ASSP MANUAL

SCSI-II PROTOCOL CONTROLLER

MB86604A/MB86604L DESIGN MANUAL

MB86604A/MB86604L SCSI-II PROTOCOL CONTROLLER DESIGN MANUAL

- 1. The products described in this manual and the specifications thereof may be changed without prior notice. To obtain up-to-date information and/or specifications, contact your Fujitsu sales representative or Fujitsu authorized dealer.
- 2. Fujitsu will not be liable for infringement of copyright, industrial property right, or other rights of a third party caused by the use of information or drawings described in this manual.
- 3. The contents of this manual may not be transferred or copied without the express permission of Fujitsu.
- 4. The products contained in this document are not internded for use with equipments which require extermely high reliability such as aerospace equipmenta, undersea repeaters, nuclear control systems or medical equipments for life support.
- 5. Some of the products described in this manual may be strategic materials (or special technology) as defined by the Foreign Exchange and Foreign Trade Control Law. In such cases, the products or portions thereof must not be exported without permission as defined under the Law.

^{© 1996} FUJITSU LIMITED Printed in Japan

Contents

CHAPTER 1 OVERVIEW	
1.1 SCSI PROTOCOL CONTROLLER FEATURES	2
1.2 BLOCK CONFIGURATION	4
1.3 BLOCK DIAGRAM	6
CHAPTER 2 INPUT/OUTPUT PINS	7
2.1 MB86604A PIN ASSIGNMENT	8
2.2 MB86604L PIN ASSIGNMENT	
2.3 EXPLANATION OF PIN FUNCTIONS (SCSI INTERFACE)	
2.4 EXPLANATION OF PIN FUNCTIONS (MPU INTERFACE)	
2.5 EXPLANATION OF PIN FUNCTIONS (DMA INTERFACE)	14
2.6 EXPLANATION OF PIN FUNCTIONS (CONTROL SIGNAL)	
CHAPTER 3 FUNCTIONS	
3.1 INTERNAL REGISTERS	
3.2 BASIC CONTROL REGISTER	
3.2.1 Output Data Register (Write)	
3.2.2 Input Data Register (Read)	
3.2.3 Direct Control Register (WRITE)	
3.2.4 SPC Status Register (READ)	
3.2.5 Nexus Status Register (READ)	
3.2.6 SEL/RESEL ID Register (WRITE)	
3.2.7 Interrupt Status Register (READ)	
3.2.8 Command Register (WRITE)	
3.2.9 Command Step Register (READ)	
3.2.10 Data Block Register (READ/WRITE)	
3.2.11 Data Byte/MC Byte Register (READ/WRITE) 3.2.12 DIAGNOSTIC Control Register (WRITE)	
3.2.12 DIAGNOSTIC Control Register (WRITE)	
3.2.13 SCSI Control Signal Status Register (READ)	
3.2.15 Transfer Period Register (READ/WRITE)	
3.2.16 Transfer Offset Register (READ/WRITE)	
3.2.17 Window Address Register (WRITE)	
3.2.17 Window Address Register (WRITE)	
3.2.19 BASIC Control Register Access	
3.3 INITIAL SETTING REGISTER WINDOW	
3.3.1 Clock Conversion Setting Register (WRITE/READ)	
3.3.2 Self ID Setting Register (WRITE/READ)	50
3.3.3 Response Mode Setting Register (READ/WRITE)	
3.3.3.1 BIT 7 (Reselection Response)	
3.3.3.2 BIT 6 (Selection Response)	
3.3.3.3 BIT 5 (Automatic Receive Mode)	
3.3.3.4 BIT 4 (Operation for Data Phase Parity Error)	
3.3.3.5 BIT 1 (Single Initiator Option)	
3.3.3.6 BIT 0 (Arbitration)	
3.3.4 SEL/RESEL Mode Setting Register (WRITE/READ)	
3.3.4.1 Initiator Automatic Reselection Response	
3.3.4.2 Target Automatic Selection Response	
3.3.5 SEL/RESEL Retry Setting Register (READ/WRITE)	
3.3.6 SEL/RESEL Timeout Setting Register (WRITE/READ)	
3.3.7 REQ/ACK Timeout Setting Register (WRITE/READ)	
3.3.8 Asynchronous Setup Time Setting Register (WRITE/READ)	
3.3.9 Parity Error Detect Setting Register (WRITE/READ)	
3.3.10 Interrupt Enable Setting Register (WRITE/READ)	
3.3.11 Group 6/7 Command Length Setting Register (WRITE/READ)	
3.3.12 DMA System Setting Register (WRITE/READ)	

	Automatic Operation Mode Setting Register (WRITE/READ)	
3.3.14	SPC Timeout Setting Register (WRITE/READ)	86
	5 Revision Indication Register (WRITE/READ)	
	S BUFFER WINDOW	
3.5 US	ER PROGRAM MEMORY WINDOW	90
3.6 SC	AM REGISTER WINDOW	92
3.6.1	SCAM REGISTER93	
CHAPTE	R 4 COMMANDS 95	
	C COMMANDS	96
	T OF INITIATOR COMMANDS	
	List of Initiator Sequential Command Functions	
	List of Initiator Discrete Command Functions	
	T OF TARGET COMMANDS	
4.3.1		
	List of Target Discrete Command Functions	106
	T OF COMMON COMMANDS	
4.4 LIS	List of Common Command Functions	
	Common Command Step Codes	
	OGRAMMABLE COMMANDS	
4.5.1		
4.5.2	TEST AND Command	
4.5.3	COMPARE Command	-
4.5.4	Conditional Branch Command	
4.5.5	MOVE Command	
4.5.6	STOP Command	
4.5.7		
	R 5 OPERATIONS	
5.1 SP	C INITIALIZATION	122
5.2 INI	TIAL SETTINGS FOR SPC INTERNAL REGISTERS	124
5.3 SC	SI BUS PHASE	128
5.3.1	Message, Command, and Status Phases	130
5.3	1.1 Send Flowchart for Message, Command, Status Phases	131
	1.2 Receive Flowchart for Message, Command, Status Phases	
	Data Phase	
	2.1 Send Flowchart for Program Transfer Mode	
	2.2 Receive Flowchart for Program Transfer Mode	
	ER PROGRAM OPERATION (INITIATOR)	
5.4.1		
5.4.2		
5.4.3		
	ER PROGRAM OPERATION (TARGET USER PROGRAMMING EXAMPLE)	
5.5.1	Explanation of Target User Programming Example 1 (Address 00H to 21H)	
	a Explanation of Target User Programming Example 1 (Address 22H to 4BH)	
	Explanation of Target User Programming Example 2 (Address 00H to 8FH)	
	Explanation of Target User Programming Example 1 (Address 50H to BFH)	
	ERRUPT CODES	
5.7.1	Interrupts Related to SCSI RESET	
5.7.2	Interrupts Related to Transfers	
5.7.3	Interrupts Related to Phase Transitions	
5.7.4	Interrupts Related to REPORT	
5.7.5	Interrupts Related to Selection/Reselection	162
5.7.6	Interrupts Related to Automatic Selection/Reselection Response	
	ERRUPT CODES AND COMMAND STEPS	
	C OPERATION DURING ERROR DETECTION	
5.9.1	When an Offset Error is Detected	
5.9.2	When a Short Transfer Period Error is Detected	
5.9.3	When a SCSI Parity Error is Detected	
0.9.0		174

5.9.4 When a MPU Parity Error is Detected	
5.9.5 When a DMA Parity Error is Detected	178
5.9.6 Terminate Procedure	
5.10 DIAGNOSIS MODE	
5.10.1 SCSI Control Signals	
5.10.2 SCSI Data Bus Signal	
5.11 SCAM FUNCTION (only for MB86604L)	
CHAPTER 6 SYSTEM CONFIGURATION EXAMPLE	
6.1 TP SIGNAL CONTROL	
6.2 DMA MISALIGNMENT PROCESSING	
6.3 SYSTEM CONFIGURATION EXAMPLE 1 (80 SERIES, SEPARATE BUS TYPE)	
6.4 SYSTEM CONFIGURATION EXAMPLE 2 (68 SERIES, SEPARATE BUS TYPE)	
6.5 SYSTEM CONFIGURATION EXAMPLE 3 (80 SERIES, COMMON BUS TYPE)	
6.6 SYSTEM CONFIGURATION EXAMPLE 4 (68 SERIES, COMMON BUS TYPE)	
APPENDIX	
APPENDIX A PACKAGE DIMENSIONS	
APPENDIX B PARITY CHECK AND PARITY GENERATE FLOWS	
APPENDIX C INITIATOR COMMAND STEP CODES	
APPENDIX D TARGET COMMAND STEP CODES	
APPENDIX E FLOWCHART FOR INITIATOR USER PROGRAM EXAMPLES	
APPENDIX F FLOWCHART FOR TARGET USER PROGRAM EXAMPLES	
APPENDIX G LIST OF INTERRUPT CODES AND COMMANDS	
G.1 Initiator Commands	
G.2 Target Commands	
G.3 Common Commands	
G.4 Automatic Selection/Reselection Response	248

Figures

Figure 1.1a Package Drawing	3
Figure 1.1b Package Drawing	3
Figure 1.3 Block Diagram	6
Figure 2.1 MB86604A Pin Assignment Diagram	8
Figure 2.2 MB86604L Pin Assignment Diagram	. 10
Figure 3.1 Internal Flow of Information	
Figure 3.2.3 Transfer Flowchart (Direct Control Register: BIT 7)	
Figure 3.2.8 Relationship between Command Register (BIT 7 = 1) and User Program Memory	
Figure 3.3.4.1 Initiator Automatic Reselection Response Flowchart	
Figure 3.3.4.2a Target Automatic Selection Response Flowchart	. 66
Figure 3.3.4.2b Target Automatic Selection Response Sequence (Step Code Chart)	. 67
Figure 5.2 Initial Setting Flow After Hardware Reset or Software Reset	
Figure 5.3.1.1 Send Flowchart for Message, Command, Status Phases	
Figure 5.3.1.2 Receive Flowchart for Message, Command, Status Phases	
Figure 5.3.2.1 Send Flowchart for Program Transfer Mode	
Figure 5.3.2.2 Receive Flowchart for Program Transfer Mode	135
Figure 5.4 Summary Flowchart of Initiator User Programming Example	
Figure 5.5 Summary Flowchart of Target User Programming Example	
Figure 5.6a System Configuration (Example of Command Queuing Execution)	152
Figure 5.6b Allocation of Command Queuing Region	
Figure 5.6c Command Queuing Operation Sequence	
Figure 5.10 Diagnosis Mode Execution	
Figure 5.10.1 Flow of SCSI Control Signals During Diagnosis Mode	
Figure 5.10.2a Sending Messages, Commands, and Statuses in Diagnosis Mode	
Figure 5.10.2b Receiving Messages, Commands, and Statuses in Diagnosis Mode	184
Figure 5.10.2c Sending Data in Diagnosis Mode	
Figure 5.10.2d Receiving Data in Diagnosis Mode	
Figure 6.1 Flowchart for TP Signal Control Example	
Figure 6.2 DMA Misalignment Processing Example	189
Figure 6.3 System Configuration Example 1 (80 Series, Separate Bus Type)	190
Figure 6.4 System Configuration Example 2 (68 Series, Separate Bus Type)	
Figure 6.5 System Configuration Example 3 (80 Series, Common Bus Type)	
Figure 6.6 System Configuration Example 4 (68 Series, Common Bus Type)	193

lables

Table 2.1 List of MB86604A Pins	
Table 2.2 List of MB86604L Pins	11
Table 2.3 SCSI Interface Pins	
Table 2.4 MPU Interface Pins	13
Table 2.5 DMA Interface Pins	
Table 2.6 Control Signal Pins	
Table 3.1a Internal Register Access (80 Series Mode)	18
Table 3.1b Internal Register Access (68 Series Mode)	
Table 3.1c Relationship between Information Types and Registers	19
Table 3.2 BASIC Control Register List	20
Table 3.2.15 Relationship between Transfer Period Register and REQ/ACK Signal Minimum	
Repetition Time	43
Table 3.2.16 Relationship between Transfer Offset Register and Maximum Offset Value for	
REQ/ACK Signals	
Table 3.3 List of Initial Setting Register Window Registers	
Table 3.3.1 Relationship between Clock Conversion Setting Register Bit Setting and input Frequency	
Table 3.3.4.1 Initiator Automatic Reselection Response Sequence (Step Code Chart)	
Table 3.3.4.2 Target Automatic Selection Response Sequence (Step Code Chart)	
Table 3.3.5 Relationship between SEL/RESEL Retry Setting Register and Number of Retries	
Table 3.3.10 Relationship between Interrupt Enable Setting Register and Interrupt Codes	
Table 3.3.11 List of Bit Setting for Group 6/7 Command Length Setting Register (Group 6)	
Table 3.3.12 List of Bit Setting for Group 6/7 Command Length Setting Register (Group 7)	79
Table 3.4 MCS Buffer Window Buffer List	88
Table 3.5 User Program Memory Window Memory Area List	
Table 4.1 List of Command Types Based on Assignment Method Differences	96
Table 4.2 List of Initiator Commands	97
Table 4.2.1 List of Initiator Sequential Command Functions	98
Table 4.2.2 List of Initiator Discrete Command Function	
Table 4.3 List of Target Commands	102
Table 4.3.1 List of Target Sequential Command Functions	104
Table 4.3.2 List of Target Discrete Command Functions	106
Table 4.4 List of Common Commands	107
Table 4.4.1 List of Common Command Functions	108
Table 4.5 List of Programmable Command Filed Assignments	112
Table 4.5.1 Relationship between AND Command Bit Settings (BIT 10 to 8)	
and the Values Used in the Logical Product Calculation	114
Table 4.5.2 Relationship between TEST AND Command Bit Settings (BIT 10 to 8)	
and the Values Used in the Logical Product Calculation	115
Table 4.5.3 Relationship between COMPARE Command Bit Settings (BIT 10 to 8) and the Values Used	
in the Comparison Calculation	116
Table 4.5.5 Relationship between MOVE Command Bit Settings (BIT 10 to 8) and the Values Subject to	
the MOVE Operation	118
Table 5.2a Internal Register State After Hardware Reset or Software Reset(BASIC Control Register)	124
Table 5.2b Internal Register State After Hardware Reset or Software Reset (Initial Setting Registers)	125
Table 5.4.1 Explanation of Initiator User Programming Example (Address 00H to 34H)	
Table 5.4.2 Explanation of Initiator User Programming Example (Address 40H to E0H)	
Table 5.4.3 Explanation of Initiator User Programming Example (Address 00H to 70H)	
Table 5.5.1 Explanation of Initiator User Programming Example 1(Address 00H to 21H)	
Table 5.5.2a Explanation of Initiator User Programming Example 1 (Address 22H to 4BH)	
Table 5.5.2b Explanation of Initiator User Programming Example 2 (Address 00H to 8FH)	
Table 5.5.3 Explanation of Target User Programming Example 1 (Address 50H to BFH)	
Table 5.7 List of Interrupt Codes	
Table 5.7.1 List of Interrupts Related to SCSI RESET	
Table 5.7.2 List of Interrupts Related to Transfers	

1 able 5.7.3	List of interrupts Related to Phase Transitions	
Table 5.7.4	List of Interrupts Related to REPORT	
Table 5.7.5	List of Interrupts Related to Selection/Reselection	
Table 5.7.6	List of Interrupts Related to Automatic Selection/Reselection Response	
Table 5.9.1a	SPC Operation When an Offset Error is Detected (Initiator)	170
Table 5.9.1b	SPC Operation When an Offset Error is Detected (Target)	170
Table 5.9.2a	SPC Operation When a Short Transfer Period Error is Detected (Initiator)	172
Table 5.9.2b	SPC Operation When a Short Transfer Period Error is Detected (Target)	172
Table 5.9.3a	SPC Operation When a SCSI Parity Error is Detected (Initiator)	175
Table 5.9.3b	SPC Operation When a SCSI Parity Error is Detected (Target)	175
Table 5.9.4a	SPC Operation When a MPU Parity Error is Detected (Initiator)	176
Table 5.9.4b	SPC Operation When a MPU Parity Error is Detected (Target)	
Table 5.9.5a	SPC Operation When a DMA Parity Error is Detected (Initiator)	
Table 5.9.5b	SPC Operation When a DMA Parity Error is Detected (Target)	178

CHAPIER 1 OVERVIEW

This chapter describes SPC functional features and SPC block configuration.

- 1.1 SCSI PROTOCOL CONTROLLER FEATURES
- 1.2 BLOCK CONFIGURATION4
- 1.3 BLOCK DIAGRAM

1.1 SCSI PROTOCOL CONTROLLER FEATURES

The MB86604A/MB86604L are SCSI protocol controllers (below, SPC) based on the ANSI (SCSI-2) standard. By internalizing a sequence control function for the bus phases, the host MPU burden is diminished.

High-speed synchronous transfer is supported. Also, macro-commands which combine multiple commands can be defined in the SPC.

Features

SPC have the following features.

- (1) SCSI Specifications
 - Operation as an initiator or target.
 - Transfers two data types.

Synchronous transfer: Maximum 10 MB/second, offset value of 1 to 32 bytes can be set.

Asynchronous transfer: Maximum 5 MB/second.

- Supports programmable commands (internal program memory size: 256 bytes).
- Contains 32-byte FIFO for data phases.
- Transfer block number can be set up to 64 K and transfer block length to 16 MB.
- Contains two 32-byte memory-type data buffers (send, receive) for message, command, and status phases.
- Supports two Automatic information receive modes.

Initiator: Receives information about new target transition phase without issuing command.

Target: Receives information for attention condition produced by initiator without issuing command.

• Supports two Automatic selection/reselection response modes.

Initiator: Operation up to receiving message without issuing command.

Target: Operation up to receiving command without issuing command.

- Specifies transfer parameter by ID (connected device).
- Contains 48 mA single-ended driver/receiver.

Tri-state buffers for the REQ, ACK, DB0 to DB7, DBP, MSG, C/D, I/O, and ATN pins.

- On-chip SCAM registers for SCAM Level-1 protocol (only for MB86604L)
- (2) System Specifications
- a. Supports separate 16-bit MPU bus and DMA bus.
- b. Direct connection with 68 series/80 series MPU.
- c. Supports two types of transfers.
 - Program transfers
 - DMA transfers (Handshake/burst mode)

Figure 1.1a shows a drawing of the SPC packages. See Appendix A for detailed outer dimensions of SPC packages.

Plastic QFP, 100 pins

MB86604A

Figure 1.1a Package Drawing

Plastic SQFP, 100 pins MB86604L

Figure 1.1b Package Drawing

1.2 BLOCK CONFIGURATION

The SPC consists of the following nine blocks.

- Internal processor
- Timer

- Receive message, command, status buffer
- Send message, command, status buffer

Command user program memory

- Phase control
- Transfer control
- Data register

Registers

Block Configuration

The SPC consists of the following nine blocks.

(1) Internal processor

Internal processor for sequence control among the bus phases. The max. operating clock frequency is 20 MHz.

(2) Timer

Manages SCSI time conditions.

Performs other time management as follows.

- Time until REQ/ACK signals are asserted for data in asynchronous transfers.
- Time until selection/reselection are retried.
- Selection/reselection timeout time.
- REQ/ACK timeout time during transfers.

Asynchronous (target):After REQ signal is asserted, time until initiator asserts ACK signal.

Asynchronous (initiator): After ACK signal is asserted, time until target negates REQ signal.

Synchronous (target only):After REQ signal is sent, time until ACK signal which defines offset at 0 is received from initiator.

• SPC Timeout Timer: Indicates that SPC has been in busy for a time longer than time specified.

(3) Phase control

Controls SCSI arbitration, selection/reselection, data in/out, command, status, and message in/ out phases.

(4) Transfer control

Controls SCSI information (data, command, status, message) transfer phases.

There are two types of transfer phase controls.

Asynchronous: Interlock control of REQ signal and ACK signal.

Synchronous: Control by offset value up to 32-byte maximum in data in/out phase.

There are also two data transfer modes.

Program transfer: Data register transfer via MPU interface.

DMA transfer: Transfer using DREQ and DACK signals via DMA interface.

Transfer parameters in synchronous transfers (minimum repeat cycle for sending REQ or ACK from SPC during transfer mode and synchronous transfer, maximum offset value) can be saved by ID and automatically set at the begiinning of data phase.

The number of transfer bytes is defined by the block length and number of blocks.

(5) Registers

The main registers are listed below.

Command register: Commands are defined by 8-bit code. For user program operation, specify the head address of the program allocated to user program memory.

Nexus status register: Show chip operation state, nexus destination ID, and data register state.

SCSI control signal status register: Shows SCSI control signal state.

Interruptstatus register: Describes interrupt state with 8-bit code.

Command step register: Describes command execution state with 8-bit code. Cause of errors can be analyzed by reference to the interrupt status register and this command step register.

Group 6/7 command length define register: Sets the command length for group 6/7 which are undefiend by the SCSI standard. Once this register is set, the command length for group 6/7 can be determined.

(6) Message, command, status receive buffer (Receive MCS buffer)

Receive information buffer. Stores message, command, and status information received by SCSI (32 bytes).

(7) Message, command, status send buffer (Send MCS buffer)

Send information bufffer. Stores message, command, and status information sent by SCSI (32 bytes).

(8) User prgram memory

Program memory for setting programmable commands (256 bytes).

(9) Data register

FIFO data register for storing data phase data (32 bytes).

1.3 BLOCK DIAGRAM

Block diagram for the MB86604A/MB86604L is shown in Figures 1.3.

Block Diagram

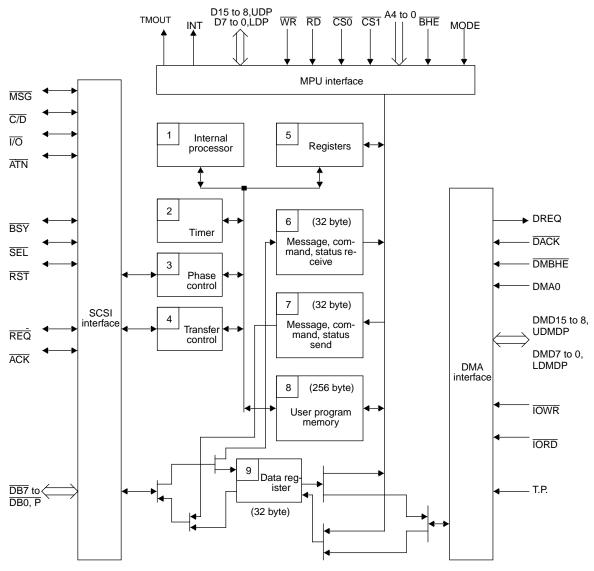


Figure 1.3 Block Diagram

CHAPTER 2 INPUT/OUTPUT PINS

This chapter describes the pin assignments for each SPC package and the functions of each pin.

- 2.1 MB86604A PIN ASSIGNMENT
- 2.2 MB86604L PIN ASSIGNMENT
- 2.3 EXPLANATION OF PIN FUNCTIONS (SCSI INTERFACE)
- 2.4 EXPLANATION OF PIN FUNCTIONS (MPU INTERFACE)
- 2.5 EXPLANATION OF PIN FUNCTIONS (DMA INTERFACE)
- 2.6 EXPLANATION OF PIN FUNCTIONS (CONTROL SIGNAL)

2.1 MB86604A PIN ASSIGNMENT

Figure 2.1 shows the MB86604A pin assignment.

Also, Table 2.1 provides a list of MB86604A pins.

MB86604A Pin Assignment

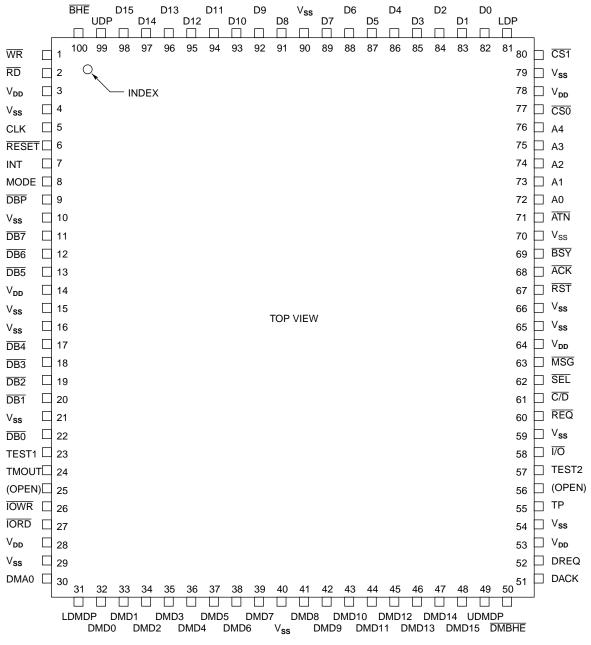


Figure 2.1 MB86604A Pin Assignment Diagram

No.	I/O	Pin name	No.	I/O	Pin name	No.	I/O	Pin name	No.	I/O	Pin name
1	I	WR	26	I	IOWR	51	I	DACK	76	I	A4
2	I	RD	27	I	IORD	52	0	DREQ	77	I	CS0
3	Power supply	Vdd	28	Power supply	Vdd	53	Power supply	Vdd	78	Power supply	Vdd
4	Ground	Vss	29	Ground	Vss	54	Ground	Vss	79	Ground	Vss
5	I	CLK	30	I	DMA0	55	I	TP	80	I	CS1
6	I	RESET	31	I/O	LDMDP	56		(OPEN)	81	I/O	LDP
7	0	INT	32	I/O	DMD0	57		TEST2	82	I/O	D0
8	I	MODE	33	I/O	DMD1	58	I/O	I/O	83	I/O	D1
9	I/O	DBP	34	I/O	DMD2	59	Ground	Vss	84	I/O	D2
10	Ground	Vss	35	I/O	DMD3	60	I/O	REQ	85	I/O	D3
11	I/O	DB7	36	I/O	DMD4	61	I/O	C/D	86	I/O	D4
12	I/O	DB6	37	I/O	DMD5	62	I/O	SEL	87	I/O	D5
13	I/O	DB5	38	I/O	DMD6	63	I/O	MSG	88	I/O	D6
14	Power supply	Vdd	39	I/O	DMD7	64	Power supply	Vdd	89	I/O	D7
15	Ground	Vss	40	Groud	Vss	65	Ground	Vss	90	Groud	Vss
16	Ground	Vss	41	I/O	DMD8	66	Ground	Vss	91	I/O	D8
17	I/O	DB4	42	I/O	DMD9	67	I/O	RST	92	I/O	D9
18	I/O	DB3	43	I/O	DMD10	68	I/O	ACK	93	I/O	D10
19	I/O	DB2	44	I/O	DMD11	69	I/O	BSY	94	I/O	D11
20	I/O	DB1	45	I/O	DMD12	70	Ground	Vss	95	I/O	D12
21	Power supply	Vss	46	I/O	DMD13	71	I/O	ĀTN	96	I/O	D13
22	I/O	DB0	47	I/O	DMD14	72	I	A0	97	I/O	D14
23	I	TEST1	48	I/O	DMD15	73	I	A1	98	I/O	D15
24	0	TMOUT	49	I/O	UDMDP	74	I	A2	99	I/O	UDP
25		(OPEN)	50	I	DMBHE	75	I	A3	10 0	I	BHE

Table 2.1 List of MB86604A Pins

2.2 MB86604L PIN ASSIGNMENT

Figure 2.2 shows the MB86604L pin assignment.

Also, Table 2.2 provides a list of MB86604L pins.

MB86604L Pin Assignment

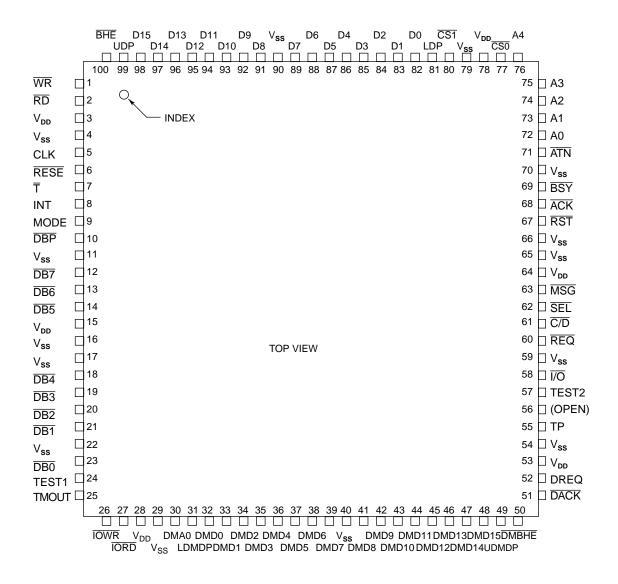


Figure 2.2 MB86604L Pin Assignment Diagram

No.	I/O	Pin name	No.	I/O	Pin name	No.	I/O	Pin name	No.	I/O	Pin name
1	I	WR	26	I	IOWR	51	I	DACK	76	I	A4
2	I	RD	27	I	IORD	52	0	DREQ	77	I	CS0
3	Power supply	Vdd	28	Power supply	Vdd	53	Power supply	Vdd	78	Power supply	Vdd
4	Power supply	Vss	29	Power supply	Vss	54	Power supply	Vss	79	Power supply	Vss
5	Ι	CLK	30	Ι	DMA0	55	Ι	TP	80	Ι	CS1
6	I	RESET	31	I/O	LDMDP	56		(OPEN)	81	I/O	LDP
7	0	INT	32	I/O	DMD0	57		TEST2	82	I/O	D0
8	Ι	MODE	33	I/O	DMD1	58	I/O	Ī/O	83	I/O	D1
9	I/O	DBP	34	I/O	DMD2	59	Power supply	Vss	84	I/O	D2
10	Power supply	Vss	35	I/O	DMD3	60	I/O	REQ	85	I/O	D3
11	I/O	DB7	36	I/O	DMD4	61	I/O	C/D	86	I/O	D4
12	I/O	DB6	37	I/O	DMD5	62	I/O	SEL	87	I/O	D5
13	I/O	DB5	38	I/O	DMD6	63	I/O	MSG	88	I/O	D6
14	Power supply	Vdd	39	I/O	DMD7	64	Power supply	Vdd	89	I/O	D7
15	Power supply	Vss	40	Power supply	Vss	65	Power supply	Vss	90	Power supply	Vss
16	Power supply	Vss	41	I/O	DMD8	66	Power supply	Vss	91	I/O	D8
17	I/O	DB4	42	I/O	DMD9	67	I/O	RST	92	I/O	D9
18	I/O	DB3	43	I/O	DMD10	68	I/O	ACK	93	I/O	D10
19	I/O	DB2	44	I/O	DMD11	69	I/O	BSY	94	I/O	D11
20	I/O	DB1	45	I/O	DMD12	70	Power supply	Vss	95	I/O	D12
21	Power supply	Vss	46	I/O	DMD13	71	I/O	ATN	96	I/O	D13
22	I/O	DB0	47	I/O	DMD14	72	I	A0	97	I/O	D14
23	I	TEST1	48	I/O	DMD15	73	I	A1	98	I/O	D15
24	0	TMOUT	49	I/O	UDMDP	74	I	A2	99	I/O	UDP
25	_	(OPEN)	50	Ι	DMBHE	75	I	A3	10 0	Ι	BHE

Table 2.2 List of MB86604L Pins

2.3 EXPLANATION OF PIN FUNCTIONS (SCSI INTERFACE)

Table 2.3 lists the SCSI interface pins and their functions.

SCSI Interface

Table 2.3 SCSI Interface Pins

Pin name	I/O	Function
REQ, ACK, ATN, MSG, C/D, I/O, BSY, SEL, RST	I/O	SCSI control signal input/output Can be directly connected to single-ended SCSI connector. REQ and ACK Pins are the tri-state I/O port.
$\overline{DB7}, \overline{DB0}, \overline{DBP}$	I/O	SCSI data bus input/output Can be directly connected to single-ended SCSI connector.

Tri-state SCSI data bus pins:

You can select either tri-state or open-drain port for the $\overline{DB7}$ to $\overline{DB0}$, and \overline{DBP} pins by a TEST1 pin input level.

Tri-state SCSI control pins:

You can select either tri-state or open-drain port for the \overline{MSG} , $\overline{C/D}$, $\overline{I/O}$, and \overline{ATN} pins by a TEST2 pin input level.

2.4 EXPLANATION OF PIN FUNCTIONS (MPU INTERFACE)

Table 2.4 lists the MPU interface pins and their functions. Depending on the mode setting, the MPU interface can be connected to the input/ output signals of 80 series or 68 series MPU.

MPU Interface

Pin name	I/O	Function
CS0	I	Input signal for MPU to select SPC as I/O device.
CS1	I	Input selection signal (external circuit selection signal) when MPU inputs/outputs DMA bus data via the SPC.
D15 to D8, UDP *1	I/O	Data bus upper byte and parity <u>CS0</u> input valid: SPC internal register input/output port <u>CS1</u> input valid: DMA bus data input/output port
D7 to D0, LDP	I/O	Data bus lower byte and parity <u>CS0</u> input valid: SPC internal register input/output port <u>CS1</u> input valid: DMA bus data input/output port
A4 to A0	I	Input address to select internal register.
RD (R/W)	I	 80 series mode: Input IORD signal or RD signal for MPU to read from SPC 68 series mode: Input control signal R/W for MPU to read from/write to SPC
WR (LDS)	I	 80 series mode: Input IOWR signal or WR signal for MPU to read from SPC 68 series mode: Input LDS signal output from MPU when data bus lower byte is valid
BHE (UDS) *2	I	 80 series mode: Input BHE signal output from MPU when data bus upper byte is valid 68 series mode: Input UDS signal output from MPU when data bus upper byte ils valid
INT	0	Interrupt request signal output. 80 series mode: Hactive 68 series mode: L active For this INT signal output, please see the INT signal hold mode in section 3.3.13
MODE	I	Input signal which specifies MPU (80 series) 80 series mode: Input 1 68 series mode: Input 0

Table 2.4 MPU Interface Pins

*1: when 8-bit bus width, pull up the UDP and D15 to D8 pins with approx. 10 k Ω .

*2: when 8-bit bus width, fix the BHE pin to "1".

2.5 EXPLANATION OF PIN FUNCTIONS (DMA INTERFACE)

Table 2.5 lists DMA interface pins and their functions.

DMA Interface

Table 2.5 DMA Interface Pins

Pin name	I/O	Function					
DREQ	0	Output DMA transfer request signal for DMAC. Request DMA data transfers between SPC and memory.					
DACK	Ι	Input DMA transfer permissible signal from DMAC. When DMA transfer permissible signal is active, DMA transfer (read/write) is executed.					
D15 to D8, UDP *1	I/O	DMA data bus upper byte and parity CS1 input valid: MPU data bus is connected.					
DMD7 to D0, LDMDP	I/O	DMA data bus lower byte and parity CS1 input valid: MPU data bus is connected.					
IORD (DMR/W)	I	 80 series mode: Input IORD dignal or RD signal to output data from SPC to DMA bus 68 series mode: Input control segnal R/W for DMAC to input data to or output data from SPC 					
IOWR (DMLDS)	I	 80 series mode: Input IOWR signal or WR signal to input data on the DMA bus to SPC 68 series mode: Input control signal R/W for MPU to read from/write to SPC 					
DMBHE (DMUDS)	I	 80 series mode: Input BHE signal output from DMAC when DMA data bus upper byte is valid 68 series mode: Input UDS signal output from DMAC when DMA data bus upper byte ils valid Connect to V_{DD} in 8-bit mode. 					
DMA0	I	Input address data A0 signal output from DMAC in 80 series mode. 68 series mode: Connect power source (V_{DD}) Connect to V_{SS} or V_{DD} in 8-bit mode.					
TP (Transfer Permission)*2	I	Input DMA transfer permissible signal. When TP signal is active, SPC performs DMA transfer. If TP signal becomes inactive during a DMA transfer, the transfer is suspended at the block boundary.					

*1: When DMA bus is used in 8-bit, pull up those pins with approx. 10 k Ω .

*2: See 6.1 for an explanation of TP signal control

Note: When DMA bus is used in 8-bit mode, use DMD7-0, P or IOWR (DMLDS). DMUDS side cannot be used even in 68 series mode.

2.6 EXPLANATION OF PIN FUNCTIONS (CONTROL SIGNAL)

Table 2.6 lists control signal pins and their functions.

■ Control Signals

Table 2.6	Control	Signal	Pins
-----------	---------	--------	------

Pin name	I/O	Function				
RESET	I	System reset input. Set at least 4 CLK active.				
CLK	I	Clock input. (20, 30, 40 MHz)				
TEST1	I	 Connect to Vss if DBP, DB7 to DB0 are used as open-drain I/O port. Connect to V_{DD} if DBP, DB7 to DB0 are used as tri-state I/O port. 				
TEST2	I	1) Connect to Vss if $\overline{\text{MSG}}$, $\overline{\text{C/D}}$, $\overline{\text{I/O}}$, and $\overline{\text{ATN}}$ are used as open-drain I/O port. 2) Connect to V _{DD} if $\overline{\text{MSG}}$, $\overline{\text{C/D}}$, $\overline{\text{I/O}}$, and $\overline{\text{ATN}}$ are used as tri-state I/O port.				
V _{DD}	_	Power supply				
Vss	_	Ground				
тмоит	0	SPC timeout output. When SPC Busy flag=1 for longer time than one specified, this pin outputs "H".				
(OPEN)	_	Leave as open pin with no connection.				

CHAPTER 3 FUNCTIONS

This chapter describes the functions of SPC internal registers, memory, and buffers.

- 3.1 INTERNAL REGISTERS
- 3.2 BASIC CONTROL REGISTER
- 3.3 INITIAL SETTING REGISTER WINDOW
- 3.4 MCS BUFFER WINDOW
- 3.5 USER PROGRAM MEMORY WINDOW
- 3.6 SCAM REGISTER WINDOW

3.1 INTERNAL REGISTERS

Indicates the relationship between signal input to access SPC internal registers and accessed registers.

Depending on the type of information, the SPC register where the MPU reads/writes differs (data register or MCS buffer).

Internal Register Access

Tables 3.1a and 3.1b show the access state to internal registers for 80 series and 68 series modes.

CS0	BHE ^{*1}	A0	D15 to D8 ^{*2}	D7 to D0
1	_	—	HI-Z	HI-Z
0	0	0	Odd address register	Even address register
0	0	1	Odd address register	HI-Z
0	1	0	HI-Z	Even address register
0	1	1	HI-Z	Odd address register

Table 3.1a Internal Register Access (80 Series Mode)

*1 Set BHE pin to 1 for 8-bit bus operation.

*2 Connect about 10-k Ω pull-up resistor to the UDP and D15 to D8 when using 8-bit bus..

Table 3.1b Internal Register Access (68 Series Mode)					
CS0	UDS ^{*2}	LDS	A0*1	D15 to D8 ^{*3}	D7 to D0
1	—	_	—	HI-Z	HI-Z
0	0	0	1	Even address register	Odd address register
0	0	1	1	Even address register	HI-Z
0	1	0	0	HI-Z	Even address register
0	1	0	1	HI-Z	Odd address register
0	1	1	_	HI-Z	HI-Z

*1 Set A0 pin to 1 for 16-bit bus operation.

*2 Set $\overline{\text{UDS}}$ pin to 1 for 8-bit bus operation.

*3 Connect about 10-k Ω pull-up resistor to the UDP and D15 to D8 when using 8-bit bus.

■ Data Flow During Transfers

Depending on the type of information, the SPC register where the MPU reads/writes differs (data register or MCS buffer). There are also program transfers and DMA transfers. For DMA transfers, data phases are supported, but messages, commands, and status phases are not.

Table 3.1c shows the relationship between information types and registers (program transfer/data transfer). Figure 3.1 outlines the internal flow of information.

