Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip

Developer's Manual

ADVANCE INFORMATION

August 1999

Notice: This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local Intel sales office that you have the latest technical information before finalizing a design.

Order No: 278242-002

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 8/23/99

*Third-party brands and names are the property of their respective owners.

ARM and StrongARM are registered trademarks of ARM Ltd.

int_el。 *Contents*

1	Intro	ductior	1	1–1
	1.1	Conver	ntions	1–1
		1.1.1	Specifying Bit and Signal Values	1–1
		1.1.2	Representing Numbers	1–1
		1.1.3	Register Names	1–1
	1.2	System	n Block Diagram	1–2
	1.3	Signal	Descriptions	1–4
2	Func	ctional I	Description	2–1
	2.1	Functio	nal Blocks	2–1
		2.1.1	System Bus Interface (SBI)	2–2
		2.1.2	Intel [®] StrongARM [®] SA-1111 Subsystems	2–2
	2.2	Clock (Generation and Distribution	2–3
	2.3	System	n Reset	2–4
	2.4	Modes	of Operations	2–5
		2.4.1	Normal Mode	2–5
		2.4.2	Doze Mode	2–5
		2.4.3	Sleep Mode	2–7
	2.5	Test		2–12
3	Syst	em Bus	Interface (SBI)	3–1
	3.1	Signal	Description	3–1
		3.1.1	Intel [®] StrongARM [®] SA-1110 System Bus Interface - Signals	3–1
		3.1.2	System Bus Interface (SBI) - Internal Buses and Signals	3–2
		3.1.3	Other Internal Interface Signals	3–3
	3.2	Functio	nal Description	3–4
		3.2.1	Register Accesses and the Register Access Bus (RAB)	3–4
		3.2.2	PCMCIA and CF Access	3–9
		3.2.3	DMA Access to System Memory	3–9
			3.2.3.1 Acquiring Internal and External System Buses	3–9
			3.2.3.2 DMA Bus Arbitration	3–10
			3.2.3.3 Shared Memory Controller (SMC)	3–10
			3.2.3.4 DRAM Address Generation	3–11
	2.2		3.2.3.5 DRAM Control Signal Generation	
	3.3	Progra	Control Dogistor (SKCD)	3-15
		3.3.1 2.2.2	Control Register (SNCR)	2 10
		3.3.Z	D Pagistor (SKID)	2 16
		331	Memory Man	3_16
		5.5.4		
4	SA-1	111 Into	ernal Bus Architecture	4–1
	4.1	Registe	er Access Bus	4–1
		4.1.1	KAB Central Address Decoder	4–1
		4.1.2	Signal Description	4–3
		4.1.3		4–3
	4.0	4.1.4		4–3
	4.2		US	
		4.2.1	Divia dus arditer	

	4.2.2 4.2.3	 4.2.1.1 DMA Arbiter Block Diagram	4–4 4–5 4–6 4–6 4–6 4–7
Syste	em Cor	troller	5–1
5.1	Functio	onal Description	5–1
	5.1.1	System Power Control	5–1
5.0	5.1.2 Dragra	PWM Outputs	5-1
5.2	5 2 1	Power Control Register (SKPCR)	0-2 5_2
	5.2.1	Clock Divider Register (SKCDR)	
	5.2.3	Audio Clock Divider Register (SKAUD)	5–3
	5.2.4	PS/2 Mouse Clock Divider Register (SKPMC)	5–4
	5.2.5	PS/2 Track Pad Clock Divider Register (SKPTC)	5–4
	5.2.6	PWM0 Enable Register (SKPEN0)	5–4
	5.2.7	PWM0 Clock Register (SKPWM0)	5–4
	5.2.8	PWM1 Enable Register (SKPEN1)	5–5
	5.2.9	PWM1 Clock Register (SKPWM1)	5–5
	5.2.10	Memory Map	5–5
USB	Host Ir	terface Controller	6–1
6.1	Functio	onal Description	6–1
	6.1.1	USB Reset	6–1
	6.1.2	USB Suspend	6–1
	6.1.3	Power Management	6–2
		6.1.3.1 USB Clock Stopping and Power Enable	6–2
		6.1.3.2 Port Resume Interrupt	6–2
	0.4.4	6.1.3.3 Summary of Low Power Operation	6–3
	6.1.4	Suggested Power-Management Routines	6-4
		6.1.4.1 Initial Port Power-Down Sequence	0–4 6_4
		6.1.4.2 Low-Power Mode in Suspend State Sequence	4-0 6-4
		6.1.4.4 Disable USB Port	6–5
6.2	USB B	lock Interfaces	6–5
	6.2.1	External Pin Interface	6–5
	6.2.2	Internal RAB Bus Interface	6–5
	6.2.3	Internal DMA Bus Interface	6–6
	6.2.4	Interrupt Generation	6–6
6.3	Progra	mmer's Model	6–7
	6.3.1	Status Register	6–7
	6.3.2	Interrupt Test Register	6–8
~ 1	6.3.3	Reset Register	6–8
6.4	Registe	er Memory Map	6–9
Seria	I Audio	o Controller	7–1
7.1	Signal	Description	7–1
	7.1.1	External Interface to Serial Audio Controller	/–1
	740	7.1.1.1 Optional L3 Bus Interface	1-2
	7.1.Z	Themai Internaces	/ – う っつ
		1.1.2.1 REVISIEI ALLESS DUS (RAD)	1–3

7

5

6

		7.1.2.2 DMA Bus Interface	7–3
70	Sorial	Audio Controllor Operation	7-4
1.2	701	PAR Bus Data Transfore	7-5
	7.2.1	NAD Dus Data Transfers	7-5
	7.2.Z	Divid Audio Data Transfers	7-0
70	7.2.3 Doto E	Senai Audio Ciocks and Sampling Frequencies	7-0
1.3		OIIIIals	7-0
	7.3.1	Parallel Data Formats, buller and DRAM Storage	7-0
	1.3.2	2.2.2.4. AC link Carial Data	7-0
		7.3.2.1 AU-IINK Serial Data	1-1
74	Sorial	1.3.2.2 125 and MSB-JUSTINED Senai Audio Formats	7-0 7_9
1.4	7/1	Serial Audio Control Registers	7 <u>-</u> 3
	7.4.1	7 4 1 1 Serial Audio Common Control Pegister (SACPO)	7-9
		7.4.1.2 Serial Audio Olternate Mode (I2S/MSB- Justified)	7-9
		Control Register (SACR1)	7–10
		7.4.1.3 Serial Audio AC-link Control Register (SACR2)	7–11
	7.4.2	Serial Audio Status Register (SASR0)	
	743	Serial Audio Status Registers (SASR1)	7–13
	744	Serial Audio Status Clear Register (SASCR)	7–15
	745	L3 Control Bus Address Register (L3CAR)	7–15
	746	L3 Control Bus Data Register (L3CDR)	7–16
	747	AC-link Control Registers	7_16
	748	AC-link Command Address Register (ACCAR)	7_16
	749	AC-link Command Data Register (ACCDR)	7_17
	7 4 10	AC-link Status Address Register (ACSAR)	7_17
	7 4 11	AC-link Status Address Register (ACSDR)	7_17
	7 4 12	Serial Audio DMA Transmit Control/Status Register (SADTCS)	7_18
	7 4 13	Serial Audio DMA Transmit Buffer Count Register & (SADTOO)	7_18
	7.4.14	Serial Audio DMA Transmit Buffer Start Address	
		Register B (SADTSB)	7–19
	7.4.15	Serial Audio DMA Transmit Buffer Count Register B (SADTCB)	7–19
	7.4.16	Serial Audio DMA Receive Control/Status Register (SADRCS).	7–19
	7.4.17	Serial Audio DMA Receive Buffer Start Address	
		Register A (SADRSA)	7–20
	7.4.18	Serial Audio DMA Receive Buffer Count Register A (SADRCA)	7–20
	7.4.19	Serial Audio DMA Receive Buffer Start Address	
		Register B (SADRSB)	7–20
	7.4.20	Serial Audio DMA Receive Buffer Count Register B (SADRCB)	7–20
	7.4.21	Serial Audio Interrupt Test Register (SAITR)	7–21
	7.4.22	Serial Audio Data Register (SADR)	7–21
	7.4.23	Serial Audio Controller: Register Memory Map	7–22
7.5	AC Ch	aracteristics	7–23
	7.5.1	I2S and MSB-Justified Interface Timing	7–23
	7.5.2	L3 Control Bus Interface Timing	7–24
	7.5.3	AC-link Interface Timing	7–26
SCD	Sorial I	Port	Q 1
JJF			0-1
8.1	Signal	Description	8–1
	8.1.1	External Interface to SSP, SPI, or Microwire Peripherals	8–1
	8.1.2	Internal Interfaces	8–2
		8.1.2.1 Register Access Bus (RAB)	8–2

8

		8.1.2.2 Data Block Transfers	8–2
8.2	SSP O	peration	8–2
	8.2.1	Processor-Initiated Data Transfer	8–2
8.3	Data F	ormats	8–3
	8.3.1	Serial Data Formats for Transfer to/from Peripherals	8–3
		8.3.1.1 SSP Format - Detail	8–4
		8.3.1.2 SPI Format - Detail	8–4
		8.3.1.3 Microwire* Format - details	8–5
	8.3.2	Parallel Data Formats for Buffer Storage	8–6
8.4	Buffer	Operation	8–6
8.5	Baud-F	Rate Generation	8–7
8.6	SSP S	erial Port Registers	8–7
	8.6.1	SSP Control Register 0	8–7
		8.6.1.1 Data Size Select (DSS)	8–8
		8.6.1.2 Frame Format (FRF)	8–8
		8.6.1.3 Synchronous Serial Port Enable (SSE)	8–8
	060	SSD Control Degister 1	0-0
	0.0.2	SSP CONTO Register 1	0-9
		8.6.2.2 Transmit EIEO Interrupt Mask (KIIVI)	0-9 9 10
		8.6.2.3 Loon Back Mode (LBM)	0-10 8_10
		8 6 2 4 Serial Clock Polarity (SPO)	0 10
		8.6.2.5 Serial Clock Phase (SPH)	
		8.6.2.6 Transmit FIFO Interrupt Threshold (TFT)	8–11
		8.6.2.7 Receive FIFO Interrupt Threshold (RFT)	8–11
	8.6.3	SSP Data Register (SSPDR)	8–12
	8.6.4	SSP Status Register	8–13
		8.6.4.1 Transmit FIFO Not Full Flag (TNF) (read-only,	
		non-interruptible)	8–13
		8.6.4.2 Receive FIFO Not Empty Flag (RNE) (read-only,	
		non-interruptible)	8–13
		8.6.4.3 SSP Busy Flag (BSY) (read-only, non-interruptible)	8–13
		8.6.4.4 Transmit FIFO Service Request Flag (TFS) (read-only,	
		maskable interrupt)	8–14
		8.6.4.5 Receive FIFO Service Request Flag (RFS) read-only,	0 1 /
		8.6.4.6 Pacaivar Ovarrup Status (POP)/read/write	0–14
		non-maskable interrunt)	8–14
		8.6.4.7 Transmit FIFO Level	8–14
		8.6.4.8 Receive FIFO Level	8–14
	8.6.5	SSP Interrupt Test Register (SSPITR)	8–15
	8.6.6	SSP Register Address Map	8–15
DC/2 .	Trackn	and Mouse Interfaces	0 1
F J/Z	Παυκμ		9-1
9.1	Registe		9–1
	9.1.1	Control Register (KBDCR)	9–1
	9.1.2	Status Register (KBDSTAT)	9-2
	9.1.3	I ransmit/Receive Data Register (KBDDATA)	9-2
	9.1.4	Clock Division Register (KBDCLKDIV)	9–2
	9.1.5	Clock Precount Register (KBDPRECNT)<8>	9–3
	9.1.6	KBD Interrupt Test Register	9–3
	9.1.7	Register Memory Map	9–3
9.2	Functio	Description	9–4

10	Gene	eral-Purpose I/O Interface	10–1
	10.1	Functional Description	10–1
	10.2	GPIO Pin List and Description	10–2
	10.3	Programmer's Model	10–2
		10.3.1 Data Value Register (Px_DWR - Write)	10–3
		10.3.2 Data Value Register (Px_DRR - Read)	10–3
		10.3.3 Data Direction Register (Px_DDR)	10–3
		10.3.4 Sleep State Register (Px_SSR)	10–4
		10.3.5 Sleep Direction Register (Px_SDR)	10–4
		10.3.6 Memory Map	10–4
	10.4	Test	10–5
11	Inter	rupt Controller	11–1
	11.1	Functional Description	11–1
		11.1.1 Logic Diagrams	11–1
	11.2	Interrupt Sources	11–3
	11.3	Interrupts	11–4
		11.3.1 GPIO Interrupts	11–4
		11.3.2 Wake-Up Interrupts	11–4
		11.3.3 Multiple Interrupts	11–5
	11.4	Testability	11–5
	11.5	Programmer's Model	
		11.5.1 Registers	
		11.5.1.1Source Bit Positions	
		11.5.2 INTEND INTEND	
		11.5.3 INTENU – INTEN1	
		11.5.4 INTPOLU – INTPOL1	
		11.5.5 INTELATOLDO 4	
		11.5.0 INTSTATULKU-1	
		11.5.7 INTSETU - INTSETT	
		11.5.0 WARE_ENU - WARE_ENT	
		11.5.9 WARE_FOLD - WARE_FOLT	11_7
	11.6	Characteristics	11–0 11_8
	11.0	Application	11–0 11_0
10	DCM		
12		PCMCIA Interface Block Diagram	12-1
	12.1	FUNCTA Interface block blagram	12–2
	12.2	12.2.1 PCMCIA/CE Address and Data Buffers	
		12.2.1 Voltage Control	
		12.2.2 Voltage Control	12_4
		12.2.5 Reset Signals	
		12.2.4 Control Oignais	12_5
	123	Detailed Signal Descriptions	
	12.0	12.3.1 Intel [®] StrongARM [®] SA-1111 Interface Signals	
	12 4	Socket 0 Signals	
	12.5	Socket 1 Signals	
	12.6	Programmer's Model	
	.2.0	12.6.1 Status Register (PCSR)	
		12.6.2 Control Register (PCCR)	

		12.6.3 12.6.4	Sleep State Register (PCSSR) Memory Map	12–15 12–15
13	Elect	rical an	d Timing Specifications	
	13.1	AC and	DC Signal Requirements	
	13.2	DC Spe	cifications	
		13.2.1	Power Supply Voltages	
		13.2.2	Absolute Maximum Ratings	
		13.2.3	CMOS Input Voltage Levels	
		13.2.4	DC Operating Conditions	
		13.2.5	Compact Flash and PCMCIA 4mA Buffer Input Voltage Lev	els13–4
14	Pack	age and	I Pinout	
	14.1	Package	9	14–1

Figures

1-1	System Block Diagram	
2-1	SA-1111 Block Diagram	2–1
2-2	SA-1111 Reset Sequence	2–5
3-1	Register Write, Single Cycle with Variable Latency	
3-2	Register Read, Single Cycle with Variable Latency	
3-3	Register Read, Burst of 2 with Variable Latency	
3-4	Register Write, Burst of 2 with Variable Latency	
3-5	Register Reads with Fixed Latency Mode of Register Access	
3-6	Register Writes with Fixed Latency Mode of Register Access	
3-7	SDRAM Read Cycle, Burst of 2 - CAS Latency = 3	3–13
3-8	SDRAM Write Cycle, Burst of 2	3–14
4-1	Decoder Block Diagram	
4-2	Arbiter Block Diagram	
7-1	AC-Link Audio Output Frame	7–7
7-2	AC-Link Audio Input Frame	7–7
7-3	I2S Data Formats (16 bits)	7–8
7-4	MSB-Justified Data Formats (16 bits)	7–8
7-5	I2S and MSB-Justified SYS_CLK Timing Diagram	7–23
7-6	I2S and MSB-Justified Interface Timing Diagram	7–23
7-7	Timing for L3 Address Mode	7–24
7-8	Timing for L3 Data Transfer Mode	7–25
7-9	Signal Rise and Fall Timing Diagram	7–26
7-10	BIT_CLK and SYNC Timing Diagram	7–27
7-11	Data Output and Input Timing Diagram	7–28
7-12	AC-Link Low-Power Mode Timing Diagram	7–28
7-13	Warm Reset Timing Diagram	7–29
8-1	SSP Synchronous Serial Frame Format	
8-2	SPI Frame Format	8–5
8-3	National Microwire* Frame Format	8–6
8-4	Clock Phase Formats for SPO and SPH Programming	8–11
9-1	Keyboard/Mouse Controller Receive Protocol	9–5
9-2	Timing and Controller Request to Send Protocol	
11-1	Interrupt and Wake-Up Generation	11–2
11-2	Interrupt and Wake-Up Combination	

Interrupt Source Positions in Register Set 0	.11–6
Interrupt Source Positions in Register Set 1	.11–6
PCMCIA Interface Block Diagram	. 12–3
SA-1111 256 mBGA Mechanical Drawing	.14–2
	Interrupt Source Positions in Register Set 0 Interrupt Source Positions in Register Set 1 PCMCIA Interface Block Diagram SA-1111 256 mBGA Mechanical Drawing

Tables

2-1 Pin State After Reset and During Sleep State 2-9 2-2 USB_wwrCntl Pin State in Sleep Mode 2-1 3-1 SA-1110 Memory Interface Signals - O(D) = Driven for DMA	1-1	Signal Descriptions	1–4
2-2 USB_PwrCntl Pin State in Sleep Mode 2–12 3-1 SA-1110 Memory Interface Signals - O(D) = Driven for DMA. 3–1 3-2 SBI Block - interface to DMA Bus (SBI is transfer target) 3–2 3-3 Other System Interface Signals 3–3 3-4 Other System Interface Signals 3–3 3-5 SA-1111 Memory Map 3–4 3-6 Register Read and Write Timing Parameters - Variable Latency 3–7 7 Register Read and Write Timing Parameters - RDY disabled 3–9 8 DRAM Address Configuration and Register Settings 3–11 3-9 SKCR Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 7 Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 7 Register Signals 4–4 4-4 Arbiter Signals 4–4 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 5 Bus Master Priorities 5–5 6-1 Audio Samplin	2-1	Pin State After Reset and During Sleep State	2–9
3-1 SA-1110 Memory Interface Signals - O(D) = Driven for DMA	2-2	USB PwrCntl Pin State in Sleep Mode	2–12
3-2 SBI Block - interface to DMA Bus (SBI is transfer target)	3-1	SA-1110 Memory Interface Signals - O(D) = Driven for DMA	3–1
3-3 SBI Block - interface to Register Access Bus (SBI is transfer initiator)	3-2	SBI Block - interface to DMA Bus (SBI is transfer target)	3–2
3-4 Other System Interface Signals 3-3 3-5 SA-1111 Memory Map 3-4 3-6 Register Read and Write Timing Parameters - Variable Latency 3-7 3-7 Register Read and Write Timing Parameters - RDY disabled 3-9 3-8 DRAM Address Configuration and Register Settings 3-11 3-9 SKCR Register Bit Descriptions 3-16 3-11 SHID Register Bit Descriptions 3-16 3-12 SBI Memory Map 3-17 4-1 RAB Target Blocks/Address Assignment 4-2 4-2 Register Access Bus Signal Description 4-3 4-3 DMA Bus Interface Signals 4-4 4-4 Arbiter Signals 4-5 4-4 Arbiter Signals 4-5 4-5 Bus Master Priorities 5-3 5-6 Operational Power Status 6-3 6-7 Audio Sampling Frequencies 5-5 6-8 DMA Bus Interface Signals 6-6 6-9 Dystem Controller - Read/Write Locations 6-3 6-8 DMA Bus Interface Signals 6-6 6-9 DHA Bus Interface Signals </td <td>3-3</td> <td>SBI Block - interface to Register Access Bus (SBI is transfer initiator</td> <td>)3–3</td>	3-3	SBI Block - interface to Register Access Bus (SBI is transfer initiator)3–3
3-5 SA-1111 Memory Map 3-4 3-6 Register Read and Write Timing Parameters - Variable Latency 3-7 3-7 Register Read and Write Timing Parameters - RDY disabled 3-9 3-8 DRAM Address Configuration and Register Settings 3-11 3-9 SKCR Register Bit Descriptions 3-16 3-11 SKID Register Bit Descriptions 3-16 3-12 SBI Memory Map 3-17 4-13 SBI Memory Map 3-17 4-14 Rab Target Blocks/Address Assignment 4-2 4-2 Register Access Bus Signal Description 4-3 4-3 DMA Bus Interface Signals 4-4 4-4 Arbiter Signals 4-5 4-3 DMA Bus Interface Signals 4-6 5-1 Audio Sampling Frequencies 5-3 5-2 System Controller - Read/Write Locations 5-5 6-1 Operational Power Status 6-3 6-2 RAB Interface Signals 6-6 6-3 DMA Bus Interface Signals 7-4 6-4 USB Host Interface Register Memory Map 7-9 7-1 External Interfac	3-4	Other System Interface Signals	
3-6 Register Read and Write Timing Parameters - Variable Latency 3–7 3-7 Register Read and Write Timing Parameters - RDY disabled 3–9 3-8 DRAM Address Configuration and Register Settings 3–11 3-9 SKCR Register Bit Descriptions 3–16 3-10 SMCR Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 4-1 RAB Target Blocks/Address Assignment 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-3 Audio Sampling Frequencies 5–3 5-4 Bus Master Priorities 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-3 DMA Bus Interface Signals 6–6 6-4 USB Host Interface Register Memory Map 6–9 7-1 External Interface Pins 7–2 7-3 RAB Interface Signals 7–4 6-4 <td< td=""><td>3-5</td><td>SA-1111 Memory Map</td><td>3–4</td></td<>	3-5	SA-1111 Memory Map	3–4
3-7 Register Read and Write Timing Parameters - RDY disabled 3–9 3-8 DRAM Address Configuration and Register Settings 3–11 3-9 SKCR Register Bit Descriptions 3–16 3-10 SMCR Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 4-1 RAB Target Blocks/Address Assignment. 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-4 Arbiter Signals 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-3 DMA Bus Interface Signals 6–6 6-4 USB Host Interface Register Memory Map 6–9 7-1 External Interface Register Memory Map 7–3 7-3 RAB Interface Signals 7–4 7-4 Audio Sampling Frequency as a Function of PLL Divider Value 7–6 7-7 SACR0 Bit Descriptions 7–11 7-7	3-6	Register Read and Write Timing Parameters - Variable Latency	
3-8 DRAM Address Configuration and Register Settings 3–11 3-9 SKCR Register Bit Descriptions 3–15 3-10 SMCR Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 3-13 SKID Register Bit Descriptions 3–17 4-1 RAB Target Blocks/Address Assignment. 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-5 Bus Master Priorities 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Register Memory Map 6–9 7-1 External Interface Register Memory Map 7–2 7-2 L3 Bus Interface Signals 7–4 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 <td>3-7</td> <td>Register Read and Write Timing Parameters - RDY disabled</td> <td></td>	3-7	Register Read and Write Timing Parameters - RDY disabled	
3-9 SKCR Register Bit Descriptions 3–15 3-10 SMCR Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 3-13 SKID Register Bit Descriptions 3–16 3-14 SKID Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-14 SBI Memory Map 3–17 4-1 RAB Target Blocks/Address Assignment 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–5 4-4 Arbiter Signals 4–5 4-5 Bus Master Priorities 5–5 5-6 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Register Memory Map 6–9 7-1 External Interface Register Memory Map 7–2 7-2 L3 Bus Interface Signals 7–4 7-4 DMA Bus Interface Signals 7–4	3-8	DRAM Address Configuration and Register Settings	3–11
3-10 SMCR Register Bit Descriptions 3–16 3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 4-1 RAB Target Blocks/Address Assignment 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-5 Bus Master Priorities 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–6 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Signals 6–6 6-4 USB Host Interface Register Memory Map 6–9 7-1 External Interface Signals 7–4 7-3 RAB Interface Signals 7–4 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 7-6 AcRo Bit Descriptions 7–10 7-7 SACR0 Bit Descriptions 7–11 7-7 SACR0 Bit Descrip	3-9	SKCR Register Bit Descriptions	
3-11 SKID Register Bit Descriptions 3–16 3-12 SBI Memory Map 3–17 4-1 RAB Target Blocks/Address Assignment. 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-5 Bus Master Priorities 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Register Memory Map 6–9 7-1 External Interface Register Memory Map 6–9 7-1 External Interface Signals 7–4 7-3 RAB Interface Signals 7–4 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value 7–6 7-7 SACR0 Bit Descriptions 7–11 7-8 SACR1 Bit Descriptions 7–12	3-10	SMCR Register Bit Descriptions	
3-12 SBI Memory Map 3–17 4-1 RAB Target Blocks/Address Assignment 4–2 4-2 Register Access Bus Signal Description 4–3 4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-5 Bus Master Priorities 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Signals 6–6 6-4 USB Host Interface Register Memory Map 6–9 7-1 External Interface to Codec 7–2 7-3 RAB Interface Signals 7–3 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value 7–6 7-7 SACR0 Bit Descriptions 7–11 7-8 SACR1 Bit Descriptions 7–12 7-10 SASR0 Bit Descriptions 7–15 7-11	3-11	SKID Register Bit Descriptions	
4-1 RAB Target Blocks/Address Assignment. 4–2 4-2 Register Access Bus Signal Description. 4–3 4-3 DMA Bus Interface Signals. 4–4 4-4 Arbiter Signals. 4–5 4-5 Bus Master Priorities. 4–6 5-1 Audio Sampling Frequencies. 5–3 5-2 System Controller - Read/Write Locations. 5–5 6-1 Operational Power Status. 6–6 6-2 RAB Interface Signals. 6–6 6-3 DMA Bus Interface Signals. 6–6 6-4 USB Host Interface Register Memory Map. 6–9 7-1 External Interface to Codec. 7–2 7-2 L3 Bus Interface Signals. 7–3 7-4 DMA Bus Interface Signals. 7–4 7-5 Other Signals. 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value. 7–6 7-7 SACR0 Bit Descriptions. 7–11 7-8 SACR1 Bit Descriptions. 7–12 7-10 SASR0 Bit Descriptions. 7–15 7-13 L3CAR Bit Descriptions. 7–15	3-12	SBI Memory Map	
4-2 Register Access Bus Signal Description 4-3 4-3 DMA Bus Interface Signals 4-4 4-4 Arbiter Signals 4-5 4-5 Bus Master Priorities 4-6 5-1 Audio Sampling Frequencies 5-3 5-2 System Controller - Read/Write Locations 5-5 6-1 Operational Power Status 6-3 6-2 RAB Interface Signals 6-6 6-3 DMA Bus Interface Register Memory Map 6-9 7-1 External Interface Register Memory Map 6-9 7-1 External Interface Pins 7-2 7-3 RAB Interface Signals 7-3 7-4 DMA Bus Interface Signals 7-4 7-5 Other Signals 7-4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value 7-6 7-7 SACR0 Bit Descriptions 7-11 7-8 SACR1 Bit Descriptions 7-12 7-10 SASR0 Bit Descriptions 7-14 7-12 SASR1 Bit Descriptions 7-15 7-13 L3CAR Bit Descriptions 7-16 7-14	4-1	RAB Target Blocks/Address Assignment	
4-3 DMA Bus Interface Signals 4–4 4-4 Arbiter Signals 4–5 4-5 Bus Master Priorities 4–6 5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Register Memory Map 6–9 7-1 External Interface to Codec 7–2 7-2 L3 Bus Interface Pins 7–2 7-3 RAB Interface Signals 7–4 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value 7–6 7-7 SACR0 Bit Descriptions 7–11 7-8 SACR1 Bit Descriptions 7–12 7-10 SASR0 Bit Descriptions 7–14 7-12 SASR0 Bit Descriptions 7–16 7-14 L3CAR Bit Descriptions 7–16 7-14 L3CAR Bit Descriptions 7–16 7-15 ACCAR Bit Descript	4-2	Register Access Bus Signal Description	
4-4 Arbiter Signals	4-3	DMA Bus Interface Signals	
4-5 Bus Master Priorities. 4–6 5-1 Audio Sampling Frequencies. 5–3 5-2 System Controller - Read/Write Locations. 5–5 6-1 Operational Power Status. 6–3 6-2 RAB Interface Signals. 6–6 6-3 DMA Bus Interface Signals. 6–6 6-4 USB Host Interface Register Memory Map. 6–9 7-1 External Interface to Codec 7–2 7-2 L3 Bus Interface Signals. 7–3 7-4 DMA Bus Interface Signals. 7–3 7-4 DMA Bus Interface Signals. 7–4 7-5 Other Signals. 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value. 7–6 7-7 SACR0 Bit Descriptions. 7–11 7-8 SACR1 Bit Descriptions. 7–12 7-10 SASR0 Bit Descriptions. 7–14 7-12 SASR0 Bit Descriptions. 7–15 7-13 L3CAR Bit Descriptions. 7–16 7-14 L3CAR Bit Descriptions. 7–16 7-15 ACCAR Bit Descriptions. 7–17 7-	4-4	Arbiter Signals	
5-1 Audio Sampling Frequencies 5–3 5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Signals 6–6 6-4 USB Host Interface Register Memory Map 6–9 7-1 External Interface to Codec 7–2 7-2 L3 Bus Interface Pins 7–2 7-3 RAB Interface Signals 7–3 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value 7–6 7-7 SACR0 Bit Descriptions 7–11 7-8 SACR1 Bit Descriptions 7–12 7-10 SASR0 Bit Descriptions 7–13 7-11 SASR1 Bit Descriptions 7–16 7-12 SASCR Bit Descriptions 7–16 7-13 L3CAR Bit Descriptions 7–16 7-14 L3CDR Bit Descriptions 7–17 7-15 ACCAR Bit Descriptions 7–17 7-16 ACCDR	4-5	Bus Master Priorities	
5-2 System Controller - Read/Write Locations 5–5 6-1 Operational Power Status 6–3 6-2 RAB Interface Signals 6–6 6-3 DMA Bus Interface Signals 6–6 6-4 USB Host Interface Register Memory Map 6–9 7-1 External Interface to Codec 7–2 7-2 L3 Bus Interface Pins 7–2 7-3 RAB Interface Signals 7–3 7-4 DMA Bus Interface Signals 7–4 7-5 Other Signals 7–4 7-6 Audio Sampling Frequency as a Function of PLL Divider Value 7–6 7-7 SACR0 Bit Descriptions 7–11 7-8 SACR1 Bit Descriptions 7–12 7-10 SASR0 Bit Descriptions 7–14 7-12 SASR1 Bit Descriptions 7–14 7-12 SASR1 Bit Descriptions 7–16 7-13 L3CAR Bit Descriptions 7–16 7-14 L3CDR Bit Descriptions 7–16 7-15 ACCAR Bit Descriptions 7–17 7-16 ACCAR Bit Descriptions 7–17 7-17 ACCAR B	5-1	Audio Sampling Frequencies	
6-1Operational Power Status6–36-2RAB Interface Signals6–66-3DMA Bus Interface Signals6–66-4USB Host Interface Register Memory Map6–97-1External Interface to Codec7–27-2L3 Bus Interface Pins7–27-3RAB Interface Signals7–37-4DMA Bus Interface Signals7–47-5Other Signals7–47-6Audio Sampling Frequency as a Function of PLL Divider Value7–67-7SACR0 Bit Descriptions7–107-8SACR1 Bit Descriptions7–127-10SASR0 Bit Descriptions7–147-12SASR1 Bit Descriptions7–147-13SASR1 Bit Descriptions7–157-14L3CRR Bit Descriptions7–167-15ACCAR Bit Descriptions7–167-16ACCDR Bit Descriptions7–177-16ACCDR Bit Descriptions7–17	5-2	System Controller - Read/Write Locations	5–5
6-2RÅB Interface Signals6-66-3DMA Bus Interface Signals6-66-4USB Host Interface Register Memory Map6-97-1External Interface to Codec7-27-2L3 Bus Interface Pins7-27-3RAB Interface Signals7-37-4DMA Bus Interface Signals7-47-5Other Signals7-47-6Audio Sampling Frequency as a Function of PLL Divider Value7-67-7SACR0 Bit Descriptions7-107-8SACR1 Bit Descriptions7-117-9SACR2 Bit Descriptions7-127-10SASR0 Bit Descriptions7-147-11SASR1 Bit Descriptions7-157-12SASCR Bit Descriptions7-167-14L3CAR Bit Descriptions7-167-15ACCAR Bit Descriptions7-177-16ACCDR Bit Descriptions7-177-16ACCDR Bit Descriptions7-17	6-1	Operational Power Status	6–3
6-3DMA Bus Interface Signals6–66-4USB Host Interface Register Memory Map6–97-1External Interface to Codec7–27-2L3 Bus Interface Pins7–27-3RAB Interface Signals7–37-4DMA Bus Interface Signals7–47-5Other Signals7–47-6Audio Sampling Frequency as a Function of PLL Divider Value7–67-7SACR0 Bit Descriptions7–107-8SACR1 Bit Descriptions7–117-9SACR2 Bit Descriptions7–137-10SASR0 Bit Descriptions7–147-12SASCR Bit Descriptions7–157-13L3CAR Bit Descriptions7–167-14L3CDR Bit Descriptions7–167-15ACCAR Bit Descriptions7–177-16ACCDR Bit Descriptions7–177-17ACCDR Bit Descriptions7–17	6-2	, RAB Interface Signals	6–6
6-4USB Host Interface Register Memory Map6–97-1External Interface to Codec7–27-2L3 Bus Interface Pins7–27-3RAB Interface Signals7–37-4DMA Bus Interface Signals7–47-5Other Signals7–47-6Audio Sampling Frequency as a Function of PLL Divider Value7–67-7SACR0 Bit Descriptions7–107-8SACR1 Bit Descriptions7–117-9SACR2 Bit Descriptions7–127-10SASR0 Bit Descriptions7–137-11SASR1 Bit Descriptions7–157-12SASR0 Bit Descriptions7–167-14SASCR Bit Descriptions7–167-14SASCR Bit Descriptions7–167-14L3CAR Bit Descriptions7–167-15ACCAR Bit Descriptions7–177-16ACCAR Bit Descriptions7–177-16ACCAR Bit Descriptions7–17	6-3	DMA Bus Interface Signals	6–6
7-1External Interface to Codec.7-27-2L3 Bus Interface Pins.7-27-3RAB Interface Signals.7-37-4DMA Bus Interface Signals.7-47-5Other Signals.7-47-6Audio Sampling Frequency as a Function of PLL Divider Value.7-67-7SACR0 Bit Descriptions.7-107-8SACR1 Bit Descriptions.7-117-9SACR2 Bit Descriptions.7-127-10SASR0 Bit Descriptions.7-137-11SASR1 Bit Descriptions.7-147-12SASCR Bit Descriptions.7-167-13L3CAR Bit Descriptions.7-167-14L3CDR Bit Descriptions.7-177-15ACCAR Bit Descriptions.7-177-16ACCAR Bit Descriptions.7-177-17ACCAR Bit Descriptions.7-177-16ACCAR Bit Descriptions.7-177-17ACCAR Bit Descriptions.7-17	6-4	USB Host Interface Register Memory Map	6–9
7-2L3 Bus Interface Pins.7–27-3RAB Interface Signals.7–37-4DMA Bus Interface Signals.7–47-5Other Signals.7–47-6Audio Sampling Frequency as a Function of PLL Divider Value.7–67-7SACR0 Bit Descriptions.7–107-8SACR1 Bit Descriptions.7–117-9SACR2 Bit Descriptions.7–127-10SASR0 Bit Descriptions.7–137-11SASR1 Bit Descriptions.7–147-12SASCR Bit Descriptions.7–157-13L3CAR Bit Descriptions.7–167-14L3CDR Bit Descriptions.7–177-15ACCAR Bit Descriptions.7–177-16ACCAR Bit Descriptions.7–177-17ACCAR Bit Descriptions.7–177-16ACCAR Bit Descriptions.7–177-17ACCAR Bit Descriptions.7–17	7-1	External Interface to Codec	7–2
7-3RAB Interface Signals.7–37-4DMA Bus Interface Signals.7–47-5Other Signals.7–47-6Audio Sampling Frequency as a Function of PLL Divider Value.7–67-7SACR0 Bit Descriptions.7–107-8SACR1 Bit Descriptions.7–117-9SACR2 Bit Descriptions.7–127-10SASR0 Bit Descriptions.7–137-11SASR1 Bit Descriptions.7–147-12SASR1 Bit Descriptions.7–157-13L3CAR Bit Descriptions.7–167-14L3CDR Bit Descriptions.7–177-15ACCAR Bit Descriptions.7–177-16ACCDR Bit Descriptions.7–177-17ACCDR Bit Descriptions.7–17	7-2	L3 Bus Interface Pins	7–2
7-4DMA Bus Interface Signals.7-47-5Other Signals.7-47-6Audio Sampling Frequency as a Function of PLL Divider Value.7-67-7SACR0 Bit Descriptions.7-107-8SACR1 Bit Descriptions.7-117-9SACR2 Bit Descriptions.7-127-10SASR0 Bit Descriptions.7-137-11SASR1 Bit Descriptions.7-147-12SASR1 Bit Descriptions.7-157-13L3CAR Bit Descriptions.7-167-14L3CDR Bit Descriptions.7-177-15ACCAR Bit Descriptions.7-177-16ACCAR Bit Descriptions.7-177-16ACCDR Bit Descriptions.7-17	7-3	RAB Interface Signals	7–3
7-5Other Signals.7-47-6Audio Sampling Frequency as a Function of PLL Divider Value.7-67-7SACR0 Bit Descriptions.7-107-8SACR1 Bit Descriptions.7-117-9SACR2 Bit Descriptions.7-127-10SASR0 Bit Descriptions.7-137-11SASR1 Bit Descriptions.7-147-12SASR1 Bit Descriptions.7-157-13SASR1 Bit Descriptions.7-167-14L3CDR Bit Descriptions.7-167-15ACCAR Bit Descriptions.7-177-16ACCDR Bit Descriptions.7-177-16ACCDR Bit Descriptions.7-177-17ACCDR Bit Descriptions.7-17	7-4	DMA Bus Interface Signals	7–4
7-6Audio Sampling Frequency as a Function of PLL Divider Value7-67-7SACR0 Bit Descriptions7-107-8SACR1 Bit Descriptions7-117-9SACR2 Bit Descriptions7-127-10SASR0 Bit Descriptions7-137-11SASR1 Bit Descriptions7-147-12SASCR Bit Descriptions7-157-13L3CAR Bit Descriptions7-167-14L3CDR Bit Descriptions7-177-15ACCAR Bit Descriptions7-177-16ACCDR Bit Descriptions7-177-17ACCDR Bit Descriptions7-17	7-5	Other Signals	7–4
7-7SACR0 Bit Descriptions7–107-8SACR1 Bit Descriptions7–117-9SACR2 Bit Descriptions7–127-10SASR0 Bit Descriptions7–137-11SASR1 Bit Descriptions7–147-12SASCR Bit Descriptions7–157-13L3CAR Bit Descriptions7–167-14L3CDR Bit Descriptions7–167-15ACCAR Bit Descriptions7–177-16ACCDR Bit Descriptions7–17	7-6	Audio Sampling Frequency as a Function of PLL Divider Value	7–6
7-8SACR1 Bit Descriptions7-117-9SACR2 Bit Descriptions7-127-10SASR0 Bit Descriptions7-137-11SASR1 Bit Descriptions7-147-12SASCR Bit Descriptions7-157-13L3CAR Bit Descriptions7-167-14L3CDR Bit Descriptions7-167-15ACCAR Bit Descriptions7-177-16ACCDR Bit Descriptions7-177-17ACCDR Bit Descriptions7-17	7-7	SACR0 Bit Descriptions	7–10
7-9SACR2 Bit Descriptions7–127-10SASR0 Bit Descriptions7–137-11SASR1 Bit Descriptions7–147-12SASCR Bit Descriptions7–157-13L3CAR Bit Descriptions7–167-14L3CDR Bit Descriptions7–167-15ACCAR Bit Descriptions7–177-16ACCDR Bit Descriptions7–177-16ACCDR Bit Descriptions7–17	7-8	SACR1 Bit Descriptions	7–11
7-10SASR0 Bit Descriptions7–137-11SASR1 Bit Descriptions7–147-12SASCR Bit Descriptions7–157-13L3CAR Bit Descriptions7–167-14L3CDR Bit Descriptions7–167-15ACCAR Bit Descriptions7–177-16ACCDR Bit Descriptions7–177-16ACCDR Bit Descriptions7–17	7-9	SACR2 Bit Descriptions	7–12
7-11SASR1 Bit Descriptions7–147-12SASCR Bit Descriptions7–157-13L3CAR Bit Descriptions7–167-14L3CDR Bit Descriptions7–167-15ACCAR Bit Descriptions7–177-16ACCDR Bit Descriptions7–177-16ACCDR Bit Descriptions7–17	7-10	SASR0 Bit Descriptions	7–13
7-12SASCR Bit Descriptions.7–157-13L3CAR Bit Descriptions7–167-14L3CDR Bit Descriptions7–167-15ACCAR Bit Descriptions.7–177-16ACCDR Bit Descriptions7–177-17ACCDR Bit Descriptions7–17	7-11	SASR1 Bit Descriptions	7–14
7-13 L3CAR Bit Descriptions 7–16 7-14 L3CDR Bit Descriptions 7–16 7-15 ACCAR Bit Descriptions 7–17 7-16 ACCDR Bit Descriptions 7–17 7-17 ACCDR Bit Descriptions 7–17 7-16 ACCDR Bit Descriptions 7–17	7-12	SASCR Bit Descriptions	7–15
7-14 L3CDR Bit Descriptions 7–16 7-15 ACCAR Bit Descriptions 7–17 7-16 ACCDR Bit Descriptions 7–17 7-17 ACCDR Bit Descriptions 7–17 7-17 ACCDR Bit Descriptions 7–17	7-13	L3CAR Bit Descriptions	7–16
7-15 ACCAR Bit Descriptions. 7–17 7-16 ACCDR Bit Descriptions. 7–17 7.17 ACCAR Bit Descriptions. 7–17	7-14	L3CDR Bit Descriptions	7–16
7-16 ACCDR Bit Descriptions	7-15	ACCAR Bit Descriptions.	7–17
	7-16	ACCDR Bit Descriptions	7–17
(-1) AUSAK BIL Descriptions	7-17	ACSAR Bit Descriptions	7–17
7-18 ACSDR Bit Descriptions	7-18	ACSDR Bit Descriptions	7–17

