Simplified Disk System Block Diagram

FAIRCHILD

A Schlumberger Company

Description

The $\mu \mathrm{A} 2460$ and $\mu \mathrm{A} 2461$ provide the analog signal processing required between a drive resident microprocessor and the servo power amplifier for Winchester disk closed loop head positioning. The $\mu \mathrm{A} 2460$ and $\mu \mathrm{A} 2461$ receive quadrature position signals from the servo channel, and from them, derives actual head seek velocity as well as position-mode off-track error. In the seek mode, the DAC is used to command velocity, while actual velocity is obtained by differentiating the quadrature position signals provided at V1 for external processing. The velocity signal (V2) obtained by integrating the motor current is also available for extra damping, if desired. Further, the DAC may be used for detenting the head off-track for any pupose such as thermal compensation or soft-error retrys.

- Microprocessor Compatible Interface
- Quadrature Di-Bit Compatible
- On Board DAC
- Velocity V1 Derived from Position Signal
- Velocity V2 Derived from Motor Current
- Quarter-Track-Crossing Signal Outputs
- Minimal External Components
- Compatible with $\boldsymbol{\mu}$ A2470 Demodulator

Absolute Maximum Ratings

Storage Temperature Range

Ceramic DIP
 Plastic LCC

Operating Temperature Range Commercial
Lead Temperature
Ceramic DIP (soldering, 60s) $300^{\circ} \mathrm{C}$
Plastic LCC (soldering, 10s) $265^{\circ} \mathrm{C}$
Internal Power Dissipation ${ }^{1,2}$
28L-Ceramic DIP
28L-Plastic LCC
Supply Voltage
Analog Common Voltage
All inputs
2.50 W
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
1.39 W

15 V Max
8.0 V Max

V supply Max

Notes:

1. $T_{J \text { Max }}=150^{\circ} \mathrm{C}$ for the Plastic LCC, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
2. Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 28 L-Ceramic DIP at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the 28 L-Plastic LCC at $11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Linear Division Computer Peripherals

Connection Diagram

28-Lead DIP
(Top View)

Connection Diagram
28-Lead PLCC
(Top View)

Order Information

Device Code	Package Code	Package Description
μ A2460DC	FM	Ceramic DIP
μ A2461DC	FM	Ceramic DIP
μ A2460QC	KH	Plastic LCC
μ A2461QC	KH	Plastic LCC

Description of Lead Functions

Lead	Name	Description of Function
Inputs		
1-8	DAC Input Word (D0-D7)	Programs DAC output. $00000000=$ Analog Command Lead $1=$ LSB \quad Lead $8=$ MSB
9	Latch Enable	Allows present DAC input word to be latched
10	Seek/Follow Mode	Configures the feedback loop for either seeking or track-following. (High = Seek, Low = Follow)
14	Ground	
15	Analog Common	Analog signal reference level (5.0 V)
16	N	Normal position input signal.
17	Q	Quadrature position input signal.
23	Motor Current +	
		Motor current sense input to motor current integrator.
24	Motor Current -	
26	Clock	4.0 MHz (maximum) input square wave.
27	Direction In/Out	Changes the polarity of DAC output from positive to negative consistent with the desired direction of head motion.
28	V_{CC}	12 V supply
Outputs	Track $2^{2}\left(\mathrm{~T}_{2}\right)$	
11	Track $2^{2}\left(\mathrm{~T}_{2}\right)$	TTL signal whose frequency is 2 times N (or Q) (for $\mu A 2461$).
12	Track $2^{1}\left(\mathrm{~T}_{1}\right)$	TTL signal indicating $\mathrm{N}^{*}, \mathrm{Q}$ (for $\mu \mathrm{A} 2460$) TTL signal whose frequency is 4 times N (or Q) (for $\mu A 2461$).
13	Track $2^{0}\left(\mathrm{~T}_{0}\right)$	TTL signal whose frequency is 8 times N (or Q).
18	Analog Switch	
19		Analog switch to be used externally for changing from seek to follow.
19	Analog Switch	
Inputs		
20	Position Output	Analog signal representing sensed off track amplitude
21	Velocity 1	Analog output representing velocity processed from position signals N and Q .
22	Velocity 2	Analog output representing the integral of motor current.
25	DAC Output	Used to command velocity and position.

Functional Description

Figure 2 shows a block diagram of the $\mu \mathrm{A} 2460 / \mu \mathrm{A} 2461$ Servo Controller.

Power Supply and Reference requirements

The $\mu \mathrm{A} 2460 / \mu \mathrm{A} 2461$ is designed to operate from a single supply of 10 V to 12 V . Also required is a reference voltage of 5.0 V called Analog Common which serves two functions; all analog signals will be referenced to this voltage and in addition the internal DAC will use it to set full scale.

A clock signal must be provided as a reference for the internal switched capacitor position differentiator and motor current integrator. The clock signal should be a sine or square wave between Analog Common and ground at a maximum frequency of 4.0 MHz .

All digital inputs and outputs are TTL compatible levels referenced to ground.

Input signals and Track crossing outputs

The input format selected for position feedback is consistent with a large class of sensors that generate two cyclical output signals displaced in space phase by 90 degrees (so called quadrature signal pairs). These sensors include resolvers, inducto-syns, optical encoders, and most importantly, servo demodulators designed for rigid disk head position sensing.

The input signals N and Q are quadrature quasi triangular waveforms with amplitudes of $\pm 2.5 \mathrm{~V}$ nominal referenced to Analog Common. The periods of the input signals are subdivided by internal comparators and logic and sent to the Track Crossing outputs T_{0}, T_{1}, and T_{2}. The relationship of these outputs to the inputs N and Q is shown in Figure 3 (for $\mu \mathrm{A} 2460$) and Figure $3 A$ (for $\mu \mathrm{A} 2461$).

