

TECHNICAL UPDATE

MC68HC705C8A

This technical update is a companion to the latest version of the MC68HC705C8A
Technical Data Book (M68HC705C8A/D).

Technical Update contains updates to documented information appearing in other
Motorola technical documents as well as new information not covered elsewhere.

We are confident that your Motorola product will satisfy your design needs. This
Technical Update and the accompanying manuals and reference documentation are
designed to be helpful, informative, and easy to use.

Should your application generate a question or a problem not covered in the current
documentation, please call your local Motorola distributor or sales office. Technical
experts at these locations are eager to help you make the best use of your Motorola
product. As appropriate, these experts will coordinate with their counterparts in the
factory to answer your questions or solve your problems. To obtain the latest
document, call your local Motorola sales office.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters can and do vary in different applications. All operating parameters, including “Typicals” must be
validated for each customer application by customer's technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for
use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any
such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and

are registered trademarks of Motorola, Inc. Motorola, Inc. is
an Equal Opportunity/Affirmative Action Employer.

Page 2
MOTOROLA Table of Contents

MC68HC705C8A

TABLE OF CONTENTS

Modules

Central Processor Unit (CPU - HC05CPU)..3

Correction to SUB in Applications Guide ... 3

External Interrupt Timing.. 4

I Bit in CCR During Wait Mode ... 4

Stop Mode Application Example.. 4

Serial Peripheral Interface (SPI - SPI_A) ..8

SPI Code Snippet (master) ... 8

SPI Code Snippet (slave) .. 14

SPI Test Program .. 18

Serial Communications Interface (SCI - SCICSER_A)...........................20

SCI Test Program .. 20

Timer Interface Module (TIM - TIM1IC1OC_A)..22

Input Capture/ Output Compare Code Snippet .. 22

Interrupt Driven Output Compare Code .. 24

Input Capture Test... 26

Computer Operating Properly (COP - COP0COP_A).............................29

COP Timeout Period ... 29

Computer Operating Properly (COP - COP55AACOPCR_A)30

COP Register Correction .. 30

Page 3
MOTOROLA Modules

MC68HC705C8A

TECHNICAL UPDATE

Modules

Central Processor Unit (CPU - HC05CPU)

HC05CPU

Revision History

Correction to SUB in Applications Guide

Reference Documents: M68HC05 Applications Guide MC68HC05AG/AD Rev.
2, page A-62; M6805 HMOS/M146805 CMOS Family User’s Manual, page 213

Tracker Number: HC05CPU.001 Revision: 1.00

Replace the C bit description with:

The C bit (carry flag) in the condition code register gets set if the absolute value of the
contents of memory is larger than the absolute value of the accumulator, cleared
otherwise.

Date Revision Description

5/15/96 0.00 Includes trackers HC05CPU.001, HC705C8.002R2,
HC705C8.017, HC705C8.018R2, HC705C8.019 and
HC05P4.002.

Page 4
MOTOROLA Modules

MC68HC705C8A

External Interrupt Timing

Reference Documents: MC68HC705C8A/D, page 4-2; MC68HC705C8/D
Rev. 1, page 3-5; MC68HC05B6/D, Rev. 3, page 11-11, note 4;
MC68HC705C8/D, Rev. 1, page 3-5; MC68HC05C9/D, page 13-7, note 3;
MC68HC05C12/D, page 13-9, note 4; MC68HC05D9/D, Rev. 1, page 10-4,
note 1; MC68HC05J3/D, page 9-6, note 3; and MC68HC05X16/D, page
12-6, note 4

Tracker Number: HC705C8.002 Revision: 2.00

This time (t

ILIL

) is obtained by adding 19 instruction cycles to the total number of cycles
needed to complete the service routine. The return to interrupt (RTI) is included in the 19
cycles.

I Bit in CCR During Wait Mode

Reference Document: M68HC05 Applications Guide, Rev. 2, page 3-93;
MC68HC705C8A/D, page 4-2

Tracker Number: HC705C8.019 Revision: 1.00

The wait mode flow chart does not show that the I bit gets cleared upon entering wait
mode. The I bit is cleared when wait is entered. An external IRQ or any of the internal
interrupts (timer, SCI, SPI) can release the processor from wait mode.

This error is present in the original applications guide as well as the revision.

Stop Mode Application Example

Reference Document: MC68HC05P4/D, page 3-24

Tracker Number: HC05P4.002 Revision: 1.00

**
**
* *
* STOP program example for HC05P4 *
* *
**
* *
* Program Name: STOPP4.ASM
* Date: 12/16/91 *
* Written By: Robert Chretien & David Yoder *
* Motorola CMCU Applications *
* Assembled Under: P&E Microcomputer Systems, Inc. IASM05 *
* *
*. This code is written for and tested on the MC68HC705P9. In order to use *
* this with other HC05 MCU’s, reset vectors and memory map equates may have *
* to be changed. See the Technical Databook for the appropriate part for *
* this memory map information. *