Table 3.1c Relationship between Information Types and Registers

Transfer Information	Program transfer (via MPU bus)	DMA transfer (via DMA bus)	
Message phase			
Command phase	MCS buffer (32 byte input/output)	Not possible	
Status phase			
Data phase	Data register	Data register	

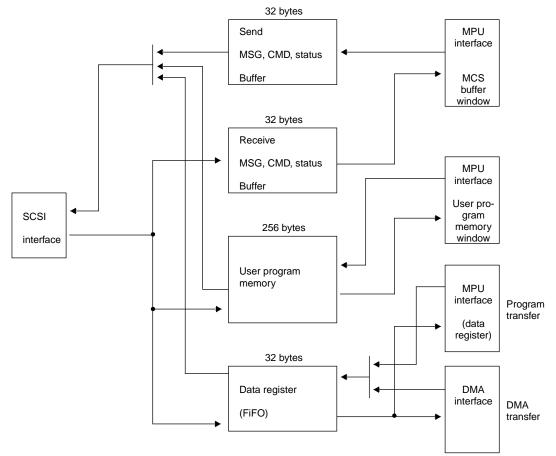
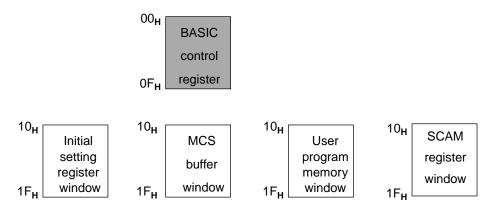
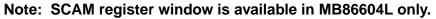
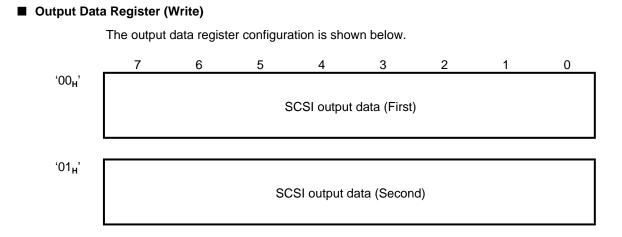




Figure 3.1 Internal Flow of Information

3.2 BASIC CONTROL REGISTER

This register controls the SPC and confirms SPC states.

BASIC Control Register

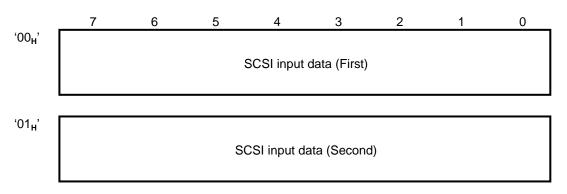

Table 3.2 lists the BASIC control register.

Na		Α	ddres	S		Write	Read
No	A4	A3	A2	A1	A0	write	
00	0	0	0	0	0	SCSI output data register (First)	SCSI input data register (First)
01	0	0	0	0	1	SCSI output data register (Second)	SCSI input data register (Second)
02	0	0	0	1	0	Direct control register	SPC status register
03	0	0	0	1	1	(RESERVED)	Nexus status register
04	0	0	1	0	0	SEL/RESEL-ID register	Interrupt status register
05	0	0	1	0	1	Command register	Command step register
06	0	0	1	1	0	Data block register (MSB)	\leftarrow
07	0	0	1	1	1	Data block register (LSB)	\leftarrow
08	0	1	0	0	0	Data byte register (MSB)	\leftarrow
09	0	1	0	0	1	Data byte register	\leftarrow
0A	0	1	0	1	0	Data byte register (LSB)/MC byte register	←
0B	0	1	0	1	1	Diagnostic control signal register	SCSI control signal status register
0C	0	1	1	0	0	Transfer mode register	\leftarrow
0D	0	1	1	0	1	Transfer period register	\leftarrow
0E	0	1	1	1	0	Transfer offset register	\leftarrow
0F	0	1	1	1	1	Window address register	Modified byte register

Table 3.2 BASIC Control Register List

3.2.1 Output Data Register (Write)

In the data phase program transfer mode, the output data register outputs data to the SCSI bus.

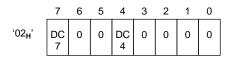


3.2.2 Input Data Register (Read)

In the data phase program transfer mode, the input data register inputs data to the SCSI bus.

■ Input Data Register (Read)

The input data register configuration is shown below.


MEMO

3.2.3 Direct Control Register (WRITE)

The direct control register (WRITE) provides direct control regardless of whether a command is issued to the SPC.

Direct Control Register (WRITE)

The direct control register bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: ATN signal control

Control bit for direct control of ATN signal assert. When the SPC operates as an initiator, the ATN signal is asserted by writing 1 in BIT 7. Effective for interrupting a data phase (produces attention condition).

After writing 1 in BIT 7 and asserting the ATN signal, be sure to write 0 and return to the initial state before issuing the next command. The ATN signal is not negated by writing 0. In order to negate the ATN signal, issue a RESET ATN signal.

In Figure 3.2.3, the relationship between transfers and BIT 7 is diagrammed in a flowchart.

Start transfer

Write 1 in direct control register BIT 7

(Assert ATN signal) (Target: move to message out phase)

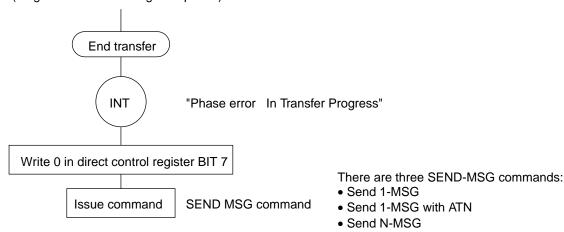
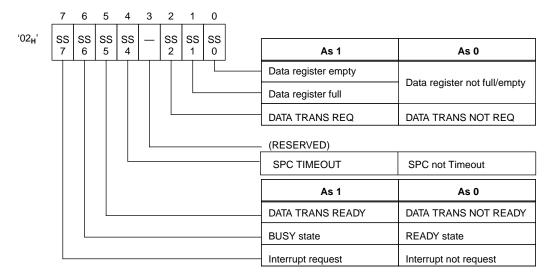


Figure 3.2.3 Transfer Flowchart (Direct Control Register: BIT 7)

BIT 4: TMOUT signal clear

Control bit to clear the TMOUT pin signal. The TMOUT pin is cleared by writing "1" to this bit while the SPC Busy bit (Bit 6) in the SPC Status Register (02h) = "0". When SPC Busy = "1", the TMOUT pin is not cleared.


3.2 BASIC CONTROL REGISTER

3.2.4 SPC Status Register (READ)

The SPC status register shows the operating state of the SPC.

SPC Status Register (READ)

The SPC status register (READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: Interrupt request

When there is an interrupt request from the SPC to the host MPU, 1 is indicated. While linked to the INT signal (interrupt request signal) to the host MPU, this bit indicates 1 whenever there is an interrupt request regardless the interrupt is enabled or disabled (interrupt enable register).

BIT 6: BUSY state

Shows that the SPC is operating.

When the SPC receives a command or automatically begins operating (at Automatic selection/reselection response mode), 1 is indicated.

When the operation is successfully completed or ends unsuccessfully because of an error, 0 is displayed.

If a command is issued when BIT 6 is 1, except for SOFTWARE RESET, the command is ignored and a COMMAND REJECTED interrupt reported.

BIT 5: DATA TRANS READY state

Shows that a transfer is possible (during transfer). When the SPC receives a transfer-related command and the SPC internal set-up finishes, 1 is displayed in this bit.

BIT 4: SPC Timeout State

Shows that SPC is operating over the time specified in the SPC timeout Setting register. When the SPC's operation terminated within the time specified, this bit value is "0". This bit can be cleared by writing "1" to the TMOUT pin clear bit (Bit 4) of Direct Control Register while SPC busy=0.

BIT 2: DATA TRANS REQ

Shows state of data phase transfer request.

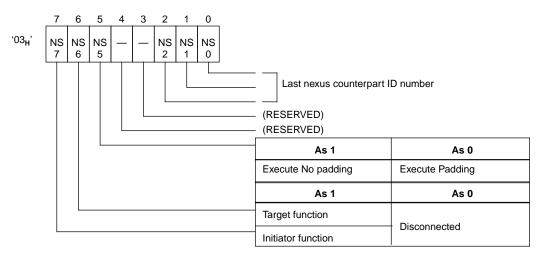
During SCSI-INPUT, when two or more bytes can be read from the data register (the data register contains two or more bytes) or when the data register contains the last byte, 1 is indicated.

During SCSI-OUTPUT, when two or more bytes can be written in the data register (the data register contains 30 or less bytes) or the last byte can be written in the data register, 1 is indicated. Refer to this bit when conducting a program transfer. Also, when DMA transfer mode, "1" will be indicated in this bit while the DREQ signal is asserted.

BIT 1: Data Register FULL

When the data register is FULL, 1 is indicated.

BIT 0: Data Register EMPTY


When the data register is EMPTY, 1 is indicated.

3.2.5 Nexus Status Register (READ)

The nexus status register (READ) shows the SPC internal state and the nexus counterpart ID.

Nexus Status Register (READ)

The nexus status register (READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: Initiator function

When the SPC starts as the initiator, 1 is indicated. At the following points, 1 is indicated.

- Reselection by the target (SEL and I/O signals are true when the self ID bit is true).
- After acquiring bus usage rights as the initiator and asserting the SEL signal, when the ID bit is sent to the data bus during the selection phase or when the ATN signal is asserted simultaneously.

When the SPC is disconnected by the target and I-T nexus is released, 0 is indicated.

BIT 6: Target function

When the SPC starts as the target, 1 is indicated. At the following points, 1 is indicated.

- Selection by the initiator (SEL signal is true and I/O signal is false when the self ID bit is true).
- After acquiring bus usage rights as the target and asserting the SEL signal, when the ID bit is sent to the data bus during the reselection phase or when the I/O signal is asserted simultaneously.

When the SPC is disconnected and I-T nexus is released, 0 is indicated.

BIT 5: Padding operation

1 is indicated when the SPC receives a data transfer command with padding and then it did not perform the padding transfer after transferring the specified byte data. When the padding transfer is performed, 0 is indicated. This bit does not change if a data transfer command without padding is performed.

Also, please read out the value for this bit until the disconnect is occurred, since this bit is cleared when the device is newly nexused.

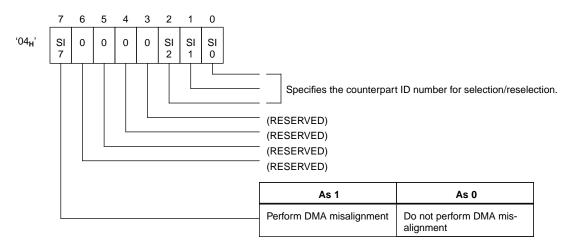
Furthermore, this bit can not be referred by the user program.

BIT 2-0: Final nexus counterpart ID

Stores nexus counterpart ID. BIT 2-0 are set at the following points.

- During the initiator function in the selection phase, when a BSY signal is received from the counterpart target.
- During the target function in the reselection phase, when a BSY signal is received from the counterpart initiator.
- During the intiator function, when a BSY signal is asserted in response to a target reselect request.
- During the target function, when a BSY signal is asserted in response to an initiator select request.

Data is stored in those bits even when the SPC is disconnected. This data is rewritten when a new nexus is established.


When the SPC is the target in the Automatic selection response mode, it operates automatically up to the command phase. At which time, the host MPU can reference this register to find out the initiator ID number. Also, when the SPC is the initiator in the Automatic reselection response mode, it operates automatically up to the message in phase. At which time, the host MPU can reference this register to find out the target ID number. (See 3.3.4 for more about the Automatic selection/reselection response mode).

3.2.6 SEL/RESEL ID Register (WRITE)

The SEL/RESEL ID register (WRITE) specifies DMA transfer misalignment processing and the selected counterpart bus device ID.

SEL/RESEL ID Register (WRITE)

The SEL/RESEL ID register (WRITE) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: DMA transfer misalignment

Please set when the DMA transfer width is 16 bits, the first MPU/DMA side read/write is done by byte access, and writing to the system memory or reading from the system memory is performed to/from an odd address.

- 1:Writing to the system memory or reading from the system memory can be performed to/from an odd address.
- 0:Writing to the system memory or reading from the system memory can be performed to/from an even address. See 6.2 for more details.
- BIT 2-0: Setting SEL-RESEL ID

Specify the counterpart bus device ID number for selection/reselection with a binary digit.

Setting Transfer Mode/Transfer Parameters

When setting the transfer mode/transfer parameters (PERIOD, OFFSET), after specifying the counterpart ID number in the SEL/RESEL ID register, set the following.

- Transfer mode register (address 0C_H)
- Transfer period register (address 0D_H)
- Transfer offset register (address 0E_H)

For a target in the selection phase to which only the target ID bit is sent (single initiator), set the transfer parameters with the initiator ID number as 0.

3.2.7 Interrupt Status Register (READ)

The interrupt status register (READ) displays the reason for the interrupt using an 8-bit code.

Interrupt Status Register (READ)

The interrupt status register (READ) bit configuration is shown below.

	7	6	5	4	3	2	1	0
'04 _H '	IS							
	7	6	5	4	3	2	1	0

The interrupt status register, an FIFO-type register (8 bytes), stores interrupt codes which occur until the command is completed and can store two or more interrupt codes. Read this register when BIT 7 (interrupt request exists) of the SPC status register (address 02_H) is 1.

After each host MPU read operation, this register indicates the next interrupt code.

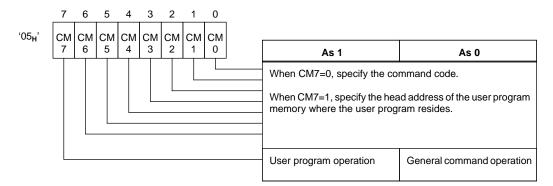
The interrupt status register value occurs at the step indicated by the command step register (address $05_{\rm H}$). Therefore, read this register and the command step register at the same time.

With an 8-bit MPU, read the command step register after reading the interrupt status register (unless this is done, the next interrupt code will not be shown).

See 5.7 for more on interrupt codes.

Notes on Reading Interrupt Status Register

- If Bit 7 of automatic operation mode setting register (address 1Ch) is set to "1", all the interrupt code should be read out from this register. Otherwise, any commands issued later will be ignored.
- 2) Do not access this register until SPC Busy bit (Bit 6 of SPC Status register) becomes "0" after the command was issued. Also, please read out the interrupt codes before issuing new command.

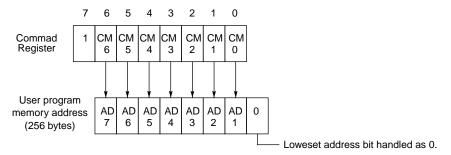

3.2 BASIC CONTROL REGISTER

3.2.8 Command Register (WRITE)

The command register (WRITE) issues commands for the SPC.

Command Register (WRITE)

The command register (WRITE) bit configuration is shown below.

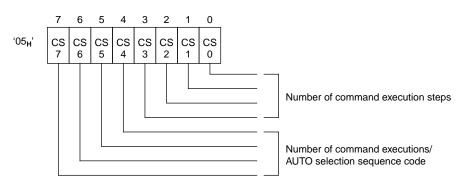

Next, the functionality of each bit is described.

BIT 7: User program operation

This bit indicates whether the SPC operation will be conducted by the user program or by command. The meaning of BIT 6-0 changes depending on this bit setting.

0:Write the command code in BIT 6-0 (see chapter 4 for more on command codes).

1:Write the head address of the user program in BIT 6-0 (Figure 3.2.8). The SPC starts executing from the command at the address specified in the user program memory written in this bit. The head address of the user program can be specified in 2-byte units (only even address).


3.2.9 Command Step Register (READ)

The command step register (READ) indicates the number of command execution steps and program steps in the user program.

An FIFO-type register (8 bytes), it stores command steps corresponding to the interrupt status register.

Command Step Register (READ)

The command step register (READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7-4: Number of user program command executions/Automatic selection response mode sequence code

During user program operation: Ring counter which indicates the number of command executions. Advanced with each command execution start.

Only counts discrete commands. Special commands are not counted (see 4.1 for more on discrete commands and special commands).

During Automatic selection response mode (target only) operation: Indicates the type of response operation sequence (see 3.3.4 for more on the Automatic selection response mode).

BIT 3-0:Number of command execution steps

Indicates the number of command execution steps. Step codes are defined for each command (see chapter 4 for more on command steps). Same when set to the Automatic selection/reselection response mode. In the Automatic receive mode, information is received but this bit is not affected.

(Example) When an "Initial phase error & MSG-receive" interrupt occurs, the execution step at which the phase error occurred is indicated.

Notes on Reading Command Step Register

- The contents of interrupt status register (address 04h) are the interrupt codes generated at the step indicated in this command step register. Therefore, it is necessary to read out this register along with the interrupt status register.
 When 8-bit MPU is used, be sure always read out this step register after reading out the interrupt status register. If not, the next interrupt status will not be indicated. Also, if this register is read out before reading out the interrupt status register, the correct interrupt status will not be read out.
- 2) Please do not access this step register until Bit 6 (SPC Busy bit) of SPC Status register becomes "0" after issuing the command. If a new command is issued, please read out the existing step codes in advance.

3.2.10 Data Block Register (READ/WRITE)

The data block register (READ/WRITE) specifies the number of blocks for data phase transfers.

Data Block Register (READ/WRITE)

The data block register (READ/WRITE) bit configuration is shown below.

	7	6	5	4	3	2	1	0
'06 _H '	BL							
	15	14	13	12	11	10	9	8
'07 _H '	BL							
	7	6	5	4	3	2	1	0

Specify the number of blocks to be transferred in the data phase in the data block register bits.

Fixed length: Specify the number of transfer blocks.

Variable length: Enter 0001_H.

This register's read values become valid after the completion report (including abnormal completions),

when the data block register and byte register are both 00 following a normal completion or when the number of untransferred blocks and bytes are reported following an abnormal completion.

(Example)

Set values: Blocks at $000A_H$ and byte length at 000100_H .

Normal: Blocks at 0000_{H} and byte length at 00000_{H} .

Abnormal 1: Blocks at 0004_H and byte length at 000AC_H.

In this case, the untransferred data is four blocks and AC_H bytes. Meanwhile, the transferred data is five blocks and 54_H bytes.

Abnormal 2: Blocks at 0004_{H} and bytes at 0000_{H} .

In this case, the untransferred data is four blocks, and the transferred data is six blocks.

Abnormal 3: Blocks at 0005_H and byte length at 0100_H .

In this case, the untransferred data is six blocks (five blocks and $100_{\rm H}$ bytes), and the transferred data is four blocks.

Data Block Register Access

The data block register becomes valid after the completion report (including abnormal completions). Prior to the completion report, initial values are indicated.

Please specify (set) this register when SPC Busy bit (Bit 6 of SPC status register) = "0".

MEMO

3.2 BASIC CONTROL REGISTER

3.2.11 Data Byte/MC Byte Register (READ/WRITE)

The data byte/MC byte register (READ/WRITE) specifies the number of transfer bytes for data phase transfers and message phase/ command phase transfers.

Data Byte/MC Byte Register (READ/WRITE)

The data byte/MC byte register (READ/WRITE) bit configuration is shown below.

	7	6	5	4	3	2	1	0
'08 _H '	ΒY							
	23	22	21	20	19	18	17	16
'09 _н '	ΒY							
09H	15	14	13	12	11	10	9	8
	ΒY							
'0A _H '	7	6	5	4	3	2	1	0

• Data byte register (BY23-BY0)

Specify the number of bytes for data phase transfers.

Fixed length: Specify the length of a single block. Variable length: Specify the number of transfer bytes.

• MC byte register (BY7-BY0)

Specify the number of bytes for message phase and command phase transfers. Only specify the number of transfer bytes in this register when the command being issued requires that the number of transfer bytes be set.

This register's read values become valid after the completion report (including abnormal completions),

when the data block register and byte register are both 00 following a normal completion or when the number of untransferred blocks and bytes are reported following an abnormal completion.

(Example)

Set values: Blocks at $000A_H$ and byte length at 000100_{H} .

Normal: Blocks at 0000_H and byte length at 00000_H .

Abnormal 1: Blocks at 0004_H and byte length at 000AC_H.

In this case, the untransferred data is four blocks and AC_H bytes. Meanwhile, the transferred data is five blocks and 54_H bytes.

Abnormal 2: Blocks at 0004_H and byte at 0000_{H.}

In this case, the untransferred data is four blocks, and the transferred data is six blocks.

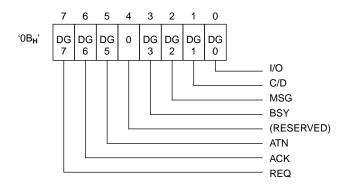
Abnormal 3: Blocks at 0005_{H} and byte length at 0100_{H} .

In this case, the untransferred data is six blocks (five blocks and $100_{\rm H}$ bytes), and the transferred data is four blocks.

■ Data Byte/MC Byte Register Access

The data byte/MC byte register becomes valid after the completion report (including abnormal completions). Prior to the completion report, initial values are indicated.

However, when used as the MC byte register, initial values are always shown.


Please specify (set) this register when SPC Busy bit (Bit 6 of SPC status register) = "0".

3.2.12 DIAGNOSTIC Control Register (WRITE)

The DIAGNOSTIC control register (WRITE) emulates the SCSI signal sequence during the Diag mode.

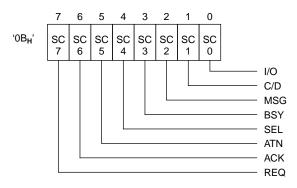
DIAGNOSTIC Control Register (WRITE)

The DIAGNOSTIC control register (WRITE) bit configuration is shown below.

This register becomes valid from issuance of INIT DIAG START OF TARG DIAG START command to the DIAG END command.

When 1 is written in the bits corresponding to the control signals, this signal is asserted.

Note: Write " 00_{H} " to this register prior to the issue of **INIT DIAG START** or **TARG DIAG START** command.

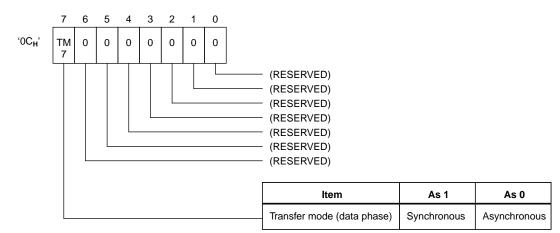

3.2.13 SCSI Control Signal Status Register (READ)

The SCSI control signal status register (READ) shows the state of the SCSI control signals.

Valid in Diag mode as well.

SCSI Control Signal Status Register (READ)

The SCSI control signal status register (READ) bit configuration is shown below.


When the control signal corresponding to these bits is asserted, 1 is set.

3.2.14 Transfer Mode Register (WRITE/READ)

The transfer mode register (WRITE/READ) specifies the data phase transfer mode (synchronous transfer/asynchronous transfer).

Transfer Mode Register (WRITE/READ)

The transfer mode register (WRITE/READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: Transfer mode

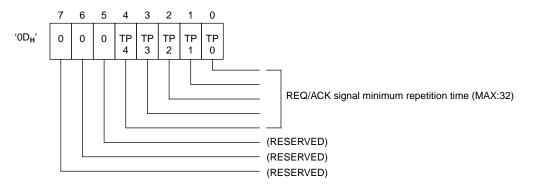
Specifies the data phase transfer mode for the bus device ID listed in the SEL/RESEL ID register (address 04_{H}).

- 1: Data transfer in synchronous mode.
- 0: Data transfer in asynchronous mode.

Setting Transfer Mode Register

This register can store the transfer mode for each connected device. So, please set this register after the counterpart's ID to perform the data transfer is set to the SEL/RESEL ID register (address 04h). Once setting this register, the transfer mode will be automatically set to this register just only setting the SEL/RESEL ID register later, until a system reset or software reset is performed.

MEMO


3.2 BASIC CONTROL REGISTER

3.2.15 Transfer Period Register (READ/WRITE)

The transfer period register (READ/WRITE) specifies the synchronous transfer period for data phase transfers.

Transfer Period Register (READ/WRITE)

The transfer period register (READ/WRITE) bit configuration is shown below.

Set the synchronous transfer period for the bus device ID specified by the SEL/RESEL ID register (address 04_{H}). Note that higher transfer rate than the actual rate may be set if the input clock is high. (ex. 40 MHz: 04h or higher, 30 MHz: 03h or higher, 20 MHz: 02h or higher)

The following equation shows the relationship between the input block frequency and the maximum synchronous transfer speed.

(maximum synchronous transfer speed) × (transfer period) = input block frequency

(example) 10 Mbyte/s × 2 = 20 MHz

Table 3-5 shows the relationship between the transfer period register bit setting and the REQ/ ACK signal minimum repetition time.

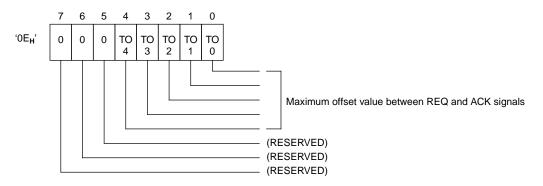
Table 3.2.15 Relationship between Transfer Period Register and REQ/ACK Signal Minimum Repetition Time

ТР	ΤР	ΤР	ΤР	ΤР	TRANS	ASSERT	NEGATE	ΤР	ΤР	ΤР	ΤР	ΤР	TRANS	ASSERT	NEGATE
4	3	2	1	0	PERIOD	PERIOD	PERIOD	4	3	2	1	0	PERIOD	PERIOD	PERIOD
0	0	0	0	1	Prohibit	Prohibit	Prohibit	1	0	0	0	1	17	9	8
0	0	0	1	0	2	1	1	1	0	0	1	0	18	9	9
0	0	0	1	1	3	2	1	1	0	0	1	1	19	10	9
0	0	1	0	0	4	2	2	1	0	1	0	0	20	10	10
0	0	1	0	1	5	3	2	1	0	1	0	1	21	11	10
0	0	1	1	0	6	3	3	1	0	1	1	0	22	11	11
0	0	1	1	1	7	4	3	1	0	1	1	1	23	12	11
0	1	0	0	0	8	4	4	1	1	0	0	0	24	12	12
0	1	0	0	1	9	5	4	1	1	0	0	1	25	13	12
0	1	0	1	0	10	5	5	1	1	0	1	0	26	13	13
0	1	0	1	1	11	6	5	1	1	0	1	1	27	14	13
0	1	1	0	0	12	6	6	1	1	1	0	0	28	14	14
0	1	1	0	1	13	7	6	1	1	1	0	1	29	15	14
0	1	1	1	0	14	7	7	1	1	1	1	0	30	15	15
0	1	1	1	1	15	8	7	1	1	1	1	1	31	16	15
1	0	0	0	0	16	8	8	0	0	0	0	0	32	16	16

(unit: Tclf)

Setting Transfer Period Register

This register can store the transfer period for each connected devices. So, Please set this register after the counterpart's ID number is set to the SEL/RESEL ID register (address 04h). Once setting this register, the transfer period will be automatically set to this register from the next time or later, until a system reset or software reset is performed.


3.2 BASIC CONTROL REGISTER

3.2.16 Transfer Offset Register (READ/WRITE)

The transfer offset registers specifies the maximum offset value for data phase synchronous transfers.

■ Transfer Offset Register (READ/WRITE)

The transfer offset register (READ/WRITE) bit configuration is shown below.

Set the synchronous transfer maximum offset value for the bus device ID specified by the SEL/ RESEL ID register in the transfer offset register bits.

Table 3.2.16 shows the relationship between the transfer offset register bit setting and the maximum offset value for REQ and ACK signals.

Table 3.2.16 Relationship between Transfer Offset Register and Maximum Offset Value for REQ/ACK Signals

	то	то	то	то	то	TRANSFER-OFFSET
	4	3	2	1	0	TRANSFER-OFFSET
	0	0	0	0	1	1
	0	0	0	1	0	2
	0	0	0	1	1	3
	0	0	1	0	0	4
2						ž
	1	1	1	0	1	29
	1	1	1	1	0	30
	1	1	1	1	1	31
	0	0	0	0	0	32

3.2.17 Window Address Register (WRITE)

The window address register (WRITE) specifies address 10h to 1Fh windows.

Window types include initial setting register window, MCS buffer window, user program memory window, and SCAM register window. (SCAM register window is available in MB86604L only.)

Window Address Register (WRITE)

The window address register (WRITE) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7 to 6: Window selection

These bits select the window type for address 10_H to address $1F_H$.

W A 7	WA 6	Select window
0	0	MCS buffer window
0	1	SCAM register window
1	0	User program memory window
1	1	Initial setting window

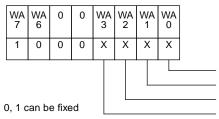
Do not make SCAM register window setting in the MB86604A.

BIT 3 to 0: Window change

These bits change the window selection made by BIT 7 to 6. Set the first upper bit for the MCS buffer address and the four upper bits for the user program memory address.

Windows can be changed in 16 byte units.

X: 0, 1 can be fixed


Set "0" to BIT 3 to 0 to select the Initial Setting Window.

MCS buffer window

WA 7	WA 6	0	0	WA 3	WA 2	WA 1	WA 0
0	0	0	0	0	0	0	Х

First upper bit of MCS buffer ad-dress (32 bytes)

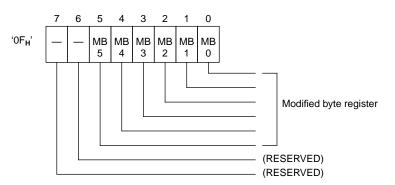
User program window

Four upper bits of user program address (256 byte)

X: 0, 1 can be fixed

SCAM register window

WA 7	WA 6	0	0	WA 3	WA 2	WA 1	WA 0
0	1	0	0	0	0	0	0


3.2.18 Modified Byte Register (READ)

The modified byte register (READ) is a 6-bit ring counter which indicates the number of bytes transferred by the SPC.

The meaning of this register's values changes by phase.

Modified Byte Register (READ)

The modified byte register (READ) bit configuration is shown below.

The meaning of modified byte register values changes by phase.

- In the message, command, status phases, it displays the number of bytes received by the SPC (Receive MCS buffer valid) or the number of bytes issued by the SPC (sent from the Send MCS buffer).
- In the data phase, it displays the number of bytes transferred between the SPC and the MPU or external memory.

The lower 6-bit values in the data byte register are set in the modified byte register and counted down for each single byte transfer.

When data transfer finishes with still remaining in the data register (abnormal completion), the number of remaining data bytes can be calculated from the data byte register and modified byte register values (see 5.9.4 for more on calculations). When the transfer ends with data still in the data register, the data in the data register becomes invalid.

Thus, in order to continue the data transfer, the bytes remaining in the data register must be calculated, the data pointer returned this amount, and the transfer operation started.

• In the Automatic selection response or Automatic receive modes, there are cases where receptions continues through various phases. The modified byte register displays the total number of bytes received during each phase.

3.2.19 BASIC Control Register Access

Indicates items to note during BASIC control register access.

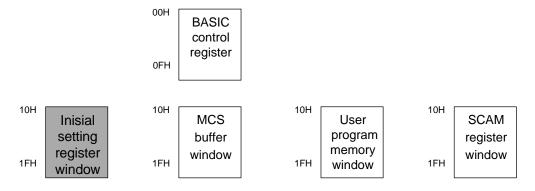
■ Interupt Status Register (READ), Command Step Register (READ)

After the command is issued and until SPC BUSY (SPC status register: bit 6) becomes 0, do not access the interrupt status register (READ) and command step register (READ). Also, before a new command is issued, be sure to read interrupts and command steps for the previously executed command.

■ Data block Register (READ/WRITE)

Set data block register (READ/WRITE) right before issuing the command for data phase execution and when SPC BUSY (SPC status register: bit 6) is 0.

■ Data Byte/MC Byte Registers (READ/WRITE)


Set the data byte register (READ/WRITE) right before issuing the command for data phase execution and when SPC BUSY (SPC status register: bit 6) is 0.

Set the MC byte register (READ/WITE) right before issuing the commands which require that the MC byte register be set and when SPC BUSY (SPC status register: bit 6) is 0.

3.3 INITIAL SETTING REGISTER WINDOW

When the power is switched on, it is necessary to set initial register values because the internal registers are undefined.

After writing in the initial setting register windows, the SET UP REG command is issued to set initial values in SPC internal registers.

Note: SCAM register window is available in MB86604L only.

■ Initial Setting Register Window

Table 3-3 gives a list of registers in the initial setting register window.

Table 3.3 List of Initial Setting Register Win	dow Registers
--	---------------

No.		Α	ddres	s		Write	Read
NO.	A4	A3	A2	A1	A0	Wille	Reau
10	1	0	0	0	0	Clock conversion setting register	\leftarrow
11	1	0	0	0	1	Self ID setting register	\leftarrow
12	1	0	0	1	0	Response mode setting register	\leftarrow
13	1	0	0	1	1	SEL/RESEL mode setting register	\leftarrow
14	1	0	1	0	0	SEL/RESEL retry setting register	\leftarrow
15	1	0	1	0	1	SEL/RESEL timeout setting register	\leftarrow
16	1	0	1	1	0	REQ/ACK timeout setting register	\leftarrow
17	1	0	1	1	1	Asynchronous setup time setting register	\leftarrow
18	1	1	0	0	0	Parity error detection setting registen	\leftarrow
19	1	1	0	0	1	Interrupt enable setting register Group	\leftarrow
1A	1	1	0	1	0	6/7 command length setting register	\leftarrow
1B	1	1	0	1	1	DMA system setting register	\leftarrow
1C	1	1	1	0	0	Auto-operation mode setting register	\leftarrow
1D	1	1	1	0	1	SPC timeout setting register	\leftarrow
1F	1	1	1	1	1	Revision indication register	\leftarrow

Making Initial Setting Valid

The SET UP REG command must be issued to make the register values in the initial setting register window valid for the SPC.

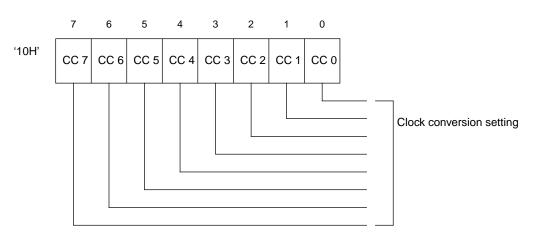
These values do not become valid by host MPU write. Issuing the SET UP REG command to the SPC sets up the internal circuits. When this is completed, a Command Complete interrupt is generated. The clock conversion setting register (WRITE/READ) specifies the SPC input frequency.

Set bit values according to the input frequency.

The initial setting register window registers contain undefined data after the reset release. Therefore, write in all registers.

When the SPC does not receive the command or is operating automatically (Automatic selection/reselection response mode), the SET UP REG command is ignored and a Command Reject interrupt generated. In this case, SPC operation is not altered.

3.3 INITIAL SETTING REGISTER WINDOW


3.3.1 Clock Conversion Setting Register (WRITE/READ)

The clock conversion setting register (WRITE/READ) specifies the SPC input frequency.

SET bit values according to the input frequency.

Clock Conversion Setting Register (WRITE/READ)

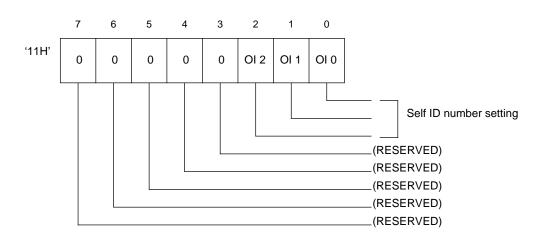
The clock conversion setting register (WRITE/READ) bit configuration is shown below.

Set bit values according to the input frequency.

Table 3-8 shows the relationship between the clock conversion setting register bit setting and the input frequency.

HEX	CC 7	CC 6	CC 5	CC 4	CC 3	CC 2	CC 1	CC 0	Input Frequency [MHz]	Internal Operating Frequency [MHz]
0B	0	0	0	0	1	0	1	1	20.0	20.0
10	0	0	0	1	0	0	0	0	20.0	10.0
32	0	0	1	1	0	0	1	0	30.0	15.0
38	0	0	1	1	1	0	0	0	30.0	10.0
53	0	1	0	1	0	0	1	1	40.0	20.0
59	0	1	0	1	1	0	0	1	40.0	13.3

 Table 3.3.1 Relationship between Clock Conversion Setting Register Bit Setting and input Frequency

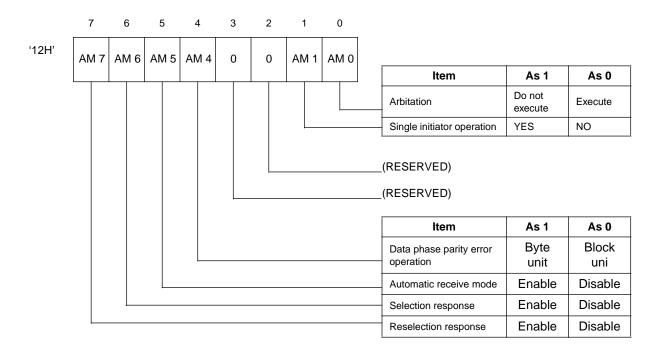

3.3.2 Self ID Setting Register (WRITE/READ)

The self ID setting register (WRITE/READ) specifies the SPC bus device ID number with a binary digit.

Use a binary digit for the SPC bus device ID number.

■ Self ID Setting Register (WRITE/READ)

Self ID setting register (WRITE/READ) bit configuration is shown below.



3.3.3 Response Mode Setting Register (READ/WRITE)

The Response mode setting register (READ/WRITE) specifies the SPC mode (see 3.3.3.1 to 3.3.3.6).

■ Response Mode Setting Register (READ/WRITE)

The response mode setting register (READ/WRITE) bit configuration is shown below.

See 3.3.3.1 to 3.3.3.6 for more on bit functionality.

3.3.3.1 BIT 7 (Reselection Response)

BIT 7 (Reselection Response) specifies whether an initiator responds to target reselection.

■ BIT 7 (Reselection Response)

1: Respond to target reselect request and establish I-T nexus (see 3.3.4 for more on operation after establishing an I-T nexus).

0: No response to target reselect request (BSY signal not asserted in reselection phase).

3.3.3.2 BIT 6 (Selection Response)

BIT 6 (Selection Response) specifies whether a target responds to an initiator selection.

■ BIT 6 (Selection Response)

1: Respond to initiator select request and establish I-T nexus (see 3.3.4 for more on operation after establishing an I-T nexus).

0: No response to initiator select request (BSY signal not asserted in selection phase).

3.3.3.3 BIT 5 (Automatic Receive Mode)

BIT 5 (Automatic receive mode) specifies whether to receive messages in response to an attention condition produced by the initiator when functioning as the target. It also specifies whether to receive requested information (about the error phase) when functioning as the initiator and a phase error occurs during the execution of commands that involve phase transitions.

BIT 5 (Automatic Receive Mode) Settings (Initiator Function)

• When phase error occurs and target requests message in phase.

1: Phase error is recognized and a single message received.

When an ATN signal is being asserted, one message is received after it was negated. With the final ACK signal still being asserted, an "Initial phase error & MSG-received" interrupt is reported.

0: Phase error is recognized and "Initial phase error" interrupt reported after negating ATN signal if it was being asserted.

• When phase error occurs and target requests status phase.

1: Phase error is recognized and a single status is received.

When an ATN signal is being asserted, one status is received after negation. With the final ACK signal still being asserted, an "Initial phase error & status received" interrupt is reported. Whether or not the last ACK signal is negated depends on the ACK RESET mode

setting. However, note that the command step reported at this time does not depend on the ACK RESET mode setting. (Regardless of the ACK RESET mode, the step numbers do not change.)

Regarding ACK RESET mode, refer to 3.3.13 Auto-Operation mode setting register.

Also, when an error occurs at the receipt of status, the error is reported. The command step numbers reported this case are the same as those in which a phase error occurs.

0: Phase error is recognized and "Initial phase error" interrupt reported.

The Automatic receive mode is invalid for phase errors that occur during a transfer (all bytes untransferred). When a phase error occurs during a transfer, a "phase error IN TRANSFER PROGRESS" interrupt is reported.

■ BIT 5 (Automatic Receive Mode) Settings (Target Function)

• When a command which ends in a phase other than the message out phase is executed and an ATN signal is asserted while the final ACK signal of the final phase is being asserted.

1: Attention condition produced by the initiator is detected, there is a transition to the message out phase, and a single message is received.

A "Command complete (ATN condition detected) & MSG received" interrupt is reported.

0: Attention condition produced by the initiator is detected, and a "Command complete (ATN condition detected)" interrupt is reported.

When an attention condition is detected during the execution of a command which ends with the message out phase, a "Command complete (ATN condition detected) interrupt is produced regardless of this bit setting.

• When a command is being executed as a target, and a transition to the next phase is taking place or an initiator attention condition is detected at the transfer data block boundary.

1: Attention condition produced by the initiator is detected, there is a transition to the message out phase, and as single message is received.

During data phase execution, the transfer is suspended at the transfer block boundary, there is a transition to the message out phase, and a single message is received.