Note that different servo patterns may yield different numbers of track centerlines for each period of the quadrature signal pair. The relationship of T_{0}, T_{1}, and T_{2} to N and Q is independent of track centerlines, leaving the correct interpretations to the microcontroller.

DAC

The DAC is an 8-bit, buffered input, voltage output digital to analog converter. The output voltage with an input code of all zeros is equal to Analog Common. Full scale is equal to Analog Common $\pm 2.35 \mathrm{~V}$. The polarity depends on the Direction In Signal; Direction In High will result in a positive DAC output.

The DAC enable line when high will cause the DAC's input buffer to become transparent, i.e. input data will affect the the output voltage immediately. When DAC enable is brought low the data present on the input lines will be
latched and any further changes to the input data will not change the output voltage. The DAC functions in both Seek and Follow Mode. During Seek Mode the DAC output is used as a velocity reference. In Follow Mode the DAC output can be summed into the position reference signal to offset the heads from track center.

Analog Switch

An uncommitted single pole single throw analog switch with an ON resistance of approximately 300Ω is provided. This switch is ON during Follow Mode.

Mode Select

The two major intended operating modes for the $\mu \mathrm{A} 2460$ are controlled by the microcontroller via the SEEK/FOLLOW input. Mode Select input high enables Seek Mode, low enables Track Follow Mode.

SEEK, when asserted by the microcontroller along with DIRECTION and a non-zero VELOCITY value as inputs, causes the actuator system to accelerate in the requested direction. During the ensuing motion, the acuator system will come under velocity feedback control. The velocity feedback signal is created by differentiation of the quadrature position signals and, additionally, by integration of motor current.

FOLLOW, the negation of SEEK, changes the feedback loop to a track-following or position mode. Position servos are typically second order systems and without loop compensation are potentially unstable. External components are used, along with the $\mu \mathrm{A} 2460$, to achieve stable track following performance. Velocity information V1 is made available as an output in this mode as an aid in stabilizing certain loops. If non-zero data is supplied to the velocity latches in this mode, it will result in a track offset in the direction indicated by DIRECTION IN/OUT. Figure 4 shows typical seek operation.

Position Output

When the $\mu \mathrm{A} 2460 / \mu \mathrm{A} 2461$ is set to Seek Mode the signal from Position Output lead is shown in Figure 5. This signal is made by switching the position inputs, (N and Q) through an inverter if required, (N^{*} and Q^{*}) to the output using the track crossing signals. It can be used, if deired, to interpolate between DAC steps by attenuating it and summing it with the DAC output.

Track Follow Mode is entered when the heads are near the end of a seek, usually within one half to one track away from the target track centerline. The final setting to the track center is done by the position loop.

When the device is switched to Follow Mode, the position input signal ($\mathbf{N}, \mathrm{N}^{*}, \mathbf{Q}$ or \mathbf{Q}^{*}) that is currently selected to the output is latched and the Position Out signal follows the

Figure 1 Head Actuator Control System

Figure 2 Block Diagram

Functional Description (Cont.)

selected position input signal until the device is switched back to Seek Mode. This implies that the switch to Follow Mode must not be made until the signal that will be the correct Position error signal for the target track is present at the output. If track centers are defined as the zero crossings of both N and Q this means that the switch to Follow Mode must be made less than one-half track away from the target track. (This is with respect to a convention of 4 track per encoder cycle, so switching must be done within 90° of the period of N or Q).

Velocity Outputs

There are two analog signal outputs representing velocity. The first, V1, is derived by differentiating the position input siganls. The entire differentiator is on chip, using switched capacitor techniques and requires no external components.

The transfer function of the differentiator is:

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{dv} / \mathrm{dt} \text { (input) } \times 14.3 / \mathrm{f} \text { (clock) } \mathrm{Hz}
$$

Figure 3a Track Crossing Outputs (for $\mu \mathrm{A} 2460$)

As an example; a 10 kHz triangular signal pair into N and Q of 6.0 V peak-to-peak amplitude ($\mathrm{dv} / \mathrm{dt}=120 \mathrm{kv} / \mathrm{sec}$) would result in a velocity voltage output of 1.716 volts referenced to Analog Common with a clock of 1.0 MHz . The polarity will be positive if N is leading Q by 90 degrees and negative if Q is leading N. This block functions during both Seek and Follow modes.

The second velocity output is obtained by integrating a voltage proportional to the current in the motor using the following function:

$$
\mathrm{dv} / \mathrm{dt}(\mathrm{out})=\mathrm{V}\left(+\mathrm{I}_{\text {in }}--\mathrm{I}_{\text {in }}\right) \times 2 \times 10^{-4} \mathrm{f} \text { (clock) } \mathrm{Hz} .
$$

The motor current integrator output is clamped to Analog Common during Follow Mode and is released at the initiation of a seek.

Figure 6 shows a typical application set up for the Servo Control chip.

Figure 3b Track Crossing Outputs (for $\mu \mathrm{A} 2461$)

Figure 4 Typical Seek

Figure 5 Position Output During Seek Mode

Figure 6 Typical Application Setup

(A2460, μ A2461
Electrical Characteristics $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathfrak{f}_{\mathrm{clk}}=2.0 \mathrm{MHz}$, Analog Common $=5.0 \mathrm{~V}$ unless otherwise specified.

