when four parameters are passed in, the macro simply

word shown on line 453 of the listing:
recombines the appropriate two parameters and recon-
structs the effective address as a single parameter. The MOVEM.W

first line of this macro (line 452) is a conditional assembly #$5000 +(”3<<7)+Al,MC68881 +COMMAND
command where the assembler tests for the occurrence This task demonstrates how the command word is
of a fourth parameter, signifying the use of the indexed

@

,<.}’,
formed for all the effective addressing modes except the ‘/

MOTOROLA
AN9471D

14

,., ,.. . .. ... . .... ..... ,,,.,.....,.,.,<,..r..,-...,.-
,’



,7START

7[

START

NOT READY

I WRITE COMMANO
I A’

TO SAVE
REGISTER

NULL COME-AGAIN

bMAIN PROCESSOR
RELEASED

Figure 15. Register/Register Sequence

Figure 17. Save Sequence

indexed modes. The assembler, instructed by the arith-
metic operator +, adds the three fields to generate the
proper command word. The immediate data is the com-
mand word developed by the addition of the isolated
fields seen in Figure 8. The command word base, 5000,
represents the op-class 2 and data format for a word
operand (RX), Each macro for a general instruction will
have a unique command word base (shown in Table 1)
specifying the op-class and data precision. A good un-
derstanding of the command word structure in Table 1
is helpful in developing general instruction macros.

The second field, Ry in Figure 8, is added to the com-
mand word by the assembler and represents the number
of the floating-point register used in the transfer. This
parameter is passed to the macro by the programmer as
the third parameter, FPn. The symbol, <<, causes the
assembler to shift the value of the third parameter to the
left seven bits, placing it in its proper position in the
command word.

Figure 16. Branch and Conditional Sequence. The third field of the summation is the extension field
which specifies the binary representation of the instruc-
tion to be performed, These representations are shown
in the demonstration software in lines 25-61,

Note, when the addressing mode is indexed, the ex-
tension field remains the first parameter passed to the
macro, but the Ry field becomes the fourth parameter



‘{

. . . . . .. -...,, ., . . . . . . . . . . . . . .. . . . . .. . ... . . . ..... ... .—-.

occur because exceptions are not allowed. By only testing
the response register (line 454) for the null come-again

, ($8900), the main processor will pass the data when it
reads any response other than the null come-again re-
sponse.

f This macro, as well as all other macros except FSA-
m>sa;

RESTORE FORMAT WORO w!
VEST and FRESTRST, must test the response register for

FROM MEMORY
the coprocessor release of the main processor, This serv-

WRITERESTORE ice protects against spurious protocol violations. ~tocol

REGISTER violations are unexpected accesses to the ~,m in-
terface registers. For example, the coproc~~s&Rtiay be
expecting data to be written to the ope~,$~~~~ster but
instead receives a write to the comm~&~,F~%ter. A spu-
rious violation occurs when an ex~c@d*##gister access

NULL occurs sooner than expected in ,g~~?w~ where the pro-
cessor and coprocessor are r~~ni~g at different clock

speeds. Since exceptions a{e~ssd~ed to be disabled by
the macros, the CA bitij~~$~hitored to determine the
coprocessor state, W&R+C~*$s set to zero, the main pro-.<?:~.~.,”
cessor is released. -%b~~fd~lowing instructions perform.8,.. “t:., I
this function throu~~wt the macro definitions:

RESTORE C( N ULRELtt+~*}TST% MC68881 +RESPONSE
COPROCESSOR “

STATE IN COPROCESSOR
.,<,,yf:ywl.s “tit NULREL

In surn~a~~. fiIs example defines the sequence to be

WRITEOPERANO execu&~d,Jrfi#&fl macros of the general instructions op-

REGISTER cla$s O$~t&Eachmacro causes the main processor to write
th&~ove-in operation to the command register and to

.~~~jd’’~%e response register until asked to pass the data,

~~,f~~.~~r evaluating the effective address of the data and
y~,~~iwrlting it to the operand register, the main processor

~~ rereads the response register until released by the co-
.> .:$?) processor,

.,+$’$4$,, The packed BCD, double precision, and extended pre- :.
figure 18.Restore Sequence .:+w$~i,”s ocisions operations would require the use of several other .?$: “

A,G?*$’+R*t:.* conditional assembly instructions to support all the ad- “
and is accommodated by line 462. W~?~&&g the un- dressing modes that the byte, word, long word, and sin-

‘ i,,’.ik,,xd.
dexed addressing mode, the assemblg~,~~~s to recreate gle precision macros allow. These instructions are
a comma (in the indexed format),+~~%+’~as not passed necessary due to the fact that multiple accesses from
with the parameters. In line 46~4#W~&ma is placed be- memory are required to transfer data through the 32-bit
tween the second and third ~ra~eters passed to the wide operand register. To simplify this application, these
macro recreating the prop$P7&#.J~” three precision, MEMREGD, ME MREGX, and ME M-

The command word i&&@@@~swritten tothe absolute REGP,,are only supported by the address register indirect
address of the coproc~so~jcommand interface register; :. ~~addresk’ipg mode. The other addressing modes can be
The demon stratio~,soft&ke uses .MC68881 to represent. ~~ implemented by following the demonstration software
the base addre%’?~~~~& coprocessor interface registers as an example.

in data space.~$,~~c~~c interface registers are referenced The move-out macros (REGMEMn, n=R, W, L, S, D, X,
by adding t~~#3~~acement of that particular register to P) of op-class 011 of the general instruction class are
the base ~X*$&. Consequently, each register has a sym- structured in the same manner as MEMREGn (n=R, w,
bol eqH%t&@ to the appropriate displacement in the L, S, D, X, P). Coprocessor distinction between the move-

EQU@%&,:y&ble (e.g., COMMAND EQU $OA) on lines 104- in and the move-out operations result from the different
I ~~cq$.,:,, op-ciass specifications within the comman,d word.

‘~#~~e that if the MC68881 is mapped into the highest The one difference between the two op-classes is in

~$9e or the lowest page in the address map, the macros the packed BCD macros. This difference is due to the
can use short absolute addressing mode instead of long nature of the MC68881 FMOVE out packed BCD from the
absolute addressing mode. This will allow the macros to coprocessor instruction which requires the user to submit
assemble into smaller object codes and may execute faster additional information to the coprocessor: the k-factor.
since the processor spends less time fetching extension The k-factor is passed to the operand register from either
words. a data register or as immediate data in the command

Once the command word is written to the command word. To be able to handle all data registers, the packed
register, only two responses can be read from the re- BCD macro would be extensive using elaborate condi-
sponse register: 1) null come-again and evaluate effec- tional statements. Therefore, the programmer is only al-
tive address and 2) transfer data. Only two responses will lowed to use data register DO, which fixes that part of



xREGISTERS

LOCATE
F-1INF PC

I
--------

J

A
Y.p,

ALL OTHERS

i

~ INSTRUCTION >

- BREAKOOWN \
FP REGISTER TO f

I MOVE OU

II

I I

+

9 Figure 19, F-Line Emulation Sequence

AN947/D MOTOROU
?7

.,,,.<.....,... ..... . ...---- ,,,.,,,< ..........



.. . .. . .

the extension field representing the data register as a The second type class to be discussed is the branch
constant. Thus, only one pair of conditional instructions instruction class which is supported by the FBCC macro.
is needed, i The main processor writes the conditional predicate

The REGREG macro supports op-class 000 which per- (CPRED) to the condition register and reads the response
forms a coprocessor register-to-register operation. No register until signaled to be released. Then the T/F bit of
services are needed of the main processor other than to the response primitive is examined, and if status indi-
submit the coprocessor instruction, Therefore, after writ- cates, the branch is taken.
ing the command word to the command register, the The FDBCC and FSCC macros’support the conditional
response register is queried until the null primitive is type instructions. Both macros follow the samq<~~tocol
granted. The several other conditional assembly state- as FBCC (i.e., write CPRED to the condition r<~~~~~fead
ments in REGREG support the unique general arithmetic the response register, and after being rel$<~kedl:perform
instruction, FSINCOS. Since this instruction requires two requested function if condition satisfied~+~~f$Q~f~e branch
destination floating-point registers for the results of the and conditional macros must moditiq ~~::~~egister which
operation (FPm and FPq), another parameter must be serves as a temporary variable, ~,m,<~e coprocessor
passed to the coprocessor. The conditional assembly grants the null release primitivqt,fti~%i~bit is also passed
statement tests for the existence of a fourth parameter. in the response. As the MC68JQ#~Y~@Snot expect another
To be able to support this instruction in the REGMEMn response register access, ti&$esponse is saved in DO so
and MEMREGn macros, similar procedures should be the CA bit can be teste@.,,@~% CA equals zero, the T/F
followed. An example is implemented in the MEMREGB bit is already availabl$~,~ ~~
macro (line 372-434). The no-operatioD ‘~a’w’”exists for the no-operation or