Page 5
MOTOROLA Modules

MC68HC705C8A

 Program Description: *
* This program shows how to use the MC68HC705P9 STOP *
* instructionIt is meant to be used in a stand a lone mode, *
* or with an appropriate evaluation/emulation system. *
* *
* Upon executing the program, PA0 will toggle. When PA1 *
* is pulled high, the MCU will enter STOP mode and PA0 *
* will cease to toggle. *
* An external reset or an event on IRQ will cause the MCU *
* to exit from stop mode. *
* *
* *
* _________ *
* | START | *
* --------- *
* | *
* /--------| *
* | | *
* | __________ *
* | | Toggle | *
* | | PA0 | *
* ^ ---------- *
* | | *
* | / \ *
* | / \ *
* | n / PA1 \ *
* |---< High ? > *
* | \ / *
* | \ / *
* | \ / *
* ^ | y *
* | --------- *
* | | STOP | *
* | --------- *
* | | *
* \--------/ *
* *
**
* *
* Revision History *
* Rev 1.0: Original program. *
* Rev 2.0: Discaimer added *
* *
**
**
*
*
*

* MCU Equates *

PortA equ $0000
PortB equ $0001
DDRA equ $0004
DDRB equ $0005

* Interrupt vectors *

 org $1FF8
TIMER fdb TRAP
IRQ fdb IRQISR
SWI fdb TRAP
RESET fdb START

Page 6
MOTOROLA Modules

MC68HC705C8A

* Start *
* Main Loop of code *

 ORG $0180 ; Begin code in EPROM
Start LDA #$01
 STA DDRA ; Set port A0 to output, leave
 ; others as inputs
Toggle LDA PORTA ; Toggle port A0. This will toggle
 EOR #%00000001 ; while the code is running.
 STA PORTA ; This will stop toggling when STOP
 ; mode is entered. When STOP mode
 ; is exited with IRQ or RESET, this
 ; will resume toggling.

 LDA PORTA ; See if PA1 has been pulled high
 AND #$02 ; If not, branch to TOGGLE to toggle
 BEQ TOGGLE ; PA0 again.
 ; If so, enter STOP mode.

 STOP ; Enter STOP mode.
 ; This will:
 ; Clear interrupt flag in status
 ; register - no need to do CLI for
 ; IRQ to exit from STOP
 ; Disable the oscilltor - you will
 ; see OSC2 stop toggling when STOP
 ; mode is successfully entered.

 BRA TOGGLE ; Stay in main loop toggling

* IRQISR *

* Service routine for *
* external interrupts *
* *
* Does nothing, only returns to *
* main routine. *

IRQISR:
 NOP
 RTI

* TRAP *

* Routine for unused interrupts *
* *
* Traps in a branch to self *

TRAP BRA TRAP ; Trap interrupts

 END

Page 7
MOTOROLA Modules

MC68HC705C8A

Serial Peripheral Interface (SPI - SPI_A)

@SPI_A

Revision History

SPI Code Snippet (master)

Reference Documents: HC05C4; HC05C4A; HC05C8;
HC05C12; HC705C4A; HC705C8; HC705C8A

Tracker Number: HC05C8.005 Revision 2.00

The following code will work on all MCUs that have the SPI_A module. The code
was tested on an HC705C8. Some equates and vectors may have to be changed in
order to properly work on a specific part.

**
*
* Program Name: C8SPIM.ASM
* Revision: 2.0
* Target MCU: MC68HC05C8, MC68HC705C8
* Date: 8/18/93
* Written by: David Yoder, Motorola CSIC Applications
* Assembly: P&E Microcomputer Systems IASM05 3.0m
*
**
* Rev history:
* Rev 2.0 8/18/93 No longer outputs through DACIA of
* EVM. Only outputs PA2 if error occurs.
*
* Rev 1.0 8/13/93 original
**
*
* This code shows a basic SPI transfer protocol between one master
* and one slave. A string is continuously transmitted to the slave.
* The companion slave program reverses the case of all alpha
* characters before sending the message back. The message received
* by the master is again case switched and then compared to the
* original message. If a difference is noted, PA2 is driven low. PA2
* idles high.
*
* In order for the handshaking to operate, the MCU's should be
* connected as shown below.

Date Revision Description

5/15/96 0.00 Includes trackers HC05C8.005R2, HC05C8.006R2, and
HC705C8.006R2.

Page 8
MOTOROLA Modules

MC68HC705C8A

*
* Master Slave
* ------ -----
* PD2/MISO -------------- PD2/MISO
* PD3/MOSI -------------- PD3/MOSI
* PD4/SCK -------------- PD4/SCK
* PD5/SS -----\
* PA1 --------/
* PA0 ------------------- PD5/SS
* PA2 ------------------O Error indicator
*
* PA0 controls SS_ (slave select) on the slave. For the mode used
* (cpol=1, cpha=0), the slave SS_ must be brought high between each
* transfer. If it is not, a write collision will result when the
* slave SPDR is written.
*
* PA1 controls SS_ on the master.
* MC68HCx05C8: The master SS_ must be pulled high while the SPI is
* enabled in master mode. If it is not, a mode fault will result.
* MC68HCx05C9: The master PD5/SS pin may be set as output in DDRD bit5.
* If this is done, master SS_ need not be pulled high. This was not
* done to insure compatibility with the MC68HCx05C8, which has an
* input-only Port D.
*
* PA2 pulses low to indicate transmission errors.
*
* PortD DDR
* MC68HCx05C8: Does not have a data direction register. No need to
* write to address $07.
* MC68HCx05C9: Has data direction register. It must be set up
* appropriately for the SPI to operate.

