
Reference
ABEL-HDL

Table of Contents

1. Introduction

2. Language Structure
Summary . 2-1
Introduction to ABEL-HDL . 2-2
Basic Syntax . 2-3

Supported ASCII Characters . 2-3
Identifiers . 2-4
Constants . 2-6
Blocks . 2-6
Comments . 2-8
Numbers . 2-9
Strings . 2-10
Operators, Expressions, and Equations 2-11
Sets . 2-18
Arguments and Argument Substitution 2-25

Basic Structure . 2-27
Header . 2-29

Module . 2-29
Interface . 2-29
Title . 2-30

Declarations . 2-30
Declarations Keyword . 2-30
Device Declaration . 2-30
Hierarchy Declarations . 2-31
Signal Declarations . 2-33

ABEL-HDL Reference iii

Constant Declarations . 2-35
Symbolic State Declarations . 2-35
Macro Declarations . 2-35
Library Declaration . 2-35

Logic Description . 2-36
Dot Extensions . 2-36
Equations . 2-37
Truth Tables . 2-38
State Descriptions . 2-38
Fuse Declarations . 2-38
XOR Factors . 2-39

Test Vectors Section . 2-39
Test Vectors . 2-39
Trace Statement . 2-39

End Statement . 2-39
Other Elements . 2-40

Directives . 2-40

3. Design Considerations
Hierarchy in ABEL-HDL . 3-1

Instantiating a Lower-level Module
in an ABEL-HDL Source . 3-2
Hierarchy and Retargeting and Fitting 3-4
Hierarchy and Test Vectors (PLD JEDEC Simulation) 3-4

Node Collapsing . 3-5
Selective Collapsing . 3-5

Pin-to-pin Language Features . 3-6
Device-independence Vs. Architecture-independence 3-6
Signal Attributes . 3-6
Signal Dot Extensions . 3-6

Pin-to-pin vs. Detailed Descriptions
for Registered Designs . 3-7

Using := for Pin-to-pin Descriptions 3-7
Detailed Circuit Descriptions 3-8

Table of Contents

iv ABEL-HDL Reference

Examples of Pin-to-pin and Detailed Descriptions 3-10
Detailed Module with Inverted Outputs 3-11
When to Use Detailed Descriptions 3-13
Using := for Alternative Flip-flop Types 3-13

Using Active-low Declarations . 3-14

Polarity Control . 3-16
Polarity Control with Istype . 3-17

Flip-flop Equations . 3-18

Feedback Considerations — Using Dot Extensions 3-18
Dot Extensions and Architecture-Independence 3-19
Dot Extensions and Detail Design Descriptions 3-22

Using Don’t Care Optimization . 3-24

Exclusive OR Equations . 3-26
Optimizing XOR Devices . 3-26
Using XOR Operators in Equations 3-26
Using Implied XORs in Equations 3-27
Using XORs for Flip-flop Emulation 3-27

State Machines . 3-29
Use Identifiers Rather Than Numbers for States 3-30
Powerup Register States . 3-31
Unsatisfied Transition Conditions 3-32
Precautions for Using Don’t Care Optimization 3-33
Number Adjacent States for One-bit Change 3-37
Use State Register Outputs to Identify States 3-37
Using Symbolic State Descriptions 3-38

Using Complement Arrays . 3-40

4. Designing with FPGAs
FPGA Design Strategies . 4-1

Declaring Signals . 4-1
Using Intermediate Signals . 4-2

Using FPGA Device Kits . 4-9
Integrating ABEL-HDL Designs into Larger Circuits 4-9

Table of Contents

ABEL-HDL Reference v

5. Source File Examples
Equations . 5-2

Memory Address Decoder . 5-2
12-to-4 Multiplexer . 5-5
4-Bit Universal Counter . 5-9
Bidirectional Three-state Buffer 5-13
4-Bit Comparator . 5-16

Truth Table Examples . 5-19
Seven-segment Display Decoder 5-19

State Diagram Examples . 5-22
Three-state Sequencer . 5-22

Combined Logic Descriptions . 5-25

Hierarchy Examples . 5-38

ABEL and Synario Projects . 5-45
Lower-level Sources . 5-46

6. Language Reference
.ext — Dot Extensions . 6-2

Examples . 6-12

= — Constant Declarations . 6-13

’attr’ — Signal Attributes . 6-15

@directive — Directives . 6-16

Async_reset and Sync_reset . 6-41
Case . 6-42

Constant Declarations . 6-44
Declarations . 6-45

Device . 6-46

End . 6-47

Equations . 6-48

Functional_block . 6-49

Fuses . 6-52

Goto . 6-53

Table of Contents

vi ABEL-HDL Reference

If-Then-Else . 6-54
Interface (top-level) . 6-57
Interface (lower-level) . 6-58
Istype — Attribute Declarations . 6-60
Library . 6-65
Macro . 6-66
Module . 6-69
Node . 6-70
Pin . 6-71
Property . 6-72
State (Declaration) . 6-73
State (in State_diagram) . 6-74
State_diagram . 6-75
State_register . 6-79
Sync_reset . 6-80
Test_vectors . 6-81
Title . 6-83
Trace . 6-84
Truth_table . 6-85
When-Then-Else . 6-88
With . 6-89
XOR_Factors . 6-90

Table of Contents

ABEL-HDL Reference vii

Chapter 1

Introduction
ABEL-HDL is a hierarchical logic description language. ABEL-HDL design
descriptions are contained in an ASCII text file in the ABEL Hardware
Description Language, ABEL-HDL. The requirements for ABEL-HDL are
described in the following chapters.

♦ Chapter 2, "Language Structure" — provides the basic syntax and
structure of an ABEL-HDL design description. For information on specific
elements, refer to Chapter 6, "Language Reference."

♦ Chapter 3, "Design Considerations" — discusses issues to consider when
creating an ABEL-HDL module, such as architecture-independent
language features, active low declarations, flip-flop equations, feedback
considerations, and polarity control.

♦ Chapter 4, "Designing with FPGAs" — discusses issues to consider when
designing for FPGA devices. The information in this chapter is only
applicable to Synario.

♦ Chapter 5, "Source File Examples" — contains ABEL-HDL module
examples. These examples are representative of programmable logic
applications and illustrate significant ABEL features. They also help you
create your own source files.

♦ Chapter 6, "Language Reference" — gives detailed information about
ABEL-HDL language elements. This chapter assumes you are familiar
with the basic syntax discussed in Chapter 2, "Language Structure."

ABEL-HDL Reference 1-1

Chapter 2

Language Structure
This chapter provides the basic syntax and structure of a design description in
ABEL-HDL. For information on specific elements, refer to Chapter 6,
"Language Reference." You can write a source file using any editor that
produces ASCII files; you are not limited to the ABEL or Synario Text Editor.

Summary
This chapter contains the following sections:

Introduction to ABEL-HDL and to the idea of architecture-independent and
architecture-specific logic descriptions.

Basic syntax of a source file, including

♦ Supported ASCII characters
♦ Identifiers and keywords
♦ Constants
♦ Blocks
♦ Comments
♦ Numbers
♦ Strings
♦ Operators, expressions and equations

♦ Logical operators
♦ Arithmetic operators
♦ Relational operators
♦ Assignment operators
♦ Expressions
♦ Equations

♦ Sets and set operation
♦ Arguments and argument substitution

ABEL-HDL Reference 2-1

Basic Structure of a design description, including

♦ Header
♦ Module
♦ Interface (lower-level)
♦ Title

♦ Declarations
♦ Declarations keyword
♦ Interface and Functional_block declarations
♦ Constant declarations
♦ Signal declarations
♦ Device declarations

♦ Logic description
♦ Equations
♦ Truth tables
♦ State descriptions
♦ Fuses
♦ XOR factors

♦ Test vectors (for PLD JEDEC simulation only)
♦ End

Introduction to ABEL-HDL
ABEL-HDL is a hardware description language that supports a variety of
behavioral input forms, including high-level equations, state diagrams, and
truth tables. The ABEL and Synario versions of the ABEL-HDL compiler (and
supporting software) functionally verify ABEL-HDL designs through
simulation. The compilers then implement the designs in PLDs or FPGAs.
ABEL-HDL designs can also be transferred to other design environments
through standard-format design transfer files.

You can enter designs in ABEL-HDL and verify them with little or no concern
for the architecture of the target device.

Architecture-independent design descriptions (those that do not include
device declarations and pin number declarations) require more comprehensive
descriptions than their architecture-specific counterparts. Assumptions that
can be made when a particular device is specified are not possible when no
device is specified. See the section "Architecture-independent Language
Features" in Chapter 3, "Design Considerations" for a more detailed discussion.

Language Structure

2-2 ABEL-HDL Reference

Basic Syntax
Each line in an ABEL-HDL source file must conform to the following syntax
rules and restrictions:

♦ A line can be up to 150 characters long.
♦ Lines are ended by a line feed (hex 0A), by a vertical tab (hex 0B), or by a

form feed (hex 0C). Carriage returns in a line are ignored, so common
end-of-line sequences, such as carriage return/line feed, are interpreted as
line feeds. In most cases, you can end a line by pressing ↵ .

♦ Keywords, identifiers, and numbers must be separated by at least one
space. Exceptions to this rule are lists of identifiers separated by commas,
expressions where identifiers or numbers are separated by operators, or
where parentheses provide the separation.

♦ Neither spaces nor periods can be imbedded in the middle of keywords,
numbers, operators, or identifiers. Spaces can appear in strings,
comments, blocks, and actual arguments. For example, if the keyword
MODULE is entered as MOD ULE, it is interpreted as two identifiers,
MOD and ULE. Similarly, if you enter 102 05 (instead of 10205), it is
interpreted as two numbers, 102 and 5.

♦ Keywords can be uppercase, lowercase or mixed-case.
♦ Identifiers (user-supplied names and labels) can be uppercase, lowercase

or mixed-case, but are case sensitive: the identifier, output, typed in all
lowercase letters, is not the same as the identifier, Output.

Supported ASCII Characters

All uppercase and lowercase alphabetic characters and most other characters
on common keyboards are supported. Valid characters are listed or shown
below.

a - z (lowercase alphabet)
A - Z (uppercase alphabet)
0 - 9 (digits)
<space>
<tab>
! @ # $? + & * () -

_ = + [] { } ; : ’ "

‘ \ | , < > . / ^ %

Language Structure

ABEL-HDL Reference 2-3

Identifiers

Identifiers are names that identify the following items:

♦ devices
♦ device pins or nodes
♦ functional blocks
♦ sets
♦ input or output signals
♦ constants
♦ macros
♦ dummy arguments

All of these items are discussed later in this chapter. The rules and restrictions
for identifiers are the same regardless of what the identifier describes.

The rules governing identifiers are listed below:

♦ Identifiers can be up to 31 characters. Longer names are flagged as an
error.

♦ Identifiers must begin with an alphabetic character or with an underscore.
♦ Other than the first character, identifiers can contain upper- and lowercase

characters, digits, tildes (~), and underscores.
♦ You cannot use spaces in an identifier. Use underscores or uppercase

letters to separate words.
♦ Except for Reserved Identifiers (Keywords), identifiers are case sensitive:

uppercase letters and lowercase letters are not the same.
♦ You cannot use periods in an identifier, except with a supported dot

extension.

Some supported identifiers are listed below:

HELLO
hello
_K5input
P_h
This_is_a_long_identifier
AnotherLongIdentifier

Some unsupported identifiers are listed below:

7_ Does not begin with a letter or underscore
$4 Does not begin with a letter or underscore
HEL.LO Contains a period (.LO is not a valid dot extension)
b6 kj Contains a space

The last of these identifiers is interpreted as two identifiers, b6 and kj.

Language Structure

2-4 ABEL-HDL Reference

Reserved Identifiers (Keywords)

The keywords listed below are reserved identifiers. Keywords cannot be used
to name devices, pins, nodes, constants, sets, macros, or signals. If a keyword
is used in the wrong context, an error is flagged.

Choosing Identifiers

Choosing the right identifiers can make a source file easy to read and
understand. The following suggestions can help make your logic descriptions
self-explanatory, eliminating the need for extensive documentation.

♦ Choose identifiers that match their function. For example, the pin you’re
going to use as the carry-in on an adder could be named Carry_In. For a
simple OR gate, the two input pins might be given the identifiers IN1 and
IN2, and the output might be named OR.

♦ Avoid large numbers of similar identifiers. For example, do not name the
outputs of a 16 bit adder: ADDER_OUTPUT_BIT_1
ADDER_OUTPUT_BIT_2 and so on.

♦ Use underscores or mixed-case characters to separate words in your
identifier.

THIS_IS_AN_IDENTIFIER
ThisIsAnIdentifier

is much easier to read than

THISISANIDENTIFIER

async_reset
case
declarations
device
else
enable (obsolete)
end
endcase
endwith
equations
external
flag (obsolete)
functional_block

fuses
goto
if
in
interface
istype
library
macro
module
node
options
pin
property

state
state_diagram
state_register
sync_reset
test_vectors
then
title
trace
truth_table
when
with

Language Structure

ABEL-HDL Reference 2-5

Constants

You can use constant values in assignment statements, truth tables, and test
vectors. You can assign a constant to an identifier, and then use the identifier
to specify that value throughout a module (see "Declarations" and "Module
Statement" later in this chapter). Constant values can be either numeric or one
of the non-numeric special constant values. The special constant values are
listed in Table 2-1.

When you use a special constant, it must be entered as shown in Table 2-1.
Without the periods, .C. is an identifier named C. You can enter special
constants in upper- or lowercase.

Blocks

Blocks are sections of text enclosed in braces, { and }. Blocks are used in
equations, state diagrams, macros, and directives. The text in a block can be on
one line or it can span many lines. Some examples of blocks are shown below:

{ this is a block }
{ this is also a block, and it
spans more than one line. }

{ A = B # C;
D = [0, 1] + [1, 0];
}

Constant Description

.C. Clocked input (low-high-low transition)

.D. Clock down edge (high-low transition)

.F. Floating input or output signal

.K. Clocked input (high-low-high transition)

.P. Register preload

.SVn. n = 2 through 9. Drive the input to super voltage 2
through 9.

.U. Clock up edge (low-high transition)

.X. Don’t care condition

.Z. Tristate value

Table 2-1
Special Constants

Language Structure

2-6 ABEL-HDL Reference

Blocks can be nested within other blocks, as shown below, where the block { D
= A } is nested within a larger block:

{ A = B $ C;
 { D = A; }
 E = C; }

Blocks and nested blocks can be useful in macros and when used with
directives. (See "Macro Declarations" later in this chapter and in Chapter 6,
"Language Reference.")

If you need a brace as a character in a block, precede it with a backslash. For
example, to specify a block containing the characters { }, write

{ \{ \} }

Using Blocks in Logic Descriptions

Using blocks can simplify the description of output logic in equations and state
diagrams and allow more-complex functions than possible without blocks.
Blocks can improve the readability of your design.

Blocks are supported anywhere a single equation is supported. You can use
blocks in simple equations, When-then-else, If-then-else, Case, and With
statements

When you use equation blocks within a conditional expression (such as
If-then, Case, or When-then), the logic functions are logically ANDed with the
conditional expression.

Blocks in Equations

The following expressions, written without blocks, are limited by the inability
to specify more than one output in a When-then expression without using set
notation:

Without Blocks:

WHEN (Mode == S_Data) THEN Out_data := S_in;
ELSE WHEN (Mode == T_Data) THEN Out_data := T_in;
WHEN (Mode == S_Data) THEN S_Valid := 1;
ELSE WHEN (Mode == T_Data) THEN T_Valid := 1;

With blocks (delimited with braces { }), the syntax above can be simplified.
The logic specified for Out_data is logically ANDed with the WHEN clause:

With Blocks:

WHEN (Mode == S_Data) THEN { Out_data := S_in;
 S_Valid := 1; }
ELSE WHEN (Mode == T_Data) THEN { Out_data := T_in;
 T_Valid := 1; }

Language Structure

ABEL-HDL Reference 2-7

Blocks in State Diagrams

Blocks also provide a simpler way to write state diagram output equations.
For example, the following two state transition statements are equivalent:

Without Blocks:

IF (Hold) THEN State1 WITH o1 := o1.fb; o2 := o2.fb;
 ENDWITH
ELSE State2;

With Blocks:

IF (Hold) THEN State1 WITH {o1 := o1.fb; o2 := o2.fb;}
ELSE State2;

Using Blocks for State Diagram Transitions

Blocks can be used to nest IF-THEN and IF-THEN-ELSE statements in state
diagram descriptions, simplifying the description of complex transition logic.

Blocks for Transition Logic

Without Blocks:

IF (Hold & !Reset) THEN State1;
If (Hold & Error) THEN State2;
If (!Hold) THEN State3;

With Blocks:

If (Hold) THEN
{ IF (!Reset) THEN State1;
 IF (Error) THEN State2; }
ELSE State3;

Comments

Comments are another way to make a source file easy to understand.
Comments explain what is not readily apparent from the source code itself,
and do not affect the code. Comments cannot be imbedded within keywords.

You can enter comments two ways:

♦ Begin with a double quotation mark (") and end with either another
double quotation mark or the end of line.

♦ Begin with a double forward slash (//) and end with the end of the line.
This is useful for commenting out lines of ABEL source that contain
quote-delineated comments.

Language Structure

2-8 ABEL-HDL Reference

Examples of comments are shown in boldface below:

MODULE Basic_Logic; "gives the module a name
TITLE ’ABEL-HDL design example: simple gates’; "title

"declaration section"
IC4 device ’P10L8’; "declare IC4 to be a P10L8
IC5 "decoder PAL" device ’P10H8’;

//IC5 "decoder PAL" device ’p10h8’;

The information inside single quotation marks (apostrophes) are required
strings, not comments, and are part of the statement.

Numbers

All numeric operations in ABEL-HDL are performed to 128-bit accuracy,
which means the supported numeric values are in the range 0 to 2128 minus 1.
Numbers are represented in any of five forms. The four most common forms
represent numbers in different bases. The fifth form uses alphabetic characters
to represent a numeric value.

When one of the four bases other than the default base is chosen to represent a
number, the base used is indicated by a symbol preceding the number. Table
2-2 lists the four bases supported by ABEL-HDL and their accompanying
symbols. The base symbols can be upper- or lowercase.

Base Name Base Symbol

Binary 2 ^b
Octal 8 ^o
Decimal 10 ^d (default)
Hexadecimal 16 ^h

When a number is specified and is not preceded by a base symbol, it is
assumed to be in the default base numbering system. The normal default base
is base 10. Therefore, numbers are represented in decimal form unless they are
preceded by a symbol indicating that another base is to be used.

You can change the default number base. See @RADIX in Chapter 6,
"Language Reference," for more information. Examples of supported number
specifications are shown below. The default base is base ten (decimal).

Table 2-2
Number Representation in Different Bases

Language Structure

ABEL-HDL Reference 2-9

Specification Decimal Value

75 75
^h75 117
^b101 5
^o17 15
^h0F 15

Note: The carat (^) is a keyboard character. It is not part of a control-key sequence.

You can also specify numbers by strings of one or more alphabetic characters,
using the numeric ASCII code of the letter as the value. For example, the
character "a" is decimal 97 and hexadecimal 61 in ASCII coding. The decimal
value 97 is used if "a" is specified as a number.

Sequences of alphabetic characters are first converted to their binary ASCII
values and then concatenated to form numbers. Some examples are shown
below:

Specification Hex Value Decimal Value

a ^h61 97
b ^h62 98
abc ^h616263 6382203

Strings

Strings are series of ASCII characters, including spaces, enclosed by
apostrophes. Strings are used in the TITLE, MODULE, and OPTIONS
statements, and in pin, node, and attribute declarations, as shown below:

’Hello’
’ Text with a space in front’
’ ’
’The preceding line is an empty string’
’Punctuation? is allowed !!’

You can include a single quote in a string by preceding the quote with a
backslash, (\).

’It\’s easy to use ABEL and Synario’

You can include backslashes in a string by using two of them in succession.

’He\\she can use backslashes in a string’

Language Structure

2-10 ABEL-HDL Reference

Note: The grave accent (‘) is also accepted as a string delimiter and can be used
interchangeably with the apostrophe (’).

Operators, Expressions, and Equations

Items such as constants and signal names can be brought together in
expressions. Expressions combine, compare, or perform operations on the
items they include to produce a single result. The operations to be performed
(addition and logical AND are two examples) are indicated by operators
within the expression.

You can use the set operator (..) in expressions and equations.

ABEL-HDL operators are divided into four basic types: logical, arithmetic,
relational, and assignment. Each of these types are discussed separately
below, followed by a description of how they are combined into expressions.
Following the descriptions is a summary of all the operators and the rules
governing them and an explanation of how equations use expressions.

Logical Operators

Logical operators are used in expressions. ABEL-HDL incorporates the
standard logical operators listed in Table 2-3. Logical operations are
performed bit by bit. For alternate operators, refer to the @ALTERNATE
directive in Chapter 6, "Language Reference."

Operator Description

! NOT: ones complement
& AND
OR
$ XOR: exclusive OR
!$ XNOR: exclusive NOR

Arithmetic Operators

Arithmetic operators define arithmetic relationships between items in an
expression. The shift operators are included in this class because each left shift
of one bit is equivalent to multiplication by 2 and a right shift of one bit is the
same as division by 2. Table 2-4 lists the arithmetic operators.

Table 2-3
Logical Operators

Language Structure

ABEL-HDL Reference 2-11

Operator Example Description

- -A twos complement (negation)
- A-B subtraction
+ A+B addition
Not Supported for Sets:
* A*B multiplication
/ A/B unsigned integer division
% A%B modulus: remainder from /
<< A<<B shift A left by B bits
>> A>>B shift A right by B bits

Note: A minus sign has a different significance, depending on its usage. When used
with one operand, it indicates that the twos complement of the operand is to be formed.
When the minus sign is found between two operands, the twos complements of the
second operand are added to the first.

Division is unsigned integer division: the result of division is a positive
integer. Use the modulus operator (%) to get the remainder of a division. The
shift operators perform logical unsigned shifts. Zeros are shifted in from the
left during right shifts and in from the right during left shifts.

Relational Operators

Relational operators compare two items in an expression. Expressions formed
with relational operators produce a Boolean true or false value. Table 2-5 lists
the relational operators.

Operator Description

== equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

Table 2-4
Arithmetic Operators

Table 2-5
Relational Operators

Language Structure

2-12 ABEL-HDL Reference

All relational operations are unsigned. For example, the expression !0 > 4 is
true since the complement of !0 is 1111 (assuming 4 bits of data), which is 15 in
unsigned binary, and 15 is greater than 4. In this example, a four-bit
representation was assumed; in actual use, !0, the complement of 0, is 128 bits
all set to 1.

Some examples of relational operators in expressions are listed below:

Expression Value

2 == 3
2 != 3
3 < 5
-1 > 2

False
True
True
True
False

The logical values true and false are represented by numbers. Logical true is -1
in twos complement, so all 128 bits are set to 1. Logical false is 0 in twos
complement, so all 128 bits are set to 0. This means that an expression
producing a true or false value (a relational expression) can be used anywhere
a number or numeric expression could be used and -1 or 0 will be substituted
in the expression depending on the logical result.

For example,

A = D $ (B == C);

means that

♦ A equals the complement of D if B equals C
♦ A equals D if B does not equal C.

When using relational operators, always use parentheses to ensure the
expression is evaluated in the order you expect. The logical operators & and #
have a higher priority than the relational operators (see the priority table later
in this chapter).

The following equation

Select = [A15..A0] == ^hD000 # [A15..A0] == ^h1000;

needs parentheses to obtain the desired result:

Select = ([A15..A0] == ^hD000) # ([A15..A0] == ^h1000);

Without the parentheses, the equation would have the default grouping

Select = [A15..A0] == (^hD000 # [A15..A0]) == ^h1000;

which is not the intended equation.

Language Structure

ABEL-HDL Reference 2-13

Assignment Operators

Assignment operators are used in equations rather than in expressions.
Equations assign the value of an expression to output signals. For more
information, see the "Equations" section later in this chapter.

There are four assignment operators (two combinational and two registered).
Combinational or immediate assignment occurs, without any delay, as soon as
the equation is evaluated. Registered assignment occurs at the next clock
pulse from the clock associated with the output. Refer to Chapter 3, "Design
Considerations." Table 2-6 shows the assignment operators.

Operator Set Description

= ON (1) Combinational or detailed
assignment

:= ON (1) Implied registered assignment
?= DC (X) Combinational or detailed

assignment
?:= DC (X) Implied registered assignment

CAUTION: The := and ?:= assignment operators are used only when writing
pin-to-pin registered equations. Use the = and ?= assignment operators for
registered equations using detailed dot extensions.

These assignment operators allow you to fully specify outputs in equations.
For example, in the following truth table, the output F is fully specified:

TRUTH_TABLE ([A,B]->[F]);
 [1,1]-> 0 ; "off-set
 [1,0]-> 1 ; "on-set
 [0,1]-> 1 ; "on-set

The equivalent functionality can be expressed in equations:

@DCSET
F = A & !B # !A & B; "on-set
F ?= !A & !B; "dc-set

Note: Specifying both the on-set and the don’t-care set conditions enhances
optimization.

CAUTION: With equations, @DCSET or ISTYPE ’dc’ must be specified or the
?= equations are ignored.

Table 2-6
Assignment Operators

Language Structure

2-14 ABEL-HDL Reference

Expressions

Expressions are combinations of identifiers and operators that produce one
result when evaluated. Any logical, arithmetic, or relational operators may be
used in expressions.

Expressions are evaluated according to the particular operators involved.
Some operators take precedence over others, and their operation is performed
first. Each operator has been assigned a priority that determines the order of
evaluation. Priority 1 is the highest priority, and priority 4 is the lowest. Table
2-7 summarizes the logical, arithmetic and relational operators, presented in
groups according to their priority.

Priority Operator Description

1 - negate
1 ! NOT
2 & AND
2 << shift left
2 >> shift right
2 * multiply
2 / unsigned division
2 % modulus
3 + add
3 - subtract
3 # OR
3 $ XOR: exclusive OR
3 !$ XNOR: exclusive NOR
4 == equal
4 != not equal
4 < less than
4 < = less than or equal
4 > greater than
4 > = greater than or equal

Table 2-7
Operator Priority

Language Structure

ABEL-HDL Reference 2-15

Operations of the same priority are performed from left to right. Use
parentheses to change the order in which operations are performed. The
operation in the innermost set of parentheses is performed first. The following
examples of supported expressions show how the order of operations and the
use of parentheses affect the evaluated result.

Expression Result Comments

2 * 3/2 3 operators with same priority
2 * 3 / 2 3 spaces are OK
2 * (3/2) 2 fraction is truncated
2 + 3 * 4 14 multiply first
(2 + 3) * 4 20 add first
2#4$2 4 OR first
2#(4$2) 6 XOR first
2 == ^hA 0
14 == ^hE -1

Equations

Equations assign the value of an expression to a signal or set of signals in a
logic description. The identifier and expression must follow the rules for those
elements.

Equations use the assignment operators =, ?= (combinational) and := ?:=,
(registered) described above.

You can use the complement operator (!) to express negative logic. The
complement operator precedes the signal name and implies that the
expression on the right of the equation is to be complemented before it is
assigned to the signal. Use of the complement operator on the left side of
equations is provided as an option; equations for negative logic parts can just
as easily be expressed by complementing the expression on the right side of
the equation.

See Also

"Equations" and "When-Then-Else" in Chapter 6, "Language Reference."

Equation Blocks

Equation blocks let you specify more complex functions and improve the
readability of your equations. An equation block is enclosed in braces { }, and
is supported wherever a single equation is supported. When used within a
conditional expression, such as IF-THEN, CASE, or WHEN-THEN, the logic
functions are logically ANDed with the conditional expression that is in effect.

See Also

If-Then-Else, When-Then-Else, and CASE in Chapter 6, "Language Reference."

Language Structure

2-16 ABEL-HDL Reference

Multiple Assignments to the Same Identifier

When an identifier appears on the left side of more than one equation, the
expressions assigned to the identifier are first ORed together, and then the
assignment is made. If the identifier on the left side of the equation is
complemented, the complement is performed after all the expressions have
been ORed.

Equations Found Equivalent Equation
A = B;
A = C; A = B # C;
A = B;
A = C & D; A = B # (C & D);
A = !B;
A = !C; A = !B # !C;
!A = B;
!A = C; A = !(B # C);
!A = B;
A = !C; A = !C #!B;
!A = B;
!A = C;
A = !D;
A = !E; A = !D # !E # !(B # C);

Note: When the complement operator appears on the left side of multiple assignment
equations, the right sides are ORed first, and then the complement is applied.

Language Structure

ABEL-HDL Reference 2-17

Sets

A set is a collection of signals and constants. Any operation applied to a set is
applied to each element in the set. Sets simplify ABEL-HDL logic descriptions
and test vectors by allowing groups of signals to be referenced with one name.

For example, you could collect the outputs (B0-B7) of an eight-bit multiplexer
into a set named MULTOUT, and the three selection lines into a set named
SELECT. You could then define the multiplexer in terms of MULTOUT and
SELECT rather than individual input and output bits.

A set is represented by a list of constants and signals separated by commas or
the range operator (..) and surrounded by brackets. The sets MULTOUT and
SELECT would be defined as follows:

MULTOUT = [B0,B1,B2,B3,B4,B5,B6,B7]
SELECT = [S2,S1,S0]

The above sets could also be expressed by using the range operator; for
example,

MULTOUT = [B0..B7]
SELECT = [S2..S0]

Identifiers used to delimit a range must have compatible names: they must
begin with the same alphabetical prefix and have a numerical suffix. Range
identifiers can also delimit a decrementing range or a range which appears as
one element of a larger set as shown below:

[A7..A0] "decrementing range
[Q1,Q2,.X.,A10..A7] "range within a larger set

The brackets are required to delimit the set. ABEL-HDL source file sets are not
mathematical sets.

Set Indexing

Set indexing allows you to access elements within a set. The following
example uses set indexing to assign four elements of a 16-bit set to a smaller
set.

declarations
 Set1 = [f15..f0];
 Set2 = [q3..q0];

equations

 Set2 := Set1[7..4];

Language Structure

2-18 ABEL-HDL Reference

The numeric values used for defining a set index refer to the bit positions of
the set, with 0 being the least significant (left-most) element in the set. So
Set1[7..4] is Set1, values f8 to f11.

If you are indexing into a set to access a single element, then you can use the
following syntax:

declarations
 out1 pin istype ’com’;
 Set1 = [f15..f0];

equations

 out1 = Set1[4] == 1;

In this example, a comparator operator (==) was used to convert the
single-element set (Set1[4]) into a bit value (equivalent to f4).

See multiply.abl for more examples of set indexing. See also the @Setsize
directive.

Set Operations

Most operators can be applied to sets, with the operation performed on each
element of the set, sometimes individually and sometimes according to the
rules of Boolean algebra. Table 2-8 lists the operators you can use with sets.
"Set Operations," found later in this chapter, describes how these operators are
applied to sets.

Two-set Operations

For operations involving two or more sets, the sets must have the same
number of elements. The expression "[a,b]+[c,d,e]" is not supported because
the sets have different numbers of elements.

For example, the Boolean equation

Chip_Sel = A15 & !A14 & A13;

represents an address decoder where A15, A14 and A13 are the three
high-order bits of a 16-bit address. The decoder can easily be implemented
with set operations. First, a constant set that holds the address lines is defined
so the set can be referenced by name. This definition is done in the constant
declaration section of a module.

The declaration is

Addr = [A15,A14,A13];

which declares the constant set Addr. The equation

Chip_Sel = Addr == [1,0,1];

Language Structure

ABEL-HDL Reference 2-19

is functionally equivalent to

Chip_Sel = A15 & !A14 & A13;

If Addr is equal to [1,0,1], meaning that A15 = 1, A14 = 0 and A13 = 1, then
Chip_Sel is set to true. The set equation could also have been written as

Chip_Sel = Addr == 5;

because 101 binary equals 5 decimal.

In the example above, a special set with the high-order bits of the 16-bit
address was declared and used in the set operation. The full address could be
used and the same function arrived at in other ways, as shown below:

Example 1

" declare some constants in declaration section
Addr = [a15..a0];
X = .X.; "simplify notation for don’t care constant
Chip_Sel = Addr == [1,0,1,X,X,X,X,X,X,X,X,X,X,X,X];

Example 2

" declare some constants in declaration section
Addr = [a15..a0];
X =.X.;
Chip_Sel = (Addr >= ^HA000) & (Addr <= ^HBFFF);

Both solutions presented in these two examples are functionally equivalent to
the original Boolean equation and to the first solution in which only the high
order bits are specified as elements of the set (Addr = [a15, a14, a13]) .

Set Assignment and Comparison

Values and sets of values can be assigned and compared to a set. Supported
set operations are given in Table 2-8. For example,

sigset = [1,1,0] & [0,1,1];

results in sigset being assigned the value, [0,1,0]. The set assignment

[a,b] = c & d;

is the same as the two assignments

a = c & d;
b = c & d;

Numbers in any representation can be assigned or compared to a set. The
preceding set equation could have been written as

sigset = 6 & 3;

Language Structure

2-20 ABEL-HDL Reference

When numbers are used for set assignment or comparison, the number is
converted to its binary representation and the following rules apply:

♦ If the number of significant bits in the binary representation of a number is
greater than the number of elements in a set, the bits are truncated on the left.

♦ If the number of significant bits in the binary representation of a number is
less than the number of elements in a set, the number is padded on the left
with leading zeroes.

Thus, the following two assignments are equivalent:

[a,b] = ^B101011; "bits truncated to the left
[a,b] = ^B11;

And so are these two:

[d,c] = ^B01;
[d,c] = ^B1; "compiler will add leading zero

Operator Example Description

= A = 5 combinational assignment
:= A := [1,0,1] registered assignment
! !A NOT: ones complement
& A & B AND
A # B OR
$ A $ B XOR: exclusive OR
!$ A!$ B XNOR: exclusive NOR
- -A negate
- A - B subtraction
+ A + B addition
== A == B equal
!= A != B not equal
< A < B less than
<= A <= B less than or equal
> A > B greater than
>= A >= B greater than or equal

Table 2-8
Supported Set Operations

Language Structure

ABEL-HDL Reference 2-21

Set Evaluation

How an operator is performed with a set may depend on the types of
arguments the operator uses. When a set is written [a , b , c , d] , a is
the MOST significant bit and d is the LEAST significant bit.

The result, when most operators are applied to a set, is another set. The result
of the relational operators (==, !=, >, >=, <, <=) is a value: TRUE (all ones) or
FALSE (all zeros), which is truncated or padded to as many bits as needed.
The width of the result is determined by the context of the relational operator,
not by the width of the arguments.

The different contexts of the AND (&) operator and the semantics of each
usage are described below.

signal & signal
a & b

This is the most straightforward use. The expression is
TRUE if both signals are TRUE.

signal & number
a & 4

The number is converted to binary and the least
significant bit is used. The expression becomes a & 0, then
is reduced to 0 (FALSE).

signal & set
a & [x, y, z]

The signal is distributed over the elements of the set to
become [a & x, a & y, a & z]

set & set
[a, b] & [x, y]

The sets are ANDed bit-wise resulting in: [a & x, b & y].
An error is displayed if the set widths do not match.

set & number
[a, b, c] & 5

The number is converted to binary and truncated or
padded with zeros to match the width of the set. The
sequence of transformations is
[a, b, c] & [1, 0, 1]
[a & 1, b & 0, c & 1]
[a, 0, c]

number & number
9 & 5

The numbers are converted to binary, ANDed together,
then truncated or padded.

Example Equations

select = [a15..a0] == ^H80FF

select (signal) is TRUE when the 16-bit address bus has the hex value 80FF.
Relational operators always result in a single bit.

[sel1, sel0] = [a3..a0] > 2

The width of sel and a are different, so the 2 is expanded to four bits (of
binary) to match the size of the a set. Both sel1 and sel2 are true when the
value of the four a lines (taken as a binary number) is greater than 2.

Language Structure

2-22 ABEL-HDL Reference

The result of the comparison is a single-bit result which is distributed to both
members of the set on the output side of the equation.

[out3..out0] = [in3..in0] & enab

If enab is TRUE, then the values on in0 through in3 are seen on the out0
through out3 outputs. If enab is FALSE, then the outputs are all FALSE.

Set Operation Rules

Set operations are applied according to Boolean algebra rules. Uppercase
letters are set names, and lowercase letters are elements of a set. The letters k
and n are subscripts to the elements and to the sets. A subscript following a
set name (uppercase letter) indicates how many elements the set contains. So
Ak indicates that set A contains k elements. ak-1 is the (k-1)th element of set A.
a1 is the first element of set A.

Expression Is Evaluated As...

