
|||||||||
US005481684A

United States Patent (19) 11 Patent Number: 5,481,684
Richter et al. 45) Date of Patent: Jan. 2, 1996

54 EMULATING OPERATING SYSTEM CALLS 5,226,164 7/1993 Nadas et al. 395/800
N AN ALTERNATE INSTRUCTION SET 5,230,069 7/1993 Brelsford et al. 395/400
USING AMODIFIED CODE SEGMENT. 5,241,636 8/1993 Kohn 395/375
DESCRIPTOR 5.255,379 10/1993 Melo 395/400

5,269,007 12/1993 Hanawa et al. 395/375
(75 Inventors: David E. Richter, San Jose; Jay C. ES 2.2 y et al. 5.

Pattin, Redwood City; James S. 4.1 x 3 eu e a as a a u w w w us as

Blomgren, San Jose, all of Calif. OTHER PUBLICATIONS

(73) Assignee: Exponential Technology, Inc., San Combining both micro-code and Hardwired control in RISC
Jose, Calif. by Bandyophyay and Zheng, Sep. 1987 Computer Archi

tecture News pp. 11-15.
Combining RISC and CISC in PC systems. By Garth, Nov.

(21) Appl. No.: 277,905 1991 IEEE publication (?) pp. 10/1 to 10/5.
(22 Filed: Jul. 20, 1994 A 5.6-MIPS Call-Handling Processor for Switching Sys

tems by Hayashi et al., IEEE JSSC Aug. 1989.
Related U.S. Application Data

Primary Examiner-Parshotam S. Lall
I63) Continuation-in-part of Ser. No. 179,926, Jan. 11, 1994. Assistant Examiner-Viet Wu
(51) Int. Cl. .. of Attorney, Agent, or Firm-Stuart T. Auvinen
52 U.S. Cl. 395/375; 395/500; 364/DIG. 1 57 ABSTRACT
58) Field of Search 56 5% The CISC architecture is extended to provide for segments

2 that can hold RISC code rather than just CISC code. These
(56) References Cited new RISC code segments have descriptors that are almost

identical to the CISC segment descriptors, and therefore
U.S. PATENT DOCUMENTS these RISC descriptors may reside in the CISC descriptor

376.4988 10/1973 omishi. 395,375 ables. The global descriptor table in particular may have
4,077,058 2/1978 Appell et al. 395/650 CISC code segment descriptors for parts of the operating
4,633,417 12/1986 Wilburn et al. . 364/550 system that are written in x86 CISC code, while also having
4,763,242 8/1988 Lee et al. 395/500 RISC code segment descriptors for other parts of the oper
4,780,819 10/1988 Kashiwagi 395/500 ating system that are written in RISC code. An undefined or
4,794,522 12/1988 Simpson 395/500 reserved bit within the descriptor is used to indicate which
4,812,975 3/1989 Adachi et al. 395/500 instruction set the code in the segment is written in. An
4,821,187 4/1989 Ueda et al. 395/375 existing user program may be written in CISC code, but call
4,841,476 6/1989 Mitchell et al. " E a service routine in an operating system that is written in
4,876,639 10/1989 Mensch, Jr. 395/500 RISC code. Thus existing CISC b d
4,928,237 5/1990 Bealkowski et al. 395/500 9. programs may be execute
4,942,519 7/1990 Nakayama 395/775 on a processor that emulates a CISC operating system using
4,943,913 7/1990 Clark 395700 RISC code. A processor capable of decoding both the CISC
4,972,317 11/1990 Buonomo et al. 395/375 and RISC instruction sets is employed. The switch from
4,992,934 2/1991 Portanova et al. ... 395/375 CISC to RISC instruction decoding is triggered when con
5,053,951 10/1991 Nusinov et al. 395/425 trol is transferred to a new segment, and the segment
5,077,657 12/1991 Cooper et al. ... 395/500 descriptor indicates that the code within the segment is
5,097.407 3/1992 Hino et al. 395/375 written in the alternate instruction set.
5,136,696 8/1992 Beckwith et al. ... 395/375
5,167,023 11/1992 de Nicolas et al. ... 395/375
5,210,832 3/1993 Maier et al. 395/375 6 Claims, 5 Drawing Sheets

FETCH

TLB

MODE CTL

ENTRYPT GEN

U.S. Patent

Interrupt Signalled
to CPU

CPU
generates NT
ACK cycle

Interrupt #
Sent to CPU

Fetch entry
in intr Table

Fetch Entry
in Descriptor

Table

Jan. 2, 1996 Sheet 1 of 5

Store IP,
CS, Flag on

Stack

load CS, IP
from Intr
Table entry

Execute intr
Service
Routine

Restore IP,
CS, Flags

Return Control to
User program

Fig. 1

5,481,684

5,481,684 Sheet 2 of 5 Jan. 2, 1996 U.S. Patent

OZ

0’’9 || LBS-H-HO

9|, ''],9 LEISH-HO >HO LOETES

5,481,684 Sheet 3 of 5 Jan. 2, 1996 U.S. Patent

86
09

96

€ (61-)

,08‘’’JOSEOJ "SOES

5,481,684

07

{{Z999O
Sheet 4 of 5

LIWIT SOESESVE 5DES

Jan. 2, 1996

09

U.S. Patent

U.S. Patent Jan. 2, 1996 Sheet 5 of 5 5,481,684

5,481,684
1

EMULATING OPERATING SYSTEM CALLS
IN AN ALTERNATE NSTRUCTION SET
USING AMODIFIED CODE SEGMENT

DESCRIPTOR

BACKGROUND OF THE
INVENTION-RELATED APPLICATIONS

This application is a Continuation-in-Part of copending
application for a "Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode', filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926, having a common inventor and
assigned to the same assignee as the present application.

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

The present invention relates to a dual-instruction-set
processor, and more particularly to a method and apparatus
for emulating operating system calls using instructions from
a second instruction set.

BACKGROUND OF THE
INVENTION-DESCRIPTION OF THE

RELATED ART

An enormous base of software has been written for
existing operating systems such as the DOSTM and Win
dowsTM operating systems produced by Microsoft Corpora
tion of Redmond, Wash. However, these operating systems
presently must be executed on x86 microprocessors manu
factured by Intel Corporation of Santa Clara, Calif., and
others. The x86 architecture is an old complex instruction set
computer (CISC) architecture and is quite different from
today's highly optimized reduced instruction set computers
(RISCs).

It is greatly desired to use newer RISC processors since
they are potentially less expensive and faster. The Pow
erPCTM architecture by IBM, Motorola and Apple Computer
uses a RISC instruction set. However, the PowerPCTM
cannot directly execute programs written for x86 CISC
operating systems such as DOSTM and WindowsTM. Emula
tion programs such as the SoftPC program by Insignia
Corporation translate x86 CISC instructions to RISC
instructions, but the performance is reduced relative to
running x86 code directly.
A dual-instruction-set CPU was disclosed in the related

application entitled "Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode', filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926. That application is assigned to the
same assignee as the present application. The dual-instruc
tion set CPU contains hardware so that it can decode
instructions from two entirely separate instruction sets.
What is desired is a method and apparatus to trigger a

switch from one instruction set to another instruction set
when a call to a support routine in an operating system is
made.