************** Equates *******************
cr equ $0d ;Carriage Return character
lf equ $0a ;Line Feed character

************ MCU Equates *****************
porta equ $00
ddra equ $04
portd equ $03
ddrd equ $07

ROM0 equ $20 ;Start of ROM0
RAM equ $50 ;Start of main RAM

************ SPI Equates *****************
spcr equ $0a ;SPI control register
spsr equ $0b ;SPI status register
spdr equ $0c ;SPI data register

************* SPI Bit Equates ************

********** SPCR ***********
spie equ 7 ;SPI interrupt enable bit

Page 9
MOTOROLA Modules

MC68HC705C8A

spe equ 6 ;SPI enable
mstr equ 4 ;SPI master enable
cpol equ 3 ;SPI clock polarity
cpha equ 2 ;SPI clock phase
spr1 equ 1 ;SPI rate
spr0 equ 0 ;SPI rate

********** SPSR ************
spif equ 7 ;SPI interrupt flag
wcol equ 6 ;SPI write collision
modf equ 4 ;SPI mode fault

********** PortA ***********
sss equ 0 ;port a0 is tied to ss on slave spi
mss equ 1 ;port a1 is tied to ss on the master
error equ 2 ;port a2 pulses low when an SPI error
 ; is caught

***************DACIA Equates*******************

IER equ $20 ;interrupt enable register(write)
ISR equ $20 ;interrupt status register(read)
TDR equ $23 ;transmit data register(write)
RDR equ $23 ;receive data register(read)

*************DACIA bit Equates********************

DTDRE equ 6 ;transmit data reg. empty

***************End of Equates******************

************** Variables **********************
 org RAM ;start of main RAM
temp rmb 1 ;temporary variable

************** Reset Vectors ******************
 org $1ff4 ;vectors
SPI fdb trap
SCI fdb trap
TIMER fdb trap
IRQ fdb trap
SWI fdb trap
RESET fdb start

 org $0200 ;start of program area

****************Program Beginning**************

start: bsr spistrsetup ;initialise system
 bsr checksetup
start10 ldx #msg ;point to string
start20 bsr spistr ;xmit one char of string
 beq start10 ;start over if end of string
 bsr casesw ;reverse case of rec'd char

Page 10
MOTOROLA Modules

MC68HC705C8A

 bsr check ;same as xmit'd char?
 bra start20 ;xmit next char

**
* Subroutine: spistrsetup
* Inputs:
* none
* Outputs:
* none
* Alters Regs:
* A
* CCR
*
**
spistrsetup:
 lda #$18 ;sck=1,mosi=1 this does nothing on C8
 sta ddrd ;but MUST be done on C9

 lda #{1<sss + 1<mss}
 ;left shift 1's into these bit positions
 ;port a0 controls ss on the slave spi
 ;port a1 controls ss on the master
 sta ddra

 bset sss,porta ;deselect slave
 ; the slave ss must go low during the
 ; transfer and high between transfers
 ; for the mode cpha=1,cpol=0. If the
 ; spdr of the slave is written while
 ; ss of the slave is low, a write
 ; collision will occur.
 bset mss,porta ;deselect master
 ; the master ss must be held high during
 ; all time that the master spe and mstr
 ; bits are set. A mode fault will result
 ; if it is not held high during this
 ; time.

 lda #{1<spe + 1<mstr + 1<cpol + 1<spr0}
 ;left shift 1's into these bit positions
 ;set the master up as follows
 ; do not enable spi interrupts
 ; enable spi
 ; enable master mode
 ; cpol=1
 ; cpha=0
 ; spr=01 : sck=eck/4
 sta spcr

 rts ;return from subroutine

**
* Subroutine: checksetup
* Inputs:
* none

Page 11
MOTOROLA Modules

MC68HC705C8A

* Outputs:
* none
* Alters Regs:
* none
*
**
checksetup:
 bset error,ddra ;set error bit as output
 bset error,porta ;put error flag in idle state
 ; pa2 will toggle low if an error is
 ; detected in the SPI system

 rts ;return from subroutine
********************SPI Data Transfer***********
* Subroutine: spistr
* Inputs:
* X: address of string to xmit
* Outputs:
* A: character received by SPI
* X: address of next character to xmit
* CCR: Z bit set if end of string is reached
* Depends upon:
* spistrsetup
* Alters Regs:
* A
* X
* CCR
* Variable TEMP
* Description:
* Transmits one character of a string out the SPI
* system. Returns with Z bit set when the "$"
* is reached. Returns with Z bit clear if "$"
* is not reached.
**

spistr:
 lda ,x ;get message data
 cmp #"$" ;is it the end of the message?
 beq spistr10 ;done with string
 ;return with Z bit set
 bclr sss,porta ;select slave
 sta spdr ;send character
 brclr spif,spsr,* ;check spif, wait until set
 bset sss,porta ;deselect slave
 ; slave must be deselected so that
 ; it can write to it's own spdr
 ; and not cause a write collision
 incx ;set up to send next byte

 lda spdr ;get the recieved character

 clr temp ;we are not done with the
 com temp ; string, so insure that Z
 ; bit is clear for return