!Ak [!ak, !ak-1, ..., !a1]

-Ak !Ak + 1

Ak.OE [ak.OE, ak-1.OE, ..., a1.OE]

Ak & Bk [ak & bk, ak-1 & bk-1, ..., a1 & b1]

Ak # Bk [ak # bk, ak-1 # bk-1, ..., a1 # b1]

Ak $ Bk [ak $ bk, ak-1 $ bk-1, ..., a1 $ b1]

Ak !$ Bk [ak !$ bk, ak-1 !$ bk-1, ..., a1 !$ b1]

Ak == Bk (ak == bk) & (ak-1 == bk-1) & ... & (a1 == b1)

Ak != Bk (ak != bk) # (ak-1 != bk-1) # ... # (a1 != b1)

Ak + Bk Dk
where:
dn is evaluated as an $ bn $ cn-1
cn is evaluated as (an $ bn) # (an & cn-1) # (bn & cn-1)
c0 is evaluated as 0

Ak - Bk Ak + (-Bk)

Ak < Bk ck
where:
cn is evaluated as (!an & (bn # cn-1) # an & bn & cn-1) != 0
c0 is evaluated as 0

Language Structure

ABEL-HDL Reference 2-23

Limitations/ Restrictions on Sets

If you have a set assigned to a single value, the value will be padded with 0s
and then applied to the set. For example,

[A1,A2,A3] = 1

is equivalent to

A1 = 0
A2 = 0
A3 = 1

which may not be the intended result. If you want 1 assigned to each member
of the set, you’d need binary 111 or decimal 7.

The results of using an operator depend on the sequence of evaluation.
Without parentheses, operations are performed from left to right. Consider
the following two equations. In the first, the constant 1 is converted to a set; in
the second, the 1 is treated as a single bit.

Equation 1:
The first operation is [a, b] & 1, so 1 is converted to a set [0, 1].

[x1, y1] = [a, b] & 1 & d
 = ([a, b] & 1) & d
 = ([a, b] & [0, 1]) & d
 = ([a & 0, b & 1]) & d
 = [0 , b] & d
 = [0 & d, b & d]
 = [0, b & d]

 x1 = 0
 y1 = b & d

Equation 2:
The first operation is 1 & d, so 1 is treated as a single bit.

[x2,y2] = 1 & d & [a, b]
= (1 & d) & [a, b]
= d & [a, b]
= [d & a, d & b]

x2 = a & d
y2 = b & d

If you are unsure about the interpretation of an equation, try the following:

♦ Fully parenthesize your equation. Errors can occur if you are not familiar
with the precedence rules in Table 2-7.

♦ Write out numbers as sets of 1s and 0s instead of as decimal numbers. If
the width is not what you expected, you will get an error message.

Language Structure

2-24 ABEL-HDL Reference

Arguments and Argument Substitution

Variable values can be used in macros, modules, and directives. These values
are called the arguments of the construct that uses them. In ABEL-HDL, a
distinction must be made between two types of arguments: actual and
dummy. Their definitions are given here.

Dummy
argument

An identifier used to indicate where an actual argument is
to be substituted in the macro, module, or directive.

Actual
argument

The argument (value) used in the macro, directive, or
module. The actual argument is substituted for the
dummy argument. An actual argument can be any text,
including identifiers, numbers, strings, operators, sets, or
any other element of ABEL-HDL.

Dummy arguments are specified in macro declarations and in the bodies of
macros, modules, and directives. The dummy argument is preceded by a
question mark in the places where an actual argument is to be substituted.
The question mark distinguishes the dummy arguments from other
ABEL-HDL identifiers occurring in the source file.

Take for example, the following macro declaration arguments (see "Macro
Declarations" later in this chapter and the design example file macro.abl):

OR_EM MACRO (a,b,c) { ?a # ?b # ?c };

This defines a macro named OR_EM that is the logical OR of three arguments.
These arguments are represented in the definition of the macro by the dummy
arguments, a, b, and c. In the body of the macro, which is surrounded by
braces, the dummy arguments are preceded by question marks to indicate that
an actual argument is substituted.

The equation

D = OR_EM (x,y,z&1);

invokes the OR_EM macro with the actual arguments, x, y, and z&1. This
results in the equation:

D = x # y # z&1;

Arguments are substituted into the source file before checking syntax and
logic, so if an actual argument contains unsupported syntax or logic, the
compiler detects and reports the error only after the substitution.

Language Structure

ABEL-HDL Reference 2-25

Spaces in Arguments

Actual arguments are substituted exactly as they appear, so any spaces
(blanks) in actual arguments are passed to the expression. In most cases,
spaces do not affect the interpretation of the macro. The exception is in
functions that compare character strings, such as @IFIDEN and IFNIDEN. For
example, the macro

iden macro(a,b) {@ifiden(?a,?b)
{@message ’they are the same’;};};

compares the actual arguments and prints the message if they are identical. If
you enter the macro with spaces in the actual arguments:

iden(Q1, Q1);

The value is false because the space is passed to the macro.

Argument Guidelines

♦ Dummy arguments are place holders for actual arguments.
♦ A question mark preceding the dummy argument indicates that an actual

argument is to be substituted.
♦ Actual arguments replace dummy arguments before the source file is

checked for correctness.
♦ Spaces in actual arguments are retained.

Further discussion and examples of argument use are given in Chapter 6,
"Language Reference" under "Module," "Macro," and "@directive."

Language Structure

2-26 ABEL-HDL Reference

Basic Structure
ABEL-HDL source files can contain independent modules. Each module
contains a complete logic description of a circuit or subcircuit. Any number of
modules can be combined into one source file and processed at the same time.

This section covers the basic elements that make up an ABEL-HDL source file
module. A module can be divided into five sections:

♦ Header
♦ Declarations
♦ Logic Description
♦ Test Vectors
♦ End

The elements of the source file are shown in the template in Figure 2-1. There
are also directives that can be included in any of the middle three sections.
The sections are presented briefly below, then each element is introduced. You
can find complete information in Chapter 6, "Language Reference."

The following rules apply to module structure:

♦ A module must contain only one header (composed of the Module
statement and optional Title and Options statements).

♦ All other sections of a source file can be repeated in any order.
Declarations must immediately follow either the header or the
Declarations keyword.

♦ No symbol (identifier) can be referenced before it is declared.

Header The Header Section can consist of the following elements:

♦ Module (required)
♦ Interface (lower level, optional)
♦ Title

Declarations

A Declarations Section can consist of the following elements:

♦ Declarations Keyword
♦ Interface and Functional Block Declarations
♦ Signal Declarations (pin and node numbers optional)
♦ Constant Declarations
♦ Macro Declarations
♦ Library Declarations
♦ Device Declaration (one per module)

Language Structure

ABEL-HDL Reference 2-27

ABEL-HDL Module

Module source3
Title ’Example of a Source File’

Declarations
 in1,in2,in3, clk PIN ;
 all, none, other PIN ISTYPE ’reg’;
 in = [in1..in3] ;
 out = [all,none,other] ;
 C = .C.

Equations
 out.clk = clk ;
 all := in1 & in2 & in3 ;
 none := !in1 & !in2 & !in3 ;
 other := (!in1 # !in2 # !in3) &
 (in1 # in2 # in3)
Test_Vectors
 ([in,clk] -> [out]
 ([7, c] -> 4 ;
 ([3, C] -> 1 ;

End source3

DECLARATIONS
Declarations declare
lower-level modules, and
associate names with
functional block instances
devices, pins, nodes,
constants, macros and
sets. They also assign
attributes with istype .

END
The end statement ends the
module.

EQUATIONS
You can use Equations, State
Diagrams or Truth Tables to
describe your logic design.

TITLE
The title statement can be
used to give a title or
description for the module.

TEST_VECTORS
Test vectors are used in
JEDEC simulation for
designs mapped to PLDs.

MODULE
The module statement names the module and
indicates if dummy arguments are used.
In lower-level modules, it can be
followed by an interface declaration.

D
e

cl
a

ra
tio

n
s

L
o

g
ic

D
e

sc
ri
p

tio
n

T
e

st
V

e
ct

o
rs

E
n

d
H

e
a

d
e

r

 Bold denotes ABEL-HDL keywords

Figure 2-1
ABEL-HDL Module Structure

Language Structure

2-28 ABEL-HDL Reference

Logic Description

You can use one or more of the following elements to describe your design.

♦ Equations
♦ Truth Tables
♦ State Diagrams
♦ Fuses
♦ XOR Factors

Test Vectors Section

Test vectors are only used forEquation or JEDEC Simulation. See the Equation
and JEDEC Simulators User Manual for information on simulating other devices.
A Test Vectors section can consist of the following elements:

♦ Test Vectors
♦ Trace Statement
♦ Test Script

End Statement

A module is closed with the end statement:

♦ End Statement

Other Elements

Directives can be placed anywhere you need them:

♦ Directives

Header

Module

Keyword: module

The Module statement is required. It defines the beginning of the module and
must be paired with an End statement. The Module statement also indicates
whether any module arguments are used.

Interface

Keyword: interface

The interface statement is used in lower-level sources to indicate signals used
in upper-level files. The interface statement is optional.

Language Structure

ABEL-HDL Reference 2-29

Title

Keyword: title

The title is optional. The title appears as a header in some output files.

Declarations
The declarations section of a module specifies the names and attributes of
signals used in the design, defines constants macros and states, declares
lower-level modules and schematics, and optionally declares a device. Each
module must have at least one declarations section, and declarations affect
only the module in which they are defined. There are several types of
declaration statements:

♦ Constant (see =)
♦ Device
♦ Hierarchy
♦ Library
♦ Macro
♦ Signal (see Pin, Node and Istype)
♦ State
♦ State register

The syntax and use of each of these types is presented in Chapter 6, "Language
Reference." Some are discussed briefly below.

Declarations Keyword

Keyword: declarations

This keyword allows declarations (such as sets or other constants) in any part
of the source file.

Device Declaration

Keyword: device

device_id DEVICE real_device ;

The Device declaration is optional, and only one can be made per module. It
associates a device identifier with a specific programmable logic device.

Language Structure

2-30 ABEL-HDL Reference

Hierarchy Declarations

Interface Declarations

Top-level Interface Declarations

Keyword: interface

low-level module_name INTERFACE (inputs [= value] -> outputs :>
bidirs ...)

The interface keyword declares lower-level modules that are used by the
current module. This declaration is used in conjunction with a
functional_block declaration for each instantiation of a module.

When you instatiate a functional block, you must map port names to signal
names with equations. See functional_block for more information.

Lower-level Interface Declarations

Keyword: interface

MODULE module_name
INTERFACE (input/set=value . . . -> output/set :> bidir/set) ;

Use the interface declaration in lower-level modules to assign a default port
list and input values for the module when instantiated in higher-level
ABEL-HDL sources. In the higher-level source, you must declare signals and
sets in the same order and grouping as given in the interface statement in the
instantiated module.

The -> and :> delimiters are used to indicate the direction of each port of a
functional block.

CAUTION: Interface declarations cannot contain dot extensions. If you need
a specific dot extension across a source boundary (to resolve feedback
ambiguities, for example), you must introduce an intermediate signal into the
lower-level module to provide the connection to the higher-level source. All
dot extension equations for a given output signal must be located in the
ABEL-HDL module in which the signal is defined. No references to that
signal’s dot extensions can be made outside of the ABEL-HDL module.

Note: Bidirectional interface statements may not be supported in all device kits.

Language Structure

ABEL-HDL Reference 2-31

Functional_block Statement

Keyword: functional_block

DECLARATIONS
instance_name FUNCTIONAL_BLOCK module_name ;

EQUATIONS
instance_name.port_name = signal_name;

Use a functional_block declaration to instantiate a declared source within a
higher-level ABEL-HDL source. You must declare a source with an interface
declaration before instantiating it with functional_block.

Example of Functional Block Instantiation

To declare the two ABEL-HDL sources shown in Figure 2-2 would require the
following syntax:

module FUNC ;
 mod1 INTERFACE (i1 -> o1);
 A FUNCTIONAL_BLOCK mod1;
 mod2 INTERFACE (i1 -> o1);
 B FUNCTIONAL_BLOCK mod2;
 I pin ;
 O pin istype ’com’;

Equations
 O = B.o1;
 B.i1 = A.o1;
 A.i1 = I;

end Func

Note that the output of an equation must always be on the left side of the
equations.

See Also

"Hierarchy" in Chapter 3, "Design Considerations."

MODULE MOD 1 MODULE MOD 2
A B

I O

1808-1

i1 i1o1 o1

Figure 2-2
Functional Block Instantiation

Language Structure

2-32 ABEL-HDL Reference

Signal Declarations

The Pin and Node declarations are made to declare signals used in the design,
and optionally to associate pin and/or node numbers with those signals.
Actual pin and node numbers do not have to be assigned until you want to
map the design into a device. Attributes can be assigned to signals within pin
and node declarations with the Istype statement. Dot extensions can also be
used in equations to precisely describe the signals; see "Dot Extensions" under
"Logic Descriptions" later in this chapter.

Note: Assigning pin numbers defines the particular pin-outs necessary for the
design. Pin numbers only limit the device selection to a minimum number of input
and output pins. Pin number assignments can be changed later by a fitter.

Pin Declarations

Keyword: pin

[!] pin_id [,[!] pin_id ...] PIN [pin# [, pin#]]
[ISTYPE ’ attributes ’] ;

See "Attribute Assignment" below, and "Using Active-low Declarations" in
Chapter 2, "Language Structure."

Node Declarations

Keyword: node

[!] node_id [, [!] node_id ...] NODE [node# [, node#]]
[ISTYPE ’ attributes ’] ;

See "Attribute Assignment" below, and "Using Active-low Declarations" in
Chapter 2, "Language Structure."

Attribute Assignment

Keyword: istype

signal [, signal]... ISTYPE ’ attributes ’;

The ISTYPE statement defines attributes (characteristics) of signals for devices
with programmable characteristics or when no device and pin/node number
has been specified for a signal. Even when a device has been specified, using
attributes will make it more likely that the design operates consistently if the
device is changed later. ISTYPE can be used after pin or node declarations.

Attributes may be entered in uppercase, lowercase, or mixed-case letters.
Table 2-9 summarizes the attributes. Each attribute is discussed in more detail
in Chapter 6, "Language Reference" under Istype.

Language Structure

ABEL-HDL Reference 2-33

Dot
Ext.

Arch.
Indep. Description

’buffer’ No Inverter in Target Device.
’collapse’ Collapse (remove) this signal. 1

’com’ ✓ Combinational output.
’dc’ ✓ Unspecified logic is don’t care. 2

’invert’ Inverter in Target Device.
’keep’ Do not collapse this signal from equations. 1

’neg’ ✓ Unspecified logic is 1. 2

’pos’ ✓ Unspecified logic is 0. 2

’retain’ ✓ Do not minimize this output. Preserve
redundant product terms. 3

’reg’ ✓ Clocked Memory Element.
’reg_d’ D Flip-flop Clocked Memory Element.
’reg_g’ D Flip-flop Gated Clock Memory Element.
’reg_jk’ JK Flip-flop Clocked Memory Element.
’reg_sr’ SR Flip-flop Clocked Memory Element.
’reg_t’ T Flip-flop Clocked Memory Element.
’xor’ XOR Gate in Target Device.

1 If neither ’keep’ nor ’collapse’ is specified, the optimization or fitter programs can keep or
collapse the signal, as needed, to optimize the circuit.
2 The ’dc,’ ’neg,’ and ’pos’ attributes are mutually exclusive.
3 The ’retain’ attribute only controls optimization performed by ABEL-HDL Compile Logic.
To preserve redundant product terms, you must also specify no reduction for the Reduce
Logic and fitting (place and route) programs.

Table 2-9
Attributes

Language Structure

2-34 ABEL-HDL Reference

Constant Declarations

Keyword: =

id [, id]... = expr [, expr]... ;

A constant is an identifier that retains a constant value in a module, and is
specified with the = sign. Constant declarations must be in a declarations
section or after a @CONST directive.

See Also

"Special Constants" in this chapter.

Symbolic State Declarations

The State_register and State declarations are made to declare a symbolic state
machine name, and to declare symbolic state names.

See Also

"State Descriptions" under "Logic Descriptions" later in this chapter.

State_register Declarations

Keyword: state_register

statereg_id STATE_REGISTER [ISTYPE ’attributes’];

State Declarations

Keyword: state

state_id [, state_id ...] STATE [state_value
[, state_value ...]];

Macro Declarations

Keyword: macro

macro_id MACRO [(dummy_arg [, dummy_arg]...)] { block } ;

The macro declaration statement defines a macro. Use macros to include
functions in a source file without repeating the code.

Library Declaration

Keyword: library

LIBRARY ’ name’ ;

The LIBRARY statement extracts the contents of the indicated file from the
ABEL-HDL library and inserts it into your file.

Language Structure

ABEL-HDL Reference 2-35

Logic Description
One or more of the following elements can be used to describe your design.

♦ Equations
♦ Truth Tables
♦ State Descriptions
♦ Fuses
♦ XOR Factors

In addition, dot extensions (like ISTYPE attributes in the Declarations section)
enable you to more precisely describe the behavior of a circuit in a logic
description that may be targeted to a variety of different devices.

Dot Extensions

Syntax signal_name . ext

Dot extensions can be specific for certain devices (device-specific) or
generalized for all devices (architecture-independent). Device-specific dot
extensions are used with detailed syntax; architecture-independent dot
extensions are used with pin-to-pin syntax. Detailed and pin-to-pin syntax is
described in more detail in Chapter 3, "Design Considerations." Dot
extensions can be applied in complex language constructs such as nested sets
or complex expressions.

The ABEL-HDL dot extensions are listed in Table 2-10.

Dot Extension Description

Pin-to-Pin Syntax, Architecture-independent
.ACLR *Asynchronous clear
.ASET *Asynchronous set
.CLK Clock input to an edge-triggered flip-flop
.CLR *Synchronous clear
.COM *Combinational feedback normalized to the pin value
.FB Register feedback
.OE Output enable
.PIN Pin feedback
.SET *Synchronous set

Table 2-10
Dot Extensions

Language Structure

2-36 ABEL-HDL Reference

Dot Extension Description

Detailed Syntax, Device-specific
.AP Asynchronous register preset
.AR Asynchronous register reset
.CE Clock-enable input to a gated-clock flip-flop
.D Data input to a D-type flip-flop
.FC Flip-flop mode control
.J J input to a JK-type flip-flop
.K K input to a JK-type flip-flop
.LD Register load input
.LE Latch-enable input to a latch
.LH Latch-enable (high) to a latch
.PR Register preset
.Q Register feedback
.R R input to an SR-type flip-flop
.RE Register reset
.S S input to an SR-type flip-flop
.SP Synchronous register preset
.SR Synchronous register reset
.T T input to a T-type (toggle) flip-flop

* The .CLR, .ACLR, .SET, .ASET and .COM dot extensions are not recognized by device
fitters released prior to ABEL 5.0. If you are using a fitter that does not support these
reset/preset dot extensions, specify istype ’invert’ or istype ’buffer’ and the compiler converts
the new dot extensions to .SP, .AP, .SR, .AR, and .D, respectively.

Equations

Keyword: equations

Equations
[WHEN condition THEN] [!] element=expression;
[ELSE equation];
 or
[WHEN condition THEN] equation; [ELSE equation];

The EQUATIONS statement defines the beginning of a group of equations that
specify the logic functions of a device. See "Operators, Expressions and
Equations" earlier in this chapter and "When-Then-Else" in the "Language
Reference."

Language Structure

ABEL-HDL Reference 2-37

Truth Tables

Keyword: truth_table

TRUTH_TABLE (inputs -> outputs)
inputs -> outputs ;
 :
 or
TRUTH_TABLE (inputs [:> registered outputs] [-> outputs])

Truth tables specify outputs as functions of input combinations in tabular
form. See also "@DCSET" under "@directive" in Chapter 6, "Language
Reference."

State Descriptions

Keyword: state_diagram

STATE_DIAGRAM state_reg
[-> state_out]

[STATE state_exp : [equation]
[equation]

 :
 :
 :
trans_stmt ...]

The State_Diagram section contains state descriptions that describe the logic
design.

The specification of a state description requires the use of the State_diagram
syntax, which defines the state machine, and the If-Then-Else, Case, and Goto
statements that determine the operation of the state machine.

See also

"With" in the "Language Reference."

Fuse Declarations

Keyword: fuses

FUSES
fuse_number = fuse value ;
 or
fuse_number_set = fuse value ;

The FUSES section explicitly declares the state of fuses in the associated device.
A device must be declared before a fuses declaration.

Language Structure

2-38 ABEL-HDL Reference

XOR Factors

Keyword: XOR_Factors

XOR_Factors
signal name = xor_factors

The XOR_Factors section allows you to specify a Boolean expression that is to
be factored out of and XORed with the sum-of-products reduced equations.
This factoring can result in smaller reduced equations when the design is
implemented in a device featuring XOR gates.

Test Vectors Section

Note: Test vectors are supported only for Equation and JEDEC simulation. The
Verilog Simulator uses test fixtures. See the Verilog Simulator User Manual.

Test Vectors

Keyword: test_vector

Test_vectors [note]
(inputs -> outputs)
[invalues -> outvalues ;] ...

Test vectors specify the expected operation of a logic device by defining its
outputs as a function of its inputs.

Trace Statement

Keyword: trace

trace (inputs -> outputs) ;

The Trace statement limits which inputs and outputs are displayed in the
simulation report.

End Statement
Keyword: end

end module_name

The End statement ends the module, and is required.

Language Structure

ABEL-HDL Reference 2-39

Other Elements

Directives

Keyword: @directive

@directive [options]

Directives provide options that control the contents or processing of a source
file. Sections of ABEL-HDL source code can be included conditionally, code
can be brought in from another file, and messages can be printed during
processing.

Some directives take arguments that determine how the directive is processed.
These arguments can be actual arguments or dummy arguments preceded by
a question mark. The rules applying to actual and dummy arguments are
presented under "Arguments and Argument Substitution" earlier in this
chapter.

Available directives are listed below. See @ in Chapter 6, "Language
Reference" for complete information.

@ALTERNATE
@CARRY
@CONST
@DCSET
@DCSTATE
@EXPR
@EXIT
@IF
@IFB
@IFDEF
@IFIDEN
@IFNB

@IFNDEF
@IFNIDEN
@INCLUDE
@IRP
@IRPC
@MESSAGE
@ONSET
@PAGE
@RADIX
@REPEAT
@SETSIZE
@STANDARD

Language Structure

2-40 ABEL-HDL Reference

Chapter 3

Design Considerations
This chapter discusses issues you need to consider when you create a design
with ABEL-HDL. The topics covered are listed below:

♦ Hierarchy in ABEL-HDL
♦ Pin-to-Pin Architecture-independent Language Features
♦ Pin-to-Pin Vs. Detailed Descriptions for Registered Designs
♦ Using Active-low Declarations
♦ Polarity Control
♦ Istypes and Attributes
♦ Flip-flop Equations
♦ Feedback Considerations — Using Dot Extensions
♦ @DCSET Considerations and Precautions
♦ Exclusive OR Equations
♦ State Machines
♦ Using Complement Arrays

Hierarchy in ABEL-HDL
You use hierarchy declarations in an upper-level ABEL-HDL source to refer to
(instantiate) an ABEL-HDL module. To instantiate an ABEL-HDL module:

In the lower-level module: (optional)

1. Identify lower-level I/O Ports (signals) with an Interface statement.

In the top-level source:

2. Declare the lower-level module with an Interface declaration.

3. Instantiate the lower-level module with Functional_block declarations.

ABEL-HDL Reference 3-1

Note: Hierarchy declarations are not required when instantiating an ABEL-HDL
module in a Synario schematic. For instructions on instantiating lower-level modules
in schematics, refer to your schematic reference.

Instantiating a Lower-level Module in an ABEL-HDL Source

Identifying I/O Ports in the Lower-level Module

The way to identify an ABEL-HDL module’s input and output ports is to place
an Interface statement immediately following the Module statement. The
Interface statement defines the ports in the lower-level module that are used
by the top-level source.

You must declare all input pins in the ABEL-HDL module as ports, and you
can specify default values of 0, 1, or Don’t-care.

You do not have to declare all output pins as ports. Any undeclared outputs
become No Connects or redundant nodes. Redundant nodes can later be
removed from the designs during post-link optimization.

The following source fragment is an example of a lower-level interface
statement.

module lower
interface (a=0, [d3..d0]=7 -> [z0..z7]) ;
title ’example of lower-level interface statement ’ ...

This statement identifies input a, d3, d2, d1 and d0 with default values, and
outputs z0 through z7. For more information, see "Interface (lower-level)" in
Chapter 6, "Language Reference."

Specifying Signal Attributes

Attributes specified for pins in a lower-level module are propagated to the
higher-level source. For example, a lower-level pin with an ’invert’ attribute
affects the higher-level signal wired to that pin (it affects the pin’s preset, reset,
preload, and power-up value).

Output Enables (OE)

Connecting a lower-level tristate output to a higher-level pin results in the
output enable being specified for the higher-level pin. If another OE is
specified for the higher-level pin, it is flagged as an error. Since most tristate
outputs are used as bidirectionals, it might be important to keep the
lower-level OE.

Design Considerations

3-2 ABEL-HDL Reference

Buried Nodes

Buried nodes in lower-level sources are handled as follows:

Dangling Nodes Lower-level nodes that do not fanout are
propagated to the higher-level module and
become dangling nodes. Optimization may
remove dangling nodes.

Combinational nodes Combinational nodes in a lower-level module
become collapsible nodes in the higher-level
module.

Registered nodes Registered nodes are preserved with hierarchical
names assigned to them.

Declaring Lower-level Modules in the Top-level Source

To declare a lower-level module, you match the lower-level module’s interface
statement with an interface declaration. For example, to declare the
lower-level module given above, you would add the following declaration to
your upper-level source declarations:

lower interface (a, [d3..d0] -> [z0..z7]) ;

You could specify different default values if you want to override the values
given in the instantiated module, otherwise the instantiated module must
exactly match the lower-level interface statement. See "Interface (top-level)" in
Chapter 6, "Language Reference" for more information.

Instantiating Lower-level Modules in Top-level Source

Use a functional_block declaration in an top-level ABEL-HDL source to
instantiate a declared lower-level module and make the ports of the
lower-level module accessible in the upper-level source. You must declare
sources with an interface declaration before you instantiate them.

To instantiate the module declared above, add an interface declaration and
signal declarations to your top-level declarations, and add port connection
equations to your top-level equations, as shown in the source fragment below:

DECLARATIONS
 low1 FUNCTIONAL_BLOCK lower ;
 zed0..zed7 pin ; "upper-level inputs
 atop pin istype ’reg,buffer’; "upper-level output
 d3..d0 pin istype ’reg,buffer’; "upper-level ouputs
EQUATIONS
 atop = low1.a; "wire this source’s outputs
 [d3..d0] = low1.[d3..d0] ; " to lower-level inputs
 low1.[z0..z7] = [zed0..zed7]; "wire this source’s inputs to
 " lower-level outputs

Design Considerations

ABEL-HDL Reference 3-3

See "Functional_block" in Chapter 6, "Language Reference" for more
information.

Hierarchy and Retargeting and Fitting

Redundant Nodes

When you link multiple sources, some unreferenced nodes may be generated.
These nodes usually originate from lower-level outputs that are not being used
in the top-level source. For example, when you use a 4-bit counter as a 3-bit
counter. The most significant bit of the counter is unused and can be removed
from the design to save device resources. This step also removes trivial
connections. In the following example, if out1 is a pin and t1 is a node:

out1 = t1;
t1 = a86;

would be mapped to

out1 = a86;

Merging Feedbacks

Linking multiple modules can produce signals with one or more feedback
types, such as .FB and .Q. You can tell the optimizer to combine these
feedbacks to help the fitting process.

Post-linked Optimization

If your design has a constant tied to an input, you can re-optimize the design.
Re-optimizing may further reduce the product terms count.

For example, if you have the equation

out = i0 & i1 || !i0 & i2;

and i0 is tied to 1, the resulting equation would be simplified to

out = i1;

Hierarchy and Test Vectors (PLD JEDEC Simulation)

If you are targeting a PLD device and want to do JEDEC simulation of your
project, you must specify your test vectors in the top-level source. If you have
existing test vectors in lower-level sources, you can merge the inputs stimulus
of blocks that are connected to the top-level pins with the expected values of
blocks that are connected to the top-level outputs. The test vectors in the
lower-level modules can still be used for individual JEDEC simulation.

Design Considerations

3-4 ABEL-HDL Reference

Node Collapsing
All combinational nodes are collapsible by default . Nodes that are to be
collapsed (or nodes that are to be preserved) are flagged through the use of
signal attributes in the language. The signal attributes are:

Istype ’keep’ Do not collapse this node.

’collapse’ Collapse this node.

Collapsing provides multi-level optimization for combinational logic. Designs
with arithmetic and comparator circuits generally generate a large number of
product terms that will not fit to any programmable logic device. Node
collapsing allows you to describe equations in terms of multi-level
combinational nodes, then collapse the nodes into the output until it reaches
the product term you specify. The result is an equation that is optimized to fit
the device constraints.

Selective Collapsing

In some instances you may want to prevent the collapsing of certain nodes.
For example, some nodes may help in the simulation process. You can specify
nodes you do not want collapsed as Istype ’keep’ and the optimizer will not
collapse them.

Design Considerations

ABEL-HDL Reference 3-5

Pin-to-pin Language Features
ABEL-HDL is a device-independent language. You do not have to declare a
device or assign pin numbers to your signals until you are ready to implement
the design into a device. However, when you do not specify a device or pin
numbers, you need to specify pin-to-pin attributes for declared signals.

Because the language is device-independent, the ABEL-HDL compiler does not
have predetermined device attributes to imply signal attributes. If you do not
specify signal attributes or other information (such as the dot extensions, which
are described later), your design might not operate consistently if you later
transfer it to a different target device.

Device-independence Vs. Architecture-independence

The requirement for signal attributes does not mean that a complex design
must always be specified with a particular device in mind. You may still have
to understand the differences between, for example, a P22V10 PAL and an
EP600 EPLD, but you do not have to specify a particular device when
describing your design.

Attributes and dot extensions help you refine your design to work consistently
when moving from one class of device architecture to another; for example
from devices having inverted outputs to those with a particular kind of
reset/preset circuitry. However, the more you refine your design, using these
language features, the more restrictive your design becomes in terms of the
number of device architectures for which it is appropriate.

Signal Attributes

Signal attributes remove ambiguities that occur when no specific device
architecture is declared. If your design does not use device-related attributes
(either implied by a DEVICE statement or expressed in an ISTYPE statement),
it may not operate the same way when targeted to different device
architectures. See "Pin Declaration," "Node Declaration" and "Istype" in
Chapter 6, "Language Reference."

Signal Dot Extensions

Signal dot extensions, like attributes, enable you to more precisely describe the
behavior of a circuit that may be targeted to different architectures. Dot
extensions remove the ambiguities in equations.

Refer to "Dot Extensions" later in this chapter and in Chapter 2, "Language
Structure" or .ext in Chapter 6, "Language Reference" for more information.

Design Considerations

3-6 ABEL-HDL Reference

Pin-to-pin vs. Detailed Descriptions
for Registered Designs

You can use ABEL-HDL assignment operators when you write high-level
equations. The = operator specifies a combinational assignment, where the
design is written with only the circuit’s inputs and outputs in mind. The :=
assignment operator specifies a registered assignment, where you must
consider the internal circuit elements (such as output inverters, presets and
resets) related to the memory elements (typically flip-flops). The semantics of
these two assignment operators are discussed below.

Using := for Pin-to-pin Descriptions

The := implies that a memory element is associated with the output defined by
the equation. For example, the equation

Q1 := !Q1 # Preset;

implies that Q1 will hold its current value until the memory element associated
with that signal is clocked (or unlatched, depending on the register type). This
equation is a pin-to-pin description of the output signal Q1. The equation
describes the signal’s behavior in terms of desired output pin values for
various input conditions. Pin-to-pin descriptions are useful when describing a
circuit that is completely architecture-independent.

Language elements that are useful for pin-to-pin descriptions are the ":="
assignment operator, and the .CLK, .OE, .FB, .CLR, .ACLR, .SET, .ASET and
.COM dot extensions described in Chapter 6, "Language Reference." These dot
extensions help resolve circuit ambiguities when describing
architecture-independent circuits.

Resolving Ambiguities

In the equation above (Q1 := !Q1 # Preset;), there is an ambiguous feedback
condition. The signal Q1 appears on the right side of the equation, but there is
no indication of whether that fed-back signal should originate at the register,
come directly from the combinational logic that forms the input to the register,
or come from the I/O pin associated with Q1. There is also no indication of
what type of register should be used (although register synthesis algorithms
could, theoretically, map this equation into virtually any register type). The
equation could be more completely specified in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1 := !Q1.FB # Preset; "Reg. feedback normalized to pin value

Design Considerations

ABEL-HDL Reference 3-7

This set of equations describes the circuit completely and specifies enough
information that the circuit will operate identically in virtually any device in
which you can fit it. The feedback path is specified to be from the register
itself, and the .CLK equation specifies that the memory element is clocked,
rather than latched.

Detailed Circuit Descriptions

In contrast to a pin-to-pin description, the same circuit can be specified in a
detailed form of design description in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1.D = !Q1.Q # Preset; "D-type f/f used for register

In this form of the design, specifying the D input to a D-type flip-flop and
specifying feedback directly from the register restricts the device architectures
in which the design can be implemented. Furthermore, the equations describe
only the inputs to, and feedback from, the flip-flop and do not provide any
information regarding the configuration of the actual output pin. This means
the design will operate quite differently when implemented in a device with
inverted outputs (a simple P16R4 PAL device, for example), versus a device
with non-inverting outputs (such as an EP600).

To maintain the correct pin behavior, using detailed equations, one additional
language element is required: a ’buffer’ attribute (or its complement, an ’invert’
attribute). The ’buffer’ attribute ensures that the final implementation in a
device has no inversion between the specified D-type flip-flop and the output
pin associated with Q1. For example, add the following to the declarations
section:

Q1 pin istype ’buffer’;

Detailed Descriptions: Designing for Macrocells

One way to understand the difference between pin-to-pin and detailed
description methods is to think of detailed descriptions as macrocell
specifications. A macrocell is a block of circuitry normally (but not always)
associated with a device’s I/O pin. Figure 3-1 illustrates a typical macrocell
associated with signal Q1.

Detailed descriptions are written for the various input ports of the macrocell
(shown in Figure 3-1 with dot extension labels). Note that the macrocell
features a configurable inversion between the Q output of the flip-flop and the
output pin labeled Q1. If you use this inverter (or select a device that features
a fixed inversion), the behavior you observe on the Q1 output pin will be
inverted from the logic applied to (or observed on) the various macrocell ports,
including the feedback port Q1.q.

Design Considerations

3-8 ABEL-HDL Reference

Pin-to-pin descriptions, on the other hand, allow you to describe your circuit in
terms of the expected behavior on an actual output pin, regardless of the
architecture of the underlying macrocell. Figure 3-2 illustrates the pin-to-pin
concept:

When pin-to-pin descriptions are written in ABEL-HDL, the "generic
macrocell" shown above is synthesized from whatever type of macrocell
actually exists in the target device.

Q1.ap

Q1.ar

Q1.clk

Q1.d

Q1.q

AP

D

Clk

Q1.oe

Q1O
Fuse
Mux

1

Q

AR

Q1.pin

!Q1.pin 0665-3

Figure 3-1
Detail Macrocell

OR

a

b

a

b

Q1

Q1

1748-1

Figure 3-2
Pin-to-pin Macrocell

Design Considerations

ABEL-HDL Reference 3-9

Examples of Pin-to-pin and Detailed Descriptions

Two equivalent module descriptions, one pin-to-pin and one detailed, are
shown below for comparison:

Pin-to-pin Module Description

module Q1_1
 Q1 pin istype ’reg’;
 Clock,Preset pin;

equations
 Q1.clk = Clock;
 Q1 := !Q1.fb # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

Detailed Module Description

module Q1_2
 Q1 pin istype ’reg_D,buffer’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.D = !Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The first description can be targeted into virtually any device (if register
synthesis and device fitting features are available), while the second
description can be targeted only to devices featuring D-type flip-flops and
non-inverting outputs.

To implement the second (detailed) module in a device with inverting outputs,
the source file would need to be modified in the following manner:

Design Considerations

3-10 ABEL-HDL Reference

Detailed Module with Inverted Outputs
module Q1_3
 Q1 pin istype ’reg_D,invert’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 !Q1.D = Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

In this version of the module, the existence of an inverter between the output
of the D-type flip-flop and the output pin (specified with the ’invert’ attribute)
has necessitated a change in the equation for Q1.D.

As this example shows, device-independence and pin-to-pin description
methods are preferable, since you can describe a circuit completely for any
implementation. Using pin-to-pin descriptions and generalized dot extensions
(such as .FB, .CLK and .OE) as much as possible allows you to implement your
ABEL-HDL module into any one of a particular class of devices. (For example,
any device that features enough flip-flops and appropriately configured I/O
resources.) However, the need for particular types of device features (such as
register preset or reset) might limit your ability to describe your design in a
completely architecture-independent way.

