

SpDE

5.6.1

242

Design Considerations: Speeding Up High-Fanout Nets

This section describes several techniques for speeding up the performance of
designs created by the Warp system's SpDE tools. For more information, refer to
Chapter 9, "Synthesis."

For high-fanout, timing-critical nets, designers should consider improving design
performance using buffering techniques. In some cases, solutions such as
paralleling or pipelining can be used.

Five techniques that can be used to improve circuit performance are described on
the following pages:

• double buffering

• split buffering

• selecti ve buffering

• paralleling

• pipelining

Double Buffering

The pASIC architecture allows two sources to drive a net in specific cases. This is
called double buffering. Using two gates to drive a high-fanout net speeds up the
performance of the net dramatically.

Figure 5-26 is an example of double buffering in a schematic.

Warp User's Guide

INOr-------------.-~_
IN1r-------~~~

IN2 >----~...._t_+_--'":~ KULTI-BUFIl'E:R
=TRUE

INV

INV

Figure 5-26 Double buffering example

SpDE

OUT 0

OUT1

OUT 2

OUT 3

OUT4

OUTS

OUT'

OUT 7

Double buffering is legal as long as the two gates driving the high-fanout net are
identical gates, with the same nets on the inputs and output. Each gate must fit
into an AND-fragment (P Afrag_a library element). Double buffering is an
excellent performance solution, and offers the best skew and delay characteristics
of all buffering solutions for fanouts of 8 to 16. An example of double buffering in
a VHDL source file is the following:

Resolution function for wired-or. Used to create
-- legal VBDL for double-buffering techniques
-- employed for pasic.

use work.resolutionpkg.all;
use work.GATESPKG.all;
use work.cypress.all;
use work.rtlpkg.all;

Warp User's Guide 243

SpDE

244

entity DOUBLEBUF is
port (INO: IN bit;

IN1: IN bit;
IN2: IN bit;

OUT7: I NOUT bit;
OUT6: INOUT bit;
OUTS: INOUT bit;
OUT4: INOUT bit;
OUT3: I NOUT bit;
OUT2: I NOUT bit;
OUT1: I NOUT bit;
OUTO: INOUT bit);

end DOUBLEBOF;

architecture archDOUBLEBUF of DOUBLEBUF is
-- net to be resolved
signal multiple_driver: multi_buffer bit;

begin
multiple_driver <= INO AND INl AND IN2;
multiple_driver <= INO AND INl AND IN2;
OUTO <= NOT multiple_driver;
OUTl <= NOT multiple_driver;
OUT2 <= NOT multiple_driver;
OUT3 <= NOT multiple_driver;
OUT4 <= NOT multiple_driver;
OUTS <= NOT multiple_driver;
OUT6 <= NOT multiple_driver;
OUT7 <= NOT multiple_driver;

end archDOUBLEBUF;

driver #1
driver #2

~----------------
Note - Double buffering on an 8x12 (1000 usable gates) or 12x16
(2000 usable gates) device requires the use of express wires.
These devices have limited express wire resources, so only a few
double buffers should be used. Refer to the Section 5.4.4,
"Router," for more information.

Warp User's Guide

SpOE

5.6.2 Split Buffering

Split buffering breaks a wide-fanout net into two or more nets.

Figure 5-27 is an example of split buffering. Without the buffers, the DFF drives a
fanout of 8. As configured in the illustration, the DFF drives a fanout of 2, and
each buffer drives a fanout of 4.

...
DI.ITO

DI.IT1

DI.ITl:

IN ...
..-.

DI.I HI

DFF

t:u: D II

01.1 YoI.

IN ...

DI.ITri

OI.lTS
F

DI.IT7
-'

Figure 5-27 Circuit demonstrating split buffering

~----------------
Note - Adding buffers introduces a logic cell delay to the net.
This added delay must be balanced against the gain in reducing
the fanout. Simple split buffering (as demonstrated in Figure 5-
27) is generally employed only with fanouts of 16 or greater.

Warp User's Guide 245

SpDE

m 5.6.3

246

Selective Buffering

Selective buffering is the selective use of buffers in situations where a high-fanout
net has a small number of critical destinations and a large number of less-critical
ones.

Figure 5-28 is an example of selective buffering. The DFF drives a fanout of 8, but
only one of the destinations is in the critical path of the circuit. Inserting a single
buffer between the DFF output and the 7 non-critical destinations restructures the
circuit, so that the DFF drives a fanout of two without adding any logic cell delay
in the critical path.

IN ...

[lUT[I

...
[lUTi

[lUTZ

[lUT~

OF'F'

c u: F [I II

[lUfoI.

IN ...

[lUU

[I U TIi
F

[lI.IT 7

Figure 5-28 Circuit demonstrating selective buffering

Warp User's Guide

5.6.4

~
Hint - Buffers should be introduced with care and skill. Selective
buffering offers tremendous improvement in circumstances
where the circuit has a few dearly identifiable critical paths.

Paralleling

SpDE

Paralleling is a design technique that duplicates the logic driving a high-fanout
load to reduce the effective fanout. Duplicating the logic avoids the delay
introduced by adding buffers to the circuit.

Successful buffering must balance reduced fanout against the additional delay
that use of buffers causes. Paralleling is an alternative that does not introduce this
added delay.

aUTO

aUT:l

NY

au Till!

NY

IN 0
OUT]

IN:l
NY

IU no]

OUT .II

NY

OUTS

dUTS

dun
NY

Figure 5-29 Circuit demonstrating paralleling

Warp User's Guide 247

SpDE

5.6.5

248

Figure 5-29 is an example of paralleling. The AND gate has been duplicated, with
each of its inputs tied to the corresponding input on the "twin" gate. Each AND
gate drives a fanout of 8, effectively halving the fanout, without introducing the
added delay associated with buffering. By duplicating the AND gate, however,
the fanout on each of the input nets has been increased.

Paralleling is similar to double buffering, except that the outputs are not tied
together. Paralleling should be used instead of double buffering when:

• skew is not critical

• too many express wires have already been used for high-drive inputs or
double buffers (see the section on the Router)

• the logic to be replicated does not fit into an AND fragment of the larger
cell (no larger than a P Afrag_a library element)

Pipelining

Pipelining is the technique of inserting registers in long combinatorial paths,
effectively increasing the system clock rate.

Inserting registers in long combinatorial paths shortens the length of the critical
path and allows operations to be overlapped, increasing the system clock rate.
The pASIC architecture promotes pipelining, as each logic cell contains a D flip
flop. As a result, a design can be pipelined with little or no increase in the number
of logic cells used.

For more information on achieving high performance or high utilization in
designs, see Chapter 9, "Synthesis."

Warp User's Guide

Chapter 6
Nova

Nova

6.1 Introduction

Nova is Cypress Semiconductor Corporation's name for its JEDEC-based
functional simulator.

The Nova user interface provides an easy way to:

• specify JEDEC files to simulate

• read or write stimulus files

• convert files from .jed to ViewSim format

• edit input waveform traces

• simulate the behavior of a design

• alternate between various views (i.e., collections of signals) and specify
signals to be included in each view

• specify the length and resolution of a simulation

• specify segments, where initial conditions can be reapplied and edited in
order to compare results of differing initial conditions side-by-side

• other useful capabilities

This manual describes how to use Nova to simulate designs. It assumes
familiarity with common user interface operations for the computer, such as the
use of scroll bars, menu buttons, and opening and closing windows.

Advanced users may refer to Section 6.9, "Nova JEDEC Simulator Quick
Reference Sheet," for a brief overview of the major functionality.

6.2 Starting Nova

250

On Sun workstations, typing nova on the command line brings up the Nova
window. On PCs and compatibles, double-clicking on the Nova icon in the
Cypress group window brings up the Nova window.

By default, Nova comes up ready to run on a color screen.

To start Nova on a monochrome Sun workstation, type nova -m on the
command line.

Warp User's Guide

6.3

Nova

To set Nova to come up in monochrome mode when running Windows on an
IBM PC or compatible computer, do the following:

• Select the Nova icon from the Warp R4 group window.

• Select Properties from the File menu.

• Edit the Command Line entry to include the -m option.

• Click OK.

The Nova Window

The Nova window (Figure 6-1) consists of a menu bar with several items across
the top; a column of buttons along the left side, listing pin and node numbers and
signal names; an area for displaying traces; and scroll bars across the bottom and
right sides.

Menu Bar

The menu items are File, Edit, Simulate, Views, and Options. Under each of these
items are menus for selecting related actions. The menus are ordered so that the
most common operation is at the top. The contents of each menu are described in
greater detail later in this chapter.

Only two menu items, Open and Exit, are enabled in the File menu when Nova
first opens. When the user opens a .jed file, the other menu items will be enabled.

Node Numbers, Signal Names

The left-hand side of the Nova window consists of a column of bu ttons,
displaying pin and node numbers and their associated signal names. A node is an
area of a circuit containing one or more points whose locations the user may wish
to trace. (For information about different values within a node, refer to
Section 6.5.4, "Nodes.")

To change the width of the buttons where signal names are displayed, use the
Signal Name Size item in the Options menu.

Warp User's Guide 251

Nova

Trace Area
The trace area displays the values of the nodes/ signals listed in the left-hand
column.

