
Fast emulator
debugs 8085-based
microcomputers
in real time
New module even checks contents
of intelligent peripheral chips
and monitors activity at other
critical circuit locations

by Michael Yaotung Yen,
Intel Corp., Santa Clara, Calif.

108

D Spurred on by the frantic pace of semiconductor
technology, microprocessors are faster than ever, and
peripheral chips are so smart that some of them are more
complex even than the processors they serve. To keep up
with these advances, the lntellec Microcomputer Devel­
opment System has been updated with the ICE-85 in­
circuit emulator.

In-circuit emulation in effect extends the debugging
capabilities of a software development system to the
prototype microcomputer system (see "The ICE module
reviewed," p. 110). By enabling the hardware and the
software to be developed concurrently, the first genera­
tion of such development systems improved significantly
on earlier methods of prototyping microcomputers . But
the high speed of new microprocessors like the 8085 and
the complexity of prototyping with smart peripheral
chips required redesign of the plug-in ICE module. and
the first of this second generation (pictured below) now
allows much more rapid development of systems based
on the 8085 microprocessor.

A series of hardware and software innovations
provides the second-generation ICE-85 module with the
following capabilities:
• Real-time emulation of the operation of the high­
speed 8085 processor.
• User-tailored in-system diagnostics for use on periph­
eral chips.
• Significantly increased logic-analysis capability com­
pared with previous ICE modules .
• Enhanced symbolic debugging.
• Display of the contents of the trace buffer in assem­
bler mnemonics.

The problem of speed

One of the most important features of an ICE is real­
time emulation of the processor, which allows the proto­
type system to operate at its full speed when using ICE.
As the speed of microprocessors increases, this feature
becomes difficult to achieve, primarily because of delays

Electronics I July 21, 1977

in the signal cable. Previous emulators, typified by the
ICE-80 developed for the 8080A, can operate only up to
about a 2-megahertz clock rate, whereas the ICE-85
emulation module can run at the 8085's 3-MHZ rate or
even at higher speeds.

The first-generation ICE is shown in Fig. I. T he ICE
cable plugs into the microprocessor socket in the user's
prototype system, and there is about 6 feet of cable
between it and the emulating microprocessor chip.
Because of the length of this cable, the associated signal
propagation delays to and from the emula ting processor
must be compensated for by a faster cent ral processing
unit in the emulated hardware. The ICE-80 module uses
this technique to accomplish real-time emulation .
However, in the case of high-speed processors such as
the 3-MHz 8085, the propaga tion delays in the
connecting cable are so significant that they can no
longer be compensated for simply by installing a faster
processing unit.

Close to the action

The l(: E-85 module solves this problem by locating
the emulating microprocessor chip on the plug at the end
of the ICE cable, rather than inside the development
system (Fig. 2), and it also has a significant portion of
the emulator circuitry in a nearby cable box built into
the cable assembl y (Fig. 3) . Thus, t ime-critical signa ls to
and from the prototype memory and peripheral circuits
reach the microprocessor chip without traveling through
any cable. Only those signals requiring data multiplexing
will incur a I-foot cable delay to the cable box. However,
since no real-time emulation signals travel on the 5-foot
cable and buffer, these critical delays are essentially
eliminated.

Mounting the microprocessor on the plug provides
another important feature. The clock crystal circuitry of
the 8085 processor chip is sensitive to an external capaci­
tive load, and cable connections should be avoided. Since
the processor chip is mounted on the cable plug, no cable
connection is necessary to these crystal pins, and thus the
IC E-85 module can operate from the crystal in the
prototype system, which aids in checking out that
circuitry. Also in the cable plug assembly is some simple

multiplexing circuitry that directs data flows between
the microprocessor chip, the prototype system, and the
ICE cable box.

Peripheral chips are becoming highly integrated and
also now require ICE-like diagnostic tools . Although an
ICE could be developed for each peripheral chip, such a
move is rather impractical. An ICE is a sophisticated
product, and procurement of multiple development
systems to house multiple ICE modules would be expen­
sive. Also, synchronization of the multiple ICES would be
a difficult task, and controlling several modules from
separate lntellec consoles would be confusing to a good
many designers .