Op-class 010 with Rx equal to 111 represents the op-
.,*..:{..>\\*;.)>>.

synchronizing FN~,m5truction. It is a branch never in-
eration performing the access of the coprocessor con- struction. Th~,*in processor writes the second word of
stants (FMOVEROM). A command word specifying the the copro~%{tifitistruction to the condition register and
constant to be retrieved is written to the command reg- querieS,J$er~~POnSe register until released by the CO-
ister. Since no further services of the main processor are proce~,~~.’>+’
needed, the remaining function is to test the response ,@e ~$68881 conditional instruction not implemented
register for the release signal (CA equals zero). i$%,,conditional trap (FTRAPcc) instruction because the

Both macros, MOVINCSI (op-class 100) and MOV- #$W6&020 has these coprocessor traps, The trap instruc.
OUCSI (op-class 101) move the coprocessor system reg- $,~+&~@his not available on the MC68000, the MC68008, or
Isters. Each perform the same instruction sequencea~~Y~N the MC68010, To cause a trap from the users space in a
MEMREGn and REGMEMn, respectively, with the only ‘t MC68000/MC68008/M C6801 O system, the overflow bit in
difference being the value of the command wo[d. T#e the control register can be set, and the TRAPV instruction
move multiple coprocessor system register in~t!fiq~ions executed. However, the trap handler can not distinguish
are not supported by the macros.

.“~j:.:.L..‘*:.@,L{$$*. between the simulated coprocessor condition and the
The final op-classes of the general in$~+$~t~aps to be overflow condition that would normally use this trap vec-

discussed are those corresponding to ~~,@~@ement of tor.
mu [tiple floating-point data registersj$~W~EMRM and The final two coprocessor instruction types to be dis-
FMOVEMMR). Due to the nature o~~~$ M68000 Family cussed are the save and restore performed by macros
memory organization, the mag~$h~~,~ constructed dif- FSAVEST and FRESTRST, respectively. Only one ad-
herently. The user specifies wti~h @gisters are moved by dressing mode is supported in the macros. Several other
selecting the correspondiq&~&$tieter in the macro call, conditional assembly instructions, similar to those in the
and the coprocessor dq$q@$@ich registers are affected FMOVEMMR and FMOVEMRM macro, can be imple-
by the bit mask spe~~~e~ in the command word. The ,, mented to utilize more addressing modes. To initiate the
binary bit mask is$$q$rn&.by the. parameter list:.The list save sequence, the main processor reads the format word
is treated as a ~lk~$~~~of concatenated bits which is re- from the save register. This 16-bit register is reread until
quired by th}ff~*6%81 to represent the register select the high-order byte no longer contains a 01 (coprocessor

:.?..$:<,.*..\,?.
mask. busy). At this point, the length (in bytes) of the copro-“?$:,., ?:,,,>

Since t~$f&iing-point data registers are 96 bits wide, cessor data to retransferred resides in the low-order byte
three ,$~%~$hutive accesses of 32 bits each must be made of the format word. The main processor isolates this length

to,:~w~ the data. FMOVEMRM (lines 761-834) orga- and begins to transfer the data from the operand register
n-~is data so that the hiah-order bit is situated in (making long word accesses) to memory via the indirect

c~!w”-~rder memory. The copro~essor delivers FPOfirst (if addressing with predecrement addressing mode. After
‘&lected) and FP7 last, except when the indirect address- saving the invisible portion of the coprocessor state, the
ing with predecrement mode is being used. In which case, main processor stores the format word at the top of the
the coprocessor sends FP7 first and FPOlast so that FPO -stack,. in low-order memory, This assures proper resto-
is always placed in low memory. Therefore, the condi- ration of the MC68881 state when the FRESTRST macro
tional test for the predecrement mode is required to re- is executed. In FRESTRST, the main processor writes the
verse the order of the bit mask sent to the coprocessor. previously saved format word from memory to the re-
The FM OVEMMR (lines 835-881) macro moves data into store register, reads the restore register, and begins writ-
the registers by moving FPO first as the coprocessor sl- ing the stored data to the operand register until the proper
ways expects FPOfirst. The FMOVEMMR macro does not number of bytes has been transferred. Indirect address-
allow the predecrement addressing mode. ing with postincrement addressing mode is used.

.

1

MOTOROLA AN947/D
18

., ..?-~;flfl..,-+rfl.-,,., ,
,.



.... . ,..,

In summary, the performance of the MC68881, driven F-LINE EMULATION SOFTWARE) can be used on any
as a peripheral in a MC68000/MC68008/M C68010 system, M68000 system which allows direct access to user spaces
is enhanced by using the macro approach. This is pri- from the supervisor state,
marily due to the fact that most of the instruction decode
is done at assembly. This in-line code is upwardly source
code compatible to a MC68020 system via re-compilation
or reassembly. For instance, the following code provides Functional Description

an example of how to alter a macro (for reassembly) in If the coprocessor instruction were decoded b~the trap
order to acquire floating-point source code compatibility routine to determine the addressing modes ~~~wto ac-
when porting the user software to an MC68020 system

(eq~Et;~E&Bmust be deleted):
cess the instruction operands, then a signifi~~~~~%head

would be incurred with a commensurate Id$s &3@erform-
MACRO ante. Hence, the demonstration softw~F~’:~~Stimes a sin-

‘*.+.., $,’

“1.B “2,”3
ENDM

gle addressing mode will always be~y%~.$nis is register
indirect, (AO). If the programme$~@#:,Res to use other

The macro call will remain the same. For example, this addressing modes, this can bf~”%&~@plished by simply
macro call: performing: “?,$,,,,,$

MEMREGB FADD,DO,FPO LEA EA,AO ‘~ “p
expands to create the following MC68881 floating-point

!~:$,i.,~.>>
before executing the fl~{~$~%oint instruction. Note, the

ADD source code when used in conjunction with the pre- LEA instruction will ~~~sw~kk when using PC relative ad-
vious macro definition: dressing mode in, ~q~~drn that splits program and data

FADD DO,FPO spaces (althougti~~~% rarely encountered). Also, as im-
A few consequences of this technique exist: 1) the ob- plemented i~me rn~cro approach, no error or exception

ject code is not MC68881 replaceable because if the code checking+~~,wmed by the F-line emulator approach.
were moved up to a MC68020/MC68881 system, the In the ~xa~~les, all memory to floating-point register
MC68881 would still be a peripheral processor in user opec~~@@%fe supported including FMOVECR and all FPn
data space (to benefit from the MC68020 coprocessor t~$FP~lqperations.
interface, the macros would have to be changed and the ,$,s.$

:~,~i,.
user program reassembled), 2) a macro library and/or <*Yt&, ‘{
other routines are required to contain the macro soft-s ‘?.......~

. “}:’’~heory of Operationware, 3) the full environment IS not presented to the um&s+aJ, ,
as not all addressing modes nor the FTRAPcc instruction’:+$. The following paragraphs provide information for users
are supported, all checking done by the MC6804Q is #ot creating their own F-line trap emulations. The read-write
implemented (e.g., illegal format errors), and,.~d’%tions protocol of the move-in macros (Figure 11) is imple-
are not enabled, 4) the MC68881 is not an..t$~$~~ehdent mented in both the protected and unprotected forms of
operating hardware device because peri,@~~a~~~ access the emulation. The F-1ine trap emulation differs from the
is used, and 5) the demonstration so~~~F<~@es not sup- protocol of the macro approach. In the emulation, after
port the M68000 immediate addreh~~~%o-de. the main processor has transferred the data to the co-,?<*,‘**,..<:

>>,:~..P.“..Jj.\
processor, the final read of the response register is no

?$/.i ri. ‘‘.~.~>,,i,<.~,.><.... longer needed. Sufficient time will expire between any~,:
F-LINE TRAP SOFTWARE:,@@~lON

two consecutive floating-point instructions due to the

~j, ;“.;,+ overhead of the F-line trap which ensures that no spu-
As an alternative t~~~~~~itiacros or. in-line code, an.,. rious protocol violations will occur.