If, for example, a built-in register preset feature is used in a simple design, the
target architectures are limited. Consider this version of the design:

Design Considerations

ABEL-HDL Reference 3-11

module Q1_5
 Q1 pin istype ’reg,buffer’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AP = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The equation for Q1 still uses the := assignment operator and .FB for a
pin-to-pin description of Q1’s behavior, but the use of .AP to describe the reset
function requires consideration of different device architectures. The .AP
extension, like the .D and .Q extensions, is associated with a flip-flop input, not
with a device output pin. If the target device has inverted outputs, the design
will not reset properly, so this ambiguous reset behavior is removed by using
the ’buffer’ attribute, which reduces the range of target devices to those with
non-inverted outputs.

Using .ASET instead of .AP can solve this problem if the fitter being used
supports the .ASET dot extension.

Versions 5 and 7 of the design above and below are unambiguous, but each is
restricted to certain device classes:

module Q1_7
 Q1 pin istype ’reg,invert’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AR = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

Design Considerations

3-12 ABEL-HDL Reference

When to Use Detailed Descriptions

Although the pin-to-pin description is preferable, there will frequently be
situations when you must use a more detailed description. If you are unsure
about which method to use for various parts of your design, examine the
design’s requirements. If your design requires specific features of a device
(such as register preset or unusual flip-flop configurations), detailed
descriptions are probably necessary. If your design is a simple combinational
function, or if it matches the "generic" macrocell in its requirements, you can
probably use simple pin-to-pin descriptions.

Using := for Alternative Flip-flop Types

In ABEL-HDL you can specify a variety of flip-flop types using attributes such
as istype ’reg_D’ and ’reg_JK’. However, these attributes do not enforce the
use of a specific type of flip-flop when a device is selected, and they do not
affect the meaning of the := assignment operator.

You can think of the := assignment operator as a memory operator. The type
of register that most closely matches the := assignment operator’s behavior is
the D-type flip-flop.

The primary use for attributes such as istype ’reg_D’, ’reg_JK’ and ’reg_SR’ is
to control the generation of logic. Specifying one of the ’reg_’ attributes (for
example, istype ’reg_D’) instructs the AHDL compiler to generate equations
using the.D extension regardless of whether the design was written using .D, :=
or some other method (for example, state diagrams).

Note: You also need to specify istype ’invert’ or ’buffer’ when you use detailed
syntax.

Using := for flip-flop types other than D-type is only possible if register
synthesis features are available to convert the generated equations into
equations appropriate for the alternative flip-flop type specified. Since the use
of register synthesis to convert D-type flip-flop stimulus into JK or SR-type
stimulus usually results in inefficient circuitry, the use of := for these flip-flop
types is discouraged. Instead, you should use the .J and .K extensions (for
JK-type flip-flops) or the .S and .R extensions (for SR-type flip-flops) and use a
detailed description method (including ’invert’ or ’buffer’ attributes) to
describe designs for these register types.

There is no provision in the language for directly writing pin-to-pin equations
for registers other than D-type. State diagrams, however, may be used to
describe pin-to-pin behavior for any register type.

Design Considerations

ABEL-HDL Reference 3-13

Using Active-low Declarations
In ABEL-HDL you can write pin-to-pin design descriptions using implied
active-low signals. Active-low signals are declared with a ’!’ operator, as
shown below:

!Q1 pin istype ’reg’;

If a signal is declared active-low, it is automatically complemented when you
use it in the subsequent design description. This complementing is performed
for any use of the signal itself, including as an input, as an output, and in test
vectors. Complementing is also performed if you use the .fb dot extension on
an active-low signal.

The following three designs, for example, operate identically:

Design 1 — Implied Pin-to-Pin Active-low

module act_low2
 !q0,!q1 pin istype ’reg’;
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 [q1,q0] := ([q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [q1, q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Design Considerations

3-14 ABEL-HDL Reference

Design 2 — Explicit Pin-to-Pin Active-low

module act_low1
 q0,q1 pin istype ’reg’;
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0] := (![q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Design 3 — Explicit Detailed Active-low

module act_low3
 q0,q1 pin istype ’reg_d,buffer’;
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0].D := (![q1,q0].Q + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Both of these designs describe an up counter with active-low outputs. The first
example inverts the signals explicitly (in the equations and in the test vector
header), while the second example uses an active-low declaration to
accomplish the same thing.

Design Considerations

ABEL-HDL Reference 3-15

Polarity Control
Automatic polarity control is a powerful feature in ABEL-HDL where a logic
function is converted for both non-inverting and inverting devices.

A single logic function may be expressed with many different equations. For
example, all three equations below for F1 are equivalent.

(1) F1 = (A & B);

(2) !F1 = !(A & B);

(3) !F1 = !A # !B;

In the example above, equation (3) uses two product terms, while equation (1)
requires only one. This logic function will use fewer product terms in a
non-inverting device such as the P10H8 than in an inverting device such as the
P10L8. The logic function performed from input pins to output pins will be the
same for both polarities.

Not all logic functions are best optimized to positive polarity. For example, the
inverted form of F2, equation (3), uses fewer product terms than equation (2).

(1) F2 = (A # B) & (C # D);

(2) F2 = (A & C) # (A & D) # (B & C) # (B & D);

(3) !F2 = (!A & !B) # (!C & !D);

Programmable polarity devices are popular because they can provide a mix of
non-inverting and inverting outputs to achieve the best fit.

Design Considerations

3-16 ABEL-HDL Reference

Polarity Control with Istype

In ABEL-HDL, you control the polarity of the design equations and target
device (in the case of programmable polarity devices) in two ways:

♦ Using Istype ’neg’, ’pos’ and ’dc’
♦ Using Istype ’invert’ and ’buffer’

Using Istype ’neg’, ’pos’, and ’dc’ to Control Equation and Device Polarity

The ’neg’, ’pos’, and ’dc’ attributes specify types of optimization for the
polarity as follows:

’neg’ Istype ’neg’ optimizes the circuit for negative polarity.

Unspecified logic in truth tables and state diagrams
becomes a 0.

’pos’ Istype ’pos’ optimizes the circuit for positive polarity.
Unspecified logic in truth tables and state diagrams
becomes a 1.

’dc’ Istype ’dc’ uses polarity for best optimization.
Unspecified logic in truth tables and state diagrams
becomes don’t care (X).

Using ’invert’ and ’buffer’ to Control Programmable Inversion

An optional method for specifying the desired state of a programmable
polarity output is to use the ’invert’ or ’buffer’ attributes. These attributes
ensure that an inverter gate either does or does not exist between the output of
a flip-flop and its corresponding output pin. When you use the ’invert’ and
’buffer’ attributes, you can still use automatic polarity selection if the target
architecture features programmable inverters located before the associated
flip-flop.

These attributes are particularly useful for devices such as the P22V10, where
the reset and preset behavior is affected by the programmable inverter.

Note: The ’invert’ and ’buffer’ attributes do not actually control device or equation
polarity — they only enforce the existence or nonexistence of an inverter between a
flip-flop and its output pin.

The polarity of devices that feature a fixed inverter in this location, and a
programmable inverter before the register, cannot be specified using ’invert’
and ’buffer’.

Design Considerations

ABEL-HDL Reference 3-17

Flip-flop Equations
Pin-to-pin equations (using the := assignment operator) are only supported for
D flip-flops. ABEL-HDL does not support the := assignment operator for T, SR
or JK flip-flops and has no provision for specifying a particular output pin
value for these types.

If you write an equation of the form:

Q1 := 1;

and the output, Q1, has been declared as a T-type flip-flop, the ABEL-HDL
compiler will give a warning and convert the equation to

Q1.T = 1;

Since the T input to a T-type flip-flop does not directly correspond to the value
you observed on the associated output pin, this equation will not result in the
pin-to-pin behavior you want.

To produce specific pin-to-pin behavior for alternate flip-flop types, you must
consider the behavior of the flip-flop you used and write detailed equations
that stimulate the inputs of that flip-flop. A detailed equation to set and hold a
T-type flip-flop is shown below:

Q1.T = !Q1.Q;

Feedback Considerations — Using Dot Extensions
The source of feedback is normally set by the architecture of the target device.
If you don’t specify a particular feedback path, the design may operate
differently in different device types. Specifying feedback paths (with the .FB,
.Q or .PIN dot extensions) eliminates architectural ambiguities. Specifying
feedback paths also allows you to use architecture-independent simulation.

The following rules should be kept in mind when you are using feedback:

♦ No Dot Extension — A feedback signal with no dot extension (for
example, count := count+1;) results in pin feedback if it exists in the target
device. If there is no pin feedback, register feedback is used, with the value
of the register contents complemented (normalized) if needed to match the
value observed on the pin.

♦ .FB Extension — A signal specified with the .FB extension (for example,
count := count.fb+1;) results in register feedback normalized to the pin
value if a register feedback path exists. If no register feedback is available,
pin feedback is used, and the fuse mapper checks that the output enable
does not conflict with the pin feedback path. If there is a conflict, an error
is generated if the output enable is not constantly enabled.

Design Considerations

3-18 ABEL-HDL Reference

♦ .COM Extension — A signal specified with the .COM extension (for
example, count := count.com+1;) results in OR-array (pre-register)
feedback, normalized to the pin value if an OR-array feedback path exists.
If no OR-array feedback is available, pin feedback is used and the fuse
mapper checks that the output enable does not conflict with the pin
feedback path. If there is a conflict, an error is generated if the output
enable is not constantly enabled.

♦ .PIN Extension — If a signal is specified with the .PIN extension (for
example, count := count.pin+1;), the pin feedback path will be used. If the
specified device does not feature pin feedback, an error will be generated.
Output enables frequently affect the operation of fed-back signals that
originate at a pin.

♦ .Q Extension — Signals specified with the .Q extension (for example,
count.d = count.q + 1;) will originate at the Q output of the associated
flip-flop. The fed-back value may or may not correspond to the value you
observe on the associated output pin; if an inverter is located between the
Q output of the flip-flop and the output pin (as is the case in most
registered PAL-type devices), the value of the fed-back signal will be the
complement of the value you observe on the pin.

♦ .D Extension — Some devices, such as the MACH210 and P18CV8, allow
feedback of the input to the register. To select this feedback, use the .D
extension. Some device kits also support .COM for this feedback; refer to
your device kit manual for detailed information.

Dot Extensions and Architecture-Independence

To be architecture-independent, you must write your design in terms of its
pin-to-pin behavior rather than in terms of specific device features (such as
flip-flop configurations or output inversions).

For example, consider the simple circuit shown in Figure 3-3. This circuit
toggles high when the Toggle input is forced high, and low when the Toggle is
low. The circuit also contains a three-state output enable that is controlled by
the active-low Enable input.

Design Considerations

ABEL-HDL Reference 3-19

The following simple ABEL-HDL design (Figure 3-4) describes this simple
one-bit synchronous circuit. The design description uses
architecture-independent dot extensions to describe the circuit in terms of its
behavior, as observed on the output pin of the target device. Since this design
is architecture-independent, it will operate the same (disregarding initial
powerup state), irrespective of the device type.

module pin2pin

 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype ’reg’;

equations
 Qout := !Qout.FB & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

Ena

Clk

Toggle QoutD Q

0770-1

Figure 3-3
Dot Extensions and Architecture- Independence: Circuit 1

Figure 3-4
Pin to Pin One-bit Synchronous Circuit

Design Considerations

3-20 ABEL-HDL Reference

If you implement this circuit in a simple P16R8 PAL device (either by adding a
device declaration statement or by specifying the P16R8 in the Fuseasm
process), the result will be a circuit like the one illustrated in Figure 3-5. Since
the P16R8 features inverted outputs, the design equation is automatically
modified to take the feedback from Q-bar instead of Q.

If you implement this design in a device with a different architecture, such as
an E0320, the resulting circuit could be quite different. But, because this is a
pin-to-pin design description, the circuit behavior is the same. Figure 3-6
illustrates the circuit that results when you specify an E0320.

D Q

Q

1

2

11

19

0768-1

Figure 3-5
Dot Extensions and Architecture-Independence: Circuit 2

D Q

Q

2

19

0769-1

1

1
0

0
1

2880=0
2881=0

2882=1
2883=1

Figure 3-6
Dot Extensions and Architecture-Independence: Circuit 3

Design Considerations

ABEL-HDL Reference 3-21

Dot Extensions and Detail Design Descriptions

You may need to be more specific about how you implement a circuit in a
target device. More-complex device architectures have many configurable
features, and you may want to use these features in a particular way. You may
want a precise powerup and preset operation or, in some cases, you may need
to control internal elements.

The circuit previously described (using architecture-independent dot
extensions) could be described, for example, using detailed dot extensions in
the following ABEL-HDL source file (Figure 3-7):

module detail1
 d1 device ’P16R8’;
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype ’reg_D’;

equations
 !Qout.D = Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

This version of the design will result in exactly the same fuse pattern as
indicated in Figure 3-5. As written, this design assumes the existence of an
inverted output for the signal Qout. This is why the Qout.D and Qout.Q
signals are reversed from the architecture-independent version of the design
presented earlier.

Figure 3-7
Detail One-bit Synchronous Circuit with Inverted Qout

Design Considerations

3-22 ABEL-HDL Reference

Note: The inversion operator applied to Qout.D does not correspond directly to the
inversion found on each output of a P16R8. The equation for Qout.D actually refers to
the D input of one of the P16R8’s flip-flops; the output inversion found in a P16R8 is
located after the register and is assumed rather than specified.

To implement this design in a device that does not feature inverted outputs,
the design description must be modified. The following example (Figure 3-8)
shows how to write this detailed design for the E0320 device:

module detail2
 d2 device ’E0320’;
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype ’reg_D’;

equations
 Qout.D = !Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

This design would result in the same circuit and E0320 fuse pattern previously
illustrated in Figure 3-6.

Figure 3-8
Detail One-bit Synchronous Circuit with Non-inverted Qout

Design Considerations

ABEL-HDL Reference 3-23

Using Don’t Care Optimization
Use Don’t Care optimization to reduce the amount of logic required for an
incompletely specified function. The @DCSET directive (used for logic
description sections) and ISTYPE attribute ’dc’ (used for signals) specify don’t
care values for unspecified logic.

Consider the following ABEL-HDL truth table:

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];

This truth table has four inputs, and therefore sixteen (24) possible input
combinations. The function specified, however, only indicates eight significant
input combinations. For each of the design outputs (f3 through f0) the truth
table specifies whether the resulting value should be 1 or 0. For each output,
then, each of the eight individual truth table entries can be either a member of
a set of true functions called the on-set, or a set of false functions called the
off-set.

Using output f3, for example, the eight input conditions can be listed as on-sets
and off-sets as follows (maintaining the ordering of inputs as specified in the
truth table above):

 on-set of f3 off-set of f3
 0 1 1 1 0 0 0 0
 1 1 1 1 0 0 0 1
 1 1 1 0 0 0 1 1
 1 1 0 0 1 0 0 0

The remaining eight input conditions that do not appear in either the on-set or
off-set are said to be members of the dc-set, as follows for f3:

 dc-set of f3
 0 0 1 0
 0 1 0 0
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 0 1 1
 1 1 0 1

Design Considerations

3-24 ABEL-HDL Reference

Expressed as a Karnaugh map, the on-set, off-set and dc-set would appear as
follows (with ones indicating the on-set, zeroes indicating the off-set, and
dashes indicating the dc-set):

If the don’t-care entries in the Karnaugh map are used for optimization, the
function for f3 can be reduced to a single product term (f3 = i2) instead of the
two (f3 = i3 & i2 & !i0 # i2 & i1 & i0) otherwise required.

The ABEL-HDL compiler uses this level of optimization if the @DCSET
directive or ISTYPE ’dc’ is included in the ABEL-HDL source file, as shown in
Figure 3-9.

module dc
 i3,i2,i1,i0 pin;
 f3,f2,f1,f0 pin istype ’dc,com’;

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];
end

This example results in a total of four single-literal product terms, one for each
output. The same example (with no istype ’dc’) results in a total of twelve
product terms.

0

-

1

0

0

-

-

-

0

1

1

-

-

-

1

-
1746-1

00 01 11 10

00

01

11

10

i1 i0

i3 i2

Figure 3-9
Source File Showing Don’t Care Optimization

Design Considerations

ABEL-HDL Reference 3-25

For truth tables, Don’t Care optimization is almost always the best method.
For state machines, however, you may not want undefined transition
conditions to result in unknown states, or you may want to use a default state
(determined by the type of flip-flops used for the state register) for state
diagram simplification.

When using don’t care optimization, be careful not to specify overlapping
conditions (specifying both the on-set and dc-set for the same conditions) in
your truth tables and state diagrams. Overlapping conditions result in an error
message.

For state diagrams, you can perform additional optimization for design
outputs if you specify the @dcstate attribute. If you enter @dcstate in the
source file, all state diagram transition conditions are collected during state
diagram processing. These transitions are then complemented and applied to
the design outputs as don’t-cares. You must use @dcstate in combination with
@dcset or the ’dc’ attribute.

Exclusive OR Equations
Designs written for exclusive-OR (XOR) devices should contain the ’xor’
attribute for architecture-independence.

Optimizing XOR Devices

You can use XOR gates directly by writing equations that include XOR
operators, or you can use implied XOR gates. XOR gates can minimize the
total number of product terms required for an output or they can emulate
alternate flip-flop types.

Using XOR Operators in Equations

If you want to write design equations that include XOR operators, you must
either specify a device that features XOR gates in your ABEL-HDL source file,
or specify the ’xor’ attribute for all output signals that will be implemented
with XOR gates. This preserves one top-level XOR operator for each design
output. For example,

module X1
 Q1 pin istype ’com,xor’;
 a,b,c pin;
equations
 Q1 = a $ b & c;
end

Design Considerations

3-26 ABEL-HDL Reference

Also, when writing equations for XOR PALs, you should use parentheses to
group those parts of the equation that go on either side of the XOR. This is
because the XOR operator ($) and the OR operator (#) have the same priority in
ABEL-HDL. See example octalf.abl.

Using Implied XORs in Equations

High-level operators in equations often result in the generation of XOR
operators. If you specify the ’XOR’ attribute, these implied XORs are
preserved, decreasing the number of product terms required. For example,

module X2
 q3,q2,q1,q0 pin istype ’reg,xor’;
 clock pin;
 count = [q3..q0];
equations
 count.clk = clock;
 count := count.FB + 1;
end

This design describes a simple four-bit counter. Since the addition operator
results in XOR operators for the four outputs, the ’xor’ attribute can reduce the
amount of circuitry generated.

Note: The high-level operator that generates the XOR operators must be the top-level
(lowest priority) operation in the equation. An equation such as
count := (count.FB + 1) & !reset ;
does not result in the preservation of top-level XOR operators, since the & operator is
the top-level operator.

Using XORs for Flip-flop Emulation

Another way to use XOR gates is for flip-flop emulation. If you are using an
XOR device that has outputs featuring an XOR gate and D-type flip-flops, you
can write your design as if you were going to be implementing it in a device
with T-type flip-flops. The XOR gates and D-type flip-flops emulate the
specified T-type flip-flops. When using XORs in this way, you should not use
the ’xor’ attribute for output signals unless the target device has XOR gates.

JK Flip-Flop Emulation

You can emulate JK flip-flops using a variety of circuitry found in
programmable devices. When a T-type flip-flop is available, you can emulate
JK flip-flops by ANDing the Q output of the flip-flop with the K input. The !Q
output is then ANDed with the J input. This specific approach is useful in
devices such as the Intel/Altera E0600 and E0900.

Design Considerations

ABEL-HDL Reference 3-27

Figure 3-10 illustrates the circuitry and the Boolean expression.

You can emulate a JK flip-flop with a D flip-flop and an XOR gate. This
technique is useful in devices such as the P20X8. The circuitry and Boolean
expression is shown below in Figure 3-11.

Finally, you can also emulate a JK flip-flop by combining the D flip-flop
emulation of a T flip-flop, in Figure 3-11, with the circuitry of Figure 3-10.
Figure 3-12 illustrates this concept.

Preset

Clear

Clock

1
2
3
4

3

S
C
T

Q

Q

T FF
5

6

Q

Q : = (J & !Q) # (K & Q) 0777-1

1
2

1
2

1
2

3

3

K

J

AND2

AND2

OR2

Figure 3-10
JK Flip-flop Emulation Using T Flip-flop

0755-1

Preset

Clear

Clock

1
2

1
2
3
4

T

S
C
D

Q

Q

D FF

XOR
5

6

Q

Q : = T $ Q

3

Figure 3-11
T Flip-flop Emulation Using D Flip-flop

Design Considerations

3-28 ABEL-HDL Reference

State Machines
A state machine is a digital device that traverses a predetermined sequence of
states. State-machines are typically used for sequential control logic. In each
state, the circuit stores its past history and uses that history to determine what
to do next.

This section provides some guidelines to help you make state diagrams easy to
read and maintain and to help you avoid problems. State machines often have
many different states and complex state transitions that contribute to the most
common problem, which is too many product terms being created for the
chosen device. The topics discussed in the following subsections help you
avoid this problem by reducing the number of required product terms.

The following subsections provide state machine considerations:

♦ Use Identifiers Rather Than Numbers for States
♦ Powerup Register States
♦ Unsatisfied Transition Conditions, D-Type Flip-Flops
♦ Unsatisfied Transition Conditions, Other Flip-Flops
♦ Number Adjacent States for a One-bit Change
♦ Use State Register Outputs to Identify States
♦ Use Symbolic State Descriptions

Preset

Clear

Clock

1

2

1

2
3

4
3

S

C
D

Q

Q

D FF

XOR
5

6

Q

Q : = (Q) $ (J & !Q # K & Q)

0756-1

31

2

1

2

1

2

3

3

K

J

AND2

AND2

OR2

Integrated Circuit in Digital Electronics
Arpad Barna and Dan Porat
John Whiley & Sons 1973

Figure 3-12
JK Flip-flop Emulation, D Flip-flop with XOR

Design Considerations

ABEL-HDL Reference 3-29

Use Identifiers Rather Than Numbers for States

A state machine has different "states" that describe the outputs and transitions
of the machine at any given point. Typically, each state is given a name, and
the state machine is described in terms of transitions from one state to another.
In a real device, such a state machine is implemented with registers that
contain enough bits to assign a unique number to each state. The states are
actually bit values in the register, and these bit values are used along with
other signals to determine state transitions.

As you develop a state diagram, you need to label the various states and state
transitions. If you label the states with identifiers that have been assigned
constant values, rather than labeling the states directly with numbers, you can
easily change the state transitions or register values associated with each state.

When you write a state diagram, you should first describe the state machine
with names for the states, and then assign state register bit values to the state
names.

For an example, see Figure 3-13, which lists the source file for a state machine
named "sequence." (This state machine is also discussed in the design
examples.) Identifiers (A, B, and C) specify the states. These identifiers are
assigned a constant decimal value in the declaration section that identifies the
bit values in the state register for each state. A, B, and C are only identifiers:
they do not indicate the bit pattern of the state machine. Their declared values
define the value of the state register (sreg) for each state. The declared values
are 0, 1, and 2.

module Sequence
title ’State machine example D. B. Pellerin Data I/O Corp’;

 sequence device ’p16r4’;

 q1,q0 pin 14,15 istype ’reg’;
 clock,enab,start,hold,reset pin 1,11,4,2,3;
 halt pin 17 istype ’reg’;
 in_B,in_C pin 12,13 istype ’com’;
 sreg = [q1,q0];

 "State Values...
 A = 0; B = 1; C = 2;

equations
 [q1,q0,halt].clk = clock;
 [q1,q0,halt].oe = !enab;

Figure 3-13
Using Identifiers for States

Design Considerations

3-30 ABEL-HDL Reference

state_diagram sreg;
 State A: " Hold in state A until start is active.
 in_B = 0;
 in_C = 0;
 IF (start & !reset) THEN B WITH halt := 0;
 ELSE A WITH halt := halt.fb;

 State B: " Advance to state C unless reset is active
 in_B = 1; " or hold is active. Turn on halt indicator
 in_C = 0; " if reset.
 IF (reset) THEN A WITH halt := 1;
 ELSE IF (hold) THEN B WITH halt := 0;
 ELSE C WITH halt := 0;

 State C: " Go back to A unless hold is active
 in_B = 0; " Reset overrides hold.
 in_C = 1;
 IF (hold & !reset) THEN C WITH halt := 0;
 ELSE A WITH halt := 0;

test_vectors([clock,enab,start,reset,hold]->[sreg,halt,in_B,in_C])
 [.p. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];

 [.c. , 0 , 1 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 1 , 0]->[A , 1 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 1 , 0 , 0];

 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];
end

Powerup Register States

If a state machinehas to have a specific starting state, you must define the
register powerup state in the state diagram description or make sure your
design goes to a known state at powerup. Otherwise, the next state is
undefined.

Design Considerations

ABEL-HDL Reference 3-31

Unsatisfied Transition Conditions

D-Type Flip-Flops

For each state described in a state diagram, you specify the transitions to the
next state and the conditions that determine those transitions. For devices with
D-type flip-flops, if none of the stated conditions are met, the state register,
shown in Figure 3-14, is cleared to all 0s on the next clock pulse. This action
causes the state machine to go to the state that corresponds to the cleared state
register. This can either cause problems or you can use it to your advantage,
depending on your design.

You can use the clearing behavior of D-type flip-flops to eliminate some
conditions in your state diagram, and some product terms in the converted
design, by leaving the cleared-register state transition implicit. If no specified
transition condition is met, the machine goes to the cleared-register state. This
behavior can also cause problems if the cleared-register state is undefined in
the state diagram, because if the transition conditions are not met for any state,
the machine goes to an undefined state and stays there.

To avoid problems caused by this clearing behavior, always have a state
assigned to the cleared-register state. Or, if you don’t assign a state to the
cleared-register state, define every possible condition so some condition is
always met for each state. You can also use the automatic transition to the
cleared-register state by eliminating product terms and explicit definitions of
transitions. You can also use the cleared-register state to satisfy illegal
conditions.

NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM

D Q

Q

LOGIC 0
F0

0774-1

Figure 3-14
D-type Register with False Inputs

Design Considerations

3-32 ABEL-HDL Reference

Other Flip-flops

If none of the state conditions is met in a state machine that employs JK, RS,
and T-type flip-flops, the state machine does not advance to the next state, but
holds its present state due to the low input to the register from the OR array
output. In such a case, the state machine can get stuck in a state. You can use
this holding behavior to your advantage in some designs.

If you want to prevent the hold, you can use the complement array provided in
some devices (such as the F105) to detect a "no conditions met" situation and
reset the state machine to a known state.

Precautions for Using Don’t Care Optimization

When you use don’t care optimization, you need to avoid certain design
practices. The most common design technique that conflicts with this
optimization is mixing equations and state diagrams to describe default
transitions. For example, consider the design shown in Figure 3-15.

module TRAFFIC
title ’Traffic Signal Controller Kim-Fu Lim Data I/O Corp’

 traffic device ’F167’;
 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 "Node numbers are not required if fitter is used
 S3..S0 node 31..34 istype ’reg_sr,buffer’;
 COMP node 43;

 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip-flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];

Figure 3-15
State Machine Description with Conflicting Logic

Design Considerations

ABEL-HDL Reference 3-33

" test_vectors edited

equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;

"Use Complement Array to initialize or restart
 [S3..S0].R = (!COMP & [1,1,1,1]);
 [GreenA,YellowA,RedA] = (!COMP & [On ,Off,Off]);
 [GreenB,YellowB,RedB] = (!COMP & [Off,Off,On]);

state_diagram Count
 State 0: if (SenA & !SenB) then 0 with COMP = 1;
 if (!SenA & SenB) then 4 with COMP = 1;
 if (SenA == SenB) then 1 with COMP = 1;

 State 1: goto 2 with COMP = 1;
 State 2: goto 3 with COMP = 1;
 State 3: goto 4 with COMP = 1;

 State 4: GreenA = Off;
 YellowA = On ;
 goto 5 with COMP = 1;

 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8 with COMP = 1;

 State 8: if (!SenA & SenB) then 8 with COMP = 1;
 if (SenA & !SenB) then 12 with COMP = 1;
 if (SenA == SenB) then 9 with COMP = 1;

 State 9: goto 10 with COMP = 1;
 State 10: goto 11 with COMP = 1;
 State 11: goto 12 with COMP = 1;

 State 12: GreenB = Off;
 YellowB = On ;
 goto 13 with COMP = 1;

Design Considerations

3-34 ABEL-HDL Reference

 State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0 with COMP = 1;
end

This design uses the complement array feature of the Signetics FPLA devices to
perform an unconditional jump to state [0,0,0,0]. If you use the @DCSET
directive, the equation that specifies this transition

[S3,S2,S1,S0].R = (!COMP & [1,1,1,1]);

will conflict with the dc-set generated by the state diagram for S3.R, S2.R, S1.R,
and S0.R. If equations are defined for state bits, the @DCSET directive is
incompatable. This conflict would result in an error and failure when the logic
for this design is optimized.

To correct the problem, you must remove the @DCSET directive so the
implied dc-set equations are folded into the off-set for the resulting logic
function. Another option is to rewrite the module as shown in Figure 3-16.

Figure 3-16
@DCSET-compatible State Machine Description

Design Considerations

ABEL-HDL Reference 3-35

module TRAFFIC1
title ’Traffic Signal Controller, M. McClure Data I/O Corp’

 traffic1 device ’F167’;

 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 S3..S0 node 31..34 istype ’reg_sr,buffer’;
 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];

" test_vectors edited

equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;

@DCSET
state_diagram Count
 State 0: if (SenA & !SenB) then 0;
 if (!SenA & SenB) then 4;
 if (SenA == SenB) then 1;

 State 1: goto 2;
 State 2: goto 3;
 State 3: goto 4;

 State 4: GreenA = Off;
 YellowA = On ;
 goto 5;

Design Considerations

3-36 ABEL-HDL Reference

 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8;

 State 6: goto 0;
 State 7: goto 0;

 State 8: if (!SenA & SenB) then 8;
 if (SenA & !SenB) then 12;
 if (SenA == SenB) then 9;

 State 9: goto 10;
 State 10: goto 11;
 State 11: goto 12;

 State 12: GreenB = Off;
 YellowB = On ;
 goto 13;

 State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0;

 State 14: goto 0;

 State 15: "Power up and preset state
 RedA = Off;
 YellowA = Off;
 GreenA = On ;
 RedB = On ;
 YellowB = Off;
 GreenB = Off;
 goto 0;
end

Number Adjacent States for One-bit Change

You can reduce the number of product terms produced by a state diagram by
carefully choosing state register bit values. Your state machine should be
described with symbolic names for the states, as described above. Then, if you
assign the numeric constants to these names so the state register bits change by
only one bit at a time as the state machine goes from state to state, you will
reduce the number of product terms required to describe the state transitions.

Design Considerations

ABEL-HDL Reference 3-37

As an example, take the states A, B, C, and D, which go from one state to the
other in alphabetical order. The simplest choice of bit values for the state
register is a numeric sequence, but this is not the most efficient method. To see
why, examine the following bit value assignments. The preferred bit values
cause a one-bit change as the machine moves from state B to C, whereas the
simple bit values cause a change in both bit values for the same transition. The
preferred bit values produce fewer product terms.

Simple Preferred
State Bit Values Bit Values

A 00 00
B 01 01
C 10 11
D 11 10

If one of your state register bits uses too many product terms, try reorganizing
the bit values so that state register bit changes in value as few times as possible
as the state machine moves from state to state.

Obviously, the choice of optimum bit values for specific states can require
some tradeoffs; you may have to optimize for one bit and, in the process,
increase the value changes for another. The object should be to eliminate as
many product terms as necessary to fit the design into the device.

Use State Register Outputs to Identify States

Sometimes it is necessary to identify specific states of a state machine and
signal an output that the machine is in one of these states. Fewer equations
and outputs are needed if you organize the state register bit values so one bit in
the state register determines if the machine is in a state of interest. Take, for
example, the following sequence of states in which identification of the Cn
states is required:

State Register Bit Values

State Name Q3 Q2 Q1

A 0 0 0
B 0 0 1

C1 1 0 1
C2 1 1 1
C3 1 1 0
D 0 1 0

Design Considerations

3-38 ABEL-HDL Reference

This choice of state register bit values allows you to use Q3 as a flag to indicate
when the machine is in any of the Cn states. When Q3 is high, the machine is
in one of the Cn states. Q3 can be assigned directly to an output pin on the
device. Notice also that these bit values change by only one bit as the machine
cycles through the states, as is recommended in the section above.

Using Symbolic State Descriptions

Symbolic state descriptions describe a state machine without having to specify
actual state values. A symbolic state description is shown in Figure 3-17.

module SM
 a,b,clock pin; " inputs
 a_reset,s_reset pin; " reset inputs
 x,y pin istype ’com’; " simple outputs

 sreg1 state_register;
 S0..S3 state;

equations
 sreg1.clk = clock;

state_diagram sreg1
 state S0:
 goto S1 with {x = a & b;
 y = 0; }
 state S1: if (a & b)
 then S2 with {x = 0;
 y = 1; }
 state S2: x = a & b;
 y = 1;
 if (a) then S1 else S2;
 state S3:
 goto S0 with {x = 1;
 y = 0; }

 async_reset S0: a_reset;
 sync_reset S0: s_reset;
end

Symbolic state descriptions use the same syntax as non-symbolic state
descriptions; the only difference is the addition of the State_register and State
declarations, and the addition of symbolic synchronous and asynchronous
reset statements.

Figure 3-17
Symbolic State Description

Design Considerations

ABEL-HDL Reference 3-39

Symbolic Reset Statements

In symbolic state descriptions, the Sync_Reset and Async_Reset statements
specify synchronous or asynchronous state machine reset logic. For example,
to specify that a state machine must asynchronously reset to state Start when
the Reset input is true, you write

ASYNC_RESET Start : (Reset) ;

Symbolic Test Vectors

You can also write test vectors to refer to symbolic state values by entering the
symbolic state register name in the test vector header (in the output sections),
and the symbolic state names in the test vectors as output values.

Using Complement Arrays
The complement array is a unique feature found in some logic sequencers.
This section shows a typical use ending counter sequence.

You can use transition equations to express the design of counters and state
machines in some devices with JK or SR flip-flops. A transition equation
expresses a state of the circuit as a variation of, or adjustment to, the previous
state. This type of equation eliminates the need to specify every node of the
circuit; you can specify only those that require a transition to the opposite state.

An example of transition equations is shown in Figure 3-18, a source file for a
decade counter having a single (clock) input and a single latched output. This
counter divides the clock input by a factor of ten and generates a 50%
duty-cycle squarewave output. The device used is an F105 FPLS. In addition
to its registered outputs, this device contains a set of "buried" (or feedback)
registers whose outputs are fed back to the product term inputs. These nodes
must be declared, and can be given any names.

Node 49, the complement array feedback, is declared (as COMP) so that it can
be entered into each of the equations. In this design, the complement array
feedback is used to wrap the counter back around to zero from state nine, and
also to reset it to zero if an illegal counter state is encountered. Any illegal
state (and also state 9) will result in the absence of an active product term to
hold node 49 at a logic low. When node 49 is low, Figure 3-19 shows that
product term 9 resets each of the feedback registers so the counter is set to state
zero. (To simplify the following description of the equations in Figure 3-18,
node 49 and the complement array feedback are temporarily ignored.)

