GENERAL DESCRIPTION — The CT $\mu \mathrm{L} 9956$ dual 2 －input power AND gate is a low impedance non－inverting level setting circuit intended to drive high fanout，and may be used as a $50 \Omega$ line driver．The input threshold and output levels are compatible with any other $\mathrm{CT} \mu \mathrm{L}$ elements．The output of the $\mathrm{CT} \mu \mathrm{L} 9956$ may be tied with any other $\mathrm{CT} \mu \mathrm{L}$ element to perform the wired OR function．

CT $\mu \mathrm{L} 9956$ is packaged in the versatile Jedec T0－116 Dual In－Line Package＊which is a hermeticaily seaied ceramic package intended for low cost insertion techniques．
$\mathrm{CT} \mu \mathrm{L}$ ． 9956 is designed to operate over a commercial ambient temperature range of +15 to $+55^{\circ} \mathrm{C}$ ．Power supplies are 4.5 volts $\pm 10 \%$ and -2 volts $\pm 10 \%$ ．Typical power dissipation per gate is 60 mW and is designed to increase with fanout．Typical propagation delay 14 ns ．
＊Fairchild patent pending．

## FEATURES：

－Power Supplies are $+4.50 \mathrm{~V} \pm 10 \%$ and $-2.00 \mathrm{~V} \pm 10 \%$ ．
－High Fan－Out Capability ．．． 25.
－Two Optional Pull Down 1.0 k Resistors for Optimum Speed．
－Low Power Dissipation．
－Low Propagation Delay．
－Logic Swing of 3.0 V ．

## PURCHASING INFORMATION

＝Use the ten letter code UGA095670X for ordering purposes．
－All units are marked $\mathrm{CT} \mu \mathrm{L} 995679$ and date code，unless otherwise specified．

PHYSICAL DIMENSIONS
TYPICAL DUAL IN－LINE PACKAGE
In Accordance With
JEDEC（TO－116）Outline

notes：
1．Leass ase intended tor insertion in hole rows on ． 300 ＂centers．Ther ate
purposely
2．Board，derlling dimensiens should equat your practice for a conventional 020
inch dismeter lead．

CONNECTION DIAGRAM


abSOLUTE MAXIMUM RATINGS
(above which the useful life may be impaired)

| Maximum Current in or out of a Pin | 100 mA |
| :--- | ---: |
| Maximum Chip Temperature | $150^{\circ} \mathrm{C}$ |
| $\begin{array}{l}\text { Maximum Power Dissipation }\end{array}$ | 1.0 Watt |
| $\begin{array}{l}\text { Maximum Voltage Applied } \\ \text { to any Input Pin }\end{array}$ | 10 Volts |
| $\begin{array}{l}\text { Maximum Negative Voltage } \\ \text { Applied to any Input Pin }\end{array}$ | -4.0 Volts |
| $\begin{array}{l}\text { Maximum Voltage Applied } \\ \text { to Output Pin }\end{array}$ | 6.0 Volts |


| TEST (at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) | DC TESTS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LIMITS |  |  |  | CONDITIONS |  |  |  |
|  | MIN. | TYP. | MAX. | UNITS | $\mathrm{V}_{\mathrm{CC}}$ | $V_{E E}$ | LOAD TO V EEE | COMMENTS |
| ONE Level Output | 2.25 | 2.60 |  | Volts | 4.05 | Note 1 | ${ }^{(2)}$ F.O. $=25$ | Inputs simultaneously to 1.25 V |
| ONE Level Output | 2.46 |  |  | Volts | 4.95 | Note 1 | F. $0 .=1$ | Inputs simultaneously to 1.25 V |
| ONE Level Output |  | 2.70 | 3.20 | Volts | 4.95 | Note 1 | Internal 1 k | Inputs simultaneously to 3.5 V |
| ZERO Level Output |  | -0.45 | -0.36 | Volts | 4.05 | -1.8V | F.O. $=1$ | Inputs to 0.8 V sequentially, unused input to 3.5 V |
| Input Current |  | 5.30 | 6.40 | mA | 4.05 | Note 1 | No Load | Inputs to 3.5 V simultaneously, guarantees input loading $\leq 1.5$ AND-OR gate loads |
| Input Pull Down Resistor | 0.8 | 1.0 | 1.2 | k $\Omega$ | 4.05 | -2.2V | No Load | 3.5 V applied to pull down resistor |
| Positive Supply Current |  |  | 69.2 | mA | 4.95 | -2.2 V | No Load | One input to 3.5 V , other inputs to GND. |
| Output Rising Delay, $\mathrm{t}_{\mathrm{dr}}$ |  | 12.0 | 18.0 | ns | 4.50 | Note 1 | F.O. $=25$ | See $t_{\text {pd }}$ test circuit, page 4 |
| Output Falling Delay, $\mathrm{t}_{\text {df }}$ |  | 12.0 | 18.0 | ns | 4.50 | Note 1 | F.O. $=25$ | See $\mathrm{t}_{\mathrm{pd}}$ test circuit, page 4 |