F-line trap emulat~t~,~uld be implemented-in an ~~~ A flowchart of the unprotected emulation version is
MC68000/MC68Q8~J,MC~Ol O system when the user’ re- seen in Figure 19. In the protected version, the same
quires the user.~’w~$&m object code containing MC68881 sequence of events occurs with the exception that the

instruction~;t~$$~’ ‘hpward compatible to the MC68020 floating-point instruction and source operands are ac-
without ra&b@}ll’tng, reassembling, or relinking. By using cessed in user memory from supervisor space utilizing

this a$~hi~~%; the coprocessor will be driven as a pe- the MC68010 MOVES and MOVEC instructions. Only the
riph~ral Jtim supervisory space by supervisor software. unprotected version (APPENDIX C UNPROTECTED F-LINE

$@~w source and object code compatibility with the EMULATION SOFTWRAE) is referenced,

.j$,%~W81 instruction set can be maintained. When a coprocessor instruction is encountered, the F-

N::i~ecause some M68000 systems separate user and SU- line trap is taken. The location of the coprocessor instruc-
‘:~;$ervisor space, different types of emulations must be tion (program counter) and other information (depending

developed. This application note includes two examples on the main processor executing the instruction) is placed
of an F-line emulation of the general instruction operation . on the stack, The data at the program counter location

performed on data moved intothecoprocessor: the pro- ~~ (the operation word of the coprocessor instruction) is
tected and unprotected versions. The software for other examined to determine whether the instruction is a gen-
types such as move outs can be inferred from the ex-, erai type (line 25). If so, the second word (the command

amples given, The protected version (APPENDIX B PRO- word) is written to the command register (line 30). Then,
TECTED F-LINE EMULATION SOFTWARE) is used on the main processor queries the response register until
systems which segregate user and system address spaces. the coprocessor no longer processes the previous in-
The unprotected version (APPENDIX C UNPROTECTED struction (no null come-again).

AN947/D MOTOROLA
19

::$:!-,.,,-,..:,.,,J



Next, the op-class specified in the command word is The object code containing the MC68881 instruction is
examined to determine the main processor’s next action. upward compatible to an MC68020 system without re-
First, the main processor tests for the move multiple co- compiling, reassembling, or relinking.
processor registers (data or system) into or out of the The major consequence in implementing an F-line em-
MC68881 (op-classes with high-order bits set, e.g. lxx) ulation instead of in-line code is the time factor incurred
in lines 33-34. If found, the main processor would jump

@
by both the overhead of the F-line trap and the instruction

to a routine to handle this special function. This function decode in the trap routine. Listed in Table 2 are the clock
is not implemented in this application but is a straight- cycles required to perform the various operations using
forward routine. the two F-line emulations and the macro app~~aches.

Subsequently, testing for a floating-point register-to- Even with the overhead associated with the$:~i&~emu-
register operation occurs in line 35. In this case, no further Iation this approach offers a speed advant~~~~%r float-
services are needed of the main processor, and a jump ing-point software packages and at,~$&~~.@me time

to the RTE instruction is taken. maintains MC68020/MC68881 upw$,$,~:i~smpati bility.
Finally, a distinction between the move-in and move- Timings are based on a no-wait s~~:$’’s~$fem (four clock

out operations is made (line 37-38). (An additional routine cycle bus cycle). The MC68881 Q~.@@ is not taken into
can be developed to support the move-out sequence. )

,./.>:.,*,. !*... !*
account because the main pm:e~$of is released to per-

When a move-in operation has been identified,,the main form the next instruction @Jheti~er program while the
processor then extracts the precision of the external op- coprocessor executes i~s’$muctions. FMOVE is an ex-
erand from the command word. If the instruction is found ample instruction th,R~’?~&~d ‘be replaced by any of the
to be a FMOVECR (precision 111), the main processor general instructio@~!~$&Qding the move multiples).
immediately branches to the RTE instruction. Otherwise,

,:~..,),:$.,;<,..,.~..,,:.

the main processor branches to the small routines for
\,.*:,,~tt?ti..\*+

handling the respective data transfers. Since long words,
*j\$ ‘J

.,<\.$.$T..
>,+~%v CONCLUSION

packed BCD, single, double, and extended precision data ~,<p’$:<i:~$:-~,.~..

transfers all require at least one 32-bit data transfer, one Th~~&~l floating-point coprocessor can be utilized
routine handles all five data types (lines 54-56). Two other as,,a ‘~~~ipheral in a MC68000/MC68008/MC6801 Osystem
routines (lines 59-60 and lines 63-64) support the byte ,~:~either directly driving the device as a peripheral or by
and word transfers. After the data has been delivered to
the coprocessor, the main processor returns from excep-

~,,:~${fihlating the complete coprocessor instruction set. Either

.$:$$t:,,,@ethod, depending on the application, is sufficient to
tion via the RTE instruction (the instruction which CO~:&,$$~”” ..utlllze the high performance of the MC68881 and offers
pletes the F-1ine trap and re-entersthe user program).’’?$~~%v

In both versions of the F-line trap emulation, th,e w~Fk ‘
superior speed and versatility over floating-point soft-
ware packages, The macros or in-line code of this appli-

registers were stored at the beginning of the ro,~ti~e and cation provide a faster way to access the device for the
then restored prior to the exit. ,,,k.$:, i+;,, Q)

.P,‘

In summary, the F-line emulation trap is,@~;~&d when
users interested in achieving the highest performance of ~~ ..

f;!

the MC68881. Alternately, for applications that can trade-
the main processor identifies a coproq~~sk ~hstruction
by a hexadecimal F in the most-signif@~$t#~bble of the

off performance to achieve object code upward compat-

first word of the instruction (and ,:#k$&~t~e F-1ine trap).
ibility with MC68020 systems, an example of an F-1ine
emulation trap has also been included.

4.J> :~,,.J?ti,
,.>*}.‘~\:.+t,,l<l<:>>,~ ..,,, ,.>,

1
MOTOROLA AN9471D

20



APPENDIX A
MACROS

!
1
2 ******************************A************************************************
3* SOURCE@DE TO DRIVE THE MC68881AS A P~IPHERAL
4*

*

5*
*

TO NOT SHOW MACRO EXPANSIONIN THE LIST FIm DmTE ‘OPT~’ BEFOM *
6* AS_LY.
7*

*3
~~*~.*.*,.8,>,:t\*

8* TO SHOW THE Condition ASSEMSLYINSmucTIoNs IN TM ~CRO ~~sIo~:yW~;;t”
g* DELETETHE ‘OPTNOCL’(~TSD AFTER THIS MX) BEFO~ ASSEM8LY. ~ *4$$h
10 * .>i<kvs,~+.,,,:”~”

,$k>
~~” ***********************************************************************d*****>.~~y>

12 OPT N~L ,J.;Y,,,,~?,:.,1,!..

13
.. ,,,:...

OPT ~
~**’V,.*.,,,:~
~+.,.*$>,::s~>,.~’...~,t,

14 *****************************************************************#****i*********.‘~.?$

15 * f ~?~t,+::t

16 *
\\\“!>\. *

THIS IS THE EQUATEFI~ TO SUPPORTTHE~cRO%..m
17 *

*
TO DRI~’THE MC68881ASA PmIpm~f’’~’<&

18 *
*

WITH T~M68000 FWLY $k.*:’?(~;:~$:~~
lg * .... *

i?),.,.,;.::$,,*>-1::,:‘\*a~\\.. *
2~ ***************************************************,$:***a**********************

21 ,.v..\.

22
,),q...,:*\:>.::.$,.,,,+

**********************************************~*.*~:****************************
23 * THESE~ T~ INSTRUCTIONBIT PA_.~U@S
24 *******************************************&%W*2*%*****************************

25 ~OUE EQU $00
~t:<?:~:

Mom ..... .3:.,,
26 FINT mu $01 I=GER &\i} ‘
27 FSINH EQU $02 SINH

,p;+\t:<\.. .
,~J ‘>.~,

28 FSQRT EQU $04 SQUqk@~~;
2g FLOGNP1 EQU $06 ms$y$gy)
30 FETOXM1 EQU $08 [(E**~-1)]
31 mm EQU $09 ..Tti

56 FS~ EQU $26 S- ~ONENT
57 FSGLMUL EQU $27 SING~ MULTIPLY
58 FSUB ~U $28 S~TRACT
59 FCMP mu $38 comARE
60 FTST Mu $3A TEST
61 FSINCOS EQU $30 SI~TANEOUS FP SINE AND COSi~

9

62



. .. .. . -.-. -. —...-..-..-—..-_ . ..-..,..J.. .A-,.. ~___
— -..,

63 **************************************************************+*~**************
64 * T~SE ARE ~ -NICS USEDAS TNE CONDITION CODES FOR T~ *

65 * BRAN~ INSTRUCTIONS 1 *

66 *******************************************************************************

67 EQ mu $01 mum
68 NEQ mu $OE NOT EQUAL

@

..