7-19	SADTCS Bit Descriptions	7–18
7-20	Serial Audio DMA Transmit Buffer Start Address Register A (SADTSA) .	.7–18
7-21	SADTCA Bit Descriptions	7–18
7-22	SADTSB Bit Descriptions	.7–19
7-23	SADTCB Bit Descriptions	.7–19
7-24	SADRCS Bit Descriptions	7–19
7-25	SADRSA Bit Descriptions	7–20
7-26	SADRCA Bit Descriptions	.7–20
7-27	SADRSB Bit Descriptions	.7–20
7-28	SADRCB Bit Descriptions	.7–20
7-29	SAITR Bit Descriptions	.7–21
7-30	SADR Bit Descriptions	.7–21
7-31	Serial Audio Controller Register Memory Map	.7–22
7-32	I2S and MSB-Justified SYS_CLK Timing	.7–23
7-33	I2S and MSB-Justified Interface BIT_CLK, SYNC, and Data Timing	.7–24
7-34	L3 Control Bus Interface Timing	7–25
7-35	AC-link Interface Signal Rise and Fall Timing	.7–26
7-36	AC-link Interface Clock Timing	7–27
7-37	AC-link Interface Data Output and Input Timing	.7–28
7-38	AC-link Low Power Mode and Wake Up Sequence Timing	.7–29
8-1	External Interface to Codec	8–1
8-2	RAB Interface Signals	8–2
8-3	SCR Bit Descriptions	8–9
8-4	SSP Control Register 1 Bit Descriptions	8–12
8-5	SSP Data Register Bit Descriptions	8–13
8-6	SSP Status Register	.8–15
8-7	SSPITR Bit Descriptions	8–15
8-8	SSP Register Address Map	.8–16
9-1	Trackpad Register Memory Map	9–4
9-2	Mouse Register Memory Map	9–4
9-3	Keyboard/Mouse Interface Timings	9–6
10-1	GPIO Pin List	10–2
10-2	Px_DWR Register Bit Descriptions	10–3
10-3	PxDRR Register Bit Descriptions	10–3
10-4	Px_DDR Register Bit Descriptions	10–3
10-5	Px SSR Register Bit Descriptions	10–4
10-6	Px_SDR Register Bit Descriptions	10–4
10-7	GPIO Register Memory Map	.10–4
11-1	Interrupt Sources	11–3
11-2	Interrupt Registers	11–8
11-3	Interrupt Characteristics	11–8
12-1	Interrupt Signals	12–5
12-2	SA-1110 Interface Signals	12–5
12-3	Socket 0 Signals	12–7
12-4	Socket 1 Signals	2–10
12-5	S0 (PCMCIA) and S1 (CF) Sleep State Control	2–15
12-6	PCMCIA Interface Register Memory Map	2–15
13-1	AC and DC Requirements	13–2
13-2	SA-1111 Power Consumption at 3.3 V VDD	.13–2
13-3	SA-1111 Power Supply Voltages	.13–3
13-4	Absolute Maximum Ratings	13–3

13-5	SA-1111 CMOS Inputs	
13-6	SA-1111 DC Operating Conditions	13–4
13-7	SA-1111 5 V Compact Flash and PCMCIA Buffer Input Level	
	Specifications	13–4
13-8	SA-1111 3.3 V Compact Flash and PCMCIA Buffer Input Level	
	Specifications	13–4
14-1	SA-1111 Pinout — 256 Mini-Ball Grid Array	14–3

The Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) is a companion chip to the Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110), providing a variety of functions suitable for use in a high-performance handheld computer system. Used with the SA-1110, this companion chip enables complete systems to be built with greatly reduced chip count, low power, and high performance.

1.1 Conventions

All fields in register descriptions that are labeled as *reserved* must be set to 0 (zero) when the data structure is created. Software should not modify or rely on these reserved field values after a data structure is created.

Certain areas of memory may be referred to as *reserved memory* in this documentation. Reserved memory- when referring to memory locations - implies that an implementation of the SA-1111 architecture may use this memory for some special purpose. For example, memory-mapped peripherals might be located in reserved memory areas on future implementations.

1.1.1 Specifying Bit and Signal Values

The terms *set* and *clear* in this documentation refer to bit values in register and data structures. If a bit is set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a bit means giving it a value of 1 and clearing a bit means giving it a value of 0.

The terms *assert* and *deassert* refer to the logically active or inactive value of a signal or bit, respectively. A signal is specified as an active 0 signal when it contains a lower-case *n*. For example, the signals nRESET and S0_nWE are asserted by driving the signal to a logic 0 value.

1.1.2 Representing Numbers

All numbers in this documentation can be assumed to be base 10 unless designated otherwise. In text, binary numbers are sometimes designated with a subscript 2 (for example, 001_2). If it is obvious from the context that a number is a binary number, the "2" subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix h (for example, FFFF FF5Ah) or are prefixed with 0x (for example, 0xFF).

1.1.3 Register Names

Memory-mapped registers and several of the global and local registers are referred to by their generic register names, as well as descriptive names which describe their function. Throughout this documentation, the registers' descriptive names, numbers, operands and acronyms are used interchangeably, as dictated by context.

Groups of bits and single bits in registers and control words are called either bits, flags or fields.

These terms have a distinct meaning in this documentation:

- **bit**—Controls a processor function; programmed by the user.
- flag —Indicates status. Generally set by the processor; certain flags are user programmable.
- field —A grouping of bits (bit field) or flags (flag field).

1.2 System Block Diagram

The SA-1111 brings a new level of integration to small systems, providing a variety of I/O functions that enable complete systems to be built with very little "glue" logic. In addition to a complete USB Host Controller, the SA-1111 includes extensive support for PCMCIA and Compact Flash (CF), two PS/2 ports, two industry-standard serial ports, and other I/O capabilities. It can acquire the system memory bus and do DMA transfers to system memory (EDO or SDRAM) with its high-performance memory controller.

Figure 1-1 shows how the SA-1111 can be used with the SA-1110 in a handheld computing device. The external display controller/graphics accelerator is optional, for higher performance with an LCD display, or to enable simultaneous display to a video monitor.

Figure 1-1. System Block Diagram

* StrongARM is a registered trademark of ARM Limited.

A6256-01

1.3 Signal Descriptions

Table 1-1 describes signals on SA-1111 pins.

Table 1-1.Signal Descriptions (Sheet 1 of 4)

Name	Туре	Description
SA-1110 Processor Interface	- Register	Access and EDO DRAM/SDRAM Interfacing
A<25:0>	I/O	26-bit system address bus. Bits A<24:10>, as outputs, are used for DMA access to EDO DRAM or SDRAM. Bits A<12:2> are used for processor access to SA-1111 registers and SRAM buffers. For PCMCIA access, all 26 bits are used and buffered by the SA-1111.
D<31:0>	I/O	32-bit memory data bus.
nOE	I/O	Output enable, for READ accesses.
nWE	I/O	Write enable, for WRITE accesses. In conjunction with nCAS/DQM<3:0>, specifies and controls byte writes.
nCAS/DQM<3:0>	I/O	Column Address Strobe, for EDO DRAM, or Byte enables for SDRAM and SRAM-type WRITE transfers.
nCS	I	Chip select for enabling all SA-1111 accesses.
RDY	0	Ready signal, to system bus master - tristate or open-drain output.
MBREQ	0	Request system memory bus, to SA-1110 processor.
MBGNT	I	Memory bus grant, from SA-1110 processor.
nSDCS	0	Synchronous DRAM Chip Select, for one physical bank.
nSDRAS	0	Row Address Strobe, to EDO DRAM or SDRAM.
nSDCAS	0	Column Address Strobe, to SDRAM (not used for EDO DRAM).
SDCLK	0	Clock to SDRAM - normally 48 MHz (not used for EDO DRAM)
SA-1110 Interface - PCMCIA a	nd Comp	act Flash Support
nPREG	I	PCMCIA select I/O (attribute memory) space
nPOE	I	PCMCIA output enable. This PCMCIA signal is input, gated within the SA-1111, and used to perform reads from memory and attribute space.
nPWE	I	PCMCIA write enable. This signal is input, gated within the SA-1111, and is used to perform writes to memory and to attribute space.
nPIOW	I	PCMCIA I/O write. This signal is input, gated within the SA-1111, and is used to perform write transactions to the PCMCIA I/O space.
nPIOR	I	PCMCIA I/O read. This signal is input, gated within the SA-1111, and is used to perform read transactions from the PCMCIA I/O space.
nPCE<2:1>	I	PCMCIA card enable. These signals are input, gated within the SA-1111, and used to select a PCMCIA card. Bit 2 enables the high byte lane and bit 1 enables the low byte lane.
nIOIS16	0	I/O is 16 bit. This signal is an output and is an acknowledge from the PCMCIA card that the current address is a valid 16-bit I/O address.
nPWAIT	0	PCMCIA wait. This signal is an output and is driven low by the PCMCIA card to lengthen the transfers from the SA-1110.

Table 1-1.	Signal	Descriptions	(Sheet 2 of 4)
	Orginar	Descriptions	

Name	Туре	Description
PSKTSEL	I	PCMCIA socket select. This signal is an input and is used to route control, address and data signals to one of the PCMCIA sockets. When PSKTSEL is low, socket zero is selected. When PSKTSEL is high, socket one is selected. This signal has the same timing as address.
PCMCIA Socket (Slot 0) Interf	ace	
S0_nPREG	0	Socket 0 select attribute memory space.
SO_DATA<15:0>	I/O	Socket 0 data.
SO_ADDRESS<25:0>	0	Socket 0 address.
S0_nCD<2:1>	I	Socket 0 card detect.
S0_READY_nIREQ	I	Socket 0 ready/busy.
S0_nCE<2:1>	0	Socket 0 card byte enables (2 = high byte, 1 = low byte).
S0_nOE	0	Socket 0 output enable.
S0_nWE	0	Socket 0 write enable.
S0_nIORD	0	Socket 0 IOR.
S0_nIOWR	0	Socket 0 IOW.
S0_nWAIT	I	Socket 0 wait.
S0_nIOIS16	I	Socket 0 IO_16 signal.
S0_RESET	0	Socket 0 reset signal.
S0_BVD1_nSTSCHG	I	Socket 0 VDD voltage sense signal/card status changed.
S0_BVD2_nSPKR	I	Socket 0 VDD voltage sense signal/audio digital speaker.
S0_nVS<2:1>	I	Socket 0 VSS voltage sense signals.
PCMCIA Power Control/GPIO		
PCMCIA_PWR/GPIO_A<3:0>	I/O	PCMCIA power control/GPIO Block A<3:0>
Compact Flash Socket (Slot 1) Interface		
S1_nPREG	0	Socket 1 select attribute memory space.
S1_DATA<15:0>	I/O	Socket 1 data.
S1_ADDRESS<10:0>	0	Socket 1 address.
S1_nCD<2:1>	I	Socket 1 card detect.
S1_READY_nIREQ	I	Socket 1 ready/busy.
S1_nCE<2:1>	0	Socket 1 card byte enables (2 = high byte, 1 = low byte).
S1_nOE	0	Socket 1 output enable.
S1_nWE	0	Socket 1 write enable.
S1_nIORD	0	Socket 1 IOR.
S1_nIOWR	0	Socket 1 IOW.
S1_nWAIT	I	Socket 1 wait.
S1_nIOIS16	I	Socket 1 IO_16 signal.
S1_RESET	0	Socket 1 reset signal.

Table 1-1. Signal Descriptions (Sheet 3 of 4)

Name	Туре	Description	
S1_BVD1_nSTSCHG	I	Socket 1 VDD voltage sense signal/card status changed.	
S1_BVD2_nSPKR	I	Socket 1 VDD voltage sense signal/audio digital speaker.	
S1_nVS<2:1>	I	Socket 1 VSS voltage sense signals.	
USB Interface			
USB_PLUS	I/O	USB transceiver plus.	
USB_MINUS	I/O	USB transceiver minus.	
USB_PWRCNTL/GPIO_A<4>	0	USB power control/GPIO_A bit 4	
USB_PWR_SENSE	I	USB over voltage sense	
PS/2 Trackpad Interface/GPIC	_B Bits		
TPCLK/GPIO_B<2>	I/O - od	PS/2 track pointer clock or GPIO_B bit 2	
TPDATA/GPIO_B<3>	I/O - od	PS/2 track pointer data or GPIO_B bit 3	
PS/2 Mouse Interface/GPIO_E	Bits		
MSCLK/GPIO_B<4>	I/O - od	PS/2 mouse clock or GPIO_B bit 4; also L3_CLK for L3 Control Bus.	
MSDATA/GPIO_B<5>	I/O - od	PS/2 mouse data or GPIO_B bit 4; also L3_DATA for L3 Control Bus.	
Brightness/Contrast PWM DACs/GPIO_B Bits			
PWM0/GPIO_B<0>	I/O	PWM output 0 or GPIO_B bit 0.	
PWM1/GPIO_B<1>	I/O	PWM output 1or GPIO_B bit 1; also L3_MODE for L3 Control Bus.	
PLL Group			
CLK	I	Master clock in, 3.6864 MHz. Connect to SA-1110 GPIO<27>.	
PLL_VDD	P/G	Power for PLL.	
PLL_VSS	P/G	GND for PLL.	
AC-link Serial Port for Audio/GPIO_C Bits			
SYS_CLK	0	System Clock for I ² S Audio Port	
BIT_CLK/GPIO_C<0>	I/O	12.288 MHz Bit Clock for Serial Audio, from external AC'97 Codec.	
SYNC/GPIO_C<1>	I/O	48 KHz Sync Signal (Frame Indicator), to external AC'97 Codec.	
SDATA_OUT/GPIO_C<2>	I/O	Serial Audio Data to external AC'97 Codec, or GPIO.	
SDATA_IN/GPIO_C<3>	I/O	Serial Audio Data from external AC'97 Codec, or GPIO.	
SSP Synchronous Serial Port	/GPIO_C	Bits	
SCLK/GPIO_C<4>	I/O	SSP Serial Clock to external device, or GPIO	
SFRM/GPIO_C<5>	I/O	Serial Frame signal for SSP Port, or GPIO	
TXD/GPIO_C<6>	I/O	Serial Transmit Data from SSP Port to external device, or GPIO.	
RXD/GPIO_C<7>	I/O	Serial Receive Data to SSP Port from external device, or GPIO.	
Miscellaneous Signals			
INT	0	Interrupt out.	

Table 1-1. Signal Descriptions (Sheet 4 of 4)

Name	Туре	Description
nRESET	Ι	SA-1111 hardware reset.
nTEST	1	"not Test" is a signal used for off-board production testing. It MUST be tied HIGH for normal operation. If it is driven low in a system environment, internal damage to the device may occur.
BAT_FLT	I	Battery fault or hardware-initiated Sleep.
Power and Ground		
VDD	P/G	Positive supply for the core. Pins CVDD<3:0> are allocated for this supply.
VDDX	P/G	Positive supply for the I/O pins. Pins RVDD<10:1> are allocated for VDDX.
VDD_PCMCIA	P/G	Positive supply (0, 3.3, or 5V) for PCMCIA slot. Pins PVDD<2:0> are allocated for this supply.
VDD_CF	P/G	Positive supply (0 or 3.3V) for Compact Flash (CF) slot. Pins CFVDD<2:0> are allocated for this supply.
VSS	P/G	Ground supply for the core. Pins CVSS<3:0> are allocated to this supply.
VSSX	P/G	Ground supply for all I/O pins, including PCMCIA and CF signals. Pins RVSS<17:0> are allocated to this supply.

Note: The signal types defined in Table 1-1 are as follows:

I = Input only

O = Output only

I/O - od = Input/Output - behaves like an open-drain output in PS/2 mode of operation

I/O - Input/Output

P/G= Power/Ground

Functional Description

This chapter provides a functional overview of the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111), which is a companion chip to the Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110).

2.1 Functional Blocks

Figure 2-1 shows the functional blocks of the SA-1111.

Figure 2-1. SA-1111 Block Diagram

* StrongARM is a registered trademark of ARM Limited.

A6257-01

2.1.1 System Bus Interface (SBI)

The System Bus Interface (SBI) functional block connects the SA-1111 internal bus (and through that bus, all other functional blocks) to the external SA-1110 system bus. The SBI is the subsystem through which all data and control information moves between the SA-1111 and the SA-1110 processor.

The SBI is used for three distinct types of transfers:

- Register READs and WRITEs—These are SRAM-like single-word transfers, initiated by the system processor (SA-1110). Because the SBI makes use of the RDY signal, register accesses can be of varying length, depending on the latency of accessing the subsystem to which the access is directed. In particular, the USB block has long register accesses, due to synchronizing delays between timing domains, but other subsystems have shorter accesses.
- Block-data READs and WRITEs—Block-data transfers are used to fill or empty SRAM buffers serving the serial-port subsystems. Block-data transfers typically take place as SRAM-like bursts across the system bus. Bursts can be up to 8 words long. These transfers are also initiated by the system processor.
- DMA to System Memory—The SBI includes a Shared Memory Controller (SMC) sub-unit, which responds to data-transfer requests from the USBand Serial Audio Controller. When requested, it acquires control of system memory (SDRAM) and moves data between DRAMs and the functional block requesting the transfer.

2.1.2 Intel[®] StrongARM[®] SA-1111 Subsystems

The SA-1111 includes the following functional blocks:

• USB Host Controller

A full-function USB host controller, compliant with USB Specification, Rev. 1.1 is provided. Supported modes include both slow (1.5 Mbits/s) and fast (12 Mbits/s) speeds of operation.

• PS/2 ports

Two PS/2 ports are provided for use with keyboards, mice, trackpads or other PS/2-compliant devices. PS/2 pins behave like open-drain I/Os when used in PS/2 mode. When not used for PS/2 attachment, the pins may be used as GPIO.

• PCMCIA and CF (Compact Flash) interface

An interface is provided to directly drive all signals for two sockets - one for PCMCIA, one for Compact Flash - without external buffering. Full card detection and PCMCIA voltage control are provided, so both 3.3V and 5V PCMCIA cards are supported.

• Pulse width modulation outputs

Two pulse-width-modulation (PWM) outputs are provided. These function as 8-bit-accurate D-to-A (digital-to-analog) converters, with the addition of inexpensive external filter components. They are typically used to generate brightness and contrast control voltages for LCD panels. When not used for PWM output, the pins may be used for GPIO.

• AC-link/I²S Serial Port for Audio

A full-duplex serial port for audio, compliant with AC-link (for attachment to AC'97 codecs) or I²S Specification. It transfers serialized audio data to and from external devices using AC-link, I²S or "MSB-Justified" formats. This interface connects to any external codec meeting AC'97 or I²S format requirements. Digitized audio can pass in both directions simultaneously, using sample sizes up to 16 bits, sampled at up to 48 KHz (22 KHz for I²S format). Interrupts to the host processor are minimized by inclusion of dual FIFO buffers that

store up to 16 samples in each direction. These formats are used by many popular audio D-to-A converters and codecs.

The clock pin is bidirectional. The serial audio bit-rate clock may be provided by the codec (AC'97 devices), by an external oscillator, or from a programmable divider using the SA-1111 internal clock.

The Serial Audio Port can use DMA to transfer data between the external codec and system DRAM without processor intervention. If DMA is not enabled, then programmed I/O (block data transfers) can be used.

Some codecs require an additional bus for control. The L3 Bus uses three pins (PWM<1>, MSCLK, and MSDATA) to convey control information to the codec if L3 Mode is enabled. In this mode the processor writes control bytes into the L3 register. The data is serialized and sent to the codec automatically, following L3 protocol.

If the Serial Audio function is disabled, its pins may be used for GPIO functions.

SSP Serial Port

Full-duplex synchronous serial interfacing is provided for attachment to modem, telecom, and other devices using serial protocols for data transfer. It supports National Microwire, TI Synchronous Serial Protocol (SSP), and Motorola Serial Peripheral Interface (SPI) serial protocols. Serial bit clock can be internally-generated up to 1.8 MHz (must be divided down from internal 3.68 MHz), or it may be supplied by an external device. Independent transmit and receive FIFOs are provided.

The SSP Port data FIFOs may be accessed by system-initiated transfers that make use of SRAM-like block data moves, initiated by the system processor. These transfers typically require the processor to monitor FIFO levels via register polling, or using interrupts from the SSP to alert the processor to impending FIFO overflow or empty condition.

If the SSP Serial Port function is disabled, its pins may be used for GPIO functions.

2.2 Clock Generation and Distribution

The SA-1111 input clock is a single 3.6864-MHz clock generated by the SA-1110. The clock is sent from the system processor's GPIO<27> to the CLK pin on the SA-1111. A phase-locked loop (PLL) in the SA-1111 generates the clocks required for its I/O functions and internal systems. The input clock goes to the PLL's phase comparator. The VCO following the phase comparator generates a clock of 144 MHz. Several dividers following the VCO signal create lower-frequency clocks for the following on-chip subsystems:

- USB host controller–Requires a clock of 48 MHz (0.25% tolerance) and various submultiples of that frequency (1.5 MHz, 6 MHz, and 12 MHz).
- Internal DMA bus–Operates at the frequency of the Shared Memory Controller (SMC). It uses a clock (DCLK) of 48 MHz. DMA bus support functions, like the bus arbiter, also use this clock.
- PS/2 clock–Can be programmed to function at 2.4 or 8 MHz.
- DACs for LCD brightness/contrast control–Uses the 3.6864-MHz clock, direct and ungated, so they function even if all other sections of the device, including the PLL, are shut down to reduce power.
- SSP Serial Port–Can operate with internally-generated clock based on divided-down functionality.
- Serial Audio Port, in AC-link mode, uses 12.288 MHz supplied by the external AC'97-compatible device on its BIT_CLK input. This is divided by 256 internally and exported as the SYNC signal back to the device. In I²S or "MSB-Justified" mode, the port supplies clocks to the external codecs (SYS_CLK and BIT_CLK are outputs), based on a

programmable divider using 144 MHz as its input. The SYNC output is divided down from the BIT_CLK frequency.

These frequencies are distributed from, and controlled by, the System Controller. The enables for each of these clocks also are located in the System Controller, with the exception of enables for RCLK and the PLL, which are controlled by register bits in the System Bus Interface.

2.3 System Reset

The SA-1111 is reset by asserting nRESET. When nRESET is asserted, all on-chip activity halts; when nRESET is released, the SA-1111 goes to *doze mode* (PLL operating, but clocks to some or all subsystems shut off). To enable functions of the SA-1111 and put it into *normal operational* mode, software must enable the PLL and RCLK. Unless indicated otherwise, all register bits are set to zero during reset. For information about pin states after reset, see Table 2-1.

The recommended reset sequence for the SA-1111 is as follows:

- 1. The nRESET is asserted. This asserts nBRES (the SA-1111 internal system reset).
- 2. The CLK is activated from the SA-1110. This is the clock input to the PLL's phase comparator and to the Sleep State Machine.
- 3. The nRESET is deasserted.
- 4. The VCO_ON is asserted by software, and PLL_Bypass deasserted.
- 5. After a period of time (greater than the LOCK time of the PLL), software asserts RCLKEn.
- 6. The clock controller activates RCLK for 12 cycles. This burst is routed to all clock nets in the SA-1111.
- 7. The Power Control Register must be set by software to allow clocking of individual functions on the SA-1111.
- 8. The USB must be configured before it can be used.

Figure 2-2 illustrates a reset sequence for the SA-1111.

Figure 2-2. SA-1111 Reset Sequence

2.4 Modes of Operations

The SA-1111 operates in three modes:

- Normal–The SA-1111 is fully operational.
- Doze–One or more of the system's functional blocks are not clocked resulting in the dissipation of less power.
- Sleep-All clocks are disabled resulting in a substantial reduction in power.

2.4.1 Normal Mode

Normal mode is full operation of the SA-1111 device. All clocks are on, and all functions can be used, individually enabled by clock-control bits in the System Controller.

2.4.2 Doze Mode

A software-controlled sequence of register writes can put the device into *doze mode*. This is similar to normal mode, except that one or more of the system's functional blocks are not clocked. Enabled (active) functional blocks continue to operate, while clocks to other blocks are switched off. DMA capability is disabled. This feature allows the SA-1111 to dissipate lower power when any functional blocks are not being used.

Some systems, like the PWM outputs and PS/2 ports, can operate autonomously even when the main bus clock (RCLK) is shut off. However, RCLK must be turned on for any register accesses to functional blocks beyond the SBI (System Bus Interface). SBI registers, on the other hand, are latch-based and can be written without RCLK enabled.

RCLK is an internal clock used for all register access except for the SBI registers. RCLK provides all clocking for the System Bus Interface and the internal system bus. If RCLK is turned off, only the latch-based Control Register (SKCR) in SBI block can be accessed. Before switching it off:

- All USB activity should be stopped and UCLK should be turned off.
- When the RCLK is switched off, the PS/2, SSP, USB, and audio data continues to function and can generate interrupts.

The System Controller and PWM outputs operate independently of the VCO_On signal and whether or not the PLL circuit is enabled. The System Controller can:

- Receive PCMCIA and Compact Flash interrupts.
- Receive USBPortResume interrupt.

Clocks that can be selectively switched on or off under software control are as follows:

• PCLK

Provides 8 MHz clock for the PS/2 ports. Selectively switching it on or off allows:

- Power down of an unused PS/2 port.
- Continued functioning of a PS/2 port when RCLK is turned off.
- CLK_In

Provides all clocking for the pulse width modulators (PWM) outputs. Selectively switching it on or off allows:

- Power down of the PWM outputs, if not being used.
- Continued functioning of the PWM outputs when RCLK is turned off.
- UCLK

Provides all clocking for the USB Host Controller. Selectively switching it on or off permits powering down the USB Host Controller, if it is not being used.

• SYS_CLK and/or BIT_CLK

An externally-supplied serial bit-rate clock at 12.288 MHz (from AC'97 Codec device or similar) to the AC-link (or I²S) Serial Audio controller. BIT_CLK can be gated off internally to SA-1111, putting the AC-link controller into low-power (off) state. The preferred method is to shut off this subsystem and reduce power is to send the appropriate power-down command, encoded in the SDATA_OUT bit stream, to the external AC'97 Codec. The Codec will then proceed through a power-down sequence and shut off BIT_CLK itself. To re-start the Codec and its BIT_CLK output, SA-1111 asserts its SYNC output for less than 1 microsecond.

Alternatively, for I²S (or MSB-Justified) operation, the serial audio clock is generated internally and SYS_CLK and BIT_CLK are outputs. Clock control is similar to that with AC-link, except another mechanism, which uses a separate control lines, must be used to shut down the external codec.

The Serial Audio subsystem can continue to operate autonomously (moving data between its FIFO buffers and external codec) in Doze Mode, but the system must re-enable DMA capability if it relies on DMA to move data to and from the system DRAM.

• SCLK

The clock for the SSP Serial Controller, which typically ranges from 8KHz to 2 MHz. Selectively switching it on or off allows powering down of the Serial Controller. SSP power-down control is identical for either clock source.

• DCLK

Shared Memory Controller and DMA Bus (DCLK), either 36 MHz or 48 MHz.

2.4.3 Sleep Mode

Sleep Mode allows substantial reduction in system power consumption (to several micro watts) when none of the functions of the SA-1111 are required. In addition to stopping all clock activity on the SA-1111, Sleep Mode also:

- Places the pins of the device into a minimum power configuration.
- Sets the PCMCIA voltage control lines (GPIO_A<3:0>) to their sleep state register values.
- Sets the PCMCIA address, data, and control lines according to the value in the PCMCIA sleep state register.
- Selects the wake-up mode of the Interrupt Controller.