Figure 6-1 Main Nova Window

The window displays up to two measuring cursors, which allows the user to see
precisely the value(s) of several signals at a single time. To display the first cursor,
click at the bottom of the trace window. To display a second cursor, click at the
bottom of the trace window while pressing the Shift key.

To change the position of either cursor, click and hold on the cursor at the bottom
of the trace window, then drag the cursor to its new position. The cursor's
horizontal position in simulation tics is displayed next to each cursor.

Note that a simulation tic does not represent any set amount of real-time delay.
Instead, a simulation tic is simply a unit of simulation time.

6.4 The File Men u

252

The File Menu contains items related to opening JEDEC files for simulation,
reading and writing stimulus files, and saving output files in various formats.

The File menu (Figure 6-2) in the Nova dialog box contains the following items:

• Open ...

• Write Sim·(*.sim)

• Write Trace (*.psd)

• Read Stimulus File

Warp User's Guide

6.4.1

Nova

• Write JEDEC Vectors

• Write JEDEC File (*.jed)

• Disassemble to ViewSim Format (*.vhd)

• Exit

• About ...

The operations of each of these menu items are discussed in greater detail on the
next few pages.

Write JEDEC Vectors
Write JEDEC File (*.jed)
Disassemble to ViewSim format (*.vhd)

E~it

8bout...

Figure 6-2 Nova File Menu

Opening Files

The Open ... item in the File menu selects which .jed file to open and tells Nova
what device is targeted in simulation.

Selecting Open ... brings up the Open Files dialog box (Figure 6-3). The File Name
line specifies the names of files to view or to open in the Files window. By default,
this line reads I/*.jed."

Warp User's Guide 253

Nova

254

To open a file, the user can select a file from the list shown in the Files window, or
type the name of the file on the File name line. Selecting a .jed file and clicking on
Open closes the dialog box and, displays traces. (If a stimulus file of the form
filename.sim orfilename.stm exists, it is also read automatically.) Clicking on Cancel
closes the dialog box without opening a file.

The Select Device dialog box (Figure 6-4) comes up when the user clicks on Open in
the Open Files dialog box, and the file to be opened is a .jed file not created by
Warp. The Select Device dialog box maps a JEDEC file to a device.

Selecting a device with the wrong number of fuses brings up a message box
stating: "Wrong device type for this JEDEC - QF doesn't match." This indicates
that the number of fuses in the selected device does not match the number in the
JEDEC file.

~-----------------
Note - If Nova says that it cannot find file devices.dat,-check to
make sure that the CYPRESS_DIR environment variable is set
correctly. Nova uses this file to find the proper pin names and
numbers for each target device and package.

list Files of lJ'pe:

II r".:'

c:\w2tutor

IC.7c:\
I!t w2tutor
L:J Ic371
L:J sch
LJ S}lm

LJ wir
LJ work

Driyes:

IIiiii c: warp system II

Figure 6-3 Open Files Dialog Box

Warp User's Guide

6.4.2

C16L8
C16R4
C16R6
C16R8
C20V8
C16V8
C20G10
C20RA10
C22V10
C22VP10
C33l
C335
C346

Figure 6-4 Select Device
Dialog Box

Reading and Writing Stimulus Files

Nova

Write Sim and Write Trace save simulation data. Read Stimulus File reads data
stored by a previous Write Sim operation.

Write Sim saves the current simulation data to filename.sim, where filename is the
prefix of the file the user is simulating. If a .sim file already exists with this
filename, the new simulation data overwrites the old. The .sim file (see Figure 6-5)
can be re-read with the Read Stimulus File option.

Write Trace saves the trace information to filename. psd, where filename is the prefix
of the file being simulated. The .psd file (see Figure 6-6) provides a column
oriented, human-readable record of trace values during the simulation. Bus
values are not written to the file.

Warp User's Guide 255

Nova

256

Read Stimulus File reads simulation data from a .sim file. Because reading in the
simulation file may change some of the settings the user has set for the current
simulation, a message box is displayed, asking if the stimulus file should be read
in. A Yes reply reads in the .sim file. A No reply returns the user to the main Nova
window. The filename.sim file is automatic all y read when the filename.jed file is
opened.

1
e1 oelepi n1
F83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83EOF83E
00
000 0 000 0 000 0 0 000
000 0 0 0 0 0 0 0 0 0 0 000
000 0 0 0 0 0 0 0 0 0 0 000
9999
2
pin2
00
00
000 0 0 0 0 000 0 0 0 000
000 0 000 0 0 0 0 0 0 000
000 0 000 0 0 0 0 0 0 000
9999
3
nieke1_pin3
00FF8000
00
000 0 000 0 0 0 0 0 000 0
000 0 000 0 000 0 0 000
000 0 0 0 0 0 0 0 0 0 0 000
9999

Figure 6-5 Portion of .sim File

Warp User's Guide

6.4.3

6.4.4

000 0 L L L
1 OOOLLL
200 0 L L L
3 000 L L L
4 1 000 L L L
5 000 0 L L L
60000 L L L
70000 L L L
80100LLL
90100LLL

10 1 1 0 0 L L L
11 1 1 0 0 L L L
12 1 1 0 0 L L L
13 1 1 0 0 L L L
14 1 1 0 0 L L L
15 0 1 0 0 L L L
16 0 1 0 0 L L L
17 0 0 1 0 L L L
18 0 0 1 0 L L L
19 0 0 1 0 L L L
20 1 0 1 0 L L L
21 1 0 1 0 L L L
22 1 0 1 0 L L L
23 1 0 1 0 L L L
24 1 0 1 0 L L L
25 0 0 1 0 L L L

Figure 6-6 Portion
of .psd File

Writing JEDEC Vectors

Nova

Write lEVEC Vectors appends vector information to the JEDEC file. The vectors
can be used to test parts after they are programmed. If the JEDEC file already
contains vector information, the new vector information overwrites the old.

Converting Between File Formats

The File menu includes items that allow the user to convert vector information
into different file formats, depending on what he wants to do with it.

Figure 6-7 shows the various file types that can be input to or output from Warp,
Nova, or a device programmer.

Write lEVEC File (*.jed) writes out a JEDEC file from the data available to the
simulator. The dialog box options include instructions in the JEDEC file to blow
the security fuse when the device is programmed, or to write the JEDEC file using
a compressed "K-field" hexadecimal representation.

Warp User's Guide 257

Nova

258

Disassemble to ViewSim format (*. vhd) writes out a Viewlogic VHDL file which is
used to simulate the design in ViewSim. The file is created in the vhd.
subdirectory

WARP

DEVICE

PROGRAMMER

NOVA

Figure 6-7 Possible Data Paths and File Formats

Warp User's Guide

6.4.5 About and Exit

The File menu's About item displays some basic information about the Nova
simulator. The Exit item exits the simulator.

Nova

Besides displaying version information about the Nova simulator, the About
dialog box also includes a Help button. Clicking on Help brings up help about
Nova.

6.5 The Edit Menu

Use the items in the Edit Menu to modify trace information displayed on the
screen. With the Edit menu, the user can set the selected range of a trace; create
and delete view nodes; create, delete and edit buses; and change the bus radix.

Items in the Edit Menu (Figure 6-8) include the following:

• High, Low sets the selected trace or portion of a trace to lor 0,
respectively.

• Clock sets up repetitive pulses.

• Pulse sets up a single pulse.

• Node Defaults specifies the default source for the displayed value of a
node.

• Create View Node creates a new trace and selects the point within a node at
which the displayed value is measured.

• Delete View Node deletes traces from the simulation.

• Create Bus groups traces for display as a single entity called a bus, used
when thinking of groups of signals as a single value is more convenient.
Bus values are only displayed when a measuring cursor is present.

• Delete Bus un-defines a previously defined bus.

• Edit Bus adds or removes signals from a bus.

• Bus Radix specifies radix used to display a bus value.

Warp User's Guide 259

Nova

6.5.1

260

These items are described in greater detail on the following pages.

Node Defaults
Create ~iew Node
Delete View Node
Create flus
Delete Bys

BUli Radix

Figure 6-8 Nova Edit Menu

Setting Signals High or Low

With the Nova user interface, the user can easily set the value of all or a selected
portion of an input signal to high or low.

To set an entire input signal to high or low:

• Click on the button containing the name of the signal in the Nova
window to select it. On color monitors, the button changes color, and the
trace turns blue when selected. On monochrome monitors, the button
goes to inverse video, and the trace changes to a dotted line when
selected.

• Select High or Low from the Edit menu as desired, or type "1" or "D."

To set a portion of an input signal high or low (see Figure 6-9):

• De-select the signal.

• Click and hold the mouse button on the trace at the left edge of the
selected area.

• Drag the mouse to the right edge of the selected area.

• Then select High or Low from the Edit menu, as appropriate, or type "1" or
"D. "

Warp User's Guide

6.5.2

Nova

Both the left and middle buttons of a 3-button mouse perform the same action
when clicked to position an edge.

Figure 6-9 Setting a Portion of a Signal High or Low

Top: press and hold the mouse button at the left edge of the selected area. Middle:
drag to the right edge of the selected area, and release the mouse button. Bottom:
select High or Low from the Edit menu, or type "1" or "0" from the keyboard.

Setting Up Clock Signals (Repetitive Pulses)

The Clock item under the Edit menu allows the user to set up repetitive pulses on a
selected signal or portion thereof.