69 GT mu $12
,.,

GREATER TN
.(

70 NGT EQU $lD NW GREATER TNAN
71 GE EQU $13 -TER TW OR EQUAL
72 NGE EQU $lC

~*\k.
NOT (GREA~ W OR EQUAL) .~$.~$>k~j:yla

73 LT EQU $14 =ss m
.‘**):..~~>ir!?,%%%>..:..,~.

74 NLT EQu $lB N~ LES TW
....

.,t...::}!.,~+~

100 ********************:*f4*#3*****************************************************
101 * T~E EXls@Wmm ~ OFFSETS FOR T= BASE ADDRESS OF *

102 * ~ ~>&& INTERFACE REGISTERS! *

103 **************i~$**`~***********************************************************
104 COWD EQ~; ~C*$OA C~ REGISTER
105 WSPONSE<{@~~WJ $00 =PONSE REGIST~
106 OPER i;$Q$; $10 OPERAND MGISTER
~07 coND,>;*ky&$i~ $OE CONDITION ~GISTER
108 ~p’’:~J:kLi~U, $04 SAW =ISTER
109 ~;~YOm EQU ‘$06 “RESTOW”WGISTER
llQ “~- EQU $14 =ISTSR SELECT
,+~&>:t@hOL EQU

*:t,.&%@YSTATUSEQU

$9000 MC68881 CONTROL WGISTER

,)R.’’?,;41S~D~SS EQU

$8800 MC68881 STATUS WGISTER

$8400 MC68881 INSTRU~ION ADDRESS ~GISTER
;::,.;:?14 ~IT EQU $0 TRUE/FALSE BIT OF T~ RESPONSE REGISTER... ....

~?‘;$,,,,,, “’w:f~115
.\*+*$.‘.1.s.,\..,.,
i:.,+, 116 *******************************************************************************

$..&:,,,}.,
.>..<~.~;.,,$,.117 *~!,s.> TWE EQUATES REPWSENT m FLOATING POINT REGISTERS *
.?:>:\\
!. Ila *****************************************************************h*hh***k******

119 FPo EQU $00 FLOATING POINT ~GISTER #0
120 FPl EQU $01 ,, ,, I* #1
121 FP2 EQU $02 ,, ,, I* #2
122 FP3 EQU 503 t, ,, 1, #3
123 FP4 EQU $04 FLOATING POINT mGISm #4
124 FP5 EQU $05 ,, ,, ‘, #5
125 FP6 EQU $06 ,, ,, ,, #6
126 FP7 EQU $07 ,, I* t, +7



..... . ... . . .. .. ... .. .. ..... . . . . . . .

127 ***************************************************************heeh+hhhhhhhhhh
128 *
129 *

*

MC68881 SINGUPRECISION FP-~G. VALUE TO MENORYOP~TION
130 *

*
*

131 * m~ INSTRUCTION,FPM,0
132 *

*
*

133 * WHERE: INSTRWTION-FP INSTRUCTIONNUEMONIC (I.E.FMOVE)
134 *

*
FPM- SOURCE FP ~IS~

135 *
*

~- DESTINATIONADDRESSINGMODE “’:\.:$,(,“
136 *

*
-,..},~,.\..,\\:;,.,,:h* ,~p>x.,,m,h

137 * NO REGISTERSMODI~D OR DESTROYED!
.**:+8...ii.,.:i.,

~:.*:.4.I.J.., ,...,...

@

161 ENDC
. ..+},*$$$,

162 ENDM ‘~?k“<“:J$*:,.>.,>.$.!,,
163 *******************,ti%*~~%+****************************************************

~,~.~.1”

164 *
,\zt+,+i>.,$;,

., ?*,f$?bi.!$,>..:
165 * M68884~$*h0~ ~NGTH FP-~G. VALUE TO WORY OP~TION

*

,.
166 * *:;,

*
‘1~:..J:,*,“.\.}.,.\\,,,

167 * ~,w$ ‘INs~UCTION,FPM,~

*

168 *
*

..~k.ii~
169 *

*
INf*~N- FP INSTRUCTIONmONIC (I.E.FMOVE)

170 *
*

:$”., FPM- SOURCEFP REGISTER~,1 * ,,,,<+,,::$$,a$$
*

‘*f’*+ ~ DESTINATION’ADD~SINGMODE
172 ,* ‘>~p,*$

*

17:,$’3> “
*

NO~GIS_”MODI~D OR DESTRO~!
1~f<’a{~,4+*’

*

,,.;~%g$;*
*

VALID ADDRESSINGMODES: DN, (W)+, -(AN),D(AN),D(~,IX)
~a~:Q,~3&6*

*

~.W, ~.L, (D,PC),D(PC,IX)
‘Q7if’’<~.77*

,,8..

*

~,:,..
*

,,,*,‘;’178 ******************************************************************************?,
i“~.i,.,,,;,::\..:’.\?’*..,3,,s.179 mGNEML MACRO.\i$~.’;?

.;:L,;YJW):5S180 IFC ‘\4’,”.. ,t?;;\>, IS ~=INDI~CT WITH IND~ING
:.y{~.:...i.i.*,.
‘:!:,,,;>\.$,> 181 MOVE.W #$6000t(\2<<7)t\l,MC68881tCO~ a. TO~G. OP~TION>,::),,,..
:+ 182 \@_ CMPI #$8900,MC68881+~SPONSEREAD ~SPONSE REGISn

183 BEQ.S \@N- ~ UNTIL EVALUATEEA AND TRANS~ r
184 * DATA
185 m.L K68881+OP~,\3 ~NG WORD TRANSFER
186 \@~L TST.BMC68881t~SPONSE IS RESPONSSNULL RE~SE?
187 W.s \@NuLREL =CH UNTIL ~~ ~~SE
188 ENDC
189 IFNC ‘\4’,” IS ~ NOT - INDI~CT WITH INDEXING

@

190 MO~.W #$6000t(\2<<7)t\l,MC68881KO~ MSM. TO w. OP~TION
191 \@~ CMPI #$8900,K68881+~SPONSE W mSPONSE WGISTER
192 BEQ.S \@NuLcA ~ UNTIL EVALUATEEAAWD TMSF~

AN947/D MOTOROLA
23

.,.,..,.......-I..,::,:,.<@;..,!.,,,,,.,.,,,,.,.,$,~ ,,, , .. ..... . .



. ..... ........ ..... ....... . ........ . ... ... ... .. .. . . . .. .._.. ... . .- . . .. ..,-..A, &_&4& &.-& ..L$._&-&!*. -& —-—*.a-. ,

193 ● DATA
194 ~~.L K68881tOP~, \3,\4 LONG WO~ TRANm
195 \@WL TST.B~68881tRESPONm IS =ON* NULL mmE?
196 ‘=.s \@NuLREL BRANCHUNTIL ~ mmE
197 ENDc

198 ENDM
199 ******************************************************************************
200 * *

201 * MC68881WOW ~NGTH FP-REG.~ TO MEMORY OP~TION *

202 * * “’:\.:$,(,“
203 * RE~ INSTRUCTION,FPM,~ * x~>**?&:3,:h

s
MOTOROLA AN9471D
24

....... .. ..... -..‘.,.- -.--,--.-.--,,-..:-,,,-,t~-w,.,-:.==-,--



@

259 * DATA
260 M.B K68881+OPER, \3 BYTE DATA TRANSFER
261 \@~L TST.B MC68881+~SPONSE IS ~SPONSE,~ RE=E?
262 M.s \@NuLREL BRANCH UNTIL NULL RELEASE
263 ENDC <

264 IFNC ‘\4’,’I IS ~ N~ - INDI~~ WITH INDEWING
265 M~.W #$7800t(\2<<7)t\l,K68881t~ MEM. TO REG. OPERATION
266 \@NULCA CMPI #$8900,K68881t~SPONSE READ ~SPONSE ~GISTER
267 BEQ.S \@Num ~ UNTIL tiUA~ EA AND TRANSF~

289 *
.,., ,.,:

~t,:
::{*\~yAY.lJ!,$..

*

290 *********************************<~*,*$*****************************************

291 m- mcRo ~.:*.’*
..,;

,.,,?y,.,,> ,:,.,, 313 * NO MGISTERS MDI~D OR DESTROYED!/,l.,,.,,\<,\,,-.,
\:,\\,$.\..,<,.

*

314 * *.,{,::
1’,. 315 * WID ADDRESSING MODES: (AN) *

316 * *

317 ******************************************************************************

318 ~~ ~CRO
319 MOW.W #$6800+(\2<<7)t\l,MC68881tCOmD MSN. TO ~. OP~TION
320 \@~ CMPI #$8900,MC68881tRESPONSE m ~SPONSE REGIS~
321 BEQ .S \@~ ~ UNTIL ~UATE EA AND TRANS~R

9
322 * DATA
323 M~.L K68881+OP~,\3 HIGH ORDER LONG WO~
324 M~.L MC68881+OP~,4\3 MID-ORD~

.