Symbol	Characteristic	Condition	Min	Typ	Max	Unit
Digital I/O	Input Voltage LOW				0.8	V
	Input Voltage HIGH		2.0			V
	Output Voltage LOW	$\mathrm{l}_{\mathrm{OL}}=2.5 \mathrm{~mA}$			0.45	V
	Output Voltage HIGH	$\mathrm{I}_{\mathrm{OH}}=40 \mu \mathrm{~A}$	2.4			V
	Input Load Current	$V_{1}=0$ to $V_{C C}$			0.2	mA
Clock Input	Input Comparator		2.0	2.5	3.0	V
	Reference Level Input Impedance		15	20		k Ω
DAC	Linearity ${ }^{1}$		-1		+1	LSB
	Resolution			8.0		bits
	Differential Nonlinearity		Monotonicity Guaranteed			
	Full Scale Output Voltage	Direction In High	7.25	7.35	7.45	V
		Direction In Low	2.55	2.65	2.75	V
	Zero Scale Voltage	To $1 / 2$ LSB All bits ON or OFF		5.0		V
	Output Offset Voltage				± 10	mV
	Settling Time ${ }^{2,4}$					$\mu \mathrm{s}$
Position Inputs	Input Voltage Range		1.0		9.0	V
	Input Impedance		15	20		k Ω
Analog Switch	On Resistance	$\mathrm{V}_{\mathrm{CM}}=0$ to 12 V		100	200	Ω
	Off Leakage ${ }^{3}$			2.0	100	nA
Position Output	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=15 \mathrm{~K}$ Follow Mode	1.0		9.0	V
	Voltage Gain		0.9		1.1	-
	Output Offset Voltage				± 20	mV
Velocity Outputs	Output Voltage Swing	$R_{L}=15 \mathrm{~K}$	1.0		9.0	V
	Output Offset Voltage V 2				± 20	mV
	V1				+15	mV
$I_{\text {cc }}$	Positive supply	$\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}$		10	15	mA
$\mathrm{I}_{\text {SS }}$	Negative supply	$V_{C C}=13.2 \mathrm{~V}$	-15	-10		mA
I_{AC}	Analog Common I		-2.0	0	+2.0	mA

4A2460, μ A2461
Electrical Characteristics (Cont.)

Symbol	Characteristic	Condition	Min	Typ	Max	Unit
V1—Differentiator	Linearity	$f_{\text {clk }}=1.0 \mathrm{MHz}$ to $4 \mathrm{MHz} ;$ $f_{\mathrm{N} / \mathrm{Q}} \leq 10 \mathrm{kHz}$		0.25		$\%$
V2—Integrator	Linearity	$\mathrm{f}_{\text {clk }}=1.0 \mathrm{MHz}$ to 4 MHz		1.0		$\%$

Note

1. DAC Linearity is a function of the Clock frequency; Linearity at 1.0 MHz is typically $\pm 1 / 2$ LSB.
2. DAC Setting Time is approx $5 \mu \mathrm{~s}$, plus a delay of maximum $32 \times$ Clock period i.e., $5+32 \mu \mathrm{~s}$ at Clock $=1.0 \mathrm{MHz}$ Minimum could be $5 \mu \mathrm{~s}$.
3. Equivalent to $50 \mathrm{M} \Omega$.
4. Guaranteed, but not tested in production.

Package Outlines

28-Lead MSI Cerdip

28-Lead PLCC

Leads are intended for insertion in hole rows on .600 (15.24)
They are purposely configured with "positive" misalignment to
Board drilling dimensions should equal your practice for . 020 (0.51)

All dimensions in inches (Bold) and millimeters (Parentheses)

All tolerances are $\pm .003$ uniess otherwise noted.
The leads are solder dipped or solder plated copper alloy.
Package material is plastic.
All dimensions in inches (Bold) and millimeters (Parentheses) patent licenses are implied.

WINCHESTER DISK POSITION DEMODULATOR
UA2470
LINEAR DIVISION COMPUTER PERIPHERALS

DESCRIPTION

The UA2470 is a monolithic analog/digital integrated circuit which decodes a quadrature di-bit pattern from the dedicated servo surface of a disk file into head position, track data, and timing components. The UA2470 accepts the servo signal after amplification by a preamp such as the UA2480 and processes the various components for input to a UA2460 type servo controller. These three circuits and their external components form a disk control system for closed loop positioning applications.

- Quadrature Position Signals
- Programmable Charge and Discharge in Peak Detectors
o Sync Lock by PLL with Lock Detection Output
o NRZ Track Data and Clock Output
o AGC amplifier with 36Db Range
o Servo Frame Rates to 400 Khz
- 5.0V Band Gap Reference
o Standard 5.0V and 12.0 V Power Supplies
o Compatible with UA2480 Servo Preamp and UA2460 Servo Controller

ABSOLUTE MAXIMUM RATINGS

EXTERNAL COMPONENTS

4	Sync Window	Oneshot Timing RC Network. Sets Length of Window used in Sync Separator.
6-7	VCO Capacitor	VCO Timing Capacitor. Sets VCO Center Frequency.
8-9	Loop Filter	PLL Loop Filter.
12	Charge Pump Time	Oneshot Timing RC Network. Sets Length of Current Pulse Out of the Phase detector.
15	Peak Detector Discharge Current	Resistor to Ground. Sets the Internal Peak Detector Discharge Current.
16	Peak Detector Charge Current	Resistor to Ground. Sets the Internal Peak Detector Charge Current.
21	Balance Bypass	Bypass Capacitor for the offset canceling circuit in the AGC Amplifier. Sets the Low Frequency Rolloff of the Amplifier.
23	AGCl	Loop Filter Capacitor for AGC Amplifier.
24	AGC 2	Bypass Capacitor for AGC Amplifier.

THEORY OF OPERATION

The purpose of the UA2470 is to demodulate both analog and digital information from the composite servo signal as shown in figure 1 . This signal contains the the digital signals DATA and SYNC and the analog quadrature di-bit signals $N, N^{*}, ~ Q, ~ a n d Q^{*}$.