These interrupts are ORed together and, if enabled, signal the interrupt to the system processor on the INT pin. Any interrupt may be programmed to bring the SA-1111 out of Sleep Mode, if enabled in the independent WakeUp Register. If the Sleep Mode was initiated by BAT_FLT assertion, interrupts are disabled and any existing interrupts are cleared.

Sleep Mode will be initiated by:

- Software setting the sleep bit in the SA-1111 Control Register
- Power-fault signal on BAT_FLT (interrupts disabled)

A state machine controls the transition to Sleep Mode. The state machine is clocked directly by the input clock CLK at 3.6864 MHz. The state machine has the following transitions:

• State 0 – Active

This state is entered from reset. All clocks are enabled and pins are set to their reset condition.

• State 1 – Request

This state is entered from the active state, by either:

- Writing the value "1" to the Sleep Bit of the SA-1111 Control Register (SKCR).
- Assertion of BAT_FLT
- State 2 Shutdown_1

 — Shutdown_1 releases the system bus if MBGNT is granted and causes the Power Control Register to be cleared, which disables all clocks.

• State 3 – Shutdown_2

This state is unconditionally entered from Shutdown_1. Because all subsidiary clocks have ceased, this state disables RCLK and the PLL.

• State 4 – Sleep

This state is unconditionally entered from Shutdown_2. The following conditions are set within the SA-1111:

- Pads are set into their associated sleep condition.
- GPIO output lines are set according to the value in the GPIO sleep state register.
- PCMCIA voltage control lines are set according to the PCMCIA sleep state register value.
- PCMCIA control lines are set according to the PCMCIA sleep state register value.
- The PLL will be turned off.

• State 5 – Wake-up

This state is entered from sleep mode anytime nCS goes active (any read or write to SA-1111). The pads, except for those in GPIO mode, are released from their sleep condition and return to normal operation. If BAT_FLT is asserted, the state machine transitions back to *Sleep Mode*.

When the state machine returns to the active state, the SA-1111 Control Register (SKCR) can be accessed, allowing software to re-enable the PLL and RCLK. Reconfiguration of the SA-1111 for normal operation can then be carried out as required.

Note: Prior to activating the sleep bit, a zero must be written to the SKPWM register in the system controller to disable PWM outputs.

Table 2-1. Pin State After Reset and During Sleep State

Name	Туре	Reset State	Sleep State
SA-1110 Processor Interface	- Register	Access and SDRAM Interfacing	
A<25:0>	I/O	Input	Input
D<31:0>	I/O	Input	Input
nOE	I/O	Input	Input
nWE	I/O	Input	Input
DQM<3:0>	I/O	Input	Input
nCS	1	Input	Input
RDY	0	Tri-stated	Tri-stated
MBREQ	0	Low	Low
MBGNT	1	Input	Input
nSDCS	0	Tri-stated	Tri-stated
nSDRAS	0	Tri-stated	Tri-stated
nSDCAS	0	Tri-stated	Tri-stated
SDCLK	0	Tri-stated	Tri-stated
SA-1110 Interface - PCMCIA a	and Comp	act Flash Support	
nPREG	I	Input	Input
nPOE	I	Input	Input
nPWE	I	Input	Input
nPIOW	I	Input	Input
nPIOR	I	Input	Input
nPCE<2:1>	I	Input	Input
nIOIS16	0	High	High
nPWAIT	0	High	High
PSKTSEL	I	Input	Input
PCMCIA Socket (Slot 0) Interface			
S0_nPREG	0	Tri-stated	Note 2
SO_DATA<15:0>	I/O	Input	Input
SO_ADDRESS<25:0>	0	Tri-stated	Note 3
S0_nCD<2:1>	I	Input	Input
S0_READY_nIREQ	1	Input	Input
S0_nCE<2:1>	0	Tri-stated	Note 2
S0_nOE	0	Tri-stated	Note 2
S0_nWE	0	Tri-stated	Note 2
S0_nIORD	0	Tri-stated	Note 2

Name	Туре	Reset State	Sleep State
S0_nIOWR	0	Tri-stated	Note 2
S0_nWAIT	I	Input	Input
S0_nIOIS16	I	Input	Input
S0_RESET	0	Tri-stated	Note 3
S0_BVD1_nSTSCHG	1	Input	Input
S0_BVD2_nSPKR	1	Input	Input
S0_nVS<2:1>	1	Input	Input
PCMCIA Power Control/GPIO			
PCMCIA_PWR/GPIO_A<3:0>	I/O	Input	Note 1
Compact Flash Socket (Slot 1	I) Interfac	6	
S1_nPREG	0	Tri-stated	Note 4
S1_DATA<15:0>	I/O	Input	Input
S1_ADDRESS<10:0>	0	Tri-stated	Note 5
S1_nCD<2:1>	I	Input	Input
S1_READY_nIREQ	I	Input	Input
S1_nCE<2:1>	0	Tri-stated	Note 4
S1_nOE	0	Tri-stated	Note 4
S1_nWE	0	Tri-stated	Note 4
S1_nIORD	0	Tri-stated	Note 4
S1_nIOWR	0	Tri-stated	Note 4
S1_nWAIT	I	Input	Input
S1_nIOIS16	I	Input	Input
S1_RESET	0	Tri-stated	Note 5
S1_BVD1_nSTSCHG	I	Input	Input
S1_BVD2_nSPKR	I	Input	Input
S1_nVS<2:1>	I	Input	Input
USB Interface			
USB_PLUS	I/O	Input	Input
USB_MINUS	I/O	Input	Input
USB_PWRCNTL	0	Low	Note 6
USB_PWR_SENSE	1	Input	Input
PS/2 Trackpad Interface/GPIO_B Bits			
TPCLK/GPIO_B<2>	I/O - od	1	Note 1
TPDATA/GPIO_B<3>	I/O - od	1	Note 1
PS/2 Mouse Interface/GPIO_B Bits			
MSCLK/GPIO_B<4>/L3CLK	I/O - od	Input	Note 1
MSDATA/GPIO_B<5>/L3DATA	I/O - od	Input	Note 1

Name	Туре	Reset State	Sleep State
Brightness/Contrast PWM DACs/GPIO_B Bits			
PWM0/GPIO_B<0>	I/O	Input	Note 1
PWM1/GPIO_B<1>/L3MODE	I/O	Input	Note 1
PLL Group			
CLK	1	Input	Input
I2S Serial Port			
SYS_CLK	0	Low	Low
BIT_CLK/GPIO_C<0>	I/O	Input	Note 1
SYNC/GPIO_C<1>	I/O	Input	Low
SDATA_OUT/GPIO_C<2>	I/O	Input	Note 1
SDATA_IN/GPIO_C<3>	I/O	Input	Note 1
SSP Synchronous Serial Port/GPIO_C Bits			
SCLK/GPIO_C<4>	I/O	Input	Note 1
SFRM/GPIO_C<5>	I/O	Input	Note 1
TXD/GPIO_C<6>	I/O	Input	Note 1
RXD/GPIO_C<7>	I/O	Input	Note 1
Miscellaneous Signals			
INT	0	Low	Active
nRESET	1	Input	Input
nTEST	I	Input	Input
BAT_FLT	I	Input	Input

Notes:

- 1. These pins revert to GPIO mode of operation in Sleep State. State is determined by the corresponding GPIO Sleep State and Sleep Direction bits.
- 2. When the Control Register (PCCR) bit 2 is set to 0, all these pins will be tri-stated. When the PCCR bit 2 is set to 1, the state of these pins depends on the state of the Sleep State register (PCSSR) bit 0:
 - When PCSSR[0] = 0: all of these pins will be tri-stated.
 - When PCSSR[0] = 1: all of these pins will be high.
- 3. When the Control Register (PCCR) bit 2 is set to 0, all these pins will be tri-stated. When the PCCR bit 2 is set to 1, the state of these pins depends on the state of the Sleep State register (PCSSR) bit 0:
 - When PCSSR[0] = 0: all of these pins will be tri-stated.
 - When PCSSR[0] = 1: all of these pins will be low.
- 4. When the Control Register (PCCR) bit 3 is set to 0, all these pins will be tri-stated. When the PCCR bit 2 is set to 1, the state of these pins depends on the state of the Sleep State register (PCSSR) bit 0:

- When PCSSR[0] = 0: all of these pins will be tri-stated.
- When PCSSR[0] = 1: all of these pins will be high.
- 5. When the Control Register (PCCR) bit 3 is set to 0, all these pins will be tri-stated. When the PCCR bit 2 is set to 1, the state of these pins depends on the state of the Sleep State register (PCSSR) bit 0:
 - When PCSSR[0] = 0: all of these pins will be tri-stated.
 - When PCSSR[0] = 1: all of these pins will be low.
- 6. This depends upon the StandbyEn and PwrCtlPolLow bits in USB Reset register (seeSection 6.3.3 for more information).Table 2-2 shows the pin state while in sleep mode.

Table 2-2. USB_PwrCntl Pin State in Sleep Mode

PwrCtrPolLow	StandbyEn	Usb_PwrCntl
0	0	1
0	1	0
1	0	0
1	1	1

2.5 Test

In *test mode* the PLL is put into *Bypass* mode, so that the input frequency to the PLL (CLK) connects directly to PLLCLK (the normal PLL output to all clock dividers). Clock multiplexers are provided on RCLK and DCLK nets.

The System Bus Interface is the primary interface between the Intel[®] StrongARM[®] SA-1111Microprocessor Companion Chip (SA-1111) and the Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110). Its connection to the full SA-1110 system memory bus is used for transferring data between the host processor and SA-1111 internal functional blocks.

There are two distinct mechanisms for moving data between the external system bus and SA-1111 internal blocks.

- Register reads and writes, and block data transfers, take place using SRAM-type accesses. Register reads and writes are single-cycle events, while block data transfers are bursts of up to eight sequential data words. These transfers are initiated by the system processor.
- DMA transfers between SA-1111 and system memory may be initiated by the SA-1111 in response to a request from the internal USB Host Controller or the Serial Audio Controller. The SA-1111 acquires the system memory bus and transfers data directly to or from system DRAM.

3.1 Signal Description

This section lists the signal descriptions for the interfaces between the SA-1111 and the SA-1110.

3.1.1 Intel[®] StrongARM[®] SA-1110 System Bus Interface - Signals

Table 3-1 describes the external (pin) interface to the system memory bus.

Table 3-1. SA-1110 Memory Interface Signals - O(D) = Driven for DMA

Signal	Туре	Description
A<25:0>	I and O(D)	26-bit address bus
D<31:0>	I/O	32-bit data bus
nCS	I	Chip select (dedicated to SA-1111 access), asserted low
nOE	I	Output enable, asserted low for reads
nWE	I and O(D)	Write enable, asserted low for writes
RDY	0	Indicates SA-1111 has taken write data, or read data is available
DQM<3:0>	I and O(D)	SDRAM byte enable
MBREQ	0	Request to SA-1110 for bus ownership
MBGNT	I	Grant from SA-1110 - bus is available
nSDCS/nRAS	O(D)	SDRAM Chip Select, to any bank of SDRAM
nSDRAS	O(D)	RAS (Row Address Strobe), for SDRAM
nSDCAS	O(D)	CAS (Column Address Strobe) for SDRAM
SDCLK	O(D)	SDRAM Clock (48 MHz)

3.1.2 System Bus Interface (SBI) - Internal Buses and Signals

The SBI's internal interface to other on-chip blocks consists of two synchronous buses:

• The Register Access Bus (RAB) is used for processor-initiated transfers between the processor and on-chip registers or FIFO storage. For these transfers, the SBI is always bus master. Clock frequency for this bus is 24 MHz.

The Register Access Bus is also the source of address and data to the Compact Flash and PCMCIA buffers.

• The DMA Bus uses PCI-like protocols to transfer data between a bus master (the USB or Serial Audio blocks) and external system DRAM. For these DMA transfers, the SBI is always a slave (target), while the initiating USB or Serial Audio block is the master. Although transfers use PCI protocols, signals like LOCK and ERROR are not supported, nor are concepts like Retry or Abort. Using the TRdy and IRdy signals enables either participant to stall the transfer.

The bus runs at the same clock frequency as the SMC (Shared Memory Controller)—48 MHz for SDRAMs.

High-order address decoding for the RAB bus is centralized in the SBI. A central arbiter chooses the DMA Bus master.

Each bus has dual single-direction 32-bit data paths. In addition, there are two 16-bit data buses for read data from the PCMCIA and CF slots. For the RAB, incoming data for register writes and PCMCIA or CF writes transfers on RegDIn. Four byte-enable bits permit any combination of bytes to be written. Read data from registers goes out on RegDOut, from PCMCIA (Slot 0) on Slot0RdData, or from Compact Flash (Slot 1) on Slot1RdData. (Note that slot data is 16 bits wide). The SBI selects one data source and drives read data onto the system bus to the processor. When slot data is read, the upper 16 bits of the system bus are forced to zero.

For DMA transfers, the initiating master sends out read/write address and data (multiplexed like PCI) on DmaADOut. Read data from system memory transfers to the DMA master over DmaDIn.

Table 3-2 describes the internal system bus signals. The following signal-type abbreviations are used in Table 3-2: input (I) and output (O), referenced to the System Bus Interface block. Table 3-3 describes the interface to the register access bus.

Table 3-2. SBI Block - interface to DMA Bus (SBI is transfer target)

Signal	Туре	Description
DCLK	1	48 MHz internal bus clock
Dma_Din<31:0>	0	32-bit read data in (to on-chip DMA master)
DmaADout<31:0>	I	32-bit address and write data out (from on-chip DMA master)
DmaBE<3:0>	1	4-bit byte enable out, to write DRAMs
Frame	1	Signals start and end of a transfer
TRdy	0	Target (SBI) ready
IRdy	I	Initiator (master) ready
DmaWr	I	DMA Command: 0 = Read, 1 = Write
AnyReq	1	OR of USB, Audio DMA requests

Signal	Туре	Description	Notes
RCLK	1	RAB bus clock	
nBRES	1	Internal system bus reset, asserted low	
RegAdr<8:2>	0	7-bit register-access address (decoded locally)	1
RegDin<31:0>	0	32-bit write data, to target register or (16 bit) to slot	
RegDOut<31:0>	I	32-bit read data, from target register	
Slot0RdData<15:0>	1	16-bit read data from PCMCIA slot	
Slot1RdData<15:0>	1	16-bit read data from CF slot	
PsktSelln	1	Select source of READ data (1=CF, 0=PCMCIA)	
nDOutEnL	1	Enable PCMCIA or CF read data out, LOW byte	
nDOutEnH	1	Enable PCMCIA or CF read data out, HIGH byte	
RegBE<3:0>	0	4-bit byte enable, to write target register or buffer	
RegWr <n></n>	0	Signals timing of valid write data to selected block	
RegRd <n></n>	0	Output enable, to read from selected block	
WAIT <n></n>	ļ	Target (slave) asserts to extend cycle	

Table 3-3. SBI Block - interface to Register Access Bus (SBI is transfer initiator)

1. All register accesses have a size of 32 bits, therefore BYT_EN = 1111 for these accesses. All reserved bits are read back as zero. USB and Audio FIFOs access 32 bits of data. Where there is only an SSP FIFO, only the lower 16 bits are valid.

3.1.3 Other Internal Interface Signals

A power-quality signal, BAT_FLT, is brought in from an external pin. This signal is used to indicate a problem with the system power source. In the SA-1111, it disables assertion of MBREQ, preventing the SBI from requesting ownership of the shared bus. It also connects to other on-chip functions like the Sleep State Machine.

There are several registers in the SBI with bits that connect to other system blocks. Table 3-4 describes these signals.

 Table 3-4.
 Other System Interface Signals

Signal	Direction	Description
nRESET	I	System reset; from pin
BAT_FLT	I	BAT_FLT; from pin
PLL_Bypass	0	Bypass PLL, send input CLK direct to dividers; from SKCR
RCLKen	0	RCLK enable; from SKCR
Sleep	0	Sleep mode command; from SKCR
Doze	0	Force DOZE mode
PLLON	0	Enable PLL; from SKCR
ScanTestEn	0	Enable scan testing logic; from SKCR
ClockTestEn	0	Multiplex control to bring clocks to I/O pins, for test

3.2 Functional Description

This section provides a functional overview of the external (pin) signals between the SA-1111 and the SA-1110, and the logic that controls them and transfers data to/from internal destinations.

3.2.1 Register Accesses and the Register Access Bus (RAB)

The SBI responds to register reads and writes from the SA-1110, and turns them into internal RAB transfers. In this mode of operation, the SA-1111 looks like SRAM to the processor, to which it can perform single-cycle or burst accesses (see the following figures.)

When nCS is asserted, it causes the SBI to initiate an RAB transfer as RAB bus master. The type of transfer (read or write) is signaled by the processor using nOE or nWE assertion. After nCS and nOE/nWE assertion, data is placed on the internal 32-bit RAB datapath by the SBI (for writes) or by the target (for reads), enabled by RegRd<n>. An access directed to SA-1111 is identified in the SBI first by the assertion of nCS. If it is not directed to one of the registers in the SBI itself (which does not use the RAB bus), the access becomes an RAB transfer. High-order address bits A<25:9> are centrally-decoded in the SBI, and signal Stb or RdEn is sent from the decoder to the addressed block. Within the block, local address-decode logic, using A_In<8:2>, identifies which of several registers (or FIFO buffer) may be addressed. Only address signals required for this local decoding need connect to the block.

Table 3-5 lists the memory map. The *base offset* is relative to the base address of the chip select signal (nCS) used to select the SA-1111.

The address space is subdivided evenly between the twelve functional units. Each unit is allocated a 512-byte (128 words) block of memory space, regardless of how many registers or FIFO buffers the unit actually has.

Note: Only the base offset for the System Bus Interface is fully decoded and requires bits 25:13 to be all zeros. All other register addresses have bits 25:13 aliased (bits 25:13 are **not** decoded).

Table 3-5.SA-1111 Memory Map

Base Offset	Description
00000000 - 000001FF	System Bus Interface
00000200 - 000003FF	System Controller (SK)
00000400 - 000005FF	USB Host Controller
00000600 - 000007FF	Serial Audio Controller
00000800 - 000009FF	SSP Serial Port
00000A00 - 00000BFF	PS/2 Trackpad Interface
00000C00 - 00000DFF	PS/2 Mouse Interface
00001000 - 000011FF	GPIO Blocks A, B, C
00001200 - 000013FF	Reserved
00001400 - 000015FF	Reserved
00001600 – 000017FF	Interrupt Controller
00001800 - 000019FF	PCMCIA Interface
Note: A major difference between SA-1101 and SA-1111 is that the former only connected to address bits <21:10>, while the SA-1111 connects to all 26 address bits. This permits register addresses to be spaced at 4-byte intervals, rather than 1K bytes as required for the SA-1101.

Signal Stb indicates the availability of Write data on Data_In to the target block; RdEn tells the target to enable Read data onto Data_Out bus. If the target needs more time, it asserts the Wait signal. Data flows through the SBI, unclocked, between external system bus and the RAB data bus. Once data has been latched (for a write) or is ready to be sampled (read), the SBI asserts RDY to the system processor. The processor, after some delay, terminates the cycle by deasserting nOE/nWE and nCS. Register accesses always transfer single (32-bit) words. Cycles may be of variable length, depending on the timing of RDY asserted by SA-1111 back to the processor.

Note the RAB has two modes of access. For fixed-latency transfers, use of RDY should be disabled in the SA-1111 control register (SKCR). All accesses will have this length.

Figure 3-1, Figure 3-2, Figure 3-3, and Figure 3-4 illustrate the variable latency mode of operation.

NOTE: RDF measured in SA-1110 Memory Clock periods. RDF must be set to >90 nS

A6620-01

Figure 3-2. Register Read, Single Cycle with Variable Latency

NOTE: RDF measured in SA-1110 Memory Clock periods. RDF must be set to >90 nS

A6621-01

NOTE: RDN must be ≥ 2

A6622-01

Figure 3-4. Register Write, Burst of 2 with Variable Latency

A6623-01

Table 3-6 lists the register read and write timing parameters with variable latency.

 Table 3-6.
 Register Read and Write Timing Parameters - Variable Latency

Symbol	Parameter	Minimum	Maximum	Unit	Note
^t AS	Address setup to nWE or nOE start	5T-2	5T+3	ns	1
^t CES	nCS setup to nWE or nOE start	4T-2	4T+3	ns	1
^t AH	Address hold after nWE or nOE end	T-2	—	ns	_
^t CSH	nCS hold after nWE or nOE end	2T-2	4T+3	ns	1
^t nWE	/E Duration of nWE or nOE assertion 2T(RDF +1+Waits) ns		ns	2	
^t nCS	Duration of nWE or nOE deassertion	2T(RI	DN+1)	ns	2

Note: 1. T is period in ns of the SA-1110 core (CPU) clock. 2. RDN and RDF are programmable in the SA-1110.

Figure 3-5 shows a register read with fixed latency mode.

Figure 3-5. Register Reads with Fixed Latency Mode of Register Access

Figure 3-6 shows a register write with fixed latency mode. Note that waveforms are not synchronous to RCLK. RCLK is shown to indicate relative duration of the signals.

Figure 3-6. Register Writes with Fixed Latency Mode of Register Access

Table 3-7 lists the register read and write timing parameters with fixed latency.

Table 3-7. Register Read and Write Timing Parameters - RDY disabled

Symbol	Parameter	Minimum	Maximum	Unit	Note
^t ASW	Address setup to nWE start	T-2	T+3	ns	1
^t CES	CS setup to nWE start	4T-2	4T+3	ns	1
^t CSH	CS hold after nWE end	2T-2	4T+3	ns	1
^t RDN	—	280	_		2
^t RDF	_	300	_		2

Note: 1. T is period in ns of the SA-1110 core (CPU) clock. 2. RDN and RDF are programmable in the SA-1110.

3.2.2 PCMCIA and CF Access

The SA-1111 has internal buffers for a complete set of address, data, and control signals for two slots – one PCMCIA, and one Compact Flash (CF). Writes to either slot send data through the SBI to the data output pins using RegDIn data path. For reads, there are two 16-bit buses returning data from the slots to the SBI, from which it is driven on the system bus pins to the SA-1110. PCMCIA reads use Slot0RdData, and CF reads use Slot1RdData bus. These are multiplexed in the SBI, using signal PsktSeIIn to indicate which bus is being read. One or both bytes of the returning 16-bit word may be enabled; the disabled byte's data pins are forced to zero. Signals nDOutEnL (for bits <7:0>) and nDOutEnH (for bits <15:0>) specify which byte to enable to the SA-1110. The upper 16 bits of the 32-bit datapath are forced to zero.

3.2.3 DMA Access to System Memory

The USB block requires DMA access to system memory. The Serial Audio Port can also (programmably) operate in DMA mode, in which they may transfer data directly to and from the system DRAM. A stream of incoming data from a USB or audio peripheral can fill buffers local to the block; when enough data is stored it must be transferred to system memory. Similarly, a request for data in system memory may come from a USB peripheral, and the USB block fetches the requested data from DRAM.

3.2.3.1 Acquiring Internal and External System Buses

The USB or Serial Audio block first requests the internal bus by asserting its request (DMA_Req<n>) to the central arbiter. A version of this signal also goes to the SBI, telling the SBI to request and acquire the external bus. The SBI asserts MBREQ to the SA-1110 processor. When the system bus is idle, the processor responds with MBGNT and tri-states all required bus signals (address and DRAM control) so the SA-1111 can drive them. Meanwhile, the arbiter grants ownership of the internal DMA bus to the requester, and the new bus master asserts Frame and drives the starting address of the transfer onto DmaADOut. The address is latched in the SMC's address register/counter.

The Shared Memory Controller (SMC) begins driving external memory signals to prevent them from floating, then asserts nSDRAS with the starting Row Address.

If the transfer is a DMA write, the bus master drives the first data word onto the bus and asserts *IRDY* to tell the SMC there is valid data on the bus. The SMC clocks the data into a register and drives it onto the system data bus along with nSDCAS, write command, and Column Address. It asserts TRDY to the bus master to indicate it has taken the data. If the transfer is a DMA read, the SMC asserts nSDCAS, Column Address, and read command to SDRAM. It waits the appropriate number of cycles (two or three, depending on programmed CAS latency), latches returning READ data from SDRAM, and asserts TRDY to the bus master to indicate valid read data is available.

The USB block (or other DMA requester) is the initiator and uses IRDY to regulate transfers over the internal system bus; the SMC is the target and uses TRDY.

3.2.3.2 DMA Bus Arbitration

The DMA bus has a central arbiter. When the USB or Serial Audio controller wants to transfer data to or from system memory, it must become DMA bus master. The central arbiter receives the request as DMA_Req<n> from the requesting function block. The arbiter grants bus ownership by asserting DMA_Gnt<n> if the bus is not in use, or it waits until the current transfer is done. The default bus owner is the SAC controller; however all blocks must request the bus when they want it. If there are simultaneous requests, the arbiter will grant ownership to the highest-priority requester controller.

Once granted, the winning controller drives the address onto the internal address bus to the SBI, which uses it for DRAM addressing. There is no re-mapping of physical address in the SBI; the address sent to DRAM is identical to the address placed on the DMA bus.

3.2.3.3 Shared Memory Controller (SMC)

Once it has acquired the bus, the requesting subsystem begins data read or write cycles across the DMA bus. These are translated into DRAM cycles (SDRAM) by the SMC, driving the appropriate DRAM control and address signals to the system memory DRAMs. The SMC inserts any required wait states (using TRDY) on the DMA bus for READ transfers from system memory.

The SMC opens the addressed bank and row of DRAM memory. It will keep the bank/row "open" (RAS asserted) until the completion of the transfer. The transfer takes the form of a burst of data reads or writes, in which a burst may consist of one to eight words transferred. Arbitrary byte writes are supported. At the DRAMs, byte writes are controlled by the DQM bits. Reads are always 32-bit (all bytes enabled); the requesting controller ignores unwanted bytes.

For SDRAM accesses, only a subset of the external address bus is driven with the valid memory address. This subset is A<24:10>. All other addresses are driven by low-drive I/O pads so that these signals do not float.

SDRAM setup is the responsibility of the SA-1110. After power-on, the memory controller will set up the SDRAM's CAS latency, burst length, and burst type. SDRAMs are programmed by the SA-1110 processor to operate with "Burst Length = 1." This does not mean they do not burst; it just means the SMC must supply a command and address every cycle in order to maintain consecutive full-speed (burst) data transfers.

If a burst crosses a row boundary, the SMC closes the row, pre charges (deasserts RAS), and restarts the transfer at the next row. This is all done transparently from the USB/Audio Controller point of view; it will see a pause during the data transfer (caused by *TRDY* deassertion) but it does not need to be aware of DRAM row boundaries.

DRAM refresh is the responsibility of the SA-1110 memory controller, not the SMC. Because SMC bus possession is short, and the SBI guarantees return of the bus to the processor after every possession, data integrity is not compromised. The SA-1110 memory controller has a continuously-running refresh timer; when it times out, it sets a flag that forces a refresh once DRAM possession is returned. While the flag is set, the timer keeps running, so the average refresh rate is unchanged regardless of SA-1111 ownership frequency or durations.

Note that CAS latency (2 or 3) must be programmed the same in the SMC as it is for the SA-1110, even though the SDRAM clock is a different frequency and the SDRAM could theoretically work with a different value. Since the SA-1110 sets up the SDRAM CAS latency (CL) value, the same value must be used by the SMC. CL specifies number of clock delays for READ data after the read command is clocked into the SDRAM.

Although the SA-1110 supports 16-bit and 32-bit bus widths to SDRAM, the SA-1111 only works with 32-bit DRAM width.

3.2.3.4 DRAM Address Generation

There are many configurations of DRAM and SDRAM which may be controlled by the SMC. The SA-1110 processor and the SA-1111 must both be set up correctly (and identically), so that data goes into locations accessible to both parts, and so that the same physical address on internal buses refers to the same location in DRAM. To correctly address DRAM, the memory's number of row address bits must be loaded into an SMC register. Table 3-8 lists the DRAM address configuration and register settings.

DRAM Size	DRAM Organization	Address Row and Column Width	DRAC Setting
	1M x 16	10 x 10	001
		12 x 8	011
16 Mbit	2M v 8	11 x 10	010
	2101 X 0	12 x 9	011
	4M x 4	11 x 11	010
	4101 × 4	12 x 10	011
		11 x 11	010
	4M x 16	12 x 10	011
		13 x 9	100
		14 x 8	101
64 Mbit		12 x 11	011
	8M x 8	13 x 10	100
		14 x 9	101
		12 x 12	011
	16M x 4	13 x 11	100
		14 x 10	101
256 Mbit	16M x 16	15 x 9	110
	32M x 8	15 x 10	110

Table 3-8. DRAM Address Configuration and Register Settings

3.2.3.5 DRAM Control Signal Generation

On system initialization, the system must load the SMC register indicating what type of DRAM is being used. Bit 0 of the SMC Control Register (DTIM) must always be programmed with a one.

For SDRAM control, the SMC generates the following set of signals (see Figure 3-7 and Figure 3-8):

- SDCLK 48 MHz clock
- nSDRAS Row Address Strobe
- nSDCAS Column Address Strobe
- nWE Write enable
- nSDCS chip select for SDRAMs
- DQM<3:0> byte enables

Signal SDCKE (Clock Enable) is always driven from the SA-1110. It is deasserted during the clock hand over period when bus ownership transfers between masters, then reasserted to enable the new owner's clock.

Figure 3-7. SDRAM Read Cycle, Burst of 2 - CAS Latency = 3

Figure 3-8. SDRAM Write Cycle, Burst of 2

int

3.3 **Programmer's Model**

This section describes the registers in the SBI.

3.3.1 Control Register (SKCR)

This register provides global control over PLL operation, bus clock, sleep mode, test mode, RDY response, and the mapping of SA-1111 into high-order address ranges.

Table 3-9. SKCR Register Bit Descriptions

Bit	Name	Reset Value	Function
0	PLL_Bypass	0	Specifies on-chip PLL or external source for clocks 1 = Enable 0 = Bypass
1	RCLKEn	0	Enables Internal System Bus Clocks (RCLK and DCLK). 1 = Enable
2	Sleep	0	Force entry into Sleep mode 1 = Enter sleep mode
3	Doze	0	Force entry into Doze mode 1 = Enter doze mode
4	VCO_OFF	0	VCO on/off - enables or disables system PLL for clock generation 1= Off 0 = On
5	ScanTestEn	0	Enables scan test. Takes effect only in test mode. 1 = Enable
6	ClockTestEn	0	Enables clock test. Takes effect only in test mode. 1 = Enable
7	RdyEn	1	Enable RDY response (for SA-1110) vs. fixed-length register accesses 1 = Enable
8	SeLAC	<u>0</u>	Audio Feature Select 1 = AC Link $0 = 1^2S$
9	OPPC	<u>0</u>	Out only pad control. Takes effect only in test mode. 1= Tri-states all the output pads.
10	PIITestEn	<u>0</u>	Enables PII test. Takes effect only in test mode.
11	UsbIOTestEN	<u>0</u>	Enables USB IO cell test. Takes effect only in test mode.

3.3.2 Shared Memory Controller Register (SMCR)

This register provides control of the SMC, and DRAM configuration information.

Table 3-10. SMCR Register Bit Descriptions

Bit	Name	Reset Value	Function
0	DTIM	1	Specifies type of DRAM: 1 = SDRAM
1	MBGE	0	Shared memory grant enable. 0=MBGNT is gated and disabled. 1=MBGNT is enabled.
4:2	DRAC	101	Number of DRAM row address bits: 000 = 9 001 = 10 010 = 11 011 = 12 100 = 13 101 = 14 110 = 15
5	CLAT	1	For SDRAMs, specifies CAS latency for READs: 1 = CAS latency = 3 0 = CAS latency = 2

3.3.3 ID Register (SKID)

This is a read-only register that identifies the component as an SA-1111 companion chip and lists the revision of the component.

Table 3-11. SKID Register Bit Descriptions

Bit	Name	Function
0	_	Reserved
8:1	Component Revision	Specifies the revision of the component in two hex values.
31:9	Component Identifier	Specifies the identity of the SA-1111 as: 690CC2.

3.3.4 Memory Map

Table 3-12 lists the read and write locations of the addresses in the SBI memory map.

Table 3-12. SBI Memory Map

Address	Read Location	Write Location
0x0000000	SKCR register	SKCR register
0x0000004	SMCR register	SMCR register
0x0000008	SKID register	(read only)

SA-1111 Internal Bus Architecture

Two buses carry data traffic between the System Bus Interface and the on-chip functional blocks:

- The Register Access Bus (RAB) conveys all register reads and writes, and processor-initiated transfers of serial audio or SSP data;
- The DMA Bus is a multi-master bus, used by the USB Host Controller, or the Serial Audio Controller for transferring blocks of data between system DRAM and their associated peripheral devices.

4.1 Register Access Bus

The Register Access Bus (RAB) is a synchronous single-master bus. Transfers over the RAB are initiated by the Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110). The System Bus Interface (SBI) is always the master. Other on-chip blocks are targets.

4.1.1 RAB Central Address Decoder

SA-1111 uses a centralized address decoder for the Register Access Bus (RAB). The decoder functionally is part of the System Bus Interface (SBI) block. The decoder makes use of high-order address bits (A<25:9>), driven by the processor to the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) during register accesses or block-data transfers, to identify the targeted block. The decoder performs the following functions:

- Generates the target-specific write strobe (Reg<BlockName>Stb) and read-enable (Reg<BlockName>RdEn) signals to each bus target, indicating that a write or read transfer to that slave is underway.
- Acts as a simple protection unit, which prevents attempted accesses to an illegal or protected area of the on-chip memory space.

Low-order addresses (A<8:2>) are driven from the SBI to transfer targets. These are used locally within the target to decode specific register or FIFO buffer addresses. High-order bits <25:9> are sent only to the PCMCIA and CF address output pads, but do not go to any functional blocks.

Figure 4-1 shows a block diagram of the decoder.

Figure 4-1. Decoder Block Diagram

Each functional block is allocated a memory space of 128 words (512 bytes). Address bits A<9> and above select the functional block in the decoder; bits A<8:2> are passed to the functional blocks for local register decoding.

Table 4-1 lists the functional block assignments.

Note that accesses to registers within the SBI itself do not result in RAB activity.

Table 4-1. RAB Target Blocks/Address Assignment

Address A<12:9>	Functional Block Assignment
1	Power Management/PWM Controllers
2	USB Host Controller
3	Serial Audio Controller
4	SSP Serial Port
5	PS/2 Trackpad Port
6	PS/2 Mouse Port
7	GPIO Controller
8	Reserved
9	Reserved
A	Reserved
В	Interrupt Controller
С	PCMCIA Logic

4.1.2 Signal Description

Table 4-2 describes RAB signals.