325 MOVE.L MC68881+OPER,8\3 Low Omm WORD

326 \@~L TST.B MC68881tmSPONSE IS WSPONSE ~ ~~E?

327 W.S \@N_ BRANCH UNTIL NULL ~E

328 ENDM I

32g ******************************************************************************

330 * *

331 * MC68881 PACKSD BCD FP-REG. VALUE TO MEMORY OPERATION *

332 * *

333 * m~ INSTRUCTION,FPM,~, [K-FACTOR] *

334 * *
.-:).t\\,

335 * ~: INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) * ‘.?>.,,‘.,t,.::!3.,3?!!,:;+..[.,,.,
336 * FPM= SOURCEFP ~ISTER

.’+::\
,$.!s‘.,.\J~

337 * -. DESTINATION ADDRESSING MODE ‘* ;$*:,..,~~ $.\ ,.’,?

338 *
t:,~.i+;li,:~.

[K-FA~OR]= OPTIONAL IMDIATE K-FACTOR .:p”y
>,,.,<.:,:,,

339 *

340 *

~,,tr~7+-*,.\~
***IF [K-FAaOR] OPTION NOT TAKEN, THE K-FACTOR MUST BE p~~D l“~:,i~~*“ *

.~{e
341 *

...,,l:\y,,>f,\?{!$,,,\,\ *
.:$.,,i~:i,,‘‘.,,.

342 * VALID’ADDWSSING MODES:” (AN)
*..\$,\..~f *~t.?...~$..

.::>,
343 *

-,),;,..
*

~i::~t,:.$:.
344 ******k*****************************************************&~&**************

345 m~ MACRO
,,{,~i~.::{:i~.~

~;i;~,,,,::4

346 IFC ‘\4’,’” IS K-FACTOR IN~~~_?

347 MOW.W #$7COOt(\2<<7)t\l,MC68881+COHD m:&~:p>~G. OP~TION

348 \@NULCA CMPI #$8900,K68881tmSPONSE m MSPOR w’@IsTER

349 ~Q.S \@~ ~ %$~=SFER MAIN PR=SSOR ~G

350 MOVE.L D0,MC68881+OPER PASS K~A~,~FRON Do

351 \@AGAIN WI #$8900,N68881+WSPONSE
352

-~w~SE REGISm
BEQ.S \@AWN

353 *

_~UNTILEVALUATE mE~IVEADDRESS

,.:~ -SFER DATA

354 MOVE.L E68881+OPER,\3 ..si:~.ORDER LONG WORD
355 MOVE.L MC68881+OP~,4\3
356

~~’’i61&O~~LONG WORD

MOVE.L M68881+OP~,8\3$.ii~;:~t~’HI~ ORDER mNG wo~
357 \@NUWL TST.B Mc68881+msPoNsE “rf~.? IS mSPONSE NULL ~=SE?,....,$
358 W.s \@~

t... BRANCH UNTIL NULL ~E

359
?T

ENDC ,,ri::“

360 IFNC ‘\4’,”
,!,,.’~.~,:{.

1.,,-.\>$,$

361

IS K-FACTOR IN INSTRUCTION?

MOVE.W #$6cO~~i~~S7)+\4,MC68881tCO~ m. To ~G- opmTIoN

362 \@NULCA CMPI #$890,&j~d~@81+~SPONSE - ~SPONSE REGIS~

363 BEQ.S ,$gp REREAD ~IL EVALUATE _CTI~ ADD~SS

364 * :~!).:,t,,$.\.$j, AND HSFER DATA

365
.-’.“~:’:~\*c

Mm.k:~w8881tOPER, \3

@.~:~C68881tOPm, 4/3

Low Omm Wom

366 MID-O~ER WORD

367 ~,~; L MC68881+OP~, 8\3 HIGH ORDERWO~

368 \@NU~&~~$k MC68881tRESPONSE

*Q~&~*.s \@N~

IS ~SPONSE NULL W-E?

369 BRANCH UNTIL NULL RELEASE

370 ~: ‘~ ENDC
.$,+Y$.:’*

371 ,i ENDM
3z3g%,+#****************************************************************************4

,.~f~>v”
.,,.$+;$y@..* ~68881 B~ IN -RY OR IN Dn TO =-WG. OPWTION

.>b’’>~(335*
~.g+,?~:t\376 * ~GB INSTRUCTION,-, FPN
,8’,,,: ~i:.{, 377 *

.~~.xTsr+J:z.I.wti: 378 * ~:,v,,:$+...‘,. INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD)
..,,,<.,.......
~.gt,. 379 * == SOURCE ADDMSSING MODE:?:it.%m‘..,,+.}:,.!.:4$5>

380 *~ft,.t.’ FPN= DESTINATION REGISTER
‘,!. 381 *

382 * NO ~GISTERS ~DIFYED OR DESTROYED!

383 *

384 * VALID ADDRESSING MODES: DN, (AN)t, ‘(~), D(~)r D(~~Ix)

385 * m.W, ~.L, (D,PC), D(PC,IX)

386 *
387 * THE COWNTED OUT CODE SHOWS H~ A USER MAY IMPLEMENT FSINCOS

388 * INA MSM. TO REG. TRANSFER USING THE FO~ING INSTRWTION FORMAT:

389 *
390 * ~GB INSTRUCTION,-,FPN,FPQ (FP@ 2ND DESTINATION ~G.)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*



. ..!-. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . ,,.

391 * *

392 ******************************************************************************
393 ~GB MACRO
394 IFC ‘\l’,’FSINCOS’ IS INSTRUCTIONFSINCOS
395 IFC ‘\S’,” IS INDEXINGPART OF THE ADDR.MODE
396 =.W #$5800t(\4C<7)t\3+\l,K68881~~ MEN. TO ~G. OPERATION
397 \@_CMPI #$8900,MC68881+mSPONSE READ RESPONSE~GIs~
398 BEQ.S \@- ~ UNTILNALUATE ~ AND TRANSFER
399 DATA
400 W.B \2,MC68881tOPER BYTE DATA msm .-i*..
401 \@_L TST.B MC68881+WSPONSE

~\,.).\\,i~:?,8.\
IS RESPONSEN~ ~~E? ‘..~:;i>:?:*

402 U.s \@~
,<,+~

~CH UNTIL NULL ~E
‘,:?<,,.:<,.,,$,

403 ENDC
,?$...$;j,.,,.?’$,?,...?}y,,,,~??

404 IFNC ‘\5’,y’ IS=NOT- INDI~~WITH I~~ti+:
405 M~.W #$5800t(\5<<7)t\4t\l,MC68881%O~ ~. TOREG. OP~p~&’
406 \@~CMPI #$8900,MC68881+RESPONSEm ~SPONSE REGIS~ ‘,~’:~~,:
407 BEQ.S

*,.,$t:~
\@NuLcA ~ UNTIL ~UATE EA ~’”-SFER

408 DATA
~::),,.,.+’~
~9>

409
*\c,%

M~.B \2,\3;MC68881+OP~.’ BYTE DATA TRANSFER 1.,,..,,,.k.,:t.‘“..’,.

410 \@NU-LTsT.BK68881+~SPONSE
t:{,.,k

IS RESPONSENULL _
411 -.s \@~ ~H ~IL -:*SE
412 ENDC ~:~),,..

413
a.%‘k@Js:ii’,?,$,$}}>

ENDC .$:~.’,.
“L\~i

414 I= ‘\l’,SFSINCOSf IS INSTRU~,~N,,N~FSINCOS
415 IFC ‘\4’t” Is ~$~~- WITH IND~ING
416 MOW.W #$5800t(\3<<7)t\l,MC68881tCOw ‘$&. TO REG. OP~TION
417 \@~ CMPI #$8900,M68881t~SPONSE
418 BEQ.S \@NULCA

v;wfisE ~GISTER
,,-&~IL~UATEEAW TRANSFSR

419 * .F~~TA ~
420 Mm.B \2,Mc68881+oPER Rk$,~&”DATA INTO OPERAND~GISTER~i~
421 \@NmL TST.B MC68881t~SPONSE ‘?-.\~S~SPONSE NULL RLEASE?*$+},,,k$i,l,,,~
422 B~. S \@~ /.,......,.*,~CH ~IL NULL RELEASE
423

..,::<I?$.*,OJ>},>
ENDC :+.i:l$>

424
.,

IFNC ‘\4’,” *6 IS ~=N~ INDIRECTWITH INDEXING
425 ~~.W #$5800t(j~~7)t\l,MC68881tC0- *~M. TO REG. OPERATION
426 ‘\@NULCACMPI #$8900,~%8f_SPONSE = ~SPONSE REGISTER
427 ~Q. S \@N~’’:j~~:&$; ~ UNTIL NALUATE EAAND -SFER
428 *