SUMMARY OF THE INVENTION

The present invention allows code from a first instruction
set to reside within a segment defined by a second instruc
tion set. For example, RISC instruction code may reside
within a CISC segment. The CISC architecture is extended
to provide for segments that can hold RISC code or CISC
code.

10

15

20

25

30

35

40

45

50

55

60

65

2
In a broad sense the present invention is directed toward

a segment descriptor for a dual-instruction-set processor.
The processor executes instructions from a first instruction
set and a second instruction set that are substantially inde
pendent. The segment descriptor describes a segment in
memory containing program code. The segment descriptor
has a location indicating means for indicating a location of
the segment in the memory; attribute indicating means for
indicating attributes of access to the segment; and an instruc
tion set indicating means for indicating that an instruction
set of the program code located within the segment belongs
to one of a first instruction set and a second instruction set.
The instruction set indicating means has a first state for

indicating that the program code contains instructions from
the first instruction set, and a second state for indicating that
the program code contains instructions from the second
instruction set. The program code in the segment contains
instructions from one of the first instruction set and the
second instruction set.

In another aspect of the present invention the first instruc
tion set is a complex instruction set computer (CISC)
instruction set while the second instruction set is a reduced
instruction set computer (RISC) instruction set. The first
instruction set has a first encoding of operations to opcodes,
while the second instruction set has a second encoding of
operations to opcodes. The first encoding of operations to
opcodes is substantially independent from the second encod
ing of operations to opcodes. Thus the two instruction sets
may be entirely separate and independent instruction sets.
An undefined or reserved bit within the segment descrip

tor is used for the instruction set indicating means to indicate
which instruction set the program code in the segment is
written in. The switch from CISC to RISC instruction
decoding is triggered when control is transferred to a new
segment, and the segment descriptor indicates that the code
within the segment is written in the alternate instruction set.
The present invention allows an existing user program

written in CISC code to call a service routine in an operating
system that is written in RISC code. Thus existing CISC
programs may be executed on a dual-instruction-set proces
sor which can execute RISC code to emulate a CISC
operating system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the steps to service an x86 hardware
interrupt.

FIG. 2 is a CISC call gate descriptor,
FIG. 3 is a block diagram of a CPU with segmentation and

paging.
FIG. 4 is a diagram of a CISC segment descriptor.
FIG. 5 is a block diagram of a dual-instruction-set CPU.

DETAILED DESCRIPTION

The present invention relates to an improvement in pro
cessing. The following description is presented to enable one
of ordinary skill in the art to make and use the present
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features

5,481,684
3

herein disclosed.
A dual-instruction-set CPU was disclosed in the related

application entitled "Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode', filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926, hereby incorporated by reference.
That application is assigned to the same assignee as the
present application. The dual-instruction set CPU contains
hardware so that it can decode instructions from two entirely
separate instruction sets. A page fault or exception would
cause the instruction set being decoded to switch. Thus if a
page fault occurred when the CISC instruction set was being
decoded, execution would switch to the RISC instruction
set. CISC instructions that were not directly supported in
hardware would also cause a switch to the RISC instruction
Set.

Although the related application works effectively for
many applications, calls from user programs to support
routines in the x86 CISC operating system do not normally
cause an exception or page fault to occur. Thus the Support
routines in the operating system would be executed from
x86 CISC code. Since RISC code is believed to be more
efficient than x86 CISC code, it would be preferable to
execute as much code as possible in RISC rather than in
CISC. Because of the enormous number of user programs
written in x86 CISC code, it is not feasible to convert each
program over to RISC code. Indeed, it is highly desirable to
be able to execute unmodified user programs. However,
most of these user programs use (or call) support routines
that are supplied by the operating system. Since DOSTM and
WindowsTM are by far the most widely used operating
systems on personal computers (PC's), it is desired to write
RISC code for emulating the support routines in these two
operating systems. Thus when an x86 CISC user program
calls a support routine in either the DOSTM or WindowsTM
operating systems, the support routine could be written in
the RISC code, improving performance over the original
support routine written in x86 code. However, a method is
needed to trigger the switch from decoding CISC instruc
tions to decoding RISC instructions when the support rou
tine is called.
The operating system (OIS), or possibly the Basic Input/

Output System (BIOS), may provide support routines that a
user program may access. The user program may transfer
control to the operating system in the following ways:

Exception
External Interrupt
Software Interrupt
Far Call or Far Jump.

Each of these methods to transfer control from a user
program to the operating system will be discussed next.
EXCEPTIONS
An exception occurs when an instruction is executed that

causes some sort of error. A divide instruction that attempts
to divide by zero would cause a divide-by-zero exception,
invoking a service routine in the operating system to handle
the error. The service routine in this case would typically
display an error message to the user and terminate the
program.

Other causes of exceptions include attempting to execute
an undefined or illegal opcode, reaching a program check or
break point, attempting to access memory that is out of the
bounds for the segment, writing to a read-only segment, or
accessing a segment that is valid but is not currently present
in the system RAM. Page faults, where the page of memory
being accessed is not present in the main memory but only
on the disk, can also cause an exception.

10

15

20

25

30

35

40

45

50

55

60

65

4
The proper service routine is determined by accessing an

interrupt table or interrupt descriptor table to fetch the
starting address for the service routine for the particular
exception. When an exception occurs, control is transferred
to a service routine for the particular exception. The pro
cessor itself, however, supplies an entry number for an
interrupt table.
EXTERNAL INTERRUPTS
An external device may signal an interrupt to the proces

sor. For example, a user may strike a key on the keyboard,
which would generate a keyboard interrupt to the processor.
The processor will perform an external interrupt acknowl
edge cycle to allow the external device to identify an
interrupt number. The interrupt number identifies an entry in
the interrupt table which points to a service routine in the
operating system for the external device.
SOFTWARE INTERRUPTS
A wide variety of O/S support routines may be accessed

by programming a software interrupt into the user code. A
software interrupt is an instruction that emulates a hardware
interrupt. The software interrupt instruction causes the inter
rupt table to be accessed. The software interrupt instruction
has a parameter that specifies a unique entry in the interrupt
table. When an interrupt is encountered, the interrupt table
is consulted to determine the address where the interrupt
service routine is located in memory. The processor loads
this address and begins executing instructions from this
address, the location of the service routine. Upon completion
of the service routine, control is transferred or returned back
to the user program. Application programs running under
DOS typically use software interrupt instructions to invoke
DOS routines.
FAR CALLS AND JUMPS