To set up a repetitive pulse or clock signal, select a signal or a portion of a signal,
then select the Clock item under the File menu. This brings up the Clock dialog box
(Figure 6-10), which allows the user to fill in various repetitive pulse parameters.

• Clock Period specifies the period of repetition for the pulse in simulator
tics.

• Clock Delay specifies the number of simulator tics to wait (beginning with
the left edge of the selected area) before starting the repetition. The
default is 0 tics.

• Clock High Time specifies the amount of time that the selected signal
should be set to 1 during each repetition. The default is 5.

• Start High and Start Low specify whether each repetition starts with the
signal set to 0 or 1.

• OK sets up the repetitive pulse.

• Cancel closes the Clock dialog box without affecting the trace.

Warp User's Guide 261

Nova

6.5.3

Clock Delay: ,1.-° ____ ----'

Clock High Time: '1.-'_0 ____ ---'

@ Start High

o Start Low

Figure 6-10 Clock Dialog Box

Setting Up Non-Repetitive Pulses

The Pulse item under the Edit menu allows the user to set up single pulses on a
selected signal or portion thereof.

To set up a single pulse on a signal, select a signal or a portion of a signal, then
select the Pulse item under the File menu. This brings up the Pulse dialog box
(Figure 6-11), which allows the user to fill in various pulse parameters.

• Pulse Duration specifies the length of the pulse, in simulator tics.

• Pulse Delay specifies the number of simulator tics to wait (starting from
the start of the simulation) before applying the pulse. The default is O.

• Start High and Start Low specify whether the pulse sets the signal to 0 or l.

• OK sets up the pulse.

• Cancel closes the Pulse dialog box without affecting the trace.

262 Warp User's Guide

6.5.4

Nova

Pulse Duration:
1
10

Pulse Delay:
1
0

@ Start High

o Start Low

Figure 6-11 Pulse Dialog Box

Nodes

A node is an area of a circuit containing one or more points at which the user may
wish to trace a signal. Nova allows the user to specify the exact point or points
within a node at which to trace signal values, to set the default value of a node,
and to force one or more positions in a node to known values.

To Nova, a node is:

• any input to an array

• any output from an array

• any pin on the device

• any other electrical position that needs to be modeled but does not meet
the first three criteria

For each node, the user can:

• create a view node, i.e., specify one or more positions within a node from
which to trace values

• specify the means by which a node is assigned its value

• force any position in a node to a known value (this is often useful for
multi-segment simulations)

Each of these capabilities is discussed in greater detail on the following pages.

Warp User's Guide 263

Ii

Nova

6.5.5 Selecting Node Points to View

Many nodes contain several points at which the user can trace simulation values.
Create View Node allows the user to select which of those points to view.

A view node allows the user to see what is happening at various points inside a
node. Selecting Create View Node brings up the Create View Node dialog box
(Figure 6-12), which allows the user to select points to view within a selected
node. To bring up this dialog box, the user must select a node with the current
view set to FULL. (See Section 6.7, "The Views Menu," for information about
changing views.)

The Create View Node dialog box displays the node name with the view node
name to be created directly below it. Nova creates the view node name by taking
the node number, followed by a '-' and an extension to represent the selected
signal to be displayed.

The view node points that can be displayed depend upon the selected node.
Examples of view node points that can be displayed include:

• Data from Array - This is the data at the output of an OR-X OR combination
of gates. Extension is "ardat."

• Out value before OE - This is the data on the output pin if the output enable
is asserted. This includes the output buffer inversion, if there is one.
Extension is lib _oe."

• OE Value - This is the state of the output enable. If high, OE is asserted so
the output is driven. Extension is "oe."

• Node Output - This is the data on the pin. This is the default view for
output nodes. Extension is "OUt."

264 Warp User's Guide

6.5.6

Node:

1123-ardat

1;1.1;;;1

1'!'I&~li"1

rSignalto be displayed is:------------,

@ Data from array

o Register value

o Node output

Figure 6-12 Create View Node Dialog Box

Nova

• Feedback at input - This is the data at the D input of the input register, if
there is one. If there is no input register, feedback at input and feedback
to array are identical. Extension is "fbkin."

• Feedback to array - This is the data that is being fed to the array. It differs
from feedback at input because it may be the other side of a register.
Extension is "fbk_ar."

Selecting OK closes the Create View Node dialog box and creates a view node,
displayed at the end of the node list. Selecting Cancel closes the Create View Node
dialog box without creating the view node.

To delete a view node, select the view node to delete, then select Delete View Node
from the Edit menu.

Setting Input Node Values

Node Defaults allows the user to specify the default source for the displayed value
of anode.

Selecting Node Defaults brings up the Node Defaults dialog box (Figure 6-13).

Use the Change Default Input window of the Node Defaults dialog box to specify the
source for the value of an input node. The current setting is shown highlighted
within this window.

Warp User's Guide 265

Nova

266

There are four possible settings for each input. They are:

• High (1): tie the signal to Vee

• Low (0): tie the signal to V ss (ground)

• Use Simulation Record: use the value(s) in the simulation record ,sim file)

• Other Node Record: tie the signal to another node. Enter the node number
on the line to the right of the Other Node Record button

Node: I;Il~!11111';;;:1

1111 •• lll!1
'-Change Default Input:-----------,

o High (1)

o Low (0)

@ Use Simulation Record

o Other Node Record L-lo __J

,-Jam Load:----------------,

o Force Node High (1)

@ Force Node Low (0)

o Output Reg High (1)

@ Output Reg Low (0)

o lnpul Reg High fI}

@ Input Reg Low (01

o 2nd Input Reg High Pl

@ 2nd Input Reg Low (01

Figure 6-13 Node Defaults Dialog Box

Warp User's Guide

6.5.7

6.5.8

Forcing Output Node Values

Node Defaults also allows the user to force the value of an output node at a
specified point.

Selecting Node Defaults brings up the Node Defaults dialog box (Figure 6-13).

Nova

The Jam Load window of the Node Defaults dialog box can be used to force an
output node to a specified value. Values of these nodes rarely need to be modified
for normal simulations; however, for multi-segment simulation (for long counters
and other long-period design) or if there are problems in Simulating the start-up
condition of a circuit, the values may need to be changed. The current setting is
shown highlighted.

Depending on the type of node, it may be possible to select from Force Node
High(l), Force Node Low(O), Output Reg High(l), Output Reg Low (0), Input Reg High
(1), Input Reg Low (0), 2nd Input Reg High (1), and 2nd Input Reg Low(O).

Working with Buses

At times, grouping several traces in a simulation and viewing them as a single
trace may be more convenient. This is possible with the Create Bus, Delete Bus, and
Edit Bus options in the Edit menu.

Selecting Create Bus brings up the Bus dialog box. This dialog box combines nodes
into a user-named bus. The View list in the dialog box contains the names of all
nodes in the current view. The Bus list holds the names of each node in the bus. A
bus may be made up of any number of nodes.

Selecting OK closes the Bus dialog box and creates a bus with the specified bus
name. Buses are placed at the top of the trace area. Selecting Cancel closes the Bus
dialog box without changing the trace area. It is not possible to input values to a
bus.

To add a node to the bus: select the node from the View list and select the Add»
button. Double-clicking on the node name also adds the selected node to the bus.
The new node is added below the selected nodes of the bus.

~ Note - Nodes can be added only to a bus in the current view.

Warp User's Guide 267

Nova

268

Clicking on the Add-by-Name button brings up a dialog box that asks the user to
specify the name(s) of signals to add to the bus. The use of wild card characters is
permitted. A I/?" matches a single character; a 1/*" matches any string of
characters. The construct name[m:n] denotes a range of signals, numbered from m
through n, beginning with the characters name. For example, I/input[O:3]" matches
signals inputO, inputl, input2, and input3.

To remove a node from the bus: Select the node to be removed and select the Cut
button. Double-clicking on the node name in the Bus list also removes the node
from the bus.

To change a node's position in the bus: Select the node, then click Cut. Select
another node, then click Paste. The node that was previously cut will be inserted
below the newly selected node.

To name the bus: Click on the line below the words Bus Name and enter the name
for the bus. If no name is provided, the bus is named generic bus.

To delete a bus: Select a bus trace by clicking on the bus name button or the bus
trace. After the bus is selected, selecting the Delete Bus item from the Edit menu
brings up a dialog box which can remove the bus from the trace area.

Edit Bus brings up the same Bus dialog box used for creating the bus. The bus
name line is filled in, and the nodes in the bus are displayed in the Bus list. Buses
can be added, removed, or have their names changed from this dialog box.

After all changes have been completed, selecting OK closes the bus dialog box and
applies the modifications to the selected bus. Selecting Cancel closes the dialog
box without updating the bus.

Bus Radix brings up a submenu that allows the user to choose how bus
information is displayed. The three choices are binary, octal and hexadecimal.
Hexadecimal is the default.

Warp User's Guide

Nova

6.6 The Simulate Menu

The Simulate Menu has only one menu item: Execute.

Selecting Execute from the Simulate Menu (Figure 6-14) simulates the design's
operation. The Nova screen is redrawn, and the resulting waveforms are
displayed.

Figure 6-14 Simulate Menu

6.7 The Views Menu

Items in the Views menu allow the user to select the views (i.e., groupings of
traces) in the trace area.

The Views menu (Figure 6-15) contains five items:

• Edit Views allows the user to create and edit views.

• Select View allows the user to select a view to display.