A "Command stop (ATN condition detected) & MSG received" interrupt is reported.

0: Attention condition produced by the initiator is detected, and a "Command stop (ATN condition detected)" interrupt is reported.

During data in phase execution, the transfer is suspended at the transfer block boundary, and a "Command stop (ATN condition detected) interrupt is reported.

During data in phase execution, when a parity errors occurs on the target DMA or MPU side, the transfer is stopped between blocks (block unit stop), and an attention condition is produced by the initiator, "DMA parity error" or "MPU parity error" is reported without responding to the attention condition.

Note: When functioning as the target, after an attention condition is detected, there is a transition to the message out phase, and a single message is received. If another attention condition is detected after that, the following interrupt is reported. Interrupt code = 61H Sequence step = XXH (value after adding 1 to the number of steps of the phase prior to the transition to the message out phase)

Storing Information Received by Automatic Operation

• For Target operation:

If the command executed was not for command phase, the information is stored in Receive MCS buffer from address 0. If it was for command phase, the information is stored from the continuous address of CDB stored in Receive MCS buffer.

• For Initiator operation:

The information is stored in Receive MCS buffer from address 0.

3.3.3.4 BIT 4 (Operation for Data Phase Parity Error)

BIT 4 (Operation for Data Phase Parity Error) specifies SPC operation for when a data phase parity error is detected during SPC target operation.

■ BIT 4 (Operation for Data Phase Parity Error)

1: During data phase operation, the transfer is suspended when a parity error is detected, and an interrupt is reported (byte unit stop). See 5.9 for more information.

0: During data phase operation, the transfer is suspended after completing the transfer of the block where the parity error occurs, and an interrupt is reported (block unit stop). However, when odd value is set in the data byte register, the parity error is detected in 2-block unit.

3.3.3.5 BIT 1 (Single Initiator Option)

BIT 1 (Single Initiator Option) specifies target operation.

When the SPC is incorporated in an application system operating in SCSI-1 mode and using the single initiator option, set this bit to 1.

■ BIT 1 (Single Initiator Option)

1: When the SPC is selected as the target, it responds even if the ID bit (target ID) on the data bus during the selection phase is just one bit. Bit 2 to 0 in the nexus status register indicate "000".

0: When the SPC is selected as the target, it does not respond if the ID bit on the data bus during the selection phase is 2 bits (for an initiator ID and the target ID). When functioning as the initiator, do not set 1 at this bit, and self and target ID bits (2 bits) are always sent to the data bus during the selection phase regardless of this bit setting.

3.3 INITIAL SETTING REGISTER WINDOW

3.3.3.6 BIT 0 (Arbitration)

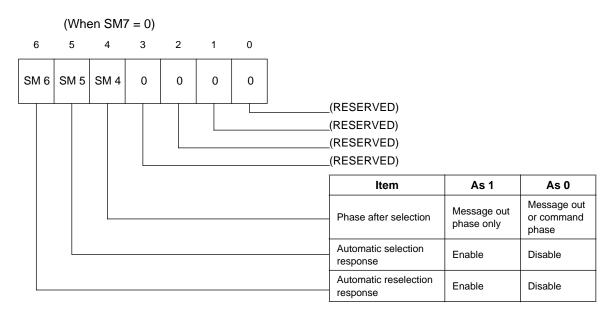
BIT 0 (Arbitration) specifies whether the SPC conducts arbitration.

When the SPC is incorporated in an application system operating in SCSI-1 mode and arbitration is not conducted, set this bit to 1.

■ BIT 0 (Arbitration)

- 1: Do not execute arbitration phase.
- 0: Execute arbitration phase.


MEMO


3.3.4 SEL/RESEL Mode Setting Register (WRITE/READ)

The SEL/RESEL mode setting register (WRITE/READ) specifies automatic response for selection or reselection.

SEL/RESEL Mode Setting Register (WRITE/READ)

The SEL/RESEL mode setting register (WRITE/READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: User program operation

This bit specifies whether to make a response originating from select/reselect with functions set previously in the user program or SPC. The meaning of BIT 6 to 0 is altered by this bit setting.

1: The head address of user program memory is written in BIT 6 to 0.

When the SPC is selected or reselected, process execution begins from the command in the user memory address specified by BIT 6 to 0.

Set the user program memory address at the same time as the command register (see Figure 3.2.8).

- 0: Provide response already prepared for SPC.
- BIT 6: Automatic reselection response

When BIT 7 is 0, this bit setting affects initiator operation for reselection.

- 1: Respond to reselect request and operate until a message is received (see 3.3.4.1).
- 0: Respond to reselect request and report a "RESELECTED" interrupt.
- BIT 5: Automatic selection response

When BIT 7 is 0, this bit setting affects target operation for selection.

1: Respond to select request and operate until a message or command is received (see 3.3.4.2).

0: Respond to select request and report "SELECTED" or "SELECTED WITH ATN" interrupt.

BIT 4: Post-selection phase

When BIT 7 is 0, this bit specifies the target automatic response. Specifies whether to limit the post-selection phase to the message phase (SCSI-2 mode) or to allow either the message phase or the command phase.

1: Limited to message out phase and when the selection phase ATN signal is not asserted by the initiator, an "AUTO mode phase error" interrupt is reported.

0: Depending on the state of the selection phase ATN signal, either the message out phase or command phase is selected. (Refer to 3.3.3.3 Automatic Receive operation whether or not the message is received transitting to Message-out phase when the SPC detects ATN condition generated by an initiator after receiving a command in command phase.)

3.3.4.1 Initiator Automatic Reselection Response

Figure 3.4 is a flowchart of the initiator automatic reselection response when BIT 6 of the SEL/RESEL mode setting register is set to 1, and Table 3-9 shows the corresponding operation sequence (step code chart).

Initiator Automatic Reselection Response

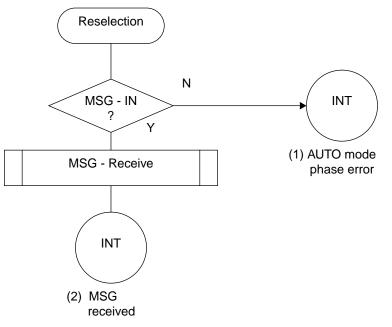


Figure 3.3.4.1 Initiator Automatic Reselection Response Flowchart

Table 3.3.4.1 Initiator Automatic Reselection Response Sequence (Step Code Chart)

Flow chart	Step	Description
Reselection	0	* Detect Reselect Establish nexus
MSG - IN	1	Wait for MSG-IN phase Execute MSG-IN phase
End	2	* Complete MSG receive

64

MEMO

3.3.4.2 Target Automatic Selection Response

Figure 3.5 is a flowchart of the target automatic selection response when BIT 5 of the SEL/RESEL mode setting register is set to 1, and Table 3-10 shows the corresponding operation sequence (step code chart).

Target Automatic Selection Response

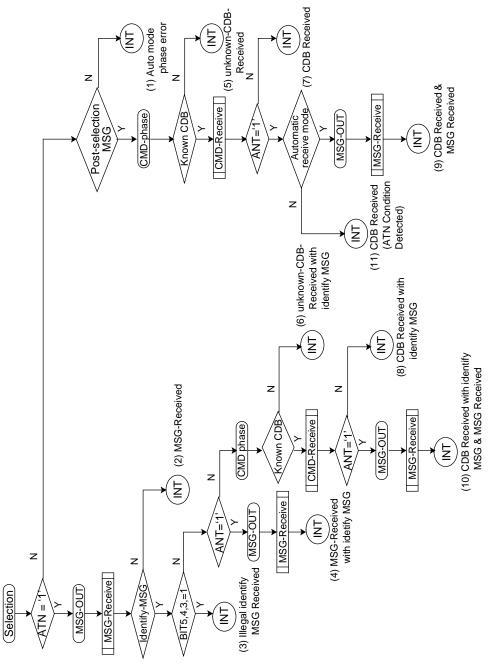
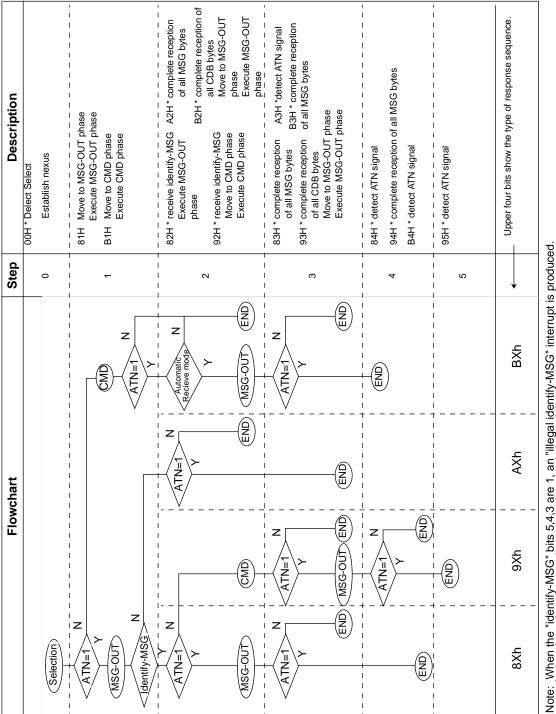
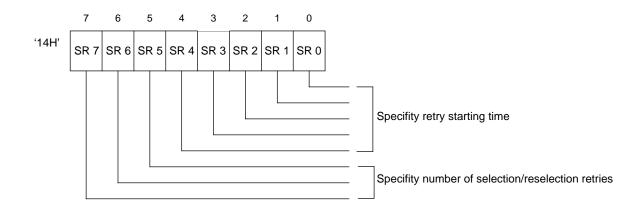



Figure 3.3.4.2a Target Automatic Selection Response Flowchart

Note: When the "identify-MSG" bits 5,4,3 are 1, an "illegal identify-MSG" interrupt is produced. At that time, the command status register code is the following. • if the initiator is continuously asserting the ATN signal 82_H • if the initiator is not continuously asserting the ATN signal 92_H


Table 3.3.4.2b Target Automatic Selection Response Sequence (Step Code Chart)

3.3.5 SEL/RESEL Retry Setting Register (READ/WRITE)

The SEL/RESEL retry setting register (READ/WRITE) specifies the number of selection/ reselection retries and the retry starting time.

SEL/RESEL Retry Setting Register (READ/WRITE)

The SEL/RESEL retry setting register (READ/WRITE) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7 to 5: Specifies number of selection/reselection retries

For commands which include selection/reselection, retry is performed the number of times specified by these bits even if selection/reselection timeout occurs. Specify the number of retries in accordance with Table 3-11.

Table 3.3.5 Relationship between SEL/RESEL Retry Setting Register and Number of Retries

SR 7	SR 6	SR 5	Number	SR 7	SR 6	SR 5	Number
1	1	1	Infinite	0	1	1	8
1	1	0	225	0	1	0	2
1	0	1	32	0	0	1	1
1	0	0	16	0	0	0	0

BIT 4 to 0 Specify retry starting time.

When selection/reselection timeout occurs during the initial selection/reselection, a retry is started after the passage of the time specified by this bit from a bus free state.

The time until a retry is determined by the following equation. However, when 00 is specified, there is not time count and retry is started once a bus free state exists.

 $t_{CLF} \times C_{NV} \times [(SR^4 \times 2^{19}) + (SR3 \times 2^{17}) + (SR2 \times 2^{15}) + (SR1 \times 2^{13}) + (SR0 \times 2^{11})]$

t_{CLF}: Input frequency 1 cycle

C_{NV}: Calculate as

(value shown by clock conversion register BIT 4, BIT 3)

SR4 to SR0: BIT 4 to 0 setting values

(Example)

When the input frequency is 30 MHz and internal operating clock is 10 MHz: t = 33.33 ns and $C_{\rm NV}$ = 3 so

 $33.33 \times 3 \times [(SR4 \times 2^{19}) + (SR3 \times 2^{17}) + (SR2 \times 2^{15}) + (SR1 \times 2^{13}) + (SR0 \times 2^{11})]$

Thus, the time range which can be set in this register is as follows.

Maximum (SR4 to SR0 = 1): 69 msec

Minimum (SR4 to SR1 = 0, SR0 = 1): 204 µsec

3.3.6 SEL/RESEL Timeout Setting Register (WRITE/READ)

The SEL/RESEL timeout setting register (WRITE/READ) specifies the selection/ reselection timeout delay time.

2

1

SEL/RESEL Timeout Setting Register (WRITE/READ)

5

The SEL/RESEL timeout setting register (WRITE/READ) bit configuration is shown below.

0

'15H'

7

6

	-	-	-	-	_		•
ST 7	ST 6	ST 5	ST 4	ST 3	ST 2	ST 1	ST 0
0.1	0.0	0.0	011	0.0	0.2	011	0.0

3

4

Specify the selection/reselection timeout time in this register.

The timeout time is determined by the following equation. However, when set to 00_{H} , timeout detection is not performed.

$$\begin{split} t_{CLF} \times C_{NV} \times [(ST7 \times 2^{25}) + (ST6 \times 2^{23}) + (ST5 \times 2^{21}) + (ST4 \times 2^{19}) + (ST3 \times 2^{17}) \\ + (ST2 \times 2^{15}) + (ST1 \times 2^{13}) + (ST0 \times 2^{11})] \end{split}$$

t_{CLF}: Input frequency 1 cycle

C_{NV}: Calculate as

(value shown by clock conversion register BIT 4, BIT 3)

ST7 to ST0: BIT 7 to 0 setting values

(Example)

When the input frequency is 30 MHz and internal operating clock is 10 MHz: t_{CLF} = 33.33 ns and C_{NV} = 3 so

 $\begin{array}{l} 33.33 \times 3 \times (\text{ST7} \times 2^{25}) + (\text{ST6} \times 2^{23}) + (\text{ST5} \times 2^{21}) + (\text{ST4} \times 2^{19}) + (\text{ST3} \times 2^{17}) \\ + (\text{ST2} \times 2^{15}) + (\text{ST1} \times 2^{13}) + (\text{ST0} \times 2^{11}) \end{array}$

Thus, the time range which can be set in this register is as follows.

Maximum (SR7 to SR0 = 1): 4.4 sec Minimum (ST7 to ST1 = 0, ST0 = 1): 204 µsec

Note: When 00H is set in this register, the timeout time is determined by the following equation.

 $t_{CLF} \times C_{NV} \times 2^{27}$

(Example)

When the input frequency is 30 MHz and internal operating clock is 10 MHz: t_{CLF} 33.33 ns and C_{NV} = 3 so, 33.33 × 3 × 2²⁷ = 13.4 sec

3.3 INITIAL SETTING REGISTER WINDOW

3.3.7 REQ/ACK Timeout Setting Register (WRITE/READ)

The REQ/ACK timeout setting register (WRITE/READ) specifies the REQ/ACK signal timeout time.

REQ/ACK Timeout Setting Register (WRITE/READ)

The REQ/ACK timeout setting register (WRITE/READ) bit configuration is shown below.

	7	6	5	4	3	2	1	0
'16H'	RT 7	RT 6	RT 5	RT 4	RT 3	RT 2	RT 1	RT 0

The specified REQ/ACK signal timeout times are explained below.

For asynchronous transfers (target): Time after the REQ signal is asserted and until the initiator asserts the ACK signal.

For asynchronous transfers (initiator): Time after the ACK signal is asserted and until the target asserts the REQ signal.

For synchronous transfers (target only): Time after the REQ signal is asserted until an ACK signal which makes the offset value 0 is received.

The timeout time is determined by the following equation. However, timeout detection is not performed when set at $00_{\rm H}$.

$$\begin{split} t_{\mathsf{CLF}} \times C_{\mathsf{NV}} \times (\mathsf{RT7} \times 2^{28}) + (\mathsf{RT6} \times 2^{26}) + (\mathsf{RT5} \times 2^{24}) + (\mathsf{RT4} \times 2^{22}) + (\mathsf{RT3} \times 2^{20}) \\ + (\mathsf{RT2} \times 2^{18}) + (\mathsf{RT1} \times 2^{16}) + (\mathsf{RT0} \times 2^{14}) \end{split}$$

 t_{CLF} : Input frequency 1 cycle C_{NV} : Calculate as

(value shown by clock conversion register BIT 4, BIT 3), when the clock conversion value is $0X_{\rm H}$

RT7 to RT0: BIT 7 to 0 setting values

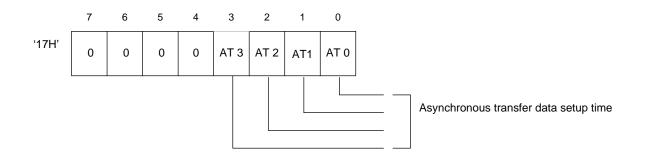
(Example)

When the input frequency is 30 MHz and internal operating clock is 10 MHz: t_{CLF} = 33.33 ns and C_{NV} = 3 so

 $\begin{array}{l} 33.33 \times 3 \times (\mathsf{RT7} \times 2^{28}) + (\mathsf{RT6} \times 2^{26}) + (\mathsf{RT5} \times 2^{24}) + (\mathsf{RT4} \times 2^{22}) + (\mathsf{RT3} \times 2^{20}) \\ + (\mathsf{RT2} \times 2^{18}) + (\mathsf{RT1} \times 2^{16}) + (\mathsf{RT0} \times 2^{14}) \end{array}$

Thus, the time range which can be set in this register is as follows.

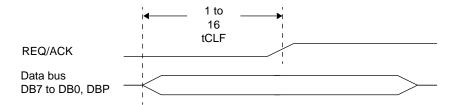
Maximum (when RT7 to RT0 = 1): 35.5 sec


Minimum (when RT7 to RT1 = 0, RT0 = 1): 1.6 msec

3.3.8 Asynchronous Setup Time Setting Register (WRITE/READ)

The asynchronous setup time setting register (WRITE/READ) specifies the timing of asserting REQ/ACK signals for asynchronous data transfers.

■ Asynchronous Setup Time Setting Register (WRITE/READ)


The asynchronous setup time setting register (WRITE/READ) bit configuration is shown below.

The specified data setup times are explained below.

Target: Time from placing the data in the data bus until the REQ signal is asserted.

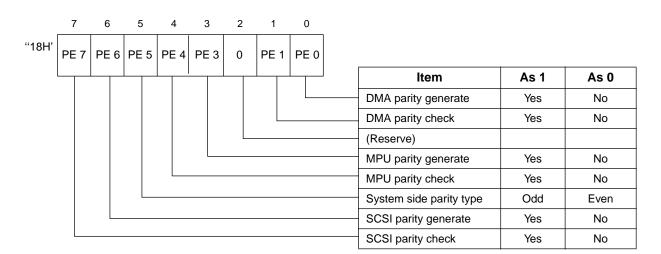
Initiator: Time from placing the data in the data bus until the ACK signal is asserted.

	AT 3	AT 2	AT 1	AT 0	SET UP TI ME
	0	0	0	1	1tclf
	0	0	1	0	2tclf
	0	0	1	1	3tclf
2	Ξ				
	1	1	1	1	15tclf
	0			0	
	0	0	0	0	16tclf

72

MEMO

3.3.9 Parity Error Detect Setting Register (WRITE/READ)


The parity error detect setting register (WRITE/READ) specifies the parity type, generation, and check in accordance with the MPU, DMA configuration.

Parity checks cannot be performed until this register is set up (using the SET UP REG command).

Parity generation enable/disable is only valid for the data phase.

Parity Error Detect Setting Register (WRITE/READ)

The parity error detect setting register (WRITE/READ) bit configuration is shown below.

Next, the functionality of each bit is described.

- BIT 7: SCSI parity check
 - 1: Functioning as the initiator, a parity check is performed for message in phase, status phase, and data in phase input data and data out phase output data.

Functioning as the target, a parity check is performed for message output phase, command phase, and data out phase input data and data in phase output data.

- 0: Parity check is not performed.
- BIT 6: SCSI parity generate
 - 1: Functioning as the initiator, parity generate is performed for data in phase input data and data out phase output data.

Functioning as the target, parity generate is performed for data out phase input data and data in phase output data.

0: Parity is not generated.

BIT 5: System side parity type

This bit specifies the MPU/DMA parity type for application systems incorporating the SPC.

- 1: Odd parity
- 0: Even parity
- BIT 4: MPU parity check
 - 1: During register write, data parity check is performed as data is written to the SPC registers (check is not performed for register read operations).

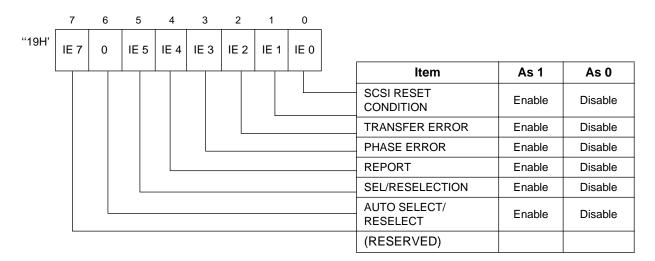
During data register read/write, a parity check is performed for data written in data registers while the data phase is being executed for program transfer and data read from the data registers.

- 0: Parity check is not performed.
- BIT 3: MPU parity generate
 - 1: Parity is generated for data written in the data register while the data phase is being executed for program transfer and data read from the data registers.
 - 0: Parity is not generated.

During register write, parity is not generated regardless of this bit setting. Also, during register read, parity is generated without any conditions (do not perform MPU parity checks for systems without a parity bit for the MPU data bus).

- BIT 1: DMA parity check.
 - 1: When the data phase is being executed for DMA transfers, a parity check is performed for data input from the DMA data bus and data output to the DMA data bus.
 - 0: Parity check is not performed.
- BIT 0: DMA parity generate
 - 1: When the data phase is being executed for DMA transfers, parity is generated for data input from the DMA data bus and data output to the DMA data bus.
 - 0: Parity is not generated.

See appendix B for more on how parity check and parity generate are performed within the SPC circuits.


Note: During the external bus access, the parity check and generate are not performed regardless of the register setting. Also, when performing the SCSI bus parity check in an application which does not have the parity bit on the MPU and DMA buses, please make "MPU and DMA parity generations" Enable. Furthermore, please make "Pull-up" for UDP, LDP, UDMDP, and LDMDP pins with approx. 10 k Ω resistor.

3.3.10 Interrupt Enable Setting Register (WRITE/READ)

The interrupt enable setting register (WRITE/READ) masks interrupt signals (INT) by interrupt cause groups.

Interrupt Enable Setting Register (WRITE/READ)

The interrupt enable setting register (WRITE/READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 7: All interrupt causes

- 1: Depends on BIT 5 to 0 Setting
- 0: Disable for all interrupt causes regardless of the BIT 5 to 0 setting.

The upper three bit values of the interrupt code shown in the interrupt status register (address 04_{H}) correspond to bit values of this register (Table 3.3.10).

See 5.7 for more on interrupt codes. Also, SPC reports interrupts to it's interrupt status register (04_H) regardless of this register setting.

Table 3.3.10 Relationship between Interrupt Enable Setting Register and Interrupt Codes

IE	Inte	errupt c	ode	Interrput code
BIT	IS7	IS6	IS5	type
0	0	0	0	SCSI reset
1	0	0	1	Interrupt related to transfers
2	0	1	0	Interrupt related to phase transitions
3	0	1	1	Interrupt related to reports
4	1	0	0	Interrupt related to selection/reselection
5	1	0	1	Interrupt related to automatic selection/reselection

MEMO

3.3.11 Group 6/7 Command Length Setting Register (WRITE/READ)

The group 6/7 command length setting register (WRITE/READ) specifies the group 6/7 command length.

■ Group 6/7 Command Length Setting Register (WRITE/READ) The group 6/7 command length setting register (WRITE/READ) bit configuration is shown below. 7 6 5 3 2 0 4 1 "1AH' GL 6 GL 5 GL 4 GL 7 GL 3 GL2 GL1 GL0 Group 6 command length Group 7 command length

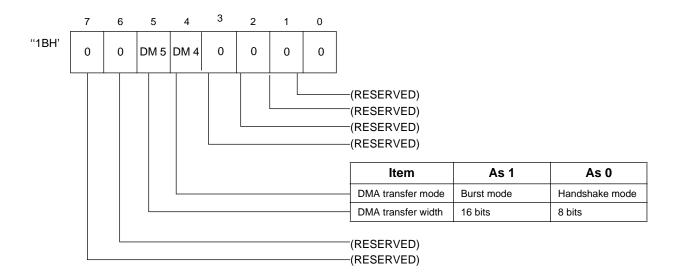
Set the values shown in Table 3-13 and Table 3-14 in the register bits in accordance with the group 6/7 command length

	GL 3	GL 2	GL 1	GL 0	Group 6 command length		
Ī	0	0	0	0	Not specified		
Ī	0	0	0	1	2 byte		
İ	0	0	1	0	4 byte		
Ī	0	0	1	1	6 byte		
 ~ 	÷						
	1	1	1	0	28 byte		
Ī	1	1	1	1	30 byte		

Table 3.3.11 List of Bit Setting for Group 6/7 Command Length Setting Register (Group 6)

		-	-		
	GL 7	GL 6	GL 5	GL 4	Group 7 command length
	0	0	0	0	Not specified
	0	0	0	1	2 byte
	0	0	1	0	4 byte
	0	0	1	1	6 byte
⊺ ≈]	:				
	1	1	1	0	28 byte
	1	1	1	1	30 byte

Table 3.3.12 List of Bit Setting for Group 6/7 Command Length Setting Register (Group 7)


3.3 INITIAL SETTING REGISTER WINDOW

3.3.13 DMA System Setting Register (WRITE/READ)

The DMA system setting register (WRITE/READ) specifies the DMA transfer mode.

DMA System Setting Register (WRITE/READ)

The DMA system setting register (WRITE/READ) bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 5: Set DMA transfer width

This bit specifies the DMA transfer width.

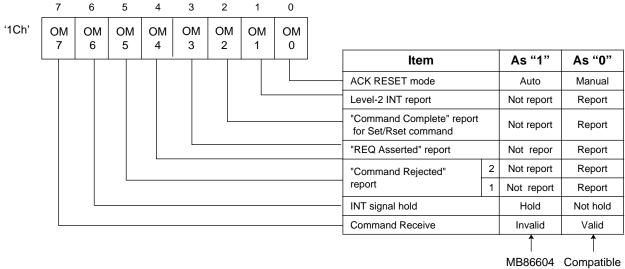
- 1: 16 bits
- 0: 8 bits
- BIT 4: DMA transfer mode

This bit specifies the DMA transfer mode.

- 1: Burst transfer mode While DMA transfer is possible, DREQ signal output is kept in an active state.
- 0: Handshake mode Transfer is performed by DREQ signal output and DACK signal input.

Handshake: One format for reading and writing data between devices. In this case, the following transfers are performed between the SPC and DMAC.

- (1) When data is transferred from the SPC to the DMAC
 - 1. SPC sets up the data to be sent.
 - 2. SPC asserts the DREQ signal.
 - 3. When the DMAC detects that the DREQ signal has been asserted, it receives the data and asserts the DACK signal.
 - 4. When the SPC detects that the DACK signal has been asserted, it negates the DREQ signal.
- (2) When data is transferred from the DMAC to the SPC
 - 1. SPC asserts the DREQ signal.
 - 2. After the DMAC detects that the DREQ signal has been asserted, the transfer data is sent to the bus.
 - 3. DMAC asserts the \overline{DACK} signal.
 - 4. When the SPC detects that the DACK signal has been asserted, the DREQ signal is negated.


The next time that data is detected, the steps 1. to 4. are repeated. However, until the DACK signal is negated, the next DREQ signal cannot be asserted.

3.3 INITIAL SETTING REGISTER WINDOW

3.3.14 Automatic Operation Mode Setting Register (WRITE/READ)

This register sets the SPC various operation modes.

Automatic Operation Mode Setting Register (WRITE/READ)

mode mode with MB86601A

Each bit function is described in the next section.

Bit 7: Command Receive Invalid Mode

This bit specifies whether or not SPC accepts the command received if the interrupt factor (cause) is held in the Interrupt Status Register (address $04_{\rm H}$).

- When "1": SPC ignores the command received and does not report the "Command Rejected" interrupt. Once all the interrupt factor is read out from the interrupt status register, it accepts the command.
- When "0": SPC accepts and executes the command received.
- Bit 6: INT Signal Hold Mode

This bit specifies whether or not the SPC holds the INT signal until all the interrupt factor and step code is read out.

- When "1": SPC holds the INT signal until all the interrupt and step code held in the SPC is read out.
- When "0": SPC makes the INT signal "Inactive" once an interrupt code is read out, even if SPC is holding multiple interrupt and step codes. Also, SPC makes the INT signal "Inactive" at which SPC BSY bit (Bit 6 of SPC Status Register) becomes "1" even if any interrupt code is read out.

Bit 5: Command Rejected Report Mode -1

This bit specifies whether or not the SPC reports the "Command Rejected" interrupt when the command is received during SPC BUSY state (SPC BSY=1).

- When "1": For example, while SPC is responding to the Selection/Reselection; if a command which selects/reselects is issued, SPC reports only the interrupt for the selection/reselection. However, when the selection/reselection command is issued after reading out the interrupt factor for the selection/reselection response, SPC reports the "Command Invalid" interrupt.
- When "0": SPC reports the "Command Rejected" interrupt after reporting the interrupt for the command currently in-process or selection/reselection response.
- Bit 4: Command Rejected Report Mode -2

This bit specifies whether or not the SPC reports the "Command Rejected" interrupt when SPC responded to the selection/reselection from other device while SPC is executing a selection/reselection command or waiting for it.

- When "1": SPC reports only the interrupt for selection/reselection and does not report the "Command Rejected" interrupt.
- When "0": SPC reports the interrupt for selection/reselection after reporting the "Command Rejected" interrupt.
- Bit 3: REQ Asserted Report Mode

This bit specifies whether or not the SPC reports the "REQ Asserted" interrupt when detecting the REQ signal asserted by a target. (For Initiator operation)

When "1": SPC does not report the "REQ Asserted" interrupt. However, SPC reports it when detecting the REQ signal in the data-phase, regardless of this bit setting.

When "0": SPC reports the "REQ Asserted" interrupt.

Bit 2: Command Complete Report Mode for SET/RESET commands

This bit specifies whether or not SPC reports the "Command Complete" interrupt for the SET/RESET commands.

This is valid in the user program operation.

When "1": SPC does not report the "Command Complete".

When "0": SPC reports the "Command Complete".

The applicable SET/RESET commands for this mode are as follows:

- 1) Initiator: SET ATN (0Ah), RESET ATN (0Bh), SET ACK (0Ch), RESET ACK (0Dh)
- 2) Target: SET REQ (31h), RESET REQ (32h)
- 3) Common: SET RST (48h), RESET RST (49h)

Bit 1: Level-2 Interrupt Report Mode

This bit specifies whether or not the SPC reports the Level-2 interrupts occurred in the user program operation.

- When "1": SPC does not report the Level-2 interrupts and does not retain them in the Interrupt Status Register. The result of command execution is retained in the accumulator and within the SPC. The retained values are as follows:
- 1) If "Command Complete": retains "00h".
- 2) If "Initial Phase Error" or "ATN Condition Detected": retains "01h".

The result of the execution can be identified by the conditional branch instruction following the execution. See Section 5.4.2 and 5.5.2 for this mode, which shows the examples of user program flow.

- When "0": SPC reports the Level-2 interrupts and sequence step codes. In this case, reading out and operating the interrupt and step codes are required every execution of discrete command using MOVE instruction. See Section 5.4.1 and 5.5.1 for this mode, which shows the examples of user program flow.
- Bit 0: Auto ACK RESET Mode

This bit specifies how to negate the final ACK signal for the transfer command. (For Initiator operation)

- When "1": SPC automatically negates the final ACK signal during the transfer command. (Auto ACK reset)
- When "0": SPC does not negate the final ACK signal automatically, but negates it with "RESET ACK" command. (Manual ACK reset)

1) Commands which complete with automatically negating the final ACK regardless of this bit setting:

- SEND 1-MSG with ATN (19h), - SEND or RECEIVE DATA from MPU or DMA / SEND or RECEIVE DATA to MPU or DMA with Padding (14h, 15h, 16h, 17h)

2) Commands/Operations which complete with negating the final ACK by "RESET ACK" Command (Manual ACK Reset) regardless of this bit setting:

- RECEIVE N-BYTE-MSG (07h), RECEIVE MSG (1Ah), RESET ATN (0Bh), -When "Initial Phase Error & MSG Received" interrupt is generated. - When Auto-Reselection response is operating.
- 3) Commands/Operations which depend on this bit setting:
 - Transfer Commands except 1) and 2) above.
 - SET ATN (0Ah)
 - When "Initial Phase Error & Status Received" interrupt is generated.

Please note that the command step number in the Auto ACK Reset Mode will be (08h + Step code with Manual ACK reset mode). However, the following commands and interrupts are the exceptions for this command step number:

- SEND or RECEIVE DATA from MPU or DMA / SEND or RECEIVE DATA to MPU or DMA with Padding (14h, 15h, 16h, 17h)
- RECEIVE N-MSG (07h), RECEIVE MSG (1Ah), RESET ATN (0Bh)
- When "Initial Phase Error & MSG Received" is generated.
- When "Initial Phase Error & Status Received" is generated.
- When Auto-Reselection response is operating.

MEMO

3.3 INITIAL SETTING REGISTER WINDOW

3.3.15 SPC Timeout Setting Register (WRITE/READ)

This register specifies the timeout value for SPC BUSY state.

SPC Timeout Setting Register

The configuration of this register is shown below.

 7
 6
 5
 4
 3
 2
 1
 0

 "1DH"
 TO 7
 TO 6
 TO 5
 TO 4
 TO 3
 TO 2
 TO 1
 TO 0

Set the SPC timeout value at this register. When SPC is in Busy state longer than the time specified in this register, SPC makes TMOUT pin "Active" and sets "1" to the SPC Timeout bit (bit 4 of SPC Status Register) to report "SPC timeout".

SPC does not detect the timeout if "00h" is set at this register.

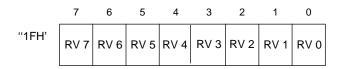
The SPC timeout is calculated by the following equation:

$$\begin{split} t_{\mathsf{CLF}} &\times C_{\mathsf{NV}} \times [(\mathsf{TO7} \times 2^{30}) + (\mathsf{TO6} \times 2^{28}) + (\mathsf{TO5} \times 2^{26}) + (\mathsf{TO4} \times 2^{24}) + (\mathsf{TO3} \times 2^{22}) \\ &+ (\mathsf{TO2} \times 2^{20}) + (\mathsf{TO1} \times 2^{18}) + (\mathsf{TO0} \times 2^{16})] \end{split}$$

t_{CLF}: Input clock Frequency (1 cycle)

C_{NV}: Value indicated in Bit 4 and Bit 3 of Clock Conversion Register.

TO7 - TO0: The above mentioned register values

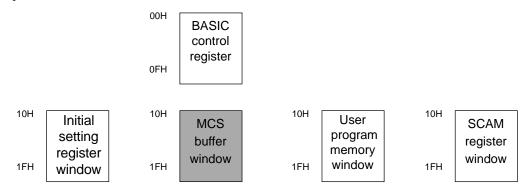

3.3 INITIAL SETTING REGISTER WINDOW

3.3.16 Revision Indication Register (WRITE/READ)

This register indicates the SPC chip revision.

Revision Indication Register (WRITE/READ)

The configuration of this register is shown below.


In order to see the device revision code, please take the following ways.

- 1. Write "00h" to the address "1Fh" at the initial setting.
- 2. Issue the "Setup REG" command.
- 3. Read out the value for the address "1Fh" after completing the "Setup REG" command.

The value except "00h" read out is the chip revision.

3.4 MCS BUFFER WINDOW

A 32-byte memory for sending and receiving messages, commands, and statuses with two 16-byte windows.

Note: SCAM register window is available in MB86604L only.

MCS Buffer Window

The MCS buffer window buffer list is shown in Table 3-15.

No		Α	ddres	S		Write	Read
NO	A4	A3	A2	A1	A0	write	Reau
10	1	0	0	0	0	SEND MCS buffer	RECEIVE MCS buffer
11	1	0	0	0	1	SEND MCS buffer	RECEIVE MCS buffer
12	1	0	0	1	0	SEND MCS buffer	RECEIVE MCS buffer
13	1	0	0	1	1	SEND MCS buffer	RECEIVE MCS buffer
14	1	0	1	0	0	SEND MCS buffer	RECEIVE MCS buffer
15	1	0	1	0	1	SEND MCS buffer	RECEIVE MCS buffer
16	1	0	1	1	0	SEND MCS buffer	RECEIVE MCS buffer
17	1	0	1	1	1	SEND MCS buffer	RECEIVE MCS buffer
18	1	1	0	0	0	SEND MCS buffer	RECEIVE MCS buffer
19	1	1	0	0	1	SEND MCS buffer	RECEIVE MCS buffer
1A	1	1	0	1	0	SEND MCS buffer	RECEIVE MCS buffer
1B	1	1	0	1	1	SEND MCS buffer	RECEIVE MCS buffer
1C	1	1	1	0	0	SEND MCS buffer	RECEIVE MCS buffer
1D	1	1	1	0	1	SEND MCS buffer	RECEIVE MCS buffer
1E	1	1	1	1	0	SEND MCS buffer	RECEIVE MCS buffer
1F	1	1	1	1	1	SEND MCS buffer	RECEIVE MCS buffer

Table 3.4 MCS Buffer Window Buffer List

SEND MCS Buffer (WRITE)

This buffer is for writing messages, commands, and statuses to be sent (32 bytes).

Start writing the messages, commands, and statuses to be sent form address 0.

The SPC starts sending data from address 0.

When a command that requires the SEND MCS buffer to be accessed is sent, access to the SEND MCS buffer is not allowed until that command is completed.

RECEIVE MCS Buffer (READ)

This buffer is for reading messages, commands, and statuses received by the SPC (32 bytes).

Start reading the received messages, commands, and statuses from address 0.

The SPC starts saving the received data from address 0.

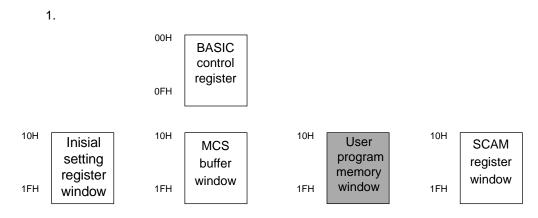
When a command that requires the RECEIVE MCS buffer to be accessed is sent, access to the RECEIVE MCS buffer is not allowed until that command is completed.

Also, when data is received, be sure to read the RECEIVE MCS buffer (the number of read bytes is displayed in the modified byte register).

Until all the data is read out, the next message, command, or status cannot be received.

Note: Access the RECEIVE MCS Buffer in the following cases.

1) Initiator operation:


Access until a RESET ACK command is issued after completion of the command which receives the data to the RECEIVE MCS Buffer or after completion of the automatic reselection response. When Auto ACK Reset mode is enabling, read out MCS buffer before issuing the next command.

2) Target operation:

Access until the phase changes after completion of the command which receives the data to the RECEIVE MCS Buffer or after completion of the automatic selection response.

3.5 USER PROGRAM MEMORY WINDOW

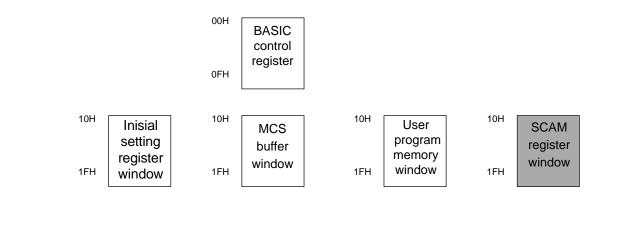
A 256-byte memory for reading and writing user programs with 16 16-byte windows.

Note: SCAM register window is available in the MB86604L only.

User Program Memory Window

A list of user program memory window memory areas is shown in Table 3-16.