Application programs running under WindowsTM occa
sionally use software interrupts to invoke operating system
routines, but the bulk of the WindowsTM operating system
routines are invoked by a far call instruction. For example,
a user application may call the "CreateWindow' command
while running under WindowsTM to have a new window
opened. The user application program executes a far call
instruction to transfer control to a different segment where
the WindowsTM CreateWindow routine is located. A far call
is a transfer of control to code which resides in a different
segment, which also saves the instruction pointer and code
segment register onto a stack in memory. The CreateWin
dow routine returns to the application program by executing
a far return instruction, which restores the instruction pointer
and code segment from the stack.
A segment descriptor is accessed and examined when a

far call occurs, because control is transferred to a new
segment. However, no interrupt is signaled.
INTERRUPT SERVICE ROUTINES
Many support routines supplied by the operating system

are accessed when an external hardware interrupt is signaled
to the processor. FIG. 1 shows the steps to service an x86
hardware interrupt. In the x86 architecture, only one pin or
input to the processor is provided for most interrupts.
Therefore, the processor must determine what the cause of
the external interrupt is by generating an interrupt acknowl
edge cycle, when the external devices send an interrupt
number or vector back to the processor. The interrupt vector
specifies the device causing the interrupt, for example the
keyboard. The interrupt vector is also known as an entry
number, which specifies an entry in an interrupt table stored
in memory. In the x86 architecture, the entry number is
multiplied by eight, since each entry in the interrupt table
occupies eight address locations, to specify the address of

5,481,684
S

the entry in the interrupt table in memory. The entry stored
in the interrupt table is a starting address where a support
routine to service the interrupt is stored. The starting address
of the interrupt service routine is loaded into the processor's
instruction pointer and code segment register, while the old
values for the instruction pointer and code segment register,
and the flags register, are stored on a stack in memory.
The support routine is then executed starting with the

instruction fetched from the starting address stored in the
entry in the interrupt table. The support routine, or interrupt
service routine, is executed, and control is returned to the
user program when the end of the service routine is reached,
by retrieving the old values for the instruction pointer, code
segment and flags registers from the stack.
As an example, the user may strike a key on the keyboard.

The keyboard controller would signal to the processor an
interrupt request over the shared interrupt input. The pro
cessor then "services' this interrupt. First, an interrupt
acknowledge cycle is run when the keyboard's interrupt
number, 09 hex, is supplied to the processor. The interrupt
number is multiplied by 8 hex, and the result, 48 hex, is
tadded to the interrupt descriptor table base register, yielding
the address of the keyboard's entry in the interrupt table. A
memory cycle is run at this address to fetch the contents of
the interrupt descriptor table entry number at 48 hex, and the
contents are stored in the processor. The old instruction
pointer, code segment and flags registers are stored to the
stack, and then the contents of the keyboard's entry from the
interrupt table are loaded into the instruction pointer and
code segment register. Execution then transfers to the key
board interrupt service routine pointed to by the contents of
the keyboard's entry from the interrupt table, which is a
starting address for the keyboard service routine. This rou
tine performs an I/O read of the keyboard to determine
which key was struck, and then terminates and returns
control to the user program by retrieving the old instruction
pointer, code segment and flags registers from the stack.
To service an x86 software interrupt, the steps are similar

to those for the hardware interrupt of FIG. 1 except that an
external interrupt acknowledge cycle is not necessary
because the software interrupt instruction specifies the inter
rupt number and entry.
INTERRUPT TABLE DESCRIPTORS
The entries in the interrupt descriptor table are descrip

tors, similar to descriptors for segments. An offset address in
the interrupt descriptor provides the entry point within the
code segment jumped to. A selector field in the interrupt
descriptor identifies the segment the interrupt service routine
is located in. Privilege and access checks are performed for
the interrupt descriptor just as they are done for segment
descriptors. The interrupt descriptor table may contain a
special descriptor, called a task gate, which causes the
interrupt service routine to run in a separate context.
CISC CONTROL TRANSFERS TO RISC
A signal is needed to cause the processor to switch the

instruction set being decoded. An exception or interrupt can
provide this signal, or a separate instruction can be defined
to switch instruction sets. Jumping from a CISC user pro
gram to another segment written in RISC code without
signaling an interrupt or exception could cause unpredict
able results or even a system crash unless a method is
employed to trigger the switch to RISC decoding. Addition
ally, routines within the operating system may jump to other
operating system routines that may not be implemented in
RISC code but in CISC code. Ideally the type of code, RISC
or CISC, would be indicated when ajump or control transfer
occurs, regardless of what caused the jump.

10

15

20

25

30

35

40

45

50

55

60

65

6
When called from a CISC user program, the O/S service

routine could begin with a special instruction to switch to the
RISC instruction set. However, if this same O/S service
routine were call from a RISC user program, then a separate
entry point would be needed for the RISC program, because
the special instruction to switch instruction sets should not
be executed. Thus two entries would be needed for each O/S
service routine. The RISC entry point could be the start of
the service routine, but CISC programs would first have an
entry point to execute the special instruction to switch to
RISC code, and then jump to the RISCentry point. On return
from the O/S service routine, CISC code would have to
again execute a special instruction to switch back to CISC
instruction decoding.

Having two entry points for each O/S service routine is
undesirable as it increases the memory requirement for the
interrupt table. Performance would decrease because param
eters or return values passed to and from the O/S service
routine could have to be copied, saved, or re-arranged in
registers or memory. One or more additional instructions
would have to be executed, also reducing performance.
Maintaining and verifying the operating system would be
more difficult.

Ideally either RISC or CISC code could use the same
interrupt descriptor table and entry points. The O/S service
routines would be independent of the user's instruction set.
The inventors have recognized all of these operating

system calls cause a control transfer to a different segment.
The switch to the RISC instruction set is therefore best
triggered by loading the new segment descriptor. Each
segment is written in either RISC or CISC code, and its
segment descriptor indicates the instruction set for the code
in that segment. Thus if a jump occurs to a segment that has
a descriptor indicating RISC code, then the processor will
switch to RISC decoding if it is currently decoding CISC.
The cause of the jump, be it an interrupt, exception, or
merely afarjump to another segment, is irrelevant; the target
segment type will cause the proper instruction set to be
decoded for the new segment.
X86 CISC SEGMENTATION

Segments are variable-sized blocks of memory, delineated
by a segment base address and abound or limit that is equal
to the size or length of the segment. Segments can be of
several types such as code, data, stack, or system manage
ment. The operating system typically manages segments by
managing descriptors that identify the location and type of
each segment. Segments can be used to protect one user or
task from another, allowing for multi-user and multi-tasking
systems.

FIG. 3 is a block diagram of address generation in a
typical x86 processor, which includes both segmentation and
paging. ALU 80 calculates a virtual address 82 from address
components indicated by an instruction being processed.
ALU 80 or other decode logic (not shown) indicates which
segment is being referenced by the instruction and selects
one segment descriptor 30' in a segment descriptor register
array 33. The selected segment descriptor 30' includes a base
address field which outputs the base or starting address of
the selected segment on line 86, and a limit or upper bound
which is outputted online 90. Virtual address 82 is added to
the base address 86 in segment adder 92, to produce a linear
address 88. The segment adder 92 must be a full 32-bit adder
in the x86 architecture because segments can begin and end
on any boundary, down to single-byte granularity. Other
architectures that restrict the segment to begin and end on
page boundaries need not add the lower 12 bits, and thus can
use a smaller adder.