Page 12
MOTOROLA Modules

MC68HC705C8A

spistr10:
 rts ;return to calling routine

* Subroutine: casesw
* Intputs:
* ASCII character in acc
* Outputs:
* ASCII character in acc
* Alters Regs:
* A
* CCR
*
* Routine changes upper case to lower case and
* lower case to upper case. Leaves non-alpha
* characters unchanged.
**

casesw cmp #$41 ;below alphas?
 bmi casesw20
 cmp #$5b ;above caps?
 bpl casesw10
 add #$20 ;must be cap, change to low
 bra casesw20
casesw10:
 cmp #$61 ;between alphas?
 bmi casesw20
 cmp #$7b ;above alphas?
 bpl casesw20
 sub #$20 ;must be lowercase, change to cap

casesw20:
 rts ;return

* Subroutine: check
* Intputs:
* A: value to check
* X: pointer to next character to xmit
* offset from received char by -2
* Outputs:
* A: unaffected
* X: unaffected
* Depends upon:
* checksetup
* Alters Regs:
* CCR
*
* Routine compares the value in accumulator to value
* pointed to by (X-2).
*
* If the value do not match, PA0 is pulsed low
*
* If X=msg+1, the routine returns immediately.
*

Page 13
MOTOROLA Modules

MC68HC705C8A

* This is usefull for comparing
* received to transmitted data with the SPI.
**

check:
 cpx #msg+1 ;was this the 1st xfer?
 beq check20 ;if so, don't bother
 decx ;X=X-2
 decx
 cmp ,x ;rec char = xmit char?
 beq check10
 bclr error,porta ;if not, pulse error
 bset error,porta
check10:
 incx ;X=X+2
 incx
check20:
 rts ;done

****************Trap************************

trap bra trap ;trap for unused vectors

**************Message data*******************
 org ROM0 ;store message in Page0 ROM
msg: db "The Quick Brown Fox jumped over the Lazy Dog",cr,lf,"$"

SPI Code Snippet (slave)

Reference Documents: HC05C4; HC05C4A; HC05C8;
HC05C12; HC705C4A; HC705C8; HC705C8A

Tracker Number: HC05C8.006 Revision 2.00

The following code will work on all MCUs that have the SPI_A module. The code
was tested on an HC705C8. Some equates and vectors may have to be changed in
order to properly work on a specific part.

**
*
* Program Name: C8SPIS.ASM
* Revision: 1.1
* Target MCU: MC68HC05C8, MC68HC705C8
* Date: 8/18/93
* Written by: David Yoder, Motorola CSIC Applications
* Assembly: P&E Microcomputer Systems IASM05 3.0m
*
**
* Rev History:
* 1.1 8/18/93 changed label names for consistancy
* 1.0 8/12/93 original for MC68HCx05C9 memory map

Page 14
MOTOROLA Modules

MC68HC705C8A

**
*
* This code shows a basic SPI transfer protocol between one master
* and one slave. This slave module receives characters, changes
* the case of all alpha characters, and transmits the character
* back. Non-alpha characters are transmitted unchanged.
*
* In order for the handshaking to operate, the master should use the
* code snippet (C9SPIM.ASM), and the MCU's should be connected as
* shown below.
*
* Master Slave
* ------ -----
* PD2/MISO -------------- PD2/MISO
* PD3/MOSI -------------- PD3/MOSI
* PD4/SCK -------------- PD4/SCK
* PD5/SS -----\
* PA1 --------/
* PA0 ------------------- PD5/SS
* PA2 ------------------O Error indicator
*
* PA0 in the master code snippet controls SS_ (slave select) on the
* slave. For the mode used (cpol=1, cpha=0), the slave SS_ must be
* brought high between each transfer. If it is not, a write collision
* will result when the slave SPDR is written.
*
* PA1 controls SS_ on the master. The master code snippet is written
* such that the master controls it's own slave select line.
* MC68HCx05C8: The master SS_ must be pulled high while the SPI is
* enabled in master mode. If it is not, a mode fault will result.
* MC68HCx05C9: The master PD5/SS pin may be set as output in DDRD bit5.
* If this is done, master SS_ need not be pulled high. This was not
* done to insure compatibility with the MC68HCx05C8, which has an
* input-only Port D.
*
* PA2 of the master code snippet pulses low to indicate transmission
* errors.
*
* PortD DDR
* MC68HCx05C8: Does not have a data direction register. No need to
* write to address $07.
* MC68HCx05C9: Has data direction register. It must be set up
* appropriately for the SPI to operate.

************** Equates *******************
cr equ $0d ;carriage return character
lf equ $0a ;line feed character
dc1 equ $11
************ SPI Equates *****************

portd equ $03 ;port d
ddrd equ $07 ;data direction register for port d
spcr equ $0a ;SPI control register
spsr equ $0b ;SPI status register

Page 15
MOTOROLA Modules

MC68HC705C8A

spdr equ $0c ;SPI data register

************* SPI Bit Equates ************

******* SPCR ***********
spie equ 7 ;SPI interrupt enable bit
spe equ 6 ;SPI enable bit
mstr equ 4 ;SPI master mode bit
cpol equ 3 ;SPI clock polarity bit
cpha equ 2 ;SPI clock phase bit
spr1 equ 1 ;SPI rate bit 1
spr0 equ 0 ;SPI rate bit 0

******* SPSR ************
spif equ 7 ;SPI interrupt flag bit
wcol equ 6 ;SPI write collision bit
modf equ 4 ;SPI mode fault bit

***************End of Equates******************

 org $1ff4 ;reset vectors

*************** Vectors ************************

SPI fdb echosw
SCI fdb trap
TIMER fdb trap
IRQ fdb trap
SWI fdb trap
reset fdb start

 org $0200 ;start of program area

****************Program Beginning**************

start:
 bsr setup
 cli ;enable system wide interrupts

start10:
 nop ;wait for interrupts
 bra start10

*****************Init SPI**********************
* Subroutine: setup
* Inputs:
* none
* Outputs:
* none
*
* Initializes SPI system

setup: lda #$04 ;set up PD2/MOSI as output
 sta ddrd ;others as input
 ;MUST be done on C9,