No		A	ddres	s		Write	Read		
NO	A4	A3	A2	A1	A0	write	Redu		
10	1	0	0	0	0	User program memory	User program memory		
11	1	0	0	0	1	User program memory	User program memory		
12	1	0	0	1	0	User program memory	User program memory		
13	1	0	0	1	1	User program memory	User program memory		
14	1	0	1	0	0	User program memory	User program memory		
15	1	0	1	0	1	User program memory	User program memory		
16	1	0	1	1	0	User program memory	User program memory		
17	1	0	1	1	1	User program memory	User program memory		
18	1	1	0	0	0	User program memory	User program memory		
19	1	1	0	0	1	User program memory	User program memory		
1A	1	1	0	1	0	User program memory	User program memory		
1B	1	1	0	1	1	User program memory	User program memory		
1C	1	1	1	0	0	User program memory	User program memory		
1D	1	1	1	0	1	User program memory	User program memory		
1E	1	1	1	1	0	User program memory	User program memory		
1F	1	1	1	1	1	User program memory	User program memory		


 Table 3.5
 User Program Memory Window Memory Area List

■ User Program Memory (READ/WRITE)

This memory is for reading and writing user program commands and data.

While the SPC is executing the user program, access to the user program memory and MCS buffers is denied.

3.6 SCAM REGISTER WINDOW

No		Α	ddres	S		Write	Pood
No	A4	A3	A2	A1	A0	Write	Read
10	1	0	0	0	0	SCAM Data Bus Register	•
11	1	0	0	0	1	SCAM Control Register	•
12	1	0	0	1	0	(Reserved)	(Reserved)
13	1	0	0	1	1	(Reserved)	(Reserved)
14	1	0	1	0	0	(Reserved)	(Reserved)
15	1	0	1	0	1	(Reserved)	(Reserved)
16	1	0	1	1	0	(Reserved)	(Reserved)
17	1	0	1	1	1	(Reserved)	(Reserved)
18	1	1	0	0	0	(Reserved)	(Reserved)
19	1	1	0	0	1	(Reserved)	(Reserved)
1A	1	1	0	1	0	(Reserved)	(Reserved)
1B	1	1	0	1	1	(Reserved)	(Reserved)
1C	1	1	1	0	0	(Reserved)	(Reserved)
1D	1	1	1	0	1	(Reserved) (Reserved)	
1E	1	1	1	1	0	(Reserved) (Reserved)	
1F	1	1	1	1	1	(Reserved) (Reserved)	

SCAM register window is available in the MB86604L only.

3.6.1 SCAM REGISTER

The SCAM Register is initialized by the external reset or software reset command.

(1) SCAM Data Bus Register

Bank	Address		R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Dalik	MT	In			DIL U	DIU	DICT	Dit 5			Dit U
01	10h		R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Initia	Initial Value		'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

This register is used to directly access the SCSI data bus from the system side for execution of the SCAM protocol. The signal level is reserved from those in the SCSI bus (writing 1 outputs low on the SCSI data bus).

(2) SCAM Control Register

Bank	Add	ress	R/W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	MT	In	r./ v v		DILO	Dit 5	DIL 4		DIL Z		Bit U
01	1'	1h	'0'	'0'	'0'	'0'	SEL	BSY	MSG	C/D	I/O
Initia	al Value		'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

This register is used to directly access the SCSI control signals from the system side for execution of the SCAM protocol. The signal level is reversed from those in the SCSI bus (writing 1 outputs low on the SCSI data bus).

Note:

1. When executing the SCAM protocol, set the SCSI driver to the open-drain mode. As for reading the SCSI bus, first write 0 to negate the SCSI driver outputs (Hi-Z) and then, read the SCSI bus.

2. When returning from SCAM protocol to the normal operation, make sure to initialize the SCAM data bus and SCAM control registers by writing 0 at all bits or executing the software reset command.

CHAPIER 4 COMMANDS

This chapter explains the various commands used by the SPC.

- 4.1 SPC COMMANDS
- 4.2 LIST OF INITIATOR COMMANDS
- 4.3 LIST OF TARGET COMMANDS
- 4.4 LIST OF COMMON COMMANDS
- 4.5 PROGRAMMABLE COMMANDS

4.1 SPC COMMANDS

SPC commands can be grouped into four different types.

Initiator commands: Commands to establish the SPC as the initiator and commands for the initiator.

Target commands: Commands to establish the SPC as the target and commands for the target.

Common commands: Commands for the initiator or the target and commands for the operating devices.

Programmable commands: Commands used when the SPC is being run by a user program.

In addition, depending on how these commands are assigned, they can be segregated further as sequential commands, discrete commands, or special commands.

SPC Command Types Based on the Assignment Method

SPC commands can be assigned to the command register or to user program memory. Depending on the assignment method, these commands can be separated into the following three types.

Sequential commands: Command which conducts a sequence which is to some extent consecutive (including phase transitions). This type of command can only be assigned to the command register. It cannot be assigned to user program memory.

Discrete commands: Command which conducts an operation that disassembles a sequential command. This type of command can be assigned to either the command register or to user program memory.

Special commands: Command which is used when the SPC is run by a user program. This type of command can only be assigned to user program memory.

Table 4.1 shows a list of SPC command types based on assignment method differences.

Assignment method Command type	Command register assignment	User program memory assignment		
Sequential command	O (1 byte instruction)	×		
Discrete command	O (1 byte instruction)	O (1 or 2 byte instruction)		
Special command	×	O (1 or 2 byte instruction)		

Table 4.1 List of Command Types Based on Assignment Method Differences

○: Can be specified ×: Cannot be specified

4.2 LIST OF INITIATOR COMMANDS

Table 4-2 shows a list of initiator commands. See appendix C for more on the step codes of each command.

■ List of Initiator Commands

	No.		Со	mn	nan	d	co	de			Operands (for programs)	Command name
	1	00 _H	0	0	0	0	0	0	0	0	(Impossible)	SELECT & CMD
	2	01 _H	0	0	0	0	0	0	0	1	(Impossible)	SELECT & 1-MSG & CMD
	3	02 _H	0	0	0	0	0	0	1	0	(Impossible)	SELECT & N-Byte-MSG & CMD
Sequential	4	03 _H	0	0	0	0	0	0	1	1	(Impossible)	SELCT & 1-MSG
	5	04 _H	0	0	0	0	0	1	0	0	(Impossible)	SELCT & N-Nyte-MSG
	6	05 _H	0	0	0	0	0	1	0	1	(Impossible)	SEND N-Byte-MSG
	7	06 _H	0	0	0	0	0	1	1	0	(Impossible)	SEND N-Byte-CMD
	8	07 _H	0	0	0	0	0	1	1	1	(Impossible)	RECEIVE N-Byte-MSG
	9	08 _H	0	0	0	0	1	0	0	0	—	SELECT
	10	09 _H	0	0	0	0	1	0	0	1	—	SELECT with ATN
	11	0A _H	0	0	0	0	1	0	1	0	_	SET ANT
	12	0B _H	0	0	0	0	1	0	1	1	_	RESET ANT
	13	0C _H	0	0	0	0	1	1	0	0		SET ACK
	14	0D _H	0	0	0	0	1	1	0	1	—	RESET ACK
	15	10 _H	0	0	0	1	0	0	0	0	_	SEND DATA from MPU
	16	11 _H	0	0	0	1	0	0	0	1	—	SENT DATA from DMA
	17	12 _H	0	0	0	1	0	0	1	0	—	RECEIVE DATA from MPU
Discrete	18	13 _H	0	0	0	1	0	0	1	1	_	RECEIVE DATA from DMA
	19	14 _H	0	0	0	1	0	1	0	0	—	SEND DATA from MPU (Padding)
	20	15 _H	0	0	0	1	0	1	0	1	—	SEND DATA from DMA (Padding)
	21	16 _H	0	0	0	1	0	1	1	0	—	RECEIVE DATA from MPU (Padding)
	22	17 _H	0	0	0	1	0	1	1	1	—	RECEIVE DATA from DMA (Padding)
	23	18 _H	0	0	0	1	1	0	0	0	Address of message to be sent	SEND 1-MSG
	24	19 _H	0	0	0	1	1	0	0	1	Address of message to be sent	SEND 1-MSG with ATN
	25	1A _H	0	0	0	1	1	0	1	0	Write address of message	RECEIVE MSG
	26	1B _H	0	0	0	1	1	0	1	1	Address of command be sent	SEND CMD
	27	1C _H	0	0	0	1	1	1	0	0	Write address of status	RECEIVE STATUS

Table 4.2 List of Initiator Commands

4.2 LIST OF INITIATOR COMMANDS

4.2.1 List of Initiator Sequential Command Functions

Table 4-3 shows a list of initiator sequential command names and their functions.

■ List of Initiator Sequential Command Functions

Table 4.2.1 List of Initiator Sequential Command Functions

No.	Command name	Function	Initial settings
1	SELECT & CMD	Perform selection Send CDB*	 Write the target ID number in the SEL/RESEL ID register Write the CDB in the SEND MCS buffer
2	SELECT & 1-MSG & CMD	Perform selectionSend a single messageSend CDB	 Write the target ID number in the SEL/RESEL ID register Write the message and then the CDB in the SEND MCS buffer
3	SELECT & N-Byte- MSG & CMD	 Perform selection Send an N-byte message Send CDB 	 Write the target ID number in the SEL/RESEL ID register Write the message and then the CDB in the SEND MCS buffer Write the number of message bytes in the MC byte register
4	SELECT & 1-MSG	Perform selectionSend a single message	 Write the target ID number in the SEL/RESEL ID register Write the message in the SEND MCS buffer
5	SELECT & N-Byte- MSG	 Perform selection Send an N-byte message (used for sending two or more messages) 	 Write the target ID number in the SEL/RESEL ID register Write the message in the SEND MCS buffer Write the number of message bytes in the MC byte register
6	SEND N-Byte- MSG	Send an N-byte message (used for sending two or more messages)	 Write the message in the SEND MCS buffer Write the number of message bytes in the MC byte register
7	SEND N-Byte- CMD	Send an N-byte CDB (used for sending an undefined CDB)	 Write the CDB in the SEND MCS buffer Write the number of CDB bytes in the MC byte register
8	RECEIVE N-Byte- MSG	Receive an N-byte message (used for receiving a message which is 33 bytes or more in length)	Write the number of message bytes in the MC byte register

CDB: Command descriptor block

* In the manual ACK Reset mode, the transfer completion is reported with asserting the final ACK signal. So, negating the ACK signal is required before issuing a command for the next phase using "RESET ACK" command. (See section 3.3.13.) Also, note that "02_H" or more values must be set in the MC Byte Register if the command requiring the register setting is issued.

MEMO

4.2.2 List of Initiator Discrete Command Functions

Table 4.2.2 shows a list of initiator discrete command names and their functions.

■ List of Initiator Discrete Command Functions

Table 4.2.2 List of Initiator Discrete Command Function

No.	Command name	Function	Initial settings		
9	SELECT	Perform selection	Write ID number to the SEL/RESEL ID register		
10	SELECT with ATN	Perform selection and assert ATN signal	Write ID number to the SEL/RESEL ID register		
11	SET ATN	Assert ATN signa	None		
12	RESET ATN	Negate ATN signal	None		
13	SET ACK	Assert ACK signal	None		
14	RESET ACK	Negate ACK signal	None		
15	SEND DATA from MPU	Send data by the program transfer mode ^{*1}	Write the number of data blocks and the number of bytes sent to the data block register and the data byte register.		
16	SEND DATA from DMA	Send data by the DMA transfer mode *1	Write the number of data blocks and the number of bytes sent to the data block register and the data byte register.		
17	RECEIVE DATA to MPU	Receive data by the program transfer mode *1	Write the number of data blocks and the number of bytes received to the data block register and the data byte register.		
18	RECEIVE DATA to DMA	Receive data by the DMA transfer mode *1	Write the number of data blocks and the number of bytes received to the data block register and the data byte register.		
19	SEND DATA from MPU (PADDING)	Send the counter amount of data by the program transfer mode and perform PADDING transfer until the target changes phase ^{*2}	Write the number of data blocks and the number of bytes sent to the data block register and the data byte register.		
20	SEND DATA from DMA (PADDING)	Send the counter amount of data by the DMA transfer mode and perform PADDING transfer until the target changes phase ^{*2}	Write the number of data blocks and the number of bytes sent to the data block register and the data byte register.		
21	RECEIVE DATA to MPU (PADDING)	Receive the counter amount of data by the program transfer mode and discard data being received until the target changes phase [*] 2	Write the number of data blocks and the number of bytes received to the data block register and the data byte register.		

No.	Command name	Function	Initial settings		
22	RECEIVE DATA to DMA (PADDING)	Receive the counter amount of data by the DMA transfer mode and discard data being received until the target changes phase ^{*2}	Write the number of data blocks and the number of bytes received to the data block register and the data byte register.		
23	SEND 1-MSG	Send a single message ^{*1}	Write the message to the SEND MCS buffer		
24	SEND 1-MSG with ATN	Send a single message while continuing to assert the ATN signal *2	Write the message to the SEND MCS buffer		
25	RECEIVE MSG	Send a single message ^{*1}	None		
26	SEND CMD	Send a single CDB ^{*1}	Write the CDB to the SEND MCS buffer		
27	RECEIVE STATUS	Receive a single status ^{*1}	None		

Table 4.2.2 List of Initiator Discrete Command Functions (Continued)

CDB: Command descriptor block

*1 In the manual ACK Reset mode, the transfer completion is reported with asserting the final ACK signal. So, negating the ACK signal is required before issuing a command for the next phase using "Reset ACK" command. (See section 3.3.13)

*2 Command is complete negating the final ACK signal regardless of the ACK Reset mode setting.

Starting and Stopping PADDING Transfers

When the transfer of the number of data bytes specified by the data block register and the data byte register is complete, the SPC starts a PADDING transfer.

In cases where the data block register and the data byte register initial values are set to 0, the PADDING transfer starts from the first byte.

PADDING transfer continues until the target changes phase.

4.3 LIST OF TARGET COMMANDS

Table 4-5 shows a list of target commands.

See appendix D for more on the step codes of each command.

■ List of Target Commands

	No.	Command code				de			Operands (for programs)	Command name		
	1	20 _H	0	0	1	0	0	0	0	0	(Impossible)	RESELECT & 1-MSG
	2	21 _H	0	0	1	0	0	0	0	1	(Impossible)	RESELECT & N-BYTE-MSG
	3	22 _H	0	0	1	0	0	0	1	0	(Impossible)	RESELECT & 1-MSG TERMINATE
	4	23 _H	0	0	1	0	0	0	1	1	(Impossible)	RESELECT & 1-MSG & LINK TERMINATE
	5	24 _H	0	0	1	0	0	1	0	0	(Impossible)	TERMINATE
	6	25 _H	0	0	1	0	0	1	0	1	(Impossible)	LINK TERMINATE
Sequential	7	26 _H	0	0	1	0	0	1	1	0	(Impossible)	DISCONNECT SEQUENCE
	8	27 _H	0	0	1	0	0	1	1	1	(Impossible)	SEND N-BYTE-MSG
	9	28 _H	0	0	1	0	1	0	0	0	(Impossible)	RECEIVE N-BYTE-CMD
	10	29 _H	0	0	1	0	1	0	0	1	(Impossible)	RECEIVE N-BYTE-MSG
	11	2A _H	0	0	1	0	1	0	1	0	(Impossible)	RESELECT & N-MSG TERMINATE
	12	2B _H	0	0	1	0	1	0	1	1	(Impossible)	RESELECT & N-MSG & LINK TERMINATE
	13	2C _H	0	0	1	0	1	1	0	0	(Impossible)	DISCONNECT SEQUENCE 2
	14	30 _H	0	0	1	1	0	0	0	0	—	RESELECT
	15	31 _H	0	0	1	1	0	0	0	1	—	SET 'REQ'
	16	32 _H	0	0	1	1	0	0	1	0	—	RESET 'REQ'
	17	33 _H	0	0	1	1	0	0	1	1	_	DISCONNECT
	18	34 _H	0	0	1	1	0	1	0	0	_	SEND DATA FROM MPU
Discrete	19	35 _H	0	0	1	1	0	1	0	1	_	SEND DATA FROM DMA
Discrete	20	36 _H	0	0	1	1	0	1	1	0	_	RECEIVE DATA FROM MPU
	21	37 _H	0	0	1	1	0	1	1	1	_	RECEIVE DATA FROM DMA
	22	38 _H	0	0	1	1	1	0	0	0	Address of message to be sent	SEND 1-MSG
	23	39 _H	0	0	1	1	1	0	0	1	Write address of message	RECEIVE MSG
	24	3A _H	0	0	1	1	1	0	1	0	Address of status to be sent	SEND STATUS
	25	3B _H	0	0	1	1	1	0	1	1	Write address of CDB	RECEIVE CMD

Table 4.3 List of Target Commands

MEMO

4.3 LIST OF TARGET COMMANDS

4.3.1 List of Target Sequential Command Functions

Table 4-6 shows a list of target sequential command names and their functions.

■ List of Target Sequential Command Functions

Table 4.3.1 List of Target Sequential Command Functions

No.	Command name	Function	Initial settings
1	RESELECT & 1-MSG	 Performs reselection Moves to message in phase Sends a single message 	 Write the initiator ID number in the SEL/RESEL ID register Write the message in the SEND MCS buffer
2	RESELECT & N-Byte-MSG	 Performs reselection Moves to message in phase Sends an N-byte message 	 Write the initiator ID number in the SEL/RESEL ID register Write the message in the SEND MCS buffer Set the number of message bytes in the MC byte register
3	RESELECT & 1-MSG & TERMINATE	 Performs reselection Moves to message in phase Sends a single message Performs TERMINATE sequence 	 Write the initiator ID number in the SEL/RESEL ID register Write the message, status (1 byte), and then the next message (1 byte) in the SEND MCS buffer
4	RESELECT & 1-MSG & LINK TERMINATE	 Performs reselection Moves to message in phase Sends a single message Performs LINK TERMINATE sequence 	 Write the initiator ID number in the SEL/RESEL ID register Write the message, status (1 byte), and then the next message (1 byte) in the SEND MCS buffer
5	TERMINATE	 Moves to status phase Sends a 1-byte status Moves to message in phase Sends a 1-byte message Disconnects 	Write the status (1 byte) and then the message (1 byte) in the SEND MCS buffer
6	LINK TERMINATE	 Moves to status phase Sends a 1-byte status Moves to message in phase Sends a 1-byte message 	Write the status (1 byte) and then the message (1 byte) in the SEND MCS buffer
7	DISCONNEC T SEQUENCE	 Moves to message in phase Sends a 2-byte message Disconnects 	Write the message (2 bytes) in the SEND MCS buffer
8	SEND N-Byte-MSG	 Moves to message in phase Send an N-byte message (used for sending two or more messages) 	Write the message in the SEND MCS buffer Write the number of message bytes in the MC byte register

CDB: Command descriptor block

No.	Command name	Function	Initial settings
9	RECIEVE N-Byte-CMD	 Move to command phase Receive an N-byte CDB (used for receiving an undefined CDB) 	Write the number of CDB bytes in the MC byte register
10	RECEIVE N-Byte-MSG	 Move to message out phase Receive an N-byte message (used for receiving a message which is 33 bytes or more in length) 	Write the number of message bytes in the MC byte register
11	RESELECT & N-Byte-MSG & TEMINATE	 Performs reselection Moves to message in phase Sends an N-byte message Performs TERMINATE sequence 	 Write the initiator ID number in the SEL/RESEL ID register Write the message, status (1 byte), and then the next message (1 byte) in the SEND MCS buffer Set the number of bytes of the first message in the MC byte register
12	RESELECT & N-Byte-MSG & TERMINATE	 Performs reselection Moves to message in phase Sends an N-byte message Performs LINK TERMINATE sequence 	 Write the initiator ID number in the SEL/RESEL ID register Write the message, status (1 byte), and then the next message (1 byte) in the SEND MCS buffer Set the number of bytes of the first message in the MC byte register
13	DISCONNECT SEQUENCE 2	Moves to message in phaseSends a 1-byte messageDisconnects	Write the message (1 byte) in the SEND MCS buffer

Table 4.3.1 List of Target Sequential Command Functions (Continued)

Note: Set $"02_{H}"$ or more value in the MC Byte Register if a command requiring for the register setting is issued. (Do not set $"01_{H}"$.)

4.3 LIST OF TARGET COMMANDS

4.3.2 List of Target Discrete Command Functions

Table 4-7 shows a list of target discrete command names and their functions.

■ List of Target Discrete Command Functions

Table 4.3.2 List of Target Discrete Command Functions

No.	Command name	Function	Initial settings
14	RESELECT	Perform reselection	Write the initiator ID number in the SEL/RESEL ID register
15	SET REQ	Assert REQ signal	None
16	RESET REQ	Negate REQ signal	None
17	DISCONNECT	Release BSY signal	None
18	SEND DATA from MPU	Move to data in phaseSend data by the program transfer mode	Write the number of blocks and the number of bytes of the data sent to the data block register and the data byte register
19	SEND DATA from DMA	 Move to data in phase Receive data by the DMA transfer mode 	Write the number of blocks and the number of bytes of the data sent to the data block register and the data byte register
20	RECEIVE DATA from MPU	 Move to data out phase Receive data by the program transfer mode 	Write the number of blocks and the number of bytes of the data received to the data block register and the data byte register
21	RECIEVE DATA from DMA	 Move to data out phase Send data by the DMA transfer mode 	Write the number of blocks and the number of bytes of the data received to the data block register and the data byte register
22	SEND 1-MSG	Move to message in phaseSend a single message	Write the message to the SEND MCS buffer
23	RECEIVE MSG	Move to message out phaseReceive a single message	None
24	SEND STATUS	Move to status phaseSend a 1-byte status	Write the status (1 byte) to the SEND MCS buffer
25	RECEIVE CMD	Move to command phase Receive CDB	None

CDB: Command descriptor block

4.4 LIST OF COMMON COMMANDS

Table 4-8 shows a list of common commands.

■ List of Common Commands

No.		Command code								Operands (for programs)	Command name
1	40 _H	0	1	0	0	0	0	0	0	(Impossible)	SEFTWARE RESET
2	41 _H	0	1	0	0	0	0	0	1	(Impossible)	TRANSFER RESET
3	42 _H	0	1	0	0	0	0	1	0	(Impossible)	SCSI RESET
4	43 _H	0	1	0	0	0	0	1	1	(Impossible)	SET UP REG
5	44 _H	0	1	0	0	0	1	0	0	(Impossible)	INIT DIAG START
6	45 _H	0	1	0	0	0	1	0	1	(Impossible)	TARG DIAG START
7	46 _H	0	1	0	0	0	1	1	0	(Impossible)	DIAG END
8	47 _H	0	1	0	0	0	1	1	1	(Impossible)	COMMAND PAUSE
9	48 _H	0	1	0	0	1	0	0	0	(Impossible)	SET RST
10	49 _H	0	1	0	0	1	0	0	1	(Impossible)	RESET RST

Table 4.4 List of Common Commands

4.4.1 List of Common Command Functions

Table 4-9 shows a list of common command names and their functions.

■ List of Common Command Functions

Table 4.4.1 List of Common Command Functions

No.	Command name	Function	Initial settings
1	SOFTWARE RESET	 Out the SPC internal circuits in a reset state Move the SPC internal circuits from a reset state to a READY state 	None
2	TRANSFER RESET	Put the SPC internal circuits related to transfers in a reset state	None
3	SCSI RESET	Send the RST signal which is a SCSI bus signal	None
4	SET UP REG	Make the initial settings valid	None
5	INIT DIAG START	Enables the SPC to perform self diagnosis and simulate transfers as the initiator	None
6	TRAG DIAG START	Enables the SPC to perform self diagnosis and simulate transfers as the target	None
7	DIAG END	Move from the self diagnosis mode to the standard mode	None
8	COMMAND PAUSE	 Force a transfer to stop during execution of the data phase Suspend selection/reselection 	None
9	SET RST	Send SCSI RST signal and keep it	None
10	RESET RST	Make reset SCSI RST signal set by SET RST command	None

Software Reset Command

When the SOFTWARE RESET command is sent, a Command Complete interrupt is not produced. The SPC comes to a full stop.

In order to remove the software reset state, it is necessary to send another SOFTWARE RESET command (move to Ready state).

Self Diagnosis

The SPC performs a self diagnosis when the INIT DIAG START command or the TARG DIAG START command is sent.

Self diagnosis is performed for the following items and after completion, the self diagnosis results are reported.

- Arbitration sequence
- Selection/reselection sequence

Also, depending on the command sent, the self diagnosis can be followed by a simulation of initiator or target transfers.

- When the INIT DIAG START command is sent, the SPC can simulate a transfer as the initiator.
- When the TARG DIAG START command is sent, the SPC can simulate a transfer as the target.

See 5.10 for more on this topic.

Command Pause Command

• The transfer can be forced to stop only during the data phase.

For SCSI Output

During a DMA transfer, the DREQ signal output is immediately suspended, and during a program transfer, 0 is shown in the DATA REQ bit (SPC status register: bit 2).

Transfers to the SCSI bus (data output) continue until the data register is EMPTY.

For SCSI Input

New REQ signal and ACK signal issues to the SCSI bus are suspended.

MPU, DMA side transfers (DMA transfers, program transfers) are performed until the data register is EMPTY.

As the target, the REQ/ACK handshake is fully complete, but as the initiator, it is possible to receive additional REQ signals.

 Suspension of selection/reselection is only possible prior to execution of the selection/ reselection phase.

When the SPC has already started selection/reselection, the COMMAND PAUSE command is invalid and selection/reselection continues being executed. ("Command Rejected" interrupt is not generated.)

 After the COMMAND PAUSE command is received and SPC completed the process, a COMMAND PAUSE interrupt is reported.

4.4 LIST OF COMMON COMMANDS

4.4.2 Common Command Step Codes

The common command step codes are shown below.

Common Command Step codes

- No.2 TRANSFER RESET
- No.3 SCSI RESET
- No.9 SET RST
 No.10 RESET RST
- No.4 SET UP REG
- No.5 INIT DIAG START
- No.6 TARG DIAG START
- No.7 DIAG END

Flowchart	Step	Discription
Receive command	0	* Receive command
Complete	1	Command Complete

• No.8 COMMAND PAUSE

Flowchart	Step	Discription
Receive command	0	* Receive command
Complete	1	Command processing COMMAND PAUSE

MEMO

4.5 PROGRAMMABLE COMMANDS

The user program is stored ahead of time in the user program memory, and operation can be started by writing the user program memory head address in the command register.

Programmable commands can be either discrete commands or special commands and have a command length of 1 byte or 2 bytes.

Programmable Commands

Table 4.5 shows a list of programmable command field assignments.

	Command code (1st byte)	Operands (2nd byte)		
	Commands for sending messages, commands, and status phases	Memory address where data to be sent resides		
Discrete commands	Commands for receiving messages, commands, and status phases	Memory address where data to be received will b stored		
	Commands for receiving or sending data phases Commands which do not perform transfers	-		
	AND command	Data for AND calculation or memory address where data for AND calculation resides		
	TEST AND command	Data for AND calculation or memory address where data for AND calculation resides		
Special commands	COMPARE command	Data for COMPARE calculation or memory address where data for COMPARE calculation resides		
	Conditional branch command	Jump head address		
	MOVE command	Memory address for MOVE		
	STOP command	User status code		
	NOP command	-		

Table 4.5 List of Programmable Command Filed Assignments

Points to Watch Creating a User Program

Pay attention to the following points when creating a user program.

 Points to watch when using an AND command, TEST AND command, COMPARE command, or MOVE command

When the interrupt status register and the command step register are specified by an **AND** command, **TEST AND** command, **COMPARE** command, or **MOVE** command (register memory case only), since the interrupt register and the command register are FIFO type registers, when multiple causes are being held, the SPC will display the next interrupt status or command step.

When multiple **AND** commands directed at the above-mentioned registers are executed, the register content must be stored by a **MOVE** command (register memory). By using the **MOVE** command (memory accumulator) in this way, it is possible to execute multiple **AND** commands.

Also, when multiple **TEST AND** commands or **COMPARE** commands are executed, specify the accumulator register from the second command (the **TEST AND** command or **COMPARE** command executes the command after loading the specified register's content in the accumulator and accumulator content does not change).

· Automatic mode during user program operation

The Automatic receive mode is invalid.

The Automatic selection/reselection response mode is valid, and this mode is given priority over user program operations.

When the SPC is selected/reselected while a discrete command which includes the user program's own Select/Reselect is being executed, the user program operation is suspended and the SPC moves to Automatic selection/reselection. At this point, the user program is ignored.

Even when the Automatic selection/reselection response mode is not established, once the SPC is selected/reselected, the user program operation is suspended and the SPC responds to the select/reselect.

• Interrupt during user program operation

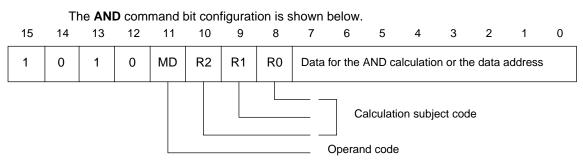
When an interrupt cause such as an error occurs during user program operation, the SPC response varies depending on the interrupt cause level.

- Level 1: The user program operation is suspended, and an interrupt is sent to the host MPU. After that, the SPC switches to READY state.
- Level 2: The user program operation is maintained, and an interrupt is not sent to the host MPU. The interrupt status is stored in the status register and becomes subject to the calculation command.

However, when Level 2 interrupt report mode is disabling (not report), the interrupt status is not stored in the status register.

Level 2 interrupts are indicated below. All other interrupts are treated as level 1 interrupts.

Interrupt type	Operation mode	Interrupt content
REPORT	INIT/TARG	Command completed
KEFORT	TARG	ATN condition detected
Phase error	INIT	Initial phase error


4.5.1 AND Command

The AND command loads the values indicated by the calculation subject code in the accumulator and performs a logical product calculation between the values shown in the accumulator and the operand.

The calculation result is placed in the accumulator.

In the logical product calculation, when both bits values in the calculation are 1, the calculation result is 1. On the other hand, when one value is 0 and the other 1 or when both values are 0, the calculation result is 0.

AND Command

Next, the functionality of each bit is described.

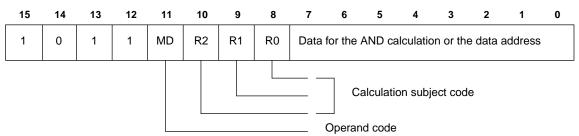
BIT 1: Operand code

This bit specifies the meaning of the operand.

- 1: The address where the logical product subject data resides is placed in the operand.
- 0: The logical product subject data is placed in the operand.
- BIT 10 to 8: Calculation subject code

This bit specifies the values for which the logical product calculation will be performed. The relationship between these bit settings and the registers which are used in the logical product calculation is shown in Table 4.5.1.

Table 4.5.1 Relationship between AND Command Bit Settings (BIT 10 to 8)and the Values Used in the Logical Product Calculation


R2	R1	R0	Logical product calculation values
0	0	0	1st byte received in message, command, or status phase
0	0	1	2nd byte received in message, command, or status phase
0	1	0	SPC status register
0	1	1	Nexus status register
1	0	0	Interrupt status register
1	0	1	Command step register
1	1	0	SCSI control signal status register
1	1	1	Accumulator

4.5.2 TEST AND Command

The TEST AND command loads the values indicated by the calculation subject code in the accumulator and performs a logical product calculation between the values shown in the accumulator and the operand.

The calculation result is stored in the SPC and can be used by the conditional branch command. The accumulator value does not change.

TEST AND Command

Next, the functionality of each bit is described.

BIT 1: Operand code

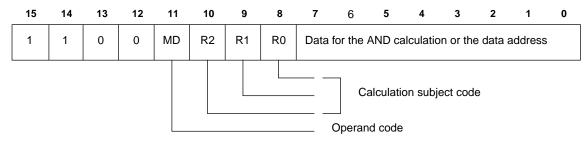
This bit specifies the meaning of the operand.

- 1: The address where the logical product subject data resides is placed in the operand.
- 0: The logical product subject data is placed in the operand.
- BIT 10 to 8: Calculation subject code

This bit specifies the values for which the logical product calculation will be performed. The relationship between these bit settings and the registers which are used in the logical product calculation is shown in Table 4.5.2.

Table 4.5.2 Relationship between TEST AND Command Bit Settings (BIT 10 to 8) and the Values Used in the Logical Product Calculation

R2	R1	R0	Logical product calculation values
0	0	0	1st byte received in message, command, or status phase
0	0	1	2nd byte received in message, command, or status phase
0	1	0	SPC status register
0	1	1	Nexus status register
1	0	0	Interrupt status register
1	0	1	Command step register
1	1	0	SCSI control signal status register
1	1	1	Accumulator


4.5.3 COMPARE Command

The COMPARE command loads the values indicated by the calculation subject code in the accumulator and performs a comparison calculation between the values shown in the accumulator and the operand.

The calculation result is stored in the SPC and can be used by the conditional branch command. The accumulator value does not change.

COMPARE Command

The COMPARE command bit configuration is shown below.

Next, the functionality of each bit is described.

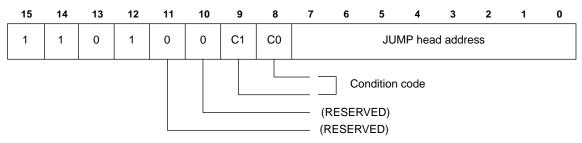
BIT 11: Operand code

This bit specifies the meaning of the operand.

- 1: The address where the logical product subject data resides is placed in the operand.
- 0: The logical product subject data is placed in the operand.
- BIT 10 to 8: Calculation subject code

This bit specifies the values for which the comparison calculation will be performed. The relationship between these bit settings and the registers which are used in the comparison calculation is shown in Table 4.5.3.

 Table 4.5.3 Relationship between COMPARE Command Bit Settings (BIT 10 to 8)


 and the Values Used in the Comparison Calculation

R2	R1	R0	Comparison calculation values
0	0	0	1st byte received in message, command, or status phase
0	0	1	2nd byte received in message, command, or status phase
0	1	0	SPC status register
0	1	1	Nexus status register
1	0	0	Interrupt status register
1	0	1	Command step register
1	1	0	SCSI control signal status register
1	1	1	Accumulator

4.5.4 Conditional Branch Command

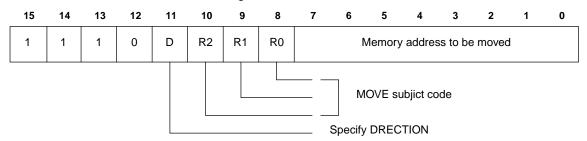
The conditional branch command executes conditional branch operations that utilize COMPARE command or TEST AND command results as well as unconditional branch operations.

Conditional Branch Command

The conditional branch command bit configuration is shown below.

BIT 9 and 8: Condition code

This bit specifies the branch condition.


C1	C2	Operation
0	1	When the calculation result is not 0, execution control moves to the address indicated by the operand, and when the calculation result is 0, the next command is executed (conditional branch).
1	0	When the calculation result is 0, execution control moves to the address indicated by the operand, and when the calculation result is not 0, the next command is executed (conditional branch).
0	0	Execution control moves to the address indicated by the operand unconditionally (unconditional branch).
1	1	Undefined

4.5.5 MOVE Command

The MOVE command is used to copy the values specified by the MOVE subject code to the memory address specified by the operand or to copy the memory address values specified by the operand to the accumulator.

MOVE Command

The **MOVE** command bit configuration is shown below.

Next, the functionality of each bit is described.

BIT 11: Specify DIRECTION

This bit specifies the direction in which the data is moved.

- 1: The values specified by the MOVE subject code are copied to the address specified by the operand (register \rightarrow memory)
- 0: The address value specified by the operand is copied to the accumulator (memory \rightarrow accumulator).

BIT 10 to 8: MOVE subject code

This bit specifies the values to be moved. The relationship between these bit settings and the values subject to the MOVE is shown in Table 4.5.5.

R2	R1	R0	MOVE operation calculation values
0	0	0	1st byte received in message, command, or status phase
0	0	1	2nd byte received in message, command, or status phase
0	1	0	SPC status register
0	1	1	Nexus status register
1	0	0	Interrupt status register
1	0	1	Command step register
1	1	0	SCSI control signal status register
1	1	1	Accumulator

Table 4.5.5 Relationship between MOVE Command Bit Settings (BIT 10 to 8) and the Values Subject to the MOVE Operation

4.5.6 STOP Command

The STOP command is used to stop the user program operation.

When the execution of this command is completed, the SPC has moved from user program operation to standard operation (moves to an idle state and waits to receive commands from the command register).

STOP Command

The **STOP** command bit configuration is shown below.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	10	1	1	1		Use	status	code	
•	Product interrupt														

Next, the functionality of each bit is described. BIT 7 to 5 are already set to 1 and cannot be changed.

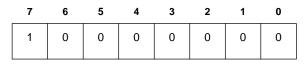
BIT 8: Produce interrupt

This bit specifies whether an interrupt is sent to the host MPU.

- 1: Interrupt is sent.
- 0: Interrupt is not sent.

When there is an interrupt request to the host MPU from the SPC, BIT 7 of the SPC status register displays a 1 regardless of this bit setting.

BIT 4 to 0: User status code


This bit specifies the user status code.

4.5.7 NOP Command

The NOP command stands for NO OPERATION which means that nothing is executed and the SPC moves on to the next step command.

NOP Command

The **NOP** command bit configuration is shown below.

CHAPTER 5 OPERATIONS

This chapter explains SPC operations.

- 5.1 SPC INITIALIZATION
- 5.2 INITIAL SETTINGS FOR SPC INTERNAL REGISTERS
- 5.3 SCSI BUS PHASE
- 5.4 USER PROGRAM OPERATION (INITIATOR)
- 5.5 USER PROGRAM OPERATION (TARGET USER PROGRAMMING EXAMPLE)
- 5.6 COMMAND QUEUING EXECUTION
- 5.7 INTERRUPT CODES
- 5.8 INTERRUPT CODES AND COMMAND STEPS
- 5.9 SPC OPERATION DURING ERROR DETECTION
- 5.10 DIAGNOSIS MODE
- 5.11 SCAM FUNCTION (ONLY FOR MB86604L)

5.1 SPC INITIALIZATION

The SPC is reset by the following procedures.

- When the RESET pin input = L (hardware reset)
- Sending a SOFTWARE RESET command (software reset)
- Sending a TRANSFER RESET command (transfer reset)
- When a SCSI reset condition exists (reset condition)
- After switching on the power, be sure to perform a hardware reset.

■ SPC Initialization

The SPC is reset by the following procedures. After switching on the power, be sure to perform a hardware reset.

- Hardware reset All control circuits are reset. Make the RESET pin active for 4CLK or longer. During a hardware reset, it is not possible to write to the internal registers.
- Software reset

All control circuits are reset.

During a software reset, except for writing the **SOFTWARE RESET** command to the command register, it is not possible to send other commands or to write to other internal registers.

Just like the hardware reset, the internal register values are initialized. However, the initial setting register holds the register values established before the **SOFTWARE RESET** command was issued and by sending the SET UP REG command again, the register values established before the **SOFTWARE RESET** command was issued are reinstated.

Also, the MCS buffer and user program memory are not initialized, retaining their values.

Transfer reset

The SPC data transfer circuits are reset.

The SCSI connection state does not change. Also, the selection/reselection phase is not affected.

When the SPC is functioning as the initiator, if the **TRANSFER RESET** command is sent at the same time as a target data transfer (input) starts, only the first byte is received (only for asynchronous transfers).

Reset Condition

When the SPC is connected, output from all SCSI pins is suspended. The internal registers are not initialized.

MEMO

5.2 INITIAL SETTINGS FOR SPC INTERNAL REGISTERS

After switching on the power, some of the internal registers remain undefined.

Once the hardware reset or software reset is removed, establish the initial settings for the SPC internal registers.

Initial Settings for SPC Internal Registers

Table 5.2a and Table 5.2b provide a list of the internal register states (BASIC control registers and initial settings registers) after a hardware reset or software reset.

Also, Figure 5.1 illustrates the initial setting flow after a hardware reset or software reset.

(
	Deviator	Initialization value										Read value								
ADR	Register	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			
00h	DATA	x	х	Х	x	х	х	х	х	х	х	х	х	х	Х	х	x			
01h	DATA	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X			
02h	SPC STATUS		—	—	—	—	—	—		0	0	0	0	0	0	0	1			
03h	NEXUS STATUS		—	—		—	—	—	—	0	0	0	0	0	0	0	0			
04h	SELID/INT-STATUS	0	—	—	—	—	0	0	0	0	0	0	0	0	0	0	0			
05h	CMD/CMD STEP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
06h	DATA BLOCK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
07h	DATA BLOCK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
08h	DATA BYTE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
09h	DATA BYTE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0Ah	DATA BYTE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0Bh	DIAG/SCSI CNTL		Х	Х	—	Х	Х	Х	Х		(S	now	s S(CSI	sign	al)				
0Ch	TRANS MODE	0	—	—	—	—	—	—	—	0	0	0	0	0	0	0	0			
0Dh	TRANS PERIOD		—	—	0	0	0	0	0	0	0	0	0	0	0	0	0			
0Eh	TRANS OFFSET	—	—	—	0	0	0	0	0	0	0	0	0	0	0	0	0			
0Fh	WINDOW/MBC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

 Table 5.2a
 Internal Register State After Hardware Reset or Software Reset

 (BASIC Control Registers)

Notes:

1 The transfer parameters stored by individual ID (transfer-mode/period/offset) are all initialized.

2 The value of X bits does not change after hardware reset or software reset. The value after switching on the power is undefined.