Design Considerations

3-40 ABEL-HDL Reference

The first equation states that the F0 (output) register is set (to provide the
counter output) and the P0 register is set when registers P0, P1, P2, and P3 are
all reset (counter at state zero) and the clear input is low. Figure 3-19 shows
how the fuses are blown to fulfill this equation; the complemented outputs of
the registers (with the clear input low) form product term 0. Product term 0
sets register P0 to increment the decade counter to state 1, and sets register F0
to provide an output at pin 18.

module DECADE
title ’Decade Counter Uses Complement Array
Michael Holley Data I/O Corp’

 decade device ’F105’;

 Clk,Clr,F0,PR pin 1,8,18,19;
 P3..P0 node 40..37;
 COMP node 49;

 F0,P3..P0 istype ’reg_sr,buffer’;

 _State = [P3,P2,P1,P0];
 H,L,Ck,X = 1, 0, .C., .X.;

equations
 [P3,P2,P1,P0,F0].ap = PR;
 [F0,P3,P2,P1,P0].clk = Clk;

 "Output Next State Present State Input
 [F0.S, COMP, P0.S] = !P3.Q & !P2.Q & !P1.Q & !P0.Q & !Clr; "0 to 1
 [COMP, P1.S,P0.R] = !P3.Q & !P2.Q & !P1.Q & P0.Q & !Clr; "1 to 2
 [COMP, P0.S] = !P3.Q & !P2.Q & P1.Q & !P0.Q & !Clr; "2 to 3
 [COMP, P2.S,P1.R,P0.R] = !P3.Q & !P2.Q & P1.Q & P0.Q & !Clr; "3 to 4
 [COMP, P0.S] = !P3.Q & P2.Q & !P1.Q & !P0.Q & !Clr; "4 to 5
 [F0.R, COMP, P1.S,P0.R] = !P3.Q & P2.Q & !P1.Q & P0.Q & !Clr; "5 to 6
 [COMP, P0.S] = !P3.Q & P2.Q & P1.Q & !P0.Q & !Clr; "6 to 7
 [COMP,P3.S,P2.R,P1.R,P0.R] = !P3.Q & P2.Q & P1.Q & P0.Q & !Clr; "7 to 8
 [COMP P0.S] = P3.Q & !P2.Q & !P1.Q & !P0.Q & !Clr; "8 to 9
 [P3.R,P2.R,P1.R,P0.R] = !COMP; "Clear

"After Preset, clocking is inhibited until High-to-Low clock transition.
test_vectors ([Clk,PR,Clr] -> [_State,F0])
 [0 , 0, 0] -> [X , X];
 [1 , 1, 0] -> [^b1111, H]; " Preset high
 [1 , 0, 0] -> [^b1111, H]; " Preset low
 [Ck, 0, 0] -> [0 , H]; " COMP forces to State 0
 [Ck, 0, 0] -> [1 , H];
" ..vectors edited...
 [Ck, 0, 1] -> [0 , H]; " Clear
end

Figure 3-18
Transition Equations for a Decade Counter

Design Considerations

ABEL-HDL Reference 3-41

The second equation performs a transition from state 1 to state 2 by setting the
P1 register and resetting the P0 register. (The .R dot extension is used to define
the reset input of the registers.) In state 2, the F0 register remains set,
maintaining the high output. The third equation again sets the P0 register to
achieve state 3 (P0 and P1 both set), while the fourth equation resets P0 and P1,
and sets P2 for state 4, and so on.

0 1 2 3 4 5 6 7 8 9

S

R

S

R

S

R

S

R

S

R

P0

P1

P2

P3

F0

49

18

1CLR

CLK (INPUT)

F0 (OUTPUT)

Note: Clock input
not shown
on schematic

0776-1

Figure 3-19
Abbreviated F105 Schematic

Design Considerations

3-42 ABEL-HDL Reference

Wraparound of the counter from state 9 to state 0 is achieved by means of the
complement array node (node 49). The last equation defines state 0 (P3, P2, P1,
and P0 all reset) as equal to !COMP, that is, node 49 at a logic low. When this
equation is processed, the fuses are blown as indicated in Figure 3-19. Figure
3-19 shows that state 9 (P0 and P3 set) provides no product term to pull node
49 high. As a result, the !COMP signal is true to generate product term 9 and
reset all the "buried" registers to zero.

Design Considerations

ABEL-HDL Reference 3-43

Chapter 4

Designing with FPGAs
The information in this chapter is only applicable to Syanario. ABEL-HDL
allows you to generate source files with efficient logic for FPGAs, including
Logic Cell Arrays (LCAs), ACT1, and HIPER devices.

FPGA Design Strategies
The following design strategies are helpful when designing for FPGAs. You
will find more detailed information in later sections.

♦ Define external and internal signals with pin and node statements,
respectively.

♦ For state machines and truth tables, include @DCSET (or ’dc’ attributes) if
possible, since it usually reduces logic.

♦ Use only dot extensions that are appropriate for FPGA designs. You can
find information about using dot extensions in the specific FPGA fitter user
manuals.

♦ Use intermediate signals to create multi-level logic to match FPGA
architectures.

Declaring Signals

The first step in creating a logic module for an FPGA is to declare the signals in
your design. In ABEL-HDL, you do this with pin and node statements.

Pin Pin Statements indicate external signals (used as inputs
and outputs to the functional block). Pin numbers are
optional in ABEL-HDL, and are not recommended for
FPGAs, since pin statements don’t actually generate pins
on the device package. If you declare an external signal as
a node instead of a pin, the device fitter may interpret the
signal incorrectly and delete it.

Node Node Statements indicate internal signals (not accessible
by circuitry outside the functional block). Signals declared
as nodes are expected to have a source and loads.

ABEL-HDL Reference 4–1

For example, Figure 4-1 shows a state machine as a functional block. State bits
S1 through S7 are completely internal; all other signals are external.

Figure 4-2 shows the corresponding signal declarations. The CLOCK, RESET,
input, and output signals must connect with circuitry outside the functional
block, so they are declared as pins. The state bits are not used outside the
functional block, so they are declared as nodes.

CLOCK, RESET Pin;
I0,I1,I2,I3 Pin;
O1,O2 Pin;

S7,S6,S5,S4,S3,S2,S1 Node;

Using Intermediate Signals

An intermediate signal is a combinatorial signal that is declared as a node and
used as a component of other more complex signals in a design. Intermediate
signals minimize logic by forcing it to be factored. Creating intermediate
signals in an ABEL-HDL logic description has the following benefits:

♦ Reduces the amount of optimization a device fitter has to perform
♦ Increases the chances of a fit
♦ Simplifies the ABEL-HDL source file

I

I

I

I

0

1

2

3

CLOCK

RESET

O2

O1

State bits used
internally only.

1100-1

FUNCTIONAL BLOCK

S1

S2

S7

Figure 4–1
Hypothetical State Machine as a Functional Block

Figure 4-2
Signal Declarations

Designing with FPGAs

4–2 ABEL-HDL Reference

Figure 4-4 shows a schematic of combinational logic. Signals A, B, C, D, and E
are inputs; X and Y are outputs. There are no intermediate signals; every
declared signal is an input or an output to the subcircuit.

Figure 4-3 shows the ABEL-HDL declarations and equations that would
generate the logic shown in Figure 4-4.

"declarations
 A, B, C, D, E pin;
 X, Y pin;

equations
 X = (A&B&C) # (B$C);
 Y = (A&D) # (A&E) # (A&B&C);

 Figure 4-6 shows the same logic using an intermediate signal, M, which is
declared as a node and named, but is used only inside the subcircuit as a
component of other, more complex signals.

Figure 4-5 shows the declarations and equations that would generate the logic
shown in Figure 4-6.

Figure 4-3
Declarations and Equations

B
C

A
B
C

B
C

A
D

A
E

A

X

Y

FUNCTIONAL BLOCK

1072-1

Figure 4-4
Schematic without Intermediate Signal

Designing with FPGAs

ABEL-HDL Reference 4–3

"declarations
 A, B, C, D, E pin;
 X, Y pin;
 M node;

equations
"intermediate signal equations
 M = A&B&C;
 X = M # (B$C);
 Y = (A&D) # (A&E) # M;

Both design descriptions are functionally the same. Without the intermediate
signal, compilation generates the AND gate associated with A&B&C twice, and
the device fitter must filter out the common term. With the intermediate
signal, this sub-signal is generated only once as the intermediate signal, M, and
the fitter has less to do.

Using intermediate signals in a large design, targeted for a complex PLD or
FPGA, can save fitter optimization effort and time. It also makes the design
description easier to interpret. As another example, compare the state machine
descriptions in Figures 4-7 and 4-8. Note that Figure 4-8 is easier to read.

Figure 4-5
Declarations and Equations

B
C

A
D

A
E

B
C

A

X

Y

FUNCTIONAL BLOCK

1074-1

M

Figure 4-6
Schematic with Intermediate Signal M

Designing with FPGAs

4–4 ABEL-HDL Reference

CASE
which_code_enter==from_disarmed_ready:

 CASE

 (sens_code==sens_off) & (key_code!=key_pound)
 & (key_code!=key_star)
 & (key_code!=key_none):
 code_entry_?X WITH {
 which_code_enter := which_code_enter; }

 (key_code==sens_off) & (key_code==key_none):
 code_entry_?Y WITH {
 which_code_enter := which_code_enter; }

 (key_code==key_pound) # (key_code==key_star):
 error;

 (sens_code!=sens_off):
 error;

 ENDCASE

which_code_enter==from_armed:

 CASE

 (key_code!=key_pound)
 & (key_code!=key_star)
 & (key_code!=key_none):
 code_entry_?X WITH {
 which_code_enter := which_code_enter; }

 ((key_code==key_pound) # (key_code==key_star)):
 armed WITH {
 which_code_enter := which_code_enter; }

 (key_code==key_none):
 code_entry_?Y WITH {
 which_code_enter := which_code_enter; }
 ENDCASE

ENDCASE

Figure 4-7
State Machine Description without Intermediate Signals

Designing with FPGAs

ABEL-HDL Reference 4–5

CASE

enter_from_disarmed_ready:

 CASE

 sensors_off & key_numeric:
 code_entry_?X WITH {
 which_code_enter := which_code_enter; }
 sensors_off & key_none:
 code_entry_?Y WITH {
 which_code_enter := which_code_enter; }

 key_pound_star:
 error;

 !sensors_off:
 error;

 ENDCASE

enter_from_armed:

 CASE

 key_numeric:
 code_entry_?X WITH {
 which_code_enter := which_code_enter; }

 key_pound_star:
 armed WITH {
 which_code_enter := which_code_enter; }

 key_none:
 code_entry_?Y WITH {
 which_code_enter := which_code_enter; }

 ENDCASE

ENDCASE

Figure 4-8
State Machine Description with Intermediate Signals

Designing with FPGAs

4–6 ABEL-HDL Reference

The declarations and equations required to create the intermediate signals used
in Figure 4-8 are shown in Figure 4-9.

"pin and node declarations
 sens_code_0, sens_code_1,
 sens_code_2, sens_code_3 pin;

 key_code_0, key_code_1,
 key_code_2, key_code_3 pin;

 which_code_enter_0,
 which_code_enter_1,
 which_code_enter_2 node istype ’reg’;

"set declarations
 which_code_enter = [which_code_enter_0..which_code_enter_2];
 sens_code = [sens_code_0..sens_code_3];
 key_code = [key_code_0 ..key_code_3];

"code-entry sub-states
 from_disarmed_ready = [1, 0, 0];
 from_armed = [0, 0, 0];
 sens_off = [0, 0, 0, 0];

"key encoding
 key_pnd = [1, 1, 0, 0];
 key_str = [1, 0, 1, 1];
 key_non = [0, 0, 0, 0];

"intermediate signals
 enter_from_disarmed_ready node;
 enter_from_armed node;
 sensors_off node;
 key_numeric node;
 key_none node;
 key_pound_star node;

Figure 4-9
Intermediate Signal Declarations and Equations

Designing with FPGAs

ABEL-HDL Reference 4–7

equations
"intermediate equations
 enter_from_disarmed_ready =
 (which_code_enter==from_disarmed_ready);
 enter_from_armed = (which_code_enter==from_armed);
 sensors_off = (sens_code==sens_off);
 key_numeric = (key_code!=key_pnd)
 & (key_code!=key_str)
 & (key_code!=key_non);

 key_none = (key_code==key_non);

 key_pound_star = (key_code==key_pnd)
 # (key_code==key_str);

For large designs, using intermediate signals can be essential. An expression
such as

IF (input==code_1) . . .

generates a product term (AND gate). If the input is 8 bits wide, so is the AND
gate. If the expression above is used 10 times, the amount of logic generated
will cause long run times during compilation and fitting, or may cause fitting
to fail.

If you write the expression as an intermediate equation,

code_1_found node;

equations
code_1_found = (input==code_1);

you can use the intermediate signal many times without creating an excessive
amount of circuitry.

IF code_1_found . . .

Another way to create intermediate equations is to use the @CARRY directive.
The @CARRY directive causes comparators and adders to be generated using
intermediate equations for carry logic. This results in an efficient multilevel
implementation.

You should design for multi-level FPGAs in a multi-level fashion, using
intermediate signals as much as possible. An FPGA device fitter is capable of
transforming two-level PLD designs into multi-level FPGA designs, but it takes
a lot of time and occasionally fails. Rewriting your PLD designs to reflect the
multi-level nature of the FPGA architecture often reduces the time for fitting,
increases the chance of a fit, and simplifies your design descriptions.

Designing with FPGAs

4–8 ABEL-HDL Reference

Using FPGA Device Kits
This section provides information on selecting FPGA device kits and on
integrating ABEL-HDL designs into larger circuits.

Integrating ABEL-HDL Designs into Larger Circuits

Some FPGA architectures are appropriate for behavioral entry (for example,
Mach and Max). Other architectures may have portions that are appropriate
for behavioral entry and portions best suited to schematic entry (for example,
LCAs and ACT1 devices).

D
Q

D
Q

D
Q

OTHER
FUNCTIONAL

BLOCK
(Implemented
by lower-level
schematics)

STATE
MACHINE

(Implemented

by ABEL)

1071-1

STATE
MACHINE

(Implemented

by ABEL)

OTHER
FUNCTIONAL

BLOCK
(Implemented
by lower-level
schematics)

OTHER
FUNCTIONAL

BLOCK
(Implemented
by lower-level
schematics)

Figure 4-10
Typical FPGA Design

Designing with FPGAs

ABEL-HDL Reference 4–9

A typical FPGA design might have a top-level schematic (showing the device’s
pin-out and lower-level function blocks), and a collection of functional blocks.
Some functional blocks point to lower-level schematics, and others point to
behaviorally-described subcircuits (see Figure 4-10). If the design is large,
some functional blocks may have sub-blocks.

To integrate an ABEL-HDL subcircuit into a schematic, the functional block in
the higher-level drawing representing the subcircuit must point to the
ABEL-HDL logic description. How that is done depends on the architecture
and schematic capture system you are using, but the basic principle is similar
in most cases.

To reference an ABEL-HDL logic description, label the functional blocks
representing ABEL-HDL subcircuits with the name of the ABEL-HDL design
(see Figure 4-11).

The FPGA Device Kit manuals contain more detailed information on the kinds
of subcircuits ABEL-HDL is good at implementing for specific architectures.

A functional block
representing an
ABEL design

FILE=DESIGN.XXX

Netlist name points
to ABEL output

1073-1

Figure 4-11
Functional Block Labeled with ABEL Module Name

Designing with FPGAs

4–10 ABEL-HDL Reference

Chapter 5

Source File Examples
The following examples are representative of programmable logic applications
and serve to illustrate significant ABEL-HDL features. You can use these
examples to get started creating your own source files. For complete
information on creating a source file, refer to Chapter 2, "Language Structure"
and Chapter 6, "Language Reference."

All the examples in this section are installed with your software, and you can
use them without making any changes, or modify them in your designs.

The examples are divided into sections that demonstrate how to use the
following programmable logic applications:

♦ Equations
♦ State Diagrams
♦ Truth Tables
♦ Combined Logic Descriptions
♦ Hierarchy
♦ ABEL or Synario Projects

ABEL-HDL Reference 5-1

Equations

Memory Address Decoder

Address decoding is a typical application of programmable logic devices, and
the following describes the ABEL-HDL implementation of such a design.

Design Specification

Figure 5-1 shows the block diagram for this design and a continuous block of
memory divided into sections containing dynamic RAM (DRAM), I/O (IO),
and two sections of ROM (ROM1 and ROM2). The purpose of this decoder is
to monitor the 6 high-order bits (A15-A10) of a sixteen-bit address bus and
select the correct section of memory based on the value of these address bits.
To perform this function, a simple decoder with six inputs and four outputs is
designed for implementation in a simple PLD.

A15

A14

A13

A12

A11

A10

ROM1

ROM2

IO

DRAM

ROM1 ROM2 I/O DRAM

FFFF F800 F000 E800 E000 0000
0697-1

Figure 5-1
Block Diagram: Memory Address Decoder

Source File Examples

5-2 ABEL-HDL Reference

The address ranges associated with each section of memory are shown below.
These address ranges can also be seen in the source file in Figure 5-3.

Memory Section Address Range (hex)

DRAM 0000-DFFF
I/O E000-E7FF
ROM2 F000-F7FF
ROM1 F800-FFFF

Design Method

Figure 5-2 shows a simplified block diagram for the address decoder. The
decoder is implemented with equations employing relational and logical
operators as shown in Figure 5-3.

Significant simplification is achieved by grouping the address bits into a set
named Address. The ten address bits that are not used for the address decode
are given no-connect values in the set, indicating that the address in the overall
design (that beyond the decoder) contains 16 bits, but that bits 0 to 9 do not
affect the decode of that address and are not monitored. In contrast, defining
the set as

Address = [A15,A14,A13,A12,A11,A10]

ignores the existence of the lower-order bits. Specifying all 16 address lines as
members of the address set allows full 16-bit comparisons of the address value
against the ranges shown above.

Address

ROM1

ROM2

IO

DRAM
0703-1

Figure 5-2
Simplified Block Diagram: Memory Address Decoder

Source File Examples

ABEL-HDL Reference 5-3

module decode
title ’memory decode Jean Designer Data I/O Corp Redmond WA’

 A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6;
 ROM1,IO,ROM2,DRAM pin 14,15,16,17 istype ’com’;
 H,L,X = 1,0,.X.;
 Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X, X,X,X,X];

equations
 !DRAM = (Address <= ^hDFFF);
 !IO = (Address >= ^hE000) & (Address <= ^hE7FF);
 !ROM2 = (Address >= ^hF000) & (Address <= ^hF7FF);
 !ROM1 = (Address >= ^hF800);

test_vectors
 (Address -> [ROM1,ROM2,IO,DRAM])
 ^h0000 -> [H, H, H, L];
 ^h4000 -> [H, H, H, L];
 ^h8000 -> [H, H, H, L];
 ^hC000 -> [H, H, H, L];
 ^hE000 -> [H, H, L, H];
 ^hE800 -> [H, H, H, H];
 ^hF000 -> [H, L, H, H];
 ^hF800 -> [L, H, H, H];
end

Test Vectors

In this design, the test vectors are a straightforward listing of the values that
must appear on the output lines for specific address values. The address
values are specified in hexadecimal notation.

Figure 5-3
Memory Address Decoder Source File

Source File Examples

5-4 ABEL-HDL Reference

12-to-4 Multiplexer

The following describes the implementation of a 12-input to 4-output
multiplexer using high level equations.

Design Specification

Figure 5-4 shows the block diagram for this design. The multiplexer selects
one of the four inputs and routes that set to the output. The inputs are a0-a3,
b0-b3, and c0-c3. The outputs are y0-y3. The routing of inputs to outputs is
straightforward: a0 or b0 or c0 is routed to the output y0, a1 or b1 or c1 is
routed to the output y1, and so on with the remaining outputs. The select
lines, s0 and s1, control the decoding that determines which set is routed to the
output.

a0
a1
a2
a3

b0
b1
b2
b3

c0
c1
c2
c3

y0
y1
y2
y3

s1 s0 0704-1

Figure 5-4
Block Diagram: 12-to-4 Multiplexer

Source File Examples

ABEL-HDL Reference 5-5

Design Method

Figure 5-5 shows a block diagram for the same multiplexer after sets have been
used to group the signals. All of the inputs have been grouped into the sets a,
b, and c. The outputs and select lines are grouped into the sets, y and select,
respectively. This grouping of signals into sets takes place in the declaration
section of the source file listed in Figure 5-6.

When the sets have been declared, specification of the design is made with the
following four equations that use WHEN-THEN statements.

when (select == 0) then y = a;
when (select == 1) then y = b;
when (select == 2) then y = c;
when (select == 3) then y = c;

The relational expression (==) inside the parentheses produces an expression
that evaluates to true or false value, depending on the values of s0 and s1.

In the first equation, this expression is then ANDed with the set a which
contains the four bits, a0-a3, and could be written as

y = (select == 0) & a

a

b

c

y

select 0705-1

Figure 5-5
Simplified Block Diagram: 12-to-4 Multiplexer

Source File Examples

5-6 ABEL-HDL Reference

Assume select is equal to 0 (s1 = 0 and s0 = 0), so a true value is produced. The
true is then ANDed with the set a on a bit by bit basis, which in effect sets the
product term to a. If select were not equal to 0, the relational expression inside
the parentheses would produce a false value. This value, when ANDed with
anything, would give all zeroes.

The other product terms in the equation work in the same manner. Because
select takes on only one value at a time, only one of the product terms pass the
value of an input set along to the output set. The others contribute 0 bits to the
ORs.

Test Vectors

The test vectors for this design are specified in terms of the input, output, and
select sets. Note that the values for a set can be specified by decimal numbers
and by other sets. The constants H and L, used in the test vectors, were
declared as four bit sets containing all ones or all zeroes.

Source File Examples

ABEL-HDL Reference 5-7

module Mux12T4
title ’12 to 4 multiplexer
Dave Pellerin Data I/O Corp. Redmond WA’

 mux12t4 device ’P16V8S’;

 a0..a3 pin 1..4;
 b0..b3 pin 5..8;
 c0..c3 pin 9..13;
 s1,s0 pin 18,19;
 y0..3 pin 14..17;

 H = [1,1,1,1];
 L = [0,0,0,0];
 X = .x.;
 select = [s1, s0];
 y = [y3..y0];
 a = [a3..a0];
 b = [b3..b0];
 c = [c3..c0];

equations
 when (select == 0) then y = a;
 when (select == 1) then y = b;
 when (select == 2) then y = c;
 when (select == 3) then y = c;

test_vectors ([select, a, b, c] -> y)
 [0 , 1, X, X] -> 1;"select = 0, gates lines a to output
 [0 ,10, H, L] -> 10;
 [0 , 5, H, L] -> 5;
 [1 , H, 3, H] -> 3;"select = 1, gates lines b to output
 [1 ,10, 7, H] -> 7;
 [1 , L,15, L] -> 15;
 [2 , L, L, 8] -> 8;"select = 2, gates lines c to output
 [2 , H, H, 9] -> 9;
 [2 , L, L, 1] -> 1;
 [3 , H, H, 0] -> 0;"select = 3, gates lines c to output
 [3 , L, L, 9] -> 9;
 [3 , H, L, 0] -> 0;
end

Figure 5-6
Source File: 12-to-4 Multiplexer

Source File Examples

5-8 ABEL-HDL Reference

4-Bit Universal Counter

The following design describes the implementation of a 4-bit up/down
counter with parallel load and count enable. The design is described using
high-level ABEL-HDL equations. Figure 5-7 shows a block diagram of the
counter and its signals. Figure 5-8 shows the source file for this design.

The outputs q3, q2, q1, and q0 contain the current count. The least significant
bit (LSB) is q0 the most significant bit (MSB) is q3.

Using Sets to Create Modes

The counter has four different modes of operation: Load Data From Inputs,
Count Up, Count Down, and Hold Count. You select the modes by applying
various combinations of values to the inputs cnten, ld, and u_d, as described
below. The four modes have different priorities, which are defined in the
ABEL-HDL description.

The Load mode has the highest priority. If the ld input is high, then the q
outputs reflect the value on the d inputs after the next clock edge.

The Hold mode has the next highest priority. Provided ld is low, then when
the cnten input is low, the q outputs maintain their current values upon
subsequent clock edges, ignoring any other inputs.

The Up and Down modes have the same priority, and by definition are
mutually exclusive. Provided cnten is high and ld is low, then when u_d is
high, the counter counts up and when u_d is low, the counter counts down.

2193-1

d3
UNICNT

I 25

d2
d1
d0
clk
rst
cnten

q3
q2
q1
q0

ld
u_d

Figure 5-7
Block Diagram: 4-bit Universal Counter

Source File Examples

ABEL-HDL Reference 5-9

Counter Reset

The counter is reset asynchronously by assertion of the input rst.

Using Range Operators

Because this design uses range operators and sets, you can modify the counter
to be any width by making changes in the declarations section. You could
create a 9-bit counter by changing the lines which read "d3..d0" and "q3..q0" to
"d8..d0" and "q8..q0," respectively. The range expressions are expanded out
and create register sets of corresponding width.

Design Description

Hierarchical Interface Declaration

Directly after the module name, the design contains a hierarchical interface
declaration which is used by the ABEL-HDL compiler and linker if another
ABEL-HDL source instantiates this source. The interface list shows all of the
input, output, and bidirectional signals (if any) in the design.

Declarations

The declarations contain sections that make the design easier to interpret. The
sections are as follows:

Constants Constant values are defined.

Inputs Design inputs are declared.

Outputs The output pin list contains an istype declaration
for retargetability.

Sets The names data and count are defined as sets
(groups) containing the inputs d3, d2, d1, and d0,
and the outputs q3, q2, q1, and q0, respectively.

Modes The "Mode equations" are actually more contant
declarations. First MODE is defined as the set
containing cnten, ld, and u_d, in that order. Next,
LOAD is defined as being true when the members
of MODE are equal to X, 1, and X, respectively.
HOLD, UP, and DOWN are defined similarly.

Equations

The design of the counter equations enables you to easily define modes and
your actual register equations will be easily readable. The counter equation
uses when-then-else syntax. The first line

Source File Examples

5-10 ABEL-HDL Reference

when LOAD then count := data

uses the symbolic name LOAD, defined earlier in the source file as

LOAD = (MODE == [X, 1, X])

and MODE itself is a set of inputs in a particular order, defined previously as

MODE = [cnten, ld, u_d]

The first line of the equation could have been written as follows

when ((cnten == X) & (ld == 1) & (u_d == X)) then count := data

which is functionally the same, but the intermediate definitions used instead
makes the source file more readable and easier to modify.

Source File Examples

ABEL-HDL Reference 5-11

module unicnt
interface (d3..d0, clk,rst,ld, u_d -> q3..q0) ;

title ’4 bit universal counter with parallel load
 Tom Bowns Data I/O Corporation’ ;

"Constants
 X,C,Z = .X., .C., .Z. ;

"Inputs
 d3..d0 pin ; "Data inputs, 4 bits wide
 clk pin ; "Clock input
 rst pin ; "Asynchronous reset
 cnten pin ; "Count enable
 ld pin ; "Load counter with input data value
 u_d pin ; "Up/Down selector: HIGH selects up

"Outputs
 q3..q0 pin istype ’reg’; "Counter outputs

"Sets
 data = [d3..d0]; "Data set
 count = [q3..q0]; "Counter set

"Mode equations
 MODE = [cnten,ld,u_d]; "Mode set composed of control pins.
 LOAD = (MODE == [X , 1, X]); "Various modes are defined by
 HOLD = (MODE == [0 , 0, X]); "values applied to control pins.
 UP = (MODE == [1 , 0, 1]); "Symbolic name may be defined as
 DOWN = (MODE == [1 , 0, 0]); "a set equated to a value.

Equations
 when LOAD then count := data "Load counter with data
 else when UP then count := count + 1 "Count up
 else when DOWN then count := count - 1 "Count down
 else when HOLD then count := count ; "Hold count

 count.clk = clk; "Counter clock input
 count.ar = rst; "Counter reset input

"Test_vectors edited...

End

Note: You can also see the advantages of set notation in the test vector section (which
has been edited in this manual, but can be seen in the actual .abl file). In the test
vectors, the input data is applied as a decimal value, and the output count is a decimal
value rather than a set of binary bits.

Figure 5-8
Source file: 4-bit Universal Counter

Source File Examples

5-12 ABEL-HDL Reference

Bidirectional Three-state Buffer

A four-bit bidirectional buffer with tristate outputs is presented here. The
design is implemented in an F153 FPLA with bidirectional inputs/outputs and
programmable output polarity. Simple Boolean equations are used to describe
the function.

Design Specification

Figure 5-9 shows a block diagram for this four-bit buffer. Signals A0-A3 and
B0-B3 function both as inputs and outputs, depending on the value on the
select lines, S0-S1. When the select value (the value on the select lines) is 1,
A0-A3 are enabled as outputs. When the select value is 2, B0-B3 are enabled as
outputs. (The choice of 1 and 2 for select values is arbitrary.) For any other
values of the select lines, both the A and B outputs are at high impedance.
Output polarity for this design is positive.

Design Method

A simplified block diagram for the buffer is shown in Figure 5-10. The A and
B inputs/outputs are grouped into two sets, A and B. The select lines are
grouped into the select set. Figure 5-11 shows the source file that describes the
design.

S1 S0

B3 B2 B1 B0 A2 A1 A0A3 0716-1

Figure 5-9
Block Diagram: Bidirectional Three-state Buffer

Source File Examples

ABEL-HDL Reference 5-13

High-impedance and don’t-care values are declared to simplify notation in the
source file. The equations section describes the full function of the design.
What appear to be unresolvable equations are written for A and B, with both
sets appearing as inputs and outputs. The enable equations, however, enable
only one set at a time as outputs; the other set functions as inputs to the buffer.

Test vectors are written to test the buffer when either set is selected as the
output set, and for the case when neither is selected. The test vectors are
written in terms of the previously declared sets so the element values do not
need to be listed separately.

Select

B A 0717-1

Figure 5-10
Simplified Block Diagram: Bidirectional Three-state Buffer

Source File Examples

5-14 ABEL-HDL Reference

module tsbuffer
title ’bidirectional three state buffer Brenda French & Mary Bailey Data I/O Corp’
 TSB1 device ’F153’;
 S1,S0 Pin 1,2; Select = [S1,S0];
 A3,A2,A1,A0 Pin 12,13,14,15; A = [A3,A2,A1,A0];
 B3,B2,B1,B0 Pin 16,17,18,19; B = [B3,B2,B1,B0];

 X,Z = .X., .Z.;

equations
 A = B;
 B = A;

 A.oe = (Select == 1);
 B.oe = (Select == 2);

test_vectors
 ([Select, A, B]-> [A, B])
 [0 , 0, 0]-> [Z, Z];
 [0 , 15, 15]-> [Z, Z];

 [1 , X, 5]-> [5, X];
 [1 , X, 10]-> [10, X];

 [2 , 5, X]-> [X, 5];
 [2 , 10, X]-> [X, 10];

 [3 , 0, 0]-> [Z, Z];
 [3 , 15, 15]-> [Z, Z];
end

Figure 5-11
Source File: Bidirectional Three-state Buffer

Source File Examples

ABEL-HDL Reference 5-15

4-Bit Comparator

This is a design for a 4-bit comparator that provides an output for "equal to,"
"less than," "not equal to,"and "greater than" (as well as intermediate outputs).
The design is implemented with high level equations.

Design Specification

The comparator, as shown in Figure 5-12, compares the values of two four-bit
inputs (A0-A3 and B0-B3) and determines whether A is equal to, not equal to,
less than, or greater than B. The result of the comparison is shown on the
output lines, EQ, GT, NE, and LT.

Design Method

Figure 5-13 and Figure 5-14 show the simplified block diagram and source file
listing for the comparator. The inputs A0-A3 and B0-B3 are grouped into the
sets A and B. YES and NO are defined as 1 and 0, to be used in the test vectors.

The equations section of the source file contains the following equations:

EQ = A == B;
NE = !(A == B);
GT = A > B;
LT = !((A > B) # (A == B));

EQ

A0

A1

A2

A3

B0

B1

B2

B3

GT

NE

LT
0740-2

Figure 5-12
Block Diagram: 4-bit Comparator

Source File Examples

5-16 ABEL-HDL Reference

You could also use the following equations for the design of this comparator.
However, many more product terms are used in the FPLA:

EQ = A == B;
NE = A != B;
GT = A > B;
LT = A < B;

The first set of equations takes advantage of product term sharing within the
target FPLA, while the latter set requires a different set of product terms for
each equation. For example, the equation

NE = !(A == B);

uses the same 16 product terms as the equation

EQ = A == B;

thereby reducing the number of product terms. In a similar manner, the
equation

LT = !((A > B) # (A == B));

uses the same product terms as equations

EQ = A == B;
GT = A > B;

whereas the equation

LT = A < B;

EQ

A

B

GT

NE

LT
0741-2

Figure 5-13
Simplified Block Diagram: 4-bit Comparator

Source File Examples

ABEL-HDL Reference 5-17

(in the second set of equations) requires the use of additional product terms.
Sharing product terms in devices that allow this type of design architecture
can serve to fit designs into smaller and less expensive logic devices.

module comp4a
title ’4-bit look-ahead comparator
Steve Weil & Gary Thomas Data I/O Corp.’

 comp4a device ’F153’;
 A3..A0 pin 1..4;
 A = [A3..A0];
 B3..B0 pin 5..8;
 B = [B3..B0];

 NE,EQ,GT,LT pin 16..19 istype ’com’;

 No,Yes = 0,1;

equations
 EQ = A == B;
 NE = !(A == B);
 GT = A > B;
 LT = !((A > B) # (A == B));

" test_vectors deleted...

end

Test Vectors

Three separate test vectors sections are written to test three of the four possible
conditions. (The fourth and untested condition of NOT EQUAL TO is simply
the inverse of EQUAL TO.) Each test vectors table includes a test vector
message that helps make report output from the compiler and the simulators
easier to read.

The three tested conditions are not mutually exclusive, so one or more of them
can be met by a given A and B. In the test vectors table, the constants YES and
NO (rather than 1 and 0) are used for for ease of reading. YES and NO are
declared in the declaration section of the source file.

Figure 5-14
Source File: 4-bit Comparator

Source File Examples

5-18 ABEL-HDL Reference

Truth Table Examples

Seven-segment Display Decoder

This display decoder decodes a four-bit binary number to display the decimal
equivalent on a seven-segment LED display. The design incorporates a truth
table.

Design Specification

Figure 5-15 shows a block diagram for the design of a seven-segment display
decoder and a drawing of the display with each of the seven segments labeled
to correspond to the decoder outputs. To light a segment, the corresponding
line must be driven low. Four input lines D0-D3 are decoded to drive the
correct output lines. The outputs are named a, b, c, d, e, f, and g corresponding
to the display segments. All outputs are active low. An enable, ena, is
provided. When ena is low, the decoder is enabled; when ena is high, all
outputs are driven to high impedance.

a

b

c

d

e

f

g

D0

D1

D2

D3

ena

a

g
bf

ce

d

0738-1

Figure 5-15
Block Diagram: Seven-segment Display Decoder

Source File Examples

ABEL-HDL Reference 5-19

Design Method

Figure 5-16 and Figure 5-17 show the simplified block diagram and the source
file for the ABEL-HDL implementation of the display decoder. The binary
inputs and the decoded outputs are grouped into the sets bcd and led. The
constants ON and OFF are declared so the design can be described in terms of
turning a segment on or off. To turn a segment on, the appropriate line must
be driven low, thus we declare ON as 0 and OFF as 1.

The design is described in two sections, an equations section and a truth table
section. The decoding function is described with a truth table that specifies the
outputs required for each combination of inputs. The truth table header
names the inputs and outputs. In this example, the inputs are contained in the
set named bcd and the outputs are in led. The body of the truth table defines
the input to output function.

Because the design decodes a number to a seven segment display, values for
bcd are expressed as decimal numbers, and values for led are expressed with
the constants ON and OFF that were defined in the declarations section of the
source file. This makes the truth table easy to read and understand; the
incoming value is a number and the outputs are on and off signals to the LED.

The input and output values could have just as easily been described in
another form. Take for example the line in the truth table:

5 -> [ON, OFF, ON , ON, OFF, ON, ON]

This could have been written in the equivalent form:

[0, 1, 0, 1] -> 36

ena

bcd led

0739-1

Figure 5-16
Simplified Block Diagram: Seven-segment Display Decoder

Source File Examples

5-20 ABEL-HDL Reference

In this second form, 5 was simply expressed as a set containing binary values,
and the LED set was converted to decimal. (Remember that ON was defined
as 0 and OFF was defined as 1.) Either form is supported, but the first is more
appropriate for this design. The first form can be read as, "the number five
turns on the first segment, turns off the second, . . ." whereas the second form
cannot be so easily translated into meaningful terms.

module bcd7
title ’seven segment display decoder 1 Aug 1990
Walter Bright Data I/O Corp Redmond WA’
" a
" --- BCD-to-seven-segment decoder similar to the 7449
" f| g |b
" --- segment identification
" e| d |c
" ---
 bcd7 device ’P16P8’;

 D3,D2,D1,D0,Ena pin 2,3,4,5,6;
 a,b,c,d,e,f,g pin 13,14,15,16,17,18,19 istype ’com’;

 bcd = [D3,D2,D1,D0];
 led = [a,b,c,d,e,f,g];

 ON,OFF = 0,1; " for common anode LEDs
 L,H,X,Z = 0,1,.X.,.Z.;

equations
 led.oe = !Ena;
@dcset
truth_table (bcd -> [a , b , c , d , e , f , g])
 0 -> [ON, ON, ON, ON, ON, ON, OFF];
 1 -> [OFF, ON, ON, OFF, OFF, OFF, OFF];
 2 -> [ON, ON, OFF, ON, ON, OFF, ON];
 3 -> [ON, ON, ON, ON, OFF, OFF, ON];
 4 -> [OFF, ON, ON, OFF, OFF, ON, ON];
 5 -> [ON, OFF, ON, ON, OFF, ON, ON];
 6 -> [ON, OFF, ON, ON, ON, ON, ON];
 7 -> [ON, ON, ON, OFF, OFF, OFF, OFF];
 8 -> [ON, ON, ON, ON, ON, ON, ON];
 9 -> [ON, ON, ON, ON, OFF, ON, ON];
" test_vectors edited
end

Test Vectors

The test vectors for this design test the decoder outputs for the ten valid
combinations of input bits. The enable is also tested by setting ena high for the
different combinations. All outputs should be at high impedance whenever
ena is high.