DATA: The track data is presented as NRZ with a companion clock signal for latch control. The track data is decoded from the first pulse in each servo cell. This data permits identification of index position, guardband etc. The codes and schemes are entirely at the user's option as no decoding is done on chip.

SYNC: The sync pulse is the one pulse in the frame which is always present in every frame on every track. This pulse is used to synchronize the PLL and makes decoding the rest of the information in the frame possible.

QUADRATURE POSITION SIGNALS: The four position pulses are analog signals whose amplitude encodes the position of the disk file heads with respect to the data track centers. N and Q are in a quadrature relationship, i.e. when N and N^{*} are equal in magnitude the difference between Q and Q^{*} is at maximum and vice versa. Equal magnitudes of N and N^{*} represent odd tracks and Q and Q^{*} the even tracks.

AGC AMPLIFIER: The UA2470 AGC amplifier is a fully differential design with a typical bandwidth of 20 Mhz and active offset cancelling. The composite signal input level must be between 30 and 300 millivolts to be within the amplifiers active AGC range. The offset cancelling circuit requires an external filter capacitor which incidentally provides control of the low frequency response. An external capacitor is used to control the AGC bandwidth. The AGC amplifier output amplitude is typically 3.5 volts peak to peak and is available at an output pin on the device for monitoring.

SYNC SEPARATOR: The sync separator shown in figure 2 operates on the composite signal as it appears at the output of the AGC amplifier. The hysteresis comparator has thresholds of +0.7 and 0 volts and produces pulses whose trailing edges are at the zero crossings of the composite signal. The trailing edges of these pulses trigger the oneshot. The output of the oneshot is anded with the pulse stream from the hysteresis comparator to produce the sync pulse. The pulse length from the oneshot should be long enough to enclose the next pulse in the stream only if it is the sync bit. Sync separator timing is shown in figure 3 .

TRACK DATA DEMODULATOR: The track data encoding flip-flop changes state whenever there is a data pulse present producing NRZ data for the user.

PHASE LOCK LOOP: When a disk sync pulse is sensed by the sync separator, the PLL compares the phase of disk sync with the phase of a reference sync pulse generated by the window decoder. Refer to figure 4 and 5. Every other sync pulse from the sync separator causes the window decoder counter to preset. This This forces the decoder into phase alignment with the disk sync. Starting from a known condition allows a phase comparison to be made on the next frame by comparing the trailing edges of the reference sync with the disk sync pulses and outputing a correction signal to the charge pump to increase or decrease the VCO frequency to correct the phase error. On the next frame the cycle is repeated.

LOCK DETECTOR: When the frequency and phase of the VCO are correct, the trailing edge of the sync pulse will coincide with the trailing edge of count 4 from the counter/decoder. The decoder generates a window from the end of count 3 to the end of count 5, so that the sync edge will ideally fall in the middle. Whenever the sync falls inside the window four consecutive times, lock is detected and the Lock signal goes true. In order for the Lock signal to be reset the sync pulse must be outside the window for four consecutive frames.

POSITION DEMODULATOR: Figure 6 shows the position signals as a function of servo head position. The position demodulator consists of four digitally enabled peak detectors, two summing amplifiers and a precision band gap reference. Each of the four peak detectors is enabled by the window decoder during one of the position pulses as shown in figure 7. The N position output is derived by taking the difference between the first two peak detector outputs. The Q output is similarly obtained from the second pair. The outputs are referenced to the 5 volt reference which is available as an output to be used as an analog baseline. The charging and discharging slew rates in the peak detectors are programmable by external resistors. The charging slew rate is associated with acquisition of the peak and the discharge slew rate controls the droop rate between peaks.

Block Disgram

MAK\%

Figure 1.

Figure 2.

Figure 3. Sync Separator Timing

Figure 4. Phase Lock Loop Block Diagram

PUMP DOWN

VCO SLOW

VCO FAST

Figure 5. VCO Fast/Slow Timing Diagram

Figure 6. Magnetized Pattern of Quadrature Di-Bit Servo Signal and Read Signal

Figure 7.

PLL SYNCHRONIZNGG EVENT
May or may not be present. Width varles.
May be present at anly amplftude (from zero so syme pulse amplitude)
UA2470 TIMING DIAGRAM when Loop is locked.
Figure 8.

CHARGE PUMP CURRENT VS PROGRAMMING VOLTAGE

VCO FREQUENCY VS CONTROL VOLTAGE

$$
\frac{\text { JF } 3 / 14 / 86}{P-x \theta 1}
$$

FAIRCHILD

A Schlumberger Company

Description

The $\mu \mathrm{A} 248 \mathrm{X} / \mu \mathrm{A} 248 \mathrm{XR}$ Series High Performance Read/Write Preamplifiers are intended for use in Winchester disk drives which employ center tapped ferrite or manganese-zinc read/write heads. The circuit can interface with up to eight Read/Write heads which makes it ideal for multi-platter disk drive designs. Designed to reside in the Head/Disk Assembly (HDA) of Winchester disk drives, the Read/Write preamplifiers provide termination, gain, and output buffering for the disk heads as well as switched write current. Certain write fault conditions are detected and reported to protect recording integrity. The parts are available with internal damping resistor ($\mu \mathrm{A} 248 \mathrm{XR}$) and without internal damping resistor. ($\mu \mathrm{A} 248 \mathrm{X}$)

- Wide Bandwidth, High Gain, Low Noise
- Up To Eight Read/Write Channels
- Internal Write Fault Condition Detection
- 5 V \& 12 V Power Supply Voltages
- Independent Read \& Write Data Lines
- TTL Control And Data Logic Levels
- Externally Programmable Write Current
- Available With Internal Damping Resistor
- Compatible With SSI 117 Family