Table 4-2. Register Access Bus Signal Description

Name	Description
RCLK	RAB (bus) clock; normally 24 MHz
nBRES	Active LOW signal to reset all blocks in SA-1111
RegAddr<8:2>	Low-order target address bus that is driven by the SBI
RegDin<31:0>	Data bus for WRITE data to target register or buffer
RegDOut<31:0>	Data bus for READ data, from target register or buffer
RegBE<3:0>	Byte enable, to control which bytes are written at target register or buffer
Reg <blockname>Stb</blockname>	Write strobe - indicates valid WRITE data on D_IN bus
Reg <blockname>RdEn</blockname>	Read enable - indicates target should put READ data on D_OUT bus
Reg <blockname>Wait</blockname>	Wait (not READY) signal from target - to extend duration of transfer

4.1.3 RAB Cycles

Register Access Bus transfers are initiated by the system processor. The external bus signals are interpreted by the SBI and converted to RAB cycles. Register reads and writes are single-cycle transfers, while buffer accesses may take the form of a burst with up to 8 words transferred.

4.1.4 RAB Protocol

For an RAB Write, incoming data is placed on RegDln by the SBI, and Reg<BlockName>Stb asserts to the targeted destination block for one cycle. The target register or buffer clocks in the data. If it can not accept data for any reason, it asserts its Reg<BlockName>Wait signal before Reg<BlockName>Stb assertion; the SBI will hold the data on the bus and delay Reg<BlockName>Stb until Wait deasserts.

For an RAB Read, low-order address bits are driven by the SBI onto RegAddr<8:2> with local address information, and Reg<BlockName>RdEn is asserted to the targeted functional block. The block selects the specific register or buffer which has been addressed, and enables it onto the 32-bit RegDOut bus. All 32 bits are driven even if the targeted register/buffer has a smaller data width. The functional block continues driving data until Reg<BlockName>RdEn is deasserted by the SBI. If the block requires more than a cycle to access and drive valid data on RegDOut, it asserts Reg<BlockName>Wait and holds it until valid data is finally on the bus. The SBI uses Wait to control the external RDY signal to the system processor.

The Address Decoder always inserts at least one "dead cycle" between assertions of Reg<BlockName>RdEn to different targets, to prevent overlap of tristate drivers on RegDOut lines.

4.2 DMA Bus

Table 4-3 lists the DMA bus interface signals.

Table 4-3. DMA Bus Interface Signals

Name	Source	Description
DCLK	CLK module	32- or 48-MHz DMA bus clock.
SacReq	DMA initiator	Audio Controller Request DMA transfer, to bus arbiter
SacGnt	Arbiter	Bus Grant for Audio Controller, from arbiter
UsbReq	DMA initiator	Usb Request DMA transfer, to bus arbiter
UsbGnt	Arbiter	Bus Grant for USB, from arbiter
DmaWr	DMA initiator	DMA command: 0 = Read, 1 = Write
DmaDin<31:0>	SBI	Read data, from DRAMs to SAC
DmaADOut<31:0>	DMA initiator	DMA address or write data, from SAC to DRAMs
DmaLenBE<3:0>	DMA initiator	DMA burst length and Byte Enable, for data transfers
FRAME	DMA initiator	Frame - DMA Bus protocol signal
IRDY	DMA initiator	Initiator ready
TRDY	SBI	Target (SBI) ready

4.2.1 DMA Bus Arbiter

The DMA Bus is a synchronous multi master bus. The bus may be acquired and controlled by the USB Host Controller or the Audio Port. The functional unit controlling the bus is responsible for driving address and control signals, and units which are not masters at that time must tristate (turn off) their drivers connected to the same signals. A bus arbiter is needed to ensure that only one bus master controls the bus at a given time.

Each bus master can request the bus at any time. If a transfer is underway, the arbiter delays issuing a responding bus grant until the current transfer is complete. In the event of multiple simultaneous requests, the arbiter decides which has the highest priority and issues a grant signal accordingly.

Each potential master has its own request output, and grant input, connecting to the arbiter.

4.2.1.1 DMA Arbiter Block Diagram

Figure 4-2 shows a block diagram of the arbiter.

Figure 4-2. Arbiter Block Diagram

4.2.1.2 Arbiter Signals

Table 4-4 describes the signals for the arbiter.

Table 4-4. Arbiter Signals

Name	Туре	Description
UsbReq	I	Request from the USB Host Controller indicating it requires the bus. This signal must be set up to the rising edge of DCLK.
SacReq	I	Request from the Serial Audio Controller indicating it requires the bus. This signal must be set up to the rising edge of DCLK.
UsbGnt	0	Grant signal to the USB Controller. When HIGH, this signal indicates that the USB block is currently the highest priority master requesting the bus. This signal changes during the LOW phase of DCLK and remains valid through the HIGH phase.
SacGnt	0	Grant signal to the Serial Audio Controller. When HIGH, this signal indicates that the Serial Audio block is currently the highest priority master requesting the bus. This signal changes during the LOW phase of DCLK and remains valid through the HIGH phase.
DCLK	I	DMA Bus Clock. This clock times all bus transfers. The clock has two distinct phases: phase 0 in which DCLK is HIGH, and phase 1 in which DCLK is LOW.
nBRES	I	This signal is asserted LOW to reset the arbiter and other bus control functions.
Frame	I	Asserted by the DMA masters to indicate start and end of a transfer.
Trdy	I	Target Ready–Driven by the transfer target (System Bus Interface - SBI) to indicate readiness to send READ data, or to take WRITE data.
Irdy	I	Initiator Ready–Asserted by the DMA Master to indicate readiness to send WRITE data, or to receive READ data.
AnyReq	0	Any Request–This is ORed signal from UsbReq and SacReq.

4.2.1.3 Arbiter Functional Description

There are two potential DMA bus masters in the SA-1111, so the arbiter must decide which of the two can be the next master in the event of simultaneous requests. To gain access to the DMA Bus, a potential bus master must assert its request line ((x)Req). If the bus is not busy and the request is higher priority than any other asserted bus request, then the request is granted to that requester. If the bus is busy, the arbiter waits until the transfer underway is completed, then issues (x)Gnt to the highest-priority requester. A transfer, once underway, is never interrupted by another requester. Requesters may remove their (x)Req signal as soon as it gets the grant ((x)Gnt).

When a (x)Gnt signal is issued to a new bus master, there is always at least one "dead" cycle after deassertion of the previous (x)Gnt to prevent the possibility of tristate overlap on the bus.

A requester becomes the new bus master when its (x)Gnt is returned. It then asserts Frame and drives address, burst length, and command onto the DMA Address/Command Bus lines. The ensuing transfer then uses PCI-like protocols, with the new bus master as Initiator (controlling IRdy) and the System Bus Interface in the role of Target, controlling TRdy.

Table 4-5 lists the priorities for the arbiter in the event of simultaneous requests. The USB Host Controller has the highest priority and Serial Audio Controller is the default bus master.

Priority	Bus Master
Highest	USB Host Controller
Lowest	Serial Audio Controller

Table 4-5.Bus Master Priorities

4.2.1.4 Arbiter Reset

During reset, when nBRES is LOW, the arbiter returns bus ownership to the default owner, the serial Audio Controller. Audio bus driver logic must drive DmaADOut, DmaWr, DmaLenBE, Frame and IRdy signals at all times when its grant (SacGnt) is asserted, even when a transfer is not actively underway.

4.2.2 DMA Bus Cycles

Once a requester has been granted the bus, it drives the target DMA address onto the address/data out bus DmaAOut and asserts Frame. The Shared Memory Controller (SMC) begins a DRAM access to system DRAMs (the external DRAM bus has already been acquired by the SMC). Multiple words may be transferred in either direction, up to a burst length of 16. The bus master and SBI (which is the target) handshake each word using IRdy and TRdy signals. At the end of the transfer, the bus master deasserts Frame. When (x)Gnt is removed, it stops driving DmaADOut, DmaWr, DmaLenBE, and IRdy.

4.2.3 DMA Bus Protocols

If the transfer is a write to DRAM, the bus master puts data on DmaADOut and asserts IRdy to signal the availability of valid data. The SMC clocks the data into SDRAM and returns TRdy to indicate that it is ready for new data. Either party in the transfer - the SMC or the bus master - can delay a transfer by withholding its (x)Rdy signal.

For reads to DRAM, the bus master asserts IRdy when the transfer begins. The SMC launches a DRAM read cycle and waits the required latency time to get data back from DRAM. When valid data returns, the SMC drives it down the DmaDIn bus to the waiting bus master and asserts TRdy. The master latches the data and continues to signal IRdy if it wants more.

If the sequence of DRAM accesses crosses a row boundary, the SMC must pause the burst while it closes the current row, initiates DRAM precharge, and begins accessing the next DRAM row. It will hold TRdy deasserted while this sequence is underway.

The System Controller provides the clocking, power/reset functions, and mode control of the Intel® StrongARM® SA-1111 Microprocessor Companion Chip (SA-1111).

5.1 **Functional Description**

The System Controller, in conjunction with the Control Register, sets up the functionality for the SA-1111. In addition, the System controller provides two pulse-width modulation (PWM) outputs which, when combined with simple external components, function as 8-bit A-to-D converters generating programmable output voltages.

5.1.1 System Power Control

Power Control is enabled by clock gating to the various functional blocks. Blocks with individually controllable clocks are:

- USB Host Controller (48 MHz UCLK)
- SSP Serial Port (3.68 MHz SCLK)
- Serial Audio Controller (12.288 MHz AC-link clock, or programmable SYS CLK and L3)
- PS/2 Ports (1-8 MHz PCLK clock)
- Shared Memory Controller and DMA Bus (DCLK), (48 MHz)
- RAB (24 MHz RCLK)
- PWM generators (3.6864 MHz Clk_In)

5.1.2 **PWM Outputs**

Two 8-bit resolution PWM outputs are provided. The PWM counter is clocked at CLK frequency (the input to SA-1111 PLL), which gives a carrier frequency of 14.4 KHz with the standard input 3.6864 MHz. A value of 0 written to the data register gives no output (output remains at VSS), and a value of 255 gives a pulse duty cycle of 255 clock periods high, 1 clock period low.

If either or both PWM functions are not needed, the pins may be used for GPIOs. PWM0 pin is used for GPIO_B<0>, while PWM1 pin is used for GPIO_B<1>. Refer to Chapter 10 for information on enabling and programming GPIO functions.

The clock to the PWM generators (Clk_In) may be gated off to reduce power. In the current system, the SA-1110 switches the 3.6864 MHz reference clock to 32 KHz clock while going into the sleep mode. Programming SKPWM register to zero and disables the PWM outputs prior to switching the clock. Asserting BAT_FLT will also disable the PWM outputs.

5.2 Programmer's Model

This section describes the registers in the System Controller.

5.2.1 Power Control Register (SKPCR)

This register controls the clock enables for the functional blocks in the SA-1111. Note that SCLK or SYS_CLK may be brought in from an external source, but is still gated on and off by its control bit. All bits are cleared by reset, so all of the peripheral clocks are disabled at reset and are enabled by software as and when they are needed.

Bit	Name	Function
0	UCLKEn	USB Host Controller Clock 1 = Enable
1	ACCLKEn	Audio Controller AC Link Clock 1 = Enable
2	I ² SCLKEn	Audio Controller I ² S Clock Enable 1 = Enable
3	L3CLKEn	Audio Controller L3 Clock Enable 1 = Enable
4	SCLKEn	SSP (Serial Port) Controller Clock 1 = Enable
5	PMCLKEn	PS/2 Mouse Port Clock 1 = Enable
6	PTCLKEn	PS/2 Track pad Clock 1 = Enable
7	DCLKEn	Shared Memory Controller and DMA Bus Clock - 32 or 48 MHz 1 = Enable
8	PWMCLKEn	PWM Clock enable 1 = Enable

5.2.2 Clock Divider Register (SKCDR)

Bit	Name	Reset	Function
6:0	FBDiv	1001100	FeedBack Divider. Set to 0x4c for VCO frequency of 144 MHz.
11:7	IPDiv	00000	Input Divider. Set to 0 for VCO frequency of 144 MHz.
13:12	OPDiv	00	Output divider. Set to 0 for PLL frequency of 144 MHz. 00 = PLL output is same as VCO output 01 = PLL output is VCO output divided by 4 10 = PLL output is VCO output divided by 2 11 = PLL output is VCO output divided by 8
14	OPSel	0	Output Selector. Takes effect while in PLL bypass mode. 0 = In Bypass PLL mode, output clock is the same as the input clock 1 = In Bypass PLL mode, output clock is the inverse of the input clock
31:15	_	0	Reserved.

This register controls the setting of the SA-1111's PLL.

VCO output = VCO input * (FBDiv/IPDiv). Program FBDiv and IPDiv with (required value minus 2). For example, to program input divider with the value of 8, set IPDiv bits to 6, (8 minus 2).

5.2.3 Audio Clock Divider Register (SKAUD)

This register controls the generation of SYS_CLK and BIT_CLK for Audio module. SYS_CLK is generated by dividing PLL clock by the divider value.

Bit	Name	Reset	Function
6:0	ACDiv	0011000	Audio Clock Divider. Program (required value –1). Set to 0x18 for sampling frequency of 22.05 KHz

Table 5-1 lists Audio Sampling Frequencies as a function of PLL Divider Value.

Table 5-1. Audio Sampling Frequencies

PLL Divider Value (decimal)	Audio Sampling Frequency
25	22.05 KHZ
35	16.0 KHZ
51	11.025 KHZ
70	8.0 KHZ

5.2.4 PS/2 Mouse Clock Divider Register (SKPMC)

This register controls the generation of PS/2 clocks. PCLK is generated by dividing PLL clock by the divider value.

Bit	Name	Reset	Function
7:0	PMCDiv	00010001	PS/2 Clock Divider. Program (required value – 1). Set to 0x11 for PS2 frequency of 8 MHz.

5.2.5 PS/2 Track Pad Clock Divider Register (SKPTC)

This register controls the generation of PS/2 clocks. PCLK is generated by dividing PLL clock by the divider value.

Bit	Name	Reset	Function
7:0	PTCDiv	00010001	PS/2 Clock Divider. Program (required value – 1). Set to 0x11 for PS2 frequency of 8 MHz.

5.2.6 **PWM0 Enable Register (SKPEN0)**

This register enables the PWM0 module. When PWM0 is enabled, it takes control of the pin from GPIO module and sends PWM0 output on it.

Bit	Name	Reset	Function
0	PWMOEN	0	PWM0 Enable 1 = Enable.

5.2.7 PWM0 Clock Register (SKPWM0)

This register controls the duty cycle of PWM clocks. Refer to the PWM output section for details. This register should be written with the value of zero prior to going into sleep mode.

Bit	Name	Reset	Function
7:0	PWMOCK	00000000	PWM Clock Duty Cycle Control. Reset value of 0 disables the clock.

5.2.8 PWM1 Enable Register (SKPEN1)

This register enables the PWM1 module. When PWM1 is enabled, it takes control of the pin from GPIO module and sends PWM1 output on it.

Bit	Name	Reset	Function
0	PWM1EN	0	PWM1 Enable 1 = Enable.

5.2.9 PWM1 Clock Register (SKPWM1)

This register controls the duty cycle of PWM clocks. Refer to the PWM output section for details. This register should be written with the value of zero prior to going into sleep mode.

Bit	Name	Reset	Function
7:0	PWM1CK	00000000	PWM Clock Duty Cycle Control. Reset value of 0 disables the clock.

5.2.10 Memory Map

Table 5-2 lists the read and write locations in the memory map of the System Controller.

Table 5-2. System Controller - Read/Write Locations

Address	Read Location	Write Location
0x0000200	SKPCR register	SKPCR register
0x0000204	SKCDR register	SKCDR register
0x0000208	SKAUD register	SKAUD register
0x000020C	SKPMC register	SKPMC register
0x0000210	SKPTC register	SKPTC register
0x0000214	SKPEN0 register	SKPEN0 register
0x0000218	SKPWM0 register	SKPWM0 register
0x000021C	SKPEN1 register	SKPEN1 register
0x0000220	SKPWM1 register	SKPWM1 register

The Universal Serial Bus (USB) is a bus cable that supports serial data exchange between a host computer and a variety of simultaneously-accessible peripherals. The attached peripherals share USB bandwidth through a host-scheduled token-based protocol. Peripherals may be attached, configured, used, and detached, while the host and other peripherals continue operation.

The USB Host Controller built into the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) is Open Host Controller Interface (OHCI)-compatible, Windows95^{*} USBD-compatible, and USB Revision 1.1-compatible. It supports both low-speed (1.5 Mbps) and high-speed (12 Mbps) USB devices.

See the Universal Serial Bus Specification Revision 1.1 and the Open HCI – Open Host Controller Specification for USB for details of the interface operation.

6.1 Functional Description

The USB Host Controller follows USB protocols to set up and operate peripherals on the USB. In addition, it controls the transfer of data between USB peripherals (attached to the bus) and system memory. This section provides a functional overview of the USB Host Controller.

6.1.1 USB Reset

The USB Host Controller is not fully reset following an SA-1111 reset. This reset leaves the USB ForceHcReset and the USB ForceIfReset asserted. To initialize the USB Host Controller, follow this sequence:

- 1. Start the UCLK12.
- 2. Wait at least $10 \ \mu$ S.
- 3. Clear both the ForceIfReset and the ForceHcReset bits.

The USB Host Controller is now operational.

6.1.2 USB Suspend

The USB specification defines a power conversation mechanism called *suspend*. Devices and hubs can be placed into the *suspend state*; if required, the whole system can be suspended (*global suspend*).

A device enters the suspend state if it does not receive an SOF (keep awake) packet greater than 3 ms. Software needs to explicitly invoke the suspend state; otherwise devices will automatically receive 1-ms keep awake SOF packets.

If there is no USB activity, the host can invoke the *global suspend* state, which causes all connected devices and hubs to go into their suspend states within 5 ms. The host can re-enable the bus by invoking the *resume state*. If a device requires attention, it can cause a *resume* by sending the host a *remote resume event* (idle \rightarrow K-state bus transition).

The USB specification does not define specific requirements for the suspend state, other than requiring devices to draw less than 500 µA supply current.

Note: Termination resistors draw most of this current when in the *suspend* state.

6.1.3 Power Management

The Open Host Controller Interface Specification for the USB defines a port power switching mechanism. A brief summary of the salient points follows:

- All ports can be continuously powered, or the power can be switched.
- Power switching can be global (all ports), or individually switched.

Power switching does not depend on the state of the port (connected, speed, enabled, and so forth).

Power-enable features only can be operated while the USB block's clock is running. The USB clock must be running to disable or enable power-enable features.

The SA-1111 USB has the following features that support power-conservation features of the Open Host Controller Interface:

- USB clock stopping
- Port power enable
- Port resume interrupt

6.1.3.1 USB Clock Stopping and Power Enable

The USB clock can be stopped at any time. However, stopping the clock is only recommended when the USB is in the *global suspend* state. The global suspend state is reached when there has been no activity on the USB for more than 5 ms, and the host controller is in the *suspend* state. In the suspend state, the port (PAD) also will be in low-power mode, but will still be able to detect the USB port resume interrupt.

If a device is not connected to the USB port, the host controller cannot be suspended, and the port (PAD) will not be in its low-power mode. To save power when a device is not connected to the USB port (PAD), the *port power enable* can be disabled before the USB clock is stopped (refer to OHCI specification).

6.1.3.2 Port Resume Interrupt

The port resume interrupt does not depend on the USB clock running. It indicates that an event has occurred on the USB bus that requires the USB clock to be restarted. If the USB clock is running, the host controller interrupt handles any interrupt conditions. For the port resume interrupt to function both the USB pad's single-ended receiver and the port power supply must be powered on.

Three events can cause a UsbPortResume interrupt:

- A device is connected. Indicated by one of the USB port signals being pulled high.
- A port is disconnected. Indicated by both the USB port signals being pulled low.
- A remote resume signal from a currently connected device. Indicated by an idle → K-state transition on the USB bus.

6.1.3.3 Summary of Low Power Operation

Table 6-1 lists the power status of each of the potential power drain components in the USB interface for the various modes of operation.

Table 6-1. Operational Power Statu

	Notes	Power Status				
Mode of Operation		USB Core	Tx Driver	Differential Receiver	Single-Ended Receiver	Port Power Supply
Fully operational	1	Powered	Powered	Powered	Powered	Powered
Global suspend	2, 3, 6	Under user control	Low power	Low power	Powered	Powered
Port power disabled (as specified in OHCI spec).	3,4	Under user control	Low power	Low power	Low power	Low power
Sleep mode active	5,2	Under user control	Low power	Low power	Under user control	Under user control
Standby (low power)	7, 4, 2	Low power	Low power	Low power	Under user control	Under user control

Notes:

- 1. Fully operational is defined as: USB Host controller is in the operational state, the Sleep mode is not active, and the port power is enabled.
- 2. The user may stop the USB clock (see Section 5.2.1) and still be able to receive a USB port resume interrupt when a device sends a remote resume interrupt or a device is disconnected.
- 3. When the port power status bit in the HC core is disabled the USB port is considered to be disabled, and therefore not in use, all components are put into low-power mode. The user may stop the USB clock to further reduce power drain (see Section 5.2.1).
- 4. When the USB pads singled-ended receiver is in low power mode the remote resume interrupt will not function, this may also be the case if the device does not receive power from the USB port.
- 5. When the Sleep mode is active the single-ended pad receiver together with the port power supply power enable are controlled by the StandbyEn control bit; only if this bit is cleared will the port resume interrupt function.
- 6. A device must be connected before the HC can be put into the suspend state.
- 7. To disable the USB port the USB clock must be stopped. The single ended port receiver and USB power supply will be powered on if the *Port Power Enable* was enabled before the clock was stopped.

6.1.4 Suggested Power-Management Routines

This section lists suggested power-management routines.

6.1.4.1 Initial Port Power-Down Sequence

To initiate a port power-down sequence, follow this procedure:

- 1. Wait for the device hardware reset sequence to complete. For more information on USB reset, see Section 6.1.2. The USB clock is enabled.
- 2. Send a software reset to the host controller and wait 10 μ S.
- 3. Set the global power enable bit.
- 4. Clear the StandbyEn bit.
- 5. Stop the USB clock. The USB is now in *Standby* mode.

Note: Software waits for the UsbPortResume interrupt before restarting the USB clock.

6.1.4.2 Low-Power Mode in Suspend State Sequence

To put the USB system into low-power mode, follow this sequence:

- 1. Wait for the USB to go to global suspend state.
- 2. Set the port suspend bit. This may be automatic after 5 ms of inactivity on the USB bus.
- 3. Wait for the *port suspend* bit to go active. The USB is now in *suspend mode*.
- 4. Clear the StandbyEn bit.
- 5. Stop the USB clock.

The USB is now in Standby mode.

Note: Software waits for the *UsbPortResume* interrupt to go active. Start the USB clock, and the host controller restarts.

6.1.4.3 Low-Power Mode after Device Disconnect Sequence

To activate low-power mode, follow this sequence:

- 1. Wait for *port connection status* to go inactive, or wait for the UsbPort Resume interrupt if the USB clock is stopped. Check connection status.
- 2. Clear the StandbyEn bit.
- 3. Stop the USB clock. The USB is now in *Standby* mode.
- *Note:* The port is powered down. For more information on the initial port power down sequence, see Section 6.1.4.1. Software waits for the UsbPort Resume interrupt before restarting the USB clock.

If the USB clock is stopped in any mode other than that described above, the host controller and any connected device may need re-initialization.

6.1.4.4 Disable USB Port

To initiate a port disable sequence, follow this procedure:

1. Wait for the device hardware reset sequence to complete. For more information on USB Reset, see Section 6.1.1.

The USB clock is enabled

- 2. Send a software reset to the host controller and wait $10 \,\mu$ S.
- 3. Clear the *global power enable* bit. The USB is now in *Port Power Disabled* mode.
- 4. Set the StandbyEn bit.
- 5. Stop the USB clock. The USB is now in *Standby* mode and the port power is disabled.
- *Note:* The UsbPortResume interrupt will not be generated when a device is connected unless the StandbyEn bit is cleared. To set the global power enable bit, it is necessary to first start the USB clock.

6.2 USB Block Interfaces

6.2.1 External Pin Interface

The USB Controller connects to four pins on the SA-1111 device. These are:

- USB_PLUS—One of two differential USB I/O signals, to USB peripherals.
- USB_MINUS—The second differential USB I/O signal, to USB peripherals.
- USB_PWRCNTL —Normally this pin is driven from the Port Power status bit in the HcRhPortStatus register, but when the sleep mode is active or the USB clock is disabled it is driven from the SleepStandbyEn bit. This signal may be used to control an external power-switching device supplying power to USB peripherals (Port Power Supply).
- USB_PWR_SENSE—This is a dedicated active high input which is normally used for sensing port over current fault conditions on the USB power supply. It can initiate an interrupt to the system processor if enabled (refer to Section 6.3.1 for more information). This signal also drives the Over Current status signal to the USB HC core (refer to the OHCI register specification).

6.2.2 Internal RAB Bus Interface

The Register Access Bus (RAB) is used for register reading and writing. Table 6-2 lists the signals in the RAB bus interface.

Note: The following registers may only be accessed as 32-bit words; byte and half-word writes are illegal and may cause erroneous behavior.

Table 6-2. RAB Interface Signals

Name	Direction	Description		
RCLK	1	24-MHz RAB clock.		
nBRES	I	RAB reset, asserted low.		
RegUsbStb	I	Write Strobe to USB Controller		
RegUsbRdEn	I	Output Enable, for Reads to USB Controller		
RegAddr<8:2>	I	7-bit local address from RAB.		
RegDin<31:0>	I	32-bit write data, from system bus to USB Controller		
RegDout<31:0>	I	32-bit read data, from USB Controller to system bus		
RegBe<3:0>	I	Byte Enable, for data writes using RAB transfers		
RegUsbWait	0	Wait signal to SBI		

6.2.3 Internal DMA Bus Interface

With DMA transfers enabled, the USB Controller requests the system bus when it needs to transfer data to or from system DRAM. Once it receives the grant, it drives addresses and data onto the DMA bus to the SBI. The SBI's memory controller translates those into DRAM cycles and completes the transfer between the internal DMA bus and system DRAM. Table 6-3 lists the DMA bus interface signals.

Name	Direction	Description	
DClk	I	32- or 48-MHz DMA bus clock.	
UsbReq	0	Request DMA transfer, to bus arbiter	
UsbGnt	I	Bus Grant, from arbiter	
DmaLenBe	0	Multiplexed address burst length and data write byte enable	
DmaWr	0	DMA command: 0 = Read, 1 = Write	
DmaDin<31:0>	I	32-bit read data, from DRAMs to USB Controller	
DmaADout<31:0>	0	Multiplexed 32-bit address and write data, from USB Controller to DRAMs	
Frame	0	Frame - DMA Bus protocol signal	
IRdy	0	Initiator (USB Controller) ready	
TRdy	I	Target (SBI) ready	

Table 6-3.DMA Bus Interface Signals

6.2.4 Interrupt Generation

There are six possible sources of interrupts from the USB interface that generate the single UsbInt signal (which is driven to the Interrupt Controller block). These six sources are:

• HCI interrupt; as specified in the OHCI specification.

- Remote Wake-up interrupt; only operational when the USB clock is enabled.
- HCI Buffer Active interrupt; activated when the HC performs a DMA access to external memory.
- HCI transfer abort interrupt; activated when the HC aborts a DMA transfer.
- USB device over current interrupt; activated when a device sinks more current than allowed by the USB specification.
- Port Resume interrupt; See Section 6.1.3.2 for details of operation. This interrupt is only enabled when the USB clock has been stopped.

Each interrupt source has associated status and test bits, the status bit allows the user to inspect the status of the condition causing the interrupt (also allows a polling operation to be used). The test bit enables the signal to be stimulated for test.

6.3 **Programmer's Model**

The USB incorporates operational registers of the Open Host Controller Interface Specification for the USB. In addition, the SA-1111 has USB-related status and reset registers that are described in this section.

6.3.1 Status Register

This register enables the user to monitor the active state of each interrupt source. These bits are not latched, so care must be taken when interpreting their state.

Bit	Name	Reset	Function	
6:0	_	0	Reserved.	
7	IrqHciRmtWkp	0	1 = HCI remote wake-up event. This bit pulses active with a RemoteWakeUp event on one of the downstream ports of the root hub. It pulses when the host controller moves from the suspend to resume state. This signal only goes active if the RWE bit in the HcControl register is set. A latched version of this bit is available in the interrupt controller.	
8	IrqHciBuffAcc	0	1 = HCl buffer active. This bit is active while the host controller is accessing the data buffer for the current TD or when an ED is being accessed (the status signal to let the application know if the host controller is reading or writing the shared memory).	
9	nIrqHciM	0	0 = Normal HC interrupt active. See the Open Host Controller Interface specification.	
10	NHciMFCIr	0	0 = HCl interface clear signals active. This bit pulses active when the host controller can no longer start or continue the current host controller interface (HCl) transfer (for example, during a reset while an HCl transfer is in progress). It is active for a minimum of 10 µs until the host controller reenters.	
11	UsbPwrSense	0	1 = Port over current. This bit reflects the state of the USB Power Sense pin. This status bit is also reflected in the Over Current Condition status bit of the HCI controller when its clock is running.	
31:12	_	_	Reserved.	

6.3.2 Interrupt Test Register

This register is only used for test, it enables the interrupt path to be exercised independently of the interrupt source. While in test mode and with the Interrupt Test bit (UsbIntTest) is set, these bits directly drive the interrupt signals to the Interrupt controller block.

Bit	Name	Reset	Function
6:0	—	—	Reserved.
7	IrqHciRmtWkpTest	0	Force HCI remote wake-up interrupt
8	IrqHciBuffAccTest	0	Force HCI buffer active interrupt.
9	NirqHciMtest	0	Force normal HC interrupt.
10	NHciMFCirTest	0	Force HCI interface transfer abort interrupt.
11	UsbPortResumeTest	0	Force USB port resume interrupt.
31:12	_	—	Reserved.

6.3.3 Reset Register

This register provides a mechanism to individually reset the uhost core (HcReset) and the DMA master interface (IfReset). An external reset sets the ForceIfReset and ForceHcReset bits. The ClkGenReset bit is only used for simulation and test.

Bit	Name	Reset	Location
0	ForcelfReset	1	When set, forces a reset to the ASB master interface. Must be cleared for the interface to function. The IfReset is driven also by the system reset nSyncedBRes. This bit is reset to the active state.
1	ForceHcReset	1	When set, forces a reset to the USB Host Controller. Must be cleared for the host controller to function. The HCReset is driven also by the system reset nSyncedBRes. This bit is reset to the active state.
2	ClkGenReset	0	When set, this bit resets the Host Controller clock generation block. It can be used by the test interface to guarantee deterministic behavior for the Host Controller block. The ClkGenReset is <i>not</i> driven by the system reset nSyncedBRes. This bit is reset to the inactive state.
3	SimScaleDownClk	0	When set to one, scales down the 1ms-interval clock in the host controller. Only used for test and simulation, must be set to zero for normal operation
4	UsbintTest	0	When set to one and Test mode is active, this bit enables the interrupt test bits that directly force the interrupt signals the interrupt controller.
5	SleepStandbyEn	0	This bits operation is only valid when the Sleep mode is active; when set to one, disables the USB single-ended receiver and the USB port power supply.
6	PwrSensePolLow	0	This bit selects the polarity of the USB_PWR_SENSE input signal. When set active, the signal is considered active low.
7	PwrCtrlPolLow	0	This bit selects the polarity of the PwrCtrlPolLow output signal. When set active, the signal is considered active low.
31:8	—	—	Reserved.
intel®

6.4 Register Memory Map

Table 6-4 lists the addresses of the control bits in the USB host interface controller. See Section 3.2.1 for the base address of the USB host interface controller.

 Table 6-4.
 USB Host Interface Register Memory Map

Address	Name
0x0000400	Revision
0x0000404	Control
0x0000408	CommandStatus
0x000040C	InterruptStatus
0x0000410	InterruptEnable
0x0000414	InterruptDisable
0x0000418	HCCA
0x000041C	PeriodCurrentED
0x0000420	ControlHeadED
0x0000424	ControlCurrentED
0x0000428	BulkHeadED
0x000042C	BulkCurrentED
0x0000430	DoneHead
0x0000434	FmInterval
0x0000438	FmRemaining
0x000043C	FmNumber
0x0000440	PeriodicStart
0x0000444	LSThreshold
0x0000448	RhDescriptorA
0x000044C	RhDescriptorB
0x0000450	RhStatus
0x0000454	RhPortStatus<1>
0x0000518	Status register
0x000051C	Reset register
0x0000520	Interrupt test register
0x0000530-0x000055C	Read Data FIFO RAM test access

The Serial Audio Controller (SAC) is the functional block through which serialized digital audio passes between the system (Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110) and memory) and an external codec. Typically the codec contains one or more A-to-D converters and a similar number of D-to-A converters.

The system can record an audio source by passing incoming audio through an A-to-D converter and storing the digitized samples in system memory. Sampled audio may be compressed by the host processor before committing to memory, to reduce storage requirements.

For playback, or for the production of synthesized audio, the processor retrieves and decompresses stored audio samples (or creates audio samples algorithmically) and sends them to the Serial Audio Controller. The SAC passes them on to the external D-to-A converter via its serial audio link, where they are converted to an analog audio waveform.

The Serial Audio Controller supports several industry-standard formats for the transfer of digitized audio information between the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) and an external codec. These formats are AC-link, I²S, and MSB-Justified. The Serial Audio Controller can operate full-duplex (simultaneous traffic in both directions). Four pins connect the controller to external codecs: a bit-rate clock (which can use either internal or external source), a formatting or "Left/Right" control signal, and the two serial audio pins (one for each direction). An additional pin provides SYS_CLK/RESET# signal to the codec.

The Serial Audio Controller can use on-chip DMA capability to transfer audio data directly between the external codec and system DRAM, without processor intervention. Or, the processor can transfer data in either direction using bursts of SRAM-like accesses to audio data FIFOs.

For I²S systems, additional pins are required to control the external codec. Some codecs use a control bus (L3 Bus) which requires three signals. Pins PWM<1>, MSCLK, and MSDATA are dedicated to L3 Bus function. They can be toggled under software control as GPIO outputs, or they can use on-chip logic to output L3-Bus protocols by writing bytes into the L3-bus register.

This chapter describes the operation and signal definition for the Serial Audio Controller (SAC) functional block.

7.1 Signal Description

This section lists the signals which interface to the Serial Audio Controller.

7.1.1 External Interface to Serial Audio Controller

Table 7-1 lists the external signals between the SAC and an external Codec device. Alternatively, if the SAC function is not being used, the pins may function as GPIOs (refer to Chapter 10 for information on alternate mode of operation).