Figure 5-17
Source file: 4-bit Counter with 2-input Mux

Source File Examples

ABEL-HDL Reference 5-21

State Diagram Examples

Three-state Sequencer

The following design is a simple sequencer that demonstrates the use of
ABEL-HDL state diagrams. The design is implemented in a P16R4 device.
The number of State Diagram states that can be processed depends on the
number of transitions and the path of the transitions. For example, a 64-state
counter uses fewer terms (and smaller equations) than a 63-state counter. For
large counter designs, use the syntax CountA:= CountA + 1 to create a counter
rather than using a state machine. See also example COUNT116.abl for further
information on counter implementation.

Design Specification

Figure 5-18 shows the sequencer design with a state diagram that shows the
transitions and desired outputs. The state machine starts in state A and
remains in that state until the ’start’ input becomes high. It then sequences
from state A to state B, from state B to state C, and back to state A. It remains
in state A until the ’start’ input is high again. If the ’reset’ input is high, the
state machine returns to state A at the next clock cycle. If this reset to state A
occurs during state B, a ’halt’ synchronous output goes high, and remains high
until the machine is again started.

During states B and C, asynchronous outputs ’in_B’ and ’in_C’ go high to
indicate the current state. Activation of the ’hold’ input will cause the machine
to hold in state B or C until ’hold’ is no longer high, or ’reset’ goes high.

Design Method

The sequencer is described by using a STATE_DIAGRAM section in the source
file. Figure 5-19 shows the source file for the sequencer. In the source file, the
design is given a title, the device type is specified, and pin declarations are
made. Constants are declared to simplify the state diagram notation. The two
state registers are grouped into a set called ’sreg’ and the three states (A, B, and
C) are declared, with appropriate values specified for each.

The state values chosen for this design allow the use of register preload to
ensure that the machine starts in state A. For larger state machines with more
state bits, careful numbering of states can dramatically reduce the logic
required to implement the design. Using constant declarations to specify state
values saves time when you make changes to these values.

The state diagram begins with the STATE_DIAGRAM statement that names
the set of signals to use for the state register. In this example, ’sreg’ is the set of
signals to use.

Source File Examples

5-22 ABEL-HDL Reference

Within the STATE_DIAGRAM, IF-THEN-ELSE statements are used to indicate
the transitions between states and the input conditions that cause each
transition. In addition, equations are written in each state that indicate the
required outputs for each state or transition.

For example, state A reads:

State A:
 in = 0;
 in_C = 0;
 if (start & !reset) then B with
halt := 0;
 else A with halt := halt;

This means that if the machine is in state A, and start is high but reset is low, it
advances to state B. In any other input condition, it remains in state A.

The equations for in_B and in_C indicate those outputs should remain low
while the machine is in state A. The equations for halt, specified with the with
keyword, indicate that halt should go low if the machine transitions to state B,
but should remain at its previous value if the machine stays in state A.

A

default

C
in_B = 0
in_C = 1

hold & !reset

default

hold & !resetreset

default

B
in_B = 1
in_C = 0

with halt: = 0with halt: = 0

with halt: = 1

with halt: = 0

with halt: = 0

start & !reset
with halt: = 0

with halt: = 0

0718-2

Figure 5-18
State Diagram: Three-state Sequencer

Source File Examples

ABEL-HDL Reference 5-23

Test Vectors

The specification of the test vectors for this design is similar to other
synchronous designs. The first vector is a preload vector, to put the machine
into a known state (state A), and the following vectors exercise the functions of
the machine. The A, B, and C constants are used in the vectors to indicate the
value of the current state, improving the readability of the vectors.

module sequence
title ’State machine example D. B. Pellerin Data I/O Corp’;

 sequence device ’p16r4’;

 q1,q0 pin 14,15 istype ’reg,invert’;
 clock,enab,start,hold,reset pin 1,11,4,2,3;
 halt pin 17;
 in_B,in_C pin 12,13;
 sreg = [q1,q0];

 "State Values...
 A = 0; B = 1; C = 2;

equations
 [q1,q0,halt].clk = clock;
 [q1,q0,halt].oe = !enab;

state_diagram sreg;
 State A: " Hold in state A until start is active.
 in_B = 0;
 in_C = 0;
 IF (start & !reset) THEN B WITH halt := 0;
 ELSE A WITH halt := halt.fb;

 State B: " Advance to state C unless reset is active
 in_B = 1; " or hold is active. Turn on halt indicator
 in_C = 0; " if reset.
 IF (reset) THEN A WITH halt := 1;
 ELSE IF (hold) THEN B WITH halt := 0;
 ELSE C WITH halt := 0;

 State C: " Go back to A unless hold is active
 in_B = 0; " Reset overrides hold.
 in_C = 1;
 IF (hold & !reset) THEN C WITH halt := 0;
 ELSE A WITH halt := 0;

" test_vectors edited...
end

Figure 5-19
Source File: Three-state Sequencer

Source File Examples

5-24 ABEL-HDL Reference

Combined Logic Descriptions
This section contains an advanced logic design and builds on examples and
concepts presented in the earlier sections of this manual. This design, a
blackjack machine, is the combination of more than one basic logic design.
Design specification, methods, and complete source files are given for all parts
of the blackjack machine example, which contains the following logic designs:

♦ Multiplexer
♦ 5-bit adder
♦ Binary to BCD converter
♦ State machine

This example is a classic blackjack machine based on C.R. Clare’s design in
Designing Logic Systems Using State Machines (McGraw Hill, 1972). The
blackjack machine plays the dealer’s hand, using typical dealer strategies to
decide, after each round of play, whether to draw another card or to stand.

The blackjack machine consists of these functions: a card reader that reads each
card as it is drawn, control logic that tells it how to play each hand (based on
the total point value of the cards currently held), and display logic that
displays scores and status on the machine’s four LEDs. For this example, we
are assuming that the two digital display devices used to display the score
have built-in seven-segment decoders.

To operate the machine, insert the dealer’s card into the card reader. The
machine reads the value and, in the case of later card draws, adds it to the
values of previously read cards for that hand. (Face cards are valued at 10
points, non-face cards are worth their face value, and aces are counted as
either 1 or 11, whichever count yields the best hand.) If the point total is 16 or
less, the GT16 line will be asserted (active low) and the Hit LED will light up.
This indicates that the dealer should draw another card. If the point total is
greater than 16 but less than 22, no LEDs will light up (indicating that the
dealer should draw no new cards). If the point total is 22 or higher, LT22 will
be asserted (active low) and the Bust LED will light (indicating that the dealer
has lost the hand).

As Figure 5-20 shows, the blackjack machine is implemented in three PLDs:

1. A multiplexer-adder-comparator, which adds the value of the newly
drawn card to the existing hand (and indicates an ace to the state machine);

2. A binary to binary-coded-decimal (BCD) converter, which takes in the
five-bit binary score and converts it to two-digits of BCD for the digital
display.

Source File Examples

ABEL-HDL Reference 5-25

3. The blackjack controller (a state machine that contains the game logic).
This logic includes instructions that determine when to add a card value,
when to count an ace as 1, and when to count an ace as 11.

Circuits that are a straightforward function of a set of inputs and outputs are
often most easily expressed in equations; the adder is such a circuit. The PLD
for the adder function (identified as MUXADD in Figure 5-20) includes three
elements: a multiplexer, the adder itself, and a comparator.

23
22
21
20
19
18
17
16
15
14
13

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

19
18
17
16
15
14
13
12
11

C1
C2
C3
C4

S0
S1
S2
S3
S4

isAce

V0
V1
V2
V3

1
2
3
4
5
6
7
8
9

19
18
17
16
15
14
13
12
11

D0
D1
D2
D3
D4
D5
GT16
LT22

Ace
Q0
Q1
Q2
Sub10
Add10
AddClk

0
1
2
3

0
1
2
3

+5V

BUST HIT

BJACK

P16R6Clk

Restart

CardIn
CardOut

BINBCD

P16L8

MUXADD

P22V10

0775-1

Figure 5-20
Schematic of a Blackjack Machine Implemented in Three PLDs

Source File Examples

5-26 ABEL-HDL Reference

The multiplexer selects either the value of the newly dealt card or one of the
two fixed values used for the ace (ADD10 or SUB10). The adder adds the
value selected by the multiplexer to the previous score when triggered by the
clock signal, ADDCLK. The comparator detects when an ace is present and
passes this information on to the blackjack controller, BJACK.

Outputs that do not follow a specific pattern are most easily expressed as truth
tables. This is the case with the binary-to-BCD converter that is identified in
the schematic (Figure 5-20) as BINBCD. This PLD converts five bits of binary
input to BCD output for two digital display elements.

The following text describes the internal logic design necessary to keep the
card count, to control the play sequence, and to show the count on the digital
display (or the state on the Hit and Bust LEDs). Neither the card reader nor
the physical design is discussed here. Assume that the card reader provides a
binary value that is representative of the card read.

The design has eight inputs (four of which are the binary encoded card values,
V0-V3). The remaining four inputs are signals that indicate the following:

♦ Restart (the machine is to be restarted)
♦ CardIn (a card is in the reader)
♦ CardOut (no card is in the reader)
♦ CLK (a clock signal to synchronize the design to the card reader)

CardIn, CardOut, and Clk are provided by the card reader. Restart is
provided by a switch on the exterior of the machine.

Device Function in the Blackjack Machine

P22V10 Multiplexer/Adder/Comparator
P16L8 Binary-BCD converter
P16R6 State machine

Design Specification — MUXADD

MUXADD consists of an input multiplexer, an adder, and a comparator. The
multiplexer determines what value is added to the current score (by the adder)
The added value consists of the contents of the external card reader (V0-V1
declared as Card), a numeric value of +10, or a numeric value of -10.

The inputs Add10 and Sub10 from the controller (state machine) BJACK
determine which of the three values the multiplexer selects for application to
the adder. Card is applied to the adder when Add10 and Sub10 are active
high, as generated by the BJACK controller. When Add10 becomes active low,
10 is added to the current score (to count an ace as 11 instead of 1), and when
Sub10 is active low, -10 is added to the current score (to count an ace as 1
instead of 11).

Source File Examples

ABEL-HDL Reference 5-27

The adder provides an output named Score (S0-S4) which is the sum of the
current adder contents and the value selected by the input multiplexer (the
card reader contents, +10, or -10). The comparator monitors the contents of the
external card reader (Card) and generates an output, is_Ace, to the BJACK
controller that signifies that an ace is present in the card reader.

Design Method — MUXADD

MUXADD is implemented in a P22V10, and consists of a three-input
multiplexer, a five-bit ripple adder, and a five-bit comparator. These circuit
elements are defined in the equations shown in Figure 5-21. For the
multiplexer inputs, a set named Card defines inputs V0 through V4 as the
value of the card reader, while inputs Add10 and Sub10 are used directly in
the following equations to define the multiplexer. The multiplexer output to
the adder is named Data and is defined by the equations

Data = Add10 & Sub10 & Card
 # !Add10 & Sub10 & ten
 # Add10 & !Sub10 & minus_ten;

The adder (MUXADD) contained in the P22V10 is a five-bit binary ripple
adder that adds the current input from the multiplexer to the current score,
with carry. The adder is clocked by a signal (AddClk) from the BJACK
controller and is described with the following equations:

Score := Data $ Score.FB $ CarryIn;
CarryOut = Data & Score.FB # (Data # Score.FB) & CarryIn;
Reset = !Clr;

In the above equations, Score is the sum of Data (the card reader output, value
of ten, or value of minus ten), Score (the current or last calculated score), and
CarryIn (the shifted value of CarryOut, described below). The new value of
Score appears at the S0 through S4 outputs of MUXADD at the time of the
AddClk pulse generated by the BJACK controller (state machine).

Before the occurrence of the AddClk clock pulse, an intermediate adder output
appears at combinatorial outputs of the P22V10, labeled C0 through C4 and
defined as the set named CarryOut (shown below). A second set named
CarryIn defines the same combinatorial outputs as CarryOut, but the outputs
are shifted one bit to the left, as shown below.

CarryIn = [C4..C1, 0];
CarryOut = [X,C4..C1];

The set declarations define CarryIn as CarryOut with the required shift to the
left for application back to adder input. At the time of the AddClk pulse from
the BJACK controller, CarryIn is added to Score and Data by an exclusive-or
operation.

Source File Examples

5-28 ABEL-HDL Reference

The comparator portion of MUXADD is defined with

is_Ace = Card == 1;

which provides an input to the BJACK controller whenever the value provided
by the card reader is 1.

Test Vectors — MUXADD

The test vectors shown in Figure 5-21 verify operation of MUXADD by first
clearing the adder (so Score is zero), then adding card reader values 7 and 10.
The test vectors then input an ace (1) from the card reader (Card) to produce a
Score of 1 and pull the is_Ace output high. Subsequent vectors verify the -10
function of the input multiplexer and adder. The trace statement lets you
observe the carry signals in simulation.

module MuxAdd
title ’5-bit ripple adder with input multiplex Michael Holley Data I/O Corp.’

 muxadd device ’P22V10’;

 AddClk,Clr,Add10,Sub10,is_Ace pin 1,9,8,7,14;
 V4..V0 pin 6..2;
 S4..S0 pin 15..19;
 C4..C1 pin 20..23;

 X,C,L,H = .X., .C., 0, 1;

 Card = [V4..V0];
 Score = [S4..S0];
 CarryIn = [C4..C1, 0];
 CarryOut = [X,C4..C1];
 ten = [0, 1, 0, 1, 0];
 minus_ten = [1, 0, 1, 1, 0];

 S4..S0 istype ’reg’ ;

" Input Multiplexer
 Data = Add10 & Sub10 & Card
 # !Add10 & Sub10 & ten
 # Add10 & !Sub10 & minus_ten;

equations
 Score := Data $ Score.FB $ CarryIn;
 CarryOut = Data & Score.FB # (Data # Score.FB) & CarryIn;
 Score.ar = !(Clr # Clr);
 Score.clk = AddClk;
 is_Ace = Card == 1;

" test_vectors edited...
end MuxAdd

Figure 5-21
Source File: Multiplexer/Adder/Comparator

Source File Examples

ABEL-HDL Reference 5-29

Design Specification — BINBCD

To display the Score, appearing at the output of MUXADD, a binary to bcd
converter is implemented in a P16L8. It is the function of the converter to
accept the four lines of binary data generated by MUXADD and provide two
sets of binary coded decimal outputs for two bcd display devices; one to
display the units of the current score, and the other to display the tens. The
four-bit output bcd1 (D0-D3) contains the units of the current score, and is
connected to the high-order display digit. The two-bit output bcd2 (D4 and
D5) contains the tens, and is fed to the low-order display digit.

BINBCD also provides a pair of outputs to light the Bust and Hit LEDs. Bust is
lit whenever Score is 22 or greater; while Hit is lit whenever Score is 16 or less.

Design Method — BINBCD

The design of BINBCD is shown in the source file of Figure 5-22. The design of
the converter is easily expressed with a truth table that lists the value of Score
(inputs S0 through S4 are declared as Score) for values of bcd1 and bcd2. bcd1
and bcd2 are sets that define the outputs that are fed to the two digital display
devices. The truth table lists Score values up to decimal 31.

The truth table represents a method of expressing the design "manually." You
could use a macro to create a truth table in the following manner:

clear(binary);
@repeat 32 { binary - [binary/10,binary%10]; inc(binary);}

As indicated in Figure 5-22 (and described in "Test Vectors — BINBCD"), this
macro is used to generate the test vectors for the converter. The generated *.lst
file shows the truth table created from the macro.

The BINBCD design also provides the outputs LT22 and GT16 to control the
Bust and Hit LEDs. A pair of equations generate an active-high LT22 signal to
turn off the Bust LED when Score is less than 22, and an active-high GT16
signal to turn off the Hit LED when Score is greater than 16.

Test Vectors — BINBCD

The test vectors shown in Figure 5-22 verify operation of the LT22 and GT16
outputs of the converter by assigning various values for Score and checking for
the corresponding outputs.

The test vectors for the binary to bcd converter are defined by means of the
following macro:

test_vectors (score - [bcd2,bcd1])
 clear(binary);
 @repeat 32 { binary - [binary/10,binary%10]; inc(binary);}

Source File Examples

5-30 ABEL-HDL Reference

This macro generates a test vector with the variable binary set to 0 by the
macro (a) {@const ?a=0}; (in the binbcd.abl source file shown in Figure 5-22),
followed by 31 vectors provided by the @repeat directive. The 31 vectors are
generated by incrementing the value of the variable binary by a factor of 1 for
each vector. Refer to the inc macro (a) {@const ?a=?a+1;}; line in Figure 5-22.
On the output side of the test vectors, division is used to create the output for
bcd2 (tens display digit), while the remainder (modulus) operator is used to
create the output for bcd1 (units display digit).

module BINBCD
title ’comparator and binary to bcd decoder for Blackjack Machine
Michael Holley Data I/O Corp ’

" The 5 -bit binary (0 - 31) score is converted into two BCD outputs.
" The integer division ’/’ and the modulus operator ’%’ are used to
" extract the individual digits from the two digit score.
" ’Score % 10’ will yield the ’units’ and
" ’Score / 10’ will yield the ’tens’
"
" The ’GT16’ and ’LT22’ outputs are for the state machine controller.

 binbcd device ’P16L8’;

 S4..S0 pin 5..1;
 score = [S4..S0];
 LT22,GT16 pin 12,13 istype ’com’;

 D5,D4 pin 14,15 istype ’com’;
 bcd2 = [D5,D4];
 D3..D0 pin 16..19 istype ’com’;
 bcd1 = [D3..D0];

" Digit separation macros
 binary = 0; "scratch variable
 clear macro (a) {@const ?a=0};
 inc macro (a) {@const ?a=?a+1;};

equations
 LT22 = (score < 22); "Bust
 GT16 = (score > 16); "Hit / Stand

" test_vectors edited...

Figure 5-22
Source file: 4-bit Counter with 2-input Mux

Source File Examples

ABEL-HDL Reference 5-31

truth_table (score -> [bcd2,bcd1])
 0 -> [0 , 0];
 1 -> [0 , 1];
 2 -> [0 , 2];
 3 -> [0 , 3];
 4 -> [0 , 4];
 5 -> [0 , 5];
 6 -> [0 , 6];
 7 -> [0 , 7];
 8 -> [0 , 8];
 9 -> [0 , 9];
 10 -> [1 , 0];
 11 -> [1 , 1];
 12 -> [1 , 2];
 13 -> [1 , 3];
 14 -> [1 , 4];
 15 -> [1 , 5];
 16 -> [1 , 6];
 17 -> [1 , 7];
 18 -> [1 , 8];
 19 -> [1 , 9];
 20 -> [2 , 0];
 21 -> [2 , 1];
 22 -> [2 , 2];
 23 -> [2 , 3];
 24 -> [2 , 4];
 25 -> [2 , 5];
 26 -> [2 , 6];
 27 -> [2 , 7];
 28 -> [2 , 8];
 29 -> [2 , 9];
 30 -> [3 , 0];
 31 -> [3 , 1];

" This truth table could be replaced with the following macro.
" clear(binary);
" @repeat 32 {
" binary -> [binary/10,binary%10]; inc(binary);}
"
" The test vectors will demonstrate the use of the macro.
test_vectors (score -> [bcd2,bcd1])
 clear(binary);
 @repeat 32 {
 binary -> [binary/10,binary%10]; inc(binary);}
end

Design Specification — BJACK

BJACK, the blackjack controller, is technically a state machine (a circuit capable
of storing an internal state reflecting prior events). State machines use
sequential logic, branching to new states and generating outputs on the basis
of both the stored states and external inputs.

Source File Examples

5-32 ABEL-HDL Reference

In the case of the controller, the state machine stores states that reflect the
following blackjack machine conditions:

♦ The value of Score in one of the decimal value ranges (0 to 16, 17 to 21, or
22+).

♦ The status of the card reader (card in or card out).
♦ The presence of an ace in the card reader.

On the basis of these stored states (and input from each new card), the
controller decides whether or not a +10 or -10 value is sent to the adder.

Design Method — BJACK

Developing a bubble diagram is the first step in describing a state machine.
Figure 5-23 shows a bubble diagram (pictorial state diagram) for the controller.
This bubble diagram indicates state transitions and the conditions that cause
those transitions. Transitions are represented by arrows and the conditions
causing the transitions are written alongside the arrow.

You must express the bubble diagram in the form shown in the state_diagram
in Figure 5-24. There is a one-to-one correlation between the bubble diagram
and the state diagram described in the source file (Figure 5-24). The table
below describes the state identifiers (state machine states) illustrated in the
bubble diagram and listed in the source file.

State
Identifier Description

Clear Clear the state machine, adder, and displays.

ShowHit Indicate that another card is needed. Hit indicator is lit.

AddCard Add the value at the adder input to the current count.

Add10 Add the fixed value 10 to the current count, effectively
giving an ace a value of 11.

Wait Wait until a card is taken out of the reader.

Test17 Test the current count for a value less than 17.

Test22 Test the current count for a value less than 22.

Sub10 Add the fixed value -10 to the current count, effectively
subtracting 10 and restoring an ace to 1.

ShowBust Indicate that no more cards are needed. Bust indicator is
lit.

ShowStand Indicate that no more cards are needed. Neither Hit nor
Bust indicators are lit.

Source File Examples

ABEL-HDL Reference 5-33

Clear

ShowHit

AddCard

Wait

Test17

Test22

ShowBust

Sub10

Add10

ShowStand

Restart = Low

CardIn = High

CardOut = High

Restart = High

CardIn = Low

CardOut = Low

GT16

isAce & !Ace

! (isAce & !Ace)

! LT22 & Ace

! LT22 & !AceLT22

! GT16

Restart = Low
Or Power Up

0742-1

Figure 5-23
Pictorial State Diagram: Blackjack Machine

Source File Examples

5-34 ABEL-HDL Reference

Note that in Figure 5-24, each of the state identifiers (for example, ShowHit) is
defined as sets having binary values. These values were chosen to minimize
the number of product terms used in the P16R6.

Operation of the state machine proceeds as follows if no aces are drawn:

♦ If a card is needed from the reader, the state machine goes to state
ShowHit.

♦ When CardIn goes low, meaning that a card has been read, a transition to
state AddCard is made. The card value is added to the current score.

♦ The machine goes to Wait state until the card is withdrawn from the
reader.

♦ The machine goes to Test17 state.
♦ If the score is less than 17, another card is drawn.
♦ If the score is greater than or equal to 17, the machine goes to state Test22.
♦ If the score is less than 22, the machine goes to the ShowStand state.
♦ If the score is 22 or greater, a transition is made to the ShowBust state.
♦ In either ShowStand or ShowBust state, a transition is made to Clear (to

clear the state register and adder) when Restart goes low.
♦ When Restart goes back to high, the state machine returns to ShowHit and

the cycle begins again.

Operation of the state machine when an ace is drawn is essentially the same.
A card is drawn and the score is added. If the card is an ace and no ace has
been drawn previously, the state machine goes to state Add10, and ten is
added to the count (in effect making the ace an 11). Transitions to and from
Test17 and Test22 proceed as before. However, if the score exceeds 21 and an
ace has been set to 11, the state machine goes to state Sub10, 10 is subtracted
from the score, and the state machine goes to state Test17.

Test Vectors — BJACK

Figure 5-24 shows three sets of test vectors; each set represents a different
"hand" of play (as described above the set of vectors) and tests the different
functions of the design. The Restart function is used to set the design to a
known state between each hand, and the state identifiers are used instead of
the binary values (which they represent).

Source File Examples

ABEL-HDL Reference 5-35

module bjack
title ’BlackJack state machine controller
Michael Holley Data I/O Corp.’

 bjack device ’P16R6’;

"Inputs
 Clk,ClkIN pin 1,2; "System clock
 GT16,LT22 pin 3,4; "Score less than 17 and 22
 is_Ace pin 5; "Card is ace
 Restart pin 6; "Restart game
 CardIn,CardOut pin 7,8; "Card present switches
 Ena pin 11;

 Sensor = [CardIn,CardOut];
 _In = [0 , 1];
 InOut = [1 , 1];
 Out = [1 , 0];

"Outputs
 AddClk pin 12 istype ’com’; "Adder clock
 Add10 pin 13 istype ’reg_D,invert’; "Input Mux control
 Sub10 pin 14 istype ’reg_D,invert’; "Input Mux control
 Q2,Q1,Q0 pin 15,16,17 istype ’reg_D,invert’;
 Ace pin 18 istype ’red_D,invert’; "Ace Memory

 High,Low = 1,0;
 H,L,C,X = 1,0,.C.,.X.; "test vector characters

 Qstate = [Add10,Sub10,Q2,Q1,Q0];
 Clear = [1 , 1 , 1, 1, 1]; "31
 ShowHit = [1 , 1 , 1, 1, 0]; "30
 AddCard = [1 , 1 , 0, 0, 0]; "24
 Add_10 = [0 , 1 , 0, 0, 0]; "16
 Wait = [1 , 1 , 0, 0, 1]; "25
 Test_17 = [1 , 1 , 0, 1, 0]; "26
 Test_22 = [1 , 1 , 0, 1, 1]; "27
 ShowStand = [1 , 1 , 1, 0, 0]; "28
 ShowBust = [1 , 1 , 1, 0, 1]; "29
 Sub_10 = [1 , 0 , 0, 0, 1]; "17
 Zero = [0 , 0 , 0, 0, 0]; "0

equations
 [Qstate,Ace].c = Clk;
 [Qstate,Ace].oe = !Ena;

Figure 5-24
Source File: State Machine (Controller)

Source File Examples

5-36 ABEL-HDL Reference

@dcset
state_diagram Qstate

 State Clear: AddClk = !ClkIN;
 Ace := Low;
 if (Restart==Low) then Clear else ShowHit;

 State ShowHit: AddClk = Low;
 Ace := Ace;
 if (CardIn==Low) then AddCard else ShowHit;

 State AddCard: AddClk = !ClkIN;
 Ace := Ace;
 if (is_Ace & !Ace) then Add_10 else Wait;

 State Add_10: AddClk = !ClkIN;
 Ace := High;
 goto Wait;

 State Wait: AddClk = Low;
 Ace := Ace;
 if (CardOut==Low) then Test_17 else Wait;

 State Test_17: AddClk = Low;
 Ace := Ace;
 if !GT16 then ShowHit else Test_22;

 State Test_22: AddClk = Low;
 Ace := Ace;
 case LT22 : ShowStand;
 !LT22 & !Ace : ShowBust;
 !LT22 & Ace : Sub_10;
 endcase;

 State Sub_10: AddClk = !ClkIN;
 Ace := Low;
 goto Test_17;

 State ShowBust: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowBust;

 State ShowStand: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowStand;

 State Zero: goto Clear;

@page
" test_vectors edited...

Source File Examples

ABEL-HDL Reference 5-37

Hierarchy Examples
The following ABEL-HDL source files show how to combine the three
blackjack examples into one top-level source for implementation in a larger
device.

The three lower-level modules are unchanged from the non-hierarchical
versions and still include their original device declarations. The device
declarations in this example provide the ABEL-HDL compiler with
information about device-specific requirements, such as implied logic and
default signal attributes.

Note: To process this design, you must enable the "compatible" and "implied"
properties of the Compile Logic process.

The test vectors have been removed, since this design is not targeted to a PLD.

module bjacktop;
title ’instantiating bjack, muxadd, binbcd; By Kim-Fu Lim, Data I/O Corp.’

// Sub-module prototypes...
 bjack interface (Clk,ClkIN,GT16,LT22,is_Ace,Restart,CardIn,CardOut,Ena
 :> AddClk, Add10,Sub10,Q2..Q0, Ace);

 muxadd interface (V0..V4,AddClk,Clr,Add10,Sub10 :> S0..S4 -> is_Ace);

 binbcd interface (S0..S4, LT22, GT16 -> D0..D5);

// Sub-module instantiations...
 BJ functional_block bjack;
 MA functional_block muxadd;
 BB functional_block binbcd;

// Top level inputs...
 Clk pin; "System clock -- bjack
 CardIn,CardOut pin; "Card present switches -- bjack
 Restart pin; "Restart game -- bjack
 V4..V0 pin; " -- muxadd
 Ace pin;
 Card = [V4..V0];
 Sensor = [CardIn,CardOut];
 _In = [0 , 1];
 InOut = [1 , 1];
 Out = [1 , 0];

// Top level outputs...

 D5..D0 pin istype ’com’; " -- binbcd
 BCD1 = [D3..D0];
 BCD2 = [D5,D4];

Source File Examples

5-38 ABEL-HDL Reference

// Top level pins (for observing state machine)...
 Q2..Q0 pin istype ’com’;
 Add10,Sub10 pin istype ’com’;
 AddClk node istype ’com,keep’;

 Qstate = [Add10,Sub10,Q2,Q1,Q0];
 Clear = [1 , 1 , 1, 1, 1]; "31
 ShowHit = [1 , 1 , 1, 1, 0]; "30
 AddCard = [1 , 1 , 0, 0, 0]; "24
 Add_10 = [0 , 1 , 0, 0, 0]; "16
 Wait = [1 , 1 , 0, 0, 1]; "25
 Test_17 = [1 , 1 , 0, 1, 0]; "26
 Test_22 = [1 , 1 , 0, 1, 1]; "27
 ShowStand = [1 , 1 , 1, 0, 0]; "28
 ShowBust = [1 , 1 , 1, 0, 1]; "29
 Sub_10 = [1 , 0 , 0, 0, 1]; "17
 Zero = [0 , 0 , 0, 0, 0]; "0

 Hit = !BB.GT16;
 Bust = !BB.LT22;

 C,X,L,H = .c.,.x.,0,1;

equations

// Describe the input connections...
 MA.[V4,V3,V2,V1,V0] = Card;
 MA.Clr = Restart;
 BJ.Clk = Clk;
 BJ.ClkIN = Clk;
 BJ.Restart = Restart;
 BJ.CardIn = CardIn;
 BJ.CardOut = CardOut;
 BJ.Ena = 0;

// Describe the output connections...
 [D5,D4,D3,D2,D1,D0] = BB.[D5,D4,D3,D2,D1,D0];
 Add10 = BJ.Add10;
 Sub10 = BJ.Sub10;
 Q0 = BJ.Q0;
 Q1 = BJ.Q1;
 Q2 = BJ.Q2;
 Ace = BJ.Ace;

// Describe inter-module connections...
 MA.Sub10 = BJ.Sub10;
 MA.Add10 = BJ.Add10;
 AddClk = BJ.AddClk;
 MA.AddClk = AddClk;
 BB.[S0,S1,S2,S3,S4] = MA.[S0,S1,S2,S3,S4];
 BJ.is_Ace = MA.is_Ace;
 BJ.GT16 = BB.GT16;
 BJ.LT22 = BB.LT22;

end;

Source File Examples

ABEL-HDL Reference 5-39

module bjack ;
title ’BlackJack state machine controller
Michael Holley Data I/O Corp. 9 Aug 1990’

 bjack device ’P16R6’;

"Inputs
 Clk,ClkIN pin 1,2; "System clock
 GT16,LT22 pin 3,4; "Score less than 17 and 22
 is_Ace pin 5; "Card is ace
 Restart pin 6; "Restart game
 CardIn,CardOut pin 7,8; "Card present switches
 Ena pin 11;

 Sensor = [CardIn,CardOut];
 _In = [0 , 1];
 InOut = [1 , 1];
 Out = [1 , 0];

"Outputs
 AddClk pin 12; "Adder clock
 Add10 pin 13; "Input Mux control
 Sub10 pin 14; "Input Mux control
 Q2,Q1,Q0 pin 15,16,17;
 Ace pin 18; "Ace Memory

 High,Low = 1,0;
 H,L,C,X = 1,0,.C.,.X.; "test vector charactors

 Qstate = [Add10,Sub10,Q2,Q1,Q0];
 Clear = [1 , 1 , 1, 1, 1]; "31
 ShowHit = [1 , 1 , 1, 1, 0]; "30
 AddCard = [1 , 1 , 0, 0, 0]; "24
 Add_10 = [0 , 1 , 0, 0, 0]; "16
 Wait = [1 , 1 , 0, 0, 1]; "25
 Test_17 = [1 , 1 , 0, 1, 0]; "26
 Test_22 = [1 , 1 , 0, 1, 1]; "27
 ShowStand = [1 , 1 , 1, 0, 0]; "28
 ShowBust = [1 , 1 , 1, 0, 1]; "29
 Sub_10 = [1 , 0 , 0, 0, 1]; "17
 Zero = [0 , 0 , 0, 0, 0]; "0

Source File Examples

5-40 ABEL-HDL Reference

equations
 [Qstate,Ace].c = Clk;
 [Qstate,Ace].oe = !Ena;

@dcset
state_diagram Qstate

 State Clear: AddClk = !ClkIN;
 Ace := Low;
 if (Restart==Low) then Clear else ShowHit;

 State ShowHit: AddClk = Low;
 Ace := Ace;
 if (CardIn==Low) then AddCard else ShowHit;

 State AddCard: AddClk = !ClkIN;
 Ace := Ace;
 if (is_Ace & !Ace) then Add_10 else Wait;

 State Add_10: AddClk = !ClkIN;
 Ace := High;
 goto Wait;

 State Wait: AddClk = Low;
 Ace := Ace;
 if (CardOut==Low) then Test_17 else Wait;

 State Test_17: AddClk = Low;
 Ace := Ace;
 if !GT16 then ShowHit else Test_22;

 State Test_22: AddClk = Low;
 Ace := Ace;
 case LT22 : ShowStand;
 !LT22 & !Ace : ShowBust;
 !LT22 & Ace : Sub_10;
 endcase;

 State Sub_10: AddClk = !ClkIN;
 Ace := Low;
 goto Test_17;

 State ShowBust: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowBust;

 State ShowStand: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowStand;

 State Zero: goto Clear;

end

Source File Examples

ABEL-HDL Reference 5-41

module muxadd ;
title ’5-bit ripple adder with input multiplex
Michael Holley Data I/O Corp. 26 Mar 1990’

 muxadd device ’P22V10’;

 AddClk,Clr,Add10,Sub10,is_Ace pin 1, 9, 8, 7,14;
 V4,V3,V2,V1,V0 pin 6, 5, 4, 3, 2;
 S4,S3,S2,S1,S0 pin 15,16,17,18,19;
 C4,C3,C2,C1 pin 20,21,22,23;

 X,C,L,H = .X., .C., 0, 1;

 Card = [V4,V3,V2,V1,V0];
 Score = [S4,S3,S2,S1,S0];
 CarryIn = [C4,C3,C2,C1, 0];
 CarryOut = [X,C4,C3,C2,C1];
 ten = [0, 1, 0, 1, 0];
 minus_ten = [1, 0, 1, 1, 0];

 S4,S3,S2,S1,S0 istype ’reg’ ;

" Input Multiplexer
 Data = Add10 & Sub10 & Card
 # !Add10 & Sub10 & ten
 # Add10 & !Sub10 & minus_ten;

equations
 Score := Data $ Score $ CarryIn;

 CarryOut = Data & Score # (Data # Score) & CarryIn;

 Score.ar = !Clr;

 Score.c = AddClk;

 is_Ace = Card == 1;

end;

Source File Examples

5-42 ABEL-HDL Reference

module binbcd;
title ’comparator and binary to bcd decoder for Blackjack Machine
Michael Holley Data I/O Corp 12 Oct 1992’

" The 5 -bit binary (0 - 31) score is converted into two BCD outputs.
" The interger division ’/’ and the modulus operator ’%’ are used to
" extract the individual digits from the two digit score.
" ’Score % 10’ will yield the ’units’ and
" ’Score / 10’ will yield the ’tens’
"
" The ’GT16’ and ’LT22’ outputs are for the state machine controller.

 binbcd device ’P16L8’;

 S4,S3,S2,S1,S0 pin 5,4,3,2,1;
 score = [S4,S3,S2,S1,S0];

 LT22,GT16 pin 12,13 istype ’com’;

 D5,D4 pin 14,15 istype ’com’;
 bcd2 = [D5,D4];

 D3,D2,D1,D0 pin 16,17,18,19 istype ’com’;
 bcd1 = [D3,D2,D1,D0];

" Digit separation macros
 binary = 0; "scratch variable
 clear macro (a) {@const ?a=0};
 inc macro (a) {@const ?a=?a+1;};

equations
 LT22 = (score < 22); "Bust
 GT16 = (score > 16); "Hit / Stand

test_vectors (score -> [GT16,LT22])
 1 -> [0 , 1];
 6 -> [0 , 1];
 8 -> [0 , 1];
 16 -> [0 , 1];
 17 -> [1 , 1];
 18 -> [1 , 1];
 20 -> [1 , 1];
 21 -> [1 , 1];
 22 -> [1 , 0];
 23 -> [1 , 0];
 24 -> [1 , 0];

Source File Examples

ABEL-HDL Reference 5-43

truth_table (score -> [bcd2,bcd1])
 0 -> [0 , 0];
 1 -> [0 , 1];
 2 -> [0 , 2];
 3 -> [0 , 3];
 4 -> [0 , 4];
 5 -> [0 , 5];
 6 -> [0 , 6];
 7 -> [0 , 7];
 8 -> [0 , 8];
 9 -> [0 , 9];
 10 -> [1 , 0];
 11 -> [1 , 1];
 12 -> [1 , 2];
 13 -> [1 , 3];
 14 -> [1 , 4];
 15 -> [1 , 5];
 16 -> [1 , 6];
 17 -> [1 , 7];
 18 -> [1 , 8];
 19 -> [1 , 9];
 20 -> [2 , 0];
 21 -> [2 , 1];
 22 -> [2 , 2];
 23 -> [2 , 3];
 24 -> [2 , 4];
 25 -> [2 , 5];
 26 -> [2 , 6];
 27 -> [2 , 7];
 28 -> [2 , 8];
 29 -> [2 , 9];
 30 -> [3 , 0];
 31 -> [3 , 1];

" This truth table could be replaced with the following macro.
" clear(binary);
" @repeat 32 {
" binary -> [binary/10,binary%10]; inc(binary);}
"
"
" The test vectors will demonstrate the use of the macro.
"
test_vectors (score -> [bcd2,bcd1])
 clear(binary);
 @repeat 32 {
 binary -> [binary/10,binary%10]; inc(binary);}
end

Source File Examples

5-44 ABEL-HDL Reference

ABEL and Synario Projects
The following ABEL-HDL source, p6top.abl, (Figure 5-25) instantiates variable
instances of prep6.abl (Figure 5-26).

module p6top (rep)
title ’Variable instances of PREP6 described in
 Hierarchical ABEL-HDL By Kim-Fu Lim, Data I/O Corp.’