Absolute Maximum Ratings

Storage Temperature Range

Ceramic

$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Plastic
Operating Junction Temperature Range
Lead Temperature
Ceramic (soldering, 60s)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Plastic (soldering, 10s)
Internal Power Dissipation, ${ }^{1,2}$
28L-Ceramic DIP
2.50 W

24L-Ceramic DIP 1.95 W
18L-Ceramic DIP 1.88 W
32L-Brazed Flatpak 1.50 W
24L-Brazed Flatpak 0.88 W
24L-Ceramic Flatpak 0.79 W
44L-Plastic LCC 1.92 W
28L-Plastic LCC 1.39 W
Supply Voltage, $\mathrm{V}_{\mathrm{CC} 1} \quad 6.0 \mathrm{~V}$
Supply Voltage, $\mathrm{V}_{\mathrm{CC} 2} 15 \mathrm{~V}$
Write Current (IWC) 70 mA

Linear Division Disk Drives
μ A248X • μ A248XR Series Winchester Disk Read/Write Preamplifiers

Notes

1. $T_{J M a x}=150^{\circ} \mathrm{C}$ for the Plastic, and $175^{\circ} \mathrm{C}$ for the Ceramic.
2. Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 28 L . Ceramic DIP at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 24 L -Ceramic DIP at $13.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 18 L -Ceramic DIP at $12.5 \mathrm{~m} / \mathrm{W} /{ }^{\circ} \mathrm{C}$, the 32 L -Brazed Flatpak at $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $24 \mathrm{~L}-B r a z e d$ Flatpack at $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the 24 L Ceramic Flatpak at $5.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $44 \mathrm{~L}-$-Plastic LCC at $15.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the 28L-Plastic LCC at $11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Order Information

Device Code	Package Code	Package Description
μ A2484DC	7 L	Ceramic DIP
μ A2484RDC	7 L	Ceramic DIP

Input Voltages

Head Select (HSO, HS1, HS2)
Write Current (WC) Voltage in
read and idle modes. (Write mode must be current limited
to -70 mA)
-0.3 V to $\mathrm{V}_{\mathrm{CC} 1}+0.3 \mathrm{~V}$
Chip Select (CS) $\quad-0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC} 1}+0.3 \mathrm{~V}$
Read/Write (R/W) $\quad-0.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC} 1}+0.3 \mathrm{~V}$

Recommended Operating Conditions

$\mathrm{V}_{\text {cc1 }}$	5.0 V
$\mathrm{~V}_{\mathrm{CC} 2}$	12 V

CC2 12 V

Connection Diagram

24-Lead DIP
(Top View)

Connection Diagram

18-Lead DIP
(Top View)

Order Information

Device Code	Package Code	Package Description
μ A2482DC	FU	Ceramic DIP
μ A2482RDC	FU	Ceramic DIP

Connection Diagram
24-Lead Cerpak
(Top View)

Order Information

Device Code	Package Code	Package Description
μ A2484FC	FN	Ceramic Flatpak
μ A2484RFC	FN	Ceramic Flatpak

Connection Diagram

24-Lead Flatpak
(Top View)

Order Information

Device Code Package Code Package Description μ A2484GC FR Brazed Flatpak $\mu A 2484 R G C$
FR Brazed Flatpak

Connection Diagram

24-Lead DIP
(Top View)

Order Information

Device Code	Package Code	Package Description
μ A2485DC	7 L	Ceramic DIP
μ A2485RDC	7 L	Ceramic DIP

Connection Diagram

24-Lead Cerpak
(Top View)

Order Information

Device Code	Package Code	Package Description
μ A2485FC	FN	Ceramic Flatpak
μ A2485RFC	FN	Ceramic Flatpak

Connection Diagram
24-Lead Flatpak
(Top View)

Order Information Device Code μ A2485GC μ A2485RGC

Package Code
FR
FR

Package Description Brazed Flatpak Brazed Flatpak

Connection Diagram

28-Lead DIP
(Top View)

Order Information

Device Code	Package Code	Package Description
μ A2486DC	FM	Ceramic DIP
μ A2486RDC	FM	Ceramic DIP

Connection Diagram
28-Lead PLCC
(Top View)

Order Information
Device Code μ A2486QC $\mu A 2486$ RQC

Package Description
Plastic LCC
Plastic LCC

μ A248X • μ A248XR

Connection Diagram

32-Lead Flatpak
(Top View)

Order Information Device Code	Package Code	
μ Package Description		
μ A2488GC	FS	Brazed Flatpak
	FS	Brazed Flatpak

Functional Description

In the Write mode, the μ A248X/ μ A248XR Series accepts TTL compatible write data pulses on the WDI lead. On the falling edge of each write data pulse, a current transition is made in the selected head. Head selection is accomplished via TTL input signials: HS0, HS1, HS2 (see Table B). Internal circuitry senses the following conditions:

1. Absense of data transitions.
2. Open circuit head connection.
3. Absence of write current.
4. Short circuit head connection.
5. Idle or read mode.

Any or all of the above conditions would result in a high level on the write unsafe (WUS) output signal.

During read operations, the $\mu \mathrm{A} 284 \mathrm{X}$ amplifies the differential voltages appearing across the selected R/W head lead and applies the amplified signal differentially to data lines RDX and RDY.