Table 7-1. External Interface to Codec

Name	Direction	Description
SYS_CLK	0	System Clock for I ² S systems or nBRES and RESET# (AC-link)
BIT_CLK	I/O	12.288 MHz (AC'97, AC-link) or other bit-rate clock
SYNC	0	Frame indicator (AC-link) or L/R identifier (I ² C or MSB-Justified)
SDATA_OUT	0	Serial audio data out to codec, for digital-to-analog conversion
SDATA_IN	I	Serial audio data in, from codec

SYS_CLK is an internally-supplied or externally-supplied clock for I²S systems. Normally it is based on the PLL output, divided by an integer value between 25 and 70, to generate SYS_CLK. Table 7-6 lists the available sampling frequencies. It is then divided by 256 to generate the audio sampling frequency (typically between 8 and 22 KHz). SYS_CLK is used by AC-link for the RESET# signal.

BIT_CLK is an externally-supplied clock for AC-link. Typically (AC-link) it is supplied by the AC'97 codec, which has its own oscillator and attached 24.576 MHz crystal. The clock specifies the bit rate at which serial audio data moves between the codec and the SA-1111. An alternate mode of operation (I²S or "MSB-Justified") may use an external clock or an internally-supplied bit clock. If the clock is generated internally, the BIT_CLK pin is an output. Table 7-6 lists the available sampling frequencies based on an internal clock source. BIT_CLK is 64 times the sampling frequency for I²S operation or MSB-Justified operation.

SYNC signals the beginning of an audio sample frame for AC-link format. For I^2S or "MSB-Justified" formats, it indicates Left/Right sample identity.

SDATA_IN and SDATA_OUT are the serial audio data streams, one for each direction. See "Serial Audio Formats" for details on data encoding in the stream.

7.1.1.1 Optional L3 Bus Interface

For interfacing to I^2S codecs, other pins are required for transferring control information. Typically two or three GPIO signals may be used for codec control. If the codec uses L3 Bus protocol, three pins (PWM<1> = L3_MODE, MSCLK = L3_CLK, and MSDATA = L3_DATA) are dedicated to L3 Bus interfacing. The processor can load the L3 Bus register one byte at a time, and the data will be transferred over the L3 bus automatically. Table 7-2 shows the assignment of L3 Bus functions to specific SA-1111 pins.

Name	Direction	Description
L3_CLK	0	Used by target codec to clock in serial address and data bits Uses MSCLK/GPIO_B<4> pin, when L3 mode enabled
L3_DATA	I/O	Bidirectional serial data path for codec control and status information Uses MSDATA/GPIO_B<5> pin, when L3 mode enabled
L3_MODE	0	Mode signal, to distinguish between address and data modes of operation Uses PWM/GPIO_B<1> pin, when L3 mode enabled

Table 7-2.L3 Bus Interface Pins

7.1.2 Internal Interfaces

7.1.2.1 Register Access Bus (RAB)

The Register Access Bus (RAB) is used for register reading and writing. Table 7-3 lists the signals in the RAB bus interface.

Table 7-3. RAB Interface Signals

Name	Direction	Description
RCLK	I	24-MHz RAB clock.
nBRES	1	RAB reset, asserted low.
RegAddr<8:2>	I	7-bit local address from RAB.
RegDIn<31:0>	I	32-bit write data, from system bus to SAC
RegDOut<31:0>	I	32-bit RAB read data, from SAC to system bus
RegBE<3:0>	1	Byte Enable, for data writes using RAB transfers
RegSacStb	1	Write Strobe to Serial Audio Controller
RegSacRdEn	I	Output Enable, for Reads to Serial Audio Controller

7.1.2.2 DMA Bus Interface

With DMA transfers enabled, the SAC will request the system bus when it needs to transfer data to or from system DRAM. Once it receives the grant, it drives addresses and data onto the internal bus to the SBI. The SBI's memory controller translates those into DRAM cycles and completes the transfer between the internal bus and DRAM. Table 7-4 lists the DMA bus interface signals.

Table 7-4. DMA Bus Interface Signals

Name	Direction	Description
DCLK	I	32- or 48-MHz DMA bus clock.
SacReq	0	Request DMA transfer, to bus arbiter
SacGnt	I	Bus Grant, from arbiter
DmaWr	0	Write command to SBI and DRAMs
DmaDIn<31:0>	I	32-bit read data, from DRAMs to SAC
DmaADout<31:0>	0	32-bit write data, from SAC to DRAMs
DmaLenBE<3:0>	0	Byte Enable, for data writes using DMA transfers
Frame	0	Frame - DMA Bus protocol signal
lRdy	0	Initiator (SAC) ready
TRdy	I	Target (SBI) ready

7.1.2.3 Other Signals

There are four input clocks and eleven interrupt output signals. Table 7-5 lists the other signals.

Table 7-5. Other Signals

Name	Direction	Description
SACMDSL	I	SAC Operation Mode Select signal from Control Register SKCR
BIT_CLK	1	Bit Rate Clock for I ² S or MSB-Justified systems
SYS_CLK	1	System Clock for I ² S or MSB-Justified systems
CK3M6	1	3.6864 MHz clock for wake up sequence control.
TFS	0	Transmit FIFO Service Request
RFS	0	Receive FIFO Service Request
TUR	0	Transmit FIFO Under-run
ROR	0	Receive FIFO Overrun
CADT	0	Command Address/Data Transfer is Done
SADR	0	Status Address/Data Receive is Done
RSTO	0	Read Status Time Out
TDBDA	0	DMA Transmit Buffer Done A
TDBDB	0	DMA Transmit Buffer Done B
RDBDA	0	DMA Receive Buffer Done A
RDBDB	0	DMA Receive Buffer Done B

intel

7.2 Serial Audio Controller Operation

Audio data is transferred between the external system bus and an external codec through the SBI, the internal bus, and a buffer in the SAC. Transfers may be initiated by the host processor (RAB Bus burst cycles) or by the SAC (DMA transfers).

7.2.1 RAB Bus Data Transfers

Outgoing data (from system to codec) is written by the host processor through the SBI to the SAC's Transmit buffer. The write takes the form of an SRAM-like burst, with one to eight words being transferred per burst. The buffer works as a FIFO, and is seen as a block of eight 32-bit locations by the processor. The SAC then takes the data from the buffer, serializes it, and sends it over the serial wire (SDATA_OUT) to the codec, where it can be converted to an analog waveform.

Incoming data from the external codec (on SDATA_IN) is converted to parallel words and stored in the Receive FIFO buffer. A programmable "fullness" threshold, when passed, triggers an interrupt to the Interrupt Controller (and thence, if enabled, to an interrupt input on the SA-1110). The interrupt service routine responds by identifying the source of the interrupt and then doing an SRAM-like burst read from the inbound FIFO buffer.

FIFO status is available to the system processor in the SAC Status Registers (SASR0 and SASR1). The amount of data in the FIFO is directly readable, as well as bits signifying FIFO full, FIFO empty, and FIFO above or below a programmable threshold. FIFO levels may be maintained either by polling routines or by interrupts triggering SAC service routine.

The host processor differentiates between the two FIFOs by whether it does a READ or a WRITE transfer. Read bursts automatically target the Receive FIFO, while write bursts will take data from the Transmit FIFO. From a memory map point of view, they appear at the same block of addresses as Serial Audio Data Register (SADR).

7.2.2 DMA Audio Data Transfers

The Serial Audio Controller can transfer data directly to and from system DRAM if DMA operation is enabled. When data is to be transferred (generally in response to a Transmit or Receive FIFO condition), the SAC requests the bus using DMA_Req<1>. The SBI acquires mastership of the external DRAM bus, signals back to the arbiter, and the arbiter asserts DMA_Gnt<1> to the SAC.

The SAC drives address onto the bus, asserts DWrite if it's a write transfer to DRAM, and then drives data onto the bus, or latches incoming data from DRAM if it is a read. Data transfers can be read or write bursts up to eight words long. After a transfer burst, the SAC must give up its request so the bus can be returned to SA-1110 ownership. When the complete block is transferred, it sets the appropriate DMA_Done bit in the status register. An interrupt will be signaled to the system processor if it's enabled.

The DMA can also be set up to loop continuously on a block-data transfer from memory to the external codec by setting "Enable Interface Loop Back Function" bit. The *DMA Done* interrupt will still assert at the end of each loop, but may be disabled if desired.

DMA Address and Control registers must be set up in advance. DMA addresses, transfer size, burst size, and DMA enables are set up independently for transmit and receive data transfers. Interrupts for "DMA_Done" flags are set up in status register (SASR0 and SASR1).

The SA-1111 can address one bank of SDRAM, up to the architectural limit of 128 MBytes. 25 bits can address the resulting 32M words. Maximum transfer size is 8 Kbytes, and can be specified to byte-level resolution.

7.2.3 Serial Audio Clocks and Sampling Frequencies

The Serial Audio Controller supports four standard audio sample rates (typically 8.0, 11.025, 16.0, and 22.05 KHz) by internally-supplied clock based on the PLL 144-MHz for I2S or MSB-Justified interface mode and one standard audio sample rate (48-KHz) by externally-supplied clock for AC-link interface mode. Table 7-6 shows actual audio sampling (fs) and BIT_CLK frequencies for I2S or MSB-Justified interface mode. There are small differences of frequency numbers between standard sample rate because the PLL 144-MHz (143.7696 MHz) clock is generated using 3.6864-MHz input clock.

Table 7-6 lists the PLL divider values with respect to the audio sampling frequencies.

PLL Di (d	ivider Value ecimal)	Typical Sampling Frequency (fs)	Actual Sampling Frequency (fs)	SYS_CLK Frequency	BIT_CLK Frequency
	70	8.0 KHz	8.0 KHz	2.05 MHz	513 KHz
	51	11.025 KHz	11.01 KHz	2.82 MHz	705 KHz
	35	16.00 KHz	16.05 KHz	4.11 MHz	1.03 MHz
	25	22.05 KHz	22.46 KHz	5.75 MHz	1.44 MHz

Table 7-6. Audio Sampling Frequency as a Function of PLL Divider Value

7.3 Data Formats

7.3.1 Parallel Data Formats: Buffer and DRAM Storage

FIFO buffers are 16 words deep x 32 bits wide. This stores 32 samples per channel in each direction, good for about 1 millisecond of stereo audio at 16 KHz sample rate.

Audio data are stored with two samples (Left + Right) per 32-bit word, even if samples are smaller than 16 bits. "Left" channel data occupies bits <15:0>, while the "Right" channel data uses bits <31:16> of the 32-bit word. Within each 16-bit field, the audio sample is left-justified, with unused bits packed as zeroes on the right-hand (LSB) side.

In external DRAM, the mapping of stereo samples is the same as in the FIFO buffers ("Left" channel data occupies bits <15:0>, while the "Right" channel data uses bits <31:16> of the 32-bit word). However, single-channel audio occupies a full 32-bit word per sample, using either the upper or lower half of the word, depending on whether it's considered a "Left" or "Right" sample.

7.3.2 Serial Data Formats for Transfer to/from Codecs

Four pins are used to transfer data between the SA-1111 and external codecs or modems. Several serial data formats are supported.

7.3.2.1 AC-link Serial Data

AC-link specifies a full-duplex serial audio interface between an external codec and a digital controller (SAC). It is used to attach to one or more external AC'97-compliant codecs. The external device generates a 12.288 MHz clock and sends it as BIT_CLK to the SAC. In the SAC, the clock is divided by 256 to yield a 48 KHz audio-sample clock. This is used internally, and sent back to the codec as SYNC. This signal defines the start of each "frame". Within a frame are 13 slots, each slot (except the first) containing 20 bits. The timing of BIT_CLK and SYNC are applied by controllers at each end to sample the two serial data streams - one inbound (SDATA_IN), the other outbound (SDATA_OUT) - and capture serial audio bits going in both directions (see Figure 7-1 and Figure 7-2).

Note: Although AC-link specifies up to 20-bit audio samples, only samples of 16 bits and smaller are supported by this logic and its related FIFO buffers.

Figure 7-1. AC-Link Audio Output Frame

Figure 7-2. AC-Link Audio Input Frame

7.3.2.2 I²S and MSB-Justified Serial Audio Formats

I²S and MSB-Justified are similar protocols for digitized stereo audio transmitted over a serial path. They work with a variety of clock rates, which can be obtained by dividing the 144 MHz PLL clock by a programmable divider, or from an external clock source.

SYS_CLK is normally derived from the PLL clock, divided by a programmable divider (divide integers between 25 and 70 to generate a frequency between approximately 2 MHz and 5.6 MHz. Its frequency is always 256 times the audio sampling frequency.

BIT_CLK supplies the serial audio bit rate, the basis for the external codec bit-sampling logic. Its frequency is 64 times the audio sampling frequency. Divided by 64, the resulting 8 KHz to 22 KHz signal signifies timing for "Left" and "Right" serial data samples passing on the serial data paths. This Left/Right signal is sent to the codec on SYNC pin. Each phase of the Left/Right signal is accompanied by one serial audio data sample on the data pins SDATA_IN and SDATA_OUT. Figure 7-4 provides timing diagrams that show formats for I²S and MSB-justified modes of operations.

Figure 7-3. I²S Data Formats (16 bits)

Figure 7-4. MSB-Justified Data Formats (16 bits)

intel®

7.4 Serial Audio Controller Registers

There are 20 registers in the Serial Audio Controller block: three control, one data, two status, two interrupt control (clear and test), two L3 control bus, four AC-link control, and ten DMA control registers.

- Control registers are used to program common control, alternate mode specific control, and AC-link specific control registers.
- The Data Register is mapped as one 32-bit word address, which physically points to either of two 32-bit registers. One register is for WRITES, and transfers data to the Transmit FIFO; the other is for READS, and takes data from the Receive FIFO.
- The Status Registers signal the state of the FIFO buffers and the status of the interface which is selected by the common control register.
- The Interrupt Registers are Interrupt Clear Register and Interrupt Test Register.
- The L3 Control Registers are Address Register and Data Register for L3 Control Bus Interface.
- The AC-link Control Registers are Command Address, Command Data, Status Address, and Status Data for AC-link interface.
- The DMA Control Registers are Control/Status Register, Buffer Start Address Registers, and Buffer Count Registers for each DMA Transmit and DMA Receive Transfer.

7.4.1 Serial Audio Control Registers

There are three control registers, which are used to program Serial Audio Controller common control, alternate mode (I²S and MSB-Justified Interface) specific control, and AC-link Interface specific control registers.

7.4.1.1 Serial Audio Common Control Register (SACR0)

This register controls common functions for Serial Audio Controller (SAC). The control register for alternate mode (I^2S and MSB-Justified Interface) specific functions and AC-link Interface specific functions are described in following 2 sections.

• ENB-This bit enables SAC function.

Note: The following bits are effective when the ENB bit is "1" (the SAC function is enabled).

- BCKD-This bit specifies input/output direction of BIT_CLK.
- RST-This bit specifies resetting the SAC Control and FIFOs when this is on.
- TFTH–The 4-bit data value specifies Transmit FIFO interrupt or DMA threshold level. This value should be programmed to the threshold value minus one.
- RFTH-The 4-bit data value specifies Receive FIFO interrupt or DMA threshold level.
- *Warning:* Using values that are too large for TFTH and RFTH can result in an overflow condition in the FIFOs, which are 16 levels deep. Using values that are too small can result in an underflow

condition in the FIFOs. The optimum value is dependent upon latency and the bandwidth, and how fast the request can be serviced.

Note: The power-up/reset default value of this register is 7700h.

Table 7-7.SACR0 Bit Descriptions

Bit	Name	FUNCTION
0	ENB	Enable SAC function: 0 = Pins function as GPIOs (SAC function is disabled) 1 = Pins function as Serial Audio Controller (SAC function is enabled)
1	—	Reserved
2	BCKD	Specify BIT_CLK pin direction: 0 = Input 1 = Output
3	RST	Reset the SAC Control and FIFOs except this register: 0 = Not reset 1 = Reset is Active to Other SAC Registers
7:4		Reserved
11:8	TFTH	Transmit FIFO interrupt or DMA threshold; set to value $0 - 15$. This value should be set to the desired threshold value minus one. Larger values provide a longer latency than smaller values. Latency values of nine or greater have their bursts separated into two bursts. Using threshold values that are too large can result in an overflow condition. Using threshold values that are too small can result in an underflow condition. The optimum value, which is system dependent, results in the FIFO being half full.
15:12	RFTH	Receive FIFO interrupt or DMA threshold; set to value $0 - 15$. This value should be set to the desired threshold value minus one. Larger values provide a longer latency than smaller values. Latency values of nine or greater have their bursts separated into two bursts. Using threshold values that are too large can result in an overflow condition. Using threshold values that are too small can result in an underflow condition. The optimum value, which is system dependent, results in the FIFO being half full.

7.4.1.2 Serial Audio Alternate Mode (I²S/MSB-Justified) Control Register (SACR1)

This register controls alternate mode (I²S and MSB-Justified Interface) specific functions when SACMDSL bit of SKCR selects alternate mode.

- AMSL–This bit selects Operation Mode of Alternate Mode, whether I²S or MSB-Justified Operation.
- L3EN–This bit enables L3 Control Bus function.
- L3MB-This bit indicates L3 Control Bus Data is Multiple Byte Transfer.
- DREC-This bit disables Recoding Function of I²S or MSB-Justified Interface.
- DRPL-This bit disables Replaying Function of I²S or MSB-Justified Interface.
- ENLBF–This bit enables L3 Control Bus and I²S/MSB Interface Loop Back Function which is for test only.

intel

Note: The power-up/reset default value of this register is 0000h.

Table 7-8. SACR1 Bit Descriptions

Bit	Name	Function
0	AMSL	Specify Alternate Mode (I ² S or MSB-Justified) Operation: 0 = Select I ² S Operation Mode 1 = Select MSB-Justified Operation Mode
1	L3EN	Enable L3 Control Bus function: 0 = Pins PWM<1>, MSCLK, MSDATA function as named, or as GPIOs 1 = Pins function as L3 bus signals
2	L3MB	L3 Control Bus Data Multiple Byte Transfer: 0 = L3 Control Bus Data is Last Byte Transfer 1 = L3 Control Bus Data is Multiple Byte Transfer
3	DREC	Disable Recording Function of I ² S or MSB-Justified Interface: 0 = Recording Function is Enabled 1 = Recording Function is Disabled
4	DRPL	Disable Replaying Function of I ² S or MSB-Justified Interface: 0 = Replaying Function is Enabled 1 = Replaying Function is Disabled
5	ENLBF	Enable L3 Control Bus and I ² S/MSB Interface Loop Back Function: 0 = L3 Control Bus and I ² S/MSB Interface Loop Back Function is Disabled 1 = L3 Control Bus and I ² S/MSB Interface Loop Back Function is Enabled
15:6	—	Reserved

7.4.1.3 Serial Audio AC-link Control Register (SACR2)

This register controls AC-link specific functions when SACMDSL bit of SKCR selects AC-link mode.

- TS3V-This bit indicates Transmit Slot 3 Data Out is Valid (Left Channel Data Out is Valid).
- TS4V-This bit indicates Transmit Slot 4 Data Out is Valid (Right Channel Data Out is Valid).
- WKUP-This bit initiates "Wake Up AC'97 Codec Sequence" by Activating SYNC Signal.
- DREC-This bit disables Recoding Function of AC-link Interface.
- DRPL-This bit disables Replaying Function of AC-link Interface.
- ENLBF–This bit enables AC-link Interface Loop Back Function, which is for test only.
- RESET#-This bit specifies a hardware RESET# signal to SYS_CLK pin.

Note: The power-up/reset default value of this register is 0000h.

Table 7-9.	SACR2 Bit Descriptions
------------	------------------------

Bit	Name	Function
		Transmit Slot 3 Valid (Left Channel Data Out is Valid):
0	TS3V	0 = Transmitting Time Slot 3 Data is not Valid
		1 = Transmitting Time Slot 3 Data is Valid
		Transmit Slot 4 Valid (Right Channel Data Out is Valid):
1	TS4V	0 = Transmitting Time Slot 4 Data is not Valid
		1 = Transmitting Time Slot 4 Data is Valid
		Wake Up AC'97 Codec:
2	WKUP	0 = Wake Up AC'97 Codec is Done (Reset by H/W after Waking Up)
		1 = Wake Up AC'97 Codec by Activating SYNC Signal
		Disable Recording Function of AC-link Interface:
3	DREC	0 = Recording Function is Enabled
		1 = Recording Function is Disabled
		Disable Replaying Function of AC-link Interface:
4	DRPL	0 = Replaying Function is Enabled
		1 = Replaying Function is Disabled
		Enable AC-link Interface Loop Back Function (for test only):
5	ENLBF	0 = AC-link Interface Loop Back Function is Disabled
		1 = AC-link Interface Loop Back Function is Enabled
		Specify RESET# signal to SYS_CLK output:
6	RESET#	0 = RESET# signal is active low
		1 = RESET# signal is not active
15:7	_	Reserved

Note: The power-up/reset default value of this register is 0000h.

7.4.2 Serial Audio Status Register (SASR0)

There are two status registers, the Serial Audio Status Register SASR0 is used for the l^2S and MSB-Justified Interface and FIFO Status (SASR0), the other is for AC-link Interface and FIFO Status (SASR1). Bits 15 to 0 are common FIFO status bits with SASR1. This status register is a read-only register.

intel

Table 7-10. SASR0 Bit Descriptions

Bit	Name	Function
0	TNF	Transmit FIFO not full: 0 - Transmit FIFO is full 1 - Transmit FIFO is not full
1	RNE	Receive FIFO not empty: 0 - Receive FIFO is empty 1 - Receive FIFO is not empty
2	BSY	SAC Busy: 0 - SAC is idle or disabled 1 - SAC currently transmitting or receiving a frame
3	TFS	Transmit FIFO Service Request: 0 - Transmit FIFO level exceeds TFL threshold, or SAC disabled 1 - Transmit FIFO level is at or below TFL threshold (Interruptible)
4	RFS	Receive FIFO Service Request: 0 - Receive FIFO level below RFL threshold, or SAC disabled 1 - Receive FIFO level is at or above RFL threshold (Interruptible)
5	TUR	Transmit FIFO Under-run: 0 - Transmit FIFO has not experienced an under-run 1 - Attempted data write to full Transmit FIFO (Interruptible)
6	ROR	Receive FIFO Overrun: 0 - Receive FIFO has not experienced an overrun 1 - Attempted data write to full Receive FIFO (Interruptible)
7	—	Reserved
11:8	TFL	Transmit FIFO Level: Number of entries in Transmit FIFO
15:12	RFL	Receive FIFO Level: Number of entries in Receive FIFO
16 ^a	L3WD	L3 Control Bus Data Write Done: 0 - This status bit is reset by Clear Register (SASCR) writing 1 - L3 Control Bus Data Write Data is Done (Interruptible)
17 ^a	L3RD	L3 Control Bus Data Read Done: 0 - This status bit is reset by Clear Register (SASCR) writing 1 - L3 Control Bus Data Read Data is Done (Interruptible)
31:18	—	Reserved

a. Bits 16 and 17 are I²S and MSB-justified interface specific status bits.

7.4.3 Serial Audio Status Registers (SASR1)

Serial Audio Status Register SASR1 is used for the AC-link Interface and FIFO Status. Bits 15 to 0 are common FIFO status bits with SASR0. This status register is a read-only register.

Bits 16 to 22 are AC-link Interface specific status bits.

intel®

Table 7-11. SASR1 Bit Descriptions

Bit	Name	Function
0	TNF	Transmit FIFO not full: 0 - Transmit FIFO is full 1 - Transmit FIFO is not full
1	RNE	Receive FIFO not empty: 0 - Receive FIFO is empty 1 - Receive FIFO is not empty
2	BSY	SAC Busy: 0 - SAC is idle or disabled 1 - SAC currently transmitting or receiving a frame
3	TFS	Transmit FIFO Service Request: 0 - Transmit FIFO level exceeds TFL threshold, or SAC disabled 1 - Transmit FIFO level is at or below TFL threshold (Interruptible)
4	RFS	Receive FIFO Service Request: 0 - Receive FIFO level below RFL threshold, or SAC disabled 1 - Receive FIFO level is at or above RFL threshold (Interruptible)
5	TUR	Transmit FIFO Under-run: 0 - Transmit FIFO has not experienced an under-run 1 - Attempted data write to full Transmit FIFO (Interruptible)
6	ROR	Receive FIFO Overrun: 0 - Receive FIFO has not experienced an overrun 1 - Attempted data write to full Receive FIFO (Interruptible)
7	—	Reserved
11:8	TFL	Transmit FIFO Level: Number of entries in Transmit FIFO
15:12	RFL	Receive FIFO Level: Number of entries in Receive FIFO
16	CADT	 0 - This status bit is reset by Clear Register (SASCR) writing 1 - AC-link Command Address and Data Transmit is done (Interruptible)
17	SADR	 0 - This status bit is reset by Clear Register (SASCR) writing 1 - AC-link Command Address and Data are Received is done (Interruptible)
18	RSTO	Read Status Time Out: 0 - Read Status Time Out not occurred 1 - Read Status Time Out is detected, 4 Frames after Read Status Command (Interruptible)
19	CLPM	0 - BIT_CLK from AC'97 Cocec is active (after Wake Up) 1 - Command for AC'97 Codec Low Power Mode is detected
20	CRDY	0 - Codec Ready Status Bit (Input Frame Slot0 bit-15) is not set 1 - AC'97 Codec is Ready for Normal Operation

intel®

Bit	Name	Function
21	RS3V	Received Slot 3 Valid (Left Channel Data In is Valid): 0 = Receive Time Slot 3 Data is not Valid 1 = Receive Time Slot 3 Data is Valid
22	RS4V	Received Slot 4 Valid (Right Channel Data In is Valid): 0 = Received Time Slot 4 Data is not Valid 1 = Received Time Slot 4 Data is Valid
31:23	—	Reserved

7.4.4 Serial Audio Status Clear Register (SASCR)

The Serial Audio Status Clear Register (SASCR) is in the Status Control Register. The bit positions correspond to each status source bit position in the Status register.

Table 7-12. SASCR Bit Descriptions

Bit	Name	Function
4:0	—	Reserved
5	TUR	Clears Transmit FIFO under-run status bit, which is bit 5 of SASR0 and SASR1
6	ROR	Clears Receive FIFO overrun status bit, which is bit 6 of SASR0 and SASR1
15:7	—	Reserved
16	DTS	Clears L3C/AC-link Data Sent status bit, which is bit 16 of SASR0 and SASR1
17	RDD	Clears L3C/AC-link Data Read Done status bit, which is bit 17of SASR0 and SASR1
18	STO	Clears AC-link Read Status Time Out status bit, which is bit 18 of SASR1
31:19	_	Reserved

7.4.5 L3 Control Bus Address Register (L3CAR)

There are two L3 Control Bus Registers: L3 Control Bus Address Register (L3CAR) and L3 Control Bus Data Register (L3CDR). The L3CAR provides the 8-bit address value that is transmitted on the L3 bus.

Table 7-13. L3CAR Bit Descriptions

Bit	Name	Function
7:0	ADR	8-bit address value to be transmitted on L3 bus. Transfer type is encoded into 2 LSBs of address.

7.4.6 L3 Control Bus Data Register (L3CDR)

There are two L3 Control Bus Registers: L3 Control Bus Address Register (L3CAR) and L3 Control Bus Data Register (L3CDR). The L3CDR provides the 8-bit data value that is transmitted and received on the L3 bus.

Table 7-14. L3CDR Bit Descriptions

Bit	Name	Function
7:0	DAT	8-bit data value transmitted/received on L3 bus

Most L3 transfers are writes to codec registers. The address register is written first, so address and command (embedded in 2 LSBs of the address byte) are sent to the target codec.

- If both address LSBs are not "01", it is a write transfer to the codec. When the L3 Data Register is subsequently written, the register's contents are transmitted serially to the codec.
- If both address LSBs are "01", it is a read request from the codec. Following the address transmission, SA-1111 begins clocking L3_CLK and tristates (stops driving) L3_DATA. The codec drives the serial data line, returning serial data which is clocked into the L3 Receive Data Register. A read from L3CDR will transfer the read data byte to the processor.
- After each byte is transferred, status bit L3WD or L3RD in SASR0 is set. If its corresponding interrupt is enabled, it generates an interrupt to the system processor.

7.4.7 AC-link Control Registers

There are four AC-link Control Registers: AC-link Command Address Register (ACCAR), AC-link Command Data Register (ACCDR), AC-link Status Address Register (ACSAR), and AC-link Status Data Register (ACSDR).

7.4.8 AC-link Command Address Register (ACCAR)

AC-link Command Address and Command Data Transfer will be executed automatically after two data writing to ACCAR and ACCDR. When AC-link Command Address and Command Data Transfer is done, CADT bit of SASR1 status register and its interrupt request are set.

Table 7-15. ACCAR Bit Descriptions.

Bit	Name	function
19:0	CAR	20-bit read/write register, 20-bit data for AC-link Command Data Port (Slot 1of Output Frame). Bits 11 to 0 are reserved.

7.4.9 AC-link Command Data Register (ACCDR)

AC-link Command Address and Command Data Transfer will be executed automatically after two data writings to ACCAR and ACCDR. When AC-link Command Address and Command Data Transfer is done, CADT bit of SASR1 status register and its interrupt request are set.

Table 7-16. ACCDR Bit Descriptions

Bit	Name	function
19:0	CDR	20-bit read/write register, 20-bit data for AC-link Command Data Port (Slot 2 of Output Frame). Bits 3 to 0 are reserved.

7.4.10 AC-link Status Address Register (ACSAR)

When AC-link Status Address and Status Data are Received, SADR bit of SASR1 status register and make interrupt request are set and Status Address and Status Data are held in ACSAR and ACSDR.

Table 7-17. ACSAR Bit Descriptions

Bit	Name	function
19:0	SAR	20-bit read only register, 20-bit data from AC-link Status Address Port (Slot 1 of Input Frame). Echo of register index for which data is being returned. Bits 3 to 0 read back 0's.

7.4.11 AC-link Status Address Register (ACSDR)

When AC-link Status Address and Status Data are Received, SADR bit of SASR1 status register and make interrupt request are set and Status Address and Status Data are held in ACSAR and ACSDR.

Table 7-18. ACSDR Bit Descriptions

Bit	Name	function
19:0	SDR	20-bit read only register, 20-bit data from AC-link Status Data Port (Slot 2 of Input Frame). The Status Data Port delivers 16-bit control register read data (bits 20 to 4 of this register). Bits 3 to 0 read back 0's.

7.4.12 Serial Audio DMA Transmit Control/Status Register (SADTCS)

Table 7-19. SADTCS Bit Descriptions

Bit	Name	function
0	TDEN	Serial Audio DMA Transmit Enable.
1	TDIE	Serial Audio DMA Transmit Interrupt Enable (Done A or Done B).
2	_	Reserved
3	TDBDA	Serial Audio DMA Transmit Buffer Done A (interruptible).
4	TDSTA	Serial Audio DMA Transmit Buffer Start Transfer A.
5	TDBDB	Serial Audio DMA Transmit Buffer Done B (interruptible).
6	TDSTB	Serial Audio DMA Transmit Buffer Start Transfer B.
7	TBIU	Serial Audio DMA Transmit Buffer (A or B) In Use.
31:8		Reserved

Table 7-20. Serial Audio DMA Transmit Buffer Start Address Register A (SADTSA)

Bit	Name	function
31:0	TDSA	Serial Audio DMA Transmit Start Address A, read/write register. It contains the starting memory address for buffer area A. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.

7.4.13 Serial Audio DMA Transmit Buffer Count Register A (SADTCA)

Table 7-21. SADTCA Bit Descriptions

Bit	Name	function
12:0	TDCA	Serial Audio DMA Transmit Transfer Count A, read/write register. It contains the transfer count in bytes for memory buffer area A. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.
31:13	—	Reserved

7.4.14 Serial Audio DMA Transmit Buffer Start Address Register B (SADTSB)

Table 7-22. SADTSB Bit Descriptions

Bit	Name	function					
31:0	TDSB	Serial Audio DMA Transmit Start Address B, read/write register. It contains the starting memory address for buffer area B. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.					

7.4.15 Serial Audio DMA Transmit Buffer Count Register B (SADTCB)

Table 7-23. SADTCB Bit Descriptions

Bit	Name	function						
12:0	TDCB	Serial Audio DMA Transmit Transfer Count B, read/write register. It contains the transfer count in bytes for memory buffer area B. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.						
31:13	—	Reserved						

7.4.16 Serial Audio DMA Receive Control/Status Register (SADRCS)

Table 7-24. SADRCS Bit Descriptions

Bit	Name	function					
0	RDEN	Serial Audio DMA Receive Enable.					
1	RDIE	Serial Audio DMA Receive Interrupt Enable (Done A or Done B).					
2	—	Reserved					
3	RDBDA	Serial Audio DMA Receive Buffer Done A (interruptible).					
4	RDSTA	Serial Audio DMA Receive Buffer Start Transfer A.					
5	RDBDB	Serial Audio DMA Receive Buffer Done B (interruptible).					
6	RDSTB	Serial Audio DMA Receive Buffer Start Transfer B.					
7	RBIU	Serial Audio DMA Receive Buffer (A or B) In Use.					
31:8	—	Reserved					

7.4.17 Serial Audio DMA Receive Buffer Start Address Register A (SADRSA)

Table 7-25. SADRSA Bit Descriptions

Bit	Name	function					
31:0	RDSA	Serial Audio DMA Receive Start Address A, read/write register. It contains the starting memory address for buffer area A. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.					

7.4.18 Serial Audio DMA Receive Buffer Count Register A (SADRCA)

Table 7-26. SADRCA Bit Descriptions

Bit	Name	function					
12:0	RDCA	Serial Audio DMA Receive Transfer Count A, read/write register. It contains the transfer count in bytes for memory buffer area A. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.					
31:13	—	Reserved					

7.4.19 Serial Audio DMA Receive Buffer Start Address Register B (SADRSB)

Table 7-27. SADRSB Bit Descriptions

Bit	Name	function				
31:0	RDSB	Serial Audio DMA Receive Start Address B, read/write register. It contains the starting memory address for buffer area B. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.				

7.4.20 Serial Audio DMA Receive Buffer Count Register B (SADRCB)

Table 7-28. SADRCB Bit Descriptions

Bit	Name	function					
12:0	RDCB	Serial Audio DMA Receive Transfer Count B, read/write register. It contains the transfer count in bytes for memory buffer area B. The LSB 2 bits must be 00. Data Transfer unit is four bytes and it counts four at a time.					
31:13	—	Reserved					

7.4.21 Serial Audio Interrupt Test Register (SAITR)

Writing "1" to the corresponding bit position to the Serial Audio Interrupt Test Register generates a interrupt strobe signal to Interrupt Controller for test purposes. All bit symbols come from the status registers: I²S and MSB-Justified Interface and FIFO Status (SASR0), AC-link Interface and FIFO Status (SASR1), DMA Transmit Control/Status (SADTCS), and DMA Receive Control/Status (SADRCS). This is a write-only register.