3 The transfer reset clears Bit 1 and Bit 0 of SPC status register and Bit 5 to Bit 0 of Modified-Byte-Register.

	Deviator		In	itia	lizat	ion	valı	ue		Read value									
ADR	Register	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0		
10h	CLK-CNV	0	0	0	0	1	0	1	1	х	х	х	х	x	x	х	х		
11h	OWN-ID	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	X		
12h	Response operation mode	0	0	Х	0	0	0	0	Х	Х	Х	Х	Х	Х	X	Х	X		
13h	SEL/RESEL operation mode	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X		
14h	SEL/RESEL RETRY	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X		
15h	SEL/RESEL TOUT	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X		
16h	REQ/ACK TOUT	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	X		
17h	ASYNC SETUP-TIME	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	X		
18h	PARITY ENABLE	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	X		
19h	INT ENABLE	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	X		
1Ah	GROUP 6/7	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X		
1Bh	DMA SYSTEM	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	X		
1Ch	Auto Operation mode	X	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X		
1Dh	SPC TIMEOUT	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	X	Х	Х		
1Fh	Revision indication	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х		

Table 5.2b Internal Register State After Hardware Reset or Software Reset (Initial Setting Registers)

Note: The value of X bits does not change after hardware reset or software reset. The value after switching on the power is undefined. Registers values do not change by Transfer Reset.

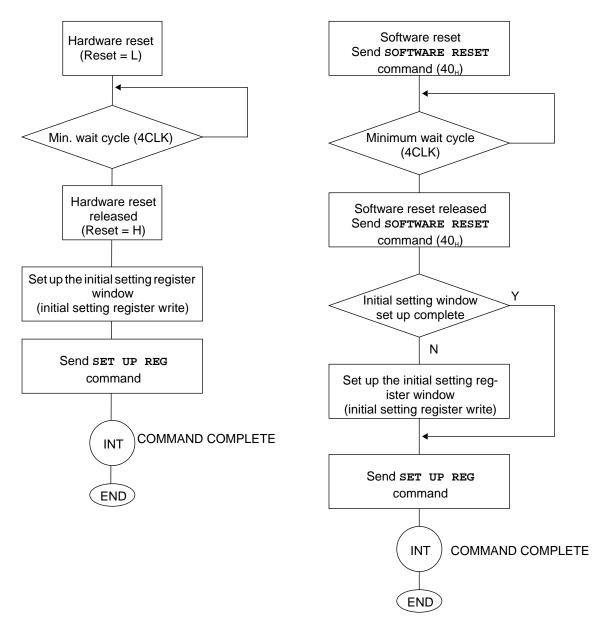


Figure 5.2 Initial Setting Flow After Hardware Reset or Software Reset

MEMO

5.3 SCSI BUS PHASE

When the SPC is selected/reselected by another bus device, a response sequence is automatically executed if the response conditions are fulfilled.

Also, there are three types of operations after the selection/reselection response.

- Immediately after the selection/reselection, report a Selected, Selected with ATN, or Reselected interrupt.
- Execute the Automatic selection response mode or Automatic reselection response mode which are already set up in the SPC.
- Perform a user program operation.

Selection from Another Bus Device

When the SPC is selected/reselected by another bus device, a response sequence is automatically executed if the response conditions are fulfilled.

- (1) Selection phase response
- a. BIT 6 of the Response mode setting register (selection response) is 1.
- b. SCSI data bus data (ID data) satisfies the following conditions.
 - The bit setting in the self ID setting register is "true."
 - When BIT 1 of the Response mode setting register (single initiator option) is 1, there is 1 "true" bit.
 - When BIT 1 of the Response mode setting register (single initiator option) is 0, there are 2 "true" bits.
 - The parity bit is correct (a parity check is conducted regardless of BIT 7 of the parity error detect setting register).
- (2) Reselection phase response
- a. BIT 7 of the Response mode setting register (reselection response) is 1.
- b. SCSI data bus data (ID data) satisfies the following conditions.
 - The bit setting in the self ID setting register is "true."
 - There are 2 "true" bits.
 - The parity bit is correct (a parity check is conducted regardless of BIT 7 of the parity error detect setting register).

Operation after the Response

There are three types of operations after the selection/reselection response.

- Immediately after the selection/reselection, report a Selected, Selected with ATN, or Reselected interrupt.
- Execute the Automatic selection response mode or Automatic reselection response mode which are already set up in the SPC.

Automatic selection response mode: Place 0 in BIT 7 and 1 in BIT 5 of the SEL/RESEL mode setting register.

Automatic reselection response mode:Place 0 in BIT 7 and 1 in BIT 6 of the SEL/ RESEL mode setting register.

• Perform a user program operation.

Place 1 in BIT 7 and the user program start address in BIT 6-0 of the SEL/RESEL mode setting register.

See 5.4 and 5.5 for a user program example.

Selection/Reselection Phase

By sending a command that includes selection/reselection, a sequence from arbitration to selection/reselection is executed.

It is also possible to start directly from the selection phase without executing the arbitration phase.

When the operation following the response is the Automatic selection/reselection response mode or user program operation, the SPC may already be operating when the command including selection/reselection is received.

Confirm that BIT 6 of the SPC status register (BUSY state) is 0 when sending a command that includes selection/reselection.

MSG, CMD, STATUS Phases

Use the MCS buffer for transfers taking place in the message phase, command phase, or status phase.

See 5.3.1 for more on these phases.

Data Phase

The following types of transfers are possible in the data phase.

- Program transfer mode: In this mode, the MPU conducts the transfer by a program. This MPU program uses the data register (00/01 address) to prepare data for sending and to read data received.
- DMA transfer mode: In this mode, the data transfer is performed by the DMA controller. The DMA interface is used to prepare data for sending and to read data received.

5.3.1 Message, Command, and Status Phases

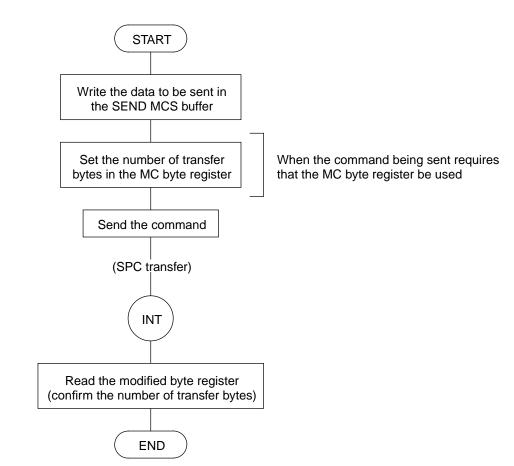
Use the MCS buffer for transfers taking place in the message phase, command phase, or status phase.

MSG, CMD, STATUS Phases

Watch the following points when executing the message phase, command phase, or status phase.

(1) Send

- Write data for sending from address 0 of the SEND MCS buffer and then send the command.
- When sending a command which requires that the number of bytes be specified, be sure to indicate the number of bytes in the MC byte register ahead of time.
- During the interval after sending a command and until the SPC reports a completion, do not write to the SEND MCS buffer.
- After the transfer is completed, the number of transfer bytes is shown in the modified byte register (when the transfer is ended by an error, the number of bytes transferred normally is shown).


(2) Receive

- When the previous phase is a reception from a non-data phase, read the RECEIVE MCS buffer before sending a command.
- When sending a command which requires that the number of bytes be specified, be sure to indicate the number of bytes in the MC byte register ahead of time.
- During the interval after sending a command and until the SPC reports a completion, do not read from the RECEIVE MCS buffer.
- After the transfer is completed, the number of transfer bytes is shown in the modified byte register (when the transfer is ended by an error, the number of bytes transferred normally is shown).
- After the transfer is completed, read the data received from address 0 of the RECEIVE MCS buffer.

5.3.1.1 Send Flowchart for Message, Command, Status Phases

A flowchart for the send operation in the message, command, and status phases is shown in Figure 5.3.1.1

When N bytes are transferred, be sure to indicate the number of transfer bytes in the MC byte register before implementation.

Send Flowchart for Message, Command, Status Phases

Figure 5.3.1.1 Send Flowchart for Message, Command, Status Phases

5.3.1.2 Receive Flowchart for Message, Command, Status Phases

A flowchart for the receive operation in the message, command, and status phases is shown in Figure 5.3.1.2

When N bytes are transferred, be sure to indicate the number of transfer bytes in the MC byte register before implementation.

Receive Flowchart for Message, Command, Status Phases

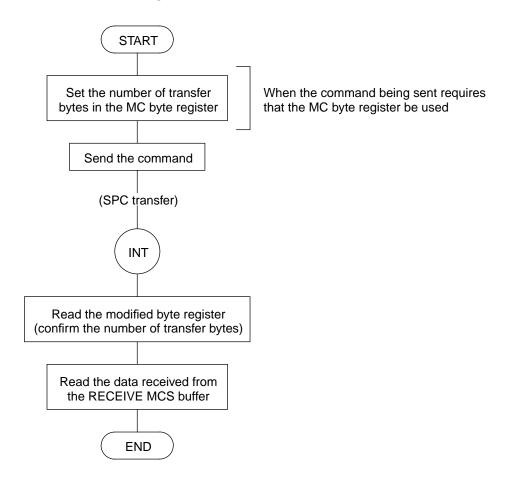


Figure 5.3.1.2 Receive Flowchart for Message, Command, Status Phases

5.3.2 Data Phase

The following types of transfers are possible in the data phase.

Program transfer mode:	In this mode, the MPU conducts the transfer by a program. This MPU program uses the data register (00/01 addresses) to prepare data for sending and to read data received.
C	this mode, the data transfer is performed by the DMA controller. The DMA interface is used to prepare data for sending and to read data received.

■ Program Transfer Mode

In the program transfer mode, be sure to confirm the SPC state shown in the SPC status register during the transfer.

- Until BIT 2 of the SPC status register (DATA TRANS REQ) becomes 1, do not access the data register.
- BIT 6 (BUSY state) can be used to determine when the transfer is finished.

DMA Transfer Mode

The DMA transfer mode has a handshake transfer option which utilizes the DREQ signal and $\overline{\text{DACK}}$ signal and a burst transfer option in which the DREQ signal remains active as long as the data register is in the Ready state. The DMA transfer type can be specified by the DMA system setting register.

- After sending the DMA transfer command, do not activate the DACK signal, IORD signal, or IOWR signal until the DREQ signal becomes H (while the DREQ signal is L).
- When a COMMAND PAUSE command is sent during output (SPC functioning as the target), the DREQ signal is L asynchronously with the DACK signal, IORD signal, and IOWR signal.

Points to Watch in Data Phase Execution

Watch the following points in data phase execution.

- Set Synchronous transfer mode transfer parameters (transfer mode, transfer period, transfer offset) before sending the SEND DATA command or RECEIVE DATA command.
- When the SPC is functioning as the initiator and data in phase is confirmed before a command is sent, data from the target is received in the following manner. However, the ACK signal is not asserted.

Asynchronous: 1 byte

Synchronous: Number of bytes equivalent to the number of REQ pulses received

• When the SPC is functioning as the initiator and a data transfer is performed in the Synchronous mode, set things up so that a single data phase transfer is performed for a single command.

Do not send the **SEND DATA** command or the **RECEIVE DATA** command two or more times in succession.

Figure 5.3.2.1 shows a flowchart for send operations in the program transfer mode. Be sure to set the transfer parameters for synchronous transfers.

Send Flowchart for Program Transfer Mode

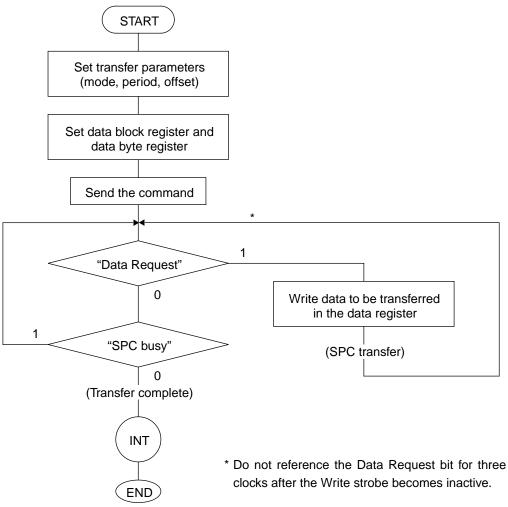


Figure 5.3.2.1 Send Flowchart for Program Transfer Mode

5.3.2.2 Receive Flowchart for Program Transfer Mode

Figure 5.3.2.2 shows a flowchart for receive operations in the program transfer mode. Be sure to set the transfer parameters for synchronous transfers.

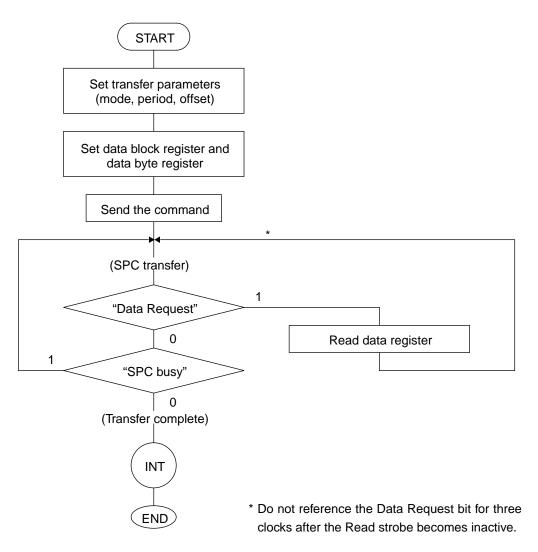


Figure 5.3.2.2 Receive Flowchart for Program Transfer Mode

5.4 USER PROGRAM OPERATION (INITIATOR)

An initiator user programming example which uses a user program to execute command queuing is shown below.

Preliminary Conditions for Initiator Program Execution

The following preliminary conditions are required for execution of the initiator user program example explained here.

- The processing results for each phase (interrupt status, command step) are stored sequentially from address 90_H. (For example 1)
- When an Initial Phase Error occurs, the phase is determined and operation is stopped after reception.
- ACK Reset mode is set as "Auto" and Level 2 INT report mode is set as "not report" in the Auto operation Mode Register (1ch). (For example 2)

Figure 5.4 shows a summary flowchart of an initiator programming example. For a more detailed flowchart of program operations, see Appendix E.

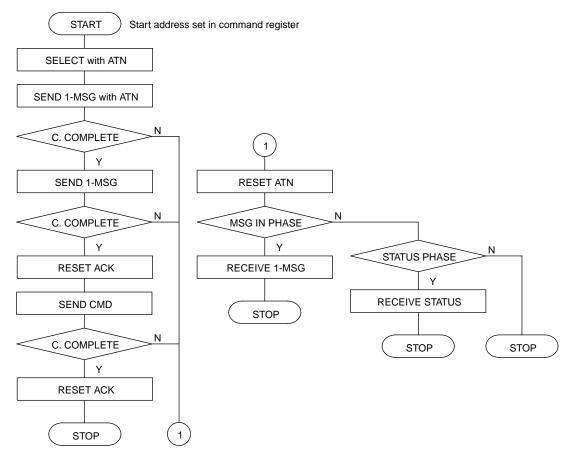


Figure 5.4 Summary Flowchart of Initiator User Programming Example

MEMO

5.4 USER PROGRAM OPERATION (INITIATOR)

5.4.1 Explanation of Initiator User Programming Example 1 (Address 00_H to 34_H)

Table 5.4.1 explains the initiator user programming example (address 00_{H} to 34_{H}).

■ Explanation of Initiator User Programming Example (Address 00_H to 34_H)

Table 5.4.1 Explanation of Initiator User Programming Example (Address 00_{H} to 34_{H})

No.	Address	Code	Explanation
1	00	09	SELECT WITH ATN command
2	01 02	EC 90	MOVE the interrupt status register to address $90_{\rm H}$
3	03 04	ED 91	MOVE the command step register to address $91_{\rm H}$
4	05 06	19 B0	SEND 1-MSG with ATN command. The data to be transferred is 1 byte starting from $B0_{H}$.
5	07 08	EC 92	MOVE the interrupt status register to address $92_{\rm H}$
6	09 0A	ED 93	MOVE the command step register to address $93_{\rm H}$
7	0B 0C	E0 92	MOVE the data stored in address 92_{H} to the accumulator
8	0D 0E	CF 40	Perform a compare calculation for the accumulator value and the data stored in address $40_{\rm H}$
9	0F 10	D1 50	When the calculation result is not 0, branch to address $50_{\rm H}$
10	11 12	18 B2	SEND 1-MSG command. The data to be transferred is 2 bytes starting from $B2_{\mu}$.
11	13 14	EC 94	MOVE the interrupt status register to address 94 _H
12	15 16	ED 95	MOVE the command step register to address $95_{\rm H}$
13	17 18	E0 94	MOVE the data stored in address $94_{\rm H}$ to the accumulator
14	19 1A	CF 40	Perform a compare calculation for the accumulator value and the data stored in address $40_{\rm H}$
15	1B 1C	D1 50	When the calculation result is not 0, branch to address $50_{\rm H}$
16	1D	0D	RESET ACK command
17	1E 1F	EC 96	MOVE the interrupt status register to address $96_{\rm H}$
18	20 21	ED 97	MOVE the command step register to address $97_{\rm H}$
19	22 23	1B B8	SEND CMD command. The data to be transferred is 6 bytes starting from $B8_{H}$
20	24 25	EC 98	MOVE the interrupt status register to address $98_{\rm H}$
21	26 27	ED 99	MOVE the command step register to address 99 _H

No.	Address	Code	Explanation
22	28 29	E0 98	MOVE the data stored in address 98_{H} to the accumlator
23	2A 2B	CF 40	Perform a compare calculation for the accumulator value and the data stored in address $40_{\rm H}$
24	2C 2D	D1 50	When the calculation result is not 0, branch to address $50_{\rm H}$
25	2E	0D	RESET ACK command
26	2F 30	EC 9A	MOVE the interrupt status register to address $9A_{H}$
27	31 32	ED 9B	MOVE the command step register to address $9B_H$
28	33 34	91 E0	STOP command. The interrupt code reported is $E0_{H}$ (normal comletion).

Table 5.4.1 Explanation of Initiator User Programming Example (Address 00, to 34,) (Continued)

5.4 USER PROGRAM OPERATION (INITIATOR)

5.4.2 Explanation of Initiator User Programming Example 1 (Address 40_{H} to $E0_{H}$)

Table 5.4.2 explains the initiator user programming example 1(address 40_{H} to $E0_{H}$).

■ Explanation of Initiator User Programming Example (Address 40_H to E0_H)

Table 5.4.2 Explanation of Initiator User Programming Example (Address 40_{H} to $E0_{H}$)

No.	Address	Code	Explanation	
—	40	60	Store the 60_{H} value for comparison with the interrupt status register	
29	50	0B	RESET ATN command	
30	51 52	EC 9C	MOVE the interrupt status register to address to $9C_{H}$	
31	53 54	ED 9D	MOVE the command step register to address $9D_H$	
32	55 56	C6 8F	Perform a comparison (COMPARE) with the SCSI control register	
33	57 58	D1 70	When the calculation result is not 0, branch to address $70_{\rm H}$	
34	59 5A	1A C0	RECEIVE 1-MSG command. The data received is accepted starting from $C0_{H}$.	
35	5B 5C	EC 9E	MOVE the interrupt status register to address $9E_{H}$	
36	5D 5E	ED 9F	MOVE the command step register to address $9F_{H}$	
37	5F 60	91 E2	STOP command. The interrupt code reported is $E2_{H}$ (a single message is received after an Initial Error Phase occurs).	
38	70 71	C6 8B	Perform a comparison (COMPARE) between the SCSI control register and $8B_{\rm H}$	
39	72 73	D1 7C	When the calculation result is not 0, branch to address $7C_{\scriptscriptstyle H}$	
40	74 75	1C E0	RECEIVE STATUS command. The data received is accepted starting from $E0_{H}$.	
41	76 77	EC A1	MOVE the interrupt status register to address $A0_{H}$	
42	78 79	EC A1	MOVE the command step register to address A1 _H	
43	7A 7B	91 E3	STOP command. The interrupt code reported is $E3_{H}$ (a status is received after an Initial Error Phase occurs).	
44	7C 7D	91 E4	STOP command. The interrupt code reported is $E4_{H}$ (when the next phase is not RECEIVE MCS after an Initial Error Phase occurs).	
_	90 91	_	Store SELECT with ATN command execution results (interrupt status and command step. Same below)	
_	92 93		Store SEND 1-MSG with ATN command execution results	
	94 95	_	Store SEND 1-MSG command execution results	
_	96 97	_	Store RESET ACK command execution results	

No.	Address	Code	Explanation
_	98 99	_	Store SEND CMD command execution results
_	9A 9B	_	Store RESET ACK command execution results
_	9C 9D	_	Store RESET ATN command execution results
_	9E 9F	_	Store RECEIVE 1-MSG command execution results
_	A0 A1	_	Store RECEIVE STATUS command execution results
—	B0	XX	Store data transferred with SEND 1-MSG with ATN command (1 byte)
_	B2 B3	XX XX	Store data transferred with SEND 1-MSG command (2 bytes)
_	B8 B9 BA BB BC BD	XX XX XX XX XX XX XX	Store data transferred with SEND CMD command (6 bytes)
_	CD to DF	_	When a single message is received after an Initial Phase Error occurs, this data is stored.
—	E0		When a single message is received after an Initial Phase Error occurs, this data is stored

Table 5.4.2 Explanation of Initiator User Programming Example (Address 40_{H} to $E0_{H}$) (Continued)

5.4 USER PROGRAM OPERATION (INITIATOR)

5.4.3 Explanation of Initiator User Programming Example 2 (Address 00_{H} to 70_{H})

Table 5.4.3 explains the initiator user programming example 2 (address 00_{H} to 70_{H})

■ Explanation of Initiator User Programming Example (Address 00_H to 70_H)

Table 5.4.3 Explanation of Initiator User Programming Example (Address 00_{H} to 70_{H})

No.	Address	Code	Explanation	
1	00	09	SELECT WITH ATN command	
2	01 02	19 30	SEND 1-MSG with ATN command. Data to be sent is 1-byte from address 30_{H} .	
3	03 04	D1 10	When "Initial Phase Error" occurred, branch to address 10 _H .	
4	05 06	18 31	SEND 1-MSG command. The data to be transferred is 2 bytes starting from address 31_{μ} .	
5	07 08	D1 10	When "Initial Phase Error" occurred, branch to address 10 _H .	
6	09 0A	1B 40	SEND CMD command. Data to be transferred is 6 bytes from address 40_{H} .	
7	0B 0C	D1 10	MOVE the data stored in address 92_{H} to the accumulator When "Initial Phase Error" occurred, branch to address 10_{H} .	
8	0D 0E	91 E0	STOP command. The interrupt code reported is $E0_{H}$. (normal completion)	
_	0F			
9	10	0B	RESET ATN command.	
10	11 12	C6 8F	Compare data in the SCSI control register with $8F_{H}$.	
11	13 14	D1 20	When the result of the comparison is not "0", branch to address $20_{\rm H}$.	
12	15 16	1A 50	RECEIVE MSG command. Data received is stored from address 50_{H} .	
13	17	0D	RESET ACK command.	
14	18 19	91 E2	STOP command. The interrupt code reporeted is $E2_{H}$. (1-MSG received following "Initial Phase Error".)	
15	20 21	C6 8B	Compare data in the SCSI control register with 8B _H .	
16	22 23	D1 28	When the result of the comparison is not "0", branch to address $28_{\rm H}$.	
17	24 25	1C 70	RECEIVE STATUS command. Data received is stored from address 70 _H .	

No.	Address	Code	Explanation
18	26 27	91 E3	STOP command. The interrupt code reported is E3 _H (Status received following "Initial Phase Error".)
19	28 29	91 E4	STOP command. The interrupt code reported is $E4_{H}$ (When the next phase is not Receive MCS after "Initial Phase Error".)
_	30	XX	Store the data to be sent by SEND 1-MSG WITH ATN command.
_	31 32	XX XX	Store the 2 bytes data to be sent by SEND 1-MSG command.
_	40 to 4F	XX to XX	Store the data to be sent by SEND CMD command.
_	50 to 6F		When 1-MSG is received after "Initial Phase Error", store the data.
_	70	_	When 1-status is received after "Initial Phase Error", store the data.

Table 5.4.3 Explanation of Initiator User Programming Example (Address 00_{H} to 70_{H}) (Continued)

5.5 USER PROGRAM OPERATION (TARGET USER PROGRAMMING EXAMPLE)

A target user programming example which uses a user program to execute command queuing is shown below.

Preliminary Conditions for Target Program Execution

The following preliminary conditions are required for execution of the target user program example explained here.

- The processing results for each phase (interrupt status, command step) are stored sequentially from address 50_H. (For example 1)
- When Command Complete (ATN Condition Detected) occurs, data is not received and operation is stopped.
- ACK Reset mode is set as "Auto" and Level 2 INT report mode is set as "not report" in the Auto operation Mode Register (1ch). (For example 2)

Figure 5.5 shows a summary flowchart of a target user programming example. For a more detailed flowchart of program operations, see Appendix F.

Figure 5.5 Summary Flowchart of Target User Programming Example

5.5.1 Explanation of Target User Programming Example 1 (Address 00_{H} to 21_{H})

Table 5.5.1 explains the target user programming example 1 (address 00_{H} to 21_{H}).

■ Explanation of Target User Programming Example 1 (Address 00_H to 21_H)

Table 5.5.1	Explanation of Initiat	or User Programming Ex	ample 1(Address 00 _H to 21 _H)
-------------	------------------------	------------------------	--

No.	Address	Code	Explanation
1	00 01	B6 20	Logiacal product calculation (AND) for the SCSI control signal status register and $20_{\rm H}$.
2	02 03	D2 40	When the calculation result is 0, branch to address 40 _H .
3	04 05	39 60	RECEIVE MSG command. The data received is stored in address 60 _H .
4	06 07	EC 50	MOVE the interrupt status register to address 50 _H .
5	08 09	ED 51	MOVE the command step register to address 51 _H .
6	0A 0B	E0 50	MOVE the data stored in address $50_{\rm H}$ to the accumulator.
7	0C 0D	C7 61	Perform a comparison for the accumulator value and $61_{\rm H}$.
8	0E 0F	D1 42	When the calculation result is not 0, branch to address 42_{H} .
9	10 11	B0 80	Logical product calculation (AND) for the first byte of the message received and $80_{\rm H}\!$
10	12 13	D2 44	When the calculation result is 0, branch to address 44 _H .
11	14 15	39 80	RECEIVE MSG command. The data received is stored starting from address 80 _H .
12	16 17	EC 52	MOVE the interrupt status register to address 52 _H .
13	18 19	ED 53	MOVE the command step register to address to $53_{\rm H}$.
14	1A 1B	E0 52	MOVE the data stored in address 52_{H} to the accumulator.
15	1C 1D	C7 60	Perform a comparison for the accumulator value and 60 _H .
16	1E 1F	D1 46	When the calculation result is not 0, branch to address $46_{\rm H}$.
17	20 21	A0 F0	Logical product calculation (AND) for the first byte of the message received and $\mathrm{F0}_{\mathrm{H}}.$

5.5.2a Explanation of Target User Programming Example 1 (Address 22_H to 4B_H)

Table 5.5.2a explains the target user programming example 1 (address 22_{H} to $4B_{H}$).

■ Explanation of Target User Programming Example 1 (Address 22_H to 4B_H)

Table 5.5.2a	Explanation of Initiator	User Programming Exampl	e 1 (Address 22 _H to 4B _H)
--------------	--------------------------	--------------------------------	---

No.	Address	Code	Explanation
18	22 23	C7 20	Comparison for accumulator value and 20 _H .
19	24 25	D1 48	When the calculation result is not 0, branch to address 48 _H .
20	26 27	3B A0	RECEIVE CMD command. The data received is stored starting from address $A0_{H}$.
21	28 29	EC 54	MOVE the interrupt status register to address 54_{H} .
22	2A 2B	ED 55	MOVE the command step register to address 55_{H} .
23	2C 2D	E0 54	MOVE the data stored in address 54_{H} to the accumulator.
24	2E 2F	C7 60	Perform a comparison for the accumulator value and 60 _H .
25	30 31	D1 4A	Wehn the calculation result is not 0, branch to address $4A_{H}$.
26	32 33	91 E0	STOP command. The interrupt code reported is $E0_{H}$ (normal completion).
27	40 41	91 E1	STOP command. The interrupt code reported is $E1_{H}$ (the ATN signal is not being asserted).
28	42 43	91 E2	STOP command. the interrupt code reported is $E2_{H}$ (after the first message is received, the ATN signal is not asserted).
29	44 45	91 E3	STOP command. The interrupt code reported is $E3_{H}$ (the first message received is not Identify-MSG).
30	46 47	91 E4	STOP command. the interrupt code reported is $E4_{H}$ (an attention condition is detected when the second message is received).
31	48 49	91 E5	STOP command. The interrupt code reported is $E5_{H}$ (the second message received is not Queue Tag MSG).
32	4A 4B	91 E6	STOP command. The interrupt code reported is $E6_{H}$ (command is received and an attention condition detected).

MEMO

5.5.2b Explanation of Target User Programming Example 2 (Address 00_H to 8F_H)

Table 5.5.2b explains the target user programming example 2 (address 00_{H} to $8F_{H}$)

■ Expanation of Target User Programming Example 2 (Address to 00_H to 8F_H)

Table 5.5.2b Explanation of Initiator User Programming Example 2(Address 00_{H} to $8F_{H}$)

No.	Address	Code	Explanation	
1	00 01	B6 20	Logical product calculation (AND) for the SCSI control signal status register and $20_{\rm H}$.	
2	02 03	D2 20	When the calculation result is 0, branch to address 20 _H .	
3	04 05	39 30	RECEIVE MSG command. the data received is stored in address 30 _H .	
4	06 07	D2 22	When the result of command execution is "Command Complete", branch to address $22_{\rm H}$.	
5	08 09	B0 80	Logical product calculation (AND) for the first byte of MSG received and $80_{\rm H}$.	
6	0A 0B	D2 24	When the result of AND operation is "0", branch to address 24 _H .	
7	0C 0D	39 50	Receive MSG command. The data received is stored in address $50_{\rm H}$.	
8	0E 0F	D1 26	When the calculation result is "Command Complete (ATN Condition Detected)", branch to address $26_{\rm H}$.	
9	10 11	A0 F0	Logical product calculation (AND) for the first byte of the message received and $E0_{H}$.	
10	12 13	C7 20	Compare the accumulator value with 20 _H .	
11	14 15	D1 28	When the result is not "0", branch to address 28 _H .	
12	16 17	3B 70	RECEIVE CMD command. The data received is stored from address 70 _H .	
13	18 19	D1 2A	When the result is not "0", branch to address 2A _H .	
14	1A 1B	91 E0	STOP command. The interrupt code reported is $E0_{H}$ (normal completion).	
15	20 21	91 E1	STOP command. The interrupt code reported is $E1_{H}$ (ATN not asserted in selection phase.)	
16	22 23	91 E2	STOP command. The interrupt code reported is $E2_{H}$ (ATN not asserted after receiving the first MSG.)	
17	24 25	91 E3	STOP command. The interrupt code reported is $E3_{H}$ (The first MSG received was not "Identify MSG".)	

No.	Address	Code	Explanation
18	26 27	91 E4	STOP command. The interrupt code reported is $E4_{H}$ (ATN Condition detected after receiving the second MSG.)
19	28 29	91 E5	STOP command. The interrupt code reported is $E5_{H}$ (The 2nd MSG received was not "Queue Tag MSG".)
20	2A 2B	91 E6	STOP command. The interrupt code reported is $E6_{H}$ (ATN Condition detected after receiving CMD)
_	30 to 4F	_	Store the data received by the first Receive MSG command.
_	50 to 6F	_	Store the data received by the second Receive MSG command.
_	70 to 8F		Store the data received by the Receive CMD command.

Table 5.5.2b Explanation of Initiator User Programming Example 2(Address 00, to 8F,) (Continued)

5.5.3 Explanation of Target User Programming Example 1 (Address 50_{H} to BF_{H})

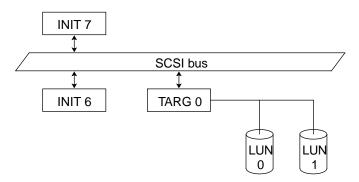
Table 5.5.3 explains the target user programming example 1 (address 50_{H} to BF_{H})

■ Explanation of Target User Programming Example 1 (Address 50_H to BF_H)

Table 5.5.3 Explanation of Target User Programming Example 1 (Address 50_H to BF_H)

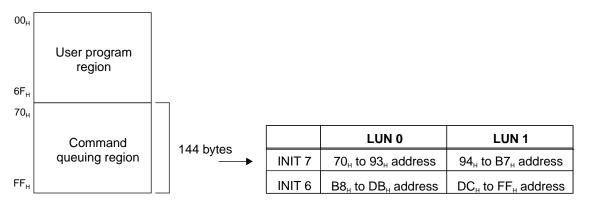
No.	Address	Code	Explanation
_	50 51	_	Store first RECEIVE MSG command execution results (interrupt status and command step. Same below.)
_	52 53	_	Store second RECEIVE MSG command execution results
_	54 55	_	Store RECEIVE CMD command execution results
_	60 to 7F	_	Store data received from first RECEIVE MSG command
_	80 to 9F	_	Store data received from second RECEIVE MSG command
_	A0 to BF	_	Store data received from RECEIVE CMD command

MEMO


5.6 COMMAND QUEUING EXECUTION

The following items are necessary for execution of command queuing.

- User program
- Assign a portion of the user program region as a command queuing region
- · Queuing line management by the host MPU


Example of Command Queuing Execution (Target)

As seen in Figure 5.6a, a command queuing example with a system configuration of two initiator systems and 2 LUN is explained.

Figure 5.6a System Configuration (Example of Command Queuing Execution)

In a case where three CDB (command descriptor block) are written to a single queue, as shown in Figure 5.6b, a portion of the user program region is assigned as a queuing region and a region for holding 3 CDBs is allocated to each queue (12 bytes of space are required for a single CDB).

Figure 5.6b Allocation of Command Queuing Region

The user program **RECEIVE** CMD command (operand undefined) is used for storing the received CDB in the address allocated for each queue within the user program region.

■ Command Queuing Operation Sequence

The target Automatic selection response mode is established.

When the initiator performs command queuing in the manner shown in Figure 5.6c, a "MSG received with Identify MSG" interrupt is reported.

After the host MPU confirms the initiator ID number by means of the SPC status register (2), analyze the Identify MSG and determine the queuing LUN.

Based on this, set up one of the four possible queues.

After that, use the user program **RECEIVE** CMD command to write the CDB in the appropriate command queuing region.

At that time, the **RECEIVE** CMD command operand should be specified by host MPU management.

It is recommended that the host MPU handle the head address of the queuing region containing the Queue TAG MSG, Queue TAG Value, and CDB as a single block.

	LUN 0	LUN 1		1 block
	Block 0	Block 0	•••••	Queue-TAG MSG
INIT 7	Block 1	Block 1		Queue-TAG Value
	Block 2	Block 2		SPC queuing address
	Block 0	Block 0		
INIT 6	Block 1	Block 1		
	Block 2	Block 2		
	Initiator			<u>Target</u>
	Selection		(Aut	omatic selection response)
	Send Identify M	ISG		Receive Identify MSG
	Send Queue TA Send Queue TA			Receive Queue TAG MSG Receive Queue TAG Value
				↓ INT
			"M	SG received with Identify-MSG"
	SEND CMD)	→ CM	(User program) D is received from address DC _н ↓ CDB data is analyzed by a comparison (COMPARE)

5.7 INTERRUPT CODES

Table 5.7 shows a list interrupt codes and the accompanying causes.

■ Interrupt Codes

ltem		INIT or TAR G	A UT O1	AU TO 2		Interrupt code							Interrupt cause	
1	SCSI RESET	I/T	-	—	0	0	0	0	0	0	0	1	RESET-condition detected	
			-	—	0	0	1	0	0	1	0	0	SCSI parity error	
			—	_	0	0	1	0	0	0	1	0	MPU parity error	
			—	—	0	0	1	0	0	0	0	1	DMA parity error	
			—	—	0	0	1	0	0	1	1	0	SCSI & MPU parity error	
		I/T	—	—	0	0	1	0	0	1	0	1	SCSI & DMA parity error	
2	TRANSFER	., .	—	—	0	0	1	0	1	0	0	1	Offset error	
-	ERROR		—	_	0	0	1	0	1	0	1	0	Short transfer period error	
				_	_	0	0	1	0	1	0	1	1	Offset error & Short transfer period error
			—	—	0	0	1	0	1	1	0	0	REQ/ACK Timeout	
		1	-	—	0	0	1	1	0	0	0	1	Disconnected in transfer progress	
		1	—	_	0	0	1	1	0	0	1	0	Phase-error in transfer progress	
		1	N	—	0	1	0	1	0	1	0	0	Initial phase-error	
			Y	—	0	1	0	1	0	1	0	1	Initial phase-error & MSG received	
			Y	—	0	1	0	1	0	1	1	0	Initial phase-error & status received	
3	PHASE ERROR	т	N	_	0	1	0	0	0	0	1	0	Command stop (ATN condition detected)	
			Y	_	0	1	0	0	0	0	1	1	Command stop (ATN condition detected) & MSG received	
			—	—	0	1	1	0	0	0	0	0	Command Complete	
			_	_	0	1	1	0	0	1	0	0	Command Rejected	
		I/T	—	_	0	1	1	0	0	1	0	1	Command Invalid	
4	REPORT		—	_	0	1	1	0	0	1	1	0	REG parity error detected	
			_	_	0	1	1	0	0	1	1	1	Command Pause	
		I/T	-	_	0	1	1	0	1	0	0	0	Self diagnosis result is Good	
		1/1			0	1	1	0	1	0	0	1	Self diagnosis result is No Good	

Table 5.7 List of Interrupt Codes

	ltem	INIT or TARG	AU TO 1	AU TO 2			Inte	erru	pt co	ode			Interrupt cause
			—	—	0	1	1	1	0	0	0	0	Disconnected
		· ·	—	—	0	1	1	1	0	0	0	1	REQ Asserted
4	REPORT	т	Ν	_	0	1	1	0	0	0	0	1	Command complete (ATN condition detected)
			Y	_	0	1	1	1	0	0	1	0	Command complete (ATN condition detected) & MSG received
		I/T	—		1	0	0	0	0	0	1	0	Selection/Reselection timeout
5	SELECTION/	I	—	N	1	0	0	1	0	0	0	0	Reselected
	RESELECTION	т	—	N	1	0	0	0	0	0	0	0	Selected
			—	N	1	0	0	0	0	0	0	1	Selected with ATN
			_	Y	1	0	1	1	0	0	0	0	AUTO mode phase error
			—	Y	1	0	1	1	0	0	0	1	MSG received
			—	Y	1	0	1	0	0	0	0	0	AUTO mode phase error
			—	Y	1	0	1	0	0	0	0	1	MSG received
			—	Y	1	0	1	0	0	0	1	0	Illegal identify-MSG received
			—	Y	1	0	1	0	0	0	1	1	MSG received with identify-MSG
	AUTO		—	Y	1	0	1	0	0	1	0	0	unknown CDB received
6	SEL/ RESELECT/ REPORT	т	_	Y	1	0	1	0	0	1	0	1	unknown CDB received with identify- MSG
	KEF OKT		—	Y	1	0	1	0	0	1	1	0	CDB received
			—	Y	1	0	1	0	0	1	1	1	CDB received with identify-MSG
			Y	Y	1	0	1	0	1	0	0	0	CDB received & MSG received
			_	Y	1	0	1	0	1	0	0	1	CDB received with identify-MSG & MSG-received
			N	Y	1	0	1	0	1	0	1	0	CDB received (ATN condition detected)

Table 5.7 List of Interrupt Codes (Continued)

AUTO 1: Automatic receive mode

AUTO 2: Automatic selection/reselection response mode

Y = set N = not set

5.7 INTERRUPT CODES

5.7.1 Interrupts Related to SCSI RESET

Table 5.7.1 provides a list of interrupts codes, interrupt causes, and interrupt conditions for interrupts related to SCSI RESET.