Connection Diagram

44-Lead PLCC

(Top View)

Order Information

Device Code	Package Code
μ A2488QC	KI

Package Description Plastic LCC
Plastic LCC

Description of Lead Functions	
Lame	
Lead	Name
CS	Chip Select

R \bar{W}	Read/Write Select
HOX, Y	Read Write Head
Through H7X, Y	Connections

RDX, Y

HSO through HS2

WC
Write Current Input

WDI

RCT
Resistor Center Tap

VCT

WUS
Write Unsafe

Description of Functions

Chip Select High disables the read/write function of the device and forces idle mode. (TTL)

A Logic high places the devices in read mode and a Logic low forces write mode. Refer to Table A. (TTL)

The $\mu \mathrm{A} 2488$ has eight pairs of read/write connections. The X and Y phases are made consistent with the read output, RDX and RDY, phases. (Differential)

The chip has one pair of read data outputs which is multiplexed to the appropriate head connections. (Differential)

The eight read/write heads are addressed with the head select inputs. Refer to Table B. (TTL)

This lead sets the current level for the write mode. An external resistor is connected from this lead to ground, and write current is determined by the value of this resistor divided into the write current constant, K which is typically 140 V .

The write data input toggles the write current between the X and Y selected head connections. Write current is switched on the negative edge of WDI. The initial direction for write current is the X side of the switch and is set upon entering read or idle mode. (TTL)

In some versions (determined by lead availability) of the $\mu \mathrm{A} 248 \mathrm{X}$ series, a resistor may be connected between RCT and $V_{C C 2}$ to reduce internal power dissipation. If this resistor is not used, RCT must be connected externally to $V_{C C 2}$.

The center tap output provides bias voltage for the head inputs in read and write mode. It should be connected to the center tap of the read/write heads.

A high logic level at the write unsafe output indicates a fault condition during write. Write unsafe will also be high during read and idle mode. (Open collector)

Operating Modes Chip Select $\overline{\mathbf{C S}}$	Read/Write R/W	Mode
1	X	Idle
0	1	Read
0	0	Write

Head Selection

HSO	HS1	HS2	Head Selected ${ }^{1}$
0	0	0	0
1	0	0	1
0	1	0	2
1	1	0	3
0	0	1	4
1	0	1	5
0	1	1	6
1	1	1	7

Note:

1. If selected head is beyond the capacity of the $\mu \mathrm{A} 248 \mathrm{X}$ model, the open input condition on the selected input will be reported as an unsafe level at the WUS output.

Block Diagram (Typical, μ A248X)

μ A248X • μ A248XR

Absolute Maximum Ratings All voltages referenced to GND

Symbol	Characteristic	Value	Unit
$\mathrm{V}_{\mathrm{DD} 1}$	DC Supply Voltage	-0.3 to +14	V
$\mathrm{~V}_{\mathrm{DD} 2}$		-0.3 to +14	V
$\mathrm{~V}_{\mathrm{CC}}$		-0.3 to +6.0	V
$\mathrm{~V}_{\mathrm{in}}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~V}_{\mathrm{H}}$	Digital Input Voltage Range	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\text {wus }}$	Head Port Voltage Range	-0.3 to +14	V
I_{W}	WUS Port Voltage Range	60	mA
I_{O}	Write Current	-10	mA

Recommended Operating Conditions

Symbol	Characteristic	Value	Unit
$\mathrm{V}_{\mathrm{DD} 1}$	DC Supply Voltage	$12 \pm 10 \%$	V
$\mathrm{~V}_{\mathrm{DD} 2}$		6.5 to $\mathrm{V}_{\mathrm{DD} 1}$	V
$\mathrm{~V}_{\mathrm{CC}}$		$5.0 \pm 10 \%$	V
Lh	Head Inductance	5.0 to 15	$\mu \mathrm{H}$
RD	Damping Resistor (External)	500 to 2000	Ω
RCT	RCT Resistor	$90 \pm 5.0 \%(1 / 2$ watt $)$	Ω
IW	Write Current	25 to 50	m
IO_{O}	RDX, RDY Output Current	0 to 100	$\mu \mathrm{~A}$

$\mu A 248 X \bullet \mu A 248 X R$

DC Characteristics $25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{DD1}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Unless otherwise specified

Symbol	Characteristic		Condition		Min	Max	Unit	
V_{CC}	Supply Current		Read/Idle Mode			25	mA	
			Write Mode			30		
$V_{D D}$	Supply Current		Idle Mode			25	mA	
			Read Mode			50		
			Write Mode			$30+1 W$		
P_{C}	Power Consumption		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	Idle Mode		400	mW	
			Read Mode		600			
			Write Mode, $\begin{aligned} & \mathrm{IW}=50 \mathrm{~mA}, \\ & \mathrm{RCT}=90 \Omega \end{aligned}$		850			
			Write Mode, $\begin{aligned} & \mathrm{IW}=50 \mathrm{~mA}, \\ & \mathrm{RCT}=0 \Omega \end{aligned}$		1050			
$\mathrm{V}_{\text {IL }}$	Digital Inputs:	Input Voltage LOW Input Voltage HIGH		$\begin{aligned} \mathrm{V}_{\mathrm{IL}} & =0.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}} & =2.0 \mathrm{~V} \end{aligned}$		-0.3	0.8	V
V_{IH}						2.0	$v_{c c}+0.3$	\checkmark
$I_{\text {IL }}$		Input Current LOW Input Current HIGH				-0.4		mA
I_{H}						100	$\mu \mathrm{A}$	
V_{OL}	WUS Output		$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.5	V	
l_{OH}			$\mathrm{V}_{\mathrm{OH}}=5.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$V_{C T}$	Center Tap Voltage		Read Mode		$4.0 \text { (typ) }$		V	
			Write Mode		6.0 (typ)		V	

Write Characteristics $V_{D D 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0, \mathrm{IW}=45 \mathrm{~mA}, \mathrm{Lh}=10 \mu \mathrm{H}, \mathrm{f}($ Data $)=5.0 \mathrm{MHz}, \mathrm{CL}(\mathrm{RDX}, \mathrm{RDY}) \leq 20 \mathrm{pF}$, $R_{D E X T}=750 \Omega$, or $R_{D I N T}$. Unless otherwise specified.