Another problem is the protocol that is used by
peripheral chips to communicate with the ce11tral
processor and which may require multiple input/output
or memory accesses or both. With earlier ICE designs, a
designer had no convenient way of executing the proto­
cols for interrogating and changing the internal status of
peripheral chips. The ICE-85 module, however. extends
its diagnostic capabilities beyond the 8085 processor 'chip
to include coverage of the peripheral chips, allowing
total system diagnostics .

Handling the peripherals

First, ICE-85 software provides a "user macrocom­
mand" capability to cover the processor routine required
to change the peripheral chip's operation mode, change
the chip's data-output ports, read the chip's status, or
read the chip's data-input ports. The user defines this
command routine and furthermore can assign it a
symbolic macroname. Under this name, the macrocom­
mand will be accepted at the ICE console and then
executed in a manner transparent to the execution of the
user development program. ·

This concept of symbolic control of peripheral chips
can be further expanded. Since one macroroutine may be
defined by a designer to access other macroroutines, it is
enough to enter one simple high-level macrocommand at
the console to display the contents of one or more
peripheral chips.

A designer thus can type a simple macrocommand and
cause ICE to interrogate and display the status of the

1. First generation. The ICE-80 module, for development of systems based on the 8080 microprocessor, has the emulating microprocessor

inside the lntellec mainframe and linked to the prototype by 6 feet of caole. But cable delays limit emulation speed.

HOST SYSTEM

EMULATOR

FLOPPY OISK __ ,..

I HOST

CONSOLE

INTELLEC MOS

Electronics/ July 21, 19 77

ICE MODULE

5·FT CABLE

EMULATING
MICROPROCESS
CHIP

LOGIC ·ANALYSIS
TRACE MEMO RY
(44 F RAMESI

CABLE
BUFFER
Cl RCUIT

HT CABLE

(PLUGS INTO THE
MICROPROCESSOR
SOCKET AT 1

PROTOTYPE SYSTEM)

109

The ICE module reviewed
An in-circuit emulator creates a complete microcomputer
development system by operating in conjunction with a
host system generally used for software development. The
ICE module connects to the user's prototype, extending
the host system's capabilities to the hardware prototyping
and software-hardware integration of the microcomputer.
With ICE, the prototype can be debugged through the
development system while it is trying out developmental
programs that may reside either in the host system
memory or in program memory on the prototype board.

The operation of the prototype's microprocessor is
emulated by a similar microprocessor in the emulator. The
module's support circuitry and software add diagnostic
capabilities that would be impractical or impossible to add
to the prototype itself. With an ICE module installed, the
designer can run his developmental program in real time
on the prototype.

An ICE generally operates in three modes: interrogation,
run emulation, and single-step.

The interrogation mode occurs whenever user code is
not being executed. In this mode, the user can investigate
the results of the last operation and prepare the prototype
system for a new operation by:
• Displaying or altering the internal registers, program
counter, and stack pointer of the microprocessor and the
memory locations or input I output ports of the prototype
microcomputer system.
• Specifying an emulation breakpoint for a number of
different conditions, such as memory read, memory write,
instruction fetch, or 1/0 operation at a selected address.
or any access to a user-defined nonexistent memory
space, and examining the condition that causes a break in
emulation at that point .
• Displaying the trace data that a high-speed trace
memory has stored for a number of instruction cycles.
• Displaying the execution time measurement.

The run emulation mode executes the user's program
and traces and compares information about each instruc­
tion. When a break condition is encountered or a time-out
condition is met, emulation stops, and ICE returns to the
interrogation mode.

The single-step mode runs the user's program and
traces and compares information, but does so one cycle

HOST SYSTEM

at a time. The emulated processor no longer runs at full
speed; however, the emulator can gather much more
detailed information about the program flow in this mode.

In-circuit emulation also allows the user to assign the
development system resources to his prototype system.
That is, he can use the random-access memory and 110
capabilities resident in the development system as though
they were local memory and 1/0 in his prototype system.
This feature allows the user to run his program in his
prototype system, even before his prototype memory is
built. In addition, it saves development time spent in
temporary programming of a programmable ROM.

The host development system uses ICE software to load
the object code of the user's program from an external
mass-storage medium, such as a floppy disk, into either ,
the development system memory or the user's prototype
system RAM. The code is executed, debugged, and then
returned to the development system's mass-storage
device for later debugging sessions, PROM programming,
or generation of ROM bit-patterns.