■ Interrupts Related to SCSI RESET

Table 5.7.1 List of Interrupts Related to SCSI RESET

Interrupt code	Interrupt cause	Interrupt condition
01 _H	RESET-CONDITION DETECTED	Reset state is detected on the SCSI bus

5.7.2 Interrupts Related to Transfers

Table 5.7.2 provides a list of interrupts codes, interrupt causes, and interrupt conditions for interrupts related to transfers.

■ Interrupts Related to Transfers

Table 5.7.2 List of Interrupts Related to Transfers

Interrupt code	Interrupt cause	Interrupt condition
24 _H	SCSI parity error	A parity error is detected in SCSI interface input/output data during the phase currently being executed.
22 _H	MPU parity error	A parity error is detected in MPU interface input/output data during a program transfer (data phase).
21 _H	DMA parity error	A parity error is detected in DMA interface input/output data during a DMA transfer (data phase).
26 _H	SCSI & MPU parity er- ror	A parity error is detected in MPU interface and SCSI interface input/ output data during a program transfer (data phase).
25 _H	SCSI & DMA parity er- ror	A parity error is detected in DMA interface and SCSI interface input/ output data during a DMA transfer (data phase).
29 _H	Offset error	More REQ/ACK signals are received during a synchronous transfer than the specified offset value.
2A _H	Short transfer period error	The SPC cannot keep up during a synchronous transfer because the period of the REQ/ACK signal received is short.
2B _H	Offset error & Short transfer period error	An offset error and a short transfer period error are detected during a synchronous transfer.
2C _H	REQ/ACK timeout	The specified REQ/ACK timeout time is exceeded.
31 _H	Disconnected in trans- fer progress	A bus free state is detected during phase execution (during a trans- fer).
32 _H	Phase error in transfer progress	A phase error occurs during phase execution (during a transfer).

5.7 INTERRUPT CODES

5.7.3 Interrupts Related to Phase Transitions

Table 5.7.3 provides a list of interrupts codes, interrupt causes, and interrupt conditions for interrupts related to phase transitions.

Interrupts Related to Phase Transitions

Table 5.7.3	List of Interrupts Related to Phase Transitions
-------------	---

Interrupt code	Interrupt cause	Interrupt condition
54 _H	Initial phase-error* ¹	The phase necessary for executing the received command is not the same as the phase requested on the SCSI bus when the initial REQ signal is received.
55 _H	Initial phase-error & MSG received* ²	An Initial phase error occurs, and a single message is received in response to a target message receive request.
56 _H	Initial phase-error & STA- TUS received* ²	An Initial phase error occurs, and a single status is received in re- sponse to a target status receive request.
42 _H	Command Stop (ATN condition detect- ed)* ³	A phase transition is impeded by an initiator generated attention condition. Or a transfer stops at a transfer block boundary during data phase execution (at this time, the data register is Empty).
43 _H	Command Stop (ATN condition detected) & MSG received* ²	A phase transition specified by a command is impeded by an initiator generated attention condition, the SPC moves to a message out phase, and a single message is received. Or the SPC moves to a message out phase at a transfer block boundary and a single mes- sage is received during data phase execution (at this time, the data register is Empty).

- *1 When a phase error occurs and a data in phase is requested, the SPC performs the following operations.
 - When the nexus target is in an asynchronous transfer mode, one byte of data is received.
 - When the nexus target is in a synchronous transfer mode, the number of received REQ signal bytes is received (ACK signal is not asserted).

*2 Only when the Automatic receive mode is established.

*3 Only when the Automatic receive mode is not established.

MEMO

5.7.4 Interrupts Related to REPORT

Table 5.7.4 provides a list of interrupts codes, interrupt causes, and interrupt conditions for interrupts related to REPORT.

■ Interrupts Related to REPORT

Interrupt code	Interrupt cause	Interrupt condition
60 _н	Command complete	The received command is completed normally.
64 _H	Command Rejected	 A command is received when the SPC is operating on automatic (Automatic selection/reselection response). A new command is received during execution of a command. The SPC receives a SEND MSG command, but the extended message which should be sent is 33 bytes or longer.*1
65 _H	Command Invalid	 A target command is received while the SPC is functioning as the initiator. An initiator command is received while the SPC is functioning as the target. A sequential command exists in the user program memory. A command which requires that the data block register or the data byte register MC byte register) be established is received but the register value is 0. A transfer is not possible because the group 6/7 CDB length setting is 0.*² A group 3/4 CDB is received or a transfer command is received.*² A command which starts from a transfer phase is received when a nexus is not established. A command which starts from Select/Reselect is received when a nexus is established.
66 _H	REG parity error de- tected	A parity error is detected in a register established by the host MPU.
67 _H	Command Pause	 A Command Pause command is received and processing completed. The message received is 33 bytes or longer.*³
68 _H	Self diagnosis result "GOOD"	A self diagnosis is performed and the result is normal.
69 _H	Self diagnosis result "NO GOOD"	A self diagnosis is performed and the result is abnormalities exist.
70 _H	Disconnected	 A bus free state is detected when the SPC is connected as the initiator. Detected when a transfer is not being conducted.

Interrupt code	Interrupt cause	Interrupt condition
71 _H	REQ Asserted* ⁴	The target requests that the next phase be executed.This interrupt is only applicable when a nexus exists and no command is received.
61 _H	Command complete (ATN condition detect- ed)* ⁵	 The command is completed normally, and an attention condition generated by the initiator is detected. The ATN signal is detected only when the ATN signal is asserted while the ACK signal of the last phase of the executed command is being asserted.
62 _H	Command complete (ATN condition detected) & MSG received* ⁶	 The command is completed normally, a response is made to the attention condition generated by the initiator, and a single message is received. The ATN signal is detected only when the ATN signal is asserted while the ACK signal of the last phase of the executed command is being asserted.

 Table 5.7.4
 List of Interrupts Related to REPORT (Continued)

*1 Send messages which are 33 bytes or longer in the following manner.

Initiator	
END N-BYTE-MSG (COMMAND COMPLETE) SET ATN RESET-	ACK
└───── (COMMAND COMPLETE) ◀	
Target	

SEND N-BYTE-MSG ----> SEND N-BYTE-MSG

- *2 Transfers are not conducted during send operations. For receive operations, this interrupt is reported after the first byte is written in the RECEIVE MCS buffer (written in the specified user program address during user program operation).
- *3 Occurs during receive operations.

This interrupt is reported after the first two bytes are written in the RECEIVE MCS buffer (written in the specified user program address during user program operation). Use the **RECEIVE N-byte MSG** command to receive the remaining bytes.

*4 The SPC performs the following operations when the data in phase is requested.

- When the nexus target is in an asynchronous transfer mode, one byte of data is received.
- When the nexus target is in a synchronous transfer mode, the number of received REQ signal bytes is received.
- *5 Only when the Automatic receive mode is not established.
- *6 Only when the Automatic receive mode is established. When executing a command which ends in the message out phase, if another attention condition is detected, this interrupt is not reported (message not received) and instead a Command complete (ATN condition detected) interrupt is reported.

5.7 INTERRUPT CODES

5.7.5 Interrupts Related to Selection/Reselection

Table 5.7.5 provides a list of interrupts codes, interrupt causes, and interrupt conditions for interrupts related to selection/reselection.

Interrupts Related to Selection/Reselection

Table 5.7.5 List of Interrupts Related to Selection/Reselection

Interrupt code	Interrupt cause	Interrupt condition
82 _H	Selection/Reselection timeout	The specified selection/reselection timeout time is exceeded.
90 _H	Reselected*1	The SPC is reselected by the target while functioning as the initiator
80 _H	Selected*2	The SPC is selected by the initiator while functioning as the target.
81 _H	Selected with ATN* ²	The SPC is selected by the initiator while functioning as the target, and an attention condition generated by the initiator is detected.

*1 Only when the Automatic reselection response mode is not established.

*2 Only when the Automatic selection response mode is not established.

MEMO

5.7.6 Interrupts Related to Automatic Selection/Reselection Response

Table 5.7.6 provides a list of interrupts codes, interrupt causes, and interrupt conditions for interrupts related to Automatic selection/reselection response.

■ Interrupts Related to Automatic Selection/Reselection Response

Table 5.7.6 List of Interrupts Related to Automatic Selection/Reselection Response

Interrupt code	Interrupt cause	Interrupt condition
В0 _н	AUTO mode phase error	Transition to phase other than the message in phase after the rese- lection phase.
B1 _H	MSG received	A single message is received after the reselection phase.
A0 _H	AUTO mode phase error	The ATN signal is not asserted during the selection phase. This interrupt is only applicable when the message out phase is established after the selection phase.
A1 _H	MSG-received	A single message other than the Identify MSG is received after the selection phase.
A2 _H	Illegal Identify-MSG received	The Identify MSG is received after the selection phase, but 1 is set in BIT 5, 4, 3.
A3 _H	MSG received with Identify-MSG	The Identify MSG is received after the selection phase, and then a single message is received.
A4 _H	unknown-CDB-received	An attempt is made to receive a single command after the selection phase, but the group 6 and 7 CDB length is unknown (*2) so only one byte is received. This interrupt is only applicable when the message phase or the command phase (*1) are established after the selection phase.
A5 _H	unknown-CDB-received with Identify-MSG	The Identify-MSG is received after the selection phase, and an at- tempt is made after that to receive a command, but the group 6 and 7 CDB length is unknown (*2) so only one byte is received.
A6 _H	CDB-received	A single command is received after the selection phase. This interrupt is only applicable when the message phase or com- mand phase are established after the selection phase.
A7 _H	CDB-received with Identify-MSG	The Identify MSG is received after the selection phase, and then a single command is received.
A8 _H	CDB received & MSG received	A single command is received after the selection phase. After that, a single message is received which is related to an atten- tion condition. This interrupt is only applicable when the message phase or com- mand phase are established after the selection phase.

Table 5.7.6 List of Interrupts Related to Automatic Selection/Reselection Response (Continued)

Interrupt code	Interrupt cause	Interrupt condition					
A9 _H	CDB-received with Identify-MSG & MSG received	The Identify-MSG is received after the selection phase, and then a single command is received. After that, a single message is received which is related to an attention condition.					
AA _H	CDB received (ATN condition detected)	A single command is received because the ATN signal is not asserted during the selection phase. After that, an attention condition is detected.					

*1 Set up the SEL/RESEL setting register for phase transitions after the selection phase.

*2 Set the group 6 and 7 CDB length in the group 6/7 command length setting register.

5.8 INTERRUPT CODES AND COMMAND STEPS

The SPC reports interrupts with an interrupt code and command step which indicates the SPC operating state when the interrupt occurs.

The command step value differs depending on the SPC operating state. There are four different operating states.

- Execution of discrete/sequential command
- User program operation
- Automatic selection response
- SPC in Ready state (before command reception)

Interrupt analysis should involve reference to both the interrupt status register (address 04) and the command step register (address 05).

Interrupt Code and Command Step

The command step value differs depending on the operating state.

(1) Execution of discrete/sequential command

The command step defined for each command is shown in BIT 3 to 0 of the command step register.

	(Interrupt status)										(Co	mma	and s	tep)		
Ľ	7	16	15	14	13	12	11	10	0	0	0	0	S3	S2	S1	S0

(2) User program operation

The number of discrete commands executed (number of completed commands) is shown in BIT 7 to 4 and the command step of the command where the interrupt occurs is shown in BIT 3 to 0.

(3) Automatic selection response

The response sequence type is shown in BIT 7-4 of the command step register and the sequence step where the interrupt occurs is shown in BIT 3-0.

(4) SPC in Ready state

The command step is 00_{H} .

	(Interrupt status)										(Co	omma	and s	tep)		
I	7	16	15	14	13	12	11	10	0	0	0	0	0	0	0	0

Relevant interrupts are listed below.

- DISCONNECTED (70_H)
- RESET CONDITION DETECTED (01_H)
- REQ ASSERTED (71_H)
- SELECTED (80_H)
- SELECTED WITH ATN (81_H)
- RESELECTED (90_H)

See Appendix G for a list of interrupt codes and command steps.

5.9 SPC OPERATION DURING ERROR DETECTION

SPC operation when various errors are detected is described below.

When an Offset Error is Detected

When an offset error is detected, SPC operation differs depending on whether it is functioning as the initiator or the target.

See 5.9.1 for more information.

When a Short Transfer Period Error is Detected

When a Short Transfer Period error is detected, SPC operation differs depending on whether it is functioning as the initiator or the target.

See 5.9.2 for more information.

When a REQ/ACK Timeout Error is Detected

a. Initiator

When a REQ/ACK timeout error is detected, the transfer is suspended and a REQ/ACK timeout error interrupt is reported.

b. Target

When a REQ/ACK timeout error is detected, the transfer is suspended and a REQ/ACK timeout error interrupt is reported.

When a SCSI Parity Error is Detected

When a SCSI parity error is detected, SPC operation differs depending on the detected phase.

See 5.9.4 for more information.

When a MPU Parity Error is Detected

When a MPU parity error is detected, SPC operation differs depending on the detected phase.

See 5.9.5 for more information.

■ When a DMA Parity Error is Detected

When a DMA parity error is detected, SPC operation differs depending on whether it is functioning as the initiator or the target.

See 5.9.6 for more information.

MEMO

5.9 SPC OPERATION DURING ERROR DETECTION

5.9.1 When an Offset Error is Detected

The following SPC operations take place when an offset error is detected.

a. Initiator

As soon as the offset error is detected, an ATN signal is asserted and after the transfer is completed, an offset error interrupt is reported. When the target moves to a phase other than the message out phase before the transfer is completed, an offset error and Phase-error in transfer Progress interrupts are reported.

b. Target

As soon as the offset error is detected, the transfer is suspended and after the terminate procedure an offset error interrupt is reported.

When an Offset Error is Detected

Table 5.9.1a and Table 5.9.1b list SPC operations when an offset error is detected (initiator, target).

Table 5.9.1a	SPC Operation When an Offset Error is Detected (Initiator)
--------------	--

Detected phase	SPC operation
Data in/out	As soon as the offset error is detected, an ATN signal is asserted. The transfer continues but normal operation is not guaranteed. The completion report is performed as follows.
	• After the transfer is completed or if the target moves to a message out phase before the transfer ends, an offset error interrupt is reported.
	• When the target moves to a phase other than the message out phase before the transfer ends, an offset error and Phase error in transfer Progress interrupt are reported.

Table 5.9.1b SPC Operation When an Offset Error is Detected (Target)

Detected phase	Detected phase SPC operation					
Data in/out	When the offset error is detected, a terminate procedure is conducted and an offset error interrupt is reported (see 5.9.6 for more on the terminate procedure).					

Points to Watch when an Offset Error is Detected

When the SPC is functioning as the initiator in the data in phase and the following phenomenon occurs, the transfer is not terminated.

(Phenomenon)

When data is received even though the target has sent a REQ signal which exceeds the specified offset value and the SPC data register is Full.

At this time, the SPC detects an offset error and an ATN signal is asserted.

The occurrence of this phenomenon can be acknowledged and dealt with by the following procedure.

(Response)

(1) When the SPC status register (address 02) Data-Request flag (Bit 2) does not come up (during program transfer) or the DREQ signal is no longer asserted (during DMA transfer) even after waiting the amount of time calculated by the following equation, realize that this phenomenon has occurred.

Equation for calculating waiting time

Twart = transfer cycles \times block length + internal operation cycle \times 60

Calculation example

Data transfer speed: 10 Mbyte/sec (1 cycle = 100 nsec), block length: 512 bytes

Internal operating frequency: 5 MHz (1 cycle = 200 nsec), number of blocks: 10

Twait = $100 \times 512 + 200 \times 10 \times 60$ = 171700 (nsec) = 171.2 (µsec)

- (2) When it is realized that this phenomenon has occurred, use the Command Pause command to suspend the transfer.
- (3) At this point, there are cases when the Data Request flag or the DREQ signal returns to 1. Initiate a MPU, DMA side transfer.
- (4) Read the interrupts looking at the Command Pause (67_{H}) and then the offset error (29_{H}) interrupt.
- (5) Repeat the SET ACK/RESET ACK command until the target changes phases.

5.9.2 When a Short Transfer Period Error is Detected

When a Short Transfer Period error is detected, the SPC performs the following operations.

a. Initiator

As soon as the Short Transfer Period error is detected, an ATN signal is asserted, and after the transfer is completed, a Short Transfer Period error interrupt is reported.

When the target moves to a phase other than the message out phase before the transfer ends, a Short Transfer Period and Phase error in transfer Progress interrupts are reported.

b. Target

As soon as a Short Transfer Period error is detected, the transfer is suspended and after the terminate procedure, a Short Transfer Period error interrupt is reported.

When a Short Transfer Period Error is Detected

Table 5.9.2a and Table 5.9.2b list SPC operations when a Short Transfer Period error (initiator, target) is detected.

Table 5.9.2a SPC Operation When a Short Transfer Period Error is Detected (Initiator)

SPC operation
 As soon as the Short Transfer Period error is detected, an ATN signal is asserted. The transfer continues but normal operation is not guaranteed. The completion report is performed in the following manner. After the transfer is completed or if the target moves to a message out phase before the transfer ends, a Short Transfer Period error interrupt is reported.
 When the target moves to a phase other than the message out phase before the transfer ends, a Short Transfer Period error and Phase error in transfer Progress interrupt are reported.

Table 5.9.2b SPC Operation When a Short Transfer Period Error is Detected (Target)

Detected phase	SPC operation
Data in/out	When the Short Transfer Period error is detected, a terminate procedure is con- ducted and a Short Transfer Period error interrupt is reported (see 5.9.6 for more on the terminate procedure).

MEMO

5.9.3 When a SCSI Parity Error is Detected

When a SCSI parity error is detected, the SPC performs the following operations.

a. Initiator

- When the parity error is detected in the message in phase, an ATN signal is immediately asserted. However, the transfer process differs depending on where the parity error is detected.
- When the parity error is detected in the status phase, an ATN signal is immediately asserted and after the transfer ends, a SCSI parity error interrupt is reported.
- When the parity error is detected in the data in/out phase, an ATN signal is immediately asserted and after the transfer ends, a SCSI parity error interrupt is reported. When the target moves to a phase other than the message out phase before the transfer ends, a SCSI parity error and Phase error in transfer progress interrupts are reported.

b. Target

- When the parity error is detected in the message in phase, the transfer is immediately suspended and a SCSI parity error interrupt is reported.
- When the parity error is detected in the command phase, the transfer is immediately suspended and a SCSI parity error interrupt is reported.
- When the parity error is detected in the data in/out phase, the SPC operation differs depending on whether it is set to byte unit stop or block unit stop.

■ When a SCSI Parity Error is Detected

Table 5.9.3a and Table 5.9.3b list SPC operation when a SCSI parity error is detected (initiator, target).

Table 5.9.3a SPC Operation When a SCSI Parity Error is Detected (Initiator)

Detected phase	SPC operation		
Message in	As soon as the parity error is detected, an ATN signal is asserted. However, the transfer process differs depending on the detection location.		
	 When the message being received is a 1 byte or 2 byte message, a SCSI parity error interrupt is reported after the transfer ends. 		
	• When the message being received is an extended message, a SCSI parity error interrupt is reported after two bytes are received if the SCSI parity error is detected in the first or second byte or after all bytes are received if it is detected from the third byte on.		
Status	As soon as the parity error is detected, an ATN signal is asserted and a SCSI parity error interrupt is reported after the transfer ends.		
Data in/out	As soon as the parity error is detected, an ATN signal is asserted and the following reported.		
	• After the transfer is completed or if the target moves to a message out phase before the transfer ends, a SCSI parity error interrupt is reported.		
	• When the target moves to a phase other than the message out phase before the transfer ends, a SCSI parity error and Phase error in transfer Progress interrupt are reported.		

Table 5.9.3b SPC Operation When a SCSI Parity Error is Detected (Target)

Detected phase	SPC operation		
Message out	As soon as the parity error is detected, the transfer is suspended and a SCSI parity error interrupt is reported.		
Command	As soon as the parity error is detected, the transfer is suspended and a SCSI parity error interrupt is reported.		
Data in/out	There are two types of operation when a parity error has been detected.		
	 When byte unit stop is specified (*1), the transfer is suspended as soon as the parity error is detected and a SCSI parity error interrupt is reported. 		
	• When block unit stop is specified (*), the transfer is suspended when the block where the parity error is detected is finished being transferred and a SCSI parity error interrupt is reported (data register ends Empty).		

* See 3.3.3.4 for more on setting byte unit stop or block unit stop.

5.9 SPC OPERATION DURING ERROR DETECTION

5.9.4 When a MPU Parity Error is Detected

When a MPU parity error is detected, the SPC performs the following operations.

a. Initiator

- When the detection phase is not yet executed (during register write), as soon as the parity error is detected, a REG parity error Detected interrupt is reported.
- When the parity error is detected in the data in/out phase (during program transfer), an ATN signal is immediately asserted and after the transfer ends, a MPU parity error interrupt is reported. When the target moves to a phase other than the message out phase before the transfer ends, a MPU parity error and Phase error in transfer progress interrupts are reported.
- b. Target
 - When the detection phase is not yet executed (during register write), as soon as the parity error is detected, a REG parity error Detected interrupt is reported.
 - When the parity error is detected in the data in/out phase (during program transfer), the SPC operation differs depending on whether it is set to byte unit stop or block unit stop.

■ When a MPU Parity Error is Detected

Table 5.9.4a and Table 5.9.4b list SPC operation when a MPU parity error is detected (initiator, target).

Table 5.9.4a	SPC Operation When a MPU Parity Error is Detected (Initiator)
--------------	---

Detected phase	SPC operation		
Before execution (register write)	As soon as the parity error is detected, a REG parity error Detected interrupt is reported. This interrupt is produced when SPC operation starts (a command is received and the SPC refers to a register where the MPU has written).		
Data in/out (program transfer)	 As soon as the parity error is detected, an ATN signal is asserted and the following are reported. After the transfer is completed or if the target moves to a message out phase before the transfer ends, a MPU parity error interrupt is reported. 		
	 When the target moves to a phase other than the message out phase before the transfer ends, a MPU parity error and Phase error in transfer Progress interrupt are reported. 		

Table 5.9.4b SPC Operation When a MPU Parity Error is Detected (Target)

Detected phase	SPC operation		
Before execution (register write)	As soon as the parity error is detected, a REG parity error Detected interrupt is reported.		
	This interrupt is produced when SPC operation starts (a command is received and the SPC refers to a register where the MPU has written).		
Data in/out (program transfer)	 There are two types of operation when a parity error has been detected. When byte unit stop is specified, the transfer is suspended as soon as the parity error is detected and a MPU parity error interrupt is reported. When block unit stop is specified, the transfer is suspended when the block where the parity error is detected is finished being transferred and a MPU parity error interrupt is reported. 		

* See 3.3.3.4 for more on setting byte unit stop or block unit stop.

5.9 SPC OPERATION DURING ERROR DETECTION

5.9.5 When a DMA Parity Error is Detected

When a DMA parity error is detected, the SPC performs the following operations.

a. Initiator

• As soon as the parity error is detected, an ATN signal is asserted and after the transfer ends, a DMA parity error interrupt is reported. When the target moves to a phase other than the message out phase before the transfer ends, a DMA parity error and Phase error in transfer progress interrupts are reported.

b. Target

• The SPC operation differs depending on whether it is set to byte unit stop or block unit stop.

■ When a DMA Parity Error is Detected

Table 5.9.5a and Table 5.9.5b list SPC operation when a DMA parity error is detected (initiator, target).

Detected phase	SPC operation		
Data in/out (DMA transfer)	As soon as the parity error is detected, an ATN signal is asserted and the following are reported.		
	 After the transfer is completed or if the target moves to a message out phase before the transfer ends, a DMA parity error interrupt is reported. 		
	 When the target moves to a phase other than the message out phase before the transfer ends, a DMA parity error and Phase error in transfer Progress interrupt are reported. 		

Table 5.9.5a	SPC Operation When a DMA Parity Error is Detected (Initiator)
14510 010104	

Detected phase	SPC operation		
Data in/out	There are two types of operation when a parity error has been detected.		
(DMA transfer)	 When byte unit stop is specified (*1), the transfer is suspended as soon as the parity error is detected and a DMA parity error interrupt is reported. 		
	• When block unit stop is specified (*), the transfer is suspended when the block where the parity error is detected is finished being transferred and a DMA parity error interrupt is reported (data register ends Empty).		

* See 3.3.3.4 for more on setting byte unit stop or block unit stop.

MEMO

5.9 SPC OPERATION DURING ERROR DETECTION

5.9.6 Terminate Procedure

When an error occurs during SCSI INPUT or SCSI OUTPUT, the following terminate procedures are performed.

SCSI Input

Initiator: After the error is detected and the ACK signal assert is suspended, the MPU, DMA side transfer is conducted until the data register is Empty and completed.

Target: After the error is detected and the REQ signal assert is suspended, the MPU, DMA side transfer is conducted until the data register is Empty and completed.

SCSI Output

Initiator: After the error is detected and the ACK signal assert is suspended, the MPU, DMA side transfer is halted regardless of the data register state (stops with data in the data register).

Target: After the error is detected and the REQ signal assert is suspended, the MPU, DMA side transfer is halted regardless of the data register state (stops with data in the data register).

SCSI Input Terminate Procedure

When an error occurs during SCSI INPUT, the following terminate procedures are conducted.

a. Initiator

After the error is detected and the ACK signal assert is suspended, the MPU, DMA side transfer is conducted until the data register is Empty and completed.

For program transfers, 1 is shown in BIT 2 (DATA TRANS REQ) of the SPC status register (1), and for DMA transfers, the DREQ signal is H.

b. Target

After the error is detected and the REQ signal assert is suspended, the MPU, DMA side transfer is conducted until the data register is Empty.

For program transfers, 1 is shown in BIT 2 (DATA TRANS REQ) of the SPC status register (1), and for DMA transfers, the DREQ signal is H.

For a terminate procedure when the MPU/DMA bus width is 16 bits and an odd number of data bytes remains in the data register, a single byte of invalid data is output at the final word access.

At this time, the relationship between the data register value and the modified byte register value is as follows.

(data byte register value) + 1 = (modified byte register value)

SCSI OUTPUT Terminate Procedure

When an error occurs during SCSI OUTPUT, the following terminate procedures are conducted.

a. Initiator

After the error is detected and the ACK signal assert is suspended, the MPU, DMA side transfer is halted regardless of the data register state.

In this case, the transfer stops with data in the data register.

b. Target

After the error is detected and the REQ signal assert is suspended, the MPU, DMA side transfer is halted regardless of the data register state.

In this case, the transfer stops with data in the data register.

When the transfer is terminated with data remaining in the data register, this data becomes invalid.

Therefore, when resuming the transfer, count the number of bytes remaining in the register and move the data pointer back this amount.

Calculating the Remaining Data Register Bytes

There are cases when an error occurs that a transfer is stopped with data remaining in the data register.

In such cases, the number of bytes remaining in the data register can be calculated in the following manner.

SCSI INPUT

Nin = (lower 6 bit values of modified byte register) - (lower 6 bit values of data register)

When Nin >= 0, the remaining number of bytes is N When Nin < 0, the remaining number of bytes is equal to N + 64

SCSI OUTPUT

Nout = (lower 6 bit values of data register) - (lower 6 bit values of modified byte register)

When Nout >= 0, the remaining number of bytes is N When Nout < 0, the remaining number of bytes is equal to N + 64

5.10 DIAGNOSIS MODE

By issuing the DIAG START command, the SPC enters the Diagnosis mode.

In the Diagnosis mode, the SPC is cut off from the SCSI bus so that signals cannot be sent to the SCSI nor can control signals be received from the SCSI. Internal control operations can be executed and interface operations between the SPC and the SCSI can be simulated.

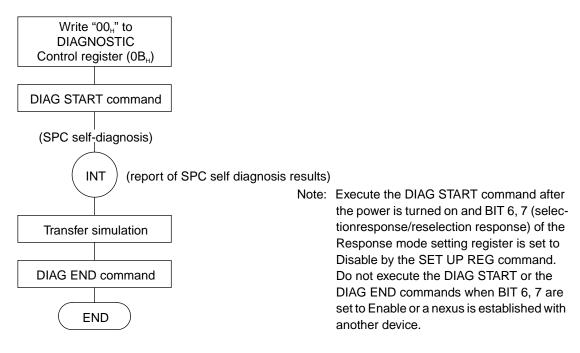
SCSI Control Signals

In the Diagnosis mode, the values in the Diagnostic register (address 11) are treated as input signals to the SPC.

Also, output signals from the SPC are shown in the SCSI control signal status register (address 11).

The SCSI control signal status register displays both artificial input from the SCSI and artificial output to the SCSI.

SCSI Data Bus Signals


In the Diagnosis mode, SCSI data bus artificial input and output data can be established.

The artificial input and output data settings vary depending on the phase being executed.

In the Diagnosis mode, the SCSI data parity bit is fixed as 0.

Diagnosis Mode Execution

Figure 5.10 shows the Diagnosis mode flowchart.

5.10.1 SCSI Control Signals

In the Diagnosis mode, the values in the Diagnostic register (address 11) are treated as input signals to the SPC.

Also, output signals from the SPC are shown in the SCSI control signal status register (address 11).

The SCSI control signal status register displays both artificial input from the SCSI and artificial output to the SCSI.

■ Flow of SCSI Control Signals During Diagnosis Mode

Figure 5.10.1 shows the flow of SCSI control signals during the diagnosis mode.

DIAGNOSTIC register	SCSI artificial input		SCSI artificial output	SCSI control signal
BIT 7	REQ		REQ	status register
BIT 6	ACK		ACK	BIT 6
BIT 5	ATN		ATN	BIT 5
"O"	SEL		SEL	BIT 4
BIT 3	BSY	BSY SPC internal control signal control section BSY MSG MSG MSG C/D C/D C/D I/O I/O I/O	BSY	BIT 3
BIT 2	MSG section MSG BIT 2			
BIT 1			BIT 1	
BIT 0	I/O		I/O I/O -	BIT 0
ын о "0"	RST		- -	ыго
0	r -			

Figure 5.10.1 Flow of SCSI Control Signals During Diagnosis Mode

5.10.2 SCSI Data Bus Signal

In the Diagnosis mode, SCSI data bus artificial input/output data can be set.

The artificial input/output data setting differs depending on the execution phase.

• In the Diagnosis mode, parity bit input is fixed at 0.

Sending Messages, Commands, and Statuses

Send the command after writing the data to be sent in the SEND MCS buffer as in standard modes.

Artificial output data for the SCSI bus is stored in the RECEIVE MCS buffer. The sending process is diagrammed in Figure 5.10.2a.

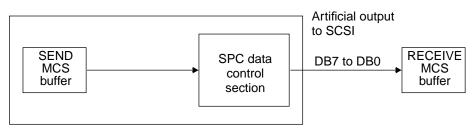


Figure 5.10.2a Sending Messages, Commands, and Statuses in Diagnosis Mode

Receiving Messages, Commands, and Statuses

Send the command after writing the artificial input data from the SCSI bus in the SEND MCS buffer.

Data received is stored in the RECEIVE MCS buffer as in standard modes. The receiving process is diagrammed in Figure 5.10.2b.

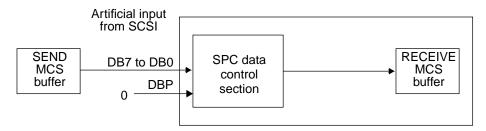


Figure 5.10.2b Receiving Messages, Commands, and Statuses in Diagnosis Mode

Sending Data

Artificial output data is stored in the RECEIVE MCS buffer.

When the transfer data is 33 bytes or longer, data storage to the RECEIVE MCS buffer is conducted repeatedly.

The synchronous transfer mode can be executed during the data phase, and at this time, the transfer parameters are the values set in the self ID number. After setting the self ID number in the SEL/RESEL ID register, establish the transfer parameters. This sending process is diagrammed in Figure 5.10.2c.

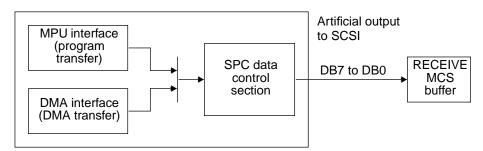


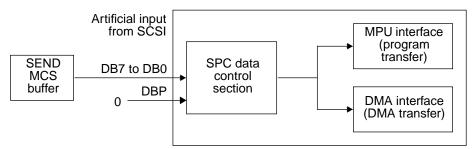
Figure 5.10.2c Sending Data in Diagnosis Mode

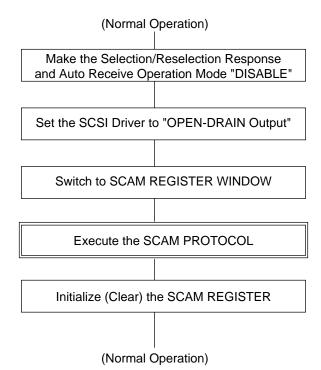
Receiving Data

Send the command after writing SCSI artificial input data in the SEND MCS buffer.

When the transfer data is 33 bytes or longer, the SEND MCS buffer data is used repeatedly as the artificial input data.

The synchronous transfer mode can be executed during the data phase, and at this time, the transfer parameters are the values set in the self ID number. After setting the self ID number in the SEL/RESEL ID register, establish the transfer parameters. This receiving process is diagrammed in Figure 5.10.2d.




Figure 5.10.2d Receiving Data in Diagnosis Mode

5.11 SCAM FUNCTION (only for MB86604L)

The MB86604L supports the SCAM function that allows the SCAM Level-1 protocol for SCSI Plug & Play. It can directly control the SCSI bus signals from the system bus. The controlled signals are defined and set in the SCAM Register Window.

SCAM Protocol

To execute the SCAM protocol, take the following steps and set the MB86604L.

How to Access SCSI Bus

- 1) Write: Set the SCSI bus to Open-drain mode for the SCAM protocol. In the open-drain mode, the SPC outputs Low level at the signal assertion (writing 1 to the register).
- 2) Read: First, initialize the SCAM register (write 0 adn make Hi-Z state) due to the open-drain mode.

CHAPTER 6 SYSTEM CONFIGURATION EXAMPLE

This shows an SPC system configuration example where the SPC is used to develop a product.

- 6.1 TP SIGNAL CONTROL
- 6.2 DMA MISALIGNMENT PROCESSING
- 6.3 SYSTEM CONFIGURATION EXAMPLE 1 (80 SERIES, SEPARATE BUS TYPE)
- 6.4 SYSTEM CONFIGURATION EXAMPLE 2 (68 SERIES, SEPARATE BUS TYPE)
- 6.5 SYSTEM CONFIGURATION EXAMPLE 3 (80 SERIES, COMMON BUS TYPE)
- 6.6 SYSTEM CONFIGURATION EXAMPLE 4 (68 SERIES, COMMON BUS TYPE)

6.1 TP SIGNAL CONTROL

The TP (transfer permission) signal is used to suspend DMA transfers temporarily.

The SPC manages transfers by individual blocks, checking the TP signal for each block and determining whether or not to send the next block.

When the DMA transfer is temporarily stopped, input 0 during the transfer of the suspended block.

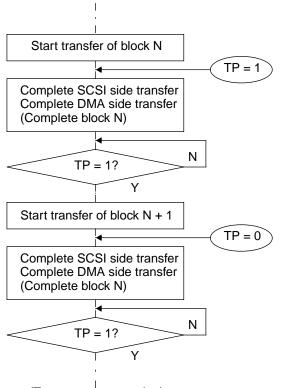

TP Signal Control

Figure 6.1 shows the operation flowchart for cases where the DMA transfer is temporarily stopped after the transfer of block (N + 1) is completed.

During this state in which the transfer is temporarily stopped, the SPC functions in the following manner.

Initiator:REQ signals are received from the target, but ACK signals are not asserted. The DREQ signal outputs L. During the data in phase, the amount of data received is equivalent to the number of REQ received.

Target:The REQ signal is not asserted. The DREQ signal outputs L (signifying that the data register is EMPTY).

(Temporary suspension)

Figure 6.1 Flowchart for TP Signal Control Example

6.2 DMA MISALIGNMENT PROCESSING

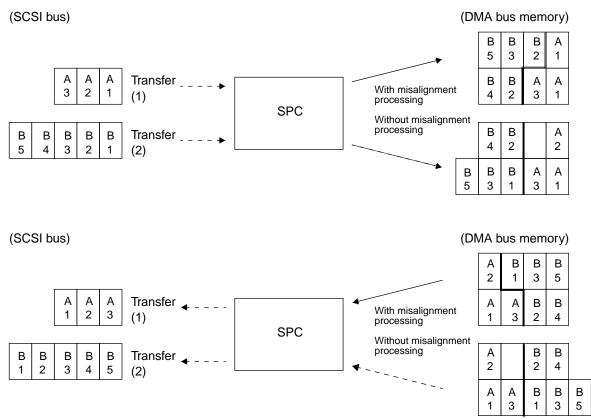
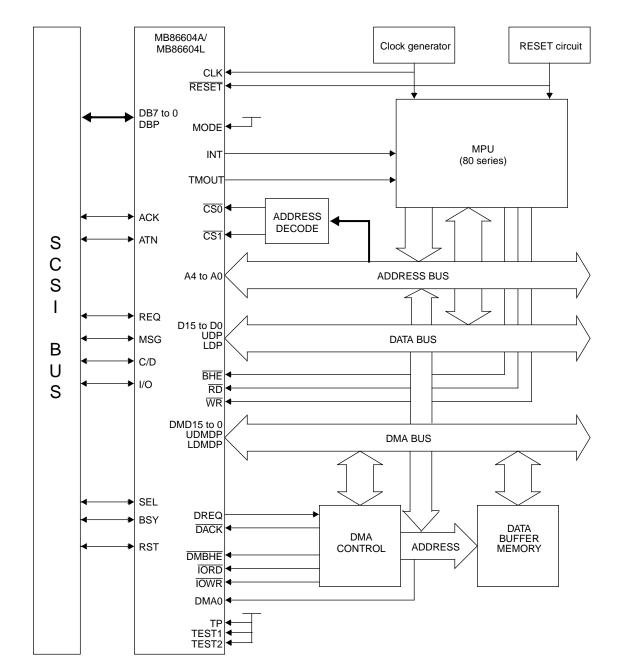
For DMA misalignment processing, set "1" in BIT 7 of the SEL/RESEL ID register.

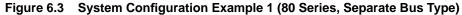
As a result, input and output data can be byte accessed from an odd number memory address.

DMA Misalignment Processing

Figure 6.2 provides an example of DMA misalignment processing when the first transfer is an odd number of bytes and a memory misalignment occurs for the second transfer.

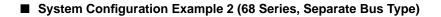
In this case, set 1 in BIT 7 of the SEL/RESEL ID register for the second transfer.