Table 7-29. SAITR Bit Descriptions

Bit	Name	Function			
0	TFS	FS Transmit FIFO Service Request			
1	RFS	Receive FIFO Service Request			
2	TUR	Transmit FIFO Under-run			
3	ROR	Receive FIFO Overrun			
4	CADT Command Address/Data Transfer is Done				
5	SADR Status Address/Data Receive is Done				
6	RSTO	Read Status Time Out			
7	—	Reserved			
8	TDBDA	DMA Transmit Buffer Done A			
9	TDBDB	DMA Transmit Buffer Done B			
10	RDBDA	DMA Receive Buffer Done A			
11	RDBDB	DMA Receive Buffer Done B			
31:12	_	Reserved			

7.4.22 Serial Audio Data Register (SADR)

The SAC Data Register (SADR) is a block of 32-bit eight locations that can be accessed by 32-bit data transfers. The address block represents two physical registers. One register is for WRITES, and transfers data to the Transmit FIFO; the other register is for READS, and takes data from the Receive FIFO.

Table 7-30.SADR Bit Descriptions

Bit	Name	Function
15:0	DTL	Serial Audio Data Word to be read from Receive FIFO or to be written to Transmit FIFO. This is PCM 16-bit Left Channel Data.
31:16 DTH Seria to Tr		Serial Audio Data Word to be read from Receive FIFO or to be written to Transmit FIFO. This is PCM 16-bit Right Channel Data.

7.4.23 Serial Audio Controller: Register Memory Map

Table 7-31 lists the serial audio controller register memory map and the physical addresses to access them.

Table 7-31. Serial Audio Controller Register Memory Map

Address	Mnemonic	Full Name			
0x0000600	SACR0	Serial Audio Common Control Register			
0x0000604	SACR1	Serial Audio Alternate Mode (I ² S/MSB-Justified) Control Register			
0x0000608	SACR2	Serial Audio AC-link Control Register			
0x000060C	SASR0	Serial Audio I ² S/MSB-Justified Interface and FIFO Status Register			
0x0000610	SASR1	Serial Audio AC-link Interface and FIFO Status Register			
0x0000614	—	Reserved			
0x0000618	SASCR	Serial Audio Status Clear Register			
0x000061C	L3_CAR	L3 Control Bus Address Register			
0x0000620	L3_CDR	L3 Control Bus Data Register			
0x0000624	ACCAR	AC-link Command Address Register			
0x0000628	ACCDR	AC-link Command Data Register			
0x000062C	ACSAR	AC-link Status Address Register			
0x0000630	ACSDR	AC-link Status Data Register			
0x0000634	SADTCS	Serial Audio DMA Transmit Control/Status Register			
0x0000638	SADTSA	Serial Audio DMA Transmit Buffer Start Address Register A			
0x000063C	SADTCA	Serial Audio DMA Transmit Buffer Count Register A			
0x0000640	SADTSB	Serial Audio DMA Transmit Buffer Start Address Register B			
0x0000644	SADTCB	Serial Audio DMA Transmit Buffer Count Register B			
0x0000648	SADRCS	Serial Audio DMA Receive Control/Status Register			
0x000064C	SADRSA	Serial Audio DMA Receive Buffer Start Address Register A			
0x0000650	SADRCA	Serial Audio DMA Receive Buffer Count Register A			
0x0000654	SADRSB	Serial Audio DMA Receive Buffer Start Address Register B			
0x0000658	SADRCB	Serial Audio DMA Receive Buffer Count Register B			
0x000065C	SAITR	Serial Audio Interrupt Test Register			
0x0000680 to0x00006BC	SADR	Serial Audio Data Register (a block of 32-bit 16locations)			

intel

7.5 AC Characteristics

Operating conditions: $V_{3vCore} = 3.3 \text{ V} \pm 10\%$; Ta = 0°C to 70° C.

7.5.1 I²S and MSB-Justified Interface Timing

Figure 7-5 shows and Table 7-32 lists the specifications for I²S and MSB-Justified interface timing. Figure 7-6 shows and Table 7-33 lists the specifications for the I²S and MSB -Justified interface BIT_CLK, Sync, and Data Timing.

Figure 7-5. I²S and MSB-Justified SYS_CLK Timing Diagram

 Table 7-32.
 I²S and MSB-Justified SYS_CLK Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
T _{sys}	SYS_CLK period	—	f _{sys}	—	KHz	f _{sys = 256fs}
t _{ssWL}	f _{sys} LOW level pulse width	30	—	70	%	% of T _{sys} width
t _{ssWH}	f _{sys} HIGH level pulse width	30	—	70	%	% of T _{sys} width

Figure 7-6. I²S and MSB-Justified Interface Timing Diagram

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
T _{cy}	BIT_CLK period	300	—	—	ns	$f_{BCK} = 64 f_s$
T _{BCK} (H)	BIT_CLK HIGH time	250	—	—	ns	—
T _{BCK} (L)	BIT_CLK LOW time	250	—	—	ns	—
t _r	BIT_CLK rise time	—	—	20	ns	—
t _f	BIT_CLK fall time	—	—	20	ns	—
t _{s;DI}	Data input setup time	20	—	—	ns	_
t _{h;DI}	Data input hold time	0	—	—	ns	—
t _{d;DO}	Data output delay time (from BIT_CLK falling edge)	_	_	80	ns	_
t _{d;DO(SYNC)}	Data output delay time (from SYNC edge)	_	_	80	ns	MSB-Justified format SYNC = WS (word select)
t _{h;DO}	Data output hold time	0	—	—	ns	—
t _{s;SYNC}	Word selection setup time	20	—	—	ns	—
t _{h;SYNC}	Word selection setup time	10	—	—	ns	_

Table 7-33. I²S and MSB-Justified Interface BIT_CLK, SYNC, and Data Timing

7.5.2 L3 Control Bus Interface Timing

Figure 7-8 and Figure 7-8 show and Table 7-34 lists the specifications for the L3 Control Bus interface timing.

intel

Figure 7-8. Timing for L3 Data Transfer Mode

Table 7-34. L3 Control Bus Interface Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Tcy(CLK)(L3)	L3CLK period	500	—	—	ns	—
t _{CLK} (L3)H	L3CLK HIGH period	250	—	—	ns	_
t _{CLK} (L3)L	L3CLK LOW period	250	—	—	ns	—
tsu(L3)A	L3MODE setup time	190	—	—	ns	Addressing mode
th(L3)A	L3MODE hold time	190	—	—	ns	Addressing mode
tsu(L3)D	L3MODE setup time	190	—	—	ns	Data write mode
th(L3)D	L3MODE hold time	190	—	—	ns	Data write mode
tsu(L3)DA	L3DATA setup time	190	—	—	ns	Data write and addressing mode
th(L3)DA	L3DATA hold time	30	—	—	ns	Data write and addressing mode
tstp(L3)	L3MODE halt time	190	—	—	ns	—
tsu(L3)DI	L3DATA setup time	30	—	—	ns	Data read mode
th(L3)DI	L3DATA hold time	10	_	_	ns	Data read mode

7.5.3 AC-link Interface Timing

Figure 7-9 shows and Table 7-35 lists the AC-link interface signal rise and fall timing.

Figure 7-9. Signal Rise and Fall Timing Diagram

Table 7-35. AC-link Interface Signal Rise and Fall Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
t _{Rbck}	BIT_CLK rise time	—	_	6	ns	—
t _{fBCK}	BIT_CLK fall time	—	_	6	ns	—
_	BIT_CLK combined rise and fall plus fright time	_	_	7	ns	_
t _{rSYNC}	SYNC rise time	—	_	6	ns	_
t _{fSYNC}	SYNC fall time	—	_	6	ns	_
t _{rDI}	SDATA_IN rise time	—	—	6	ns	-
t _{fDI}	SDATA_IN fall time	—	—	6	ns	-
_	SDATA_IN combined rise and fall plus fright time	_	_	7	ns	-
t _{rDO}	SDATA_OUT rise time	—	_	6	ns	_
t _{fDO}	SDATA_OUT fall time	—	—	6	ns	_
	SDATA_OUT combined rise and fall plus fright time	_	_	7	ns	_

Figure 7-10 shows and Table 7-35 lists the AC-link interface clock timing.

Table 7-36. AC-link Interface Clock Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
f _{BCK}	BIT_CLK frequency	—	12.288	—	MHz	f _{BCK} = 256 x 48 KHz
T _{cyBCK}	BIT_CLK period	—	81.4	_	ns	—
t _{BCK} (H)	BIT_CLK HIGH time	36	40.7	45	ns	—
t _{BCK} (L)	BIT_CLK LOW time	36	40.7	45	ns	—
f _{SYNC}	SYNC frequency	_	48.0	_	KHz	f _s = 48 KHz
T _{cySYNC}	SYNC period	_	81.4	_	μs	_
t _{SYNC} (H)	SYNC HIGH time	—	20.8	_	μs	_
t _{SYNC} (L)	SYNC LOW time		1.3	—	μs	_

Figure 7-11 shows and Table 7-37 lists the AC-link interface data output and input timing.

Figure 7-11. Data Output and Input Timing Diagram

Table 7-37. AC-link Interface Data Output and Input Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
t _{d;DO}	SDATA_OUT delay time (from BIT_CLK rising edge)	_	_	15	ns	_
t _{d;SYNC}	SYNC output delay time (from BIT_CLK rising edge)	_	_	15	ns	_
t _{s;DI}	SDATA_IN setup time	10	—	—	ns	_
t _{h;DI}	SDATA_IN hold time	10	—	—	ns	_

Figure 7-12 and Figure 7-13 show and Table 7-38 lists the AC-link low power mode and wake up sequence timing.

Figure 7-12. AC-Link Low-Power Mode Timing Diagram

intel

Figure 7-13. Warm Reset Timing Diagram

Table 7-38. AC-link Low Power Mode and Wake Up Sequence Timing

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Ts2_pdown	End of slot 2 to BIT_CLK, SDATA_IN low	_	_	1.0	μs	Less than 1.0 µs
Tsync_high	SYNC high active pulse	1.0	—	_	μs	More than 1.0 µs
Tsync2clk	SYNC inactive to BIT_CLK startup delay time	162.8	_	_	ns	More than two BIT_CLK periods

The SSP Serial Port is a full-duplex synchronous serial interface. It can connect to a variety of external analog-to-digital (A/D) converters, audio and telecom codecs, and many other devices which use serial protocols for transferring data. It supports National's Microwire*, Texas Instruments' synchronous serial protocol (SSP), and Motorola's serial peripheral interface (SPI) protocol.

The SSP operates in master mode (the attached peripheral functions as a slave), and supports serial bit rates from 7.2 KHz to 1.84 MHz. Serial data formats may range from 4 to 16 bits in length. Two on-chip RAM buffers function as independent FIFOs for data, one for each direction. The buffers are 16 entries deep x 16 bits wide.

Buffers may be burst-loaded or emptied by the system processor using SRAM-like burst transfers, from one to eight words per transfer. Each 32-bit word from the system fills one entry in FIFO using the lower half 16-bits of a 32-bit word.

8.1 Signal Description

This section lists the signals which interface to the SSP Serial Port.

8.1.1 External Interface to SSP, SPI, or Microwire Peripherals

Table 8-1 lists the external signals between the SSP and an external peripheral. Alternatively, the four pins may be configured as GPIOs if the SSP function is not used (see Chapter 10).

Name	Direction	Description
SCLK	I/O (SSP mode)	Serial bit-rate clock
SFRM	O (SSP mode)	Frame indicator
TXD	O (SSP mode)	Transmit Data (serial data out)
RXD	I (SSP mode)	Receive Data (serial data in)

Table 8-1. External Interface to Codec

SCLK is the bit-rate clock, driven from SSP port to the peripheral. Normally it toggles only when data is actively being transmitted and received.

SFRM is the framing signal, indicating beginning and end of a serialized data word.

TXD and RXD are the outbound (Transmit) and inbound (Receive) serialized data words, respectively. Word length is a function of the selected serial data format (DSS in Control Register 0).

If SSP operation is disabled, the four SSP pins are available for GPIO use. See Chapter 10 for details on configuring pin direction and interrupt capabilities.

8.1.2 Internal Interfaces

8.1.2.1 Register Access Bus (RAB)

The Register Access Bus (RAB) is used for register reading and writing. Table 8-2 lists the signals in the RAB bus interface.

Table 8-2.RAB Interface Signals

Name	Direction	Description
RCLK	I	24-MHz RAB clock.
nBRES	I	RAB reset, asserted low.
RegAddr<8:2>	I	7-bit local address from RAB.
RegDIn<31:0>	I	32-bit write data to SSP registers or Transmit (lower 16 bits are valid data).
RegDOut<31:0>	0	32-bit read data from SSP registers or Receive (lower 16 bits are valid data)
RegBE<3:0>	I	4-bit Byte Enable for SSP register/Transmit FIFO writes
RegSspStb	I	Write strobe.
RegSspRdEn	I	Output Enable for register/Receive FIFO reads

8.1.2.2 Data Block Transfers

Block-data transfers are made through on-chip buffers organized as FIFOs, using the D_IN or D_OUT buses. The mechanism for transferring block data between FIFO and the system is SRAM-like block data transfers are initiated by the Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110). Control uses RAB bus signals as listed in Table 8-2 to read and write bursts of data.

8.2 SSP Operation

Serial data is transferred between the system and an external peripheral through FIFO buffers in the SSP Port. Transfers are initiated by the host processor, using an SRAM-like burst of one to eight words, to/from system memory. Operation is full duplex - separate buffers and serial data paths permit simultaneous transfers in both directions.

8.2.1 Processor-Initiated Data Transfer

Transmit data (from system to peripheral) is written by the host processor through the SBI to the SSP block's "Transmit" buffer. The write takes the form of an SRAM-like burst, with one to eight words being transferred per burst. The buffer works as a FIFO, and is seen as a block of sixteen 16-bit locations by the processor. The SSP Port then takes the data from the buffer, serializes it, and sends it over the serial wire (TXD) to the peripheral.

Receive data from the peripheral (on RXD) is converted to parallel words and stored in the "Receive" FIFO buffer. A programmable "fullness" threshold, when passed, triggers an interrupt to the Interrupt Controller (and thence, if enabled, to an interrupt input on the SA-1110). The interrupt

intel®

service routine responds by identifying the source of the interrupt and then doing an SRAM-like burst read from the inbound FIFO buffer. All buffer reads and writes use the internal system bus to transfer data between SBI and the buffer.

The host processor differentiates between the two FIFOs by whether it does a read or a write transfer. Read bursts automatically target the Receive FIFO, while write bursts will write data to the Transmit FIFO. From a memory map point of view, they are at sixteen addresses (actually, a block of 16 contiguous addresses).

FIFO buffers are 16 words deep x 16 bits wide for read and write. This stores up to 16 samples per buffer.

8.3 Data Formats

8.3.1 Serial Data Formats for Transfer to/from Peripherals

Four pins are used to transfer data between the SA-1111 and external devices. Although there are several formats for serial data, they have the same basic structure:

- SCLK–Defines the bit rate at which serial data is driven onto, and sampled from, the bus.
- SFRM-Defines the boundaries of a basic data "unit," comprised of multiple serial bits.
- TXD–Is the serial datapath for outbound data, from system to peripheral.
- RXD–Is the serial datapath for inbound data, from peripheral to system.

A data frame may contain from 4 to 16 bits, depending on the format selected. Serial data is transmitted MSB first. Three formats are supported: Motorola SPI, Texas Instruments synchronous serial protocol (SSP), and National Microwire.

For SPI and Microwire formats, SFRM functions as a chip select to enable the external device (target of the transfer), and is held active-low during the data transfer. For SSP format, SFRM is pulsed high for one (serial) data period at the start of each frame.

The function and use of the serial clock SCLK is different for each format:

- For Microwire, both data sources switch (change to the next bit) outgoing data on the falling edge of SCLK, and sample incoming data on the rising edge.
- For SSP, data sources switch outgoing data on the rising edge of SCLK, and sample incoming data on the falling edge
- SPI gives the user the choice of which edge of SCLK to use for switching outgoing data, and for sampling incoming data. In addition, the user can move the phase of SCLK, shifting it one-half period earlier or later.

While SSP and SPI are full-duplex protocols, Microwire uses a half-duplex master-slave messaging protocol. At the start of a frame, a single-byte control message is transmitted from the controller to the peripheral; no data is sent by the peripheral. The peripheral interprets the message and responds with requested data, one clock after the last bit of the requesting message. Return data - part of the same frame - can be from 4 to 16 bits in length. Total frame length is 13 to 25 bits.

Note that the serial clock (SCLK), if driven by the SSP Port, only toggles while active data transfer is underway. At other times it will be held in "inactive" state, as defined by the specified protocol under which it operates.

8.3.1.1 SSP Format - Detail

When outgoing data in the SSP controller is ready to transmit, SFRM asserts for one clock period. On the following clock, data to be transmitted is driven on TXD a bit at a time, with the most significant bit first. Similarly, the peripheral drives data on the RXD pin. Word length may be from 4 to 16 bits. All transitions take place on the rising edge of SCLK and data sampling is done on the falling edge. At the end of the transfer, TXD retains the value of the last bit sent (bit 0) through the next idle period. If the SSP Port is disabled or reset, TXD goes low.

Figure 8-1. SSP Synchronous Serial Frame Format

8.3.1.2 SPI Format - Detail

Note that are four possible sub-modes, depending on the edges selected for switching driven data and for sampling received data, and the selection of the phase of SFRM (see Section 8.6.2.4 and Section 8.6.2.5 for complete description of each mode).

For SPI format, SCLK and TXD are low, and SFRM is high, in idle mode. When transmit (outgoing) data is ready, SFRM goes low and stays low for the remainder of the frame. The MSB of serial data is driven onto TXD a half-cycle later, and halfway into the first bit period SCLK asserts high and continues toggling for the remaining data bits. Data transitions on the falling edge of SCLK. From 4 to 16 bits may be transferred per frame.

With the assertion of SFRM, receive data is simultaneously driven from the peripheral on RXD, MSB first. Data transitions on SCLK falling edges, and is sampled by the controller on rising edges.

At the end of the frame, SFRM is deasserted high one clock period after the last bit has been latched at its destination, and the completed incoming word is shifted into the "incoming" FIFO. The peripheral can tristate RXD after sending the last (LSB) bit of the frame. TXD retains the last value transmitted when the controller goes into idle mode, unless the SSP port is disabled or reset (which forces TXD to zero).

For back-to-back transfers, start and completion are like those of a single transfer, but SFRM does not deassert between words. Both transmitter and receiver know the word length, and keep track internally of the start and end of words (frames). There are no "dead" bits; the least significant bit of one frame is followed immediately by the most significant bit of the next.

Figure 8-2. SPI Frame Format

8.3.1.3 Microwire* Format - details

Format is similar to SPI, except transmission is half- instead of full-duplex, using master-slave message-passing.

Idle state has SCLK low and SFRM high. Each serial transmission begins with SFRM assertion (low), followed by an 8-bit command word sent from controller to peripheral on TXD. RXD, controlled by the peripheral, remains tristated. SCLK goes high midway into the command MSB and continues toggling at the bit rate. One bit-period after the last command bit, the peripheral returns the serial data requested, MSB first, on RXD. Data transitions on falling edge of SCLK and is sampled on the rising edge. The last falling edge of SCLK coincides with the end of the last data bit (LSB) on RXD, and it remains low after that (if it is the only, or last word, of the transfer). SFRM deasserts high one-half clock period later.

The start and end of a series of back-to-back transfers are like those of a single transfer; however SFRM remains asserted (low) throughout the transfer. The end of a data word on RXD is followed immediately by the start of the next command byte on TXD, with no "dead" time.

Figure 8-3. National Microwire* Frame Format

8.3.2 Parallel Data Formats for Buffer Storage

Data in the buffers is always stored with one sample per 16-bit word regardless of the format's data word length. Within each 16-bit field, the stored data sample is right-justified, with the word's LSB in bit 0, and unused bits packed as zeroes on the left-hand (MSB) side.

8.4 Buffer Operation

There are two separate and independent buffers for "incoming" (from peripheral) and "outgoing" (to peripheral) serial data. Buffers are filled or emptied by an SRAM-like burst initiated by the system processor. Bursts may be from one to eight 32-bit words in length, thus transferring up to eight data samples per burst.

Although the system bus is 32 bits wide, single samples may be transferred. Only lower half two bytes of 32 bits word have valid data and upper half two bytes are not used by the SSP Controller.

Each buffer consists of a dual-port SRAM with control circuitry to make it work as a FIFO, with independent read and write ports.

intel

Buffer filling and emptying may be performed by the system processor in response to an interrupt from FIFO logic. Each FIFO has a programmable threshold at which an interrupt is triggered. When the threshold value is exceeded, an interrupt is generated which, if enabled, signals the host processor to empty an "inbound" FIFO or to refill an "outbound" FIFO. See Section 8.6.2 for a description of the threshold and how to set it in the SSP Control Register.

The system can also poll status bits to learn how full a FIFO is.

8.5 Baud-Rate Generation

The baud (or bit-rate clock) is generated internally by dividing the standard input clock (3.6864 MHz) with a programmable divider. This feeds a programmable divider to generate baud rates from 7.2 KHz to 1.8432 Mbits per second.

8.6 SSP Serial Port Registers

There are four registers in the SSP block: two control, one data, and one status register.

- Control registers are used to program the baud rate, data length, frame format, data transfer mechanism, and port enabling. In addition, they permit setting the FIFO "fullness" threshold that will trigger an interrupt.
- The Data Register is mapped as a block of eight (32-bit) locations, which physically points to either of two 32-bit registers. One register is for writes, and transfers data to the Transmit FIFO; the other is for reads, and takes data from the Receive FIFO. A write cycle, or burst write, will load successive words into the SSP Write Register, from the lower half two bytes of a 32-bit word to the Transmit FIFO. A read cycle, or burst read, will similarly take data from the SSP Read Register, and the Receive FIFO will reload it with available data bits it has stored. As in write operations, only the lower two bytes are valid.

Although a read or write burst will increment its address, the three address LSBs are ignored by SSP control logic; all accesses to the eight-word block will access the Read or Write Register. The eight-location block is aligned to an eight-word boundary. Bursts from the processor will not cross the boundary.

The FIFOs are independent buffers to allow full duplex operation.

• The Status Register signals the state of the FIFO buffers: whether the programmable threshold has been passed (Transmit/Receive Buffer service request), and a value showing the actual "fullness" of the FIFO. There are flags bits to indicate when the SSP is actively transmitting data, when the Transmit Buffer is not full, and when the Receive Buffer is not empty. Error bits signal overrun errors.

8.6.1 SSP Control Register 0

The SSP control register 0 (SSPCR0) contains four different bit fields which control various functions within the SSP.

8.6.1.1 Data Size Select (DSS)

The four-bit data size select (DSS) field is used to select the size of the data transmitted and received by the SSP. Data can be 4 to 16 bits in length. When data is programmed to be less than 16 bits, received data is automatically right-justified and the upper bits in the receive FIFO are zero-filled by receive logic. Transmit data must be right-justified by the user before being placed in the transmit FIFO; however the upper unused bits are ignored by the SSP's transmit logic. Although it is possible to program data sizes of one, two, and three bits, these sizes are reserved and produce unpredictable results in the SSP.

When National Microwire frame format is selected, this bit field selects the size of the received data. Note that the size of the transmitted data is always eight bits in this mode.

8.6.1.2 Frame Format (FRF)

The two-bit frame format (FRF) field is used to select which frame format to use: Motorola SPI (FRF=00), Texas Instruments synchronous serial (FRF=01), or National Microwire (FRF=10). Note that FRF=11 is reserved and produces unpredictable results.

8.6.1.3 Synchronous Serial Port Enable (SSE)

The SSP enable (SSE) bit is used to enable and disable all SSP operation. When SSE=0 the SSP is disabled; when SSE=1 the SSP is enabled. All of its clocks are powered down to minimize power consumption when the SSP is disabled. Note that SSE is the only control bit within the SSP which is reset to a known state. It is cleared to zero to ensure the SSP is disabled following a reset.

When the SSE bit is cleared during active operation, the SSP is disabled immediately, causing the current frame which is being transmitted to be terminated. Clearing SSE also resets the SSP's FIFOs. However the SSP's control and status registers are not reset. The user must ensure these registers are properly reconfigured before re-enabling the SSP.

When the SSP is disabled, its four pins may be used as GPIOs (GPIO block C, bits 4-7). They may be configured as inputs or outputs by control registers described in Chapter 10. In *Sleep* mode, the state of the pins is controlled by the GPIO sleep register; SSP register settings have no effect.

8.6.1.4 Serial Clock Rate (SCR)

The eight-bit serial clock rate (SCR) bit-field is used to select the baud, or bit rate, of the SSP. A total of 256 different bit rates can be selected, ranging from a minimum of 7.2 Kbps to a maximum of 1.8432 Mbps. The serial clock generator uses the 3.6864 MHz clock produced by the on-chip PLL (143.7696 divided by 39) divided by a fixed value of four, and then the programmable SCR value to generate the serial clock (SCLK). The resultant clock is driven on the SCLK pin and is used by the SSP's transmit logic to drive data on the TXD pin, and to latch data on the RXD pin. Depending on the frame format selected, each transmitted bit is driven on either the rising or falling edge of SCLK, and is sampled on the opposite clock edge.

The following table shows the bit locations corresponding to the four different control bit fields within SSP control register 0. Note that the SSE bit is the only control bit which is reset to a known state, to ensure the SSP is disabled following a reset. The reset state of all other control bits is unknown and must be initialized before enabling the SSP. Also note that writes to bit 6 are ignored and reads return zero.

intel

Table 8-3. SCR Bit Descriptions

Bit	Name	Function	
3:0	DSS (Data Size Select)	0000 - Reserved, undefined operation 0001 - Reserved, undefined operation 0010 - Reserved, undefined operation 0011 - 4-bit data 0100 - 5-bit data 0101 - 6-bit data 0110 - 7-bit data 0111 - 8-bit data 1000 - 9-bit data 1001 - 10-bit data 1010 - 11-bit data 1010 - 13-bit data 1101 - 14-bit data	
5:4	FRF (Frame Format)	1111 - 16-bit data 00 - Motorola SPI 01 - Ti Synchronous Serial (SSP) 10 - National Microwire 11 - Reserved, undefined operation	
6		Reserved	
7	SSP_EN	Synchronous Serial Port Enable: 0 - SSP operation disabled (pins may function as GPIOs) 1 - SSP operation enabled	
15:8	SCR (Serial Clock Rate)	Value (0 to 255) used to generate transmission rate of SSP. Bit rate = $3.6864 \times 10^6 / 2 \times (SCR+1)$ where SCR is decimal integer	
31:16		Reserved	

8.6.2 SSP Control Register 1

The SSP Control Register 1 (SSPCR1) contains six bit fields which control various SSP functions.

8.6.2.1 Receive FIFO Interrupt Mask (RIM)

The Receive FIFO Interrupt Mask (RIM) bit is used to mask or enable the Receive FIFO service request interrupt. When RIM=0, the interrupt is masked, and the state of the Receive FIFO Service Request (RFS) bit within the SSP Status Register is ignored by the interrupt controller. When RIM=1, the interrupt is enabled, and whenever RFS is set (one) an interrupt request is made to the interrupt controller. Note that programming RIM=0 does not affect the current state of RFS or the receive FIFO logic's ability to set and clear RFS, it only blocks the generation of the interrupt request.

8.6.2.2 Transmit FIFO Interrupt Mask (TIM)

The Transmit FIFO Interrupt Mask (TIM) bit is used to mask or enable the transmit FIFO service request interrupt. When TIM=0, the interrupt is masked and the state of the Transmit FIFO Service Request (TFS) bit within the SSP Status Register is ignored by the interrupt controller. When TIM=1, the interrupt is enabled, and whenever TFS is set (one) an interrupt request is made to the interrupt controller. Note that programming TIM=0 does not affect the current state of TFS or the transmit FIFO logic's ability to set and clear TFS, it only blocks the generation of the interrupt request

8.6.2.3 Loop Back Mode (LBM)

The loop back mode (LBM) bit is used to enable and disable the ability of the SSP transmit and receive logic to communicate internally. This function is for test purposes only. When LBM=0, the SSP operates normally. The transmit and receive data paths are independent and communicate via their respective pins. When LBM=1, the output of the transmit serial shifter is directly connected to the input of the receive serial shifter internally.

8.6.2.4 Serial Clock Polarity (SPO)

The serial clock polarity (SPO) bit selects the polarity or active/inactive state of the serial clock (SCLK) pin when Motorola SPI format is selected (FRF=00). When SPO=0, the inactive or idle state of SCLK is low. Thus when the SSP is not actively transmitting/receiving data, the SCLK pin is held low. When SPO=1, the inactive or idle state of SCLK is high. Thus when the SSP is not actively transmitting/receiving data, the SCLK pin is held high. The programming of SPO alone does not determine which SCLK edges are used to drive and latch data to or from the transmit and receive pins. The programming of SPO and the serial clock phase (SPH) bit determines this. Note that SPO is ignored in all other modes except Motorola SPI format (FRF=0).

8.6.2.5 Serial Clock Phase (SPH)

The serial clock phase (SPH) bit selects the phase relationship of the serial clock (SCLK) signal with the serial frame (SFRM) signal when Motorola SPI format is selected (FRF=00). When SPH=0, SCLK remains in its inactive state (as programmed by SPO) for one full SCLK period duration after SFRM is asserted (drive low). SCLK continues to transition during the entire frame and is driven to its inactive state one-half SCLK period duration before SFRM is negated (driven high). When SPH=1, SCLK remains in its inactive state (as programmed by SPO) for one-half SCLK period duration after SFRM is asserted (drive low). SCLK continues to transition during the entire frame and is driven to its inactive state one full SCLK period duration before SFRM is negated (driven high). When SPH=1, SCLK remains in its inactive state (as programmed by SPO) for one-half SCLK period duration after SFRM is asserted (drive low). SCLK continues to transition during the entire frame and is driven to its inactive state one full SCLK period duration before SFRM is negated (driven high). Using SPH and SPO together determine when SCLK is active during the assertion of SFRM and which edge of SCLK is used to drive data to the transmit pin as well as latch data from the receive pin. When SPO and SPH are the same value (both 0 or both 1), transmit data is driven on the falling edge of SCLK and receive data is latched on the rising edge of SCLK. Alternatively, when SPO and SPH are of opposite value (one 0 and the other 1), transmit data is driven on the rising edge of SCLK and receive data is latched on the falling edge of SCLK. Note that SPH is ignored in all other modes, except Motorola SPI format (FRF=00).

Figure 8-4 shows the pin timing for all four programming combinations of SPO and SPH. Note that SPO inverts the polarity of the SCLK signal, and SPH determines the phase relationship between SCLK and SFRM, shifting the SCLK signal one-half phase relationship between SCLK and SFRM, shifting the SCLK signal one-half phase to the left or right during the assertion of SFRM.

intel®

Figure 8-4. Clock Phase Formats for SPO and SPH Programming

8.6.2.6 Transmit FIFO Interrupt Threshold (TFT)

This 4-bit value sets the level at (or below) which the FIFO controller triggers a service interrupt. The value is programmed to the threshold value minus one. The reset value is 7.

8.6.2.7 Receive FIFO Interrupt Threshold (RFT)

This 4-bit value sets the level at (or above) which the FIFO controller triggers a service interrupt. The value is programmed to the threshold value minus one. The reset value is 7.

Note: The following table shows bit locations corresponding to control bit fields in SSP Control Register 1. The reset state of all bits is undefined, and they must be initialized before enabling the SSP. Note that writes to reserved bits are ignored, and reads of these bits return zero

Table 8-4.	SSP Control Register 1 Bit Descriptions	
		-

Bit	Name	Function	
1:0	—	Reserved	
2	LBM (Loop-Back Mode)	 0 - Normal serial port operation enabled 1 - Output of transmit serial shifter connected to input of receive serial shifter, internally 	
3	SPO	Serial clock polarity ^a . 0 – The inactive or idle state of SCLK is low. 1 – The inactive or idle state of SCLK is high.	
4	SPH	 Serial clock phase^a. 0 – SCLK is in its inactive state one full cycle at the start of the frame and one-half cycle at the end of the frame. 1 – SCLK is in its inactive state one-half cycle at the start of the frame and one full cycle at the end of the frame. 	
5	—	Reserved	
6	—	Reserved	
10:7	TFT (Transmit FIFO Threshold)	Sets threshold level at which Transmit FIFO asserts interrupt -defaults to 0111. This level should be set to the threshold value minus 1.	
14:11	RFT (Receive FIFO Threshold)	Sets threshold level at which Receive FIFO asserts interrupt–defaults to 0111. This level should be set to the threshold value minus 1.	
31:15	—	Reserved	

a. For additional information about SPI formats, see the Motorola website.

8.6.3 SSP Data Register (SSPDR)

The SSP Data Register is a block of 16-bit locations that can be accessed by 32-bit data transfers (actually uses only the lower 16 bits). Transfers can be from one to eight words. The address block represents two physical registers: the first is temporary storage for data on its way out through the Transmit FIFO, the other is temporary storage for data coming in through the Receive FIFO.

As the register is accessed by the system, FIFO control logic transfers data automatically between register and FIFO as fast as the system moves it. Data in the FIFO shifts up or down to accommodate the new word (unless it's an attempted write to a full Transmit FIFO). Status bits are available to show the system whether either buffer is full, above or below a programmable threshold, or empty.

For outbound data transfers (write from system to SSP peripheral), the register may be loaded (written) by the system processor anytime it is empty.

When a data size of less than 16-bits is selected, the user should right-justify data written to the transmit FIFO. Transmit logic ignores any unused bits. Received data less than 16-bits is automatically right-justified in the receive buffer. When the SSP is programmed for National Microwire frame format, the default size for transmit data is eight-bits (the most significant byte is ignored), the receive data size is controlled by the programmer.

The following table shows the location of the SSP data register. Note that both FIFOs are cleared when the block is reset, or by writing a zero to SSE (SSP disabled).

Table 8-5. SSP Data Register Bit Descriptions

Bit	Name	Function
15:0	DATA (Low Word)	Data word to be written to/read from Transmit/Receive FIFO
31:16	—	Reserved

8.6.4 SSP Status Register

The SSP status register (SSPSR) contains bits which signal overrun errors as well as the transmit and receive FIFO service requests. Each of these hardware-detected events signal an interrupt request to the interrupt controller. The status register also contains flags that indicates when the SSP is actively transmitting characters, when the transmit FIFO is not full, and when the receive FIFO is not empty (no interrupt generated).

Bits which cause an interrupt signal the interrupt request as long as the bit is set. Once the bit is cleared, the interrupt is cleared. Read/write bits are called status bits, read-only bits are called flags. Status bits are referred to as "sticky" (once set by hardware, must be cleared by software). Writing a one to a sticky status bit clears it, writing a zero has no effect. Read-only flags are set and cleared by hardware; writes have no effect. Additionally some bits which cause interrupts have corresponding mask bits in the interrupt controller registers and are indicated in the section headings that follow.