~,.i,.”, ~~<>
..>.+~” DATA

429 M~.B \~~/4;&68881+oPER BYTE DATA TRANSFER
430 \@N-L TsT.B +~*l+RE5p0NsE IS RESPONSENULL W~E?
431 was~%fmm BRANCHUNTIL NULL RELEASE
432 *:, !$

433
*,:,,:*

434
,P.,M$

*
*
*
*,,...:}: 447 * WID ADD~SSING MODES: DN, (AN)+,-(AN),D(w), D(~,Ix) *

448 * XXX.W,XXX.L, (D,PC),D(PC,IX) *

449 * *

450 ******************************************************************************
451 ~Gw MACRO
452 IFC ‘\4’,” IS ~-INDIWCT WITH INDSXING
453 MOW.W #$5000+(\3<<7)+\l,MC68881+C~D m. TO ~. OP=TION

@

454 \@NULCA CMPI #$8900,NC68881+~SPONSE - mSPONSE REGISTER
455 BEQ.S \@~ REREADUNTIL~UATE ~ AND TRANS~R
456 * DATA

AN947/D MOTOROLA



..>/.,.,V~T::*,:~*.$.<~+, 511 * ~GS INSTRUCTION,Q ,FPN *.
..\,,x.,., 512 * *

513 * WHERE: INSTRUCTION=FP INSTRUCTIONNUEMONIC (I.E.FADD) *

514 * a- soma tiDmssING MoDE *

515 * FPN= DESTINATIONREGIS~ *

516 * *

517 * NO REGISTERS~DIFYED OR DESTROYED! *

518 * *’

519 * ~ID ADDNSSING MODES: DN, (AN)t,-(AN),D(AN),D(AN,IX) *

520 * XXX.W,W.L, (D,PC),D(PC,IX) *

521 * *

522 ******************************************************************************

MOTOROLA AN947/D
28

,, .,<.. ,.,. ., ,,.. . ..;, ,, :,,,,,.7..<’t,.,...,,,,,.<e,.<y...r.y..w
., .,.



523 -GS MCRO
524 IFC ‘\4’,t’ IS a-INDI~cT WITH IND~ING
525 -.W #$4400t(\3<<7)+\l,X68881+~t MSM. TO ~. OP~TION
526 \@_ -I #$8900,Mc68881tWSPONm READ ~SPONSE ~GISTER
527 ~Q.s \@N~ ~ UNTIL~UATE ~AND TRANSFER
528 *
529

DATA
Mm.L \2,MC68881tOPm SINGm P~ISION DATA TO FP REG.

530 \@NuLTsT.B m68881+msPoNsE IS MSPONSE NULL RE=E?
531 W.s \@NuLREL BRANCHUNTILNULL~E ~~*~.*.
532 ENDC

...... $,*,f!’}.$~..?.(,s$.:?.,::
,.:;>: , .:,1,.

533 IFNC ‘\4’,” IS - Nm = INDIRE~ WITH IND~ING f’,.$~;”;”
534 M~.W #$4400t(\4<<7)t\l,MC68881tCOm m. To ~, op~TIoN ‘~h;$;~?j$
535 \@NULCA CMPI #$8900,K68881+~SPONSE -RESPONSE REGISTER

,.5>,%..}!‘~,:,.,

536
\.i,,+,!”:t:~l,:t,‘~)

~Q. S \@- ~ UNTIL~UATEEA AND m+
537 * DATA .,,&...I,J

538 MOm.L \2,\3,MC68881tOPm
,.,>.,.>.:::t,,~t<..

SING~ P=ISION DATATO F~;~.y
539 \@NULRELTST.BMC68881t~SPONSE ,~>,,::$IS ~SPONSE NULL ~~SBQ, \
540 M.s \@NuLREL BRANCH~ILNULL-~,
541 ENDC :?>~::i\

542 ENDM
,,t,,!.’* ‘Q..i\:.
z>j:;\\h.}*J*””

543 *******************************************************,$,*<~~d~+#****************
,,4.,i’~,.

544 *
~4>::~l.,.,$,:l.
‘lx+>,, *

545 * MC68881DOUBLEP~CISION WUE MEMORYTO ~:-~,G.’’OPmTION
546 *

*
> ~~

547 *
,:*:.*!.:..~~:, *

~GD INSTRUCTION,-, FPN
*, “$,$:.

548 *
,,,%:>,g+ *
.,$.,>w.,.{,.+~’,r..,,,..

549 *
*

~: .INSmUCTION=FP INSTRUCT~QNXNIC (I.E.FADD)
550 *

*
-= SOURCEADD=SS _,mYS~OUNDED BY P~NTHEIS,

551 *
*

CONTNNING THE,,m~SLY E-D ADD&SING MODE
552 *

*

(I.E. (AN))..(,,~+,,,j
553 *

*
FPN= DESTINATION,i,~&,F

554 *
*

,:/, *
555 * NO ~GISTERS MODI~D O&.DE’S~~D!
556 *

*
*,:$y

5s7 *
*

WIDADDESSIN@i{O& : (AN)
558 *

*
.s...l.>.~)t,.’\:..p ~.,,,..k.\A> *>!)..\

559 ********************$fj**h****************************************************
560 =GD MACRO

~“:,.
,~~*i}*y,4$$.:’

561 MO~.W4,#&,~~~i(\3<<7)t\l,MC68881+CO_ ~. TO REG. OPERATION
562 \@NULCA CMPI,#~fw;K68881+RESPONSE = WSPONSE MGISTER
563

~>+~~.,,
W.Q.S~:,,>$’\@- ~ UNTIL~UA~ ~ AND TRANSFER

564 * 1:{.,~

565
,......”*S;$
fs-:%\2,MC68881WPER

DATA
HIGH Omm LONG WORD

566 .;a?.R.*.L 4\2tMc68881topER ~ O~ER ~NGWORD
567 \@Nm ’Ta.BMC68881tmSPONSE ; IS RSSPONSENULL RE=SE?
568 ~.p ‘\.,\c.Jt‘ m.s \@~; .’. BWCH UNTILNULL W-E
569ts~i&,&’‘ ENDM
57oi~*,@~**************************************************************************
~~~g<$

~\:$q~@ *

*
MC68881-NDED PRECISION~UE =RY TO FP-~G. OP~TION

,:,,},,,.,$:>593*
*

.,,.
~,,,3’’’574 *

*
?,: MEMREa INSTRUCTION,-, FPN

~,:.y.~.““q“’.*2”575 *
*

.)t::\,,:><l?,+;].
${~~ 576 *

*

-$~i$.ph,.,if.. ~: INSTRUCTION=FP INSTRU~ION NUEMONIC(I.E.FADD)
577 *

*
:.,;,,).<?,*\,.t:.t. ~= SOURCEADD~SS REGISTER,S~OUNDED BY P~_SIS, *
::t 578 * CONT~NING THE P~IOUSLY E-D AddressingMODE

579 *
*

(I.E. (AN)).
580 *

*
FPN= DESTINATION~GISTSR

581 *
*

582 *
*

NO REGISTERS~DIFYED OR DESTROYED!
583 *

*

584 *
*

WID ADDWSSING MODES: (AN)
585 *

*
*

586 **~**
587 MEMRE~ MACRO
588 m.W #$4800+(\3<<7)+\l,W68881tCOaD MSM. TO ~. OP~TION

AN9471D MOTOROLA

29
.,..:,-,.?r!.:.,:,.,~,:..-,:,:..,,.:-.., ,,..-.,

ssg \@NULCA -I #$8900,X68881+~spoNsE ~ ~spoNsE ~GIs~
590 BEQ.S \@~ REREADUNTIL WUATE ~ AND -SFER
591, * r DATA
592 -.L \2,~68881tOP~ HIGH ORDERLONG WOD
593
594 -.L 4\2,K68881+OPER MID4RDER ~NG WORD
595 M~. L 8\2,MC68881tOP~ LOW 0~~ LONGWO~
596 \@NU~L TST.B MC68881tMSPONSE IS RESPONSE~RELFASE?
597 =.s \@~ ~CH UNTIL NULL ~-E ,:,,

*
*
*
*
*

FP INSTRUCTION(I.E.FADD) *
*
*

626 ENDM
Jy,+:::,\.~\,~<&y,,~+~:,!,?’

627 ***************~%$~,**..,.,,<.1.,7,
628 * ‘e,.‘Id,.+!;s),..>:<
629 * %6~f,~’~-~G. TO FP-NG. OPE~TION
630 *

,<.<?.~’
... S*,,

631 * ;~- INSTRUCTION,FPM,FPN,FNQ
632 * ,:~b>

633
~.,*\,6,\

* .9 ‘*.:i”& : INSTRUCTION-~NIC FOR THS‘?>,,,.>.~$
634 ..* >:~,$ FPM- FP SOUR~”~IS~
63~~’:,~ ~N-’~ DESTINATION~GISTER
,$$$,‘t<*# FNe SECONDFP DESTINATIONREGISTERFOR FSINCOS *

.$;;*$$* *

\~~<~8’ * NO WGISTERS MODIFIEDOR DESTROYED! *