• Delete View allows the user to remove one or more views from the list.

• Zoom In (2X) multiplies the displayed timescale resolution factor by two.

• Zoom Out (1/2X) divides the displayed timescale resolution factor by two.

Each of these items is discussed in greater detail in the following pages.

Warp User's Guide 269

Nova

6.7.1

270

Figure 6-15 Views Menu

Editing Views

Edit Views allows the user to create new views and to add, remove, or exchange
traces in existing views.

Three views are automatically created with each .jed file: full, pins-only, and pins
& registers. The full view (default) lists all nodes in the design. This view cannot
be edited. The pins-only view contains only nodes that are attached to pins. The
pins & registers view contains all nodes attached to registers or pins.

Selecting Edit Views displays the Edit Views dialog box (Figure 6-16), used to edit
the current view. The view list on the left displays the FULL view, which contains
the default traces for all nodes. Use this list, along with appropriate buttons, to
add or remove traces from the view list on the right.

To create a new view: Click on New View. A name prompt will appear, which is
placed at the top of the right-hand view list.

To move between views: Click on Next View or Previous View.

Warp User's Guide

Nova

To add a trace to a view: Select one or more traces from the left (Full) view
window, then click Add». If a trace is also selected in the right window, the new
traces are inserted after the selection; otherwise, the new traces are added to the
end of the view.

To remove traces from a view: Select the traces in the right window, then click on
Cut.

View: FULL

0120
0123
0121
0125

13 elk
0122 empty_1
0124 empty_2

35 get_cola
11 get_diet
2 give_cola
3 give_diet

0117jed_nodel17
0118jed_node118
0119jed_nodel19
0149jed_node149
0150jed_node150
0159·ed node159

View: PINS and REGS

0120 bin_1_remainin!
0123 bin_1_remainin!
0121 bin 2 remainin!
0125 bin=2=remainin!

13 elk
01 22 empty_1
0124 empty_2

35 get_cola
11 get_diet
2 give_cola
3 give_diet

0117jed_node117
0118jed_nodel18

4 refill_bins
10 reset

Figure 6-16 Edit Views Dialog Box

To exchange (i.e., re-order) traces within a view: Select one or more traces from
the right view window, then click Cut. Then, select another trace from the right
view window and click Paste. The previously cut trace(s) are inserted after the
selected trace.

Warp User's Guide 271

Nova

272

Add-by-Name brings up a dialog box that asks the user to specify the name(s) of
traces to add. The use of wild card characters is permitted. A I/?" matches a single
character; a 1/*" matches any string of characters. The construct name[m:n] denotes
a range of Signals, numbered from m through n, beginning with the characters
name. For example,l/input[O:3]" matches signals inpu to, inpu tl, inpu t2, and
inpu t 3. The user can also use multiple expressions separated by spaces.

Deselect All unselects all selected traces in either window.

Selecting OK closes the Edit Views dialog box and updates the trace area to reflect
changes made to the view. Selecting Cancel closes the Edit Views dialog box
without making any changes to the view.

Selecting and Deleting Views

Select View allows the user to change the active view. Delete View allows the user
to remove a view from the list of available views.

Select View brings up the Select View dialog box (Figure 6-17). The View line gives
the name of the current view. To change the current view, select the desired view
from the list, then click OK or type a carriage return. Clicking Cancel closes the
Select View dialog box without affecting the active view.

Delete View also brings up the Select View dialog box. Select the view to delete
from the scrollable list. The FULL view may not be removed and is not included
in this list. Clicking OK or typing a carriage return applies the change to the list of
views. If the current active view is removed, the active view changes to FULL.
Delete View has no undo, so the user should be certain the view being deleted is
correct before clicking on OK or typing a carriage return. Cancel closes the Select
View dialog box without deleting the selected view.

Warp User's Guide

6.7.3

View: PINS and REGS

FULL
PINS ONLY
PINS and REGS

Figure 6-17 Select View
Dialog Box

Zoom In, Zoom Out

Nova

Zoom In doubles the time scale resolution of the trace window, i.e., by doubling
the number of pixels in the X-axis used to display one tic of simulation time. The
result is to /I zoom in" on the view of displayed traces.

Zoom Out does the reverse of Zoom In.

The resolution setting must be 1 or greater. The default is 5. Attempting to set the
time scale resolution lower than 1 has no effect.

6.8 The Options Menu

The Options Menu contains items that allow the user to specify the simulation
length, create or delete simulation segments, and specify the viewing resolution
of the trace area.

Warp User's Guide 273

Nova

6.8.1

274

The Options Menu (Figure 6-18) contains five items:

• Simulation Length allows the user to set the length of the simulation.

• Create Segment allows the user to create a segment, or "new-start-point,"
within the simulation.

• Delete Segment allows the user to delete a previously created segment
from the simulation.

• Resolution allows the user to stretch and compress displayed traces.

• Signal Name Size allows the user to specify the width in characters of
Nova's signal name buttons.

Each of these items is described in greater detail in the following pages.

Figure 6-18 Options Menu

Simulation Length

Simulation Length allows the user to set the length of the simulation.

Selecting Simulation Length brings up the Simulation Length dialog box (Figure 6-
19).

The minimum and default simulation length is 256 tics. The maximum simulation
length is 9984. Clicking on the up arrow adds 64 tics to the simulation length, to a
maximum of 9984. Clicking on the down arrow subtracts 64 tics from the
simulation length, to a minimum of 256 tics.

Warp User's Guide

6.8.2

Nova

The user can also set the simulation length by typing a number on the line next to
the up and down arrows. The number will be rounded downward to the nearest
multiple of 64.

Clicking OK closes the Simulation Length dialog box and sets the simulation length
to be used on the next simulator run. Clicking Cancel closes the Simulation Length
dialog box without affecting the simulation length.

Figure 6-19 Simulation
Length Dialog Box

~-----------------
Note - Any repetitive input signals such as clocks should be
respecified whenever the simulation length is increased.

Creating and Deleting Segments

Create Segment allows the user to create a segment, or "new start point," within
the simulation. Delete Segment deletes a previously created start boundary.

A segment is a point in the simulation at which various nodes are reset to their
"jam load" values (set through the Node Defaults dialog box).

To create a simulation segment, position the leftmost measuring cursor at desired
beginning of the segment, then select Create Segment from the Options menu to
bring up the Create Segment dialog box (Figure 6-20). The dialog box indicates the
starting and ending boundaries of the segment. Selecting Yes closes the dialog box
and creates the new simulation segment. Selecting No closes the dialog box
without creating ~he segment. Up to 15 segments may be created.

Warp User's Guide 275

Nova

6.8.3

276

To delete a segment, position the leftmost measuring cursor within the segment to
be deleted, then select Delete Segment to bring up the Delete Segment dialog box
(Figure 6-21). The dialog box indicates the segment boundaries for the segment to
be deleted. Selecting Yes closes the dialog box and deletes the segment. Selecting
No closes the dialog box without removing the segment.

o CREATE SEGt.AENT from ~7 to 256

Figure 6-20 Create Segment Dialog Box

o DELETE SEGt.AENT from 66 to 255

Figure 6-21 Delete Segment Dialog Box

Resolution

Resolution allows the user to stretch and compress displayed traces.

Selecting Resolution from the Options menu brings up the Resolution dialog box
(Figure 6-22). This dialog box allows the user to set the number of screen pixels on
the X-axis to be used per simulation tic. Varying this number effectively stretches
or compresses the traces displayed on the screen.

Warp User's Guide

Nova

The pixels-per-tic setting may be any number between 1 and 100. The default is 5.
The larger the number, the more "stretched" the traces appear; the smaller the
number, the more compressed the traces appear.

6.8.4

Selecting OK closes the Resolution dialog box and updates the trace display.
Selecting Cancel closes the Resolution dialog box without updating the trace
display.

Ira

Figure 6-22 Resolution Dialog Box

Signal Name Size

Signal Name Size allows the user to specify the width in characters of Nova's
signal name buttons.

6.9 Nova JEDEC Simulator Quick Reference Sheet

6.9.1 Simulating a Circuit

• Start Nova.

Select Nova Functional Simulator from the Galaxy tools
menu or double-click on the Nova icon in the Windows
program.

• Load the JEDEC file which was produced from Warp.

Select Open from the File menu.

Warp User's Guide 277

Nova

fa 6.9.2

278

• Edit Input Stimulus.

To edit a signal, select the signal with the left mouse
button. Go to the Edit menu to set the signal high or low,
or to configure the signal as a clock. To edit portions of
the signal, select the portion with the mouse, then type
"0" or "1" to set that portion of the signal high or low.
There is also a "pulse" feature which allows the user to
set up single pulses.

• Run Simulation.

Select Exec;ute from the Simulate menu.

Arranging Signals

Using the Views menu in Nova, the user can choose what signals he wants to see
and in what order they are displayed. The default views are FULL, PINS ONLY,
and PINS and REGS.

To create a new view, choose Edit Views under the Views menu and select New
View.

When creating a new view, wild cards are recognized. To enter all available
signals, select Add by Name and type an asterisk ("*"). Optionally, enter the
names of the signals to see individually (or by using a combination of signal
names and wildcards).

When done, click on OK. This view can now be edited. To add new signals to the
view, double-click on the signal on the left-hand side. To delete a signal, double
click on the signal in the view (on the right-hand side). Alternately, the user can
cut and paste signals in the view. Signals are always pasted under the currently
selected signal.