Characteristic	Condition	Min	Max	Unit
Write Current Range		10	50	mA
Write Current Constant "K"		133	147	V
Differential Head Voltage Swing		5.7		$\mathrm{~V}(\mathrm{pk})$
Unselected Diff. Head Current			2.0	$\mathrm{~mA}(\mathrm{pk})$
Differential Output Capacitance			10 K	
Differential Output Resistance	Without Internal Resistors	538	1.0 K	
WDI Transition Frequency	With Internal Resistors		cm	
$\mathrm{I}_{\text {wc }}$ to Head Current Gain	WUS = Iow		mHz	

$\mu A 248 X \bullet \mu A 248 X R$

Read Characteristics $\mathrm{V}_{\mathrm{DD} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{Lh}=10 \mu \mathrm{H}, \mathrm{f}$ (Data) $=5.0 \mathrm{MHz}, \mathrm{CL}(\mathrm{RDX}, \mathrm{RDY}) \leq 20 \mathrm{pF}$, $\left(\mathrm{V}_{\text {in }}\right.$ is referenced to V_{CT}), $\mathrm{R}_{\mathrm{D} \text { EXT }}=750 \Omega$, or $\mathrm{R}_{\mathrm{DINT}}$. Unless otherwise specified.

Characteristic	Condition		Min	Max	Unit
Differential Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {in }}=1.0 \mathrm{mVp}-\mathrm{p} \text { at } 300 \mathrm{kHz} \\ & \mathrm{RL}(\mathrm{RDX}), \mathrm{RL} \text { (RDY) }=1.0 \mathrm{k} \Omega \end{aligned}$		80	120	V/V
Dynamic Range	Input Voltage, V_{1}, Where Gain Falls by 10%. $\mathrm{V}_{\text {in }} \mathrm{V}_{1}+0.5 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ at 300 kHz		-2.0	+2.0	mV
Bandwidth (- 3db)	$\|\mathrm{Zs}\|<5.0 \Omega, \mathrm{~V}_{\text {in }}=1.0 \mathrm{mV}_{p-p}$		30		MHz
Input Noise Voltage	$B W=15 \mathrm{MHz}, \mathrm{Lh}=0, \mathrm{Rh}=0$			2.1	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Differential Input Capacitance	$\mathrm{f}=5.0 \mathrm{MHz}$			23	pF
Differential Input Resistance	$\mathrm{f}=5.0 \mathrm{MHz}$	Without Internal Resistors	2 K		Ω
		With Internal Resistors	440	850	
Input Bias Current				45	$\mu \mathrm{A}$
Common Mode Rejection Ratio	$V_{C M}=V_{C T}+100 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$ at 5.0 MHz		50		db
Power Supply Rejection Ratio	$100 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ at 5.0 MHz on $\mathrm{V}_{\mathrm{DD1}}, \mathrm{~V}_{\mathrm{DD} 2}$, or V_{CC}		45		db
Channel Separation	Unselected Channels: $\mathrm{V}_{\text {in }}=100 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$ at 5.0 MHz and Selected Channel: $\mathrm{V}_{\mathrm{in}}=0 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$		45		db
Output Offset Voltage			-480	+480	mV
Common Mode Output Voltage			5.0	7.0	V
Single Ended Output Resistance	$\mathrm{f}=5.0 \mathrm{MHz}$			35	Ω
Internal Damping Resistor			560	1070	Ω

Switching Characteristics $V_{D D 1}=12 \mathrm{~V}, \mathrm{~V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{Lh}=10 \mu \mathrm{H}, \mathrm{f}$ (Data) $=5.0 \mathrm{MHz}$, $R_{D E X T}=750 \Omega$, or R_{D} INT . Unless otherwise specified.

Symbol	Characteristic	Condition	Min	Max	Unit
R/ \bar{W}	R / \bar{W} to Write	Delay to 90\% of Write Current		1.0	$\mu \mathrm{s}$
	$\mathrm{R} \overline{\bar{W}}$ to Read	Delay to 90% of 100 mV 10 MHz Read Signal Envelope or to 90\% Decay of Write Current		1.0	$\mu \mathrm{S}$
$\overline{\overline{c s}}$	$\overline{\mathrm{CS}}$ to Select	Delay to 90% of Write Current or to 90% of 100 mV 10 MHz Read Signal Envelope		1.0	$\mu \mathrm{S}$
	$\overline{\mathrm{CS}}$ to Unselect	Delay to 90\% Decay of Write Current		1.0	
$\begin{aligned} & \text { HSO } \\ & \text { HS1 } \\ & \text { HS2 } \end{aligned}$	to any Head	Delay to 90% of 100 mV 10 MHz Read Signal Envelope		1.0	$\mu \mathrm{S}$
WUS	Safe to Unsafe - TD1	$\mathrm{I}_{\mathrm{w}}=50 \mathrm{~mA}$	1.6	8.0	$\mu \mathrm{s}$
	Unsafe to Safe - TD2	$\mathrm{I}_{\mathrm{w}}=20 \mathrm{~mA}$		1.0	

Figure 1 Head Current Timing

Figure 2a Unsafe to Safe Timing

Figure 2b Safe to Unsafe Timing
head overshoot HEAD OVE
VOLTAGE ($\mathrm{V}_{\mathrm{H} 1}, \mathrm{~V}_{\mathrm{H} 2}$)

$\mu A 248 X \bullet \mu$ A248XR

Package Outlines

24-Lead Flatpak

NOTES
Leads are gold plated alloy 42.
If solder-dipped leads are used, the maximum limits for these
dimensions may be increased by $.003(0.08)$.
Package weight is 0.53 grams.
Dimensions are in inches (Bold) and millimeters (Parentheses)

24-Lead DIP

NOTES

Leads are tin-plated alloy 42.
Leads are intended for insertion in hole rows on . 600 (15.24) centers.
They are purposely configured with "positive" misalignment to facilitate insertion.
Board drilling dimensions should equal your practice for . 020 (0.51) diameter lead.
Hermetically sealed alunina package.
Base cavity metallization is gold.
Package weight is 7.1 grams.
All dimensions are inches (Bold) and millimeters (Parentheses)

Package Outlines (Cont.)