 @ifb (?rep)
 { @message ’Must specify -arg N’
 @exit }
 D15..D0 pin;
 Q15..Q0 pin istype ’reg’;
 Clk, Rst pin;

 Q = [Q15..Q0];
 D = [D15..D0];

 @const N = ?rep - 1;

prep6 interface (D15..D0, Clk, Rst -> Q15..Q0);

 ACC macro (i)
 { @expr {ACC}?i; }

 @const i = 0;
 @repeat ?rep
 { ACC(i) functional_block prep6;
 @const i = i + 1; }

equations
 ACC0.[D15..D0] = D;

 @const i = 0;
 @repeat ?rep
 { ACC(i).[Clk, Rst] = [Clk, Rst];
 @const i = i+1; }

 @const i = 0;
 @repeat ?rep-1
 { ACC(i+1).[D15..D0] = ACC(i).[Q15..Q0];
 @const i = i+1; }
 Q = ACC(N).[Q15..Q0];
end

Figure 5-25
Top-level ABEL-HDL Source

Source File Examples

ABEL-HDL Reference 5-45

Lower-level Sources

Figure 5-26 shows the lower-level ABEL-HDL file instantiated by p6top.abl.
This file does not contain an interface statement, which is optional in
lower-level files.

MODULE prep6

TITLE ’16-Bit Accumulator
 By Kim-Fu Lim, Data I/O Corp.’

D15..D0 pin;
Q15..Q0 pin istype ’reg’;
Clk, Rst pin;

Q = [Q15..Q0];
D = [D15..D0];

@carry 2;
EQUATIONS
 Q := D + Q;
 Q.C = Clk;
 Q.AR = Rst;
END

Figure 5-26
Lower-level ABEL-HDL Source

Source File Examples

5-46 ABEL-HDL Reference

Chapter 6

Language Reference
This chapter provides detailed information about each of the language
elements in ABEL-HDL. It assumes you are familiar with the basic syntax
discussed in the Chapter 2, "Language Structure." Each entry contains the
following sections (if applicable):
♦ Syntax — is the required syntax for the element.
♦ Purpose — is a brief description of the intended use of the element.
♦ Use — is a discussion of the potential uses of the element, including any

special considerations.
♦ Examples — are examples of the element as it is used in a design

description.
♦ See Also — refers to other elements and discussions, and to design

examples that demonstrate the use of an element.

Basic syntax information (on subjects such as blocks, strings, sets and
arguments) is provided in Chapter 2, "Language Structure."

ABEL-HDL Reference 6-1

.ext — Dot Extensions

Syntax signal_name.ext

Purpose Dot extensions provide a way to refer specifically to internal signals and nodes
that are associated with a primary signal in your design.

Use Signal dot extensions describe, more precisely, the behavior of signals in a
logic description, and remove the ambiguities in equations.

You can use ABEL-HDL dot extensions in complex language constructs, such
as nested sets or complex expressions.

Using Pin-to-Pin Vs. Detailed Dot Extensions:

Dot extensions allow you to refer to various circuit elements (such as register
clocks, presets, feedback and output enables) that are related to a primary
signal.

Some dot extensions are general purpose and are intended for use with a wide
variety of device architectures. These dot extensions are therefore referred to
as pin-to-pin (or "architecture-independent"). Other dot extensions are
intended for specific classes of device architectures, or require specific device
configurations. These dot extensions are referred to as detailed (or
"architecture-dependent" or "device-specific") dot extensions.

In most cases, you can describe a circuit using either pin-to-pin or detailed dot
extensions. Which form you use depends on the application and whether you
want to implement the application in a variety of architectures. The
advantages of each method are discussed later in this section.

.ext — Dot Extensions Language Reference

6-2 ABEL-HDL Reference

Table 6-1 lists the ABEL-HDL dot extensions. Pin-to-pin dot extensions are
indicated with a check in the Pin-to-Pin column.

Dot Ext. Pin-to-pin Description

.ACLR 3,4 ✓ A device-independent asynchronous register
reset, equivalent to .AR with ISTYPE ’buffer’
(or .AP with ISTYPE ’invert’).

.AP Asynchronous register preset

.AR Asynchronous register reset

.ASET 2,3 ✓ A device-independent asynchronous register
preset, equivalent to .AP with ISTYPE
’buffer’ (or .AR with ISTYPE ’invert’).

.CE Clock-enable input to a gated-clock flip-flop

.CLK 1 ✓ Clock input to an edge-triggered flip-flop

.CLR 2,3 ✓ A device-independent synchronous register
reset, equivalent to .SR with ISTYPE ’buffer’
(or .SP with ISTYPE ’invert’).

.COM 3 ✓ A combinational feedback from the flip-flop
data input, normalized to the pin value and
used to distinguish between pin (.PIN) and
internal logic array (.COM) feedback.

.D 1 When on the left side of an equation, .D is
the data input to a D-type flip-flop; on the
right side, .D is combinational feedback.

.FB ✓ Register feedback

.FC Flip-flop mode control

.J J input to a JK-type flip-flop

.K K input to a JK-type flip-flop

.LD Register load input

.LE Latch-enable input to a latch

.LH Latch-enable (high) to a latch

.OE 1 ✓ Output enable

Table 6-1
Dot Extensions

Language Reference .ext — Dot Extensions

ABEL-HDL Reference 6-3

Dot Ext. Pin-to-pin Description

.PIN ✓ Pin feedback

.PR 1 Register preset (synchronous or
asynchronous)

.Q Register feedback

.R R input to an SR-type flip-flop

.RE 1 Register reset (synchronous or asynchronous)

.S S input to an SR-type flip-flop

.SET 2,3 ✓ A device-independent synchronous register
preset, equivalent to .SP with ISTYPE
’buffer’ (or .SR with ISTYPE ’invert’).

.SP Synchronous register preset

.SR Synchronous register reset

.T T input to a T-type (toggle) flip flop

1 Example follows.

2 If ISTYPE ’buffer’ or ’invert’ is specified, the compiler converts these dot extensions to the
equivalent detailed dot extension.

3 Some fitters do not support these dot extensions.

.ext — Dot Extensions Language Reference

6-4 ABEL-HDL Reference

Detailed Design Dot Extensions
Table 6-2 shows the dot extensions that are supported (and which of those are
required) for different register types in detailed design descriptions. The
required dot extensions are indicated with a check in the Extension Required
column.

Register Type
Extension
Required

Supported
Extensions Definition

combinational
(no register)

.oe

.pin

.com

output enable
pin feedback
combinational feedback

D-type flip-flop ✓
✓

.clk

.d

.fc

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
data input
flip-flop mode control
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous reset
pin

JK-type flip-flop ✓
✓
✓

.clk

.j

.k

.fc

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
j input
k input
flip-flop mode control
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous reset
pin feedback

Table 6-2
Dot Extensions for Device-specific (detailed) Designs

Language Reference .ext — Dot Extensions

ABEL-HDL Reference 6-5

Register Type
Extension
Required

Supported
Extensions Definition

SR-type flip-flop ✓
✓
✓

.clk

.s

.r

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
set input
reset input
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous preset
pin feedback

T-type flip-flop ✓
✓

.clk

.t

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
toggle input
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous reset
pin feedback

L-type latch ✓
✓

.d

.le

.lh

.oe

.q

.pin

data input
latch enable input to a latch
latch enable (high) input to a
latch
output enable
flip-flop feedback
pin feedback

Gated clock D
flip-flop

✓
✓

.clk or .ce

.d

.oe

.q

.pin

clock or clock enable
data input
output enable
flip-flop feedback
pin feedback

.ext — Dot Extensions Language Reference

6-6 ABEL-HDL Reference

Pin-to-Pin Design Dot Extensions
Table 6-2 shows the dot extensions that are allowable (and which of those are
required) for pin-to-pin design descriptions. The required dot extensions are

indicated with a check in the Required column.

Register Type Required
Allowable
Extensions Definition

combinational
(no register)

none
.oe
.pin

output
output enable
pin feedback

registered logic

✓

.clr

.aclr

.set

.aset

.clk

.com

.fb

.pin

synchronous preset
asynchronous preset
synchronous set
asynchronous set
clock
combinational feedback
registered feedback
pin feedback

Figures 6-1 through 6-8 show the effect of each dot extension. The actual
source of the feedback may vary from that shown.

Table 6-3
Dot Extensions for Architecture-independent (pin-to-pin) Designs

D Q

0761-2

Q

.OE

.SET (.ASET)

.FB

.PIN

.CLR (.ACLR)

.CLK

.COM

Istype 'reg'

Figure 6-1
Pin-to-pin Dot Extensions in an Inverted Output Architecture

Language Reference .ext — Dot Extensions

ABEL-HDL Reference 6-7

D Q

0762-2

Q

.OE

.CLK

.FB

.PIN

.COM

Istype 'reg'

.CLR (.ACLR)

.SET (.ASET)

Figure 6-2
Pin-to-pin Dot Extensions in a Non-inverted Output Architecture

D Q

0763-2

Q

.OE

.CLK

.SR (.AR)

.SP (.AP)

.D
PRESET

CLEAR

.Q

.PIN

Istype 'reg_d,invert'

Q

Figure 6-3
Detailed Dot Extensions for a D-type Flip-flop Architecture

.ext — Dot Extensions Language Reference

6-8 ABEL-HDL Reference

T Q

.OE

.CLK

.SR (.AR)

.SP (.AP)

.T
PRESET

CLEAR

.Q

.PIN

Q

0786-2

Istype 'reg_t,invert'

Figure 6-4
Detailed Dot Extensions for a T-type Flip-flop Architecture

0764-1

.OE

.R

.SR (.AR)

.SP (.AP)

.S

Q

.CLK

.Q

.PIN

S Q
PRESET

CLEAR

Istype 'reg_sr,invert'

R

Figure 6-5
Detailed Dot Extensions for an RS-type Flip-flop Architecture

Language Reference .ext — Dot Extensions

ABEL-HDL Reference 6-9

.OE

.K

 .SR (.AR)

.J

Q

.CLK

.Q

.PIN

Q

CLEAR

PRESET

Istype 'reg_jk,invert'

J

K

0765-2

 .SP (.AP)

Figure 6-6
Detailed Dot Extensions for a JK-type Flip-flop Architecture

D Q

0766-2

.OE

.LH

.SP (.AP)

.D

CLEAR

PRESET

QLH

.Q

.PIN

1
1
0

0
1
X

0
1

Last Q

LH D Q

Istype 'reg_l,invert'

.SR (.AR)

Figure 6-7
Detailed Dot Extensions for a Latch with Active High Latch Enable

.ext — Dot Extensions Language Reference

6-10 ABEL-HDL Reference

0
0
1

0
1
X

0
1

Last Q

LE D Q

D Q

.OE

.LE

.SP (.AP)

.SR (.AR)

.D

CLEAR

PRESET

QLE

.Q

.PIN

Istype 'reg_l,invert'

0767-2

Figure 6-8
Detailed Dot Extensions for a Latch with Active Low Latch Enable

0
0
1

0
1
X

0
1

Last Q

CLK
X
1
1

CE D Q

D Q

.OE

.CE

.SR (.AR)

.D

CLEAR

PRESET

QCE

.Q

.PIN

Istype 'reg_g,invert'

1803-2

.CLK

.SP (.AP)

Figure 6-9
Detailed Dot Extensions for a Gated-clock D Flip-flop

Language Reference .ext — Dot Extensions

ABEL-HDL Reference 6-11

Examples These equations precisely describe the desired circuit as a toggling D-type
flip-flop that is clocked by the input Clock, assuming ISTYPE ’reg_D,buffer’:
Q1.clk = Clock;
Q1.D = !Q1.Q # Preset;

Register preset:
Q2.PR = S & !T;

Register reset:
Q2.RE = R & !T;

The same circuit can be described without ISTYPE ’buffer’ as:
Q1.clk = Clock;
Q1 := !Q1.FB # Preset;
Q2.SET = S & !T; Q2.CLR = R & !T;

Three-state Output Enables

Output enables are described in ABEL-HDL with the .oe dot extension applied
to an output signal name. For example,
Q1.oe = !enab;

The equation specifies that the input signal enab controls the output enable for
an output signal named Q1.

Note: If you explicitly state the value of a fixed output enable, you restrict the device
fitters’ ability to map the indicated signal to a simple input pin instead of a three-state
I/O pin.

See Also

Istype
"Attributes" in the Chapter 2, "Language Structure"
"Dot Extensions" in the Chapter 3, "Design Considerations"

.ext — Dot Extensions Language Reference

6-12 ABEL-HDL Reference

= — Constant Declarations

Syntax id [, id]... = expr [, expr]... ;

Purpose A constant declaration that defines constants used in a module.

Use id An identifier naming a constant to be used within a module.

expr An expression defining the constant value.

Note: The equal sign (=) used for constant declarations in the Declarations section is
also used for equations in the Equations section. See "Operators" in Chapter 2,
"Language Structure."

A constant is an identifier that retains a constant value throughout a module.

The identifiers on the left side of the equals sign are assigned the values listed
on the right side. There is a one-to-one correspondence between the identifiers
and the expressions listed. There must be one expression for each identifier.

The ending semicolon is required after each declaration.

Constants are helpful when you use a value many times in a module,
especially when you may be changing the value during the design process.
Constants allow you to change the value once in the declaration of the
constant, rather than changing the value throughout the module.

Constant declarations may not be self-referencing. The following examples
will cause errors:
X = X;

a = b;
b = a;

An include file, constant.inc, in the ABEL-HDL library file contains definitions
for the most frequently used ABEL-HDL constants. To include this file, enter
Library ’constant’ ;

Examples ABC = 3 * 17; " ABC is assigned the value 51
Y = ’Bc’ ; " Y = ^h4263 ;
X =.X.; " X means ’don’t care’
ADDR = [1,0,15]; " ADDR is a set with 3 elements
A,B,C = 5,[1,0],6; " 3 constants declared here
D pin 6; " see next line
E = [5 * 7,D]; " signal names can be included
G = [1,2]+[3,4]; " set operations are legal
A = B & C; " operations on identifiers are valid
A = [!B,C]; " set and identifiers on right

Language Reference = — Constant Declarations

ABEL-HDL Reference 6-13

Using Intermediate Expressions
You can use intermediate (constant) expressions in the declarations section to
reduce the number of output pins required to implement multi-level functions.
Intermediate expressions can be useful when a module has repeated
expressions. In general, intermediate expressions
♦ decrease the number of output pins required, but
♦ increase the amount of logic required per output

A constant expression is interpreted as a string of characters, not as a function
to be implemented. For example, for the following Declarations and Equations
Declarations
 TMP1 = [A3..A0] == [B3..B0];
 TMP2 = [A7..A4] == [B7..B4];
Equations
 F = TMP1 & TMP2;

the compiler substitutes the declarations into the equations, creating
F = (A7 !$ B7) & (A6 !$ B6) & (A5 !$ B5) & (A4 !$ B4) &
 (A3 !$ B3) & (A2 !$ B2) & (A1 !$ B1) & (A0 !$ B0);

In contrast, if you move the constant declarations into the equations section:
Declarations
 TMP1,TMP2 pin 18,19
Equations
 TMP1 = [A3..A0] == [B3..B0];
 TMP2 = [A7..A4] == [B7..B4];
 F = TMP1 & TMP2;

the compiler implements the equations as three discrete product terms, with
the result
TMP1 =(A3 !$ B3) & (A2 !$ B2) & (A1 !$ B1) & (A0 !$ B0);
TMP2 =(A7 !$ B7) & (A6 !$ B6) & (A5 !$ B5) & (A4 !$ B4);
 F = TMP1 & TMP2;

The first example (using intermediate expressions) requires one output with 16
product terms, the second example (using equations) requires three outputs
with less than 8 product terms per output. In some cases, the number of
product terms required for both methods can be reduced during optimization.

Note: As an alternate method for specifying multi-level circuits such as this, you can
use the @CARRY directive. See "@directive" later in this chapter.

See Also

Declarations
Equations
"Constants" in the Chapter 2, "Language Structure"

= — Constant Declarations Language Reference

6-14 ABEL-HDL Reference

’attr’ — Signal Attributes
See Istype.

Language Reference ’attr’ — Signal Attributes

ABEL-HDL Reference 6-15

@directive — Directives
Purpose Directives control the contents or processing of a source file. You can use

directives to conditionally include sections of ABEL-HDL source code, bring
code in from another file, and print messages during processing. The available
directives are given on the following pages.

Use Some of the directives use arguments to determine how the directive is
processed. The arguments can be actual arguments, or dummy arguments
preceded by question marks (?). The rules applying to actual and dummy
arguments are presented in Chapter 2, "Language Structure."

@directive — Directives Language Reference

6-16 ABEL-HDL Reference

@Alternate — Alternate Operator Set
Syntax @alternate

Use @Alternate enables an alternate set of operators. If you are more familiar with
the alternate set, you may want to use this directive.

The alternate operators remain in effect until the @Standard directive is used
or the end of the module is reached.

Using the alternate operator set precludes use of the ABEL-HDL addition,
multiplication, and division operators because they represent the OR, AND,
and NOT logical operators in the alternate set. The standard operators !, &, #,
$, and !$ still work when @Alternate is in effect.

The alternate operator set is listed in Table 6-4.

ABEL-HDL Alternate Description
Operator Operator

! / NOT
& * AND
+ OR
$: + : XOR
!$: * : XNOR

See Also

@STANDARD

Table 6-4
Alternate Operator Set

Language Reference @directive — Directives

ABEL-HDL Reference 6-17

@Carry — Maximum Bit-width for Arithmetic Functions
Syntax @carry expression ;

expression A numeric expression.

Use The @Carry directive allows you to reduce the amount of logic required for
processing large arithmetic functions by specifying how adders, counters, and
comparators are generated. The number generated by the expression indicates
the maximum bit-width to use when performing arithmetic functions.

For example, for an 8-bit adder, a @Carry statement with an expression which
results in 2 would divide the 8-bit adder into four 2-bit adders, creating
intermediate nodes. This would reduce the amount of logic generated.

The statement:
@carry 1;

generates chains of one-bit adders and comparators for all subsequent adder
and comparator equations (instead of the full look-ahead carry equations
normally generated).

This directive automatically generates additional combinational nodes. Use
different values for the @CARRY statement to specify the types of adders and
comparators required for the design. To specify that full lookahead carry
should be generated (the default if no @CARRY has been specified) use the
statement:
@carry 0

Examples @carry 2; "generate adder chain
[s8..s0] = [.x.,a7..a0]+[.x.,b7..b0]

See Also

= (Constant Declarations)
"Constants" in Chapter 2, "Language Structure"

@directive — Directives Language Reference

6-18 ABEL-HDL Reference

@Const — Constant Declarations
Syntax @const id = expression ;

id An identifier.

expression An expression.

Use @Const allows new constant declarations to be made in a source file outside
the normal (and required) declarations section.

The @Const directive defines internal constants inside macros. Constants
defined with @Const override previous constant declarations. You cannot use
@Const to redefine an identifier that was used earlier in the source file as
something other than a constant (for example, a macro or pin).

Examples @CONST count = count + 1;

See Also

= (Constant Declarations)
"Constants" in Chapter 2, "Language Structure"

Language Reference @directive — Directives

ABEL-HDL Reference 6-19

@Dcset — Don’t Care Set
Syntax @dcset

Use ABEL-HDL uses don’t-care conditions to help optimize partially-specified
logic functions. Partially-specified logic functions are those that have less than
2n significant input conditions, where n is the number of input signals. The
@Dcset directive allows the optimization to use either 1 or 0 for don’t cares to
optimize these functions.

CAUTION: The @Dcset directive overrides Istype attributes ’dc’, ’neg’ and
’pos’.

See Also

@Onset
Istype ’dc’
?:= and ?= Assignment Operators

Truth_table
"@DCSET Considerations and Precautions" in the chapter "Design
Considerations"

@directive — Directives Language Reference

6-20 ABEL-HDL Reference

@Dcstate — State Output Don’t Cares

Syntax @dcstate

Use When @dcstate is specified, all unspecified state diagram states and transitions
are applied to the design outputs as don’t cares. You must use this option in
combination with @dcset or with the ’dc’ attribute.

See Also

@DCSET
Istype ’dc’

Language Reference @directive — Directives

ABEL-HDL Reference 6-21

@Exit — Exit Directive
Syntax @exit

Use The @Exit directive stops processing of the source file with error bits set.
(Error bits allow the operating system to determine that a processing error has
occurred.)

@directive — Directives Language Reference

6-22 ABEL-HDL Reference

@Expr — Expression Directive
Syntax @expr [{ block }] expression ;

block A block.

expression An expression.

Use @Expr evaluates the given expression and converts it to a string of digits in the
default base numbering system. This string and the block are then inserted
into the source file at the point where the @Expr directive occurs. The
expression must produce a number.

@Expr can contain variable values and you can use it in loops with @Repeat.

Examples @expr {ABC} ^B11 ;

Assuming that the default base is base ten, this example causes the text ABC3
to be inserted into the source file.

Language Reference @directive — Directives

ABEL-HDL Reference 6-23

@If — If Directive
Syntax @if expression { block }

expression An expression.

block A block of text.

Use @IF includes or excludes sections of code based on the value of an expression.
If the expression is non-zero (logical true), the block of code is included.

Dummy argument substitution is supported in the expression.

Examples @if (A > 17) { C = D $ F ; }

@directive — Directives Language Reference

6-24 ABEL-HDL Reference

@Ifb — If Blank Directive
Syntax @IFB (arg) { block }

arg An actual argument, or a dummy argument preceded by a "?"

block A block of text.

Use @IFB includes the text contained within the block if the argument is blank (if it
contains 0 characters).

Examples @IFB ()
{text here is included with the rest of the source file.}

@IFB (hello) { this text is not included }

@IFB (?A) {this text is included if no value is substituted for
A. }

See Also

"Arguments and Argument Substitution" in the Chapter 2, "Language
Structure"

Language Reference @directive — Directives

ABEL-HDL Reference 6-25

@Ifdef — If Defined Directive
Syntax @ifdef id { block }

id An identifier.

block A block of text.

Use @IFDEF includes the text contained within the block, if the identifier is
defined.

Examples A pin 5 ;
@ifdef A { Base = ^hE000 ; }
"the above assignment is made because A was defined

@directive — Directives Language Reference

6-26 ABEL-HDL Reference

@Ifiden — If Identical Directive
Syntax @ifiden (arg1,arg2) { block }

arg1,2 Actual arguments, or dummy argument names preceded by a
"?"

block A block of text.

Use The text in the block is included if arg1 and arg2 are identical.

Examples @ifiden (?A,abcd) { ?A device ’P16R4’; }

A device declaration for a P16R4 is made if the actual argument substituted for
A is identical to abcd.

Language Reference @directive — Directives

ABEL-HDL Reference 6-27

@Ifnb — If Not Blank Directive
Syntax @ifnb (arg) { block }

arg An actual argument, or a dummy argument name preceded
by a "?"

block A block of text.

Use @IFNB includes the text contained within the block if the argument is not
blank (if it contains more than 0 characters).

Examples @IFNB () { ABEL-HDL source here is not included with the rest
of the source file. }

@IFNB (hello) { this text is included }

@IFNB (?A) {this text is included if a value is substituted
for A}

@directive — Directives Language Reference

6-28 ABEL-HDL Reference

@Ifndef — If Not Defined Directive
Syntax @ifndef id { block }

id An identifier.

block A block of text.

Use @IFNDEF includes the text contained within the block, if the identifier is
undefined. Thus, if no declaration (pin, node, device, macro, or constant) has
been made for the identifier, the text in the block is inserted into the source file.

Examples @ifndef A{Base=^hE000;}
"if A is not defined, the block is inserted in the text

Language Reference @directive — Directives

ABEL-HDL Reference 6-29

@Ifniden — If Not Identical Directive
Syntax @ifniden (arg1,arg2) { block }

arg1,2 Actual arguments, or dummy argument names preceded by a
"?"

block A block of text.

Use The text in the block is included in the source file if arg1 and arg2 are not
identical.

Examples @ifniden (?A,abcd) { ?A device ’P16R8’; }

A device declaration for a P16R8 is made if the actual argument substituted for
A is not identical to abcd.

@directive — Directives Language Reference

6-30 ABEL-HDL Reference

@Include — Include Directive
Syntax @include filespec

filespec A string specifying the name of a file.

Use @INCLUDE causes the contents of the specified file to be placed in the
ABEL-HDL source file. The inclusion begins at the location of the @INCLUDE
directive. The file specification can include an explicit drive or path
specification that indicates where the file is found. If no drive or path
specification is given, the default drive or path is used.

Examples @INCLUDE ’macros.abl’ "file specification
@INCLUDE ’\\incs\\macros.inc’ "DOS paths require 2 slashes

See Also

Library

Language Reference @directive — Directives

ABEL-HDL Reference 6-31

@Irp — Indefinite Repeat Directive
Syntax @irp dummy_arg (arg [, arg]...) { block }

dummy_arg A dummy argument.

arg An actual argument, or a dummy argument name preceded
by a "?"

block A block of text.

Use @IRP causes the block to be repeated in the source file n times, where n equals
the number of arguments contained in the parentheses. Each time the block is
repeated, the dummy argument takes on the value of the next successive
argument.

Examples @IRP A (1, ^H0A,0)
{B = ?A ; }

results in:
B = 1 ;
B = ^H0A ;
B = 0 ;

which is inserted into the source file at the location of the @IRP directive. Note
that multiple assignments to the same identifier result in an implicit OR.

Note that if the directive is specified like this:
@IRP A (1,^H0A,0)
{B = ?A ; }

the resulting text would be:
B = 1 ; B = ^H0A ; B = 0 ;

The text appears all on one line because the block in the @IRP definition
contains no end-of-lines. Remember that end-of-lines and spaces are
significant in blocks.

@directive — Directives Language Reference

6-32 ABEL-HDL Reference

@Irpc — Indefinite Repeat, Character Directive
Syntax @irpc dummy_arg (arg) { block }

dummy_arg A dummy argument.

arg An actual argument, or a dummy argument name preceded
by a "?"

block A block.

Use @IRPC causes the block to be repeated in the source file n times, where n
equals the number of characters contained in arg. Each time the block is
repeated, the dummy argument takes on the value of the next character.

Examples @IRPC A (Cat)
{B = ?A ;
}

results in:
B = C ;
B = a ;
B = t ;

which is inserted into the source file at the location of the @IRPC directive.

Language Reference @directive — Directives

ABEL-HDL Reference 6-33

@Message — Message Directive
Syntax @message ’ string ’

string Any string.

Use @Message sends the message specified in string to your monitor. You can use
this directive to monitor the progress of the parsing step of the compiler, or as
an aid to debugging complex sequences of directives.

Examples @message ’Includes completed’

@directive — Directives Language Reference

6-34 ABEL-HDL Reference

@Onset — No Don’t Care’s
Syntax @onset

Use The @onset directive disables the use of don’t care input conditions for
optimization.

See Also

@Dcset
ISTYPE ’dc’

Language Reference @directive — Directives

ABEL-HDL Reference 6-35

@Page — Page Directive
Syntax @page

Use Send a form feed to the listing file. If no listing is being created, @page has no
effect.

@directive — Directives Language Reference

6-36 ABEL-HDL Reference

@Radix — Default Base Numbering Directive
Syntax @radix expr ;

expr An expression that produces the number 2, 8, 10 or 16 to
indicate a new default base numbering.

Use The @Radix directive changes the default base. The default is base 10
(decimal). This directive is useful when you need to specify many numbers in
a base other than 10. All numbers that do not have their base explicitly stated
are assumed to be in the new base. (See "Numbers" in Chapter 2, "Language
Structure.")

The newly-specified default base stays in effect until another @radix directive
is issued or until the end of the module is reached. Note that when a new
@radix is issued, the specification of the new base must be in the current base
format.

When the default base is set to 16, all numbers in that base that begin with an
alphabetic character must begin with leading zeroes.

Examples @radix 2 ; "change default base to binary
@radix 1010 ; "change from binary to decimal

Language Reference @directive — Directives

ABEL-HDL Reference 6-37

@Repeat — Repeat Directive
Syntax @repeat expr { block }

expr A numeric expression.

block A block.

Use @REPEAT causes the block to be repeated n times, where n is specified by the
constant expression.

Examples The following use of the repeat directive,

@repeat 5 {H,}

results in the insertion of the text "H,H,H,H,H," into the source file. The
@REPEAT directive is useful in generating long truth tables and sets of test
vectors. Examples of @REPEAT can be found in the example files.

@directive — Directives Language Reference

6-38 ABEL-HDL Reference

@Setsize — Set Indexing

Syntax @setsize [expression];

Purpose The @setsize directive generates a number corresponding to the number of
elements in the expression, which must be a set. This directive is useful for set
indexing operations.

Example @SETSIZE [a,b,c]

generates the number 3.

For set indexing, you can use the @SETSIZE directive in macros in the
following manner:
high macro (s) {?S[@SETSIZE(?S);-1..@SETSIZE(?S);/2-1]};

The high macro returns the upper half of a set of any size (the high 4 bits of an
8-bit set, for example).

Note: The terminating semicolons are required.

See Also

"Set Indexing" in Chapter 2, "Language Structure"

Language Reference @directive — Directives

ABEL-HDL Reference 6-39

@Standard — Standard Operators Directive

Syntax @standard

Use The @standard option resets the operators to the ABEL-HDL standard. The
alternate set is chosen with the @alternate directive.

@directive — Directives Language Reference

6-40 ABEL-HDL Reference

Async_reset and Sync_reset

Syntax SYNC_RESET symbolic_state_id : input_expression ;
ASYNC_RESET symbolic_state_id : input_expression ;

Purpose In symbolic state descriptions, the SYNC_RESET and ASYNC_RESET
statements specify synchronous or asynchronous state machine reset logic in
terms of symbolic states.

Use symbolic_state_id An identifier used for reference to a symbolic state.

input_expression Any expression.

Examples ASYNC_RESET Start : Reset ;

SYNC_RESET Start : Reset ;

See Also

State
State_diagram
"Using Symbolic State Descriptions" in Chapter 3, "Design Considerations"

Language Reference Async_reset and Sync_reset

ABEL-HDL Reference 6-41

Case

Syntax CASE expression : state_exp ;
[expression : state_exp ;] ...
ENDCASE ;

Purpose Use the CASE statement in a State_diagram to indicate transitions of a state
machine when multiple conditions affect the state transitions.

Use expression An expression.

state_exp An expression identifying the next state, optionally followed
by WITH transition equations.

You can nest CASE statements with If-Then-Else, GOTO, and other CASE
statements, and you can use equation blocks.

Note: Equation blocks used within a conditional expression such as IF-THEN,
CASE, or WHEN-THEN result in logic functions that are logically ANDed with the
conditional expression that is in effect.

The state machine advances to the state indicated by state_exp (following the
expression that produces a true value). If no expression is true, the result is
undefined, and the resulting action depends on the device being used. (For
devices with D flip-flops, the next state is the cleared register state.) For this
reason, you should be sure to cover all possible conditions in the CASE
statement expressions. If the expression produces a numeric rather than a
logical value, 0 is false and any non-zero value is true. The expressions
contained within the Case-endcase keywords must be mutually exclusive (only
one of the expressions can be true at any given time). If two or more
expressions within the same Case statement are true, the resulting equations
are undefined.

Examples "Mutually exclusive Case statement
case a == 0 : 1 ;
 a == 1 : 2 ;
 a == 2 : 3 ;
 a == 3 : 0 ;
endcase ;

"Not mutually exclusive Case statement
case (a == 0) : 1 ;
 (a == 0) & (B == 0) : 0 ;
endcase ;

Case Language Reference

6-42 ABEL-HDL Reference

See Also

State_diagram
Goto
If-then-else
With

Language Reference Case

ABEL-HDL Reference 6-43

Constant Declarations
See = (Constant Declarations).

Constant Declarations Language Reference

6-44 ABEL-HDL Reference

Declarations

Syntax Declarations declarations

Purpose The declarations keyword allows you to declare declarations (such as sets or
other constants) in any part of the ABEL-HDL source file.

Use declarations You can use any declarations after the Declarations keyword.

The Declarations keyword is not necessary for declarations immediately
following the module and/or title statement(s).

Examples
An example of declared equations is shown below:
module castle
 moat device ’P16V8C’; "declarations implied
 A,B pin 1,2;
 Out1 pin 15 istype ’com’;
Equations
 Out1 = A & B;

Declarations "declarations keyword required
 C,D,E,F pin 3,4,5,6;
 Out2 pin 16 istype ’com’;
 Temp1 = C & D;
 Temp2 = E & F;

Equations
 Out2 = Temp1 # Temp2;
end;

See Also

demo1800.abl

Language Reference Declarations

ABEL-HDL Reference 6-45

Device

Syntax device_id DEVICE real_device ;

Purpose The device declaration statement associates the device name used in a module
with an actual programmable logic device on which designs are implemented.

Use device_id An identifier used for the programmer to load filenames.

real_device A string describing the architecture name of the real device
represented by device_id.

The device declaration is optional.

You should give device identifiers, used in device declarations, valid filenames
since JEDEC files are created by appending the extension .jed to the identifier.
The architecture name of the programmable logic device is indicated by the
string, real_device.

The ending semicolon is required.

Examples D1 DEVICE ’P16R4’ ;

Device Language Reference

6-46 ABEL-HDL Reference

End

Syntax end module_name

Purpose The end statement denotes the end of the module.

Use The end statement can be followed by the module name. For multi-module
source files, the module name is required.

Language Reference End

ABEL-HDL Reference 6-47

Equations

Syntax equations
element [?]= condition ;
element [?]:= condition ;
when-then-else_statement ;

Purpose The equations statement defines the beginning of a group of equations
associated with a device.

Use condition An expression.

element An identifier naming a signal, set of signals, or actual set
to which the value of the expression is assigned.

expression An expression.

=, :=, ?= and ?:= Combinational and registered (pin-to-pin) on-set and
dc-set assignment operators.

when-then-else When-then-else statements.

Equations specify logic functions with an extended form of Boolean algebra.

A semicolon is required after each equation.

The equations following the equation statement are equations as described in
Chapter 2, "Language Structure."

CAUTION: Use the := and ?:= operators only when writing pin-to-pin
registered equations. Use the = and ?= assignment operators for registered
equations with detailed dot extensions.

Examples A sample equations section follows:

equations
A = B & C # A ;
[W,Y] = 3 ;
!F = (B == C) ;
Output.D = In1 # In2

See Also

When-Then-Else
Module
State_diagram
Truth_table
"Operators, Expressions and Equations" in Chapter 2, "Language Structure"

Equations Language Reference

6-48 ABEL-HDL Reference

Functional_block

Syntax DECLARATIONS
instance_name FUNCTIONAL_BLOCK source_name ;

EQUATIONS
instance_name . port_name = signal_name ;

Purpose You can use a functional_block declaration in an upper-level ABEL-HDL
source to instantiate a declared lower-level module and make the ports of the
lower-level module accessible in the upper-level source. You must declare
modules with an interface declaration before you can instantiate them with a
functional_block statement.