The order of the Signals can be changed by using cut and paste or by using Add by
Name.

Warp User's Guide

Nova

6.10 Creating Buses

• Select Create Bus from the Edit Menu.

• Choose an appropriate bus name under the Bus Name field of the pop-up
menu.

• Add signal names to the bus by double clicking on the signal names on
the left-hand side, selecting the signals, and clicking on Add, or by using
Add by Name. Wildcards are allowed when using Add by Name.

• Click on OK.

If the signals are not in the current View, they cannot be added to a bus.

These signals must be deleted from the view if the user does not want to see them
individually. Don't do this if it's an input bus because buses are only useful for
output. Data cannot be input as a bus, only as individual bits of a bus.

To see the bus value, a measuring cursor is necessary. A measuring cursor is
brought up by clicking the left mouse button in the white area near the bottom of
the Nova window. During a single Nova session, the measuring cursor cannot be
deleted once it has been activated. A second measuring cursor can be activated by
holding the shift key down while clicking the left mouse button in the white area
near the bottom of the Nova window.

6.11 Miscellaneous

To save input stimulus, view information, and buses for the next simulation,
select Write Sim from the File menu.

Nova is purely a functional simulator. There is no timing information in Nova.
There is only the concept of simulation tics. A given device may be modeled as
several smaller blocks. For instance, a FLASH370 device can be divided into
smaller parts:

• input cells

• PIM

• PTM

• macro cell

• I/O cell

Warp User's Guide 279

Nova

As a result, the user may see a propagation between his input and his output. If
the user experiences strange results, he should increase clock period or separate
simultaneously changing input signals. Some rules of thumb (if there are
problems) are to make pulses> 20 tics wide and provide> 10 tics of setup time.

Color of traces:

Blue means the waveform can be edited.

White means an input or an output that is three-stated.

Red means an output that is being driven.

Pin numbers or node numbers are displayed to the left of the signal name. Zoom
control is available under the Views menu.

The simulation length may be changed by choosing Simulation Length under the
Options menu.

Printing Nova Output (PC):

• Place the mouse cursor in the window to be captured.

• Hit Alt and Print Screen simultaneously.

This will place the window in a buffer.

• Go into a text editor (MS Word/ Microsoft Write) and Paste from the
buffer.

• Print from the text editor.

280 Warp User's Guide

Chapter 7
Schematic Entry

Schematic Entry

7.1 Overview

282

The Warp tools use VHDL as the primary design entry mechanism. Warp3,
however, also supports schematic entry as a design entry mechanism via
ViewDraw. Warp3 also supports mixed-mode design entry where portions of the
design are entered in VHDL and portions are entered in ViewDraw, graphically.

When using ViewDraw, Warp3 provides a very powerful and sophisticated user
interface that allows users to capture designs efficiently. With Warp3, the user
can:

• use VHDL descriptions, schematics, or both to describe any design

• compile and synthesize the resulting design description

• fit the resulting logic circuits into a particular PLD or CPLD, or place and
route the design into an FPGA (the resulting files may be used for
programming the device)

• verify the design with a timing simulator

There are several other tasks that can be performed, but this overview describes
how to use View Draw for design entry. Figure 7-1 shows this process flow.

Warp User's Guide

7.2

7.2.1

8C::=>~
Schematics

~tjrf
VHDL Compiler

rf ~
A

Viewsim

U
Simulation Device Programmer

Figure 7-1 Warp3 design flow

LPM Library

What Is LPM?

Schematic Entry

LPM is an acronym for Library of Parameterized Modules. This is a specification
maintained by the Electronics Industries Association (EIA). The LPM
specification contains a small set of highly parametrizable library elements. This
specification is based on the EDIF (Electronic Design Interchange Format) version
2.0.0 standard and also specifies how data containing these parameterized
modules can be interchanged between third party CAE systems.

Warp User's Guide 283

Schematic Entry

7.2.2

284

Cypress has chosen the LPM standard for its schematic library because of its
flexibility and interoperability. Warp3 provides a graphical user interface to allow
design entry with these LPM elements. With this graphical interface, the user can
create, modify and manage LPM elements. To obtain a detailed description of the
library and its functionality, the user should refer to Chapter 5, "LPM," of the
Warp Reference Manual.

The rest of this chapter assumes that the user is familiar with View Draw and the
Powerview or Workview PLUS environment.

How to Use LPM

Since LPM is a set of parameterized elements where the number and width of the
pins can be varied, and the View Draw schematic capture system does not allow
the pins for a given symbol block to vary, Warp automatically and dynamically
creates and maintains custom symbols that are pre-programmed for a specific
use.

For example, there is a common interface for an LPM_COUNTER. With this
interface, the user can select or deselect many options such as enable, carry-in, or
load. Instead of creating a symbol that has all possible pins for a given symbol,
Warp automatically creates a custom symbol that has only those features required
by the user. This is done because some of the LPM elements have a rather large
number of optional features, and without a mechanism to create dynamic
symbols, design entry with such symbols would be cumbersome.

When the user requests an LPM symbol configured in a certain way, Warp creates
this element and stores it in a special library called lpmlocal. The lpmlocallibrary
consists of a set of symbols and data files that manage all the symbols in a user's
private library. The names assigned to these dynamically created symbols are
meaningful only to the software and do not imply anything about the symbol
itself. The lpmlocallibrary should never be edited by users manually. Warp
automatically creates and manages this information.

Warp User's Guide

Schematic Entry

View Draw uses the viewdraw.ini file to locate libraries. ViewDraw searches the
current project directory as well as the directories listed in the WDIR environment
variable for this initialization file. This file contains, among other things, a set of
library names and the directories where these libraries can be found. A sample
viewdraw.ini file is shipped with Warp and can be found in the warpstd
subdirectory where Warp is installed. A portion of this file is shown here:

Format: DXR [DirType(s)] DirPath (LibName)

DirType: p or pw - primary / writable
w - writable (read/write)
r - read-only
m or r.m - read-only megafile

DirPath: directory specification

LibName: library name aka library alias or VHDL library
name (optional) 32 characters or less.
Must begin with a letters

DIR [p] •
DIR [r] c:\warp\lib\sheet (sheet)
DIR [r] c:\warp\lib\io (io)
DIR [r] c:\warp\lib\mcparts (mcparts)
DIR [r] c:\warp\lib\prim (primitive)

Lines starting with the " I" character are comments. The first directory below the
comments is the current project directory, and the rest of the directories are
libraries. To this list of libraries, another library must be added that represents the
Ipmlocallibrary. This library must be writable by the user because Warp creates
symbols dynamically on behalf of the user. An example of such a library would
be:

DIR [w] c:\mydir\~roj\lpmlocal (lpmlocal)

where c:\mydir\myproj\lpmlocal is a directory where Warp stores the symbols it
creates. Without a valid location for the Ipmlocallibrary, the Warp LPM
functionality will be disabled. If th~s directory is being shared by other users in a
network environment, this directory must be writable by everyone using this
library. The viewdraw.ini file should be copied to the current project directory,
and then this change should be made to the file.

Warp User's Guide 285

Schematic Entry

7.2.3

7.2.4

286

Creating the Ipmlocal Library

When View Draw is invoked for the first time in a new View logic project, the LPM
functionality is disabled and step-by-step instructions are printed on how to
enable the LPM functionality and the creation of the lpmlocallibrary.

Creating an LPM Element

To create an LPM element once View Draw has been opened for editing a
schematic, use the menu item Add->LPM Symbol.

Figure 7-2 Add LPM Symbol

Warp User's Guide

Schematic Entry

When this menu item is selected, View Draw prompts the user for the type of
module to be instantiated. This dialog box is titled Add Cell and is shown in the
following figure:

Figure 7-3 Add Cell dialog box

The user selects the desired module by single clicking the left mouse button. This
action results in another dialog box that prompts the user to enter all the options
that are applicable for the module selected. For example, if the Mcounter module
was selected, the following dialog box would pop up:

Figure 7-4 Mcounter dialog box

Warp User's Guide 287

Schematic Entry

7.2.5

7.2.6

288

After selecting the appropriate items in this dialog box, a single mouse click on
the Accept button removes this dialog box. At this point, the custom symbol that
Warp has dynamically created is attached to the cursor and is ready to be placed
in the schematic.

Modifying an LPM Element

If the user wishes to modify an LPM symbol already placed in the schematic, he
should first select the LPM symbol to be modified and then choose the
Change->LPM Symbol menu item. Only one LPM symbol may be selected at a
time. When this menu item is selected, Warp displays the appropriate dialog box
for the given LPM symbol, identical to the dialog box that was used during the
initial creation of the LPM symbol.

Creating/Modifying a Non-LPM Element

A non-LPM element is essentially a user or library symbol which does not
constitute a parameterized symbol. Instances of these elements are created using
the regular ViewDraw methods. The Add->Comp menu item is used to create an
instance of a non-LPM symbol, and the Change->Comp menu item should be used
to change an existing instance. These menu items should not be used to edit or
create instances of LPM symbols. Other than this restriction, an LPM symbol is
similar to any other symbol within View Draw.