28-Lead DIP

32-Lead Flat;iak

NOTES
Leads are gold plated alloy 42.
If solder-dipped leads are used, the maximum limits for these dimensions may be increased by .003 (0.08).
Package weight is 1.97 grams.
All dimensions are in inches (Bold) and milimeters (Parentheses)

Package Outlines (Cont.)

28-Lead PLCC

NOTES
All tolerances are $\pm .003$ unless otherwise noted.
The leads are solder dipped or solder plated copper alloy.
Package material is plastic.
All dimensions in inches (Bold) and millimeters (Parentheses)

18-Lead DIP

NOTES

Leads are tin-plated alloy 42.
Leads are intended for insertion in hole rows on . 300 (7.62) centers.
They are purposely configured with "positive" misalignment to facilitate insertion.
Board-drilling dimensions should equal your practice for .020 (0.51) diameter lead.
Hermetically sealed alumina package
*The .035-. 045 (0.89-1.14) dimension does not apply to the corner leads.
Package weight is 2.6 grams.
All dimensions are in inches (Bold) and millimeters (Parentheses)

Package Outlines (Cont.)

24-Lead Flatpak

notes

Leads are tin-plated alloy 42.
Increase maximum limits by .003 (0.08) if leads are solder dipped.
Package weight is 0.68 grams.
All dimensions in inches (Bold) and millimeters (Parentheses)

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied.

FAIRCHILD

A Schlumberger Company

$\mu \mathrm{A} 2480$ Winchester Disk Servo Preamplifier

Linear Products

Description

The $\mu \mathrm{A} 2480$ provides termination, gain, and impedance buffering for the servo read head in Winchester disk drives. It is a differential input, differential output design with fixed gain of approximately 100 . The bandwidth is guaranteed greater than 10 mHz .
The internal design of the $\mu \mathrm{A} 2480$ is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-pin mini dip (plastic) or 10-lead flatpack suitable for surface mounting.

Features
■ LOW INPUT NOISE VOLTAGE.

- WIDE POWER SUPPLY RANGE (8 TO 13V).
- INTERNAL DAMPING RESISTORS (1kohm).
- PDIP OR CERPAK (FLATPACK).

Order Information

Type	Package	Code	Part No.
μ A2480	Molded	$9 T$	μ A2480TC
μ A2480	Flatpack	$3 F$	μ A2480FC

Connection Diagrams

8-LEAD MINIDIP
(TOP VIEW)

10-LEAD FLATPAK
(TOP VIEW)

Absolute Maximum Ratings

Power Supply Voltage	15 V
Output Voltage	15 V
Differential Input Voltage	$\pm 1 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C},($ Vcc-Vee $)=8$ to 13.2 V , unless otherwise noted

SYM	Parameter	Conditions	Min	Typ	Max	Units
G	Gain (differential)	$\mathrm{Rp}=130 \mathrm{ohm},(\mathrm{Vcc-Vee})=12 \mathrm{~V}$	92	115	138	
G	Gain (differential)	$\begin{aligned} & \mathrm{Rp}=130 \mathrm{Ohm},(\mathrm{Vcc}-\mathrm{Vee})=12 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	80		150	
BW	Bandwidth (3 dB)	$\mathrm{Vi}=2 \mathrm{mV}$ (pp)	10	30		MHz
Rin	Input Resistance		800	1000	1200	Ohms
Cin	Input Capacitance			3		pF
Vin	Input Dynamic Range (Differential)	$\mathrm{Rp}=130 \mathrm{ohm}(\mathrm{Vcc}-\mathrm{Vee})=12 \mathrm{~V}$	3			$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
Is	Power Supply Current	$($ Vcc-Vee $)=12 \mathrm{~V}$		30	40	mA
$\Delta \mathrm{Vo}$	Output Offset (Differential)	$\mathrm{Rs}=0, \mathrm{Rp}=130 \mathrm{ohm}$,			600	mV
Vn	Equivalent Input Noise	$\mathrm{BW}=4 \mathrm{MHz}$		1.5	10	$\mu \mathrm{V}$
PSRR	Power Supply Rejection Ratio	$\mathrm{Rs}=0, \mathrm{f}<5 \mathrm{MHz}$	50	65		dB
$\Delta \mathrm{G} / \Delta \mathrm{V}$	Gain Sensitivity (Supply)	$\begin{aligned} & \Delta(\text { Vcc-Vee })= \pm 10 \%, \\ & R p=130 \text { ohm } \end{aligned}$		± 1.3		\%/V
$\Delta G / \Delta T$	Gain Sensitivity (Temp.)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$,				
		$\mathrm{Rp}=130 \mathrm{ohm}$		-0.2		\%/ ${ }^{\circ} \mathrm{C}$
CMRR	Common Mode Rejection Ratio (Input)	$\mathrm{f}<5 \mathrm{MHz}$	55	70		dB

Schematic Diagram

Typical Applications

1. Pins shown for 8 -lead minidip.
2. Req is equivalent load resistance.
3. $R p=\frac{R_{L} \cdot R_{e q}}{R_{L}+R_{e q}}$
4. $G=.88 R p$ Where Rp = value from 3 (above) in ohms

Fairchild Linear Products