Use instance_name A unique identifier for this instance of the functional block
in the current source.

source_name The name of the lower-level module that is being
instantiated.

Note: When a module is instanced by an upper-level source, any signal attributes
(explicit or implied) are inherited by the upper-level source signals. Therefore, you do
not need to specify ISTYPEs in higher-level sources for instantiated signals.

Creating Multiple Instances
You can use the range operator (..) to instantiate multiple instance names of
the module. For example,
CNT0..CNT3 functional_block cnt4 ;

creates 4 instances of the lower-level module cnt4.

Mapping Ports to Signals
Signal names are mapped to port names, using equations (similar to wiring the
signals on a schematic). You need to specify only the signals used in the
upper-level source, if default values have been specified in the lower-level
module interface statement. See "Interface (lower-level)" in this chapter for
more information on setting default values.

Language Reference Functional_block

ABEL-HDL Reference 6-49

To specify the signal wiring, map signal names to the lower-level module port
names with dot extension notation. There are three kinds of wire: input,
output, and interconnect.

Input Wire Connects lower-level module inputs to upper-level source
inputs.

instance.port = input

Output Wire Connects upper-level source outputs to lower-level
module outputs.

output = instance.port

Interconnect Wire Connects the outputs of one instance of a lower-level
module to another instance’s inputs.

instance0.port = instance1.port

Examples module counter;

cnt4 interface (ce, ar, clk, [q0..q3]); // cnt4’s top-level inter
face declaration.
CNT0..CNT3 functional_block cnt4; // Four instances of
 cnt4.

Clk, AR, CE pin;
Q0..Q3 pin;

equations
 CNT0.[clk, ar, ce] = [Clk; AR, CE]; // Connecting to C
lk, AR, and CE inputs.
 CNT0.[q0..q3] = [Q0..Q3]; // Connecting to Q0..Q
3 outputs.
end

Figure 6-10 shows how the above ABEL-HDL file wires the upper-level
source’s signals to the lower-level module’s ports. Note that the above file
instantiates four instances of cnt4, but only one (CNT0) is wired.

Overriding Default Values
You can override the default values given in a lower-level module’s interface
statement by specifying default equations in the higher-level source. For
example, if you have specified a default value of 1 for the signal ce in interface
cnt4 (but in instance CNT0, you want ce to be 0), you would write:
CNT0.ce = 0 ;

This equation overrides the 1 with a 0. If you override the default values, you
may want to re-optimize the post-linked design.

Functional_block Language Reference

6-50 ABEL-HDL Reference

Unused Outputs (No Connects)
If you do not want to use a lower-level module’s outputs, specify them as No
Connects (NC) by not wiring up the port to a physical pin. For example, to
make a 3-bit counter out of a 4-bit counter in the upper-level source, you might
use the following wiring equations:
q2..q0 pin ; "upper-level signals
Equations
 [q2..q0] = CNT_A.[q2..q0]

See Also

Interface (top-level)
"Hierarchy" in Chapter 3, "Design Considerations
hiermult.abl
hmult2.abl

2194-1

CNT0

I 1

ce
ar
clk

q0
q1
q2
q3

Clk

AR

CE Q0

Q1

Q2

Q3

Figure 6-10
Wiring of CNT0

Language Reference Functional_block

ABEL-HDL Reference 6-51

Fuses

Syntax FUSES
fuse_number = fuse_value ;

or
FUSES
[fuse_number_set] = fuse_value ;

Purpose The fuses section explicitly declares the state of any fuse in the targeted device.

Use fuse_number The fuse number obtained from the logic diagram
of the device.

fuse_number_set The set of fuse numbers (contained in square
brackets).

fuse_value The number indicating the state of fuse(s).

The fuses statement provides device-specific information, and precludes
changing devices without editing the statement in the source file.

Fuse values that appear on the right side of the = symbol can be any number.
If a single fuse number is specified on the left side of the = symbol, the least
significant bit (LSB) of the fuse value is assigned to the fuse. A 0 indicates an
intact fuse and a 1 indicates a blown fuse. In the case of multiple fuse
numbers, the fuse value is expanded to a binary number and truncated or
given leading zeros to obtain fuse values for each fuse number.

CAUTION: When fuse states are specified using the FUSES section, the
resulting fuse values supersede the fuse values obtained through the use of
equations, truth tables and state diagrams, and affect device simulation
accordingly.

ABEL-HDL has a limit of 128 fuses per statement, due to the set size
limitations.

Examples FUSES
3552 = 1 ;
[3478...3491] = ^Hff;

See Also

cnt10rom.abl

Fuses Language Reference

6-52 ABEL-HDL Reference

Goto

Syntax GOTO state_exp ;

Purpose The GOTO statement is used in the State_diagram section to cause an
unconditional transition to the state indicated by state_exp.

Use state_exp An expression identifying the next state, optionally followed
by WITH transition equations.

GOTO statements can be nested with If-Then-Else and CASE statements.

Examples GOTO 0 ; "goto state 0
GOTO x+y ; "goto the state x + y

See Also

State_diagram
Case
If-then-else
With

Language Reference Goto

ABEL-HDL Reference 6-53

If-Then-Else

Syntax IF exp THEN state_exp
[ELSE state_exp] ;

Chained IF-THEN-ELSE:

IF expr THEN state_exp
ELSE IF exp THEN state_exp

ELSE state_exp ;

Nested IF-THEN-ELSE:

IF exp THEN state_exp
 ELSE IF exp THEN
 IF exp THEN state_exp
 ELSE state_exp
 ELSE state_exp ;

Nested IF-THEN-ELSE with Blocks:

IF exp THEN
{ IF exp THEN state_exp
 IF exp THEN state_exp
}
ELSE state_exp ;

Purpose The If-then-else statements are used in the State_diagram section to describe
the progression from one state to another.

Use exp An expression.

state_exp An expression or block identifying the next state, optionally
followed by WITH transition equations.

CAUTION: If-Then-Else is only supported within a state_diagram
description. Use When-Then-Else for equations.

Note: Equation Blocks used within a conditional expression (such as If-then, Case, or
When-then) results in logic functions that are logically ANDed with the conditional
expression that is in effect.

The expression following the If keyword is evaluated, and if the result is true,
the machine goes to the state indicated by the state_exp, following the Then
keyword. If the result of the expression is false, the machine jumps to the state
indicated by the Else keyword.

If-Then-Else Language Reference

6-54 ABEL-HDL Reference

Any number of If statements may be used in a given state, and the Else clause
is optional. The indenting and formatting of an If-then-else statement is not
significant: breaking a complex transition statement across many lines (and
indenting) improves readability.

If-then-else statements can be nested with Goto, Case, and With statements.
If-then-else and Case statements can also be combined and nested.

Chained IF-THEN-ELSE Statements:

Any number of If-then-else statements can be chained, but the final statement
must end with a semicolon. The chained If-then-else statement is intended for
situations where the conditions are not mutually exclusive. The Case
statement more clearly expresses the same function as chained
mutually-exclusive If-then-else statements.

Chained If-then-else statements can provide multiway branching transition
logic. For example, multiple If-then-else statements can be chained to
describe a three-way branch in the following manner:
STATE S0:
 IF (address < ^h0400)
 THEN S0
 ELSE
 IF (address <= ^hE100)
 THEN S2
 ELSE
 S1;

Examples if A==B then 2 ; "if A equals B goto state 2
if x-y then j else k; "if x-y is not 0 goto j, else goto k
if A then b*c; "if A is true (non-zero) goto state b*c

Chained IF-THEN-ELSE

if a then 1
 else
if b then 2
 else
if c then 3
 else 0 ;

Nested IF-THEN-ELSE with Blocks

IF (Hold) THEN
{ IF (!RESET) THEN State1 ;
 IF (Error) THEN State2 ;
}
ELSE State3 ;

Language Reference If-Then-Else

ABEL-HDL Reference 6-55

Nested IF-THEN-ELSE Statements

A complex state transition could be written with nested transitions in the
following manner:
STATE S0:
 CASE (select == 1): IF (address == ^h0100)
 THEN S16
 ELSE
 IF (address > ^hE100)
 THEN S17
 ELSE
 S0;

 (select == 2): S2;

 (select == 3): IF (address <= ^hE100)
 THEN IF (reset)
 THEN S3
 ELSE S0;
 ELSE S17;

 (select == 0): S0;
 ENDCASE;

See Also

State_diagram
Case
Goto
With

If-Then-Else Language Reference

6-56 ABEL-HDL Reference

Interface (top-level)

Syntax source_name INTERFACE (input/set[=value] -> output/set :> bidir/set);

Purpose The interface keyword declares lower-level modules and their ports (signals)
that are used in the current source. This declaration is used in conjunction
with a functional_block declaration for each instantiation of the module.

Use module_name The name of the module being declared.

inputs->outputs:>bidirs A list of signals in the lower-level module used in
the current source. Signal names are separated by
commas. Use -> and :> to indicate the direction of
each port of a functional block.

value An optional default value for an input that
overrides defaults in the lower-level module.

If the lower-level module uses the interface keyword to declare signals, the
upper-level source interface statement must exactly match the signal listing.

CAUTION: Interface declarations cannot contain dot extensions. If you need
a specific dot extension across a source boundary (to resolve feedback
ambiguities, for example), you must introduce an intermediate signal into the
lower-level module to provide the connection to the higher-level source. All
dot extension equations for a given output signal must be located in the
ABEL-HDL module in which the signal is defined. No references to the signal’s
dot extensions can be made outside of the ABEL-HDL module.

Note: When you instantiate a lower-level module in an upper-level source, any signal
attributes (either explicit or implicit) are inherited by the higher-level source signals
that map to the lower-level signals. Do not specify ISTYPEs for instantiated signals.

Examples module top;
cnt4 interface (ce,ar,clk -> [q3..q0])

Map port names to signal names with equations. See functional_block.

See Also

Functional_block
"Hierarchy" in Chapter 3, "Design Considerations"

bjacktop.abl
cnt4.abl

hiermult.abl
hmult2.abl

Language Reference Interface (top-level)

ABEL-HDL Reference 6-57

Interface (lower-level)

Syntax MODULE module_name
INTERFACE (input/set [= port_value] -> output/set [:> bidir/set]);

Purpose The interface declaration is optional for lower-level modules. Use the
interface declaration in lower-level modules to assign a default port list and
input values for the module when instantiated in higher-level ABEL-HDL
sources. If you use the interface statement in an instantiated module, you
must declare the signals and sets in the upper-level source in the same order
and grouping as given in the interface statement in the lower-level module.

Declaring signals in the lower-level module, although optional, does allow the
compiler to check for signal declaration mismatches and therefore reduces the
possibility of wiring errors.

Use module_name The standard module statement.

signal/set Signals or sets in the lower-level module used as ports to
higher-level sources. Use -> and :> to indicate the
direction of each port of a functional block. Use commas
to separate groups of signals

port_value The default value for the port for input signals only.
Default values do not apply to output and bidirectional
signals.

Declared Signals
Declared signals can be a list of lower-level pins, sets, or a combination of both.
The following constraints apply to the different signal types:

Signal Type Constraints

Input Default values must be binary if applied to an individual
bit, or any positive integer applied to a set. All inputs
must be listed.

Output Unlisted outputs are interpreted as No connects (NC).
Unlisted, fed-back outputs are interpreted as nodes in the
upper-level source, following the naming convention
instance_name/node_name

Bidirectional Listing bidirectional signals is optional, except for those
with output enable (OE). If you specify bidirectional
signals, the compiler checks for invalid wire connections.

Interface (lower-level) Language Reference

6-58 ABEL-HDL Reference

CAUTION: Interface declarations cannot contain dot extensions. If you need
a specific dot extension across a source boundary (to resolve feedback
ambiguities, for example), you must introduce an intermediate signal into the
lower-level module to provide the connection to the higher-level source. All
dot extension equations for a given output signal must be located in the
ABEL-HDL module in which the signal is defined. No references to the signal’s
dot extensions can be made outside of the ABEL-HDL module.

Note: When you instantiate a lower-level module in a higher-level source, any signal
attributes (explicit or implicit) are inherited by the higher-level source signals that map
to the lower-level signals. Do not specify ISTYPEs for instantiated signals.

Unlisted Signals
If you do not list some signals of the lower-level module in the interface
statement, the following rules apply:

Unlisted Pins Are: The Compiler Interprets Them As:

Inputs or Bidirectionals
with OE

Errors

Outputs No Connects (NC), and they can be removed

Feedback outputs Nodes in the upper-level source, following the
naming convention: instance_name/node_name

Examples The following interface statement declares inputs ce, ar, and clk (giving default
values for two of them) and outputs q3 through q0.
module cnt4 interface (ce=1,ar=1,clk -> [q3..q0]) ;

Specifying default values allows you to instantiate cnt4 without declaring the
ce and ar inputs in the upper-level source. If you do not declare these inputs,
they are replaced with the constants 1 and 0, respectively. Since these
constants may affect optimization, you may need to re-optimize the
lower-level module with the constants.

Note: Supported default values are 1, 0, or X (don’t care). You can give default
values for a set with a positive integer, and each digit of the integer’s binary form
supplies the default value for the corresponding signal in the set.

See Also

Interface (top-level)
Functional_block
"Hierarchy" in Chapter 3, "Design Considerations"

hiermult.abl hmult2.abl

Language Reference Interface (lower-level)

ABEL-HDL Reference 6-59

Istype _ Attribute Declarations

Syntax signal [, signal...] [PIN | NODE [##s]] ISTYPE ’attr [,attr]...’;

Purpose The ISTYPE statement defines attributes (characteristics) of signals (pins and
nodes). You should use signal attributes to remove ambiguities in
architecture-independent designs. Even when a device has been specified,
using attributes ensures that the design operates consistently if the device is
changed later.

Use signal A pin or node identifier.

attr A string that specifies attributes for the signal(s). Supported
attributes are described below.

Signal attributes are specified with the ISTYPE statement, which can be
combined with pin or node declarations in a single declaration. The attributes
defined with ISTYPE specify the architectural constraints for signals that have
not been assigned to a specific device, pin, or node number, or a specified
device (and/or pin number) that has programmable characteristics.

All attributes listed on the right side of the ISTYPE statement are applied to
each signal specified on the left side.

Declarations of the pin and node names used in the ISTYPE statement must be
made before or with the ISTYPE statement.

Table 6-5 summarizes the available attributes.

CAUTION: If you do not specify signal attributes with Istype, the compiler
makes assumptions about signal attributes that may or may not be what you
intended.

See Also

.ext—Dot Extensions

Istype _ Attribute Declarations Language Reference

6-60 ABEL-HDL Reference

Dot
Ext.

Arch.
Indep. Description

’buffer’ No Inverter in Target Device

’collapse’ Collapse (remove) this signal. 1

’com’ ✓ Combinational output

’dc’ ✓ Unspecified logic is don’t care. 2

’invert’ Inverter in Target Device

’keep’ Do not collapse this signal from equations. 1

’neg’ ✓ Unspecified logic is 1. 2

’pos’ ✓ Unspecified logic is 0. 2

’retain’ ✓ Do not minimize this output. Preserve
redundant product terms. 3

’reg’ ✓ Clocked Memory Element.

’reg_d’ D Flip-flop Clocked Memory Element

’reg_g’ D Flip-flop Gated Clock Memory Element

’reg_jk’ JK Flip-flop Clocked Memory Element

’reg_sr’ SR Flip-flop Clocked Memory Element

’reg_t’ T Flip-flop Clocked Memory Element

’xor’ XOR Gate in Target Device

1 If neither ’keep’ nor ’collapse’ is specified, the optimization or fitter programs can keep or
collapse the signal as needed to optimize the circuit.
2 The ’dc,’ ’neg,’ and ’pos’ attributes are mutually exclusive.
3 The ’retain’ attribute only controls optimization performed by ABEL-HDL Compile Logic.
To preserve redundant product terms, you must also specify no reduction for the Reduce
Logic and fitting (place and route) programs.

Table 6-5
Attributes

Language Reference Istype _ Attribute Declarations

ABEL-HDL Reference 6-61

’buffer’ The target architecture does not have an inverter between the associated
flip-flop (if any) and the actual output pin.

’invert’ The target architecture has an inverter between the associated flip-flop (if any)
and the actual output pin.

Control of output inversion in devices is accomplished through the use of the
’invert’ or ’buffer’ attributes. These attributes enforce the existence (’invert’) or
non-existence (’buffer’) of a hardware inverter at the device pin associated
with the output signal specified.

In registered devices, the ’invert’ attribute ensures that an inverter is located
between the output pin and its associated register output.

Note: Ensuring an inverter is important for both pin-to-pin and detailed design
descriptions because the location of the inverter affects a register’s reset, preset,
preload, and powerup behavior as observed on the associated output pin.

’collapse’ Collapse (remove) this combinational node. If neither ’keep’ nor ’collapse’ is
specified, the optimization and fitter programs will keep or collapse the node
for best optimization. In the following example, signal b is given the ’collapse’
attribute:
module coll_b
a,c,d,e pin ;
b node istype ’collapse’

equations
a = b & e;
b = c & d;
end

The resulting equation collapses b out of the equations:
a = c & d & e ;

’keep’ Do not collapse this combinational node from equations. In the example
under ’collapse,’ b would be retained.

’com’ Specifies a combinational symbol.

Istype _ Attribute Declarations Language Reference

6-62 ABEL-HDL Reference

’dc,’ ’neg,’ and ’pos’

These attributes control the value of unspecified logic in your design, and are
mutually exclusive. The values they specify are shown below:

Istype Attribute Unspecified Logic is

’dc’ X (don’t care)

’neg’ 1

’pos’ 0

The ’dc’ attribute is equivalent to the @DCSET directive, except it operates on
signals instead of applying to a whole section.

Note: The ’neg’ or ’pos’ attribute is implied if a device is specified. For example, ’neg’
is implied if the device output is inverted (for example, with a 16L8).

CAUTION: The @DCSET directive overrides ’dc,’ ’neg,’ and ’pos’.

’reg’ The signal specified is a registered output. Equations, state diagrams, and
truth tables will generate logic for a D-type flip-flop, normalized to take into
account any inverters in the target device.

’reg_d’ The signal specified is a registered output. Equations, state diagrams, and
truth tables will generate logic for a D-type flip-flop, but you must specify if
the output is inverted in the target device (with attribute ’invert’ or ’buffer’).

’reg_g’ The signal specified is a registered output. Equations, state diagrams, and
truth tables will generate logic for a D-type flip-flop, but you must specify if
the output is inverted in the target device (with attribute ’invert’ or ’buffer’).
Write equations and truth tables using the .D and .CE dot extensions when
you use this attribute.

’reg_jk’ The signal specified is a JK-type registered output. State diagrams generate
logic for this register type, but you must specify if the output is inverted in the
target device (with attribute ’invert’ or ’buffer’). Write Equations and truth
tables using the .J and .K dot extensions when you use this attribute.

’reg_sr’ The signal specified is an SR-type registered output. State diagrams will
generate logic for this register type, but you must specify if the output is
inverted in the target device (with attribute ’invert’ or ’buffer’). Write
equations and truth tables using the .S and .R dot extensions when you use this
attribute.

Language Reference Istype _ Attribute Declarations

ABEL-HDL Reference 6-63

’reg_t’ The signal specified is a T-type registered output. State diagrams will generate
logic for this register type, but you must specify if the output is inverted in the
target device (with attribute ’invert’ or ’buffer’). Write equations and truth
tables using the .T dot extension when you use this attribute.

’retain’ Do not minimize this output. Preserve redundant product terms for the signal.

’xor’ The signal specified will be implemented using an XOR gate fed by two
sum-of-products logic circuits. If you use XOR operators in the design
equations for this output (or if you use high-level operators that result in XOR
operations), then one XOR operator is retained through optimization. Use this
attribute if you are implementing your design in an architecture featuring XOR
gates.

Examples F0, A istype ’invert, reg’ ;

This declaration statement defines F0 and A as inverted registered outputs.
You must define both F0 and A earlier in the module. The following signal
declarations are all supported
q3,q2,q1,q0 NODE ISTYPE ’reg_SR’;
Clk,a,b,c PIN 1,2,3,4;
reset PIN;
reset ISTYPE ’com’;
Output PIN 15 ISTYPE ’reg,invert’;

See Also

.ext
Pin
Node
"Dot Extensions" and "Attribute Assignment" in the Chapter 2, "Language
Structure"
"Architecture-independent Designs" and "XOR Factor" in the Chapter 3,
"Design Considerations"

Istype _ Attribute Declarations Language Reference

6-64 ABEL-HDL Reference

Library

Syntax LIBRARY ’ name’ ;

Purpose The LIBRARY statement causes the contents of the indicated file to be inserted
in the ABEL-HDL source file. The insertion begins at the LIBRARY statement.

Use name A string that specifies the name of the library file, excluding
the file extension.

The file extension of ’.inc’ is appended to the name specified, and the resulting
filename is searched for. If no file is found, the abel5lib.inc library file is
searched.

See Also

Module
@Include

Language Reference Library

ABEL-HDL Reference 6-65

Macro

Syntax macro_id MACRO [(dummy_arg [, dummy_arg]...)] { block } ;

Purpose The macro declaration statement defines a macro. Macros are used to include
ABEL-HDL code in a source file without typing or copying the code
everywhere it is needed.

Use macro_id An identifier naming the macro.

dummy_arg A dummy argument.

block A block.

A macro is defined once in the declarations section of a module and then used
anywhere within the module as frequently as needed. Macros can be used
only within the module in which they are declared.

Wherever the macro_id occurs, the text in the block associated with that macro
is substituted. With the exception of dummy arguments, all text in the block
(including spaces and end-of-lines) is substituted exactly as it appears in the
block.

When debugging your source file, you can use the -list expand option to
examine macro statements. The -list expand option causes the parsed and
expanded source code (and the macros and directives that caused code to be
added to the source) to be written to the listing file.

Macros and Declared Equations
Use declared equations for constant expressions (instead of macros) for faster
processing. The file, mac.abl, in Figure 6-11 demonstrates the difference:

module mac
title ’Demonstrates difference between MACRO and declared equations’
 mac device ’P16H8’;
 A,B,C, pin 1,2,3;
 X1,X2,X3 pin 14,15,16 istype ’com’;
 Y1 macro {B # C};
 Y2 = B # C;

equations
 X1 = A & Y1;
 X2 = A & (Y1);
 X3 = A & Y2;

Figure 6-11
Differences Between MACRO and Declared Equations

Macro Language Reference

6-66 ABEL-HDL Reference

" Note: Because Y1 is a text replacement macro the equation
" for X1 will expand to A & B # C. If the desired function
" was A & (B # C) use parentheses around the macro or use
" a subexpression (Y1=B#C) instead of the macro in the declarations.

" The macro could also be written Y1 macro {(B # C)};

test_vectors ([A,B,C] -> [X1,X2,X3])
 [0,0,0] -> [0, 0, 0];
 [0,0,1] -> [1, 0, 0];
 [0,1,0] -> [0, 0, 0];
 [0,1,1] -> [1, 0, 0];
 [1,0,0] -> [0, 0, 0];
 [1,0,1] -> [1, 1, 1];
 [1,1,0] -> [1, 1, 1];
 [1,1,1] -> [1, 1, 1];
end

Examples
The dummy arguments used in the macro declaration allow different actual
arguments to be used each time the macro is referenced. Dummy arguments
are preceded by a "?" to indicate that an actual argument is substituted for the
dummy by the compiler.

The equation,
NAND3 MACRO (A,B,C) { !(?A & ?B & ?C) } ;

declares a macro named NAND3 with the dummy arguments A, B, and C.
The macro defines a three-input NAND gate. When the macro identifier
occurs in the source, actual arguments for A, B, and C are supplied.

For example, the equation
D = NAND3 (Clock,Hello,Busy) ;

brings the text in the block associated with NAND3 into the code, with Clock
substituted for ?A, Hello for ?B, and Busy for ?C.

This results in:
D = !(Clock & Hello & Busy) ;

which is the three-input NAND.

The macro NAND3 has been specified by a Boolean equation, but it could have
been specified using another ABEL-HDL construct, such as the truth table
shown here:

Language Reference Macro

ABEL-HDL Reference 6-67

NAND3 MACRO (A,B,C,Y)

{ TRUTH_TABLE ([?A ,?B ,?C] -> ?Y)

 [0 ,.X.,.X.] -> 1 ;
 [.X., 0 ,.X.] -> 1 ;
 [.X.,.X., 0] -> 1 ;
 [1 , 1 , 1] -> 0 ; } ;

In this case, the line,
NAND3 (Clock,Hello,Busy,D)

causes the text,
TRUTH_TABLE ([Clock,Hello,Busy] -> D)
 [0 , .X. ,.X.] -> 1 ;
 [.X. , 0 ,.X.] -> 1 ;
 [.X. , .X. , 0] -> 1 ;
 [1 , 1 , 1] -> 0 ;

to be substituted into the code. This text is a truth table definition of D,
specified as the function of three inputs, Clock, Hello, and Busy. This is the
same function as that given by the Boolean equation above. The truth table
format is discussed under Truth_table.

Other examples of macros:
"macro with no dummy arguments
nodum macro { W = S1 & S2 & S3 ; } ;

onedum MACRO (d) { !?d } ; "macro with 1 dummy argument

and when macros are called in logic descriptions:
nodum
X = W + onedum(inp) ;
Y = W + onedum()C ; "note the blank actual argument

resulting in:
"note leading space from block in nodum
 W = S1 & S2 & S3 ;
X = W + ! inp ;
Y = W + ! C ;

Recursive macro references (when a macro definition refers to itself) are not
supported, and the compiler halts abnormally. If errors appear after the first
use of a macro, and the errors cannot be easily explained otherwise, check for a
recursive macro reference by examining the listing file.

See Also

= (Constant Declarations)
"Arguments and Argument Substitution" in Chapter 2, "Language Structure"

Macro Language Reference

6-68 ABEL-HDL Reference

Module

Syntax MODULE modname [(dummy_arg [, dummy_arg] ...)]

Purpose The module statement defines the beginning of a module and must be paired
with an END statement that defines the module’s end.

Use modname An identifier naming the module.

dummy_arg Dummy arguments.

The optional dummy arguments allow actual arguments to be passed to the
module when it is processed. The dummy argument provides a name to refer
to within the module. Anywhere in the module where a dummy argument is
found preceded by a "?", the actual argument value is substituted.

Examples MODULE MY_EXAMPLE (A,B)
 :
 C = ?B + ?A

In the module named MY_EXAMPLE, C takes on the value of "A + B" where A
and B contain actual arguments passed to the module when the language
processor is invoked.

See Also

Title
Interface (submodule)
End
"Arguments and Argument Substitution" in Chapter 2, "Language Structure"

Language Reference Module

ABEL-HDL Reference 6-69

Node

Syntax [!]node_id [,[!]node_id...] NODE [node# [,node#]] [ISTYPE ’attributes’];

Purpose The NODE keyword declares signals assigned to buried nodes.

Use node_id An identifier used for reference to a node in a logic design.

node# The node number on the real device.

attributes A string that specifies node attributes for devices with
programmable nodes. Any number of attributes can be listed,
separated by commas. Attributes are listed in Table 2-9 under
"Attributes" in Chapter 2,"Language Structure."

Note: Using the NODE keyword does not restrict a signal to a buried node. A signal
declared with NODE can be assigned to a device I/O pin by a device fitter.

You can use the range operator (..) to declare sets of nodes. The ending
semicolon is required after each declaration.

When lists of node_id and node # are used in one node declaration, there is a
one-to-one correspondence between the identifiers and numbers.

The following example declares three nodes A, B, and C.
A, B, C NODE ;

The node attribute string, Istype ’attributes,’ should be used to specify node
attributes. Since a node declaration is only required in a detailed description,
use detailed attributes, not pin-to-pin attributes. The ISTYPE statement and
attributes are discussed under Istype.

The node declaration,
B NODE istype ’reg’ ;

specifies that node B is a buried flip-flop.

Example a0..a3 node 22..25;

assigns a0, a1, a2 and a3 to nodes 22, 23, 24 and 25, respectively.

See Also

Istype
Pin
Module
"Attribute Assignment" in the Chapter 2,"Language Structure
"Architecture-independent Designs" in the Chapter 3, "Design Considerations"

Node Language Reference

6-70 ABEL-HDL Reference

Pin

Syntax [!]pin_id [,[!]pin_id...] PIN [pin# [, pin#]] [ISTYPE ’attr’];

Purpose The PIN keyword declares input and output signals that must be available on
a device I/O pin.

Use pin_id An identifier that refers to a pin in a module.

pin# The pin number on the physical device.

attr A string that specifies pin attributes for devices with
programmable pins. Attributes are listed in ISTYPE.

When lists of pin_ids and pin#s are used in a pin declaration statement, there is
a one-to-one correspondence between the identifiers and numbers given.
There must be one pin number associated with each identifier listed.

You can use the range operator (..) to declare sets of pins. The ending
semicolon is required after each declaration.

Note: Assigning pin numbers defines the particular pin-outs necessary for the
design. Pin numbers only limit the device selection to a minimum number of input
and output pins. Pin number assignments can be changed later by a fitter.

The ! operator in pin declarations indicates that the pin is active-low, and is
automatically negated when the source file is compiled.

The pin attribute string, Istype ’attributes,’ should be used to specify pin
attributes. The ISTYPE statement and attributes are discussed under Istype.
Istype attribute statements are recommended for all pins.

Examples Clock, !Reset, S1 PIN 1,15,3;

Clock is assigned to pin 1, Reset to pin 15, and S1 to pin 3.
a0..a3 PIN 2..5 istype ’reg,buffer’;

Assigns a0, a1, a2 and a3 to pins 2, 3, 4 and 5, respectively.

See Also

Istype
Node
Module
"Architecture-independent Designs" in the chapter 3, "Design Considerations"

Language Reference Pin

ABEL-HDL Reference 6-71

Property

Syntax property_id PROPERTY ’ string ’ ;

Purpose The property declaration statement allows you to specify additional design
information associated with an external processing module (such as a device
kit).

The format of the string depends on the fitter to which the property is being
passed. See your device kit user manuals for syntax descriptions.

Note: You can specify properties for any number of fitters in your design, since all
fitters process only properties with their property ID and ignore all other properties.

Use property_id Identifies properties relevant to specific external modules,
such as fitters.

string Argument containing the actual property data.

CAUTION: Property IDs and strings can be case-sensitive. Check your
vendor’s fitter documentation.

CAUTION: Property Information will not be present in pre-route/functional
simulation. Consider using schematics (in Synario) to access property features
that affect simulation

Example
AMDMACH property ’GROUP A Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0’;.

See Also

amd_cm8.abl

Property Language Reference

6-72 ABEL-HDL Reference

State (Declaration)

Syntax state_id [, state_id ...] STATE [IN statereg_id] ;

Purpose The State declaration is made to declare a symbolic state name and, optionally,
associate it with a state register.

Use state_id A symbolic state name to be referenced in a symbolic state
description.

statereg_id An identifier for a state register.

If your design includes more than one symbolic state machine, use the IN
keyword to associate each state with the corresponding state register.

Each state you declare corresponds to one flip-flop in a one-hot machine.

See Also

Async_reset
State_register
Sync_reset
"Symbolic State Declarations" in Chapter 2, "Language Structure"
"Using Symbolic State Descriptions" on page 3-39 in Chapter 3, "Design
Considerations"

Language Reference State (Declaration)

ABEL-HDL Reference 6-73

State (in State_diagram)

Syntax [STATE state_exp : [equation]
[equation]

 :
 :
 :
trans_stmt ; ...]

Purpose The state keyword and the associated section describes one state of a state
diagram. It includes a state value (or a symbolic state name), a state transition
statement, and optional state output equations.

Use state_exp An expression, value, or symbolic state name giving the
current state.

equation An equation that defines the state machine outputs.

trans_stmt IF-THEN-ELSE, CASE, or GOTO statements, optionally
followed by WITH transition equations.

The specification of a state description requires the use of the State_diagram
syntax (which defines the state machine) and the If-Then-Else, Case, Goto,
and With statements (which determine the operation of the state machine).
Symbolic state machines (machines for which the actual state registers and
state values are unspecified) require additional declarations for the symbolic
state register and state names. See "Symbolic State Declarations" in Chapter 2,
"Language Structure" page 2-35.

A semicolon is required after each transition statement.

See Also

Async_reset
Case
@Dcset
Equations
Goto
If-then-else
Module
State

State_diagram
Sync_reset
Truth_table
With
Chapter 3, "Design Considerations"

State (in State_diagram) Language Reference

6-74 ABEL-HDL Reference

State_diagram

Syntax State_diagram state_reg
[-> state_out]

[STATE state_exp : [equation]
[equation]

 :
trans_stmt ; ...]

Purpose The state description describes the operation of a sequential state machine
implemented with programmable logic.

Use state_reg An identifier or set of identifiers specifying the signals that
determine the current state of the machine. For symbolic state
diagrams, this identifier is a symbolic state register name that
has been declared with a State_register declaration.

state_out An identifier or set of identifiers that determines the next state
of the machine (for designs with external registers).

state_exp An expression or symbolic state name giving the current state.

equation An equation that defines the state machine outputs.

trans_stmt IF-THEN-ELSE, CASE, or GOTO statements, optionally
followed by WITH transition equations.

A semicolon is required after each transition statement.

Use State_diagram syntax to define a state machine, and the If-Then-Else,
Case, Goto, and With statements to determine the operation of the state
machine. Symbolic state machines (machines for which the actual state
registers and state values are unspecified) require additional declarations for
the symbolic state register and state names (see "Symbolic State Declarations"
in Chapter 2, "Language Structure" page 2-35).

The syntax for the IF-THEN-ELSE, CASE, GOTO, WITH, SYNC_RESET, and
ASYNC_RESETstatements are presented here briefly, and are discussed
further in their respective sections.

A state machine starts in one of the states defined by state_exp. The equations
listed after that state are evaluated, and the transition statement (trans_stmt) is
evaluated after the next clock, causing the machine to advance to the next state.

Equations associated with a state are optional; however, each state must have a
transition statement. If none of the transition conditions for a state is met, the
next state is undefined. (For some devices, undefined state transitions cause a
transition to the cleared register state.)

Language Reference State_diagram

ABEL-HDL Reference 6-75

Transition Statements
Transition statements describe the conditions that cause transition from one
state to the next. Each state in a state diagram must contain at least one
transition statement. Transition statements can consist of GOTO statements,
IF-THEN-ELSE conditional statements, CASE statements, or combinations of
these different statements.

GOTO Syntax

GOTO state_exp ;

The GOTO statement unconditionally jumps to a different state. When GOTO
is used, it is the only transition for the current state. Example:
STATE S0:
 GOTO S1; "unconditional branch to state S1

CASE Syntax

CASE expression : state_exp ;
[expression : state_exp ;] ...
ENDCASE ;

The CASE statement is used to list a sequence of mutually-exclusive transition
conditions and corresponding next states. Example:
STATE S0:
 CASE (sel == 0): S0 ;
 (sel == 1): S1 ;
 ENDCASE

CASE statement conditions must be mutually exclusive. No two transition
conditions can be true at the same time, or the resulting next state is
unpredictable.

IF-THEN-ELSE Syntax

IF expression THEN state_exp
[ELSE state_exp] ;

IF-THEN-ELSE statements specify mutually-exclusive transition conditions.
Example:
STATE S0:
 IF (address > ^hE100) THEN S1 ELSE S2;

You can use blocks in IF-THEN-ELSE statements, for example,
IF (Hold) THEN State1 WITH {o1 := o1.fb; o2 := o2.fb;}
ELSE State2;

State_diagram Language Reference

6-76 ABEL-HDL Reference

The ELSE clause is optional. A sequence of IF-THEN statements with no ELSE
clauses is equivalent to a sequence of CASE statements. IF-THEN-ELSE
statements can be chained and nested. See IF-THEN-ELSE for more
information.

WITH Syntax

state_exp WITH equation ;
[equation ;]

You can use the WITH statement in any of the above transition statements (the
GOTO, IF-THEN-ELSE, or CASE statements) in place of a simple state
expression. For example, to specify that a set of registered outputs are to
contain a specific value after one particular transition, specify the equation
using a WITH statement similar to the one shown below:
STATE S0:
 IF (reset)
 THEN S9 WITH {
 ErrorFlag := 1;
 ErrorAddress := address;
 }
 ELSE
 IF (address <= ^hE100)
 THEN S2
 ELSE
 S0;

The WITH statement is also useful when you describe output behavior for
registered outputs (since registered outputs written only for a current state
would lag by one clock cycle).

SYNC_RESET and ASYNC_RESET Syntax

In symbolic state descriptions the SYNC_RESET and ASYNC_RESET
statements are used to specify synchronous or asynchronous state machine
reset logic in terms of symbolic states. For example, to specify that a state
machine must asynchronously reset to state Start when the Reset input is true,
you would write
ASYNC_RESET Start : Reset ;

See "Symbolic State Declarations" in Chapter 2, "Language Structure," and
"State Machines" in Chapter 3, "Design Considerations."