Warp User's Guide

Schematic Entry

7.3 Exporting the Schematic

Once the schematic has been completed, the design can be converted into VHDL
and compiled into a PLD, CPLD, or FPGA device. This can be accomplished by
using the menu item Cypress->Export VHDL:

Figure 7-5 Export VHDL menu selection

Warp User's Guide 289

Schematic Entry

290

When this option is selected, the following dialog box pops up:

Figure 7-6 Export VHDL dialog box

In this dialog box, Design Name is simply the name of the schematic being
netlisted and Output Directory is the directory in which the netlist should be
created. Leaving the Output Directory blank will create the netlist in the current
project directory.

At this time, the user can also choose the type of netlist to be produced by the
netlister. Currently, two types are supported: bi t and std_logic. In VHDL,
each signal has a type associated with it. This option simply allows a choice
between these two different types. The bit type is supported only fpr
compatibility with the previous release. The std_logic type is recommended
for all new designs.

Clicking the left mouse button on the button marked Accept will cause the
following actions:

• Check and Save the current schematic if it is not already saved.

• Invoke the batch program hil076 to perform the actual netlisting.

• Netlist any synthesis directives found in the design.

The output file name has the same name as the top level design with a .vhd
extension. This file also contains a hierarchical netlist for all the lower level
blocks. Once this file is created, the design is ready to be synthesized using the
Warp compiler.

Warp User's Guide

Schematic Entry

7.4 Back-Annotation

Once a design has been successfully placed into a device, Warp allows the user to
fix the pinout for that design.

To back-annotate pin-numbers into the design schematic, the user must select the
menu item Cypress->Back-Annotation

Figure 7-7 Back-Annotation menu selection

A simple dialog box appears showing the design name to be back-annotated.
Clicking on OK does the following:

• Invokes a batch program that queries the pinout results and creates a list
of pin names and their associated pin-numbers.

• Edits the current schematic (and all its associated sheets) to place the #
attribute, so that future VHDL netlisting will force the pins to be placed in
the same location.

Warp User's Guide 291

Schematic Entry

The buses are back-annotated in a special way. Buses require that multiple pin
numbers must be back-annotated. This is accomplished by creating an attribute
with a "," (comma) separated list of pin-numbers.

~-----------------
Note - Back-annotation will have no effect if the design has not
been successfully fit or placed and routed into a device.

7.5 Using the Schematic Libraries from Release 3.5

292

The release 3.5 library and the release 4.0 library elements are not compatible with
each other. To use the release 3.5 library mechanism, the user must do the
following:

On the PC
In the Warp R4 Program Group, invoke the program item named Library. This
program will modify the viewdraw.ini file located in the c:\warp\warpstd
directory as well as reconfigure the library directory in preparation for synthesis
using the appropriate library. This will allow the user to create a new project
directory via the Cockpit configured for either the release 3.5 or 4.0 library.

On UNIX Systems

The user must first login as the user who installed Warp on the system, to ensure
that he has the proper permissions to modify the installation directory and then
execute the program cypver. This assumes that $CYPRESS_DIR/bin is in the
user's path and that the environment variable $CYPRESS_DIR is pointing to the
Warp installation directory. The cypver command modifies the Warp
installation allowing the user to switch between the 3.5 and 4.0 libraries.

The above programs do not automatically modify all projects and any
viewdraw.ini files that might exist in those directories. Following the template
provided in $CYPRESS_DIR/warp/warpstd/viewdraw.ini, the user must modify
his own viewdraw.ini files.

Warp User's Guide

Schematic Entry

7.6 Schematic to Symbol

In Warp3, the user can use the Schematic to Symbol found in the Cypress menu to
generate a symbol for a schematic circuit. The resulting symbol can then be
instantiated in other, higher-level schematics.

When Schematic to Symbol is run, a dialog box allows the inputs and the outputs of
the symbol to be reordered. Once the ordering of the pins is satisfied, clicking on
Accept will create the symbol.

Figure 7-8 Schematic To Symbol dialog box

~----------------
Note - A new symbol cannot be generated if the symbol is
already loaded into View Draw. To work around this problem,
simply close all other ViewDraw windows or re-renter View-
Draw and only load the schematic for which the symbol is
needed.

7.7 VHDL To Symbol

The VHDL To Symbol utility can be invoked in ViewDraw under the Cypress
menu bar. This utility differs from the View logic VHDL2sym tool, which can be
found in the Circuit Design drawer. The Cypress version of the VHDL To Symbol
translator requires that the VHDL file be first compiled using Galaxy as a non top
level file.

Warp User's Guide 293

Schematic Entry

When this utility is invoked, a list of VHDL components for which symbols can be
generated is displayed so that the user can select exactly which symbols need to
be generated. If errors have been detected for symbols, the dialog box for VHDL
To Symbol allows viewing these errors. The order of the pins for each of the
symbols is determined by the order in which they were listed in the VHDL file.
Please note that these VHDL components must be defined within a package.

This utility is useful for designing in a bottom-up fashion, in which the user starts
at the lowest level (being VHDL) and works up to a top-level graphical schematic.

~----------------
Note - A new symbol cannot be generated if the symbol is
already loaded into ViewDraw. To work around this problem,
simply close all other ViewDraw windows or re-renter View-
Draw and only load the schematic for which the symbol is
needed.

To run VHDL To Symbol, invoke the VHDL To Symbol and enter the name of the
VHDL file (without the .vhd) extension.

7.8 Symbol to VHDL

294

Symbol to VHDL takes as input the name of a symbol, and translates a ViewDraw
symbol into a VHDL file. The VHDL file has the same name as the symbol, except
with a . vhd extension. This implies that the symbol name should be a VHDL legal
name. The VHDL entity name is the same as the symbol name.

Figure 7-9 Symbol to VHDL dialog box

Warp User's Guide

Schematic Entry

7.9 Update Library

Since the Ipmlocallibrary contains symbols that are sequentially named as the
user requests new LPM symbols, it is highly likely that two different users using
different Ipmlocallibraries can have a like-named LPM symbol whose feature set
may be completely different. Furthermore, a symbol with a given feature set may
exist in one library and not in the other. Sharing or transporting of user
schematics would therefore be impossible. To solve this problem, Warp provides
a synchronization utility. Whenever a schematic is imported from another user,
selecting the Cypress-> Update LPM Symbols will ensure the integrity of the current
schematic and its hierarchy by resolving any conflicts and regenerating all of the
LPM symbols.

Figure 7-10 Cypress Update LPM Symbols

7.10 Print Hierarchy

This menu item prints the hierarchy for a schematic. This is helpful in being able
to view a schematic's organization when the schematic contains many lower level
schematics or modules. Please note that this utility cannot analyze the hierarchy
of VHDL modules.

Warp User's Guide 295

Schematic Entry

296 Warp User's Guide

Chapter 8
Simulation

Simulation

8.1 Introduction

298

Warp supports pre-synthesis VHDL simulation and post-synthesis VHDL and
Verilog simulation. For post-synthesis simulation, Warp adheres to the following
methodology: it generates all the VHDL and Verilog files required to simulate the
design, and provides an easy way to integrate these HDL (Hardware Description
Languages) files into the target simulation environment. In order to simulate the
design, the user should be familiar with the desired simulation environment.

The VHDL and Verilog simulators supported are listed in Tables 8-1 and 8-2,
respectivel y.

Table 8-1 Supported VHDL simulators

Simulator Vendor Pre-fPost-synthesis

ViewSim Viewlogie Post-synthesis

SpeedWave ™ Viewlogie Pre-fPost-synthesis

V -System ny QuickHDLTM Model Technology f
Pre-fPost-synthesis

Mentor Graphics

VSSTM Synopsys Pre-fPost-synthesis

Leapfrog ™ Cadence Pre-fPost-synthesis

IEEEl164 VHDL N/A Pre- f Post-synthesis

Table 8-2 Supported Veri log simulators

Simulator Vendor Pre-fPost-synthesis

VeriBest Intergraph Post-synthesis

VCS ™ f Chronologie View lo gic Post-synthesis

Verilog-XL ™ Cadence Post-synthesis

IEEE1364 Verilog NfA Post-synthesis

Unless otherwise specified, pre- and post-synthesis simulation support is
available for all deviees.

Warp User's Guide

Simulation

8.2 Pre-synthesis Simulation

V-System

Scripts for compiling the Cypress pre-synthesis libraries into the user's work
directory are available in $CYPRESS_DIR/warp/lib/prim/presynth/scripts
(c:\warp\lib\prim\presynth\scripts). On UNIX platforms, to build the complete
library for STD _LOGIC types, run the following command:

$CYPRESS_DXR/lib/prim/presynth/scripts/vsys_std

This command will compile all the necessary files in a work directory at the
current location.

Thestd_logic_1164, std_logic_arith, std_logic_unsigned,
numeric_bi t, and numeric_std packages are already part of the compiled
ieee library and accelerated for V-System/Workstation V4.4g (V-System/VHDL
Windows V4.3g).

On PCs, for the Windows version of V-System, invoke the V-System, pull down
the File->Directory and select the directory in which the library is to be compiled.
Then in the Transcript window, the following is entered (note the ~/do"
command):

do c:\warp\lib\prim\presynth\scripts\vsys_std

Similarly, to run pre-synthesis simulation using BIT types, use the following
commands:

(V-System/UNIX Workstation)

$CYPRESS_DXR/lib/prim/presynth/scripts/vsys_bit

(V-System/VHDL Windows)

do c:\warp\lib\prim\presynth\scripts\vsys_bit

If the user already has command files written for ViewSim or SpeedWave ,cmd),
they can be easily converted to V-System ,do) files. In order to make this
conversion seamless, the user must not use the shorthand commands for
ViewSim (i.e., a for assign, c for cycle, 1 for low, h for high, etc.). If the longhand
conventions are used, they will map directly to the .do file syntax.