5,481,684
7

Subtractor 94 subtracts the virtual address 82 from the
limit on line 90. If a negative value results, then the virtual
address exceeds the limit and a segment overrun error is
signaled. A second adder/subtractor could be used to check
the lower bound of the segment; however if the lower bound
is always virtual address 0, then the segment adder 92 can
be used for the lower bound check. If the result is a negative
number then the lower bound has been violated. Thus the
negative flag or the sign bit may be used for lower bound
checking. Comparators may also be employed for bounds
checking.

Linear address 88 is translated to a physical address by
translation-lookaside buffer or TLB 96, which is a small
cache of the page translation tables stored in main memory.
The TLB 96 translates the upper 20 bits of the linear address
by searching the associative TLB cache for a match, and if
one is found, then replacing these upper 20 bits with another
20 bits stored in the TLB 96.

If the linear address is not found in the TLB, then a miss
is signaled to the translator 98, which accesses the page
tables in main memory and loads into the TLB the page table
entry that corresponds to the linear address. Future refer
ences to the same page will "hit' in the TLB, which will
provide the translation. Translator 98 may be implemented
entirely in hardware, entirely in software, or in a combina
tion of hardware and software.
SEGMENT DESCRIPTORS

FIG. 4 is a diagram of a segment descriptor in the x86
architecture. The descriptor 30 consists of two 4-byte
double-words 30A and 30B. The beginning address of the
segment is determined by the segment base32, which is split
among three fields, a first base field 32A in the first double
word 30A, having bits 15 to 0 of the base address, a second
base field 32B in the second double-word 30B, having bits
23 to 16 of the base address, and a third base field 32C in the
second double-word, having bits 31 to 24 of the base
address. Combining fields 32A, 32B, and 32C yields a 32-bit
segment base address. Likewise the upper bound or limit of
the segment 34 is broken up among two fields, a first limit
field 34A in the first double-word 30A, and a second limit
field 34B in the second double-word 30B. Combining fields
34A and 34B yields a 20-bit limit for the segment. The limit
34 is the length or size of the segment.
Many attribute bits are provided to control access to the

segment and to further define the segment, or to aid the
operating system in management of the segment. The x86
architecture defines the following attribute bits:

P Present bit. 1 = segment is present in memory;
0 = not present in memory

DPL Descriptor Privilege Level 3-0
S Segment type 1 = User Codefdata; 0 = system
Type Segment Type (see below)
A Accessed
G Granularity 1 = pagefAK; 0 = byte
D Default Operation Size 1 = bit; 0 = 16 bit
AVL Available for user or OS, extra bit

The system field 38 breaks segments into two broad
classes: system segments that are used by the operating
System, and user segments, such as code, data, and stack
segments. The Type field 36 further defines the type of
segment pointed to by the descriptor. Some of the other
attribute bits may change definition depending upon the
segment type. Three bits are used to encode the type, so 2
or 8 types are possible. For user segments, the type bits
indicate if the segment is executable, writable, or readable.

10

15

20

25

30

35

40

45

50

55

60

65

8
A code segment would be executable but not writable, while
a data segment would be writable but not executable. For
system segments, the accessed bit 40 is used as an extra type
bit so that the type field is now 4 bits for system segments.
The system segment types defined by Intel are shown in
Table 1.

TABLE 1.

System Segment Types

Type Code Segment/gate

Invalid
286 TSS
LDT

286 TSS Busy
286 Cal Gate
Task Gate

286 Interrupt Gate
286 Trap Gate

Invalid
486 TSS

Reserved by Intel
TSS Busy

486 Call Gate
Reserved by Intel
486 Interrupt Gate
486 Trap Gate

GATE DESCRIPTORS
FIG. 2 is a diagram of a gate descriptor in the x86

architecture. Gate descriptors control access to entry points
into a code segment. Interrupt gate descriptors are placed in
the interrupt descriptor table in protected mode. The gate
descriptor 20 consists of two 4-byte double-words 20A and
20B. The beginning address of the service routine within the
segment is determined by the offset 24, which is split among
two fields, a first offset field 24A in the first double-word
20A, having bits 15 to 0 of the offset address, and a second
offset field 24B in the second double-word 20B, having bits
31 to 16 of the offset address. Combining fields 24A and 24B
yields a 32-bit offset address within the segment. A selector
22 identifies the segment that is the target of the gate
descriptor. The target segment will have its own segment
descriptor, such as the descriptor shown in FIG. 4, which
must be accessed and checked before code can be fetched
from the target segment.
Many attribute bits are provided to define the control

transfer gate. The x86 architecture defines the following
attribute bits:

P Present bit. 1 = segment is valid; 0 = not valid
DPL Descriptor Privilege Level 3-0
WD CNT Number of parameters passed to procedure

called (call gate only)
Type Segment Type (see Table 1)

The type of gate can be interrupt, task switch, trap, or call,
depending upon the type of control transfer defined by the
gate. Table 1 also shows the types of gate descriptors defined
for the x86 architecture. The last 4 rows of Table 1 are gate
descriptor types while the first four rows of Table 1 are
segment descriptor types.
SEGMENT CODE DESCRIPTORS
INSTRUCTION SET
The x86 segment descriptors may be modified to indicate

that the segment descriptor refers to a segment containing
RISC code rather than x86 CISC code. An invalid or
reserved combination of bits in the segment descriptor can
be used to indicate that the processor should switch to

INDICATING

5,481,684

decoding RISC code rather than CISC code when accessing
code in this segment. Bit 21 in the second double-word of
the segment descriptor of FIG. 4 is normally always zero for
x86 systems. Setting this bit to one, which could cause a
prior-art x86 system to perform an undocumented function,
would indicate to a dual-instruction-set processor of the
present invention that the segment contains code written in
a RISC instruction set rather than the x86 CISC instruction
Sct.

Setting bit 21 to a one is the preferred technique for
indicating RISC code within a segment because this bit can
be set for any type of segment, system or user. However,
other ways of indicating RISC code are also possible. Table
1A showed that four types of system segments were either
invalid or reserved for Intel. Setting a descriptor for a system
segment to one of these invalid or reserved types could also
indicate that the segment contains RISC code.
RISC data structures may differ from x86 data structures.

For example, the order of the bytes in a data word can be
either "big endian” or "little endian', depending upon
whether the most significant bit is in the highest byte or the
lowest byte of the data word. Invalid or reserved segment
descriptor types could also be used to indicate that a RISC
data structure and byte-ordering is to be used when access
ing the data in the segment rather than the default CISC
byte-ordering.
CISC USER CODE CALLING RISC O/S ROUTINES

Regardless of the reason for a control transfer, when a
new segment is accessed the segment descriptor is checked
to see if it indicates that the new segment contains RISC
code or data. If so, then the processor will use a RISC
instruction decoder rather than the CISC instruction decoder
when executing instructions from the new segment. Any
type of inter-segment transfer of control will force the
processor to check the new segment descriptor to determine
which instruction set to decode. Operating system calls from
user code will cause an inter-segment jump, whether a
software or hardware interrupt is used, or if a far jump
directly to the address of the service routine is employed.
The present invention will operate properly, checking the
instruction set for the new segment, as long as the operating
system is invoked by an inter-segment control transfer.