Page 16
MOTOROLA Modules

MC68HC705C8A

 ;has no effect on C8

 lda #{1<spie + 1<spe + 1<cpol + 1<spr0}
 ;shift 1's into appropriate
 ; bit postions
 sta spcr ;setup SPI as follows:
 ; enable SPI interrupts
 ; enable SPI system
 ; do not enable master mode
 ; cpol=1 : in this mode, ss must
 ; cpha=0 : go high between xfers
 ; spr=01 : sck=eck/4
 rts

********************SPI Data Transfer ISR*******
* ISR: echosw
* Depends upon:
* setup
* casesw
*
* Slave SPI ISR.
* Receives character from SPI system. Assumes the character
* to be ASCII. Switches the case of all alpha characters.
* Does not affect non-alpha characters. Transmits the
* resulting character back to master.

echosw:
 brclr spif,spsr,* ;make sure transmission is complete

 lda spdr ;get data received from SPI

 bsr casesw ;reverse the case of alphas

echosw10:
 sta spdr ;send data
 ; with cpha=1, ss must go low
 ; before this write is made.
 ; If not, a write collision
 ; will occur. In this example,
 ; the master controls the slave
 ; ss line.

 brset wcol,spsr,echosw10
 ;if a write collision occurred,
 ;try again

 rti ;return to main loop

* Subroutine: casesw
* Intputs:
* ASCII character in acc
* Outputs:
* ASCII character in acc

Page 17
MOTOROLA Modules

MC68HC705C8A

* Alters Regs:
* A
* CCR
*
* Routine changes upper case to lower case and
* lower case to upper case. Leaves non-alpha
* characters unchanged.
**

casesw cmp #$41 ;below alphas?
 bmi casesw20
 cmp #$5b ;above caps?
 bpl casesw10
 add #$20 ;must be cap, change to low
 bra casesw20
casesw10:
 cmp #$61 ;between alphas?
 bmi casesw20
 cmp #$7b ;above alphas?
 bpl casesw20
 sub #$20 ;must be lowercase, change to cap

casesw20:
 rts ;return

*******************Trap************************
trap bra * ;trap for unused vectors

SPI Test Program

Reference Documents: HC05C4; HC05C4A; HC05C8;
HC05C12; HC705C4A; HC705C8; HC705C8A

Tracker Number: HC705C8.004 Revision 2.00

The following code will work on all MCUs that have the SPI_A module. The code was
tested on an HC705C8. Some equates and vectors may have to be changed in order
to properly work on a specific part.

*
* Program Name: 7C8_SPI.ASM (SPI Test on the 705C8)
* Revision: 1.00
* Date: June 7, 1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05
*

Page 18
MOTOROLA Modules

MC68HC705C8A

* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 06/07/93 M.R. Glenewinkel
* Initial Release
*

*
* Program Description:
*
* Use the HC705C8 resident MCU on the HC05EVM to
* run this test.
* Jumper pin #34 on header J19 on the EVM to 5v through
* A 10kOhm resistor. This ties the SS pin of the SPI
* high insuring against the possibility of a mode
* fault error.
* Download the program.
* Make sure the PC is at $800.
* Type GO.
* Look at pin #32 of header J19. This is the MOSI pin
* of the SPI. You should see '$55' come out of this
* pin. The MOSI pin's steady state level is a logic '1'.
* The bitstream's width is 8usecs. Each bit using
* 1usec of time. The program executes in an
* infinite loop.
* ABORT the program to stop operation.
*

*** Equates for 705C8
SPCR EQU $0A ;spi ctrl reg
SPSR EQU $0B ;spi status reg
SPDR EQU $0C ;spi data reg

*** Start of program ***

 ORG $0800 ;start of user eprom

START LDA #$50
 STA SPCR ;spi enabled, mstr
 ; cpha=cpol=spr1=spr0=0

AGAIN LDA #$55
 STA SPDR ;send $55 out on spi

LOOP LDA SPSR ;load spi status reg
 AND #$80 ;check if SPIF bit is set
 BEQ LOOP ;if not, go back
 ; and check again

 BRA AGAIN

Page 19
MOTOROLA Modules

MC68HC705C8A

Serial Communications Interface (SCI - SCICSER_A)

@SCICSER_A

Revision History

SCI Test Program

Reference Document: HC05C4, HC05C4A, HC05C8, HC05C12,
HC705C4A, HC705C8, HC705C8A

Tracker Number: HC705C8.005 Revision: 3.00

An example of running the SCI on an HC705C8 is given below:

The following code will work on all MCUs that have the SCICSER_A module. The code
was tested on an HC705C8. Some equates and vectors may have to be changed in order
to properly work on other MCU's.

*
* Program Name: 7C8_SCI.ASM (SCI Test on the 705C8)
* Revision: 2.00
* Date: July 5, 1994
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 06/07/93 M.R. Glenewinkel
* Initial Release
*
* Rev 2.00 07/05/94 M.R. Glenewinkel
* Added SCSR dummy read
*

*
* Program Description:
*
* Use the HC705C8 resident MCU on the HC05EVM to
* run this test.
* Download the program.