Warp User's Guide 299

Simulation

300

SpeedWave

Scripts for compiling the Cypress pre-synthesis libraries into the user's work
directory are available in $CYPRESS_DIR/lib/prim/presynth/scripts. To build the
complete library for STD_LCX;IC types, run the following command:

$CYPRESS_D~R/lib/prim/presynth/scripts/spwv_std

This command will compile all the necessary files in a work directory at the
current location.

To run pre-synthesis simulation using BIT types, run the following command:

$CYPRESS_D~R/lib/prim/presynth/scripts/spwv_bit

These commands will build the necessary directory for pre-synthesis simulation
of the user's design. If the user already has command files for ViewSim, they can
be used with SpeedWave with minor changes. All port signals must be prefixed
with a / in the SpeedWave command file. This change is not backward
compatible with ViewSim.

Before running the above scripts, make sure that the environment variable
V ANTAGE_ VSS is set correctly, to point to SpeedWave root directory.

Other Simulators

For the rest of the simulators specified in Table 8-1, compile the packages in
$CYPRESS_DIR/lib/prim/presynth/std or $CYPRESS_DIR/lib/prim/presynth/bit (on
PCs, c:\warp\lib\prim\presynth\std or c:\warp\lib\prim\presynth\bit) and the
VHDL design file into your work library and simulate using the target simulator
commands. The proper order of compiling these files can be obtained by looking
at one of the scripts in $CYPRESS_DIR/lib/prim/presynth/scripts
(c:\warp\lib\prim\presynth\scripts). The process for other simulators is similar to
that mentioned above.

Warp User's Guide

Simulation

8.3 Post-synthesis Simulation Design Flow for PLDs and CPLDs

The design flow for the post-synthesis simulation support for Cypress PLD and
CPLD devices is shown in Figure 8-1.

Select design and
simulator in Galaxy

Compile and synthesize

verilog files in vlg directory
vhdl files in vhd directory

Compile and simulate
in target simulation

environment

Figure 8-1 Simulation design flow for PLDs and CPLDs

8.3.1 Select a Design

8.3.2

Refer to Chapter 4, "Galaxy," for details on how to select a design and a device.

Select a Simulator

The supported simulators are listed in the Devices dialog box of the Galaxy
window, under the Post-JEDEC Sim section. Select the target device and package
from the Device and Package menus, respectively, and the simulator from the Post
JEDEC Sim menu.

Warp User's Guide 301

Simulation

8.3.3

8.3.4

Compile a Design

After selecting the design, target device, and simulator, compile the design from
the Galaxy window. Warp creates a set of VHDL or Verilog files which are
required for simulation in the vhd or vlg sub-directories, respectively. The vhd and
vlg sub-directories are created automatically if they do not already exist. The
filenames for the post-synthesis simulation models will have the same base name
as the top-level design file.

VHDL Simulation

V-System

A script for compiling the Cypress post-synthesis primitive libraries into the
user's primitive directory is available in $CYPRESS_DIR/lib/prim/presynth/scripts/
vsysprim (on PCs, c:\warp\lib\prim\presynth\scripts\vsysprim). On UNIX
platforms, to build the complete primitives library run the following command:

$CYPRESS_DiR/lib/prim/presynth/seripts/vsysprim

This command will compile all the necessary files in a primitive directory at the
current location.

On PCs, for the Windows version of V-System, pull down the File->Directory and
select the directory in which the library is to be compiled. Then in the Transcript
window the following is entered (note the "do" command), write the following
command:

do e:\warp\lib\prim\presynth\seripts\vsysprim

Once the primitive library has been built, the target design can be compiled
(vcom) and simulated (vsim) with commands such as the following:

• veom vhd\<file name>.vhd

• vsim <entity name>

302 Warp User's Guide

8.3.5

Simulation

SpeedWave .
A script for compiling the Cypress post-synthesis primitive libraries into the
user's primitive directory is available in $CYPRESS_DIR/lib/prim/presynth/scripts/
spwvprim. To build the complete primitives library run the following command:

$CYPRESS_DZR/lib/prim/presynth/scripts/spwvprim

Once the primitive library has been built, the target design can be compiled into a
selected work area using the following command:

analyze -dbg 2 -libfile vsslib.ini -src vhd/<file name>.vhd

The simulation process at that point is the same as for ViewSim simulation.

Other Simulators

For the rest of the simulators specified, compile the packages in $CYPRESS_DIR/
lib/prim/vhdl (on PCs, c:\warp\lib\prim\vhdl) and the VHDL design file into your
primitive library and simulate using the target simulator commands. The proper
order of compiling these files can be obtained by looking at one of the scripts in
$CYPRESS_DIR/lib/prim/presynth/scripts/*prim (on PCs,
c:\warp\lib\prim\presynth\scripts\ *prim). The process for these other simulators
is similar to that mentioned below for Verilog Simulation.

Verilog Simulation

In order to simulate the design, the user should be familiar with the target
simulation environment. When a Verilog simulator is selected, Warp creates a
template file which assists the user in submitting the correct set of Verilog files, in
the proper order, to the target Verilog compiler. The template file, whose name
and format vary with the target simulator, is created in the vlg directory. The
steps needed to compile the design in different simulator environments are
described below.

VeriBest

The template file that Warp creates is called design_name.sup. Its format is
conformed to the support file format within VeriBest (refer to the VeriBest
simulator manual for details). Load the support file into the VeriBest environment
(File->Open_Setup_File) and select the analyze command to compile. The design is
now ready for simulation in the VeriBest environment.

Warp User's Guide 303

Simulation

304

ves
The template file that Warp creates is called design_namefls. This file contains the
list of files and their respective order to be compiled with the Verilog compiler.
Specify this file name in the ves command line, as shown below.

Verilog-XL

The template file that Warp creates is called design_namefls. This file contains the
list of files and their respective order to be compiled with the Verilog compiler.
Once the files are compiled, they are ready for simulation in the Verilog-XL
environment.

~-----------------
Note - Make sure that the vlg directory is in the search path of
the target simulator.

Warp User's Guide

Simulation

8.4 Post-synthesis Simulation Design Flow for FPGAs

8.4.1

8.4.2

8.4.3

The design flow for the post-synthesis simulation support is shown in Figure 8-2.

Select design and device in Galaxy

Compile and synthesize

Select simulator, in SpDE

Compile and simulate
in target simulation

environment

Figure 8-2 Simulation design flow for FPGAs

Select a Design

Refer to Chapter 4, "Galaxy," for details on how to select a design and device.

Compile a Design

After selecting the design and target device, compile the design from the Galaxy
window.

Select a Simulator

A variety of simulators are supported for post-synthesis simulation. The
supported simulators are listed in the Tools->Options->Simulator dialog box
within the SpDE place and route tool. Select the target simulator from this menu.
See Chapter 5, "SpDE" for more information on the SpDE place and route tool.

Warp User's Guide 305

Simulation

8.4.4

8.4.5

8.4.6

8.4.7

306

Run SpDE

After selecting the simulator, run SpDE with the back-annotation tool selected.

ViewSim Simulation

Warp3 integrates directly into the View logic Powerview and Workview PLUS
environments, and FPGA post-synthesis simulation is fully supported with the
ViewSim simulator. After running SpDE, the spde2vl executable must be run.
lIDs program is run by double-clicking on the pASIC-> VSim icon in the Cockpit.
lIDs utility will generate the necessary files for ViewSim simulation.

VHDL Simulation

For VHDL Simulation, simply select the appropriate simulator from the SpDE
Tools->Options->Simulator menu and run the back-annotation tool from within
SpDE. This will create a . vhd file and a .sd! file compliant with the VITAL
specification. These files in conjunction with the VHDL primitive models
provided allow the user to simulate a design with any VITAL compliant VHDL
simulator.

Verilog Sim ulation

When a Verilog simulator is selected, Warp creates a verilog design file (design.vq)
and a delay back-annotation file (design.sd!) where design is the top-level design
name. The device specific primitives used in the design are available in
$CYPRESS_DIR/spde/data/qlprim.v (on pes, c:\warp\spde\data\q\prim.v). To
simulate the design, compile design. vq and the above mentioned primitive file in
the target simulator environment.

Warp User's Guide

Simulation

8.5 Post-synthesis VHDL Simulation in ModelT Environment

The following are the steps required for post-synthesis /layout simulation of
pASIC targeted designs with Model T's V-System:

• A qlprims library needs to be created with the mtiprim.vhd file which is
supplied by Cypress. Follow these steps:

Create a qlmodel directory.

Copy the file mtiprim.vhd (from $CYPRESS_DIR/spde/data) to the qlmodel
directory.

While in the qlmodel directory, create a new library called qlprims with the
V-System's vlib.

vlib qlprims

Map the qlprims library to it's source:

vmap qlprims <path>/qlmodel/qlprims

Compile the mtiprim. vhd file to the qlprims library:

vcam -work qlprims mtiprims.vhd

• Load design «design.qdf» into SpDE and select Model Tech V-System
from the Tools -> Options -> Simulator menu. SpDE will create
<design>.vhq and <design>.sdf files when the tools are run.