~~~~*?’*,p~sg * *
..,,,.$

.. ..,,.,:
. 640 ******************************************************************************‘ii~,.~{,

(,t:?’~:$k.-..~~w,).,.”. 641 RE=G mcRo
‘~:~~.>,\.~\t!$i:.a,,>.
..,~;~>, 642 IFC ‘\l’,’FSINCOS’ IF INSTR.IS FSINCOSDO THIS ROUTINE.}$.~,($,...\.\~,+,1.,.::~’~.~’b.643 WUE.W #(\2C<10)t(\4<<7)t\3+\l,MC68881+CO~ REG. TO ~. FSINCOSt,~.ti~:,$,~.. 644 \@NULCA TST.BMC68881t~SPONSE READ ~SPONSE REGIS~

645 BMI.S \@NuLcA ~ UNTIL NULL NESE (CA-O)
646 ENDC
647 IFNC ‘\l’,’FSINCOS’ ROUTINEFOR U OTHER ARITHMETICINSTW.
648 MOW.W #(\2<<10)+(\3<<7)+\l,MC68881W~ REG. TO REG. OP~TION
649 \@NULCA TST.B K68881+~SPONSE READ NSPONSE WGIS~
650 BMI.S \@NuLcA REREADUNTIL NULL ~=E
651 ENDC
652 ENDM

(CA=o)



@

AN947/D MOTOROLA
31

.~--..!~~~’’-~~.~~.-’~‘-.’,,.’,-“ ‘~, ,,



’715 *******************************************************************************
,716 * *
717 * K68881 TEST FP CONDITION,DE-NT, AND BRANCH *
718 * *
719 * FDBCC CONDITION,DN,hDD~SS * a
720 *

-.
* .,..-

721 *
,!.,-

~: mNDITION= ~, F~TING POINT CONDITION
–-,

* w

122 * DN= ~N PRCCESS~DATAREGIS~ TO BE DE~~D *
723 * ADD~SS- =CH ADDRESS * “’:\.:$,(,“

724 *
;+.5..,:,...-:.7,,.

725 *
* ..&::’.t?*’,,..:./......

REGIS= MODIFIEDOR DESTROYED:O 1 2 3 4 5 6 7
\.N,,

~’*+~:;*
726 * DX

~l!.-:e.“::*+$*”.<.,,‘,.+,,
727 * h

,c.,,,~;$’ “Y.*.),.,.*

728 *
*>*<<*<+~,
,.,,>,\,/t*J.*

729 ********************************************************************.$*&**&*****
730 FDBCC MACRO

.L&.*’~~+.\>\..,.‘.\\,,,,
‘i!“.k!;~J&,

731 MO~.W #\l,MC68881KOND’ BEGIN COPR~SSOR COmZtiyaN
732 \@NOPASSM~.W MC68881+mSPONSE,D0, IS CA-BITSET ,~!~..,~$.,..T::}?!;i:$+:
733 BMI.S \@NOPASS ~ UNTIL NULL@’qE (CA-O)
734 BTST #TFBIT,DO IS CONDITIONTR~$;f~’r?
735 DB~ j2rj3 SUBTRACT1 ~~~~<- UNTIL COUNTER
736 * EmhLS -1 ,, “~a”
737 ENDM ,.,,...,, :>,~{;:’.,,>>:.1:$:,,,
738 ***********************************************i%\~;f:w*4*********************k*~*
739 *

.!\‘:P:J!i *.,+?
‘lit

740 * MC68881CONDITIONALSET $“ ..t:$*:,*~.$
*,Ly,.\]\,\:;,

741 * .,,.>j
~\{:>~~$$+:, *

742 * FSCC CONDITION,ADD~S ,,}..:>,.
. ‘..,”$~> *

743 * .~,,,,v.>l,~,i *
744 * ~: CONDITION=CC, F~~~~d<POI~ CONDITION ●

745 * ADDRESS-~CH$&SS *
746 *

.fi,...\\.
,*,, *

747 * REGIS= MODIFIED$OR~tiO~D: O 1 2 3 4 5 6 7 *
748 * ‘$~:$~. DX *
749 * ,\6\~“>::i,,.. A * ,@m
750 * <M!)t.,.,,,:y:.f+. .~j;,~..,:.. *

‘e~’.+.,.
751 *******************4~:#********************************************************
752 FSCC

.,*.*,‘.!:,:,F+*
MACRO *J>*~.,..,yx,~’

753 Mom.w$~&**m68881KOND BEGIN COPROCESSORC~I~TION
754 \@NOPASSMqi;$$~%8881+mSPONSE,D0 IS CA-BITSET
755 W.*$:S$S\@NOPASS ~ UNTIL NULL mLEASE (CA=O)
756 ,,,,~:$f.#TFSIT,DO IS CONDITIONTRUE
757 $ ‘*\2 SET BYTE AT POINTER TO 1’S IF
758 * !h~,:k.~,.:?x~ CONDITIONTRUE, IF CONDITIONF-E
759 * $L<%‘~ SETB~ TO O’S
760:#-, ‘“’”>$, ENDM
7@;iQ%4~%****************************************************************************

.)$$$~* *
.b~,g;<ys.’* MC68881FP MOW MULTIPLECOPR~SSOR REGISTERSTO MEMORY *

:2>$iy$&4 *
~$:.:..’*”

*
s,765 *.> ,+ FM~FPRO,FPRl,FPR2,FPR3,FPR4,FPR5,FPR6,FPR7,a,PmDECREMSNT *

‘~tj,.~,,!,j,,~,i~,.?3..,,,;:F766 * *,.<..,.~+:;~’,,$..,,,,.
‘$t>.>,+*\.\... 767 * ~: FPRO=(FP~.#0) 1 IF SEMC~D, O IF NOT *
$!.’\,,.},~,,.*, ~~~@\*.:’!,,... 768 * FPR1-( “ #1) “ ,1 *

.:~,$.’.~+~’.. 769 *:+< FPR2=( “ #2) “ ,, *
\ 770 * pp~.( f, #3) “ ,, *

771 * FPR4=( “ #4) “ II *

772 * FPR5=( “ #5) “ *I *

773 * FPR6-( “ #6) “ ,, *

774 * FPR7=( “ #7) 1’ ,, *

775 * ~ DESTINATIONhDD~SSING MODE *

776 * P~DE~~E Y (IFPRED~NT ~DE IS ~ING USED),OR *
777 * N (IF~WDE IS BEING USED). *

778 * *

779 * REGISm MODIFIEDOR DESTROYED:O 1 2 3 4 5 6 7 *

780 * AX *



.,,

781 *
782 *

D XXXX *

783 * ~ID ADDRESSINGMODES: ~, -(AN),D(AN), D(AN,IX)
*

784 *
*

~.W, XXX.L
785 *

*
.. *

786 ***********************************************h**h***k***h********~*~********

787 ~WCRo



,. . -. ..-. .. . .. .,-_,

835 ***~**************************************************************************
,836 * *
837 * MC68881FP _ TO MULTIPLSCOPROCESSOR~ISTERS FRW BRY *

838 * *
839 * ~ ~,FPRO,nRl,FPR2,FPR3,FPR4,FPR5,FPR6,FPR7,POSTIN~NT *
840 * * m

841 * ~: ~- DESTINATIONADD~SSING MODE * w

842 * FPRO-(FP~G.#0) 1 IF SELE~D, O IF NOT *
843 * FPR1-( “ #1) “ II * ~~*~.*.

844 *
J$,,,>,

FPR2=( “ #2) “
..t::.~t,..\~~?\$.VI *,.,,~~>v.,,;,

845 * FPR3=( “ #3) “ ,, ~g‘f,$t;’*.i>

:*\* ::}
~t.-.+.>4::,,?:>...,\ 886 * MOVINCSI~,~GISTER *

\$:J:j,Jv,887 * *
.,.l~,$,

.?j$,\>.{<.,‘.~!+ 888 * ~: ~= VALID SOURCEADD~SSING MODE *
~~,,,$..,~i},,..\:& 889 * ~GIS~- CONTROL,STATUS,OR IADDRESS.:l.+

●

890 * *
891 * NO WGISm ~DIFIED OR DESTROYED! *
892 * *

893 * VALID ADDRESSINGMODES: DN, AN, (AN)+,-(AN),D(AN),D(AN,IX) *

894 * H.W, XXX.L, (D,PC),D(PC,IX) *

895 * *
896 **********************************************************************hhh+ehe*
897 MO~NCSI MACRO
898 IFC ‘\3’,” IS ADDR.MODEIND~?
899 MOVE.W #\2,MC68881tCO_ ~VE BIT PATT~ IN CONMANDREG.
900 \@+ CMPI.W#$8900,MC68881tWPONSE IS RESPONSENULL COMS AWN?