Date Revision Description

5/15/96 0.00 Includes tracker HC705C8.005R3.

Page 20
MOTOROLA Modules

MC68HC705C8A

* Make sure the PC is at $800.
* Type GO.
* Look at pin #30 of header J19. This is the TDO pin
* of the SCI. You should see '$01' come out of this
* pin according to Figure 5-1 of the MC68HC705C8
* Technical Data Manual. Document #MC68HC705C8/D Rev 1.
* The TDO pin's steady state level is a logic '1'.
* The total period of the SCI's bit stream for one
* transmission of an 8 bit character at 9600 baud
* is 1.042 msecs. Each bit's period is 104.2 usecs.
* Please see the graph below.
*
* _ ___ ___
* | | | | |
* |___| |___.___.___.___.___.___.___| |_
* S 0 1 2 3 4 5 6 7 S
* T T
* A O
* R P
* T
*
*
* ABORT the program to stop operation.
*

*** Equates for 705C8
BAUD EQU $0D ;baud rate reg
SCCR1 EQU $0E ;sci cntl reg 1
SCCR2 EQU $0F ;sci cntl reg 2
SCSR EQU $10 ;sci status reg
SCDAT EQU $11 ;sci data reg

*** Start of program ***

 ORG $0800 ;start of user eprom

 lda #$00
 sta SCCR1 ;8 bit char word len
 lda #$08
 sta SCCR2 ;enable transmitter
 lda #$30
 sta BAUD ;9600 baud w/4MegHz xtal
 lda SCSR ;dummy read to initialize
 ; 1st transmission

OUTPUT lda #$01
 sta SCDAT ;load up SCI data reg

LOOP lda SCSR ;check if transmit data
 and #$80 ; reg is empty
 beq LOOP ; if so, go on

 bra OUTPUT ;infinite transmission

Page 21
MOTOROLA Modules

MC68HC705C8A

Timer Interface Module (TIM - TIM1IC1OC_A)

@TIM1IC1OC_A

Revision History

Input Capture/ Output Compare Code Snippet

Reference Documents: HC05C4; HC05C4A; HC05C8; HC05C9;
HC05C9A; HC05C12; HC05D9; HC05D24; HC05D32; HC05J3;
HC05P1; HC05P1A; HC05P4; HC05P5; HC05P6; HC05P7; HC05P9;
HC05P10; HC05P15; HC05P18; HC705C4A; HC705C8; HC705C8A;
HC705C9; HC705D9; HC705D32; HC705J3; HC705P6; HC705P9

Tracker Number: HC05C4.002 Revision 2.0

Previous Rev: 1.00
Changes: Added memory map disclaimer.

**
*
* Program Name: ICOCC4.ASM
* Revision: 1.0
* Date: 9/6/93
*
* Written By: Mark Johnson
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems
* IASM05 Version 3.02m
*
* ********************************
* * Revision History *
* ********************************
*
* Revision 1.00 9/1/93 Original Release
*
**
*
* Program Description:
*
* This was written for the timer module TIM1IC1OC_A and tested
* on the HC05C4. In order to use this with other HC05 MCU's,
* reset vectors and memory map equates may have to be changed.

Date Revision Description

5/15/96 0.00 Includes trackers HC05C4.002R2, HC05C4.003R3, and
HC705P9.005R3.

Page 22
MOTOROLA Modules

MC68HC705C8A

* See the Technical Databook for the appropriate part for this
* memory map information.
*
* This simple program was written to demonstrate the input
* capture and output compare functions of the MC68HC(8)05C4
* timer. The routine generates a level transition on port A
* which is fed into the input capture pin (TCAP). When
* the input capture occurs an offset of 50us is added to
* value in the input capture registers and stored in the
* output compare registers. The output compare generates
* a level transition on the TCMP pin and then the entire
* process is repeated.
*
*
* The program was run on the M68HC05EVM using the
* following setup conditions:
*
* 1) HC705C8 Resident Processor
* 2) Fop = 2MHz
* 3) Pin 11 (PA0) on target header J19 jumpered to pin
* 37 (TCAP).
* 4) The user should see a level transition on the
* TCMP pin approximately* 50us after the level
* transition on port A.
*
* *NOTE: The level transition on the TCMP pin will occur at
* 50us + 1 count of the free-running counter = 52us.
* This is the result of an internal synchronization
* delay which occurs during an input capture.
* (1 count = 4 internal bus cycles)
**
*
* Register Equates
*
porta equ $00 ;port A data register
ddra equ $04 ;port A data dir. reg.
tcr equ $12 ;timer control register
tsr equ $13 ;timer status register
inpcaph equ $14 ;input capture (MSB)
inpcapl equ $15 ;input capture (LSB)
outcomph equ $16 ;output compare (MSB)
outcompl equ $17 ;output compare (LSB)
*
* RAM Variables
*
 org $50 ;RAM address space
templ rmb 1 ;storage for O/C low byte
*
* Beginning of main routine
*
 org $200 ;EPROM/ROM address space
start lda #$ff
 sta ddra ;all port A pins are outputs
 clra
 sta porta ;output a low on port A
 lda #3
 sta tcr ;IEDG = positive edge
 ;OLVL = high output
loop lda tsr ;read timer status register
 lda outcompl ;clear OCF