Great flexibility is provided by the present invention. The
operating system no longer must be written in a single
instruction set. An x86 operating system such as DOSTM or
WindowsTM may be re-written entirely in PowerPCTM RISC
code, yet still execute x86 programs. The entire operating
system does not have to be converted to RISC code however.
Parts of the operating system may be re-written while other
parts may be left in the original x86 code. While RISC code
may have a higher performance for most functions, some
functions may have a higher performance in the CISC code,
especially if a complex CISC instruction is able to perform
the function efficiently. Thus the operating system may be
optimized using either of two instruction sets. Additionally,
user applications may also be written in either or both
instruction sets.
PROTECTION MECHANISMS
The segment descriptors are stored in memory in tables.

For the x86 architecture, a global descriptor table contains
segment descriptors that are available to all tasks and users
in a system. Each task or user will generally have its own
local descriptor table storing segment descriptors for its own
segments. Thus one user's segments are protected from
another user because his segment descriptors are stored in
his own local table. System descriptors are located in the
global table, while user code, data, and stack segment

O

15

20

25

30

35

40

45

50

55

60

65

10
descriptors are usually located in a user's local descriptor
table. The interrupt table is usually shared by all users, and
its entries are similar to segment descriptors. Rather than
storing a segment base address and a limit, the interrupt
descriptors contain an identifier to select a new segment, and
an offset to specify a starting address to jump to within that
segment.

Using the present invention, RISC code can reside within
a CISC segment. The CISC architecture is extended to
provide for segments that can hold RISC code rather than
just CISC code. These new RISC code segments have
descriptors that are almost identical to the CISC segment
descriptors, and therefore these RISC descriptors may reside
in the CISC descriptor tables. The global descriptor table in
particular may have CISC code segment descriptors for parts
of the operating system that are written in x86 CISC code,
while also having RISC code segment descriptors for the
parts of the operating system that are written in RISC code.
When control is passed to a new code segment, the

segment descriptor is fetched from the global or local
descriptor table, and protection checks are performed as
usual. The present bit stored in the segment descriptor is
examined, and an error is signalled if the segment is not
present in memory. The type of the segment is checked, and
an error is signalled if the segment is not a code segment.
The privilege level in the descriptor is examined and a
segment error is signaled if the privilege rules are violated.
These protection checks are done without regard to the type
of code residing in the segment, be it RISC or CISC.

Referring to FIG. 5, if the protection checks pass, then
control is transferred to the new segment by loading the new
segment base address into the processor's code segment
register 10, and fetching the next instruction from the
address pointed to by the instruction pointer 64 (IP). Before
this instruction is decoded, the segment register 10 is also
loaded with the instruction set type bit 21, from the segment
descriptor. If the instruction set type bit 21 indicates that
RISC code is to be decoded, then the RISC instruction
decode unit is enabled and its output selected by mux 46 to
be sent to the execute unit 48. If the instruction set type bit
21 indicates that CISC code is to be decoded, then the CISC
instruction decode unit is enabled and its output selected by
mux 46 to be sent to the execute unit 48. Mode control 42
copies the instruction set type bit 21 from line 12 to the
RISC/CISC bit in mode register 68.
CPU HARDWARE
The next pages provide further background on the pro

cessor hardware used to implement a dual-instruction set
processor. The present application is a Continuation-in-Part
of the parent copending application for a "Dual-Instruction
Set Architecture CPU with Hidden Software Emulation
Mode", filed Jan. 11, 1994, U.S. Ser. No. 08/179,926, having
a common inventor and assigned to the same assignee as the
present application.

FIG. 5 shows a simplified block diagram of a CPU that
can execute both RISC and CISC instructions. Instruction
Pointer 64 indicates the instruction to be decoded in instruc
tion fetch unit 62. This instruction is sent to Instruction
Decode (ID) 66. Instruction decode 66 is composed of three
sub-blocks, one for decoding CISC instructions, another for
decoding RISC instructions, and a third sub-block for
decoding extended RISC instructions for emulation mode.
The extended instructions are at the highest privilege level,
higher than even the operating systems that may be running
under RISC of CISC modes. These extended instructions
offer access to all the system resources, including mode
register 68. Mode register 68 contains bits to indicate the

5,481,684
11

current operating mode of the CPU. One bit selects between
the RISC and CISC user modes, while another bit enables
the extended RISC instructions for emulation mode.

Instruction decode 66 is a partial instruction decode unit,
in that it fully decodes only about 50% of the x86 CISC
instructions, and about 85% of the PowerPCTM RISC
instructions. Several well-known implementations are pos
sible for instruction decode 66. For example, random logic
may be used to decode the instruction set defined by an
opcode map such as Tables 2 and 3. Opcode maps in Tables
2 and 3 are similar to logic truth tables in that they fully
specify the logic equations needed to decode the instruction
set. Instructions that are not fully decoded are not directly
supported by hardware, and signal an "unknown opcode' on
line 70 to mode control 42, which causes emulation mode to
be entered.
The same opcode may map to different operations or

instructions in the two instruction sets, requiring separate
decode units for each instruction set. Since emulation code
runs a superset of the RISC code, additional logic to decode
these extended instructions is provided with the RISC
decode block. The extended emulation mode instructions are
enabled by enable block 44, which is controlled by the
emulation mode bit in the mode register 68. Multiplexer or
Mux 46 selects the decoded instruction from either the RISC
or the CISC decode sub-block. Mux 46 is controlled by the
RISC/CISC mode control bit in mode register 68. When
emulation mode is entered, the RISC/CISC bit must be set
to the RISC setting and the emulation mode bit enabled,
because RISC instructions may also be executed by the
emulation code.
The decoded instruction is passed from mux 46 to execute

unit 48, which can perform arithmetic functions and address
generation. General-purpose registers 50 supply operands to
the execute unit 48. Since a full segmentation unit is not
provided, segment addition must be performed by the
execute unit when needed as part of normal address gen
eration. Limit checking is provided by hardware associated
with the TLB in conjunction with the emulation driver.

Execute unit 48 is designed to execute the simpler CISC
and RISC instructions, and thus has reduced complexity
relative to traditional execute units on CISC and even RISC
CPU's. Since only simple instructions are directly sup
ported, the unit can be made to operate at higher speed than
if all instructions were supported. Microcode can be mini
mized or even eliminated because complex instructions are
supported by algorithms stored in emulation memory. These
algorithms are not merely microcode stored off chip, which
would require much more memory, but are higher-level
routines composed of RISC instructions and extended
instructions.
Any address generated by execute unit 48 is sent to the

TLB 52, which performs an associative search on the input
virtual address and translates it to a physical address output
on bus 54. The page or upper address is from the TLB and
the offset or lower address is bypassed around the TLB.TLB
52 can translate virtual addresses from the execute unit 48 to
physical addresses if segmentation is disabled, or translate a
linear address generated by addition in the address genera
tion unit to a physical address. If the segment begins or ends
on a page, then special hardware is required to specify that
emulation mode should be entered if the address is close to
the segment boundary, or within the physical page but
outside the segment.