The memory emulation and program load/save capabil­
ities allow the user to start running and debugging his
prototype at the earliest stage of the hardware develop­
ment cycle. As a result, design errors are quickly located
and corrected, both hardware and software are debugged
concurrently on the same prototype system, and the task
of integrating hardware and software as a complete
system is thus simplified.

The emulator also does extensive self-diagnostics.
During a run emulation, it checks for the absence of
clocks, and it verifies data written to user memory (by
reading it back after writing). Errors detected will cause a
disruption in the operation, followed by the output of the
corresponding error message to the user.

Although ICE offers many valuable features. the
physical connection from ICE to the user prototype system
remains very simple-one cable plug to the micropro­
cessor socket in the prototype system. No temporary
jumpers, trace cuts, or circuit modifications are required to
run the prototype system with ICE. This simple interface
connection serves as a significant attraction to the design
engineer looking for a highly efficient as well as convenient
developmental debugging tool.

ICE MODULE

r----------- ------------ ~LiL~~ --\

FLOPPY
DISK

CONSOLE

HOST

I
I
I
'--------

I LOGIC· (24)
I ANALYSIS CHAN NELS

TRACE

EMULATOR MICROPROCESSOR I
CHIP I

CABLE-l-- CABLE
BOX 1 PLUG __________________)

(PLUGS INTO THE
MICROPROCESSOR
SOCKET AT
PR OTO TYPE SYSTEM)

I MEMORY (18)
I (1 ,023 FRAMES) CHANNELS +-------------4 BUFFER t--- ---.. PROBES OR DIP

CLIP ONTO ANY
IC PACKAGE IN
PROTOTYPE INTELLEC MOS

2. The ICE-85 module. The in-circuit emulator for the 8085 microprocessor has the emulating microprocessor mounted directly on the cable

plug, which is inserted in the prototype. This eliminates signal delays in the cable. I>. DIP clip holds 18 leads for extra debugging capability.

110 Electronics/ July 21, 19 77

entire prototype system, giving information on the:
• Current instruction address.
• Current instruction.
• Data transferred during the instruction cycle.
• Current operation mode of all peripheral chips.
• Current contents of internal registers on all peripheral
chips.

Further, when ICE is operated in a single-step mode,
the designer can see how the peripheral chips change
their internal status at the execution of each instruction.
ln this manner, he can quickly verify the peripheral
control routines in his program.

In addition to its on-line trace memory for logic-state
analysis of the 8085, ICE-85 also has an external trace
module with 18 probes. The data captured by the probes
synchronously with the clock can be used to break
emulation under conditions specified by the user. These
probes may either be used individually or be connected
to a dual in-line package clip, which can be moved
around the system to clip onto any integrated-circuit
package. This feature allows ICE to monitor those signals
that are of interest but not accessible through the user
program alone.

As an example of the ICE-85 module's peripheral
control, consider the 8253 programmable-interval-timer
chip, one of the peripheral chips that may be used with
the 8085 microprocessor. It consists of three indepen­
dent, general-purpose, multimode 16-bit timers. Writing
a control word to the chip selects one of the three timers
in the chip and selects one of the six possible modes in
which the timer may operate . After a control word is
written to select an operation mode, a consecutive two­
byte write operation specifies the initial count of the 16-
bit timer. In such cases, the designer will want to know if

Electronics/ July 21, 1977

3. Plug in. The ICE-85
module has its emulating
microprocessor mounted
on the cable plug. and 18
trace probes can pick up
other signals directly from
the prototype circuitry.

the initial count is correctly set and will want to verify
and reference the timer operation during his program's
execution.

With the ICE-85 software, the design engineer can
define macroroutines to control the timer. For example,
he may symbolically initialize the timer, with a simple
macrocommand, such as " :WTIMERO 32168". ICE then
executes the macroroutine called WTIMERO, which
initializes the 16-bit content of timer zero in the periph­
eral chip to be 32, 168. He then directs the ICE to execute
a segment of the development program until it
encounters a breakpoint. At that point he may interro­
gate the current contents of timer zero by the simple
command: "RTIMERo," which reads and displays the
current content of the timer.

It should be noted that since the execution of periph­
eral routines is transparent to the execution of the user
developmental program, the user program can resume
execution after a break as if these routines were not
inserted. Also note that control of the peripheral activity
includes the transistor-transistor-logic circuits surround­
ing the processor in addition to the complex peripheral
chips. Thus, the designer can obtain a total picture of his
system's operation .