Figure 6.2 DMA Misalignment Processing Example

6.3 SYSTEM CONFIGURATION EXAMPLE 1 (80 SERIES, SEPARATE BUS TYPE)

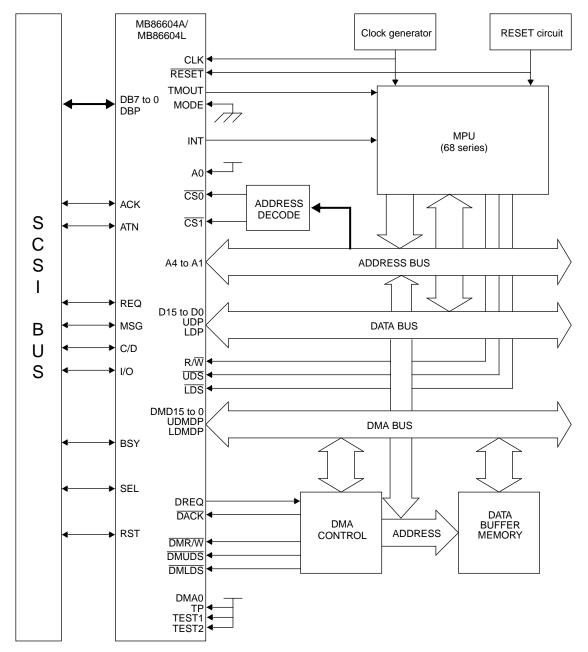
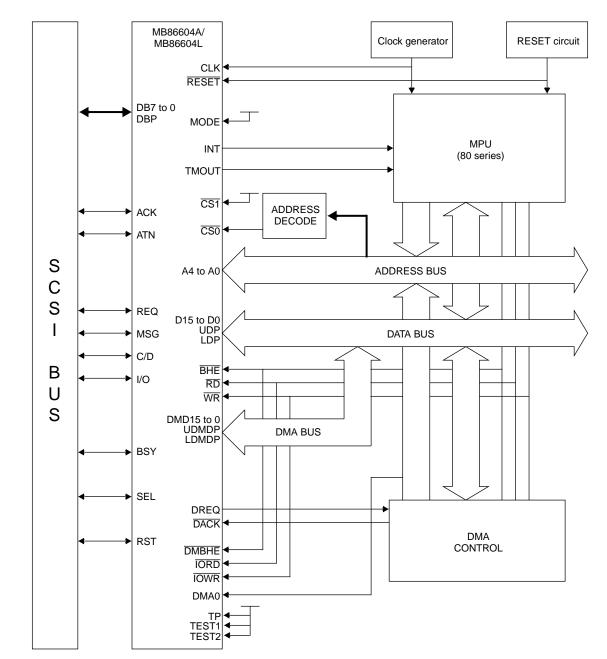
Figure 6.3 shows a system configuration example for a SCSI-2 80 series, separate bus type system.

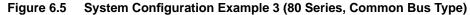


System Configuration Example 1 (80 Series, Separate Bus Type)

6.4 SYSTEM CONFIGURATION EXAMPLE 2 (68 SERIES, SEPARATE BUS TYPE)

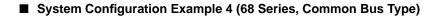
Figure 6.4 shows a system configuration example for a SCSI-2 68 series, separate bus type system.


Figure 6.4 System Configuration Example 2 (68 Series, Separate Bus Type)

6.5 SYSTEM CONFIGURATION EXAMPLE 3 (80 SERIES, COMMON BUS TYPE)

Figure 6.5 shows a system configuration example for a SCSI-2 80 series, common bus type system.



System Configuration Example 3 (80 Series, Common Bus Type)

6.6 SYSTEM CONFIGURATION EXAMPLE 4 (68 SERIES, COMMON BUS TYPE)

Figure 6.6 shows a system configuration example for a SCSI-2 68 series, common bus type system.

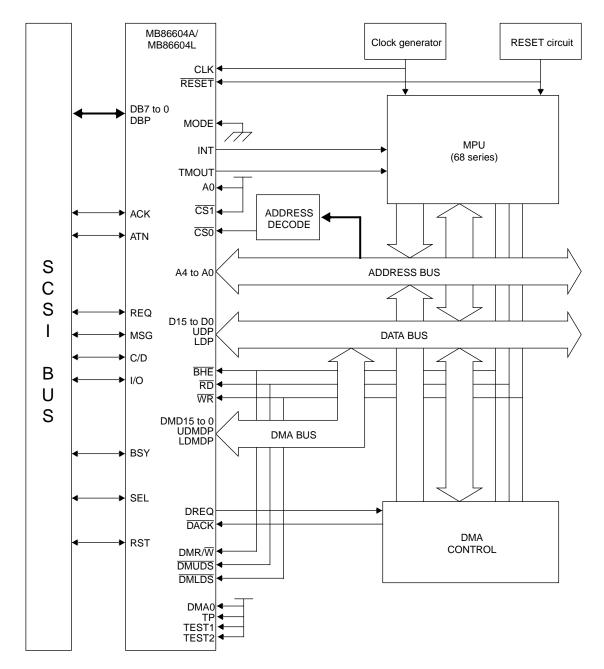
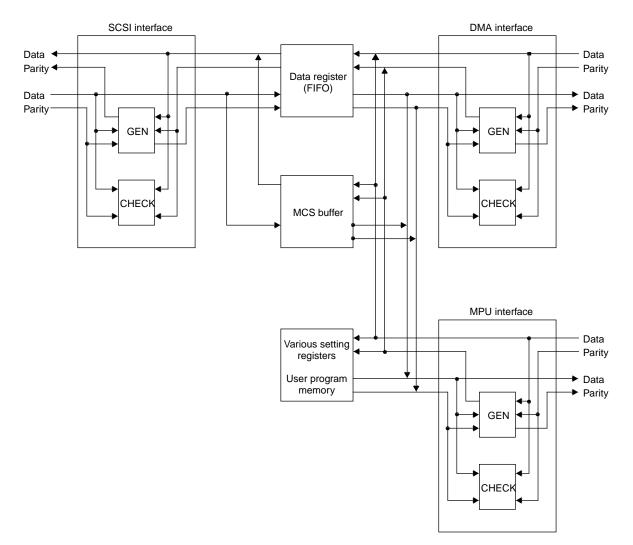


Figure 6.6 System Configuration Example 4 (68 Series, Common Bus Type)

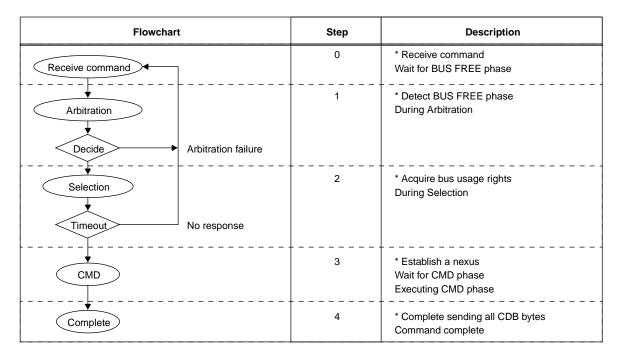

- APPENDIX A PACKAGE DIMENSIONS
- APPENSIX B PARITY CHECK AND PARITY GENERATE FLOWS
- APPENDIX C INITIATOR COMMAND STEP CODES
- APPENDIX D TARGET COMMAND STEP CODES
- APPENDIX E FLOWCHART FOR INITIATOR USER PROGRAM EXAMPLE
- APPENDIX F FLOWCHART FOR TARGET USER PROGRAM EXAMPLE
- APPENDIX G LIST OF INTERRUPT CODES AND COMMANDS

APPENDIX A PACKAGE DIMENSIONS

■ MB86604A Package Dimensions (QFP100)

■ MB86604L Package Dimensions (SQFP 100)

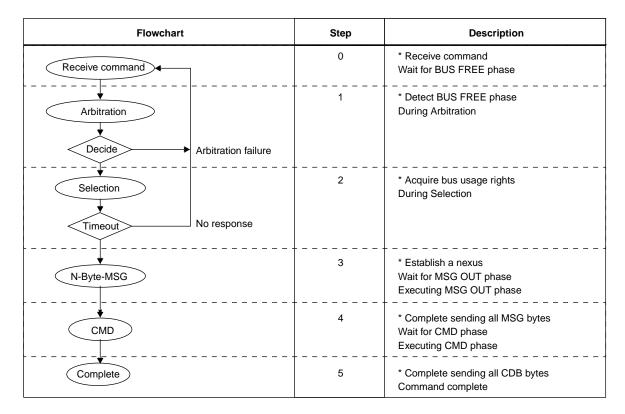
APPENDIX B PARITY CHECK AND PARITY GENERATE FLOWS


Note: For systems which do not have parity bits on the data bus, respectively pull up or pull down the UDP, LDP pins or the UDMP, LDMP pins with about 10 kiloohms of resistance.

When SCSI data bus parity checks are performed, in addition to the pin processing indicated above, enable MPU and DMA parity generate in the parity error detect setting register.

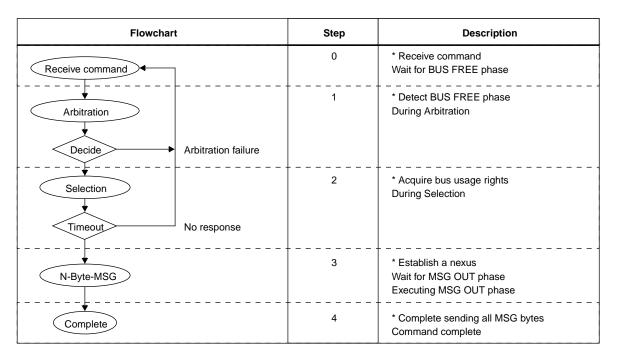
Appendix Figure B Parity Check and Parity Generate Flows

APPENDIX C INITIATOR COMMAND STEP CODES


• No.1 SELECT & CMD

• No.2 SELECT & 1-MSG & CMD

Flowchart	Step	Description
Receive command	0	* Receive command Wait for BUS FREE phase
Arbitration	1	* Detect BUS FREE phase During Arbitration
Decide Arbitration failure		
Selection	2	* Acquire bus usage rights During Selection
Timeout No response		
1-MSG	3	* Establish a nexus Wait for MSG OUT phase Executing MSG OUT phase
CMD	4	* Complete sending all MSG bytes Wait for CMD phase Executing CMD phase
Complete	5	* Complete sending all CDB bytes Command complete


No.3 SELECT & N-Byte-MSG & CMD

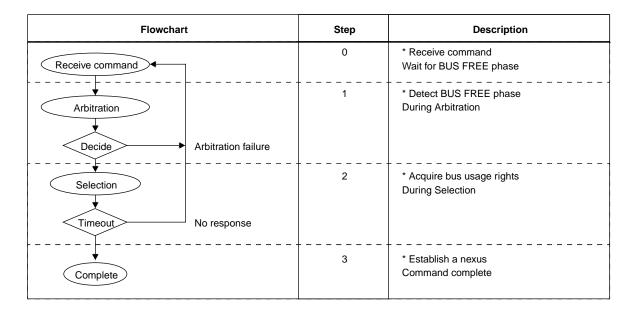
• No.4 SELECT & 1-MSG

Flowchart	Step	Description
Receive command	0	* Receive command Wait for BUS FREE phase
Arbitration Decide Arbitration failure	1	* Detect BUS FREE phase During Arbitration
Selection Timeout No response	2	* Acquire bus usage rights During Selection
1-MSG	3	* Establish a nexus Wait for MSG OUT phase Executing MSG OUT phase
Complete	4	* Complete sending all MSG bytes Command complete

• No.5 SELECT & N-Byte-MSG

• No.6 SEND N-Byte-MSG

Flowchart	Step	Description
Receive command	0	* Receive command
N-Byte-MSG	1	* Wait for MSG OUT phase Executing MSG OUT phase
Complete	2	* Complete sending all MSG bytes Command complete


• No.7 SEND N-Byte-CMD

Flowchart	Step	Description
Receive command	0	* Receive command
N-Byte-CMD	1	* Wait for CMD phase Executing CMD phase
Complete	2	* Complete sending all CBD bytes Command complete

• No.8 Receive & N-Byte-MSG

Flowchart	Step	Description
Receive command	0	* Receive command
N-Byte-MSG	1	* Wait for MSG IN phase Executing MSG IN phase
Complete	2	* Complete reception of all MSG bytes Command complete

- No.9 SELECT
- No.10 SELECT with ATN

- No.11 SET ATN
- No.12 RESET ATN
- No.13 SET ACK
- No.14 RESET ACK

Flowchart	Step	Description
Receive command	0	* Receive command
Complete	1	Command complete

- No.15 SEND DATA from MPU
- No.16 SEND DATA from DMA
- No.19 SEND DATA from MPU (PADDING)
- No.20 SEND DATA from DMA (PADDING)

Flowchart	Step	Description
Receive command	0	* Receive command
DATA	1	* Wait for DATA OUT phase Executing DATA OUT phase
Complete	2	* Complete sending all DATA bytes Command complete

- No.17 RECEIVE DATA to MPU
- No.18 RECEIVE DATA to DMA
- No.21 RECEIVE DATA to MPU (PADDING)
- No.22 RECEIVE DATA to DMA (PADDING)

Flowchart	Step	Description
Receive command	0	* Receive command
DATA	1	* Wait for DATA IN phase Executing DATA IN phase
Complete	2	* Complete reception of all DATA byte Command complete

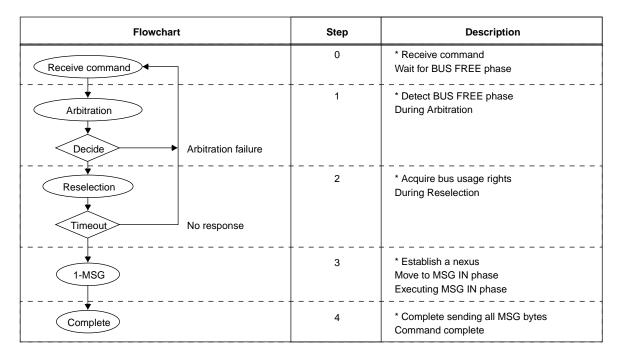
- No.23 SEND 1-MSG
- No.24 SEND 1-MSG with ATN

Flowchart	Step	Description
Receive command	0	* Receive command
1-MSG	1	* Wait for MSG OUT phase Executing MSG OUT phase
Complete	2	* Complete sending all MSG bytes Command complete

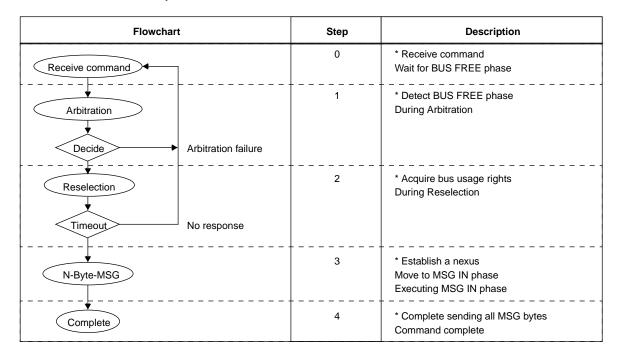
No.25 RECEIVE MSG

Flowchart	Step	Description
Receive command	0	* Receive command
MSG	1	* Wait for MSG IN phase Executing MSG IN phase
Complete	2	* Complete reception of all MSG bytes Command complete

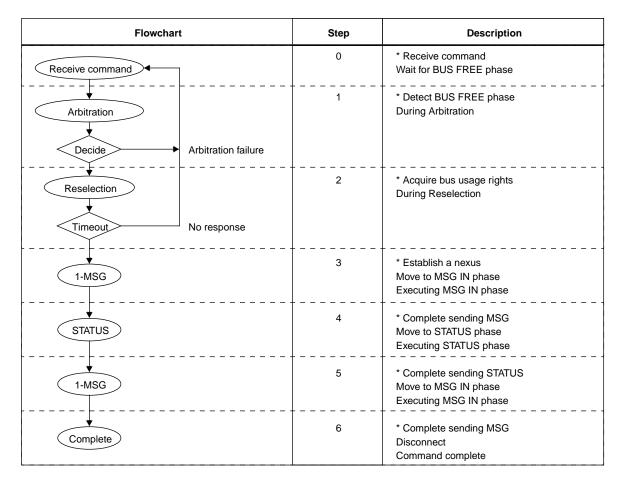
• No.26 SEND CMD

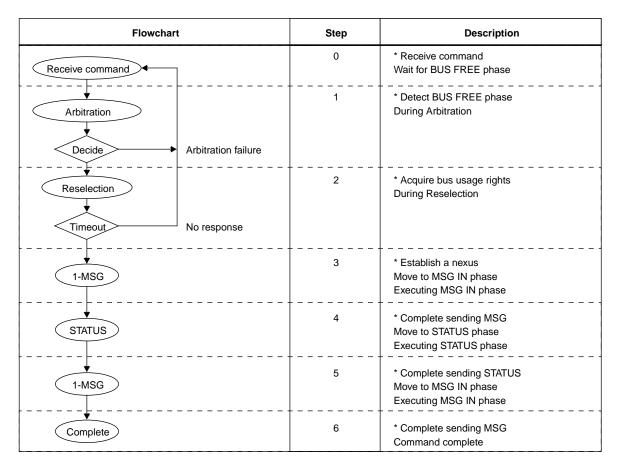

Flowchart	Step	Description
Receive command	0	* Receive command
CMD	1	* Wait for CMD phase Executing CMD phase
Complete	2	* Complete sending all CDB bytes Command complete

• No.27 RECEIVE STATUS


Flowchart	Step	Description
Receive command	0	* Receive command
STATUS	1	* Wait for STATUS phase Executing STATUS phase
Complete	2	* Complete reception of STATUS Command complete

APPENDIX D TARGET COMMAND STEP CODES


• No.1 RESELECT & 1-MSG


No.2 RESELECT & N-Byte-MSG

No.3 RESELECT & 1-MSG & TERMINATE

• No.4 RESELECT & 1-MSG & LINK TERMINATE

• No.5 TERMINATE

Flowchart	Step	Description
Receive command	0	* Receive command
STATUS	1	* Move to STATUS phase Executing STATUS phase
1-MSG	2	* Complete sending STATUS Move to MSG IN phase Executing MSG IN phase
Complete	3	* Complete sending MSG Disconnect Command complete

• No.6 LINK TERMINATE

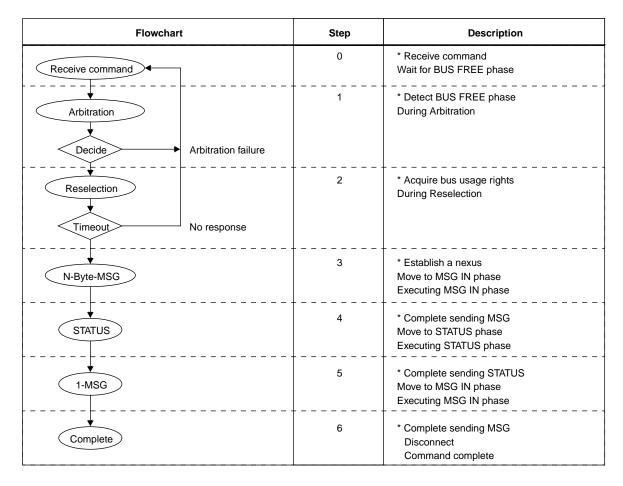
Flowchart	Step	Description
Receive command	0	* Receive command
STATUS	1	* Move to STATUS phase Executing STATUS phase
1-MSG	2	* Complete sending STATUS Move to MSG IN phase Executing MSG IN phase
Complete	3	* Complete sending MSG Command complete

• No.7 DISCONNECT SEQUENCE

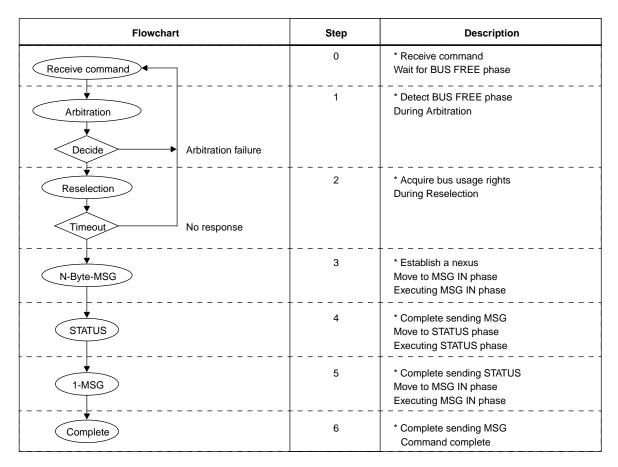
Flowchart	Step	Description
Receive command	0	* Receive command
2-MSG	1	* Move to MSG IN phase Executing MSG IN phase
Complete	2	* Complete sending 2-byte MSG Disconnect Command complete

• No.8 SEND N-Byte-MSG

Flowchart	Step	Description
Receive command	0	* Receive command
N-Byte-MSG	1	* Move to MSG IN phase Executing MSG IN phase
Complete	2	* Complete sending all MSG bytes Command complete

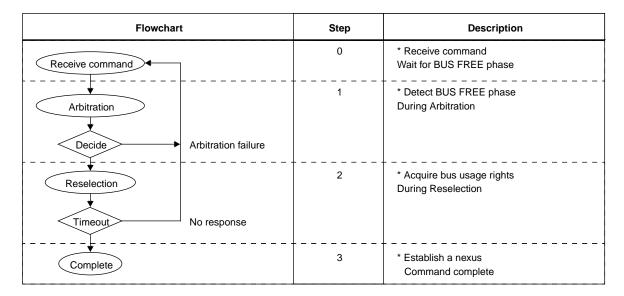

• No.9 RECEIVE N-Byte-CMD

Flowchart	Step	Description
Receive command	0	* Receive command
N-Byte-CMD	1	* Move to CMD phase Executing CMD phase
Complete	2	* Complete reception of all CDB bytes Command complete


• No.10 RECEIVE N-Byte-MSG

Flowchart	Step	Description
Receive command	0	* Receive command
N-Byte-MSG	1	* Move to MSG OUT phase Executing MSG OUT phase
Complete	2	* Complete reception of all MSG bytes Command complete

No.11 RESELECT & N-Byte-MSG & TERMINATE


No.12 RESELECT & N-Byte-MSG & LINK TERMINATE

• No.13 DISCONNECT SEQUENCE 2

Flowchart	Step Description	
Receive command	0	* Receive command
1-MSG	1	* Move to MSG IN phase Executing MSG IN phase
Complete	2	* Complete sending 1-byte MSG Disconnect Command complete

No.14 RESELECT

- No.15 SET REQ
- No.16 RESET REQ
- No.17 DISCONNECT

Flowchart	Step	Description
Receive command	0	* Receive command
Complete	1	C. Command complete

- No.18 SEND DATA from MPU
- No.19 SEND DATA from DMA

Flowchart	Step	Description
Receive command	0	* Receive command
DATA	1	* Move to DATA IN phase Executing DATA IN phase
Complete	2	* Complete sending all DATA bytes Command complete

- No.20 RECEIVE DATA to MPU
- No.21 RECEIVE DATA to DMA

Flowchart	Step	Description
Receive command	0	* Receive command
DATA	1	* Move to DATA OUT phase Executing DATA OUT phase
Complete	2	* Complete sending all DATA bytes Command complete

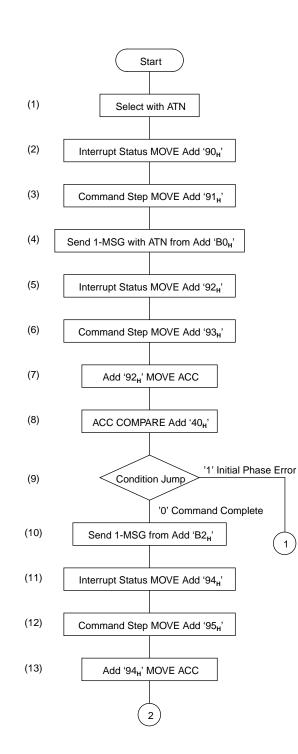
• No.22 SEND 1-MSG

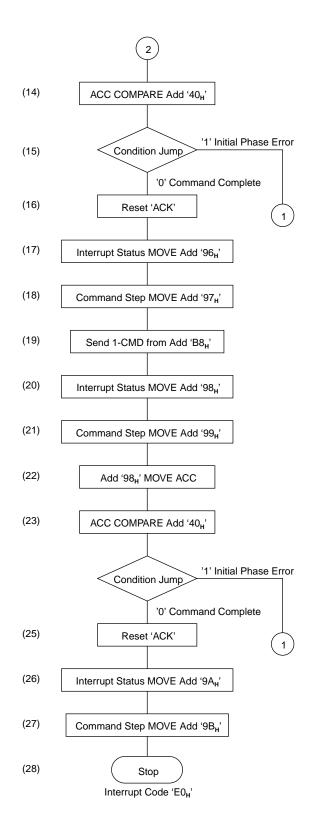
Flowchart	Step	Description
Receive command	0	* Receive command
1-MSG	1	* Move to MSG IN phase Executing MSG IN phase
Complete	2	* Complete sending all MSG bytes Command complete

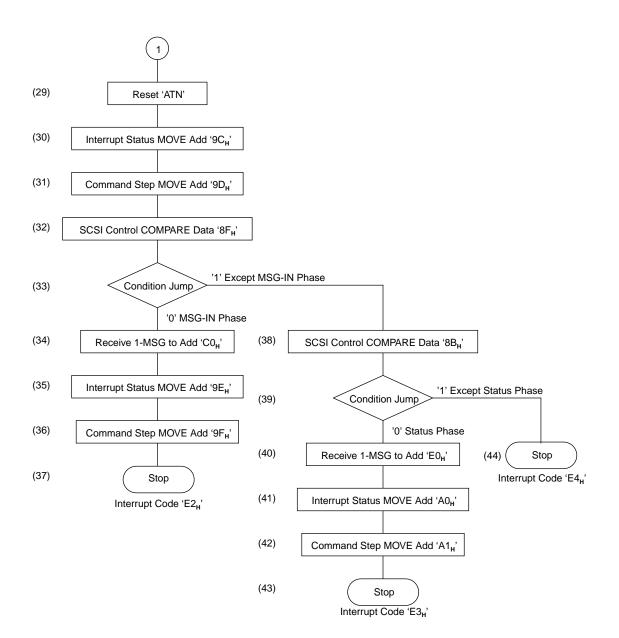
• No.23 RECEIVE MSG

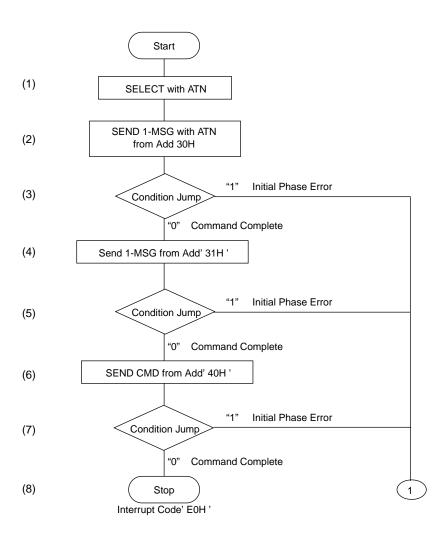
Flowchart	Step	Description
Receive command	0	* Receive command
MSG	1	* Move to MSG IN phase Executing MSG IN phase
Complete	2	* Complete receiving all MSG bytes Command complete

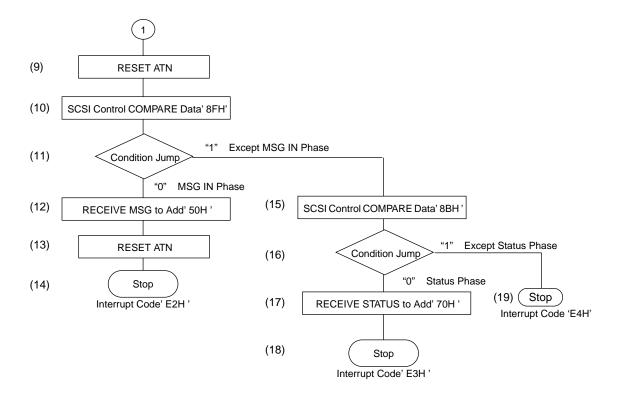
• No.24 SEND STATUS

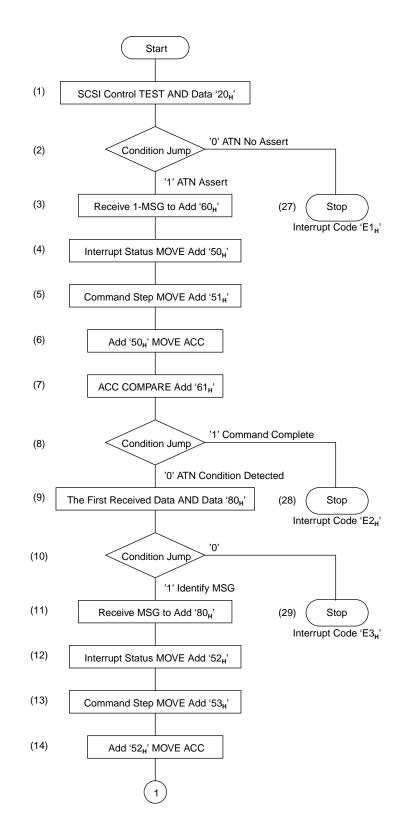

Flowchart	Step	Description
Receive command	0	* Receive command
STATUS	1	* Move to STATUS phase Executing STATUS phase
Complete	2	* Complete sending STATUS Command complete

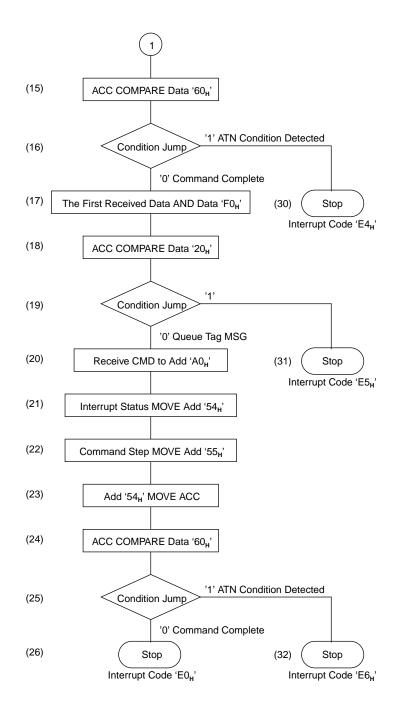

No.25 RECEIVE CMD

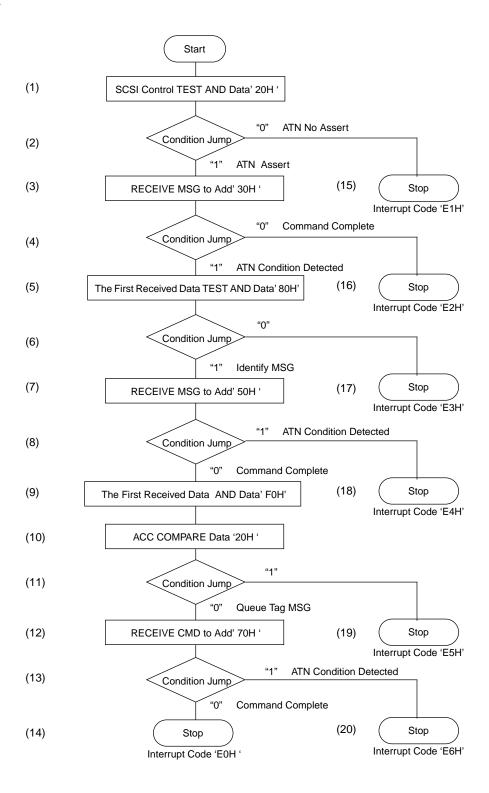

Flowchart	Step	Description
Receive command	0	* Receive command
CMD	1	* Move to CMD phase Executing CMD phase
Complete	2	* Complete receiving all CDB bytes Command complete


APPENDIX E FLOWCHART FOR INITIATOR USER PROGRAM EXAMPLES


EX 1:







APPENDIX F FLOWCHART FOR TARGET USER PROGRAM EXAMPLES

EX 1:

APPENDIX G LIST OF INTERRUPT CODES AND COMMANDS

This section provides a list of the interrupt codes explained in 5.8 and the command steps displayed when these interrupts are produced, their content, and SPC operation during the interrupt.

The * and Note symbols used in this list have the following meaning.

*: Indicates an SPC operating state

Note: Indicates points to watch in using the SPC.

- G.1 Initiator Commands
- G.2 Target Commands
- G.3 Common Commands

G.1 Initiator Commands

■ Initiator Sequential Commands

• All commands

CODE	STEP	SPC Operation
31 _H	00 _H	A bus free state is detected keeping ACK signal asserted (at the manual RESET ACK mode), after transfer completion.
64 _н	00 _H	 A new command is received while a command is being executed (double reception). After the execution results for the command received first are reported, this interrupt is reported. When a command is received and the SPC has already detected an interrupt cause produced during the Ready state, this interrupt cause report is given priority. After the interrupt cause reported during the SPC Ready state is reported, this interrupt is reported.
65 _н	00 _H	 A target command is received while the SPC is functioning as the initiator. An undefined command is received. Commands which start with a transfer are sent even though a nexus has not been established. Or commands which start with a selection are sent even though a nexus has been established.
66 _н	00 _H	A parity error is detected in a register set by the host MPU.

• SELECT & CMD

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
	01 _H	A reset condition is detected during arbitration phase execution.
01 _H	02 _H	A reset condition is detected during selection phase execution.
	03 _H	A reset condition is detected during command phase execution.*1
	04 _H	A reset condition is detected after command phase execution.
2C _H	03 _H	The specified REQ/ACK timeout time is exceeded during command phase execution.*1
31 _H	03 _H	A bus free state is detected during command phase execution.*1
32 _H	03 _H	A target phase change occurs during command phase execution.*1
54 _H	03 _H	The phase when the REQ signal is first received is not the command phase.
55 _H	03 _H	The phase when the REQ signal is first received is not the command phase and a single message is received in response to the target message reception request.*2
56 _H	03 _H	The phase when the REQ signal is first received is not the command phase and a single status is received in response to the target status reception request.* ²
<u> </u>	04 _H	Operation is completed normally.*3
60 _н	0C _H	Operation is completed normally and negates the final ACK signal.*4
64 _н	00 _H	 The SPC is reselected after failing at arbitration and waiting for a bus free state. After this interrupt is reported, the results of the operation established after reselection (Automatic reselection response mode or user program operation) are reported. The SPC has already been reselected when a command is received and the operation established after reselection is being executed. After the results of the operation being executed are reported this interrupt is reported.
65 _н	03 _H	 The group 6/7 CDB length setting is not defined. The data sent is group 3/4 CDB. A report is made without performing a CDB transfer.
67 _н	01 _H	A Command Pause is received during the arbitration phase.
70 _н	02 _H	A BSY signal response is received from the target and a nexus is established. After that, however, a bus free state is detected.
	04 _H	A bus free state is detected after the command phase is executed.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is established.

*3 Applicable when the Manual RESET ACK mode is set.

• SELECT & 1-MSG & CMD, SELECT & N-Byte-MSG & CMD

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
01 _H	01 _н	A reset condition is detected during arbitration phase execution.
	02 _H	A reset condition is detected during selection phase execution.
	03 _H	A reset condition is detected during message phase execution.*1
	04 _H	A reset condition is detected during command phase execution.*1
	05 _H	A reset condition is detedted after command phase execution.
	03 _H	The specified REQ/ACK timeout time is exceeded during message phase execution.*1
2C _H	04 _H	The specified REQ/ACK timeout time is exceeded during command phase execution.*1
	03 _H	A bus free state is detected during message phase execution.*1
31 _H	04 _H	A bus free state is detected during command phase execution.*1
	03 _H	A target phase change occurs during message phase execution.*1
32 _H	04 _H	A target phase change occurs during message phase execution.*1
54 _H	03 _H	The phase when the REQ signal is first received is not the message out phase. This interrupt is reported without negating the ATN signal.
- ·H	04 _H	The phase when the REQ signal is first received is not the command phase.
	00	The phase when the REQ signal is first received is not the message out phase and a single message
55 _н	03 _H	is received in response to the target message reception request. (the ATN signal is negated).*2
55 ^H	04 _H	The phase when the REQ signal is first received is not the command phase and a single message is
	04 _H	received in response to the target message reception request.*2
	03 _H	The phase when the REQ signal is first received is not the message out phase and a single status is
56 _н		received in response to the target status reception request (the ATN signal is negated).*2
	04 _H	The phase when the REQ signal is first received is not the command phase and a single status is
	05	received in response to the target status reception request.*2
60 _H	05 _H	Operation is completed normally.*3
	0D _H	Operation is completed normally and negates the final ACK signal.*4
64 _H	00 _H	 The SPC is reselected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after reselection (Automatic reselection response mode or user program operation) are reported. The SPC has already been reselected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
	03 _H	The message length is 33 bytes or longer (SELECT & CMD only)
	03 _H	The MC byte register is undefiend (for SELECT & N-Byte-MSG & CMD only)
65 _н	04 _H	 The group 6/7 CDB length setting is not defined. The data sent is group 3/4 CDB. A report is made without performing a CDB transfer.
67 _н	01 _H	A Command Pause is received during the arbitration phase.
70 _H	02 _H	A BSY signal response is received from the target and a nexus is established. After that, however, a bus free state is detected.
	05 _H	A bus free state is detected after the command phase is executed.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is established.

*3 Applicable when the Manual RESET ACK mode is set.

• SELECT & 1-MSG, SELECT & N-Byte-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
	01 _H	A reset condition is detected during arbitration phase execution.
01 _H	02 _H	A reset condition is detected during selection phase execution.
	03 _H	A reset condition is detected during message phase execution.*1
	04 _H	A reset condition is detected after message phase execution.
2C _H	03 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	03 _H	A bus free state is detected during message phase execution.*1
32 _H	03 _н	A target phase change occurs during message phase execution.*1
54 _H	03 _H	The phase when the REQ signal is first received is not the message out phase This interrupt is reported without negating the ATN signal.
55 _H	03 _H	The phase when the REQ signal is first received is not themessage out phase and a single message is received in response to the target message reception request (the ATN is negated). ^{*2}
56 _H	03 _H	The phase when the REQ signal is first received is not the message out phase and a single status is received in response to the target status reception request (the ATN is negated). ^{*2}
60	04 _H	Operation is completed normally.*3
60 _H	0C _H	Operation is completed normally and negates the final ACK signal.*4
64 _H	00 _H	 The SPC is reselected after failing at arbitration and waiting for a bus free state. After this interrupt is reported, the results of the operation established after reselection (Automatic reselection response mode or user program operation) are reported. The SPC has already been reselected when a command is received and the operation established after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
	03 _H	The message length is 33 bytes or longer (SELECT & 1-MSG only)
65 _н	03 _H	The MC byte register is undefined (00 _H) (SELECT & N-Byte-MSG only)
67 _н	01 _H	A Command Pause is received during the arbitration phase.
70 _H	02 _H	A BSY signal response is received from the target and a nexus is established, after which a bus free state is detected.
	04 _H	A bus free state is detected after the command phase is executed.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is established.

*3 Applicable when the Manual RESET ACK mode is set.

• SEND N-Byte-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*1
	02 _H	A reset condition is detected after the transfer is executed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	01 _H	A bus free state is detected while the transfer is being executed.*1
32 _H	01 _H	A target phase change occurs while the transfer is being executed.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the message out phase. This interrupt is reported without negating the ATN signal.
55 _H	01 _H	The phase when the REQ signal is first received is not the message out phase and a single message is received in response to the target message reception request (the ATN signal is negated). ^{*2}
56 _H	01 _H	The phase when the REQ signal is first received is not the message out phase and a single status is received in response to the target status reception request (the ATN signal is negated). ^{*2}
60	02 _H	Operation is completed normally.*3
60 _н	0A _H	Operation is completed normally and negates the final ACK signal.*4
65 _н	01 _H	The MC byte register is undefined (00 _H).
70	00 _H	A bus free state is detected before the transfer is executed.
70 _н	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is established.

*3 Applicable when the Manual RESET ACK mode is set.

*4 Applicable when the Automatic RESET ACK mode is set.

• SEND N-Byte-CMD

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*1
	02 _H	A reset condition is detected after the transfer is executed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	01 _H	A bus free state is detected while the transfer is being executed.*1
32 _H	01 _H	A target phase change occurs while the transfer is being executed.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the command phase.
55 _H	01 _H	The phase when the REQ signal is first received is not the command phase and a single message is
JOH JOH	Ч	received in response to the target message reception request.*2
56 _H	01 _H	The phase when the REQ signal is first received is not the command phase and a single status is
JOH	U H	received in response to the target status reception request.*2
60 _H	02 _H	Operation is completed normally.*3
00 _H	0A _H	Operation is completed normally and negates the final ACK signal.*4
65 _H	01 _H	The MC byte register is undefined (00 _H).
70 _H	00 _H	A bus free state is detected before the transfer is executed.
/ ⁰ H	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is established.

*3 Applicable when the Manual RESET ACK mode is set.

• RECEIVE N-Byte-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*
	02 _H	A reset condition is detected after the transfer is executed.
24 _H	01 _H	A parity error is detected in input data at the SCSI interface.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	01 _H	A bus free state is detected while the transfer is being executed.*1
32 _H	01 _H	A target phase change occurs while the transfer is being executed.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the message in phase.
56 _H	01 _H	The phase when the REQ signal is first received is not the message in phase and a single status is received in response to the target status reception request. ^{*2} Reported when the Automatic receive mode is established.
60 _н	02 _H	Operation is completed normally.
65 _н	01 _H	The MC byte register is undefined (00 _H).
70	00 _H	A bus free state is detected before the transfer is executed.
70 _H	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.*2 Reported when the Automatic receive mode is established.