If the translation is not present in the TLB, a miss is
signaled which causes emulation mode to be entered. Emu
lation mode is always used to load the TLB, allowing the

O

15

20

25

30

12
emulation driver the highest level of control over address
mapping and translation. Mode control 42 causes emulation
mode to be entered whenever a miss is signaled from TLB
52, or an unknown opcode is detected by instruction decode
66. Normal exceptions, interrupts, and traps from the
execute unit and other units also cause emulation mode to be
entered, giving great flexibility in system design. Mode
control 42 sets and clears the RISC/CISC and emulation
mode control bits in mode register 68. When entry to
emulation mode is requested, entry point block 56 generates
the proper entry point vector or address in the emulation
portion of memory, and loads this address into the instruc
tion pointer 64. Thus the CPU will begin fetching and
executing instructions at the specified entry point, where the
emulation driver contains a routine to handle the exception,
TLB miss, or to emulate the unknown instruction. Instruc
tion decode 66 can provide the opcode itself and other fields
of the instruction to the entry point logic, to allow the entry
point to be more fully specified. Thus one entry point could
be defined for a REP MOVS with a byte operand while
another entry point is defined for a REP MOVS instruction
with a long-word operand. Table 2 shows the entry points
from CISC mode. For example, the REP MOVS byte
instruction enters the emulation code at A4 hex, while REP
MOVS longword enters at A5 hex. A TLB miss with
segment 0 enters at 18 hex, while a far RETurn in x86 real
mode enters at CA hex.

If the CISC user program executes an instruction to
enable or disable translation and the TLB, the instruction
may be detected by the instruction decode 66, causing an
unknown instruction to be signaled over line 70 to mode
control 42, causing emulation mode to be entered. Execute
unit 48 may also detect an attempt to enable or disable the
TLB, and signal mode control 42 by asserting TLB enable

35

40

45

50

55

60

65

detect 49. TLB enable detect 49 does not enable or disable
the TLB as is does for a prior-art CISC CPU; instead it
causes emulation mode to be entered, which will emulate the
effect the instruction would have had. However, the TLB is
not disabled. Thus emulation mode has complete control
Over the TLB.
RISC INSTRUCTION DECODE
The RISC sub-block of instruction decode 66 decodes the

PowerPCTMRISC instruction set. All instructions are 32 bits
in size, and some require two levels of instruction decoding.
The first level determines the basic type of instruction and is
encoded in the 6 most significant bits. Table 3 shows the 64
possible basic or primary opcode types. For example,
001110 binary (OE hex) is ADDI-add with an immediate
operand, while 100100 (24 hex) is STW-store word. The
CPU executes the 45 unshaded opcodes directly in hard
ware. The fifteen darkly shaded opcodes, such as 000000,
are currently undefined by the PowerPCTM architecture.
Undefined opcodes force the CPU into emulation mode,
where the emulation driver executes the appropriate error
routine. Should instructions later be defined for these
opcodes, an emulator routine to support the functionality of
the instruction could be written and added to the emulator
code. Thus the CPU may be upgraded to support future
enhancements to the PowerPCTM instruction set. It is pos
sible that the CPU could be field-upgradable by copying into
emulation memory a diskette having the new emulation
routine.
The second level of instruction decoding is necessary for

the remaining four lightly shaded opcodes of Table 3.
Another 12-bit field in the instruction word provides the
extended opcode. Thus one primary opcode could support
up to 4096 extended opcodes. Primary opcode 010011,

5,481,684
13

labeled "GRP A' in Table 3, contains instructions which
operate on the condition code register, while groups C and
D (opcodes 111011 and 111111 respectively) contain float
ing point operations. Group B (opcode 011111) contains an
additional version of most of the primary opcode instruc
tions, but without the displacement or immediate operand
fields. Most group B and many instructions from groups A,
C, and D are directly supported by the CPU's hardware, and
the RISC instruction decoder thus supports some decoding
of the 12-bit second level field. In the appendix is a list of
the PowerPCTM instruction set, showing the primary and
extended opcodes, and if the instruction is supported directly
in hardware or emulated in emulation mode, as is, for
example, opcode 2E, load multiple word.
EXTENDED INSTRUCTIONS FOR EMULATION
MODE

Extended instructions for controlling the CPU's hardware
are added to the RISC instruction set by using undefined
opcodes, such as those indicated by the darkly shaded boxes
in Table 3. Thus additional logic may be added to the RISC
instruction decode unit to support these additional instruc
tions. However, user RISC programs must not be allowed to
use these extended instructions. Therefore, the decoding of
these extended instructions can be disabled for RISC user
mode, and only enabled for emulation mode.

Extended instructions include instructions to control the
translation-lookaside buffer or TLB. The TLB may only be
loaded or modified by these extended instructions which are
only available when in emulation mode. Thus the emulation
mode drivers have complete control over address mapping
and translation in the system. This allows the emulation
driver to set aside an area of memory for its own use, and to
prevent user programs from accessing or modifying this area
of memory. Because all memory references in user modes
are routed through the TLB, which is only controllable by
the emulation mode driver, the emulation mode acts as an
additional layer of software between the user mode pro
grams and operating systems, and the actual system memory
and I/O. Thus the emulation driver can create an area of
memory hidden from the user mode programs, and can
locate its drivers and emulation routines in this hidden area
of memory.
CISC INSTRUCTION DECODE
CISC instructions can range in size from 8 bits (one byte)

to 15 bytes. The primary x86 opcode, is decoded by the
instruction decode 66 of FIG. 5. About 50% of the x86
instructions that can be executed by Intel's 80386 CPU are
executed directly by the dual-instruction set CPU. Table 4
shows a primary opcode decode map for the x86 instruction
set. Unshaded opcodes are directly supported in hardware,

O

15

20

25

30

35

40

45

14
such as 03 hex, ADD rv for a long operand. This same
opcode, 03 hex, corresponds to a completely different
instruction in the RISC instruction set. In CISC 03 hex is an
addition operation, while in RISC 03 hex is TWI-trap word
immediate, a control transfer instruction. Thus two separate
decode blocks are necessary for the two separate instruction
SetS.
A comparison of the opcode decoding of Table 3 for the

RISC instruction set with Table 4 for the CISC instruction
set shows that the two sets have independent encoding of
operations to opcodes. While both sets have ADD opera
tions, the binary opcode number which encodes the ADD
operation is different for the two instruction sets. In fact, the
size and location of the opcode field in the instruction word
is also different for the two instruction sets.