Logic analysis

The ICE-85 module combines in-circuit emulation
with an enhanced logic state analysis. The earlier ICE-
80 module has an on-line trace memory of 44 32-bit
words. Figure 4 shows ICE-85's 1,024-word on-line trace
memory, where each word, or frame, is 42 bits, or
channels, wide.

Of the 42 channels of memory, 24 channels are
assigned to the 8085 processor signals (such as 8 bits for

111

FRAME 0

WHICH HALF OF CYCLE
TWO STATUS BITS, 1/0 0 R MEMORY MODE

READ , WRITE

FRAME N DMUX = 0 so. 10/M RD, MATCH ON
Sl, WR FRAME N- 1

FRAME N + 1 OMUX = 1 so. 10/M RD , MATCH ON
Sl , WR FRAME N

BREAKPOINT MATCH
HIGH-ORDER ADDRESS

HIGH LOW
ADDA ADDA

HIGH
DATA ADDA

42 BITS

LOW-ORDER ADDRESS

SID/
SOD

SID/
SOD

SERIAL INPUT
AND OUTPUT DATA

18 CHANNELS FROM
EXTERNAL TRACE MODULE

18 CHANNELS FROM
EXTERNAL TRACE MODULE

18

2 FRAMES PER CYCLE,
51 I-CYCLE CAPACITY

FRAME> 022 r~------- J
4. Trace memory. For logic analysis, the ICE-85 trace memory holds 1,023 frames of 42 bits each. Since the 8085 works on the basis of two

trames per cycle, with low-order addresses and data multiplexed in alternate frames. the memory can store up to 511 machine cycles.

high-order addresses, 8 bits for either data or low-order
addresses, and I bit for each of various functions such as
status, read, and write and for serial data input and
output) while the remaining 18 channels sample data
from the external trace probes. The user can specify the
grouping and formatting of trace data displays. This
feature gives an in-depth and total picture of how an
8085-based prototype system operates.

In addition, there are two 42-bit breakpoint registers,
plus two 42-bit clock qualifier registers that set up
conditions for ending and advancing a trace operation.
In the breakpoint and qualifier registers, each bit can be
set, from the console, as either 0, I, or "don't care."
Thus, with 42 bits, a wide variety of conditions from the
8085 program and any other chip in the prototype can be
used to perform breakpointing and tracing.

Symbolic debugging and mnemonics

Symbolic debugging was introduced in the ICE-80
software package, and it is also incorporated in an
enhanced form in I CE-85 software. It allows the user to
make symbolic references to the instruction and data
addresses in his program. As the following example
indicates, this feature greatly facilitates the use of relo­
catable object modules of code by the user during the
program development cycle. Users need not be
concerned about address changes during each reas­
sembly and corresponding linkage of code modules. They
need only reference symbolic labels initially attached to
instructions in programming source code.

On the basis of the processor's address and data

112

signals captured in trace memory, ICE-85 converts the
operation codes of the executed instructions back to
assembler mnemonics for display. This feature allows
the designer to verify the actual instructions, in compar­
ison with the assembly listing of his program.

To illustrate these points, the symbolic labels in the
ICE commands make it easy to reference the instruction
addresses in a development program. Without this
feature, the designer would have to keep continual track
of absolute addresses of subroutines as they change
during the design process when new instructions are
inserted . For example, a single command statement "GO
FROM .LABEL I TILL .LABEL2 EXECUTED" will cause the ICE

to do all the following tasks:
• Set the program counter of the microprocessor to the
absolute address symbolically labeled as LABELI.

• Set a hardware breakpoint register to be the absolute
address symbolically denoted as LABEL2.

• Run the processor in real time.
When the instruction at LABEL2 is executed, ICE will stop
the processor, display a breakpoint message to the user,
and return to the interrogation mode.

To sum up, the IC E-85 module can quickly debug
systems built around the 8085 microprocessor. In the
world of increasing peripheral-chip complexity, it
reaches into the user's entire prototype system, providing
active control and interrogation of the internal registers
of the peripheral chips. Finally, with the 18 external
probes, it allows monitoring and breakpointing capabili­
ties to be extended to the IC external pin signals observed
in the user's prototype system. 0

Electronics/ July 21, 1977