9.+.,,,,.,,,,



... ..., .... . . .... . . ,..

901 BEQ. S \@- C~ AGAIN UNTIL ~ RESPONSE
902 MOVE.L ~1,MC68881t~m PASS DATA TO ~GISTER
903 \@NU~L TST.B MC68881+RESPONSE IS MSPONSE NULL RELEASE?
904 BMI.s \@NUm =CH UNTIL ~ RELEASE
905 ENDc
906 IFNC ‘\3’,11 IS ADD~SS MODE INDE~D?

914 ENDC $*;$”+,%

915 ENDM
.s.,~i.,.’*::\R$:i’~-

,,$:$?‘+.*::~

916 *********************************************************~*b***tihh;*~%;{khhhhhh
.

917 *
-’,:&.,<,lix.,,‘.::j.

918 *
s:.,..~.i,;~ *

MC68881 FP MO~.FROM CONmOL/STATUS/INSmUCTION ~_:&IsmR *
919 * ,,t\.,.

920 *
,,tl,,..it$: ●

MOVOUCSI ~GISTER,O
s.,.,,,,,,iti!,.

.4>..,.(,$:*$

921 *
\.,<..”~.,,,,~j.>,,. *
**.><a.$i+*
\~.~)t.,,

922 * -:
*

~GISTER= CONTROL,STATUS, OR I~ms ‘k
923 *

*

~=VALID SOURCE mDRESSING ~~!’’~.~
924 *

*
i:}.,.,~:~’-$ik~.t,:+.,,,,,.,.,

925 *
>3,,$, *

NO ~GIS= MODIFIED OR DESmmD~:fi:,{y&,.iy
926 *

*
‘!*,..,~.’~?::,

927 * VALID ADDRESSING MODES: DN, w;y(AN)~, -(AN), D(AN), D(AN IX)
*

928 *
..*$+,. *

~~*vti,~.L, (D,PC), D(PC,IX) ‘
929 *

*
~~ ?:,

$~.*$\’a,if
*

930 *********************************+**%*k****************************************

g31 MOVOUCSI mCRO
:::t$:jv:,...,~\ya.. +,:
?\,!,\+

932 IFC ‘\3’,” ,,*:* IS ADDR.MODE INDEXED?
933 MOm.W #\l+$2000,,~;8881KowD MOW BIT PATTERN TO CO-D REG.
934 \@N~ “CMPI.W #$8900,M~~8&~it~spONSE IS mSPONSE NULL COME AGAIN?
935 ~Q. s \@_~:;.4”2+.>~$.\~,i.\..~$:,, CO~ AGAIN UNTIL NEW RESPONSE
936 M~.L MC68ti’~+’~m,\2 PASS DATA TO REGIS~
937 \@Nu~L TST.B MC6,~$~+~SPONSE IS RESPONSE NULL ~E?
938 BMI.S ~w BRANCH UNTIL NULL ~~SE
939 ~m ,f,+~;~c

940 I~~*$\\~flI IS ADDR.MODE INDE~D?
941 *uiy %\lt$2000,Mc68881tco~ ~VE BIT PA~ TO CO~ ~G.
942 \@m.y~v&u~ #$8900,MC68881+~spONSE IS RESPONSE NULL COME AGAIN?
943 :,,,*.S \@~ COME AGAIN UNTIL NEW ~SPONSE
944 %;%OVE.LK68881tOPm, \2,\3\.,$P\’“~:{:,.

PASS DATA TO ~GISTER FROM INDEXED A
g45 * ‘~$:$,,$+’

~DE
946 f;f$N~L TST.B MC68881+~SPONSE IS =SPONSE NULL ~LEASE?
94?;~>f~a+’ BMI.S \@N_ BRANCH UNTIL NULL ~~SE
.g$a;&;‘ ENDC

:~c$* ENDM
:’:%,..,.,,‘..~“8:5+i,9bo*******************************************************************************y,,.:).\“

:t$ ,%’’*g51*
,.$,:.,,,‘>.:y,li,.,s:952 *,.:”ii.

*
MC68881 FSAVE THE INTE~AL OF THE MACHINE

qj%+?:’$~,953 *
*
*

~<::i’$.,,,$ :,,,,..
954 *

)~~$:’a THIS IS A PRIVILED=D INSTRUCTION WHICH IS GE_LY ONLY USED
.:,. 955 *

*
IN THE OPERATING SYSTEM FOR CONTEXT SWITCHING!I,K

956 *
*

957 *
*

FSAWST <~
958 *

*

959 * +~ :
*

~- PMDE~NT MODE
960 *

- (AN) *

961 *
*

WGISTERS MODIFIED OR DESTROYED: 01234567
962 *

*

963 *
AX *

964 *
DXX *

@
i 965 *

*
VALID ADDmSSING MODES: -(AN)

966 *
*

*



967 *********************************************************h*+***k***h**h*Ahh*hh

968 FSAmST MACRO
969 \@START m.WMC68881tSAW,D0

970 MOm.W DO,D1

971 ANDI.W.,f$FFOO,D1
972 =Q.S fdNULL
973 CMPI.W #$OIOO,Dl
974 BEQ.S \@START
975 *

976 LEA MC68881+OPER,AO
977 *

978 MOW.BDO,DI
979 LSR.B #2,Dl

980 EXT.W D1
981 SUBQ.W #l,Dl

982 \@LoAD M~.L (AO),\l
983 DBRA Dl,\@LOAD

984 \@NU SWAP DO

985 MOW.L DO,\l

986 ENDM

READ T~ SAW MGISTER
- A COPY OF THE FOMT WORD

ISO~TE THE FORMAT WORD
IF NULL ID~, NO STATE SAW
IS THE COPROCESSOR BUSY
KEEP CHECKING UNTIL CP IS FINIS~
PR~SSING

LOAD OPERAND MGISTER TO AO
~~*~.*.

......$,*,f!’),y$.(,s$$+;,;y

“’’$;??
THE LENGTH OF THE DATA TO BE -S+”’,.j

DWIDE BY 2 TO AD~ST FOR WO~ -V

ESTABLISH COUNT AS A WORD FOR Dd+iJ’’?~:~
Dl= COUNTER FOR DBRA ,.$,ilo+y.$+”

‘t,,>,.:’...
STO~ T~ IWIS~ STATE

,,,:,*,,,::~,,,,~,!*.*
:,..:k,)t.%..

REP~T UNTIL ALL DATA IS *AS-D
PLACE FORMAT WORD IN UPP’~ 16’JBITSOF DO
STOm FORNAT WO~ ON,~**CK

,,~:!!’.“’”+:.>.,

,.#fx@J“ MO%.B DO,D1
‘i&$~6

THE ~GTH OF THS DATA TO BE TRANSFE~D
LSR.B #2,Dl DNIDE BY 2 TO AD~ST FOR WO~ TRANSFER

,,,‘t?3$’’Fal7 EXT.W D1 ESTABLISH COUNT AS A WORD FOR DBRA
~.:%~‘:::$,,
,.\ ,<}1018 SUBQ.W #l,Dl Dl= COUNT~ FOR D=
~,-:.. ,i,,<V:<:!,.,T,~ “~.~:,t-ti~”1019 \@LoAD M~.L \l,(AO) STOW THE IWISB~ STATE

>’($3,*y!’i+l,<.1020 DB~ D1 \@~AD -EAT UNTIL ALL DATA IS TRANSFE~D
le.,>:..Y.>.*8.~?:~Jt.,..}.,,,$!.>,, 1021 \@~EQU *
‘*lit!.,
‘!<! 1022 ENDM

1023 ****************************************************bh*h***h****k***h******k**

1024 * *

1025 * MC68881 FNOPP COMMAND *

1026 * *

1027 * FNOP *

1028 * *

1029 * NO REGISTERS ~DIFIED OR DESTROYED! *

1030 * *

1031 ******************************************************************************

1032 FNOPP MACRO

MOTOROLA AN947/D
‘L.~.

36

,..., . . .. . ,,.. . .,”,.-.,,

,’



AN9471D
MOTOROLA

.,”,, .,..,,,,.. . .. . . ./ ,, ,.. ,. ,. ,.
37