Darkly shaded opcodes in Table 4 are not supported
directly by hardware and cause an unknown or unsupported
opcode to be signaled over line 70 of FIG. 5. This causes
emulation mode to be entered, and the opcode is used to
select the proper entry point in the emulation memory. By
careful coding of the emulation routine, performance deg
radation can be kept to a minimum. Lightly shaded opcodes
in Table 4 are normally supported directly by the CPU, but
not when preceded by a repeat prefix (opcode F2 or F3).
ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example, while the preferred embodiment has
been described as having two instruction sets, multiple
instruction sets could be decoded and defined in the segment
descriptors. The present invention is not limited to x86 CISC
and PowerPCTM RISC instruction sets, but may be extended
to instruction sets other than x86 and PowerPCTM and other
types of instruction sets besides RISC and CISC. While the
present invention has been described using a preferred
embodiment where a user program written in CISC code
makes a call to an operating system in RISC code, the call
from the user program could also be to another part of the
user program that is written in RISC code. Thus a large user
application could make use of the present invention by
having some parts written in CISC code while other parts are
written in RISC code. The parts written in RISC code might
be speed-critical portions of the large user application.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

5,481,684
19 20

TABLE 3

PowerPCTM RISC Opcodes
PowerPC
primary 5
opcode XXX000 XXX00 XXX00 XXX011 XXX100 XXX101 XXX110 XXX111

000XXX TWI ... : : MULI
O01XXX SUBFC CMPLI CMPI ADDIC ADDC. ADDI. ADDIS

010XXX BCx SC Bx orp A RLWMIX RLWINMx RLWNMx
Condition :::::::::::::::::::::::::::

register
instructions

O1XXX OR ORIS XORI XORS ANDI. ANDS. :::::::: GRPB

15 Misc.
:::::::::::::::::::: Instructions

100XXX LWZ LWZU LBZ LBZU STW STWU STB STBU
101XXX LHZ LHZU LHA LHAU STH STHU LMW STMW
10XXX LFS LFSU LFD LFDU STFS STFSU STFD STFDU
11XXX 3:3::::::::::::::::::::::: - - - , , , , ::::::: : ::::::::::::: ::::::::::::: GRPD

GRPC :20
FP operate 3. FP operate

25

30

35

40

45

50

55

60

65

5,481,684
23

Appendix
PowerPCTM RISC Instruction Set

Primary Extend. How
opcode opcode Mnemonic Instruction handled Units

20 lwz. Load word and zero Hardware IUO
2 lwzu update IUO
1F 17 lwzX indexed UO
1F 37 lwzux indexed update UO1
24 StW Store word Hardware IUO
25 StWi update IUO1
1F 97 stWX indexed U0
1F B7 StWX indexed update IUO1
28 h2. Load halfword and Zero Hardware TUO
29 hzu update U01
1F 17 hzx indexed UO
1F 37 hzux indexed update UO1
2A ha Load halfword algebraic UO
2B hau update UO1
1F 157 hax indexed TUO
1F 177 haux indexed update UO1
2C sth Store halfword Hardware UO
2D sthu update UOl
1F 197 sthk indexed UO
1F 1BT sthux indexed update UO1
22 bz Load byte and zero Hardware U0
23 lbzu update UO
1F 57 lbZx indexed UO
1F 77 lbzux indexed update UO1
26 stb Store byte Hardware IUO
27 stbu update IUO1
1F D7 stbx indexed IUO
1F F7 stbux indexed update IUO1
30 lfs Load F.P. single Hardware IUO
31 1fsu. precision IUOI
1F 217 lfsx update IUO
1F 237 lfsux indexed IUO

indexed update
32 lfd Load F.P. double Hardware IUO
33 lfdu precision IUO1
F 257 lfdx update IUO
1F 277 lfdux indexed IUO1

indexed update
34 stfs Store FP single Hardware IUO
35 stfsu precision IUO1
F 297 stfsX update IUO
F 2BT stfsux indexed FUO1

indexed update
36 stf Store FP double Hardware IUO
37 stfolu precision UO1
F 2D7 stfix update IUO
1F 2F7 stflux indexed UO1

indexed update
2E imw Load multiple word Emulate TUO.R.

BU
2F Staw Store multiple word Emulate O1&

B
F 216 wbrx Load word byte-reverse Hardware IUO

indexed
F 296 stwbrx Store word byte-reverse Hardware IUO

indexed
F 36 hbrx Load halfword byte- Hardware UO

reverse indexed
F 396 stbrx Store halfword byte- Hardware IUO

reverse indexed
F 14 lwarx Load word and reserve EO:

indexed

1F 96 StWCX. Store word conditional
indexed

Primary Extend. How
opcode opcode Mnemonic 1E handled Units

Logical and Shift Instructions

1F 1C andx AND Hardware IU1
1C andi.

24

5,481,684
25

Appendix-continued
PowerPCTM RISC Instruction Set

1D andis.
F 3C andcx AND with complement Hardware IU1
F 7C OX NOR Hareware IUl
1F 11C eqvX Equivalent Hardware IU1
1F 13C XOX XOR Hardware IU1
1A xori
1B xoris
1F 19C OCX OR with complement Hardware IU1
1F BC OX OR Hardware U1
18 ori
19 oris
1F 1DC nandx NAND Hardware U1
14 rlwinnix Rotate left word immed. Hardware IU

then AND with mask
insert

5 rlwinmx Rotate left word immed. Hardware IUl
then AND with mask

17 rlwinmx Rotate left word then Hardware IU
AND with mask

F 18 slwy Shift left word Hardware IU
F 218 SWX Shift right word Hardware IU
F 318 SaWX Shift right algebraic word Hardware IU1
1F 338 srawix Shift right algebraic word Hardware IU1

immediate
1F 1A cntlzwx Count leading zeros word Hardware IU1
1F 39A extshx Extend sign halfword Hardware U1
1F 3BA extsbx Extend sign byte Hardware IU1

Primary Extend. How
opcode opcode Mnemonic Instruction handled Units

Algebraic instructions

E addi. ADD immediate Hardware IU1
C addic carrying
D addic. carrying record
F addis shifted
1F 10A addx ADD Hardware IU1
F A addicx carrying
F 8A addex extended
F CA addmex to minus one extended
F EA addzex to zero extended
8 subfic SUB immediate carrying Hardware IU1
1F 28 subfx SUB Hardware IU1
1F 8 subfcx carrying
1F 88 subfex extended
1F E8 subfmex to minus one extended
1F C8 subfaex to zero extended
1F 68 negx Negate Hardware U1
B cmpi Compare immediate Hardware U1
A. cmpli logical
1F O cmp Compare Hardware IU1
1F 20 cmpl logical

Control transfer instructions

12 bx Branch Hardware BU
10 bcx Branch conditional Hareware BU
1F 4 tw Trap word Hardware Ul
3 twi immediate
13 10 bcctrx Branch cond. to count Hardware BU

reg.
13 20 bclinx Branch cond. to link reg. Hardware BU
11 1. System call Hardware BU

Multiply and Divide instructions

1F EB mulx Multiply low Hardware IUO1
7 mulli immediate
1F 4B mulhwx Multiply high Hardware IUO1
1F B mulhwux unsigned
1F 1CB divwx Divide word Hardware IUO1
F 1EB divwux unsigned