8.6.4.1 Transmit FIFO Not Full Flag (TNF) (read-only, non-interruptible)

The transmit FIFO not full flag (TNF) is a read-only bit which is set whenever the transmit FIFO contains one or more entries which do not contain valid data. TNF is cleared when the FIFO is completely full. This bit can be polled when using programmed I/O to fill the transmit FIFO over its half-way mark. This bit does not request an interrupt.

8.6.4.2 Receive FIFO Not Empty Flag (RNE) (read-only, non-interruptible)

The receive FIFO not empty flag (RNE) is a read-only bit which is set when ever the receive FIFO contains one or more entries of valid data and is cleared when it no longer contains any valid data. This bit can be polled when using programmed I/O to remove remaining bytes of data from the receive FIFO since CPU interrupt requests are only made when four or more bytes reside within the FIFO (three, two, or one bytes may remain at the end of a frame). This bit does not request an interrupt.

8.6.4.3 SSP Busy Flag (BSY) (read-only, non-interruptible)

The SSP busy (BSY) flag is a read-only bit which is set when the SSP is actively transmitting and/or receiving data, and is cleared when the SSP is idle or disabled (SSE=0). This bit does not request an interrupt.

8.6.4.4 Transmit FIFO Service Request Flag (TFS) (read-only, maskable interrupt)

The Transmit FIFO service request flag (TFS) is a read-only bit which is set when the transmit FIFO is equal or below the threshold value and requires service to prevent an underrun. TFS is set whenever the number of valid data entries in the transmit FIFO is equal or below the transmit FIFO threshold value (TFT), and cleared when there are more entries of valid data than the TFT. When the TFS bit is set, an interrupt request is made unless the transmit FIFO interrupt request mask (TIM) bit is cleared. For more information, see Section 11.

8.6.4.5 Receive FIFO Service Request Flag (RFS) (read-only, maskable interrupt)

The receive FIFO service request flag (RFS) is a read-only bit which is set when the receive FIFO is nearly filled and requires service to prevent an overrun. RFS is set whenever the number of the valid data entries in the receiver FIFO is equal or greater than the receive FIFO threshold value (RFT), and cleared when there are less entries of valid data than the threshold (RFT). When the RFS bit is set, an interrupt request is made unless the receive FIFO interrupt request mask bit is cleared.

8.6.4.6 Receiver Overrun Status (ROR)(read/write, non-maskable interrupt)

The receiver overrun status bit (ROR) is a read/write bit which is set when the receive logic attempts to place data into the receive FIFO after it has been completely filled. Each time a new piece of data is received, the set signal to the ROR bit is asserted, and the newly received data is discarded. This process is repeated for each new piece of data received until at least one empty FIFO entry exists. When the ROR bit is set, an interrupt request is made. Writing a one to this bit resets ROR status and its interrupt request.

8.6.4.7 Transmit FIFO Level

This 4-bit value shows how many valid entries are currently in the Transmit FIFO.

8.6.4.8 Receive FIFO Level

This 4-bit value shows how many valid entries are currently in the receive FIFO.

The following table shows the bit locations corresponding to the status and flag bits within the SSP status register. All bits are read-only except ROR which is read/write. Writes to TNF, RNE, BSY, TFS, and RFS have no effect. The reset state of ROR is unknown and must be initialized before enabling the SSP. Note that writes to reserved bits are ignored and reads to those bits return zeros.

Table 8-6. SSP Status Register

Ir

Bit	Name	Function	
1: 0	_	Reserved	
2	TNF - Transmit FIFO not full (read-only)	0 - Transmit FIFO is full 1 - Transmit FIFO is not full	
3	RNE - Receive FIFO not empty (read-only)	0 - Receive FIFO is empty 1 - Receive FIFO is not empty	
4	BSY - SSP Busy (read only)	0 - SSP is idle or disabled 1 - SSP currently transmitting or receiving a frame	
5	TFS - Transmit FIFO Service Request (read only)	0 - Transmit FIFO level exceeds TFL threshold, or SSP disabled 1 - Transmit FIFO level is at or below TFL threshold, request interrupt	
6	RFS - Receive FIFO Service Request (read only)	 0 - Receive FIFO level exceeds RFL threshold, or SSP disabled 1 - Receive FIFO level is at or below RFL threshold, request interrupt 	
7	ROR - Receive FIFO Overrun (read/write)	0 - Receive FIFO has not experienced an overrun1 - Attempted data write to full Receive FIFO, request interrupt	
11:8	TFL - Transmit FIFO Level (read only)	Number of entries in Transmit FIFO	
15:12	RFL - Receive FIFO Level (read only)	Number of entries in Receive FIFO	
31:16		Reserved	

8.6.5 SSP Interrupt Test Register (SSPITR)

Writing a "1" to the corresponding bit position in the SSP Interrupt Test register generates an interrupt strobe signal to the Interrupt Controller for test purposes. All bit symbols come from the SSP status register. All bit locations correspond to the status and flag bits within the SSP interrupt test register.

Table 8-7.SSPITR Bit Descriptions

Bit	Name	Function
4:0	_	Reserved
5	TFS	Transmit FIFO service request
6	RFS	Receive FIFO service request
7	ROR	Receive FIFO overrun
31:8	_	Reserved

8.6.6 SSP Register Address Map

The following table shows the registers associated with the SSP and the physical addresses used to access them.

Table 8-8. SSP Register Address Map

Address	Mnemonic	Full Name
0x0000800	SSPCR0	SSP Control Register 0
0x0000804	SSPCR1	SSP Control Register 1
0x0000808	—	Reserved
0x000080C	—	Reserved
0x0000810	SSPSR	SSP Status Register
0x0000814	SSPITR	SSP Interrupt Test Register
0x0000840 to	SSPDWR (Write)	SSP Data Write Register or
0x000087C	SSPDRR (Read))	SSP Data Read Register

intel

PS/2 Trackpad and Mouse Interfaces 9

The trackpad and mouse interfaces are identical, differing only in the names of the external pins. The interfaces are designed to communicate with a standard PS/2 trackpad, keyboard, or mouse, using a two-pin serial link. The trackpad interface uses the pins TPDATA and TPCLK, and the mouse interface uses the pins MSDATA and MSCLK, all of which are open drain (when in PS/2 mode of operation).

All four pins also function as GPIOs, being multiplexed with the I/O of an on-chip GPIO block. This chapter limits its scope to description of PS/2 operation. The two PS/2 blocks are identical, and so are their signal pairs at the chip pins.

9.1 Registers

This section describes the registers in the trackpad and mouse interfaces.

9.1.1 Control Register (KBDCR)

This register is a control that provides direct access to the CLK and DATA outputs and an enable bit to enable the interface. A write access to this location updates the control signals. A read returns the values written.

Bit	Name	Function
0	FKC	1 = Force MSCLK and TPCLK pads low regardless of the state of the keyboard FSM.
1	FKD	Force MSDATA and TPDATA pads low. 1 = Force the pads low regardless of the state of the keyboard FSM.
2	N/A	Reserved.
3	ENA	Keyboard enable bit. 0 = Disabled. 1 = Enabled.

9.1.2 Status Register (KBDSTAT)

All the bits with the exception of STP in this register are read-only. Each bit provides status information such as busy state of the FSM, parity of last received data, and so forth. STP bit when set also generates an interrupt. Writing a one to this bit clears the interrupt.

Bit	Name	Function
		Stop bit error (interruptible).
8	STP	0 = Stop bit received correctly.
		1 = Did not receive stop bit at the end of transmission.
7	TXE	Tx Register empty (interruptible). 0 = Not ready. 1 = Enabled, ready to transmit.
6	ТХВ	Tx Busy. 1 = Currently sending data.
5	RXF	Rx Full. 1 = RX register full, ready to be read.
4	RXB	Rx Busy. 1 = Currently receiving data.
3	ENA	Enable bit. 1 = Function enabled.
2	RXP	Parity bit indication for last received data byte (odd parity).
1	KBD	Value on KBDATA pin (after synchronizing).
0	KBC	Value on KBCLK pin (after synchronizing and sampling by Div8 clock).

9.1.3 Transmit/Receive Data Register (KBDDATA)

This register is used both to write bytes to be transmitted across the serial link, and to read bytes received.

Bit	Name	Function
7:0	KBDAT	Tx and Rx data.

9.1.4 Clock Division Register (KBDCLKDIV)

This register is used to define the divide ratio to generate an 1 MHz sampling clock. The KBCLK signal coming from the PS/2 device is latched by the sampling clock before using internally. This helps removed problems caused by external noise and slow moving edges.

Bit	Name	Function	Reset Value
1:0	DivVal	Divide value. 00 = Divided by 8. Incoming KbdClk is 8 MHz. 01 = Divided by 4. Incoming KbdClk is 4 MHz. 10 = Divided by 2. Incoming KbdClk is 2 MHz. 11 = Reserved.	00

9.1.5 Clock Precount Register (KBDPRECNT)<8>

This register is used to define the maximum value of the precounter within the keyboard interface. The precounter is used to generate a 32-µs period clock from the 8-MHz keyboard clock.

The KBDPRECNT register is intended to be used in conjunction with the KBDCLKDIV register to ensure the required output frequencies are generated.

Bit	Name	Function
7:0	PreCntMax	Maximum precount value. The division ratio is given by the following equation: Divide ratio = (PreCntMax+ 1) * 2.

9.1.6 KBD Interrupt Test Register

This is the KBD Interrupt Test register (KBDITR). Writing a "1" to the corresponding bit position in this register generates an interrupt strobe signal to the Interrupt Controller for test purposes. All bit symbols come from the KBDSTAT status register.

Bit	Name	Function
8	STP	Stop bit error.
7	TXE	Tx Register empty.
6	—	Reserved.
5	RXF	Rx full.
4:0	—	Reserved.

9.1.7 Register Memory Map

Table 9-1 lists the read and write locations in the memory map for the trackpad and mouse interfaces. See Section 3.2.1 for the base addresses of the trackpad and mouse interfaces.

9.2 Functional Description

Table 9-1. Trackpad Register Memory Map

Address	Read Location	Write Location
0x0000A00	KBDCR register	KBDCR register
0x0000A04	KBDSTAT register	KBDSTAT register
0x0000A08	KBDDATA register	KBDDATA register
0x0000A0C	KBDCLKDIV register	KBDCLKDIV register
0x0000A10	KBDPRECNT register	KBDPRECNT register
0x0000A14	KBDITR register	KBD Interrupt Test register

Table 9-2. Mouse Register Memory Map

Address	Read Location	Write Location
0x0000C00	KBDCR register	KBDCR register
0x0000C04	KBDSTAT register	KBDSTAT register
0x0000C08	KBDDATA register	KBDDATA register
0x0000C0C	KBDCLKDIV register	KBDCLKDIV register
0x0000C10	KBDPRECNT register	KBDPRECNT register
0x0000C14	KBDITR register	KBD Interrupt Test register

The interfaces generate two interrupts each: one interrupt to indicate that the transmit buffer is empty and therefore another byte can be transmitted (KbdTxInt), and one interrupt to indicate that a byte has been received by the interface (KbdRxIn).

The keyboard interface is held in reset until the enable bit in the control register is set. The interface can be controlled on the basis of the interrupts generated, or by polling the status flags in the control register. The Tx interrupt is generated when the transmit buffer has been emptied and the interface is ready to be programmed with another character for transmission. The Rx interrupt is set when a complete character has been received in the receive buffer, and the byte is ready to be read from the register. The received data parity bit, RXP, is available in the control register. Odd parity is used. The keyboard and mouse interface state machines are assumed to be clocked by an 8-MHz clock source (KbdClk) derived from the RefClk input. In fact, a frequency just less than 8 MHz should also allow the block to operate properly.

Internally to the block, the KbdClk clock is divided by eight to generate a nominal 1-MHz clock frequency. The KBCLK signal is latched by the 1-MHz clock before it is used internally. This helps remove problems caused by external noise and slow moving edges.

The KBCLK signal is always driven by the keyboard, unless the SA-1110 wishes to prevent the peripheral from transmitting (such as when it is about to transmit some data itself). When data is received from the peripheral, the KBDATA line is pulled low as a start bit. Each data bit is set up to the falling edge of the clock. Eight data bits are transmitted from the keyboard/mouse, followed by a parity bit (odd parity) and a HIGH stop bit.

Figure 9-1 shows the protocol of this transfer. Note that "receive" refers to the controller end—that is, the external peripheral is transmitting.

Figure 9-1. Keyboard/Mouse Controller Receive Protocol

When the controller wants to transmit a byte to the peripheral, the KBCLK line goes LOW, is then allowed to float, and the KBDATA line is pulled LOW, as a request to send. The keyboard then drives the clock, causing the controller to put eight bits of serial data onto the KBDATA line. A parity bit is driven out, followed by a stop bit; the stop bit may be acknowledged by the peripheral. (The controller does not check on the acknowledge.) Figure 9-2 shows the timing requirements for the interface.

Table 9-3 shows the nominal timings for the interface signals.

Table 9-3. Keyboard/Mouse Interface Timings

Symbol	Parameters	Minimum	Maximum	Notes
Tkclk	Keyboard clock period	1 μs	100 µs	
Tkckl	Keyboard clock low time	0.5 μs	50 µs	
Tkckh	Keyboard clock high time	0.5 μs	50 µs	
Tdsi	Setup on DATA to CLK falling for receive	1 μs	Tkckh – 1 μs	
Tdhi	Hold on DATA from CLK rising for receive	1 μs	Tkckh – 1 μs	
Tdso	Setup on DATA to CLK rising for transmit	Tkckl – 1µs	Tkckl	
Tdho	Hold on DATA from CLK falling for transmit	0 ns	1 μs	
Tki	Time for which CLK is held low to request a send	63.5 μs	64.5 μs	
Tkrg	CLK low from controller to CLK low from peripheral for request to send	1 μs	_	
Tksb	CLK low to DATA low hold time for request to send	1 μs	_	1

NOTE:

1. The DATA will proceed the CLK in this implementation, so the value for Tksb shown in Figure 9-2 is negative (that is, safe).

intel®

The General-Purpose I/O (GPIO) interface is a functional block that provides up to 19 bits of programmable input/output. The 19 bits are distributed across three GPIO units, each unit providing up to eight bits of GPIO. The blocks are designated as GPIO_A, GPIO_B, and GPIO_C. Individual pins are identified within each block - for example, GPIO_A<3> would be bit 3 of block A. Each pin is configurable as either input or output. At system reset, all pins default to *input* mode of operation.

As inputs, each pin can be configured as an interrupt source, wake-up source, or both. Interrupts are masked in hardware if the pins are configured as outputs.

Each GPIO block has a Data Value Register and a Data Direction Register. The Data Direction Register defines whether each individual pin is an input or an output. The Data Value Register is used both to read the level on the GPIO pin, either as an input or as an output, and to set the values of pins that are configured as outputs.

Most GPIO pins have alternate functions, and their use as GPIO or the alternate function is determined by the alternate function. When the "alternate" function is enabled the associated GPIO interrupts are automatically disabled.

Four GPIO_A<3:0> bits are always available as GPIO, but are normally used in "output" mode to control an external PCMCIA or USB power controller. All four PS/2 pins may be optionally used as GPIOs, and serial port I/Os - both the Audio Port and the SSP Port - are available as GPIOs if their "normal" port functions are not used. In addition, the two PWM (D-to-A) outputs are configurable as GPIOs.

10.1 Functional Description

GPIO ports provide general-purpose digital I/O capabilities for the SA-1111. If a pin's GPIO function is enabled (alternate function is disabled), the direction of the signal (input or output) can be individually specified. If the pin is set to "output", its value (1 or 0) may then be specified.

The state of enabled GPIO pins also depends on the SA-1111 mode. In *normal* mode, values written to the Data Value Register are asserted on pins whose direction has been set to "output". The state of each GPIO pin can be determined by reading the Data Value Register. This is true regardless of whether the pin is configured as an input or an output.

In *sleep* mode, the direction of any GPIO may be specified independently of its direction in normal mode. Values in the Sleep Value Register are asserted on pins whose direction is set to "output". Register values remain after leaving *sleep* state.

As inputs, any GPIO can be additionally configured to be an interrupt source, or a wakeup source, or both. These capabilities are programmed by bits set in the Interrupt Controller's configuration registers. The interrupt event - rising or falling edge, for example - is also programmable on a per-bit basis.

10.2 GPIO Pin List and Description

Table 10-1 lists the GPIO pins.

Table 10-1. GPIO Pin List

GPIO Bit	Function
GPIO_A<3:0>	4-bit Control Interface to external power controller for PCMCIA, Compact Flash
PWM / GPIO_B<0>	Pulse-width-modulation D-to-A converter 0, or GPIO block B, bit 0
L3MODE/PWM / GPIO_B<1>	Pulse-width-modulation D-to-A converter 1, or GPIO block B, bit 1
TPCLK / GPIO_B<2>	PS/2 Trackpad clock, or GPIO block B, bit 2
TPDATA / GPIO_B<3>	PS/2 Trackpad data, or GPIO block B, bit 3
L3CLK/MSCLK / GPIO_B<4>	L3CLK, or PS/2 Mouse clock, or GPIO block B, bit 4
L3DATA/MSDATA / GPIO_B<5>	L3DATA, or PS/2 Mouse data, or GPIO block B, bit 5
BIT_CLK / GPIO_C<0>	AC-link/l ² S clock, or GPIO block C, bit 0
SYNC / GPIO_C<1>	AC-link/I ² S SYNC (L/R) signal, or GPIO block C, bit 1
SDATA_OUT/ GPIO_C<2>	AC-link/l ² S serial data out, or GPIO block C, bit 2
SDATA_IN / GPIO_C<3>	AC-link/l ² S serial data in, or GPIO block C, bit 3
SCLK / GPIO_C<4>	SSP Serial Port Clock, or GPIO block C, bit 4
SFRM / GPIO_C<5>	SSP Serial Port Frame, or GPIO block C, bit 5
TXD / GPIO_C<6>	SSP Serial Port Data Out, or GPIO block C, bit 6
RXD / GPIO_C<7>	SSP Serial Port Data In, or GPIO block C, bit 7

Note: The GPIO_B<4:5> pins are multiplexed with two other functions, the L3 (see Section 7.1.1.1) and the PS/2 mouse function. If the L3 function is enabled, the L3 function takes precedence over the GPIO_B and the PS/2 mouse functions and controls these pins. If the L3 function is not enabled, the PS/2 mouse function takes precedence over the GPIO_B function. If the L3 and the PS/2 mouse functions are not enabled, the GPIO_B controls these pins. This same pattern applies to the GPIO_B controls these pins.

This same pattern applies to the GPIO_B<1> pin. If the L3 function is enabled, the L3 function takes precedence over the GPIO_B and the PWM functions and controls the pin. If the L3 function is not enabled, the PWM function takes precedence over the GPIO_B<1> pin. If the L3 and the PWM functions are not enabled, the GPIO_B controls these pins.

10.3 Programmer's Model

This section describes the registers in the general-purpose I/O interface. The description shows each block as an 8-bit unit, and applies to all GPIO blocks, regardless of the actual number of bits that connect to pins from the block.

10.3.1 Data Value Register (Px_DWR - Write)

Values written to this 8-bit register will be output on port x pins if the corresponding data direction bits are set LOW (pin set to "output"). All bits are cleared (set to zero) by a system reset.

Table 10-2. Px_DWR Register Bit Descriptions

Bit	Function
7:0	Data to output on GPIO_x<7:0> (x = A, B, C)
31:8	Unused

10.3.2 Data Value Register (Px_DRR - Read)

Values read from this register reflect the external state of port x, not the value written to this register.

Table 10-3. PxDRR Register Bit Descriptions

Bit	Function
7:0	Data read from GPIO_x<7:0> (x = A, B, C)
31:8	Unused

10.3.3 Data Direction Register (Px_DDR)

Bits set in this 8-bit read/write register will select the corresponding pin in the GPIO block to become an input; clearing a bit makes the pin an output. All bits are *set* by system reset, so a port is input by default.

Table 10-4. Px_DDR Register Bit Descriptions

Bit	Function
7:0	Direction of GPIO_x<7:0> (x = A, B, C): 1 = input 0 = output
31:8	Unused

10.3.4 Sleep State Register (Px_SSR)

The value in this 8-bit read/write register will set the value of the port during *sleep* mode.

Note: These bits take effect on the state of the relevant pins when the system goes into *sleep* mode regardless of whether the pins are programmed for the GPIO function or for the alternate function.

Table 10-5. Px_SSR Register Bit Descriptions

Bit	Function
7:0	Data to output on GPIO_x<7:0> when in sleep mode
31:8	Unused

10.3.5 Sleep Direction Register (Px_SDR)

This register takes effect only when the system is in sleep mode. Bits set in this 8-bit read/write register will select the corresponding pin in the GPIO block to become an input; clearing a bit makes the pin an output. All bits are *set* by system reset, so a port is input by default.

Table 10-6. Px_SDR Register Bit Descriptions

Bit	Function
	Direction of GPIO_x<7:0> (x = A, B, C):
7:0	1 = input
	0 = output
31:8	Unused

10.3.6 Memory Map

Table 10-7 lists the read and write locations in the GPIO memory map. See the Section 3.2.1 for the base address of the GPIO.

 Table 10-7.
 GPIO Register Memory Map (Sheet 1 of 2)

Address	Name	Function
0x0001000	PA_DDR	GPIO Block A Data Direction
0x0001004	PA_DRR (read); PA_DWR (write)	GPIO Block A Data Value Register
0x0001008	PA_SDR	GPIO Block A Sleep Direction
0x000100C	PA_SSR	GPIO Block A Sleep State
0x0001010	PB_DDR	GPIO Block B Data Direction
0x0001014	PB_DRR (read); PB_DWR (write)	GPIO Block B Data Value Register
0x0001018	PB_SDR	GPIO Block B Sleep Direction
0x000101C	PB_SSR	GPIO Block B Sleep State
0x0001020	PC_DDR	GPIO Block C Data Direction

 Table 10-7.
 GPIO Register Memory Map (Sheet 2 of 2)

Address	Name	Function
0x0001024	PC_DRR (read); PC_DWR (write)	GPIO Block C Data Value Register
0x0001028	PC_SDR	GPIO Block C Sleep Direction
0x000102C	PC_SSR	GPIO Block C Sleep State

10.4 Test

There are no test registers in the GPIO interface.

The interrupt controller generates interrupt signals from the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) in a highly flexible manner. The logic provides full control over the polarity of each bit. The overall interrupt structure is flat for all hardware interrupt sources. The interrupt controller has two independent modes of operation:

• Normal interrupt:

Creates an interrupt signal on the SA-1111's INT output pin, suitable for connection to the SA-1110 interrupt inputs. Full facilities are available for processing the raw interrupt sources including polarity, enabling, setting, and clearing. Some interrupts may be enabled (active) while SA-1111 is in *Sleep* mode.

• Wake-Up:

Generates a wake-up signal on the SA-1111's INT output pin. In normal use the Intel[®] StrongARM[®] SA-1110 Microprocessor (SA-1110) would respond by initiating the wake-up sequence in the SA-1111. This signal is the logical OR of all enabled wake-up sources. Wake-up inputs can be enabled and polarity-specified independently of the same signal's Interrupt Enable status.

11.1 Functional Description

This section provides a functional overview of the interrupt controller.

11.1.1 Logic Diagrams

Figure11-1 shows how the INT output is generated from the interrupt source. For low power considerations, a interrupt is detected asynchronously on its rising or falling edge using a D-type flip flop and a gated clock (gRclk) is used for synchronization when reading the interrupt status. Therefore, no free running clock is needed. Based on the polarity of each interrupt, each interrupt is asynchronously latched on the rising edge or falling edge of the raw interrupt source (IntRaw<n>). The latched interrupts (IntLatched<n>) are then logical ORed together to generate the SA-1111 interrupt output (INT). When reading the interrupt status, a gated clock gRclk is provided and the latched interrupts (IntLatched<n>) are doubled synchronized to clock out the interrupt status (IntStatus<n>).

Figure 11-1. Interrupt and Wake-Up Generation

Figure11-2 shows how the output from each bit combination circuit is then combined to generate a single SA-1111 interrupt (INT). Here INT is generated asynchronously. Since the SA-1110 is rising edge sensitive to the interrupt pin INT, any interrupt status clear will force INT to be low as long as AnyClear is asserted. If there are still pending interrupts, INT will go back to high again as soon as AnyClear is deasserted. This results in producing another rising edge on INT if there are pending interrupts.

Figure 11-2. Interrupt and Wake-Up Combination

intel®

11.2 Interrupt Sources

The interrupt controller handles all interrupt sources throughout the SA-1111. Table 11-1 lists the interrupt sources handled by the interrupt controller.

Table 11-1. Interrupt Sources

Interrupt Number	Name	Source	
3:0	GpAInt<3:0>	GPIO_A block inputs (4 total) ^a	
9:4	GpBInt<5:0>	GPIO_B block inputs (6 total) ^a	
17:10	GpCInt<7:0>	GPIO_C block inputs (8 total) ^a	
18	MsTxInt PS/2 mouse transmit interrupt ^b		
19	MsRxInt	PS/2 mouse receive interrupt ^b	
20	MsStopErrint	PS/2 mouse stop bit error interrupt ^b	
21	TpTxInt	PS/2 trackpad transmit interrupt ^b	
22	TpRxInt	PS/2 trackpad receive interrupt ^b	
23	TpStopErrint	PS/2 trackpad stop bit error interrupt ^b	
24	SspXmtint	Ssp Transmit FIFO empty/under threshold ^b	
25	SspRcvint	Ssp Receive FIFO full/over threshold ^b	
26	SspROR	Ssp Receive FIFO overrun ^b	
27:31	Reserved	_	
32	AudXmtDmaDoneA	Audio Transmit DMA Buffer A Done ^b	
33	AudRcvDmaDoneA	Audio Receive DMA Buffer A Done ^b	
34	AudXmtDmaDoneB	Audio Transmit DMA Buffer B Done ^b	
35	AudRcvDmaDoneB	Audio Receive DMA Buffer B Done ^b	
36	AudTFSR	Audio Transmit FIFO empty/under threshold ^b	
37	AudRFSR	Audio Receive FIFO full/over threshold ^b	
38	AudTUR	Audio Transmit FIFO under-run interrupt ^b	
39	AudROR Audio Receive FIFO overrun ^b		
40	Audio L3/ACLink Data Sent interrupt ^b		
41	Audio L3/ACLink Data Read Done interrupt ^b		
42	AudSTO	Audio ACLink read status timeout interrupt ^b	
43	USBPwr	USB Controller - power sense input ^b	
44	nIrqHciM	USB Controller ^b	
45	IrqHciBuffAcc	USB Controller ^b	
46	IrqHciRmtWkp	USB Controller ^b	
47	nHciMFCir	USB Controller ^b	
48	USB port resume	USB Controller ^b	
49	S0Readynint	PCMCIA interface ^b	
50	S1Readynint	PCMCIA interface ^b	
51	S0CDValid	PCMCIA interface ^b	

Table 11-1. Interrupt Sources

Interrupt Number	Name	Source
52	S1CDValid	PCMCIA interface ^b
53	S0_Bvd1Stschg	PCMCIA interface ^b
54	S1_Bvd1Stschg	PCMCIA interface ^b
55:63	Reserved	_

a. GPIO interrupts, which are implementation dependant, can have their polarity set to zero (rising) or one (falling).
b. Intel recommends that all non-GPIO interrupts have their polarity set to their reset value of zero (rising).

11.3 Interrupts

When a valid interrupt occurs (of the correct polarity, on an enabled source) a rising-edge signal is generated on the INT pin. Connection of this signal to GPIO 0 or GPIO 1 on the SA-1110 is recommended. If this source is enabled in SA-1110, then an IRQ or FIQ interrupt occurs, depending on the value programmed into the processor's interrupt level register. The called interrupt routine can access the SA-1111's interrupt controller to find the source of the interrupt. See Section 11.5.6 for more information.

When the interrupt has been serviced, the appropriate bit should be cleared in the SA-1110's GPIO edge-detect status register. The SA-1111's INT pin then can be cleared by clearing the appropriate interrupt bit and the corresponding interrupt bit in the peripheral module. See Section 11.5.6 and corresponding peripheral chapters for more details.

11.3.1 GPIO Interrupts

GPIO interrupts are a special case. Virtually all GPIOs share their I/O pins with alternate functions (SSP Serial Port, Audio Controller, etc.). If the alternate function is disabled, the GPIO function enabled, direction set to *input*, and enabled as an interrupt source, it will pass interrupts on to the INT pin where they can be sensed by the system processor.

If, on the other hand, the same GPIO pin is switched to the alternate function, that pin's interrupt capability is disabled (as a GPIO). This is true regardless of its GPIO interrupt programming.

11.3.2 Wake-Up Interrupts

Most signals available as interrupts may also be used as wake-up initiators, active when the device is in *Sleep* state. They can be enabled and their activating polarity set independently of the Interrupt settings for the same signal.

When an enabled wake-up signal is detected, the logical OR of all potential sources is output on the INT pin. The source of the interrupt will be latched within the controller. In response to the wake up interrupt to read the source of the interrupt, gRclk must be restarted and then the latched source will be clocked through. See Section 11.5.6 for more information. Once the source is clocked through the interrupt in normal mode is asserted.

Wake-up interrupts are only active when the *Sleep* state has been initiated by software. The other *Sleep*-initiating event, assertion of BAT_FLT, disables all interrupts. On recovery from BAT_FLT induced sleep, the system typically resets the state of the device, including interrupts.

11.3.3 Multiple Interrupts

The SA-1111 has many interrupt sources; in normal operation, multiple interrupt requests will occur. The SA-1111's interrupt controller is designed to work in tandem with the SA-1110 interrupt controller to allow the user many options in dealing with this situation. When the INT line is set by one interrupt source, subsequent interrupts will not affect its level. However, once an interrupt has been serviced and the interrupt cleared internally, the INT pin will deassert in response, and then assert again to reflect still-pending interrupts. This will continue until all interrupts have been serviced.

Once an SA-1111 interrupt has been requested, software can either service all pending interrupts and then clear the INT line or service the pending interrupts individually using the reassertion of the INT line to trigger another service routine.

11.4 Testability

Internally, SA-1111 interrupt controller has 2 sets of test registers. It can generate values for each interrupt sources before and after the programmable polarity logic and enable logic. In addition, each peripheral also has an interrupt test register which can generate values for each of its own interrupt sources under test mode.

11.5 **Programmer's Model**

This section describes the registers in the interrupt controller.

11.5.1 Registers

The following registers are provided for interrupts. There are two copies of each 32-bit register, to support <64> interrupt sources. The register name is suffixed with either "0" or "1" to indicate the set being accessed:

- INTTEST Test register
- INTEN Interrupt enable (mask)
- INTPOL Polarity selection
- INTSTATCLR Read status or write to clear
- INTSET Read source or write to set

In addition, a single test mode select register, INTTSTSEL, is provided for test mode selection.

Two additional sets of registers are provided for wake-up signal enabling and polarity.

- WAKE_EN Individually enable wake-up sources
- WAKE_POL Specify the polarity of the wake-up source

11.5.1.1 **Source Bit Positions**

Figure 11-3 shows the bit positions for the interrupt sources in set 0 of the registers and Figure 11-4 shows the interrupt sources in set 1 (see Table 11-1 for valid interrupts).

INT₃₁-INT₀

Figure 11-4. Interrupt Source Positions in Register Set 1

11.5.2 **INTTEST0 – INTTEST1**

These registers should only be used for production test.

Writing to these registers controls internally generated values for each of the hard interrupt sources before the programmable polarity logic. On read, only bit 0 is significant indicating the logical OR of all the interrupt bits. Interrupts bits correspond to register bits as shown in Figure 11-3 and Figure 11-4.

11.5.3 **INTEN0 – INTEN1**

These registers control the masking of each status bit. Writing a zero disables that status bit from generating an interrupt and writing a one enables its effect. Reading returns the current enable register value. It is reset to zero (disabled). Interrupts bits correspond to register bits as shown in Figure 11-3 and Figure 11-4.

11.5.4 INTPOL0 – INTPOL1

These registers control the polarity of the source interrupt. Writing a zero causes the interrupt to be set on a rising edge. Writing a one causes the interrupt to be set on a falling edge. Reading the register returns the current polarity value. Interrupts bits correspond to register bits as shown in Figure 11-3 and Figure 11-4.

Note: Intel recommends that all non-GPIO interrupts have their polarity set to their reset value of zero (rising).

11.5.5 INTTSTSEL

Bit 0 of this register allows the selection of either the interrupt source or the interrupt test register (Inttest) as the raw input. A one sets the source as the test register.

Bit 1 of this register allows the selection of either normal or wake-up mode for the interrupt controller. A one sets the mode as wake-up and a zero sets the mode as normal. Interrupts bits correspond to register bits as shown in Figure 11-3 and Figure 11-4.

11.5.6 INTSTATCLR0–1

The INSTATCLR0-1 register is a block of four 32-bit locations that can be accessed with 32-bit operations. The address block represents four physical registers. Two are for reads to obtain the status of the interrupt controller, the other two are for writes to clear the status of the interrupt controller.

On read, a one indicates the interrupt is set and a zero indicates the interrupt is clear. Writing a one will clear the interrupt, writing a zero will do nothing. Interrupts bits correspond to register bits as shown in Figure 11-3 and Figure 11-4.

11.5.7 INTSET0 – INTSET1

These registers allow the interrupt sources to be set. Writing a one will set the interrupt value, writing a zero will do nothing. When read, this register returns the value of the interrupt before it has been synchronized and is useful for test purposes only. Interrupts bits correspond to register bits as shown in Figure 11-3 and Figure 11-4.

11.5.8 WAKE_EN0 - WAKE_EN1

These registers individually enable inputs to be specified as wake-up sources. Note that wake-up interrupts are only active during software-induced *Sleep* state (not BAT_FLT-induced).

11.5.9 WAKE_POL0 - WAKE_POL1

These registers enable polarity of wakeup signal to be specified for individual wake-up sources.

11.5.10 **Memory Map**

Table 11-2 provides a summary of the registers.

Table 11-2. **Interrupt Registers**

Address Offset	Name	Reset	Description
0x1600	INTTTEST0	Yes	Write 1 = Set test interrupt source high
0x1604	INTTTEST1	Yes	Write 1 = Set test interrupt source high
0x1608	INTEN0	Yes	Write 0 = Disable
0x160C	INTEN1	Yes	Write 0 = Disable
0x1610	INTPOL0	Yes	Write 0 = Active high source
0x1614	INTPOL1	Yes	Write 0 = Active high source
0x1618	INTTSTSEL	Yes	Mode selection
0x161C	INTSTATCLR0-1	NA	Read 1 = interrupt set Write 1= Clear interrupt
0x1624	INTSET0	Yes	Write 1 = Set interrupt
0x1628	INTSET1	Yes	Write 1 = Set interrupt
0x162C	WAKE_EN0	Yes	Write 1 = Enable interrupt
0x1630	WAKE_EN1	Yes	Write 1 = Enable interrupt
0x1634	WAKE_POL0	Yes	Write 1 = Set interrupt polarity = high
0x1638	WAKE_POL1	Yes	Write 1 = Set interrupt polarity = high

11.6 **Characteristics**

Table 11-3 lists the characteristics for the interrupt controller.