Initiator Discrete Commands

• All commands

CODE	STEP	SPC Operation
31 _H	00 _H	A bus free state is detected keeping ACK signal asserted (at Manual RESET ACK mode), after the transfer completion.
64 _н	00 _H	 A new command is received while a command is being executed (double reception). After the execution results for the command received first are reported, this interrupt is reported. When a command is received and the SPC has already detected an interrupt cause produced during the Ready state, this interrupt cause report is given priority. After the interrupt cause reported during the SPC Ready state is reported, this interrupt is reported.
65 _н	00 _H	 A target command is received while the SPC is functioning as the initiator. An undefined command is received. Commands which start with a transfer are sent even though a nexus has not been established. Or commands which start with a selection are sent even though a nexus has been established.
66 _H	00 _H	A parity error is detected in a register set by the host MPU.

• SELECT, SELECT with ATN

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
01 _H	01 _H	A reset condition is detected during arbitration phase execution.
	02 _H	A reset condition is detected during selection phase execution.
60 _H	03 _H	Operation is completed normally.
64 _H	00 _H	 The SPC is reselected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after reselection (Automatic reselection response mode or user program operation) are reported. The SPC has already been reselected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
67 _H	01 _H	A Command Pause is received during the arbitration phase.
70 _H	02 _H	A BSY signal response is received from the target and a nexus is established. After that, however, a bus free state is detected.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

• SET ATN, RESET ATN, SET ACK, RESET ACK

CODE	STEP	SPC Operation
01	00 _H	A reset condition is detected before the command is executed.
01 _H	01 _H	A reset condition is detected after the command is executed.
31 _H	00 _H	A bus free state is detected before the command is executed (when this command is sent after the transfer command is executed). ^{*1}
60 _н	01 _H	Operation is completed normally.
ббн	09 _H	Operation is completed normally and negates the ACK signal.*2
70 _н	00 _H	A bus free state is detected before the command is executed (when this command is sent after a command which does not include a transfer is executed).
	01 _H	A bus free state is detected after the command is executed.

*1 Reported when the Manual RESET ACK mode is set.

*2 Reported when the Automatic RESET ACK mode is set. Also, applicable to SET ATN command only.

• SEND DATA from MPU/DMA (WITH PADDING)

CODE	STEP	Interrupt Source and SPC Operation
	00 _H	Reset condition detected before transfer
01 _H	01 _H	Reset condition detected during transfer *2
	02 _H	Reset condition detected after transfer. Reset condition detected during padding transfer.
	01 _H	Parity error detected in input/output data over DMA interface during DMA transfer *1
21 _H	09 _H	Parity error detected in input/output data over DMA interface during DMA transfer, and the last ACK signal negated after the transfer completed ^{*1} , ^{*6}
	01 _H	Parity error detected when accessing SCSI data register during program transfer *1
22 _H	09 _H	Parity error detected in input/output data over MPU interface during program transfer, and the last ACK signal negated after the transfer completed ^{*1} , ^{*6}
	01 _н	Parity error detected in input/output data over SCSI interface *1
24 _H	09 _H	Parity error detected in input/output data over SCSI interface, and the last ACK signal negated after the transfer completed ^{*1} , ^{*6}
	01 _H	Parity error detected in input/output data over DMA and SCSI interfaces during DMA transfer *1
25 _H	09 _H	Parity error detected in input/output data over DMA and SCSI interfaces during DMA transfer, and the last ACK signal negated after the transfer completed ^{*1} , ^{*6}
	01 _H	Parity error detected in input/output data over MPU and SCSI interfaces during program transfer *1
26 _H	09 _H	Parity error detected in input/output data over MPU and SCSI interfaces during program transfer, and the last ACK signal negated after the transfer completed *1,*6
	01 _H	REQ signal greater than specified offset value received in synchronous transfer *1
29 _H	09 _H	REQ signal greater than specified offset value received in synchronous transfer, and the last ACK signal negated after the transfer completed *1, *6
	01 _H	SPC could not follow because period of received REQ signal short ^{*1} This interrupt may be reported even in asynchronous transfer.
2A _H	09 _H	SPC could not follow because period of received REQ signal short, and the last ACK signal negated after the transfer completed ^{*1} , ^{*6} This interrupt may be reported even in asynchronous transfer.
	01 _H	REQ signal greater than specified offset value received in synchronous transfer and SPC could not follow because period of received REQ signal short *1
28 _н	09 _H	REQ signal greater than specified offset value received in synchronous transfer and SPC could not follow because period of received REQ signal short, and the last ACK signal negated after the transfer completed ^{*1} , ^{*6}
2C _H	01 _H	More than specifed REQ/ACK timeout time elapsed (only in asynchronous mode) *2
31 _H	01 _H	Bus free state detected during data transfer *2
32 _H	01 _H	Target changed phase during data transfer *2
54 _H	01 _H	Phase when REQ signal first received not data-out phase
55 _H	01 _H	Phase when REQ signal first received not data-out phase and one message received in response to message receive request from target* ³
56 _H	01 _H	Phase when REQ signal first received not data-out phase and one status received in response to status receive request from target* ³
<u> </u>	02 _H	Terminated normally*5
60 _н	0A _H	Terminated normally and negated the last ACK signal*6
65 _н	01 _H	Value of data block register or data byte register specified by host MPU was 0 Padding transfer is performed from the beginning without reporting this interrupt.
67 _н	01 _H	Command Pause accepted during data transfer*2
	01 _H	Bus free state detected before transfer*3
70 _H	02 _H	Bus free state detected after transfer Bus free state detected during padding transfer*4

*1 The ATN signal is asserted to continue tranfer.
*2 This interrupt is reported after the exit processing (for exit processing, see section 5.9.6).
*3 Reported when the Automatic receive mode is set.
*4 Reported at the same time as this state is detected.
*5 Reported only when the Manual RESET ACK mode is set.
*6 Reported only when the Automatic RESET ACK mode is set (except for padding transfer being executed).

RECEIVE DATA to MPU/DMA (WITH PADDING)

CODE	STEP	Interrupt Source and SPC Operation
	00 _H	Reset condition is detected before transfer
01 _H	01 _H	Reset condition is detected during transfer* ²
о.н 	02 _H	 Reset condition detected after transfer. Reset condition detected during padding transfer.^{*4}
	01 _H	Parity error detected in input/output data over DMA interface during DMA transfer*1
21 _H	09 _H	Parity error detected in input/output data over DMA interface during DMA transfer, and the last ACK signal negated after the transfer completed*1, *6
	01 _H	Parity error detected in input/output data over MPU interface*1
22 _H	09 _H	Parity error detected in input/output data over MPU interface during program transfer, and the last ACK signal negated after the transfer completed*1, *6
	01 _H	Parity error detected in input/output data over SCSI interface*1
24 _H	09 _H	Parity error detected in input/output data over SCSI interface, and the last ACK signal negated after the transfer completed*1, *6
	01 _H	Parity error detected in input/output data over DMA and SCSI interfaces during DMA transfer*1
25 _H	09 _H	Parity error detected in input/output data over DMA and SCSI interfaces during DMA transfer, and the las ACK signal negated after the transfer completed*1, *6
	01 _H	Parity error detected in input/output data over MPU and SCSI interfaces during program transfer*1
26 _н	09 _H	Parity error detected in input/output data over MPU and SCSI interfaces during program transfer, and the last ACK signal negated after the transfer completed*1, *6
	01 _H	REQ signal greater than specified offset value received in synchronous transfer*1
29 _H	09 _H	REQ signal greater than specified offset value received in synchronous transfer, and the last ACK signal negated after the transfer completed*1, *6
	01 _H	SPC could not follow because period of received REQ signal short* ¹ This interrupt may be reported even in asynchronous transfer.
2A _H	09 _H	SPC could not follow because period of received REQ signal short, and the last ACK signal negated afte the transfer completed*1, * ⁶ This interrupt may be reported even in asynchronous transfer.
	01 _H	REQ signal greater than specified offset value received in synchronous transfer and SPC could not follow because period of received REQ signal short*1
2B _H	09 _H	REQ signa greater than specified offset value received in synchronous transfer and SPC ould not follow because period of received REQ signal short, and the last ACK signal negated after the transfer completed*1, ^{*6}
2C _H	01 _H	More than specifed REQ/ACK timeout time elapsed (only in asynchronous mode)*4
31 _H	01 _H	Bus free state detected during data transfer*2
32 _H	01 _H	Target changed phase during data transfer*2
54 _H	01 _H	Phase when REQ signal first received not data-out phase
55 _H	01 _H	Phase when REQ signal first received not data-out phase and one message received in response to message receive request from target* ³
56 _н	01 _H	Phase when REQ signal first received not data-out phase and one status received in response to status receive request from target* ³
60	02 _H	Terminated normally*5
60 _н	0A _H	Terminated normally and negated the last ACK signal*6
65 _н	01 _H	Value of data block register or data byte register set by host MPU was 0 Padding transfer is performed from the beginning without reporting this interrupt.
67 _н	01 _H	Command Pause accepted during data phase*2
	01 _H	Bus free state detected before transfer*3
70 _H	02 _H	Bus free state detected after transfer Bus free state detected during padding transfer*4

*1 The ATN signal is asserted to continue tranfer.
*2 This interrupt is reported after the exit processing (for exit processing, see section 5.9.6).
*3 Reported when the Automatic receive mode is set.
*4 Reported at the same time as this state is detected.
*5 Reported only when the Manual RESET ACK mode is set.
*6 Reported only when the Automatic RESET ACK mode is set (except for padding transfer being executed).

• SEND 1-MSG, SEND 1-MSG with ATN

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*1
-	02 _H	A reset condition is detected after the transfer is executed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	01 _H	A bus free state is detected while the transfer is being executed.*1
32 _H	01 _H	A target phase change occurs while the transfer is being executed.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the message out phase. This interrupt is reported without negating the ATN signal.
55 _H	01 _H	The phase when the REQ signal is first received is not the message out phase and a single message is received in response to the target message reception request (the ATN signal is negated). ^{*2}
56 _H	01 _H	The phase when the REQ signal is first received is not the message out phase and a single status is received in response to the target status reception request (the ATN signal is negated). ^{*2}
60	02 _H	Operation is completed normally.*3
60 _н -	0A _H	Operation is completed normally and negates the final ACK signal*4
64 _H	01 _H	The MSG length is 33 bytes or longer. MSGs are not sent.
70 _H	00 _H	A bus free state is detected before the transfer is executed.
, о _н	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is set.

*3 Applicable when the Manual RESET ACK mode is set.

RECEIVE MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*1
	02 _H	A reset condition is detected after the transfer is executed.
24 _H	01 _H	 A parity error is detected in the received MSG bytes. When the message being received is a 1 byte message or a 2 byte message, this is reported after all bytes are received. When the message being received is an extended message, if the parity error is detected in the first or second byte, this is reported after 2 bytes are received but if the parity error is detected in the third byte or after, this is reported after all bytes are received.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	01 _H	A bus free state is detected while the transfer is being executed.*1
32 _H	01 _H	A target phase change occurs while the transfer is being executed.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the message in phase.
56 _H	01 _H	The phase when the REQ signal is first received is not the message in phase and a single status is received in response to the target status reception request. ^{*2} Reported when the Automatic receive mode is set.
60 _H	02 _H	Operation is completed normally.
67 _H	01 _H	The message received is an extended message and has a message length of 33 bytes or longer. The operation completes receiving up to second byte of message.
70 _H	00 _H	A bus free state is detected before the transfer is executed.
, ₀ H	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is set.

SEND CMD

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*1
	02 _H	A reset condition is detected after the transfer is executed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
31 _H	01 _H	A bus free state is detected while the transfer is being executed.*1
32 _H	01 _H	A target phase change occurs while the transfer is being executed.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the command phase.
55 _H	01 _H	The phase when the REQ signal is first received is not the command phase and a single message is received in response to the target message reception request. ^{*2}
56 _H	01 _H	The phase when the REQ signal is first received is not the command phase and a single status is received in response to the target status reception request. ^{*2}
60 _H	02 _H	Operation is completed normally.*3
OOH	0A _H	Operation is completed normally and negates the final ACK signal*4
65 _н	01 _H	The group 6/7 CDB length setting is not defined. • The data sent is group 3/4 CDB. A report is made without performing a command phase transfer.
70	00 _H	A bus free state is detected before the transfer is executed.
70 _H	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is set.

*3 Applicable when the Manual RESET ACK mode is set.

*4 Applicable when the Automatic RESET ACK mode is set.

RECEIVE STATUS

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.*1
	02 _H	A reset condition is detected after the transfer is executed.
	01 _H	A parity error is detected in input data at the SCSI interface (end after 1 byte is transferred).*3
24 _H	09 _H	A parity error is detected in input data at the SCSI interface and the ACK signal negated after transfer completion. ^{*4}
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
54 _H	01 _H	The phase when the REQ signal is first received is not the status phase.
55 _H	01 _H	The phase when the REQ signal is first received is not the status phase and a single message is received in response to the target message reception request. Reported when the Automatic receive mode is set.
60	02 _H	Operation is completed normally.*3
60 _H	0A _H	Operation is completed normally and negates the final ACK signal*4
70 _H	00 _H	A bus free state is detected before the transfer is executed.
, 0 _H	02 _H	A bus free state is detected after the transfer is executed.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is set.

*3 Applicable when the Manual RESET ACK mode is set.

G.2 Target Commands

■ Target Sequential Commands

• All commands

CODE	STEP	SPC Operation
64 _н	00 _H	 A new command is received while a command is being executed (double reception). After the execution results for the command received first are reported, this interrupt is reported. When a command is received, SPC has already detected an interrupt source which is generated only in SPC ready state, and the priority of interrupt report is higher than for the received command. This interrupt is reported after reporting the interrupt which has been generated.
65 _H	00 _H	 An initiator command is received while the SPC is functioning as the target. An undefined command is received. Commands which start with a transfer are sent even though a nexus has not been established. Or commands which start with a reselection are sent even though a nexus has been established.
66 _H	00 _H	A parity error is detected in a register set by the host MPU.

• RESELECT & 1-MSG, RESELECT & N-Byte-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
	01 _H	A reset condition is detected during arbitration.
01 _H	02 _H	A reset condition is detected during reselection.
	03 _H	A reset condition is detected during message phase execution.*
	04 _H	A reset condition is detected after message phase execution.
2C _H	03 _H	The specified REQ/ACK timeout time is exceeded.*
60 _H	04 _H	Operation is completed normally.
61 _H	04 _H	The command is completed normally and the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not set.
62 _H	04 _H	The command is completed normally, the attention condition generated by the initiator is detected, and a single message is received. Reported when the Automatic receive mode is set.
64 _H	00 _H	 The SPC is selected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after selection (Automatic selection response mode or user program operation) are reported. The SPC has already been selected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
	03 _H	The message length is 33 bytes or longer (RESELECT & 1-MSG only). MSG not transferred.
65 _н	03 _H	The MC byte register is undefined (00 _H) (RESELECT & N-Byte-MSG only).
67 _H	01 _H	A Command Pause is received during the arbitration phase.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

* Completed at the same time as this state is detected.

• RESELECT & 1-MSG & TERMINATE, RESELECT & N-Byte-MSG & TERMINATE

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
	01 _H	A reset condition is detected during arbitration.
	02 _H	A reset condition is detected during reselection.
01 _H	03 _H	A reset condition is detected during message in phase execution.*1
	04 _H	A reset condition is detected during status phase execution.*1
	05 _H	A reset condition is detected during message in phase execution.
	06 _H	A reset condition is detected after message in phase execution.
	03 _H	The specified REQ/ACK timeout time is exceeded during message in phase execution.*1
2C _H	04 _H	The specified REQ/ACK timeout time is exceeded during status phase execution.*1
	05 _н	The specified REQ/ACK timeout time is exceeded during message in phase execution.*1
	03 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected.*2
42 _H	04 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected. ^{*2}
	05 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected. ^{*2}
	03 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
43 _H	04 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
	05 _н	After the message in phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
60 _н	06 _H	Operation is completed normally.
64 _H	00 _H	 The SPC is selected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after selection (Automatic selection response mode or user program operation) are reported. The SPC has already been selected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
Ī	03 _H	The message length is 33 bytes or longer (RESELECT & 1-MSG & TERMINATE only).
65 _н	03 _H	The MC byte register is undefined (00 _H) (RESELECT & N-Byte-MSG & TERMINATE only).
67 _H	01 _H	A Command Pause is received during the arbitration phase.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is not set.

*3 Reported when the Automatic receive mode is set.

• RESELECT & 1-MSG & LINK-TERMINATE, RESELECT & N-Byte-MSG & LINK TERMINATE

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
-	01 _H	A reset condition is detected during arbitration.
	02 _H	A reset condition is detected during reselection.
01 _H	03 _H	A reset condition is detected during message in phase execution.*1
F	04 _H	A reset condition is detected during status phase execution.*1
F	05 _H	A reset condition is detected during message in phase execution.
F	06 _H	A reset condition is detected after message in phase execution.
	03 _H	The specified REQ/ACK timeout time is exceeded during message in phase execution.*1
2C _H	04 _H	The specified REQ/ACK timeout time is exceeded during status phase execution.*1
F	05 _H	The specified REQ/ACK timeout time is exceeded during message in phase execution.*1
	02	After the message in phase is completed normally, the attention condition generated by the initiator
42 _H	03 _H	is detected.*2
4 2н	04 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected. ²
	03 _H	After the message in phase is completed normally, the attention condition generated by the initiator
43 _H		is detected and a single message is received. *3
ΨOH	04 _H	After the status phase is completed normally, the attention condition generated by the initiator is
		detected and a single message is received.*3
60 _н	06 _H	Operation is completed normally.
61 _H	06 _H	After the command is completed normally (after the message in phase is completed normally), the attention condition generated by the initiator is detected. ^{*2}
62 _H	06 _H	After the command is completed normally (after the message in phase is completed normally) the attention condition generated by the initiator is detected and a single message is received. ^{*3}
64 _H	00 _H	 The SPC is selected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after selection (Automatic selection response mode or user program operation) are reported. The SPC has already been selected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
	03 _H	The message length is 33 bytes or longer (RESELECT & 1-MSG & TERMINATE only).
65 _н	03 _H	The MC byte register is undefined (00 _H) (RESELECT & N-Byte-MSG & TERMINATE only).
67 _н	01 _H	A Command Pause is received during the arbitration phase.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is not set.

*3 Reported when the Automatic receive mode is set.

• TERMINATE

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01	01 _H	A reset condition is detected during status phase execution.*1
UTH I	02 _H	A reset condition is detected during message in phase execution.*1
	03 _H	A reset condition is detected after message in phase execution.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded during status phase execution.*1
20 _H	02 _H	The specified REQ/ACK timeout time is exceeded during message in phase execution.*1
42 _H	01 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected. $^{\ast 2}$
ΨŹΗ	02 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected.*2
42	01 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
43 _H	02 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
60 _H	03 _H	Operation is completed normally.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is not set.

*3 Reported when the Automatic receive mode is set.

• LINK-TERMINATE

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01	01 _H	A reset condition is detected during status phase execution.*1
01 _H	02 _H	A reset condition is detected during message in phase execution.*1
	03 _H	A reset condition is detected after message in phase execution.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded during status phase execution.*1
20 _H	02 _H	The specified REQ/ACK timeout time is exceeded during message in phase execution.*1
42 _H	01 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected. ^{*2}
43 _H	01 _H	After the status phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
60 _H	03 _H	Operation is completed normally.
61 _H	03 _H	After the command is completed normally (after the message in phase is completed normally), the attention condition generated by the initiator is detected. ^{*2}
62 _н	03 _н	After the command is completed normally (after the message in phase is completed normally), the attention condition generated by the initiator is detected and a single message is received. ^{*3}

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is not set.

*3 Reported when the Automatic receive mode is set.

• DISCONNECT SEQUENCE, DISCONNECT SEQUENCE 2

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*1
	02 _H	A reset condition is detected after the transfer is completed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
42 _H	01 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected. ^{*2}
43 _H	01 _H	After the message in phase is completed normally, the attention condition generated by the initiator is detected and a single message is received. ^{*3}
60 _H	02 _H	Operation is completed normally.

*1 Completed at the same time as this state is detected.

*2 Reported when the Automatic receive mode is not set.

*3 Reported when the Automatic receive mode is set.

• SEND N-Byte-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
60 _H	02 _H	The operation is completed normally.*
61 _H	02 _H	After the transfer is completed, the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not set.
62 _H	02 _H	After the transfer is completed, the attention condition generated by the initiator is detected and a single message is received. Reported when the Automatic receive mode is set.
65 _н	01 _H	The MC byte register is undefined (00 _H).

* Completed at the same time as this state is detected.

RECEIVE N-Byte-CMD

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
24 _H	01 _H	A parity error is detected for input data at the SCSI interface.*
60 _H	02 _H	The operation is completed normally.
61 _н	02 _H	After the command is completed, the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not set.
62 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected and a single message is received. Reported when the Automatic receive mode is set.
65 _H	01 _H	The MC byte register is undefined (00 _H).

 * Completed at the same time as this state is detected.

• RECEIVE N-Byte-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
24 _H	01 _H	A parity error is detected in input data at the SCSI interface.*
60 _H	02 _H	The operation is completed normally.
61 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected. Reported regardless of the Automatic receive mode is set or not.
65 _H	01 _H	The MC byte register is undefined (00 _H).

* Completed at the same time as this state is detected.

■ Target Discrete Commands

• All commands

CODE	STEP	SPC Operation
64 _H	00 _H	 A new command is received while a command is being executed (double reception). After the execution results for the command received first are reported, this interrupt is reported. When a command is received and the SPC has already detected an interrupt cause produced during the Ready state, this interrupt cause report is given priority. After the interrupt cause reported during the SPC Ready state is reported, this interrupt is reported.
65 _H	00 _H	 An initiator command is received while the SPC is functioning as the target. An undefined command is received. Commands which start with a transfer are sent even though a nexus has not been established. Or commands which start with a reselection are sent even though a nexus has been established.
66 _H	00 _H	A parity error is detected in a register set by the host MPU.

• RESELECT

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected while waiting for a bus free state.
01 _H	01 _H	A reset condition is detected during arbitration.
	02 _H	A reset condition is detected during reselection.
60 _H	03 _H	Operation is completed normally.
64 _H	00 _H	 The SPC is selected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after selection (Automatic selection response mode or user program operation) are reported. The SPC has already been selected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported.
67 _н	01 _H	A Command Pause is received during the arbitration phase.
82 _H	02 _H	The selection/reselection timeout time is exceeded. After the specified number of retries is attempted, this interrupt is reported.

• SET REQ, RESET REQ, DISCONNECT

CODE	STEP	SPC Operation
01 _H	00 _H	A reset condition is detected before the command is executed.
Стн	01 _H	A reset condition is detected after the command is executed.
60 _н	01 _H	Operation is completed normally.

SEND DATA from MPU/DMA RECEIVE DATA to MPU/DMA

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer is executed.
01 _H	01 _H	A reset condition is detected while the transfer is being executed.
01H	0 ¹ H	This interrupt is reported after the completion process.*1
	02 _H	A reset condition is detected after the transfer is completed.
21 _H	01 _H	During a DMA transfer, a parity error is detected in input or output data at the DMA interface.*2
22 _H	01 _H	During a program transfer, a parity error is detected in input or output data at the MPU interface.*2
24 _H	01 _H	A parity error is detected in input data at the SCSI interface.*2
25 _H	01 _H	During a DMA transfer, a parity error is detected in input or output data at the DMA interface and the SCSI interface. ^{*2}
26 _H	01 _H	During a program transfer, a parity error is detected in input or output data at the MPU interface and the SCSI interface. ^{*2}
29 _H	01 _H	During a synchronous transfer, more ACK signals are received than the number of REQ signals sent out. ^{*1}
2A _H	01 _H	Because the period of the ACK signals received is short, the SPC cannot keep up. ^{*1} This interrupt can also be reported for asynchronous transfers.
2B _H	01 _H	During a synchronous transfer, more ACK signals are received than the number of REQ signals sent out and because the period of the ACK signals received is short, the SPC cannot keep up. ^{*1}
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*1
42 _H	01 _H	The generation of an initiator attention condition causes a completion of the transfer at a transfer block boundary. ^{*3}
43 _н	01 _H	The generation of an initiator attention condition causes the suspension of the transfer at a transfer block boundary and then a single message is received. ^{*4}
60 _н	02 _H	The operation is completed normally.
61 _н	02 _H	After the command is completed normally, an attention condition generated by the initiator is detected. ^{*3}
62 _H	02 _H	After the command is completed normally, an attention condition generated by the initiator is detected and then a single message is received. ^{*4}
65 _н	01 _H	The data block register or data byte register setting values are 0.
67 _н	01 _H	A COMMAND PAUSE command is received.*1

*1 See 5.9.6 for more on the exit process.

*2 In the Byte stop mode, the process is completed at the same time as this state is detected. In the Block stop mode, the transfer is completed after the block where the parity error is detected.

*3 Reported when the Automatic receive mode is not set.

*4 Reported when the Automatic receive mode is set.

• SEND 1-MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
60 _H	02 _H	The operation is completed normally.
61 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not set.
62 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected and a single message is received. Reported when the Automatic receive mode is set.
64 _H	01 _H	The message length is 33 bytes or longer. MSG not sent.

 * Completed at the same time as this state is detected.

RECEIVE MSG

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
24 _H	01 _H	A parity error is detected for input data at the SCSI interface.*
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
60 _н	02 _H	The operation is completed normally.
61 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not established.
67 _H	01 _H	The message received is 33 bytes or longer. The message is received up to the second byte and then completed.

* Completed at the same time as this state is detected.

• SEND STATUS

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
60 _H	02 _H	The operation is completed normally.
61 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not set.
62 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected and a single message is received. Reported when the Automatic receive mode is set.

* Completed at the same time as this state is detected.

RECEIVE CMD

CODE	STEP	SPC Operation
	00 _H	A reset condition is detected before the transfer.
01 _H	01 _H	A reset condition is detected during the transfer.*
	02 _H	A reset condition is detected after the transfer is completed.
24 _H	01 _H	A parity error is detected for input data at the SCSI interface.*
2C _H	01 _H	The specified REQ/ACK timeout time is exceeded.*
60 _H	02 _H	The operation is completed normally.
61 _н	02 _H	After the command is completed, the attention condition generated by the initiator is detected. Reported when the Automatic receive mode is not set.
62 _H	02 _H	After the command is completed, the attention condition generated by the initiator is detected and a single message is received. Reported when the Automatic receive mode is set.
65 _н	01 _H	 The group 6/7 command is not defined. The group 3/4 command is received. The first byte is received and then the process completed.

* Completed at the same time as this state is detected.

G.3 Common Commands

• All commands

CODE	STEP	SPC Operation
64 _H	00 _H	 A new command is received while a command is being executed (double reception). After the execution results for the command received first are reported, this interrupt is reported. When an interrupt cause occurs before this command is executed, the execution cannot be carried out. When an interrupt cause except "REQ Asserted" occurs that is reported during the SPC Ready state, this interrupt is reported after that interrupt cause is reported.
65 _н	00 _H	An undefined command is received.
66 _H	00 _H	A parity error is detected in a register established by the host MPU.

• TRANSFER RESET, SET UP REG

CODE	STEP	SPC Operation
01	00 _H	A reset condition is detected before the command is executed.
01 _H	00 _H	A reset condition is detected after the command is executed.
60 _H	01 _H	The operation is completed normally.
70 _н	00 _H	A bus free state is detected before the command is executed.
, [,] H	01 _H	A bus free state is detected after the command is executed.

SCSI RESET

CODE	STEP	SPC Operation
01 _H	00 _H	A reset condition is detected before the command is executed.
60 _н	01 _H	The operation is completed normally.
70 _H	00 _H	A bus free state is detected before the command is executed.

• INIT DIAG START, TARG DIAG START

CODE	STEP	SPC Operation
01 _H	00 _H	A reset condition is detected before the command is executed.
68 _H	01 _H	No abnormality found in self diagnosis results.
69 _H	00 _H	Abnormality found in self diagnosis results.

DIAG END

CODE	STEP	SPC Operation
01 _H	00 _H	A reset condition is detected after the command is executed.
60 _H	01 _H	The operation is completed normally.

COMMAND PAUSE

CODE	STEP	SPC Operation
67 _н	01 _H	Command Pause is received.

• SET RST, RESET RST

CODE	STEP	SPC Operation
60 _н	01 _H	Operation is normally completed.

G.4 Automatic Selection/Reselection Response

• Automatic reselection response

CODE	STEP	SPC Operation			
01 _H	00 _H	A reset condition is detected before the nexus is established.			
	01 _H	After the reselection phase, the SPC moves to the message in phase, and during a transfer, a reset condition is detected. ^{*1}			
24 _H	01 _H	 After the reselection phase, the SPC moves to the message in phase, and a parity error is detern in input data at the SCSI interface.*2 When the message being received is a 1 byte message or a 2 byte message, this is reported all of the bytes are received. When the message being received is an extended message, if the error is detected in the first or second byte, this is reported after 2 bytes are received. 			
2C _H	01 _H	After the reselection phase, the SPC moves to the message in phase but the specified REQ/AC timeout time is exceeded during the transfer.*1			
31 _H	01 _H	After the reselection phase, the SPC moves to the message in phase but a bus free state is detected during the transfer.* ¹			
32 _H	01 _H	After the reselection phase, the SPC moves to the message in phase but the target changes phase during the transfer. ^{*1}			
64 _H	00 _H	 The SPC is reselected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation set after reselection (Automatic reselection response mode or user program operation) are reported. The SPC has already been reselected when a command is received and the operation set after reselection is being executed. After the results of the operation being executed are reported, this interrupt is reported. 			
67 _H	01 _H	After the reselection phase, the SPC moves to the message in phase, and the message received is an extended message with a length of 33 bytes or longer. Received through the second byte. ^{*2}			
70 _H	00 _H	After a nexus is established, a bus free state is detected before executing a transfer.			
90 _H	00 _H	The SPC is reselected by the target as the initiator. This is reported when the Automatic reselection response mode is not set.			
B0 _H	01 _H	The SPC is reselected by the target as the initiator and after the reselection phase, the SPC moves to a phase other than the message in phase.			
B1 _H	02 _H	The SPC is reselected by the target as the initiator and after the reselection phase, the SPC moves to the message in phase and a single message is received.			

*1 Completed at the same time as this state is detected.

*2 After this command is reported, an interrupt code = $B1_H$ and sequence step = 02_H are also reported.

• Automatic selection response

CODE	STEP	SPC Operation		
	00 _H	A reset condition is detected before a nexus is established.		
	81 _H	After the selection phase, the SPC moves to the message out phase but a reset condition is detected during the transfer. ^{*2}		
	82 _H	After the selection phase, an Identify message is received and an attempt is made to receive another message but a reset condition is detected during this transfer.*2		
01 _H	92 _H	After the selection phase, an Identify message is received and then an attempt is made to receive a single CMD but a reset condition is detected during this transfer. ^{*2}		
0.1	93 _H	After the selection phase, an Identify message and then a single CMD are received. After that, an ATN signal is detected from the initiator and the SPC moves to the message out phase but a reset condition is detected during the transfer.*2		
	B1 _H	After the selection phase, the SPC moves to the CMD phase but a reset condition is detected during the transfer.*1		
	B2 _H	After the selection phase, a single CMD is received, the ATN signal from the initiator is detected, and the SPC moves to the message out phase but a reset condition is received during the transfer.*1, *2, *4		
	81 _H	After the selection phase, the SPC moves to the message out phase but a parity error is detected in input data at the SCSI interface. ^{*2}		
	82 _H	After the selection phase, an Identify message is received and an attempt is made to receive another message but a parity error is detected in input data at the SCSI interface. ^{*2}		
	92 _H	After the selection phase, an Identify message is received and then an attempt is made to receive a single CMD but a parity error is detected in input data at the SCSI interface. ^{*2}		
24 _H	93 _н	After the selection phase, an Identify message and then a single CMD are received. After that, an ATN signal is received from the initiator and the SPC moves to the message out phase but a parity error is detected in input data at the SCSI interface. ^{*2}		
	В1 _н	After the selection phase, the SPC moves to the CMD phase, and a parity error is detected in input data at the SCSI interface.*1, *2		
	B2 _H	After the selection phase, a single CMD is received, the ATN signal from the initiator is detected, and the SPC moves to the message out phase but a parity error is detected in input data at the SCS interface. ^{*1, *2, *4}		
	81 _H	After the selection phase, the SPC moves to the message out phase but a parity error is detected in input data at the SCSI interface. ^{*2}		
	82 _H	After the selection phase, an Identify message is received and an attempt is made to receive another message but the specified REQ/ACK timeout time is exceeded. ^{*2}		
	92 _H	After the selection phase, an Identify message is received and then an attempt is made to receive a single CMD but the specified REQ/ACK timeout time is exceeded.*2		
2C _H	93 _H	After the selection phase, an Identify message and then a single CMD are received. After that, an ATN signal is received from the initiator and the SPC moves to the message out phase but the specified REQ/ACK timeout time is exceeded. ^{*2}		
	В1 _н	After the selection phase, the SPC moves to the CMD phase but the specified REQ/ACK timeout time is exceeded.*1, *2		
	B2 _H	After the selection phase, a single CMD is received, the ATN signal from the initiator is detected, and the SPC moves to the message out phase but the specified REQ/ACK timeout time is exceeded.*1, *2		
64 _H	00 _H	 The SPC is selected after failing at arbitration and waiting for the next bus free state. After this interrupt is reported, the results of the operation established after selection (Automatic selection response mode or user program operation) are reported. The SPC has already been selected when a command is received and the operation established after selection is being executed. After the results of the operation being executed are reported, this interrupt is reported. 		

*1 Either message or CMD phase is assigned to the SEL/RESEL operation mode setting register (WRITE/READ) after the selection phase.

*2 Completed at the same time as the state is detected.

*3 Only the message phase is assigned to the SEL/RESEL operation mode setting register (WRITE/READ) after the selection phase.

*4 When the Automatic Receive mode is set.

*5 When the Automatic Receive mode is not set.

*6 When Automatic Selection Response mode is not set.

(Continued)

CODE	STEP	SPC Operation			
	81 _H	After the selection phase and the SPC moves to the message output phase, the message received has a length of 33 bytes or longer. 2 bytes of the message are received and then this process is completed.			
	82 _H	After the selection phase, an Identify message is received, an ATN signal from the initiator is detected, and the SPC moves to the message out phase. The message received has a length of 3 bytes or longer.2 bytes of the message are received and then this process is completed.			
67 _н	93 _H	After the selection phase, an Identify message is received and then a single CMD is received, an ATN signal from the initiator is detected, and the SPC moves to the message out phase. The message received has a length of 33 bytes or longer. 2 bytes of the message are received and then this process is completed.			
-	B2 _H	After the selection phase, a single CMD is received, an ATN signal from the initiator is detected, and the SPC moves to the message out phase. The message received has a length of 33 bytes or longer. ^{*1, *4} 2 bytes of the message are received and then this process is completed.			
80 _H	00 _H	The SPC is selected by the initiator as the target. *6			
81 _H	00 _H	The SPC is selected by the initiator as the target and the ATN signal produced by the initiator is detected. *6			
A0 _H	81 _H	The SPC is selected by the initiator as the target, but the ATN signal is not asserted in the selection phase.*3			
A1 _H	A2 _H	The SPC is selected by the initiator as the target and after the selection phase, a single message other than the Identify message is received.			
,,,,,	АЗ _Н	The SPC is selected by the initiator as the target and after the selection phase, a single message other than the Identify message is received, but the ATN signal remains asserted.			
A2 _H	82 _H	The SPC is selected by the initiator as the target and after the selection phase, the Illegal Identify message is received, but the ATN signal remains asserted.			
· - n	92 _H	The SPC is selected by the initiator as the target and after the selection phase, the Illegal Identify message is received.			
АЗ _н	83 _H	The SPC is selected by the initiator as the target and after the selection phase, the Identify message is received and then another single message is received.			
	84 _H	The SPC is selected by the initiator as the target and after the selection phase, the Identify message is received and then another single message is received, but the ATN signal remains asserted.			
A4 _H	B1 _H	The SPC is selected by the initiator as the target and after the selection phase, an attempt is mad to receive a single CMD but since it is an undefined CDB, only 1 byte is received. ^{*1}			
А5 _н	92 _H	The SPC is selected by the initiator as the target and after the selection phase, the Identify messag is received and an attempt is made to receive a single CMD but since it is an undefined CDB, only byte is received.			
A6 _H	B2 _H	The SPC is selected by the initiator as the target and after the selection phase, a single CMD is received.*1			
A7 _H	93 _H	The SPC is selected by the initiator as the target and after the selection phase, the Identify message is received and then a single CMD is received.			
٨٥	В1 _н	The SPC is selected by the initiator as the target and after the selection phase, a single CMD is received and then the ATN signal from the initiator is detected and a single message is received. *2, *4			
A8 _H -	B4 _H	The SPC is selected by the initiator as the target and after the selection phase, a single CMD is received and then the ATN signal from the initiator is detected and a single message is received b the ATN signal asserted again.*1,*4			

*1 Either the message or CMD phase is assigned to the SEL/RESEL operation mode setting register (WRITE/READ) after the selection phase.

*3 Only the message is assigned to the SEL/RESEL operation mode setting register (WRITE/READ) after the selection phase.

*4 When the Automatic Receive mode is set.

*6 When the Automatic Selection Response mode is not set.

(Continued)	itinued)		
CODE	STEP	SPC Operation	
А9н	94 _H	The SPC is selected by the initiator as the target and after the selection phase, the Identify message is received and a single CMD is received and then the ATN signal from the initiator is detected and a single message is received.	
79H	95 _н	The SPC is selected by the initiator as the target and after the selection phase, the Identify message is received and a single CMD is received and then the ATN signal from the initiator is detected and a single message is received but the ATN signal remains asserted.	
		The SPC is selected by the initiator as the target and after the selection phase, a single CMD is received and then the ATN signal from the initiator is detected. ^{*1, *5}	

*1 Either the message or CMD phase is assigned to the SEL/RESEL operation mode setting register (WRITE/READ) after the selection phase. *5 When the Automatic Receive mode is not set.

· Other interrupt codes and sequence steps

Take the following steps if interrupt codes and sequence steps other than those described in this section are reported.

(1) When a nexus is not establishedIssue Software Reset command

(2) When a nexus is established......After executing Disconnect or SCSI Reset command, Issue Software Reset command.

Also, SPC may report an interrupt code " 60_{H} " and command step code " 00_{H} " repeatedly when error that SPC can not handle occur.

In this case the SPC normal operation is not guaranteed and so, the following process should be taken:

- (1) When a nexus is not established Issue Software Reset command.
- (2) When a nexus is established...... a. After executing Software Reset command, issue SCSI Reset command (for Initiator).

b. Issue Software Reset command (for Target).

Worldwide Headquarters

Japan	Fujitsu Limited	Asia	Fujitsu Microelectronics Asia PTE Limited	
Tel: +81 44 754 3753 Fax: +81 44 754 3332	1015 Kamiodanaka Nakaharaku Kawasaki 211 Japan	Tel: +65 336 1600 Fax +65 336 1609 :	No. 51 Bras Basah Road Plaza by the Park #06-04/07 Singapore 0718	
http://www.fujitsu.co.jp,		http://www.fsl.com.sg/		
USA		Europe		
Tel: +1 408 922 9000 Fax: +1 408 922 9179	Fujitsu Microelectronics Inc 3545 North First Street San José CA 95134-1804 USA	Tel: +49 6103 6900 Fax +49 6103 690122	Fujitsu Mikroelektronik GmbH Am Siebenstein 6-10 D-63303 Dreieich- Buchschlag Germany	
Tel: +1 800 866 8608 Fax: +1 408 922 9179	Customer Response Center Mon-Fri: 7am-5pm (PST)	http://www.fujitsu.ede.	com/	

http://www.fujitsumicro.com/

All Right Reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.

No part of the publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

FJ ID Number AM15-10410-1E

CP-SCSI-DM-20378-10/96