String instructions
1F 215 iswx Load string word

indexed

26

F

13
3
13

13
13
13
13
13
13
F
1F
3F

F
3F
3F
3F

3F
3F

13

13

F

F

F

255

295

21
81

C1
E1
101
121
1A1
1C
90
200
40

13
26
46
86

247
2C7

32

96

253
293

53

92

132

13

133

193

153

27

Appendix-continued
PowerPCTM RISC Instruction Set

lswi Load string word
immediate

stSWX Store string word
indexed

stswi Store string word
immediate

Condition register instructions

mcrif Move CR field
CIO CR NOR
crandc CRAND with

complement

crnand CRNAND
crand CRAND
creqv CR Equivalent
COC CR OR with complement
cro CROR
mtcrf Move to CR fields

C Move to CR from XER
incrfs Move to CR from

FPSCR
Infor Move form CR field
mtfsbx Move to FPSCR bit 1
mtfsbOx Move to FPSCR bit 0
Intfisfix Move to FPSCR

immediate
mffsX Move from FPSCR
mtfsfx Move to FPSCR

Privileged instructions

rfi Return from interrupt

isync Instruction synchronize

tS Move to segment register
mtsrin indirect

mfsr Move from segment
mfsrin register

indirect

nfmsr Move from machine state
register

ints Move to machine state
register

tlbie TLB invalidate entry

sibia SLB invalidate all

slbia SLB invalidate entry

slbiex SLB invalidate by index

mftb Move from time base

mftbu Move from time base
upper

mttb Move to time base

mttbu. Move to time base upper

mfspr Move from special
purpose register

mtspr Move to special purpose
register

5,481,684

Hardware
Hardware
Hardware

Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware
Hardware

Hardware
Hardware
Hardware
Hardware

Hardware
Hardware

28

5,481,684
29

Appendix-continued
PowerPCTM RSC Instruction Set

Other user-mode instructions

F 36 dcbst Data cache block store

F 56 dcbf Data cache block flush

1F F6 dcbtst Data cache block touch
for store

1F 16 dcbt Data cache block touch Emulated 0;&

BU
F 1D6 dcbi Data cache block Emulated IUO &

invalidate BU

1F 3F6 dcbz Data cache block zero Emulated IUO &

BU
1F 3D6 icbi Instruction cache block Emulated: U01 &

invalidate . . . BU.
1F 356 eieio Enforce in-order I/O Emulated IUO &

execution : BU

1F 256 sync Synchronize Emulated. IUO &:
. BU

1F 136 eciwx External control input Emulated IUO3&
word indexed BU.

1F 1B6 eCOWX External control output Emulated IUO&:
word indexed -

Other instructions

1F 73 mfpmr Move from program
mode register

1F B2 mtpmr Move to program mode
register

Floating point instructions

3B 12 fivsx FPSP Divide Hardware FU
3B 14 fsubsx FPSP Subtract Hardware FU
3B 15 faddsx FPSPAdd Hardware FU
3B 16 firsqrtsx FPSP Square root not impl. 0.

st
3B 19 frmulsx FPSP Multiply Hardware FU
3B 1C finsubsx FPSP Multiply-Subtract Hardware FU
3B 1D frmaddsx FPSP Multiply-Add Hardware FU
3B E finimsubsx FPSP Neg-Mult-Subtract Hardware FU
3B F fnmaddsx FPSP Net-Mult-Add Hardware FU
3F 12 fodivx FPDP Divide Hardware FU
3F 14 fsubx FPDP Subtract Hardware FU
3F 15 faddx. FPDPAdd Hardware FU
3F 16 fsqrtx FPDP Square root not impl; U0:8:

BU:
3F 19 frmulx FPDP Multiply Hardware FU
3F 1C fmsubx FPDP Multiply-Subtract Hardware FU
3F 1D fmaddx FPDP Multiply-Add Hardware FU
3F E finimsubx FPDP Neg-Mult-Subtract Hardware FU
3F F fnmaddx FPDP Net-Mult-Add Hardware FU
3B 18 fresx FPSP Reciprocal not impl. EU01 &:

3F O fcmpu FP Compare unordered Hardware FU
3F C firspx FP Round to SP Hardware FU
3F E fictiwx FP Convert to integer Hardware FU

word
3F F fetiwzx FP Convert to integer Hardware FU

word and round toward
Zero

3F 17 fsex FP Select not impl. U0:8:
---. BU :

3F 1A frsqrtex RP Reciprocal square
root estimate -

3F 20 fcmpo FP Compare ordered Hardware FU

30

5,481,684
31

Appendix-continued

32

PowerPCTM RISC Instruction Set

3F 28 fnegx FP Negate Hardware
3F 48 frmrx FP Move register Hardware
3F 108 finabsx FP Negative absolute Hardware

value
3F 47 fabsx FPAbsolute value Hardware

10

We claim:
1. A method for emulating calls from a user program to an

operating system, said method comprising:
executing a plurality of user instructions from said user

program, said user instructions belonging to a first
instruction set;

decoding a call instruction in said user program, said call
instruction calling a service routine in an operating
system, wherein said call instruction in said user pro
gram is a far jump instruction;

loading a pointer to a code segment, said code segment
containing said service routine in said operating sys
tem, said pointer having an instruction set indicating
means for indicating an instruction set for said service
routine;

executing service routine instructions in said code seg
ment, decoding service routine instructions with a first
instruction decoder when said instruction set indicating
means indicates said first instruction set, decoding
service routine instructions with a second instruction
decoder when said instruction set indicating means
indicates a second instruction set, said first instruction
decoder for decoding only a portion of said first instruc
tion set;

returning control to said user program when a return
instruction is executed in said service routine;

whereby said user program containing instructions in said
first instruction set calls said service routine in said operat
ing system, said service routine having instructions from
said second instruction set, said pointer to said code segment
indicating if said service routine contains instructions from
said second instruction set or said first instruction set.

2. The method of claim 1 wherein said operating system
emulates the DOSTM operating system.

3. The method of claim 1 wherein said operating system
emulates the WINDOWSTM operating system.

4. The method of claim 1 wherein said first instruction set
is an x86 CISC instruction set and said second instruction set
is a RISC instruction set.

15

20

25

30

35

40

45

5. The method of claim 1 wherein said first instruction set
is an x86 CISC instruction set and said second instruction set
is the PowerPCTM RISC instruction Set.

6. A method for emulating calls within a user program,
said method comprising:

executing a plurality of user instructions from said user
program, said user instructions belonging to a first
instruction set;

decoding a call instruction in said user program, said call
instruction calling a service routine in said user pro
gram, wherein said call instruction in said user program
is a far jump instruction;

loading a pointer to a code segment, said code segment
containing said service routine in said user program,
said pointer having an instruction set indicating means
for indicating an instruction set for said service routine;

executing service routine instructions in said code seg
ment, decoding service routine instructions with a first
instruction decoder when said instruction set indicating
means indicates said first instruction set, decoding
service routine instructions with a second instruction
decoder when said instruction set indicating means
indicates a second instruction set, said first instruction
decoder for decoding only a portion of said first instruc
tion set;

returning control to said user program when a return
instruction is executed in said service routine;

whereby said user program containing instructions in said
first instruction set calls said service routine in said user
program, said service routine having instructions from said
second instruction set, said pointer to said code segment
indicating if said service routine contains instructions from
said second instruction set or said first instruction set.