Table 11-3. **Interrupt Characteristics**

Symbol	Parameter	Minimum	Maximum	Unit
t _{IL}	Interrupt latency ¹	Cp to Q of a D flip flop plus a few gates		ns
t _{IPW}	Minimum pulse width ²	1 gRclk		ns

NOTES:

Time from assertion of interrupt controller to assertion of INT pin.
 This condition occurs when an interrupt is cleared and a further interrupt is already pending.

11.7 Application

The interrupt clock must be enabled to operate the interrupt controller in normal mode.

The PCMCIA interface block provides control logic and a complete set of signal buffers for one PCMCIA card and one CF (Compact Flash) card. Alternatively, with an external address buffer it can support two PCMCIA cards. The control logic and built-in buffers eliminate ten or more external "glue" and buffer/transceiver components, providing a highly-integrated and lower power solution for the creation of complete systems.

Four GPIOs are available to control an external power-selection and switching device, which supplies power to the card sockets.

The interface also provides facilities for controlling the state of the pins when the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) is in *sleep* mode.

12.1 PCMCIA Interface Block Diagram

Figure 12-1 shows the block diagram for the PCMCIA interface.

Figure 12-1. PCMCIA Interface Block Diagram

12.2 Functional Description

12.2.1 PCMCIA/CF Address and Data Buffers

Buffers are built into the SA-1111 for all address and data signals to one PCMCIA slot and one CF slot. The PCMCIA slot supports both 3.3V and 5.0V PCMCIA cards.

When the device is in *Sleep* mode, the state of PCMCIA and CF address and data pins changes to a programmable value (Hi-Z or logic LOW).

12.2.2 Voltage Control

Four GPIO pins are provided for programming an external voltage source. This allows the interface to accommodate PCMCIA cards of different operating voltages. These pins are controlled by GPIO register writes (see Chapter 10).

12.2.3 Reset Signals

A single logic output is provided for each socket to allow resetting the PCMCIA or CF card. Both signals are active high, and are asserted when the SA-1111 is in *reset*, or the relevant bit in the Control Register is set (refer to Section 12.6.2).

When the SA-1111 is in *sleep* mode the reset signals are either tristated (off) or low, depending on the relevant bit in the sleep state register (refer to Section 12.6.3).

12.2.4 Control Signals

Seven control lines are driven to each socket: nPREG, nOE, nWE, nIOW, nIOR, nCE1, and nCE2. The control lines operate except when the SA-1111:

- Enters sleep mode. These lines can be tristated or driven high (refer to Section 12.6.3).
- Sets its float bits in the Control Register (PCCR). These control lines will float in *normal* mode, when appropriately set via control register bits, and in and *sleep* mode.

Two signals are returned, through the SA-1111, from each card socket to the processor. These are:

- Sx_nIOIS16 (x = 0 or 1) is an acknowledgement from the card that the current address is a valid 16-bit address;
- Sx_nPWAIT (x = 0 or 1) is driven low by the card to extend the length of a transfer.

These pins are inputs on the card interface of the SA-1111; the signal from the selected card is routed to a pin on the SA-1111's processor interface, where it is an output, driven to the processor. Since they are inputs at the card interface, they are unaffected by *Sleep* mode or any register configuration.

12.2.5 Interrupts

Table 12-1 describes the interrupt sources provided by the PCMCIA interface.

 Table 12-1.
 Interrupt Signals

Name	Function
S0_READY_nIREQ	Socket 0 READY_nIREQ pin
S1_READY_nIREQ	Socket 1 READY_nIREQ pin
S0_CDVALID	Socket 0 card detect 0 = Card fully inserted 1 = Card not fully inserted
S1_CDVALID	Socket 1card detect 0 = Card fully inserted 1 = Card not fully inserted
S0_BVD1_STSCHG	Socket 0 BVD1_STSCHG (voltage detect) pin
S1_BVD1_STSCHG	Socket 1 BVD1_STSCHG (voltage detect) pin

12.3 Detailed Signal Descriptions

This section provides detailed signal descriptions for the PCMCIA interface block diagram shown in Figure 12-1.

Note: x = 0, 1

12.3.1 Intel[®] StrongARM[®] SA-1111 Interface Signals.

Table 12-2 describes the SA-1110 interface signals.

Table 12-2. SA-1110 Interface Signals (Sheet 1 of 2)

Signal Name	Description
PKTSEL	PCMCIA socket select. This signal is an input and used to route control, address and data. Signals to one of the PCMCIA sockets. When PSKTSEL is low, socket zero is selected. When PSKTSEL is high, Socket one is selected.
Address <25:0>	Address Inputs. This bus conveys the address for PCMCIA and Compact Flash slots.
Data <15:0>	Bi-directional Data Bus. This bus is driven by the PCCard/Compact Flash Block. Only when either one of nPCE<2:1> is asserted and either nPIOR or nPOE are asserted.
nPCE<2:1>	Card Enable. These signals are inputs, gated within the block, and used to select a PCMCIA card. Bit 2 enables the high byte lane and bit 1 enable the low byte lane.
nIOIS16	IO is 16 bit. This signal is an output and generated as following: IF PSKTSEL is low and Card is fully inserted in socket zero, then nPIOIS16 = S0_nIOIS16; Otherwise if PSKTSEL is high and Card is fully inserted in socket one, then nPIOIS16 = S1_nIOIS16. Otherwise nPIOIS16 = high.
nPIOR	IO Read. This signal is an input and used to generate Sx_nIORD signals.
nPIOW	IO Write. This signal is an input and used to create Sx_nIOW signals.

Table 12-2. SA-1110 Interface Signals (Sheet 2 of 2)

Signal Name	Description
nPOE	Output Enable. This signal is an input and used to generate Sx_nOE signals.
nPREG	REG Select. This signal is an input and used to generate Sx_nREG signals.
nPWAIT	Wait signal. This signal is an output and generated as following: IF PSKTSEL is low, and at least one of nPCE<2:1> is asserted, and Card is fully inserted in socket zero and PCCR<4> is set, then nPWAIT = S0_nWAIT; Otherwise if PSKTSEL is high, and at least one of nPCE<2:1> is asserted, and Card is fully inserted in socket one and PCCR<5> is set, then nPWAIT = S1_nWAIT. Otherwise nPWAIT = high.
NPWE	Write Enable. This signal is an input and used to generate Sx_nWE signals.

12.4 Socket 0 Signals

Table 12-3 lists the socket 0 signals.

Table 12-3.Socket 0 Signals

Signal Name	Description
	Reset. This signal is an output and used to reset the card. This signal needs a weak pull-up on board. The signal is active high and generated by the following way.
	then (if in clean mode
S0_RESET	(if DCSCD . 0 0. This signal is tri stated
	$\{ II PCSSR<0 > =0, This signal is forced to low \}$
	else SU_RESET = PCCR<0>
	Address Bus.
	If one of the S0_nCD<2:1> signals is high or PCCR<2> is '0'
	The bus is tri-stated;
	Else if it is in sleep mode
SU_ADDRESS<25:0>	{If PCSSR<0> =0, This bus is tri-stated,
	elself I his bus is forced to low.}
	EISE IF PSKISEL IS high of both of hPGE<2.1> are high
	The whole has is forced to low
	The whole bus is forced to low;
	50_ADDRE55<25.0> = Addres5<25.0>.
	Data Bus. PC Card bi-directional data bus. Data is transferred from the PC Card socket to the CPU through this 16-bit bus. Only byte and 16 bit operations are supported.
	If PCCR<2> =1
	Then
S0 Data<15:0>	{if in sleep mode
	{if PCSSR<0> = 0, output is tristated
	else driven low by SA-1111}
	else if nPIOR or nPOE is asserted and PSKTSEL is low, output is tristated
	else driven by SA-1111}
	Else output is tristated.
	Output to PC Card socket nREG signal. This is an output.
S0_nPREG	If PCCR<2> = 1
	Then
	{if it is in sleep mode,
	{if PCSSR<0> =0, This signal is tri-stated,
	elseif This signal is forced to high.}
	elseif S0_nCD<2:1> =00 and PSKTSEL =0 then
	S0_nPREG = nPREG
	Else S0_nPREG =1}
	Else S0_nPREG is tri-stated.

Table 12-3. Socket 0 Signals

Signal Name	Description
S0_nCE<2:1>	Card Enable: Output to PC Card socket nCE<2:1> signals. If PCCR<2> = 1 Then {if it is in sleep mode, {if PCSSR<0> =0, This signal is tri-stated, elseif This signal is forced to high.} elseif S0, pCP<2:1> =00 and PSKTSEL =0 then
	S0_nCE<2:1> =00 and PSKTSEL =0 then S0_nCE<2:1> = nPCE<2:1> Else S0_nCE<2:1> =11b} Else S0_nCE is tri-stated.
S0_nOE	Output Enable. Output to PC Card socket nOE signal. If PCCR<2> = 1 Then {if it is in sleep mode, {if PCSSR<0> =0, This signal is tri-stated, elseif This signal is forced to high.} elseif S0_nCD<2:1> =00 and PSKTSEL =0 then S0_nOE = nPOE Else S0_nOE =1} Else S0_nOE is tri-stated.
S0_nWE	Write Enable. Output to PC Card socket nWE signal. If PCCR<2> = 1 Then {if it is in sleep mode, {if PCSSR<0> =0, This signal is tri-stated, elseif This signal is forced to high.} elseif S0_nCD<2:1> =00 and PSKTSEL =0 then S0_nWE = nPWE Else S0_nWE =1} Else S0_nWE is tri-stated.
S0_nIORD	IO Read. Output to PC Card socket nIOR signal. If PCCR<2> = 1 Then {if it is in sleep mode, {if PCSSR<0> =0, This signal is tri-stated, elseif This signal is forced to high.} elseif S0_nCD<2:1> =00 and PSKTSEL =0 then S0_nIORD = nPIOR Else S0_nIORD =1} Else S0_nIORD is tri-stated.

Table 12-3. Socket 0 Signals

Signal Name	Description
	IO Write. Output to PC Card socket nPIOW signal.
	If PCCR<2> = 1
	Then
	{if it is in sleep mode,
SO NOWR	{if PCSSR<0> =0, This signal is tri-stated,
30_110000	elseif This signal is forced to high.}
	elseif S0_nCD<2:1> =00 and PSKTSEL =0 then
	$S0_nIOWR = nPIOW$
	Else S0_nIOWR =1}
	Else S0_nIOWR is tri-stated.
S0_nWAIT	Wait Signal. Input from PC Card Socket nWAIT. This signal generates the nPWAIT signal.
S0_nIOS16	IO is 16 bit. Input from PC Card Socket nIOIS16. This signal generates the nIOIS16 signal and can be read from Status Register.
S0_READY_nIREQ	Ready/Interrupt Request. Input from PC Card Socket RDY/nIRQ signal. This signal can be accessed through Status Register and used as an interrupt source.
S0_BVD2_nnSPKR	Socket 0 VDD voltage sense signal/audio digital speaker. This signal can be read from Status Register.
S0_BVD1_nSTSCHG	Socket 0 VDD voltage sense signal/card status changed. This signal can be read from Status Register and used as an interrupt source.
S0_nVS<2:1>	Socket 0 VSS voltage sense signals. These signals can be accessed through Status Register.
S0_nCD<2:1>	Card Detect. Input from PC Card Socket Card Detect signals nCD<2:1>. These signals are used to generate S0_CDVALID. When both of S0_nCD<2:1> are low, S0_CDVALID= 0; otherwise S0_CDVALID = 1. The S0_CDVALID is used as an interrupt source and can be read from Status Register.
PCMCIA_PWR<3:0>	Voltage Control. This allows the interface to accommodate PCMCIA cards of different operating voltages. This is done through GPIO_A<3:0> – see Chapter 10.

12.5 Socket 1 Signals

Table 12-4 lists the socket 1 signals

Table 12-4. Socket 1 Signals

.

Signal Name	Description
	Reset. This signal is an output and used to reset the card. This signal needs a weak pull-up on board. The signal is active high and generated as follows.
	If PCCR<3> = 1
	then
S1_RESET	{if in sleep mode,
	{if PCSSR<1> =0, This signal is tristated,
	elseif This signal is forced to low.}
	else S1_RESET = PCCR<1>
	Else this signal is tristated.
	Address Bus.
	If one of the S1_nCD<2:1> signals is high or PCCR<3> is '0'
	Then
	The bus is tri-stated;
	Elseif it is in sleep mode
	Then
S1_ADDRESS<10:0>	{if PCSSR<1> =0, This bus is tri-stated,
	elseif This bus is forced to low.}
	Else If PSKTSEL is high or both of nPCE<2:1> are high
	Then
	The whole bus is forced to low;
	Else
	S1_ADDRESS<10:0> = Address<10:0>.
	Data Bus. PC Card bi-directional data bus. Data is transferred from the PC Card socket to the CPU through this 16-bit bus. Only byte and 16 bit operations are supported.
	If PCCR<3> =1
	Then
S1 Data<15:0>	{if in sleep mode
_	{if PCSSR<1> = 0, output is tristated
	else driven low by SA-1111}
	else if nPIOR or nPOE is asserted and PSKTSEL is low, output is tristated
	else driven by SA-1111}
	Else output is tristated.
	Output to PC Card socket nREG signal. This is an output.
	If PCCR<3> = 1
S1_nPREG	Then
	{if it is in sleep mode,
	{if PCSSR<1> =0, This signal is tri-stated,
	elseif This signal is forced to high.}
	elseif S1_nCD<2:1> =00 and PSKTSEL =0 then
	S1_nPREG = nPREG
	Else S1_nPREG =1}
	Else S1_nPREG is tri-stated.

Table 12-4.Socket 1 Signals

Signal Name	Description
	Card Enable: Output to PC Card socket nCE<2:1> signals.
	Then
	lif it is in sleen mode
	i PCSSR < 1 > = 0 This signal is tristated
S1_nCE<2:1>	elseif This signal is forced to high }
	elseif S1_nCD<2:1> =00 and PSKTSEL =0 then
	S1 nCE<2:1>= nPCE<2:1>
	Else S1 nCE<2:1> =11b}
	Else S1_nCE is tristated.
	Output Enable. Output to PC Card socket nOE signal.
	If PCCR<3> = 1
	Then
	{if it is in sleep mode,
\$1 pOE	{if $PCSSR < 1 > =0$, This signal is tristated,
ST_HOE	elseif This signal is forced to high.}
	elseif S1_nCD<2:1> =00 and PSKTSEL =0 then
	S1_nOE = nPOE
	Else S1_nOE =1}
	Else S1_nOE is tristated.
	Write Enable. Output to PC Card socket nWE signal.
	If PCCR<3> = 1
	Then
	{if it is in sleep mode,
S1 nWF	{if PCSSR<1> =0, This signal is tristated,
	elseif This signal is forced to high.}
	elseif S1_nCD<2:1> =00 and PSKTSEL =0 then
	S1_nWE= nPWE
	Else S1_nWE =1}
	Else S1_nWE is tristated.
	IO Read. Output to PC Card socket nIOR signal.
S1_nIORD	If PCCR<3> = 1
	Then
	{if it is in sleep mode,
	{if PCSSR<1> =0, This signal is tri-stated,
	elseit This signal is forced to high.
	eiseir S1_nCD<2:1> =00 and PSK I SEL =1 then
	Else S1_nIORD =1}
	Else S1_nIORD is tri-stated.

Table 12-4. Socket 1 Signals

Signal Name	Description
	IO Write. Output to PC Card socket nPIOW signal.
	If PCCR<3> = 1
	Then
	{if it is in sleep mode,
S1 IOWR	{if PCSSR<1> =0, This signal is tristated,
	elseif This signal is forced to high.}
	elseif S1_nCD<2:1> =00 and PSKTSEL =0 then
	$S1_nIOWR = nPIOW$
	Else S1_nIOWR =1}
	Else S1_nIOWR is tristated.
S1_nWAIT	Wait Signal. Input from PC Card Socket nWAIT. This signal generates the nPWAIT signal.
S1_nIOS16	IO is 16 bit. Input from PC Card Socket nIOIS16. This signal generates the nIOIS16 signal and can be read from Status Register.
S1_READY_nIREQ	Ready/Interrupt Request. Input from PC Card Socket RDY/nIRQ signal. This signal can be accessed through Status Register and used as an interrupt source.
S1_BVD2_nnSPKR	Socket 1 VDD voltage sense signal/audio digital speaker. This signal can be read from Status Register.
S1_BVD1_nSTSCHG	Socket 1 VDD voltage sense signal/card status changed. This signal can be read from Status Register and used as an interrupt source.
S1_nVS<2:1>	Socket 1 VSS voltage sense signals. These signals can be accessed through Status Register.
S1_nCD<2:1>	Card Detect. Input from PC Card Socket Card Detect signalsnCD<2:1>. These signals are used to generate S1_CDVALID. When both of S1_nCD<2:1> are low, S1_CDVALID= 0; otherwise S1_CDVALID = 1. The S1_CDVALID is used as an interrupt source and can be read from Status Register.

12.6 Programmer's Model

This section describes the three registers in the PCMCIA interface.

12.6.1 Status Register (PCSR)

This register allows the reading of various signals within the PCMCIA interface.

Bit	Function
0	Socket 0 ready Status of S0_READY_nIREQ
1	Socket 1 ready Status of S1_READY_nIREQ
2	0 = Socket 0 card detect 1 and 2 valid
3	0 = Socket 1 card detect 1 and 2 valid
4	Socket 0 VS1 - socket 0 voltage sense 1
5	Socket 0 VS2 - socket 0 voltage sense 2
6	Socket 1 VS1 - socket 1 voltage sense 1
7	Socket 1 VS2 - socket 1 voltage sense 2
8	Socket 0 WP (S0_nIOIS16)
9	Socket 1 WP (S1_nIOIS16)
10	Socket 0 BVD1_nSTSCHG
11	Socket 0 BVD2_nSPKR
12	Socket 1 BVD1_nSTSCHG
13	Socket 1 BVD2_nSPKR

12.6.2 Control Register (PCCR)

This register controls the setting of various output pins in the PCMCIA interface and also allows tristating the control lines. Note that control of the external PCMCIA/Compact Flash power controller is done through GPIO_A<3:0> - see Chapter 10 for details on controlling those pins.

Bit	Name	Function
	Socket 0 reset:	
Ũ	00_1001	1 = assert reset
1	S1 PST	Socket 1 reset:
1 31_K31		1 = assert reset
2	S0 FLT	S0 float
_	00 1.	0 = Float all S0 control lines
3	S1 FLT	S1 float
	_	0 = Float all S1 control lines
4	S0_PWAITEN	S0_nPWAIT enable
5	S1_PWAITEN	S1_nPWAIT enable
6	SOPSE	If using a 3 V card, set to 0; if using a 5 V card, set to 1.
7	S1PSE	If using a 3 V card, set to 0; if using a 5 V card, set to 1.

Two bits <5:4> control assertion of nPWAIT on a per-slot basis.

12.6.3 Sleep State Register (PCSSR)

This register allows setting the state of PCMCIA/CF output pins during *sleep* mode. Note the four voltage control pins are controlled via the regular GPIO control facilities provided by the GPIO registers.

Bit	Function
0	Socket 0 control, data, and address pin states in SLEEP mode For more information on sleep state control, see Table 12-5
1	Socket 1 control, data, and address pin states in SLEEP mode For more information on sleep state control, see Table 12-5

In sleep state, PCMCIA or CF signal pins are put into a state dependent on the value in the S0CONT or S1CONT bits, as shown in Table 12-5. Bit PCSSR<0> specifies the sleep state of Socket 0 (PCMCIA) output pins, while bit PCSSR<1> controls Socket 1 (CF) pins.

Table 12-5. S0 (PCMCIA) and S1 (CF) Sleep State Control

PCMCIA Signal (x = 0 or 1)	Socket 0: PCSSR<0> = 0	Socket 0: PCSSR<0> = 1	Socket 1: PCSSR<1> = 0	Socket 1: PCSSR<1> = 1
Sx_DATA	Tristate	0	Tristate	0
Sx_ADDRESS	Tristate	0	Tristate	0
Sx_NOE	Tristate	1	Tristate	1
Sx_nIORD	Tristate	1	Tristate	1
Sx_nIOWR	Tristate	1	Tristate	1
Sx_nCE1	Tristate	1	Tristate	1
Sx_nCE2	Tristate	1	Tristate	1
Sx_nWE	Tristate	1	Tristate	1
Sx_Reset	Tristate	0	Tristate	0

12.6.4 Memory Map

Table 12-6 shows the read and write locations in the PCMCIA interface register memory map. See Section 3.2.1 for the PCMCIA interface base address.

Table 12-6. PCMCIA Interface Register Memory Map

Address	Read Location	Write Location
0x0001800	PCCR register	PCCR register
0x0001804	PCSSR register	PCSSR register
0x0001808	PCSR register	Reserved

Electrical and Timing Specifications 13

This section provides a description of the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111) pins and the AC and DC requirements for each pin or pin type.

13.1 AC and DC Signal Requirements

Table 13-1 describes the AC and DC requirements for each pin. The following terms are used to describe the type of pin:

I = Input only

O = Output only

I/O - od = Input/Output - behaves like an open-drain output in PS/2 mode of operation

I/O - Input/Output

Table 13-1.	AC and DC F	Requiren	nents

Name	Туре	Description
SA-1110 Processor Interface -	Register /	Access and SDRAM Interfacing
A<25:0>	I/O	26-bit system address bus. Bits A<24:10> for SDRAM (output): setup 3ns, hold 1ns referenced to SDCLK. Bits A<25>, A<9:0> are functional test only.
D<31:0>	I/O	For SDRAM writes (output): setup 3ns, hold 1ns referenced to SDCLK
DQM<3:0>	I/O	For SDRAM writes (output Byte En): setup 3ns, hold 1ns referenced to SDCLK For register and PCMCIA and CF accesses (input): TBD
MBGNT	I	Input only; for DMA access
MBREQ	0	Output only; Rise and Fall times: min 1ns, max 5ns (30 pF load)
nSDCAS	0	For SDRAM (output): setup 3ns, hold 1ns referenced to SDCLK
nCS	I	Input only; for register access
nSDCS/nRAS	0	Chip Select output for SDRAM: setup 3ns, hold 1ns referenced to SDCLK
nSDRAS	0	For SDRAM (output): setup 3ns, hold 1ns referenced to SDCLK
nWE	I/O	For SDRAM (output): setup 3ns, hold 1ns referenced to SDCLK
RDY	0	Output only; Rise and Fall times: min 1ns, max 5ns (30 pF load)
SDCLK	0	Rising edge is timing reference point for all SDRAM signals Rise and Fall times: min 1ns, max 5ns (40 pF load)
USB Interface		
USB_MINUS	I/O	USB_PLUS and USB_MINUS pins, as outputs, must meet USB rev. 1.1 specification AC and DC requirements under specified load conditions
USB_PLUS	I/O	
AC-link Serial Port for Audio/C	SPIO_C Bi	ts
SYS_CLK	0	See I2S standard for rise/fall times and loading
Miscellaneous Signals		
INT	0	Standard CMOS output, point-to-point, max loading 30 pF

13.2 DC Specifications

Table 13-2 specifies the maximum current values for the different operational modes of the SA-1111.

Table 13-2. SA-1111 Power Consumption at 3.3 V VDD

Mode	Maximum Value
Run	<50 mA
Doze	<10 mA
Sleep	<20 µA

13.2.1 Power Supply Voltages

Table 13-3 specifies the power supply voltages for the SA-1111.

Table 13-3. SA-1111 Power Supply Voltages

Parameter	Recommended Value
Core and CMOS power supply voltage	3.3 V ± 10%
PLL power supply voltage	3.3 V ± 10%
VDD_PCMCIA	0 (off), 3.3 V or 5V \pm 10%
VDD_CF	0 (off), 3.3 V or 5V \pm 10%

13.2.2 Absolute Maximum Ratings

Table 13-4 lists the absolute maximum ratings for the SA-1111.

Table 13-4. Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Note
V _{IP}	Voltage applied to any pin	TBD V	TBD V	1
T _S	Storage temperature	-20°C (-4°F)	+125°C (257°F)	1

NOTE: These are stress SA-1111 ratings only. Exceeding the absolute maximum ratings may permanently damage the device. Operating the device at absolute maximum ratings for extended periods may affect device reliability.

13.2.3 CMOS Input Voltage Levels

Table 13-5 lists the functional operating dc parameters for the SA-1111.

Table 13-5.SA-1111 CMOS Inputs

Symbol	Parameter	Minimum	Note
V _{IHC}	Input high voltage	>0.7 Vcc	1
V _{ILC}	Input low voltage	<0.3 Vcc	_

NOTE:

1. PCMCIA inputs at 3.3 V.

13.2.4 DC Operating Conditions

Table 13-6 lists the functional operating dc parameters for the SA-1111.

Symbol	Parameter	Minimum Nominal		Maximum	Note
V _{OHC}	Output high 3.3V CMOS voltage	TBD V	—	TBD V	_
V _{OLC}	Output low 3.3V CMOS voltage	TBD V	—	TBD V	_
I _{OHC}	High level output current	—	—	TBD MA	_
T _A	Ambient operating temperature	0°C (32°F)	—	70°C (158°F)	_
I _{IN}	IC input leakage current	_	TBD µA	—	_
C _{IN}	Input capacitance	_	TBD pF	_	_
ESD	HBM model ESD	_	TBD KV	_	_

Table 13-6. SA-1111 DC Operating Conditions

NOTES:

1. Voltages measured with respect to VSS.

2. I – CMOS-level inputs (includes I and I/O pin types).

3. O – Output, CMOS levels, tristateable.

13.2.5 Compact Flash and PCMCIA 4mA Buffer Input Voltage Levels

The normal operating value for Vcc is 5 V \pm 10% and 3.3 V \pm 10%. Interface signal levels are compatible with standard TTL or CMOS for the operating voltage used. Table 13-7 and Table 13-8 list the functional operating dc parameters for the SA-1111.

Table 13-7. SA-1111 5 V Compact Flash and PCMCIA Buffer Input Level Specifications

Parameter	Minimum	Maximum
V _{CC}	4.50 V	5.50 V
V _{IH}	2.4 V	Vcc +2.5 V
V _{IL}	0.0 V	0.8 V
V _{OH}	2.8 V (TTL load) .9 Vcc (CMOS load)	Vcc +.25 V
V _{OL}	0.0 V	0.5 V (TTL load) .1 Vcc (CMOS Load)

Table 13-8. SA-1111 3.3 V Compact Flash and PCMCIA Buffer Input Level Specifications

Parameter	Minimum	Maximum
V _{CC}	3.0 V	3.6 V
V _{IH}	0.475 Vcc	Vcc +0.5 V
V _{IL}	–0.5 V	0.325 Vcc
V _{OH}	0.9 Vcc	—
V _{OL}	—	.1 Vcc

This chapter defines the package and pinout for the Intel[®] StrongARM[®] SA-1111 Microprocessor Companion Chip (SA-1111).

14.1 Package

The SA-1111 is contained in a 256 mini-BGA. Figure 14-1 shows the package details. Table 14-1 lists the SA-1111 pins in numeric order, showing the signal type for each pin.

Figure 14-1. SA-1111 256 mBGA Mechanical Drawing

Table 14-1. SA-1111 Pinout — 256 Mini-Ball Grid Array

Pin	Signal	BGA Pad	Pin	Signal	BGA Pad	Pin	Signal	BGA Pad	Pin	Signal	BGA Pad
1	S0_NCE1	B2	65	D31	T1	129	NPIOW	T15	193	S1_DATA14	A16
2	S0_DATA14	B1	66	RVDD4	L7	130	NSDRAS	R14	194	CFVDD	B15
3	PVDD0	C2	67	RVSS4	J8	131	NPREG	P14	195	RVSS13	J6
4	S0_DATA7	C1	68	D30	R2	132	NOE	R15	196	S1_DATA6	B14
5	S0_DATA13	D2	69	D29	R3	133	NPWAIT	T16	197	S1_DATA13	A15
6	RVSS0	H6	70	D5	P4	134	NCAS3	P13	198	S1_DATA5	A14
7	S0_DATA6	D3	71	D27	N4	135	NPCE2	R16	199	S1_DATA12	E13
8	S0_DATA12	D4	72	D14	R4	136	NSDCAS	P16	200	S1_DATA4	B13
9	S0_DATA5	F5	73	D23	T2	137	NPCE1	P15	201	S1_DATA11	C13
10	S0_DATA11	D1	74	D22	T3	138	NCAS0	N14	202	S1_DATA3	D13
11	S0_NVS2	E3	75	D15	T4	139	NCAS1	N15	203	S0_NIOIS16	A13
12	S0_NVS1	E4	76	RVDD5	L10	140	A25	N13	204	S0_DATA10	E12
13	S0_NCD2	G5	77	RVSS5	J9	141	NCAS2	N16	205	S0_DATA2	C12
14	S0_NCD1	E2	78	SDATA_IN	R5	142	A15	M15	206	S0_DATA9	D12
15	GPIO_A3	E1	79	SCLK	P5	143	A18	M14	207	S0_DATA1	E11
16	GPIO_A2	F4	80	SDCLK	T5	144	A8	M16	208	S0_DATA8	B12
17	GPIO_A1	F3	81	SFRM	N5	145	RDY	L14	209	S0_DATA0	A12
18	GPIO_A0	H5	82	TXD	P6	146	A12	L15	210	S0_BVD1	C11
19	TPCLK	F2	83	D11	R6	147	A21	M13	211	S0_A0	D11
20	TPDATA	J5	84	D12	T6	148	A7	M12	212	S0_BVD2	E10
21	MSCLK	F1	85	RXD	N6	149	RVDD10	F9	213	S0_A1	B11
22	MSDATA	G4	86	RVDD6	L11	150	RVSS10	G7	214	S0_NPREG	A11
23	PWM0	G3	87	RVSS6	J10	151	S1_NCD2	L16	215	PVDD	C10
24	PWM1	G2	88	NPWE	M6	152	S1_NCD1	L12	216	RVSS14	J11
25	RVDD1	F6	89	NPIOR	R7	153	S1_NVS2	K15	217	S0_A2	E9
26	RVSS1	K8	90	NCS	P7	154	S1_NVS1	K14	218	S0_A3	B10
27	USB_PLUS	H3	91	PSKTSEL	N7	155	S1_DATA2	L13	219	S0_NWAIT	D10
28	USB_MINUS	G1	92	NPOE	T7	156	S1_DATA9	K16	220	S0_A4	C9
29	D16	H1	93	INT	T8	157	S1_DATA1	K12	221	S0_RESET	A10
30	USB_PWRCNTL	H4	94	NRESET	M7	158	S1_DATA8	K13	222	CVSS3	H11
31	USB_PWR_SENSE	K5	95	NTEST	M8	159	S1_DATA0	J12	223	CVDD3	F7
32	CVDD0	G6	96	CVDD1	K11	160	S1_BVD1	J15	224	S0_A5	A9
33	CVSS0	K9	97	CVSS1	H7	161	S1_A0	J14	225	S0_DATA4	D9
34	D8	H2	98	BAT_FLT	R8	162	CVSS2	G8	226	S0_A6	E8
35	SYS_CLK	J4	99	MBREQ	P8	163	CVDD2	F8	227	S0_A25	B9
36	D17	J1	100	MBGNI	N8	164	S1_BVD2	J16	228	S0_A7	D8
37	D9	J2	101	A23	R9	165	S1_A1	J13	229	S0_A24	A8
38	D0	K4	102	A24	19	166	CEVDD	H15	230	S0_A12	B8
39	D24	J3	103	A0	P9	167	RVSS11	G9	231	S0_A23	D7
40	BIT_CLK	L5	104	A1	N9	168	S1_NPREG	H16	232	S0_A15	C8
41	D25	K3	105	RVDD7	G11	169	S1_A2	H12	233	RVSS15	L9
42	RVDD2	K6	106	RVSS/	H8	170	S1_NWAIT	H14	234	S0_A22	E7
43	RVSS2	K10	107	A2	M9	1/1	S1_A3	H13	235	S0_A16	C7
44	D2	K2	108	A13	R10	1/2	S1_RESET	G13	236	S0_A21	E5
45	STNC	L8	109	A4	P10	173	S1_A4	G14	237	PVDD	B/
46	D10	K1	110	A14	110	174	S1_NIOIS16	G15	238	SU_RDY	E6
47	D1	L4	111	AD CA	IN10	1/5	S1_A5	G12	239	50_A20	A/
48	D26	L3	112	A3	MITU	176	S1_A6	G16	240	SU_INVE	D6
49	D3	L2	113	A20	I 11	1//	S1_RDY	F13	241	S0_A19	C6
50	D18	IVI4	114	A17	RTT	178	S1_A7	F1Z	242	SU_A14	Bb
51	D19	L1	115	A11	P11	179	CEVDD	F15	243	S0_A18	A6
52		LO	110	AIU BV/DD2		180	RV3512	G10 E16	244	SU_A13	05
53	SDATA_OUT	IVI5	117	RVDD8	F11	181	SI_NWE	F16	245	SU_A17	A5
54	KV223	J/	118	KV358	H9	182		F14	246	SU_A8	85
55	D20		119	A19	K12	183	SI_NIOWK	E15	247	RVSS10	K/
57	D12	IVI I NI1	120	M22	11Z	104	SI_AS	C10	248	SU_INIOWK	A4
5/		IN I	121	A0		105		D10	249	SU_A9	D4
58		INZ MO	122	NOUSAG	113	186	SI_NUE	D15	250	SU_NIUKD	0.5
59		NO NO	123	1101310	RIJ D10	10/	SI_DAIA10	C14	201	SU_ATT	04
64	FLL_AVOO	N3 D1	124	A 10	P12	100	SI_AIU	014	252	SU_DATAS	A3 P2
61	D0	P1 D2	125	AS	1112	189	SI_NCE2	016	253	SU_NUE	83
02	D21	۳ <u>۷</u>	120		F10	190	SI_NUET	010	204	30_INCE2	03
63	D20	P3	127	KVDD9	F10	191	SI_DATAT	C14	255	SU_ATU	AT
64	זט	K1	128	KVSS9	H10	192	SI_DAIA7	B16	256	SU_DAIA15	A2

Note: Table 14-1 references abbreviated pin names. To view the entire pin's name, see Table 1-1.

Support, Products, and Documentation

If you need general information or support, call **1-800-628-8686** or visit Intel's website at:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, a product catalog, or other Intel literature may be obtained by calling **1-800-548-4725** or by visiting Intel's website for developers at:

http://developer.intel.com