## NOTES:

(1) Value of $\mathrm{V}_{\mathrm{EE}}$ is non-critical: $-2.20 \mathrm{~V} \leq \mathrm{V}_{E E} \leq-1.80 \mathrm{~V}$
(2) F.O. $=$ Fan Out; F.O. $=25$ equivalent to $64 \Omega$ to -2.20 V under worst case conditions
F.O. $=1$ equivalent to $2.4 \mathrm{k} \Omega$ to -1.80 V under worst case conditions

## INPUT CHARACTERISTICS



## CT $\mu \mathrm{L} 9956$ COMPLEMENTARY TRANSISTOR MICROLOGIC® IC




SCHEMATIC DIAGRAM


TRANSFER CHARACTERISTICS


WORST CĀE
POWER DISSIPATION VERSUS POSITIVE SUPPLY VOLTAGE


WORST CASE JUNTCTION TEMPERATURE VERSUS POWER DISSIPATION


NOTE: Variation of $V_{E E}$ does not alter transfer characteristics.

AS A FUNCTION OF POSITIVE SUPPLY VOLTAGE



## APPLICATION INFORMATION

The electrical specification tests are performed under conditions chosen to emphasize the worst case results and could be considered as conservative limits． The output ONE level at worst case is guaranteed to drive a fanout of 25 AND－OR gates．The maximum input current assures that 9956 input presents a load of not more than 1．5 AND－OR gate input．

INTERFACING－The CT $\mu \mathrm{L} 9956$ buffer could serve as an excellent interfacing link between external signals coming from other logic forms or peripheral equip－ ments and the $\mathrm{CT} \mu \mathrm{L}$ Family logic．

PULL DOWN RESISTORS－Two pull down $1 \mathrm{k} \Omega$ resistors are built into the package with one end tied to the negative power supply（ $\mathrm{V}_{\mathrm{EE}}$ ）．When the 9956 input is driven by a single AND－OR gate，the $1 \mathrm{k} \Omega$ resistors should be connected to the same input pin．This will improve the 9956 output rise and fall time．The pull－down resistor may be also connected to the $\mathrm{CT} \mu \mathrm{L} 9956$ output，which will improve the output falling delay when the fanout is low．
LINE DRIVER－The CT $\mu \mathrm{L} 9956$ could be used as a line driver．To drive a $50 \Omega$ line，a $68 \Omega$ resistor should be connected from the output to ground．This will reduce the fanout capability by 15 ．

WIRED－OR－A powerful feature of the $\mathrm{CT} \mu \mathrm{L} 9956$ Buffer is that the output may be tied together with the output of any other element in the $\mathrm{CT} \mu \mathrm{L}$ family to form the positive $O R$ function at the tie point．When two or more $C T \mu \mathrm{~L} 9956$ outputs are tied for the $O R$ function，a pull－down resistor must be used．
UNUSED INPUTS－Unused inputs to the AND－OR Gate will effectively inhibit the gate output，and therefore，must be tied to the most positive voltage level． The unused input may be tied directly to $+\mathrm{V}_{\mathrm{CC}}$ or through a resistor not greater than $600 \Omega$ ．Tying an unused input to an active input is not recommended．

SHORT CIRCUIT PROTECTION－The CT $\mu \mathrm{L} 9956$ Gate output is protected by a limiting resistor at the output and may sustain prolonged short circuit to ground at $\mathrm{V}_{\mathrm{Cc}}$ not greater than 5 volts．Excessive destructive heat may develop when more than one output in a single package is short circuited to ground．Short circuiting the output to the -2 volts supply should be avoided．