Page 23
MOTOROLA Modules

MC68HC705C8A

 com porta ;toggle port A
 lda #!25 ;I/C low byte offset
 add inpcapl ;add I/C low byte value
 sta templ ;save new value in temp storage
 lda inpcaph ;get high byte of I/C reg.
 adc #0 ;add carry from last addition
 sta outcomph ;store value to O/C high byte
 lda templ ;get low byte offset
 sta outcompl ;store value in O/C low byte
 lda inpcapl ;enable input captures
 brclr 6,tsr,* ;wait for output compare
 lda tcr ;get Timer Control Register
 eor #3 ;toggle IEDG and OLVL
 sta tcr ;store new IEDG and OLVL values
 bra loop ;repeat process indefinitely
*
* Reset vector setup
*
 org $1ffe
 fdb start

Interrupt Driven Output Compare Code

Reference Document: MC68HC05C4/D, P.4-7; MC68HC705C4A/D;
MC68HC705C4A/D

Tracker Number: HC05C4.003 Revision 2.00

Previous Rev: 1.00
Changes: Added memory map disclaimer.

The following code listing shows the procedure of using the output compare func-
tion driven by an interrupt to produce a square wave. The code was tested with
an HC705C8 on the HC05EVM board. The code will work on an HC05C4.

*
* Program Name: 7C8_OCI.ASM (Square wave generation on OC)
* Revision: 1.00
* Date: September 29, 1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 09/29/93 M.R. Glenewinkel
* Initial Release

Page 24
MOTOROLA Modules

MC68HC705C8A

*

*
* Program Description:
*
* This was written for the timer module TIM1IC1OC_A and tested
* on the HC05C4. In order to use this with other HC05 MCU's,
* reset vectors and memory map equates may have to be changed.
* See the Technical Databook for the appropriate part for this
* memory map information.
*
* This program uses the Output Compare function of the
* timer to generate a square wave. The output compare
* interrupt is utilized to take care of adding the
* appropriate value to the 16 bit output compare
* register to create the square wave. With some
* modification, this routine can perform pulse width
* modulation.
*
* Use the HC705C8 resident MCU on the HC05EVM to
* run this test.
* Download the program.
* Make sure the PC is at $1000. Type GO.
* OR, hit USER RESET on the EVM.
* Look at pin #35 of header J19. This is the Timer
* Compare Output pin (TCMP) of the timer. You should
* see a 3.906kHz square wave on this pin with a
* 256 usec period.
* Press ABORT on the EVM to halt program execution.
*

*** Equates for 705C8
TCR equ $12 ;timer ctrl reg
TSR equ $13 ;timer status reg
OCH equ $16 ;output compare high reg
OCL equ $17 ;output compare low reg
TCH equ $18 ;timer counter high reg
TCL equ $19 ;timer counter low reg
TEMP equ $50 ;temp loc for OCL

*** Start of program ***

 org $1000 ;start of user code

START lda #$41 ;output compare interrupt
 ; enabled, output level 0
 sta TCR ;store to timer ctrl reg
 cli ;clear the I bit in CCR

DUMLOOP bra DUMLOOP ;dummy loop waiting for
 ; timer interrupt

*** Interrupt Service Routine ***
OCISR lda TSR ;read timer status
 ; to clear flag

* Flip the OLVL bit in the TCR reg

Page 25
MOTOROLA Modules

MC68HC705C8A

 lda TCR ;load ACCA w/ TCR
 eor #$01 ;flip bit 0 of ACCA
 sta TCR ;store ACCA to TCR

* Add 64 counts to timer counter reg
* With a 2 MHz internal bus clock, the timer count
* period is 2 usec. 64 counts of the timer counter
* will produce a square wave half cycle of 128 usecs.
 lda #$40 ;load #$40 into acca
 add OCL ;add OCL to ACCA
 sta TEMP ;store res to temp loc
 lda #$00 ;add $00 to out comp hi
 adc OCH ; with carry
 sta OCH ;store res to out comp hi
 lda TEMP ;store temp to out
 sta OCL ; comp low

 rti ;return from interrupt

*** Set up vectors
 org $1FF8 ;define timer
 dw OCISR ; interrupt vector

 org $1FFE ;define reset vector
 dw START

Input Capture Test

Reference Document: HC705P9; MC68HC705C4A/D; MC68HC705C8A/D

Tracker Number: HC705P9.005 Revision 3.00

Previous Rev of DCO: 2.00
Changes from previous DCO: Expanded text for memory map note.

Previous Rev of DCO: 1.00
Changes from previous DCO: Added memory map note to code.

This was written for the timer module TIM1IC1OC_A and tested on the HC705P9. In
order to use this with other HC05 MCU's, reset vectors and memory map equates may
have to be changed.
See the Technical Databook for the appropriate part for this memory map informa-
tion.