State Descriptions and Pin-to-pin Descriptions
Sequential circuits described with ABEL-HDL’s state diagram language are
normally written with a pin-to-pin behavior in mind, regardless of the flip-flop
type specified.

Language Reference State_diagram

ABEL-HDL Reference 6-77

The state machine shown below operates the same (in terms of the behavior
seen on its outputs) no matter what type of register is substituted for ’reg’ in
the signal declarations. To allow this flexibility, the specification of ’buffer’ or
’invert’ is required when a state diagram is written for a register type other
than ’reg.’

module statema
title ’State machine example’;
 clock,hold,reset pin;
 P1,P0 pin istype ’reg,buffer’;
 C = .c.;

equations
 [P1,P0].clk = clock;
 [P1,P0].ar = reset;

" state declarations...
declarations
 statema = [P1,P0]
 stateA = [0,0];
 stateB = [1,0];
 stateC = [1,1];
 stateD = [0,1];

state_diagram statema
 state stateA:
 goto stateB;
 state stateB:
 goto stateC;
 state stateC:
 goto stateD;
 state stateD:
 goto stateA;
"test_vectors edited
end

See Also

Async_reset
Case
@Dcset
Equations
Goto
If-then-else
Module

State
State_register
Sync_reset
Truth_table
With
"Symbolic State Declarations" in Chapter 2,
"Language Structure"

Figure 6-12
Architecture-independent State Machine

State_diagram Language Reference

6-78 ABEL-HDL Reference

State_register

Syntax statereg_id STATE_REGISTER ;

Purpose For symbolic state diagrams, the State_register is made to declare a symbolic
state machine name.

Use statereg_id An identifier naming the state register.

See Also

State
State_diagram
"Symbolic State Declarations" in Chapter 2, "Language Structure"
"Using Symbolic State Descriptions" in Chapter 3, "Design Considerations"

Language Reference State_register

ABEL-HDL Reference 6-79

Sync_reset
See async_reset

Sync_reset Language Reference

6-80 ABEL-HDL Reference

Test_vectors

Syntax Test_vectors [note]
(input [, input]... -> output [, output]...)

[invalues -> outvalues ;]
 :

Purpose Test vectors specify the expected functional operation of a logic device by
explicitly defining the device outputs as functions of the inputs.

Note: Test_vectors are only used with PLD JEDEC file simulation. For functional
simulation with the ABEL or Synario Simulators, use a test stimulus file.

Use note An optional string that describes the test vectors.

inputs An identifier or set of identifiers specifying the names of the
input signals, or feedback output signals.

outputs An identifier or set of identifiers specifying the output signals.

invalues An input value or set of input values.

outvalues A pin-to-pin output value or set of output values resulting
from the given inputs.

Test vectors are used for simulation of an internal model of the device and
functional testing of the design and device. The number of test vectors is
unlimited.

The format of the test vectors is determined by the header. Each vector is
specified in the format described within the parentheses in the header
statement. An optional note string can be specified in the header to describe
what the vectors test, and is included as output in the simulation output file,
the document output file, and the JEDEC programmer load file.

The table lists input combinations and their resulting outputs. All or some of
the possible input combinations can be listed. All values specified in the table
must be constants, either declared, numeric, or a special constant (for example,
.X. and .C.). Each line of the table (each input/output listing) must end with a
semicolon. Test vector output values always represent the pin-to-pin value for
the output signals.

Test vectors must be sequential for state machines. Test vectors must go
through valid state transitions.

The Trace keyword can be used to control simulator output from within the
source file.

Language Reference Test_vectors

ABEL-HDL Reference 6-81

Functional testing of the physical device is performed by a logic programmer
after a device has been programmed. The test vectors become part of the
programmer load file.

Examples Following is a simple test vectors section:

TEST_VECTORS
([A,B] -> [C, D])

 [0,0] -> [1,1] ;
 [0,1] -> [1,0] ;
 [1,0] -> [0,1] ;
 [1,1] -> [0,0] ;

The following test vectors are equivalent to those specified above because
values for sets can be specified with numeric constants.
TEST_VECTORS
([A,B] -> [C, D])

 0 -> 3 ;
 1 -> 2 ;
 2 -> 1 ;
 3 -> 0 ;

If the signal identifiers in the test vector header are declared as active-low in
the declaration section, then constant values specified in the test vectors are
inverted accordingly (interpreted pin-to-pin).

See Also

Module
Trace

Test_vectors Language Reference

6-82 ABEL-HDL Reference

Title

Syntax title ’ string ’

Purpose The title statement gives a module a title that appears as a header in both the
programmer load file and documentation file created by the language
processor.

Use The title is specified in the string following the keyword, title. The string is
opened and closed by an apostrophe and is limited to 324 characters.

The title statement is optional.

Asterisks in the title string do not appear in the programmer load file header
in order to conform with the JEDEC standard.

Examples An example of a title statement that spans three lines and describes the logic
design is shown below:
module m6809a
title ’6809 memory decode
Jean Designer
Data I/O Corp Redmond WA’

See Also

Module

Language Reference Title

ABEL-HDL Reference 6-83

Trace

Syntax TRACE (inputs -> outputs) ;

Purpose The TRACE statement controls which inputs and outputs are displayed in the
simulation output.

Use TRACE statements can be placed before a test vector section, or embedded
within a sequence of test vectors.

Note: Test_vectors are only used with Equation and JEDEC file simulation. For
functional simulation with the Verilog Simulator, use a test stimulus file.

Examples TRACE ([A,B] -> [C]);
TEST_VECTORS ([A,B] -> [C,D])
 0 -> 3 ;
 1 -> 2 ;
TRACE ([A,B] -> [D]);
 2 -> 1 ;
 3 -> 0 ;

See Also

Test_vectors

Trace Language Reference

6-84 ABEL-HDL Reference

Truth_table

Syntax TRUTH_TABLE (in_ids -> out_ids)
 inputs -> outputs ;
 or
TRUTH_TABLE (in_ids :> reg_ids)
 inputs :> reg_outs ;
 or
TRUTH_TABLE
(in_ids :> reg_ids -> out_ids)
 inputs :> reg_outs -> outputs ;

Purpose Truth tables specify outputs as functions of input combinations, in a tabular
form.

Use in_ids Input signal identifiers.

out_ids Output signal identifiers.

reg_ids Registered signal identifiers.

inputs The inputs to the logic function.

outputs The outputs from the logic function.

reg_outs The registered (clocked) outputs.

 -> :> Indicates the input to output function for combinational (->)
and registered (:>) outputs.

Truth tables are another way to describe logic designs with ABEL-HDL and
may be used in lieu of (or in addition to) equations and state diagrams. A
truth table is specified with a header describing the format of the table and
with the table itself.

A semicolon is required after each line in the truth table.

The truth table header can have one of the three forms shown above,
depending on whether the device has registered or combinational outputs or
both.

The inputs and outputs (both registered and combinational) of a truth table are
either single signals, or (more frequently) sets of signals. If only one signal is
used as either the input or output, its name is specified. Sets of signals used as
inputs or outputs are specified in the normal set notation with the signals
surrounded by brackets and separated by commas (see "Sets" in Chapter 2,
"Language Structure").

Language Reference Truth_table

ABEL-HDL Reference 6-85

The syntax shown in the first form defines the format of a truth table with
simple combinational outputs. The values of the inputs determine the values
of the outputs.

The second form describes a format for a truth table with registered outputs.
The symbol ":" preceding the outputs distinguishes these outputs from the
combinational outputs. Again the values of the inputs determine the values of
the outputs, but now the outputs are registered or clocked: they will contain
the new value (as determined by the inputs) after the next clock pulse.

The third form is more complex, defining a table with both combinational and
registered outputs. It is important in this format to make sure the different
specification characters "-" and ":" are used for the different types of outputs.

Truth Table Format
The truth table is specified according to the form described within the
parentheses in the header. The truth table is a list of input combinations and
resulting outputs. All or some of the possible input combinations may be
listed.

All values specified in the table must be constants, either declared, numeric, or
the special constant .X. Each line of the table (each input/output listing) must
end with a semicolon.

The header defines the names of the inputs and outputs. The table defines the
values of inputs and the resulting output values.

Examples This example shows a truth table description of a simple state machine with
four states and one output. The current state is described by signals A and B,
which are put into a set. The next state is described by the registered outputs
C and D, which are also collected into a set. The single combinational output
is signal E. The machine simply counts through the different states, driving
the output E low when A equals 1 and B equals 0.
TRUTH_TABLE ([A,B] :> [C,D] -> E)
 0 :> 1 -> 1 ;
 1 :> 2 -> 0 ;
 2 :> 3 -> 1 ;
 3 :> 0 -> 1 ;

Note that the input and output combinations are specified by a single constant
value rather than by set notation. This is equivalent to:
[0,0] :> [0,1] -> 1 ;
[0,1] :> [1,0] -> 0 ;
[1,0] :> [1,1] -> 1 ;
[1,1] :> [0,0] -> 1 ;

Truth_table Language Reference

6-86 ABEL-HDL Reference

When writing truth tables in ABEL-HDL (particularly when describing
registered circuits) follow the same rules for dot extensions, attributes, and
pin-to-pin/detailed descriptions described earlier for writing equations. The
only difference between equations and truth tables is the ordering of the
inputs and outputs.

The following two fragments of source code, for example, are functionally
equivalent:

Fragment 1:
equations

 q := a & load # !q.fb & !load;

Fragment 2:
truth_table ([a ,q.fb,load] :> q)
 [0 , 0 , 0] :> 1;
 [0 , 1 , 0] :> 0;
 [1 , 0 , 0] :> 1;
 [1 , 1 , 0] :> 0;
 [0 , 0 , 1] :> 0;
 [1 , 0 , 1] :> 1;
 [0 , 1 , 1] :> 0;
 [1 , 1 , 1] :> 1;

As an example, the following truth table defines an exclusive-OR function with
two inputs (A and B), one enable (en), and one output (C):
TRUTH_TABLE ([en, A , B] -> C)
 [0,.X.,.X.] -> .X.;" don’t care w/enab off
 [1, 0 , 0] -> 0 ;
 [1, 0 , 1] -> 1 ;
 [1, 1 , 0] -> 1 ;
 [1, 1 , 1] -> 0 ;

See Also

Module
Equations
State_diagram
@Dcset
led1.abl
led7.abl

Language Reference Truth_table

ABEL-HDL Reference 6-87

When-Then-Else

Syntax [WHEN condition THEN] [!] element=expression;
[ELSE equation];
 or
[WHEN condition THEN] equation; [ELSE equation];

Purpose The When-then-else statement is used in equations to describe a logic
function.

Use condition Any valid expression.

element An identifier naming a signal or set of signals, or an actual set,
to which the value of the expression is assigned.

expression Any valid expression.

=, :=, ?= and ?:= Combinational and registered (pin-to-pin) assignment
operators.

Equations use the assignment operators = and ?= (combinational), and := and
?:= (registered) described in Chapter 2, "Language Structure."

The complement operator, "!", expresses negative logic. The complement
operator precedes the signal name and implies that the expression on the right
of the equation is to be complemented before it is assigned to the signal. Using
the complement operator on the left side of equations is also supported;
equations for negative logic parts can just as easily be expressed by
complementing the expression on the right side of the equation.

CAUTION: When-Then-Else is only supported in equations. Use If-Then-Else
in state_diagram descriptions.

Note: Equation blocks in conditional expressions such as WHEN-THEN result in
logic functions that are logically ANDed with the conditional expression that is in
effect.

Examples WHEN (Mode == S_Data) THEN { Out_data := S_in;
 S_Valid := 1; }
ELSE WHEN (Mode == T_Data) THEN { Out_data := T_in;
 T_Valid := 1; }

See Also

"Equations" in Chapter 2, "Language Structure"

When-Then-Else Language Reference

6-88 ABEL-HDL Reference

With

Syntax trans_stmt state_exp WITH equation
[equation]..;

Purpose The WITH statement is used in the State_diagram section. When used in
conjunction with the IF-THEN or CASE statement, it allows output equations
to be written in terms of transitions.

Use trans_stmt The IF-THEN-ELSE, GOTO, or CASE statement.

state_exp The next state.

equation An equation for state machine outputs.

You can use the WITH statement in any transition statement, in place of a
simple state expression.

The WITH statement is also useful when you are describing output behavior
for registered outputs, since registered outputs written only for a current state
would lag by one clock cycle.

To specify that a set of registered outputs should contain a specific value after
one particular transition, specify the equation using a WITH statement similar
to the one shown below:
STATE S0:
 IF (reset) THEN S9 WITH { ErrorFlag := 1;
 ErrorAddress := address;}
 ELSE IF (address <= ^hE100)
 THEN S2
 ELSE S0;

Examples State 5 :
 IF a == 1 then 1 WITH { x := 1 ;
 y := 0 ;}
 ELSE 2 WITH { x := 0 ;
 y := 1 ;}

See Also

State_diagram
Case
Goto
If-then-else

Language Reference With

ABEL-HDL Reference 6-89

XOR_Factors

Syntax XOR_Factors
signal name = xor_factors ;

Purpose Use XOR_factors to specify a Boolean expression to be factored out of (and
XORed with) the sum-of-products reduced equations. Factors can
dramatically reduce the reduced equations if you use a device featuring XOR
gates.

Use XOR_factors converts a sum of products (SOP) equation into an exclusive OR
(XOR) equation. The resulting equation contains the sum of product functions
that, when exclusive ORed together, have the same function as the original.
The XOR_Factors equation is divided into the original equation, with the factor
(or its complement) on one side of the XOR and the remainder on the other.

After deciding the best XOR_Factors, remember to revise the source file to use
an XOR device for the final design.

Note: The assignment operator you use in XOR_Factors equations must match the
assignment operator in the Equations section.

Examples !Q16 = A & B & !D
 # A & B & !C
 # !B & C & D
 # !A & C & D;

Reordering the product terms indicates that (A & B) and (C & D) are good
candidate factors, as shown below:
!Q16 = A & B & (!C # !D)
 # (!A # !B) & C & D;

If we process the following source file, the program reduces the equations
according to the XOR_Factors, A & B.

XOR_Factors Language Reference

6-90 ABEL-HDL Reference

module xorfact
 xorfact device ’P20X10’;
 Clk,OE pin 1,13;
 A,B,C,D pin 2,3,4,5;
 Q16 pin 16 istype ’reg,xor’;
XOR_Factors
 Q16 := A & B;
equations
 !Q16 := A & B & !D
 # !B & C & D
 # !A & C & D
 # A & B & !C;
end

Using A & B as the XOR_Factors, the reduced equations are
!Q16 := ((A & B) $ (C & D));

Example 2

The example octalf.abl uses a more complex high-level equation:
module OCTALF
title ’Octal counter with xor factoring
Adam Zilinskas Data I/O Corp.’

 octalf device ’P20X8’;
 D0..D7 pin 3..10;
 Q7..Q0 pin 15..22 istype ’reg,xor’;
 CLK,I0,I1,OC,,CarryIn pin 1,2,11,13,23;
 CarryOut pin 14 istype ’com’;
 H,L,X,Z,C = 1, 0, .X., .Z., .C.;

 Data = [D7..D0];
 Count = [Q7..Q0];

 Mode = [I1,I0];
 Clear = [0, 0];
 Hold = [0, 1];
 Load = [1, 0];
 Inc = [1, 1];

xor_factor
 Count.FB := Count & I0;

" ..comments removed..
equations
 Count := (Count.FB + 1) & (Mode == Inc) & !CarryIn
 # (Count.FB) & (Mode == Inc) & CarryIn
 # (Count.FB) & (Mode == Hold)

Language Reference XOR_Factors

ABEL-HDL Reference 6-91

 # (Data) & (Mode == Load)
 # (0) & (Mode == Clear);

 !CarryOut = !CarryIn & (Count.FB == ^hFF);

 Count.C = CLK;
 Count.OE = !OC;
"..test vectors removed..
"..comments removed..
end OCTALF;

XOR_Factors Language Reference

6-92 ABEL-HDL Reference

Index

!
’attr,’ istype 6-60
’attribute’ 6-60

and polarity control 3-17
’collapse’

collapsing nodes 3-5
selective collapsing 3-5

’keep,’ collapsing nodes 3-5
.. (range operator)

example 5-10
in hierarchy declarations 6-49
in node declarations 6-70
in pin declarations 6-71
in sets 2-18

.constant 2-6

.ext 6-2, 6-3
:= alternate flip-flop types 3-13
@Alternate 6-17
@Carry 6-18
@Const 6-19
@Dcset 6-20

example 3-25
@Dcstate 6-21
@Exit 6-22
@Expr 6-23
@If 6-24
@Ifb 6-25
@Ifdef 6-26
@Ifiden 6-27
@Ifnb 6-28
@Ifndef 6-29
@Ifniden 6-30
@Include 6-31
@Irp 6-32
@Irpc 6-33
@Message 6-34

@Onset 6-35
@Page 6-36
@Radix 6-37
@Repeat 6-38
@Setsize 6-39
@Standard 6-40
^b 2-9
^d 2-9
^h 2-9
^o 2-9

A
ABEL-HDL

introduction to 2-2
structure 2-27
syntax 2-3

.ACLR 6-3
Active-low declarations 3-14
actlow1.abl 3-15
actlow2.abl 3-14
Addition 2-11
@Alternate 6-17

disabling 6-40
AND 2-11

alternate operator for 6-17
.AP 6-3
.AR 6-3
Architecture independence

attributes 3-6
dot extensions 3-6, 3-19
dot extensions, example 3-20
resolving ambiguities 3-7

Arguments 2-25
defining in Module statement 6-69

Arithmetic operators 2-11
Arrays, complement 3-40
ASCII, supported characters 2-3
.ASET 6-3
Assignment operators 2-14
Assignments

device 6-46
multiple, to same identifier 2-17
node 6-70
pin 6-71

Async_reset keyword 6-41
Asynchronous preset 6-3
Attributes 6-60

ABEL-HDL Reference Index-1

’buffer’ 6-62
’collapse’ 6-62
’com’ 6-62
’dc’ 6-63
’invert’ 6-62
’keep’ 6-62
’neg’ 6-63
’pos’ 6-63
’reg’ 6-63
’reg_d’ 6-63
’reg_g’ 6-63
’reg_jk’ 6-63
’reg_sr’ 6-63
’reg_t’ 6-64
’retain’ 6-64
’xor’ 6-64
and architecture independence 3-6
collapsing nodes 3-5
in lower-level sources 3-2
inherited by higher-level sources 6-49
istype 6-60

B
^b 2-9
Base numbers 2-9

changing 6-37
bcd7.abl 5-21
Bidirectional 3-state buffer, example 5-13
Binary 2-9
binbcd.abl 5-31
bjack.abl 5-36
Blackjack machine 5-25
Blocks 2-6
’buffer’ 6-62

example 3-10
and polarity control 3-17

Buried nodes, declaring 6-70

C
.C. 2-6
@Carry 6-18
Case keyword 6-42
.CE 6-3
Chained if-then-else 6-55
.CLK 6-3
Clock-enable 6-3

Clocked memory element, Istype ’reg’ 6-63
Closing a module 6-47
.CLR 6-3
’collapse’ 6-62
Collapsing combinational nodes

Istype ’collapse’ 6-62
Istype ’keep’ 6-62

Collapsing nodes 3-5
selective 3-5

.COM 6-3, 6-62
Combinational nodes 3-3
Combinatorial device, attribute for 6-62
Comments 2-8
comp4a.abl 5-18
Complement arrays 3-40

example 3-41
Complement operator 2-16
@Const 6-19
Constants 2-6

declarations 6-13
declared in macros 6-19
intermediate expressions 6-14

Counter, example 5-9
counter.abl 6-50

D
.D. 2-6, 2-9
.D 3-19, 6-3

example 6-12
D flip-flop

clocked memory element 6-63
dot extensions 6-5
gated clocked memory element 6-63
unsatisfied transition conditions 3-32

Dangling nodes 3-3
’dc’ 6-63

and polarity control 3-17
Dc-set 3-24

and optimization 3-25
dc.abl 3-25
@Dcset 6-20

 overrides ’dc,’ ’neg,’ and ’pos’ 6-63
disabling 6-35
precautions 3-24
with state machines 3-33

@Dcstate 6-21
decade.abl 3-41

B Index

Index-2 ABEL-HDL Reference

Decimal 2-9
Declarations

active-low 3-14
constants 6-13
device 6-46
fuses 6-52
macro 6-66
node 6-70
pin 6-71
signal 2-33
structure 2-30

Declarations keyword 6-45
Declared equations vs. macros 6-66
decode.abl 5-4
Default values

for lower-level source signals 6-57
supported values 6-59

Design considerations 3-1
Detail descriptions 3-8

and dot extensions 3-22
example, dot extensions 3-22 - 3-23
example, inverting 3-11
example, non-inverting 3-10
and macrocells 3-8
when to use 3-13

detail1.abl 3-22
detail2.abl 3-23
Device keyword 6-46
Device kits, passing information to 6-72
Devices

declaring fuse states 6-52
programmable polarity 3-16

Directives 6-16
@Alternate 6-17
@Carry 6-18
@Const 6-19
@Dcset 6-20
@Dcstate 6-21
@Exit 6-22
@Expr 6-23
@If 6-24
@Ifb 6-25
@Ifdef 6-26
@Ifiden 6-27
@Ifnb 6-28
@Ifndef 6-29
@Ifniden 6-30
@Include 6-31
@Irp 6-32

@Irpc 6-33
@Message 6-34
@Onset 6-35
@Page 6-36
@Radix 6-37
@Repeat 6-38
@Setsize 6-39
@Standard 6-40
changing base numbering system 6-37
if blank 6-25
if defined 6-26
if identical 6-27
if not blank 6-28
if not defined 6-29
if not identical 6-30

Division 2-11
Don’t cares, @Dcset 6-20
Dot extensions 6-2, 6-3

.D 3-19

.FB 3-18 - 3-19

.PIN 3-19

.Q 3-19
and architecture independence, example 3-20
and architecture independence 3-6, 3-19
and detail descriptions 3-22
drawings of 6-7
example, detail 3-22, 3-23
and feedback 3-18
for flip-flop types) 6-5
no 3-18
not allowed across sources 6-57
pin-to-pin 6-7

Dummy arguments 2-25
defining in Module statement 6-69

E
Else keyword 6-54
Emulation of flip-flops 3-27
End keyword 6-47
Endcase 6-42
Equal 2-12
Equation polarity 3-17
Equations

for flip-flops 3-18
overview 2-16
when-then-else 6-48, 6-88
XOR 3-26

Index E

ABEL-HDL Reference Index-3

Equations keyword 6-48
Examples

12-to-4 multiplexer, equations 5-5
4-bit comparator, equations 5-16
4-bit universal counter 5-9
adder 5-25
bidirectional 3-state buffer, equations 5-13
binary to BCD converter 5-25
blackjack machine 5-25
blackjack machine, state machine 5-25
memory address decoder, equations 5-2
multiplexer 5-25
7-segment display decoder, truth tables 5-19
three-state sequencer, state machine 5-22

@Exit 6-22
@Expr 6-23
Expressions 2-15

directive for 6-23

F
.F. 2-6
Factors, XOR 6-90
.FB 3-18, 3-19, 6-3
.FC 6-3
Feedback

and dot extensions 3-18
merging 3-4
referencing across sources 6-57

Files, including in source file 6-31, 6-65
Flip-flop mode control 6-3
Flip-flops 3-33

D-type 3-32
detail descriptions 3-13
and dot extensions 3-18
emulation with XORs 3-27
state diagrams 3-13
using := with 3-13

Form feed 6-36
4-bit Universal Counter 5-16

example 5-9
Functional_block 6-49
Fuses keyword 6-52

G
Gated Clock D Flip-flop, dot extensions 6-5
Goto keyword 6-53
Greater than 2-12

H
^h 2-9
Header 2-29, 6-83
Hexadecimal 2-9
Hierarchy 3-1
Hierarchy declarations

creating multiple instances of a source 6-49
functional_block 6-49
inheriting attributes 6-49
interface (lower-level source) 6-58
interface (top-level source) 6-57
overriding default values 6-50
supported default values 6-59
unlisted pins 6-59
unused outputs 6-51
wiring lower-level signals 6-50

I
Identifiers 2-4

choosing 2-5
in state machines 3-30
multiple assignments to 2-17
reserved 2-5

@If 6-24
If blank 6-25
If defined 6-26
If identical 6-27
If not blank 6-28
If not defined 6-29
If not identical 6-30
If-then-else keywords 6-54
@Ifb 6-25
@Ifdef 6-26
@Ifiden 6-27
@Ifnb 6-28
@Ifndef 6-29
@Ifniden 6-30
@Include 6-31
Include files 6-65

F Index

Index-4 ABEL-HDL Reference

Indefinite repeat 6-32
character 6-33

Input pin 6-71
Instantiation 3-1, 6-57, 6-58

of lower-level sources 6-49
Interface, submodule 3-2
Interface (lower-level source) 6-58
Interface (top-level source) 6-57
Intermediate expressions 6-14
’invert’ 6-62

example 3-11
and polarity control 3-17

Inverting outputs, attribute for 6-62
@Irp 6-32
@Irpc 6-33
Istype, keyword 6-60

See also Attributes

J
.J 6-3
JEDEC simulation 3-4
JK flip-flop

and := 3-13
clocked memory element 6-63
dot extensions 6-5
emulation of 3-28

K
.K. 2-6, 6-3
’keep’ 6-62
Keywords 2-5

async_reset 6-41
case 6-42
declarations 6-45
device 6-46
end 6-47
equations 6-48
fuses 6-52
goto 6-53
if-then-else 6-54
interface (lower-level source) 6-58
interface (top-level source) 6-57
istype 6-60
library 6-65
macro 6-66
module 6-69

node 6-70
pin 6-71
property 6-72
state (declarations) 6-73
state (in state_diagram) 6-74
state_diagram 6-75
state_register 6-79
sync_reset 6-41
test_vectors 6-81
title 6-83
trace 6-84
truth_table 6-85
when-then-else 6-88
with 6-89
XOR_factors 6-90

L
L-type latch, dot extensions 6-5
Latch-enable 6-3
.LD 6-3
.LE 6-3
Less than 2-12
.LH 6-3
Library keyword 6-65
Linking modules

merging feedbacks 3-4
post-linked optimization 3-4

Logic descriptions 2-36
Logic operators 2-11
Lower-level sources 3-2

instantiating 3-1, 6-49

M
mac.abl 6-66
Macro, keyword 6-66
Macros, vs. declared equations 6-66
Memory address decoder, example 5-2
@Message 6-34
Minus 2-11
Module, beginning 6-69

defined 2-29
ending 6-47

Module, keyword 6-69
Modulus 2-11
Multiplication 2-11

Index J

ABEL-HDL Reference Index-5

mux12t4.abl 5-8
muxadd.abl 5-29

N
’neg’ 6-63

and polarity control 3-17
No connects, in hierarchy declarations 6-51
Node

collapsing 3-5
combinational 3-3
complement arrays 3-40
dangling 3-3
istype 6-60
node keyword 6-70
registered 3-3
removing redundant 3-4
selective collapsing 3-5
using the range operator in 6-70

Non-inverting outputs
attribute for 6-62

NOT 2-11
alternate operator for 6-17

Not equal 2-12
Numbers 2-9

changing base 6-37

O
^o 2-9
Octal 2-9
octalf.abl 6-91
.OE 6-3

example 6-12
Off-set 3-24
On-set 3-24
One-bit changes 3-37
@Onset 6-35
Operators

alternate set of 6-17
arithmetic 2-11
assignment 2-14
complement 2-16
logical 2-11
overview 2-11
priority 2-15
relational 2-12
standard set 6-40

Optimization
and @DCSET 3-25
post-linked 3-4
reducing product terms 3-37
of XORs 3-26

OR 2-11
alternate operator for 6-17

Output enables 3-2
Output pin 6-71
Output-enable 6-3
Outputs, using istype for 6-60

P
.P. 2-6
@Page 6-36
.PIN 3-19, 6-3

assignments 6-71
istype 6-60
pin keyword 6-71
using the range operator in 6-71

Pin-to-pin descriptions 3-7
example 3-10
and flip-flops 3-18
resolving ambiguities 3-7

pin2pin.abl 3-20
Plus 2-11
Istype, and polarity control 3-17
Polarity control 3-16

active levels 3-16
Ports, declaring lower-level 3-2
’pos’ 6-63
Post-linked Optimization 3-4
Powerup state 3-31
.PR 6-3

example 6-12
Preset 6-3

built-in, example 3-11
Priority of operators 2-15
Product terms

reducing 3-37
reducing with intermediate expressions 6-14

Programmable polarity,
active levels for devices 3-16

Property keyword 6-72

N Index

Index-6 ABEL-HDL Reference

Q
.Q 3-19, 6-3
Q11.abl 3-10
Q12.abl 3-10
Q13.abl 3-11
Q15.abl 3-12
Q17.abl 3-12

R
.R 6-3
@Radix 6-37
Range operator

example 5-10
in hierarchy declarations 6-49
in node declarations 6-70
in pin declarations 6-71
in sets 2-18

.RE 6-3
example 6-12

Reduction, XOR_factors 6-90
Redundant nodes 3-4
Redundant product terms, retaining 6-64
’reg’ 6-63
’reg_d’ 6-63
’reg_g’ 6-63
’reg_jk’ 6-63
’reg_sr’ 6-63
’reg_t’ 6-64
Register load input 6-3
Registered design descriptions 3-7
Registered nodes 3-3
Registers

bit values in state machines 3-37
cleared state in state machines 3-32
dot extensions 6-5
powerup states 3-31

Relational operators 2-12
Repeat 6-38

@Irp directive 6-32
@Irpc directive 6-33

Reset 6-3
example, inverted architecture 3-12
example, non-inverted architecture 3-12
resolving ambiguities 3-12

’retain’ 6-64

S
.S 6-3
Selective collapsing 3-5
sequence.abl 3-30, 5-24
.SET 6-3
Set operations 2-19
Sets 2-18

assignment and comparison 2-20
evaluation of 2-22
indexing 6-39
limitations 2-24
using to create modes 5-9

@Setsize 6-39
7-segment display decoder, example 5-19
Shift 2-11
Signals

nodes 6-70
pins 6-71

Simulation
test_vectors 6-81
trace keyword 6-84

Source files
beginning 6-69
declarations 2-30
design considerations 3-1
directives 2-40
header 2-29
logic descriptions 2-36
structure of 2-27
test vectors 2-39

.SP 6-3
Special constants 2-6
.SR 6-3
SR flip-flop

and := 3-13
clocked memory element 6-63
dot extensions 6-5

@Standard 6-40

State keyword
declarations 6-73
in descriptions 6-74

State machine example 3-30, 6-78
@Dcset 3-35
blackjack machine 5-25
no @Dcset 3-33
three-state sequencer 5-22

Index Q

ABEL-HDL Reference Index-7

State machines
case keyword 6-42
cleared register state 3-32
and @Dcset 3-26, 3-33
design considerations 3-29
goto 6-53
identifiers in 3-30
identifying states 3-37
if-then-else 6-54
illegal states 3-32
powerup register states 3-31
reducing product terms 3-37
state 6-74
state_diagram 6-75
test vectors for 6-81
transition statements 6-76
using state register outputs 3-37
with 6-89

State registers 3-37
State_diagram, @Dcstate 6-21
State_diagram keyword 6-75
State_register keyword 6-79
statema.abl 6-78
Subtraction 2-11
Sum-of-products, XOR_factors 6-90
.SVn. 2-6
Symbolic state descriptions 3-38

specifying reset logic 6-41
Sync_reset keyword 6-41
Synchronous preset 6-3
Syntax 2-3

T
.T 6-3
T flip-flop

and equations 3-18
clocked memory element 6-64
dot extensions 6-5

Tabular truth table 6-85
Test vectors 3-4

test_vectors keyword 6-81
trace keyword 6-84

Then keyword 6-54
Three-state sequencer, example 5-22
Times 2-11
Title keyword 6-83
Trace keyword 6-84

traffic.abl 3-33
traffic1.abl 3-35
Transferring designs 3-6
Transition conditions 3-32
Transition statements 6-76
Transitions

case keyword 6-42
if-then-else keywords 6-54

Tristate outputs 3-2
Truth tables

7-segment display decoder example 5-19
truth_table keyword 6-85

tsbuffer.abl 5-15
12-to-4 multiplexer, example 5-5

U
.U. 2-6
unicnt.abl 5-9
Unlisted pins

in hierarchy declarations 6-59
Unspecified logic values,

istype ’dc|pos|neg’ 6-63

W
When-then-else 6-48
When-then-else keyword 6-88
With keyword 6-89

X
.X. 2-6
x1.abl 3-26
x2.abl 3-27
XNOR 2-11

alternate operator for 6-17
XOR 2-11, 6-64

alternate operator for 6-17
attribute for 6-64

XOR_Factors
example 6-91
summary 2-39

XOR_factors keyword 6-90

T Index

Index-8 ABEL-HDL Reference

xorfact.abl 6-91
XORs

example 3-26 - 3-27
flip-flop emulation 3-27
implied 3-27
and operator priority 3-27
optimization of 3-26

Z
.Z. 2-6

Index Z

ABEL-HDL Reference Index-9

	Master Table of Contents
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Language Structure
	Summary
	Introduction to ABEL-HDL
	Basic Syntax
	Supported ASCII Characters
	Identifiers
	Constants
	Blocks
	Comments
	Numbers
	Strings
	Operators, Expressions, and Equations
	Sets
	Arguments and Argument Substitution

	Basic Structure
	Header
	Module
	Interface
	Title

	Declarations
	Declarations Keyword
	Device Declaration
	Hierarchy Declarations
	Signal Declarations
	Constant Declarations
	Symbolic State Declarations
	Macro Declarations
	Library Declaration

	Logic Description
	Dot Extensions
	Equations
	Truth Tables
	State Descriptions
	Fuse Declarations
	XOR Factors

	Test Vectors Section
	Test Vectors
	Trace Statement

	End Statement
	Other Elements
	Directives

	Chapter 3 Design Considerations
	Using Complement Arrays
	Hierarchy in ABEL-HDL
	Instantiating a Lower-level Module in an ABEL-HDL Source
	Hierarchy and Retargeting and Fitting
	Hierarchy and Test Vectors (PLD JEDEC Simulation)

	Node Collapsing
	Selective Collapsing

	Pin-to-pin Language Features
	Device-independence Vs. Architecture-independence
	Signal Attributes
	Signal Dot Extensions

	Pin-to-pin vs. Detailed Descriptions for Registered Designs
	Using := for Pin-to-pin Descriptions
	Detailed Circuit Descriptions
	Examples of Pin-to-pin and Detailed Descriptions
	Detailed Module with Inverted Outputs
	When to Use Detailed Descriptions
	Using := for Alternative Flip-flop Types

	Using Active-low Declarations
	Polarity Control
	Polarity Control with Istype

	Flip-flop Equations
	Feedback Considerations — Using Dot Extensions
	Dot Extensions and Architecture-Independence
	Dot Extensions and Detail Design Descriptions

	Using Don’t Care Optimization
	Exclusive OR Equations
	Optimizing XOR Devices
	Using XOR Operators in Equations
	Using Implied XORs in Equations
	Using XORs for Flip-flop Emulation

	State Machines
	Use Identifiers Rather Than Numbers for States
	Powerup Register States
	Unsatisfied Transition Conditions
	Precautions for Using Don’t Care Optimization
	Number Adjacent States for One-bit Change
	Use State Register Outputs to Identify States
	Using Symbolic State Descriptions

	Chapter 4 Designing with FPGAs
	FPGA Design Strategies
	Declaring Signals
	Using Intermediate Signals

	Using FPGA Device Kits
	Integrating ABEL-HDL Designs into Larger Circuits

	Chapter 5 Source File Examples
	Equations
	Memory Address Decoder
	12-to-4 Multiplexer
	4-Bit Universal Counter
	Bidirectional Three-state Buffer
	4-Bit Comparator

	Truth Table Examples
	Seven-segment Display Decoder

	State Diagram Examples
	Three-state Sequencer

	Combined Logic Descriptions
	Hierarchy Examples
	ABEL and Synario Projects
	Lower-level Sources

	Chapter 6 Language Reference
	. ext — Dot Extensions
	Examples

	= — Constant Declarations
	’attr’ — Signal Attributes
	@directive — Directives
	Async_reset and Sync_reset
	Case
	Constant Declarations
	Declarations
	Device
	End
	Equations
	Functional_block
	Fuses
	Goto
	If-Then-Else
	Interface (top-level)
	Interface (lower-level)
	Istype _ Attribute Declarations
	Library
	Macro
	Module
	Node
	Pin
	Property
	State (Declaration)
	State (in State_diagram)
	State_diagram
	State_register
	Sync_reset
	Test_vectors
	Title
	Trace
	Truth_table
	When-Then-Else
	With
	XOR_Factors

	Index