*
* Program Name: P9_INCAP.ASM (Input Capture Test for the P9EVS)
* Revision: 1.00
* Date: June 7, 1993
*
* Written By: Mark Glenewinkel
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM05

Page 26
MOTOROLA Modules

MC68HC705C8A

*
* *********************************
* * Revision History *
* *********************************
*
* Rev 1.00 06/07/93 M.R. Glenewinkel
* Initial Release
*

*
* Program Description:
*
* This was written for the timer module TIM1IC1OC_A and tested
* on the HC705P9. In order to use this with other HC05 MCU's,
* reset vectors and memory map equates may have to be changed.
* See the Technical Databook for the appropriate part for this
* memory map information.
*
* Tests the Input capture pin.
* Use the HC705P9 resident MCU on the HC05P9EVS to
* run this test.
* Jumper pins PA0 and PD7/TCAP on Target Header P4.
* We will use Port A, bit 0 to toggle the TCAP pin.
* Download the program.
* Make sure the PC is at $100.
* Type GO.
* ABORT the program and look at locations $80-$83.
* After the first Input Capture, the Input Capture
* Registers High and Low are loaded into RAM
* location $80 and $81, respectively. After the
* second Input Capture, the Input Capture Registers
* High and Low are loaded into RAM location $82
* and $83, respectively.
* If you trace this program, the Input capture
* flag will look like its not being set when you
* view with the emulator software. Remember, the
* flag gets cleared when a read of ICL and TSR occurs.
* The emulator software does this automatically when
* reading those locations to display in the
* emulator window.
*

*** Equates
PORTA EQU $00
PORTB EQU $01
PORTC EQU $02
DDRA EQU $04
DDRB EQU $05
DDRC EQU $06
DDRD EQU $07
TCR EQU $12
TSR EQU $13
ICRH EQU $14
ICRL EQU $15

TEMP1 EQU $0080
TEMP2 EQU $0081
TEMP3 EQU $0082
TEMP4 EQU $0083

Page 27
MOTOROLA Modules

MC68HC705C8A

*** Start of code

 ORG $0100 ;start of program

START LDA #$FF
 STA PORTA ;PortA is $FF
 LDA #$00
 STA DDRD ;PortD is input
 LDA #$FF
 STA DDRA ;PortA is output
 STA DDRC

 LDA #$00
 STA TCR ;set InCap to fall edge
 LDA TSR ;look at tsr
 LDA ICRL ;look at input reg low
 ;this clears any flags

 LDA #$00 ;falling edge created
 STA PORTA ; on PortD/TCAP

LOOP LDA TSR ;wait in loop for flag
 AND #$80 ; to be set
 BEQ LOOP

 LDA ICRH ;write counter values
 STA TEMP1 ;in memory
 LDA ICRL
 STA TEMP2

 LDA #$02 ;set InCap to rising edge
 STA TCR
 LDA #$FF ;rising edge created
 STA PORTA ; on PortD/TCAP

LOOP2 LDA TSR ;wait in loop for flag
 AND #$80 ; to be set
 BEQ LOOP2

 LDA ICRH ;write counter values
 STA TEMP3 ;in memory
 LDA ICRL
 STA TEMP4

LOOP3 NOP
 BRA LOOP3

Page 28
MOTOROLA Modules

MC68HC705C8A

Computer Operating Properly (COP - COP0COP_A)

@COP0COP_A

Revision History

COP Timeout Period

Reference Document: HC05C4AGRS/D Rev 1.2; HC05C5GRS/D Rev 1.2;
HC705C5GRS/D Rev 1.3, page 49; MC68HC705C8AD/D Rev 4.0, page 14
(705C4A); MC68HC705C8AD/D Rev 4.0, page 31 (705C8A);
MC68HC705C8AD/D Rev. 4.0, page 51 (HSC705C8A); MC68HC05C12/D;
HC05P1AGRS/D Rev. 1.3; MC68HC05P4/D, page 4-2; HC05P5GRS/D Rev
1.3; MC68HC05P7/D, page 4-2; HC05P15GRS/D Rev. 0.0, page 33;
HC05P18GRS/D Rev. 0.5, page 12

Tracker Number: HC705P6.012 Revision: 1.00

The timeout period for the COP0COP_A computer operating properly watchdog timer is
a direct function of the crystal frequency. The equation is:

262,144
Timeout Period = ----------------

Fxtal

For example, the timeout period for a 4-MHz crystal is 65.536 ms.

Date Revision Description

29 0.00 Includes tracker HC705P6.012

Page 29
MOTOROLA Modules

MC68HC705C8A

Computer Operating Properly (COP -
COP55AACOPCR_A)

@COP55AACOPCR_A

Revision History

COP Register Correction

Reference Document: HC705C8A; HC705C8, Page 3-2

Tracker Number: HC705C8.020 Revision 1.00

The COP Reset Register detailed in section 3.1.3.1 of the MC68HC705C8/D Rev 1
Technical Data Manual has the wrong address documented. The databook currently
states the address at $0010.

The CORRECT address is $001D.

Date Revision Description

5/15/96 0.00 Includes tracker HC705C8.020.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical"
parameters can and do vary in different applications. All operating parameters, including "Typicals" must be
validated for each customer application by customer's technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP,
England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tai Po Industrial
Estate, Tai Po, N.T., Hong Kong.

	TABLE OF CONTENTS
	Central Processor Unit (CPU - HC05CPU)
	Correction to SUB in Applications Guide
	External Interrupt Timing
	I Bit in CCR During Wait Mode
	Stop Mode Application Example

	Serial Peripheral Interface (SPI - SPI_A)
	SPI Code Snippet (master)
	SPI Code Snippet (slave)
	SPI Test Program

	Serial Communications Interface (SCI - SCICSER_A)
	SCI Test Program

	Timer Interface Module (TIM - TIM1IC1OC_A)
	Input Capture/ Output Compare Code Snippet
	Interrupt Driven Output Compare Code
	Input Capture Test

	Computer Operating Properly (COP - COP0COP_A)
	COP Timeout Period

	Computer Operating Properly (COP - COP55AACOPCR_A)
	COP Register Correction