~-----------------
Note - As SpDE creates the .vhq file, it may inform you that vec-
tors in your entity will be broken out into individual signals
unless you have a . vhh file. Please ignore these messages as this
feature is not yet supported by Warp.

• Compile <design>.vhq:
vcom <design>.vhq

• Simulate:
vsim -t ps -sdftyp/-sdfmin/-sdfmax <design>.sdf
<design>

Warp User's Guide 307

Simulation

~----------------
Note - '-t ps' must be used because timing numbers in the SDF
file are in picoseconds. Because of this you must be careful about
the default cycle time which is 100 time units (in this case lOOps).
Either reset the default time units/ cycle or explicitly indicate a
time for your 'run' statements in the .do file to prevent surprises.

8.6 Post-synthesis Verilog Simulation In VeriBest Environment

308

Following are the steps involved in the post-synthesis simulation of a CPLD
targeted design in the Intergraph VeriBest environment.

• Select Intergraph from Devices dialog box of Galaxy and compile the
design.

• Create a test bench model to give test vectors to the design. Following is a
test bench model:

module <design>_tbench () ;
II test bench name is <design>_tbench

reg inl, •••• ;
wire out 1 , •••• ,

initial
begin

II specify test vectors
end

II instantiate the design
<design> instl (inl, ••••• , outl, •••••) ;

II In the above, <design> is the Verilog model name
of the design. It is created by Warp and is in
the file <design>.vlg in vlg sub-directory

endmodule

• Load and compile the Verilog files generated by Warp into the Veribest™
environment and simulate the design.
% veribld

File->Open_Setup_File <design>.sup
Analyze
Simulate
II in the above, File, Analyze, Simulate are the

menu buttons in veribld

Warp User's Guide

Simulation

Following are the steps involved in the post-synthesis simulation of a pASIC
targeted design in the Intergraph VeriBest environment:

• Load design «design>.qdf) into SpDE and select Verilog from the
Tools->Options->Simulator dialog box of SpDE

• Run SpDE tools from Tools->Run Tools dialog box making sure that the
back-annotation option is selected.

• Create a test bench model to give test vectors to the design. The following
is a test bench model:

module <design>_tbench () ;
II test bench name is <design>_tbench

reg inl, •••• ;
wire outl, •••• ,

initial
begin

II specify test vectors
end

II instantiate the design
<design> instl (inl, ••••. , outl, •••••) ;

II In the above, <design> is the Verilog model name
of the design. It is created by SpDE and is in
the file <design>.vq

II Include <design>.sdf file generated by SpDE
initial
begin
$sdf_annotate("<design>.sdf",<design>_tbench.instl} ;
end

endmodule

Warp User's Guide 309

Simulation

• Load and compile the Verilog files generated by SpDE into the Veribest
environment and simulate the design.
% veribld

Add->$CYPRESS_DIR/spde/data/qlprim.v
Add-><design>.vq
Add-><design_tbench>
Analyze
Simulate

II in the above, Add, Analyze, Simulate are the
menu buttons in veribld

~-----------------
Note - Refer to the Verilog language reference manual and Simu-
lator guide for details of test bench model and simulator usage.

310 Warp User's Guide

Synthesis

Synthesis

~9.1

9.1.1

312

Synthesis Directives

This chapter introduces synthesis directives-what they are, what they are used
for, how to use them, and when to use them. This chapter is organized into five
sections. The first section is an introduction. It explains directives and discusses a
strategy for using them effectively. It also includes two design examples to
illustrate how to apply them. The second section describes those directives that
can be used to optimize a design for the fewest device resources. The third section
describes those directives that can be used to optimize a design for timing goals,
including operating frequency, clock to output delay, setup time, and
combinatorial propagation delays. The fourth section describes directives used
for controlling the type and location of specific resources used in a device. The
final section describes directives used for documentation, including part selection
and pin number assignment.

Understanding Synthesis Directives

Synthesis directives may be used to influence the implementation of a design.
They are used in an iterative fashion to refine, improve, or constrain the results of
synthesis. For example, the goal directive is used by the synthesizer to select
either area-efficient or speed-efficient design implementations. Synthesis
directives may be applied to components that have been either instantiated in a
schematic or inferred by the synthesizer from VHDL code. The buffer_gen
directive causes buffers to be inserted for high-fanout signals. Synthesis_off
creates a factoring point for logic equations and is used for area or speed
optimization (or both). The pin_numbers directive specifies the pin numbers to
be used for signals. These and other directives are discussed in the pages to
follow, but the following section discusses a strategy for designing with synthesis
directives.

Warp User's Guide

Synthesis

9.1.2 Design Flow and Strategy for Using Directives

Directives are a powerful mechanism to influence the synthesis process, but they
should be used judiciously. Careless or excessive use of directives can, in fact,
subvert the very design goals that are sought. This section describes a strategy for
using directives and choosing the appropriate one(s) to achieve the user's goals.

Until the user becomes familiar with the effects of using the different directives,
Cypress does not recommend applying any of them in the first iteration of a
design. After synthesis and fitting-or place and route, in the case of an FPGA
design-the design may fit in the desired device and meet timing goals. In this
case, the design is complete-no directives are necessary. If, however, after the
initial iteration of synthesis and fitting, the design does not fit or meet timing
goals, the design may need tuning. Tuning, illustrated in Figure 9-1, is the process
of (1) identifying and applying an appropriate directive that may help to reduce
resource utilization or realize timing targets, (2) resynthesizing and fitting the
design, and (3) verifying that the design meets area and speed goals. In some
cases, this tuning process may have to be repeated in order to compare multiple
implementations of the design.

Warp User's Guide 313

Synthesis

START

~

8P and/or

Schematics

I
i-t
~

Synthesis

I
~t.-/ -

Fitter
or

Place & Route
Tool

~
RESULTS

Area: 91 cells
tS: 5.8ns

tSCS: 22.2ns
tCO: 26ns

~
FINISH

314

~
VHDL

entity ();

architecture
begin
end;

I

Use Directives

goal = area
maxload =8

state_encoding
...

Figure 9-1 Tuning

tuning
cycle

Warp User's Guide

Synthesis

9.1.3 Available Directives

Table 9-1 can be used to select an appropriate directive for tuning a design. Those
directives listed first are most likely to have the greatest impact on a design
implementation and should be selected first when tuning. The other directives are
used in special cases or for documentation purposes. Device selection and pin
number assignment are included in the documentation category, a1 though they
are also functional directives that can have a significant impact on area and speed.
Later in this chapter, each of the directives listed in the table is explained in
greater detail, with the focus on understanding scenarios when using a particular
directive is appropriate. The syntax and effect of all directives is explained in
"Synthesis Directives," Chapter 3, of the Warp Reference Manual.

For each of the directives listed in Table 9-1, the "Applicable Devices" column
indicates whether the directive is useful for CPLDs, FPGAs, or both. The "Used
for ... " column indicates whether the directive can be used for area optimization,
speed optimization, specific control, or documentation.

The next section describes how to apply directives.

Warp User's Guide 315

Synthesis

Table 9-1 Available Synthesis Directives

Applicable
Used for ...

Directive Devices

CPLDs FPGAs area speed control doc.

goal x x x x

state_encoding x x x x

buffer_gen x x x

max_load x x

pad_gen x x x

synthesis_off x x x x x

do nt_touch x x x x

no_latch x x x x

lab_force x x

pin_avoid x x

polarity x x

sum_split x x

node_num x x

fixed_ff x x

fCtype x x

no_factor x x x

opt_level x x x x x

part_name x x x x x

order_code x x x x x

pin_numbers x x x x x

316 Warp User's Guide

9.1.4

9.1.5

Synthesis

Scope and Inheritance

Each of the synthesis directives has a scope: some are intended for signals, others
for components. Some of the directives also have an inheritance. A directive
intended for a signal can be placed on an architecture or entity so that all signals
defined in that architecture or entity inherit that directive. This is called
hierarchical inheritance. Not all directives have an inheritance, however. Non
hierarchical directives are meant for the exact object that they are attached to and
will be ignored if not applied to the appropriate object.

Hierarchical directives have the following order of precedence (from least to
greatest):

• entity

• architecture

• component declarations

• component instantiations

• signals

Thus, a hierarchical directive placed on an architecture is overridden by a
directive placed on a signal within that architecture. In other words, a hierarchical
directive intended for a signal, if placed on an architecture, serves as a default for
all signals within that architecture. Likewise, a hierarchical directive placed on a
component instantiation overrides a directive placed on an architecture. This
allows for an occurrence of a component to have a different value than the default
directive for all components.

Applying Directives

Some directives are available via the command line or Galaxy switches. Warp also
provides three other methods for applying synthesis directives: with VHDL
attributes, with schematic attributes, or with a top-level control file. Values of
directives passed through the GUI or the command line act as default values.
Directives applied using VHDL attributes, schematic attributes, or the control file
override default values. The only exceptions are the part_name and
order_code directives. The GUI or command line, discussed below, will
override all part_name and order_code attributes.

Warp User's Guide 317

Synthesis

318

Using the GUI or command line. Certain directives may be controlled from the
GUI or command line. An example of this is the goal attribute which can be
selected to provide area or speed optimization. If speed is selected, then it
becomes the default value. If a component has a VHDL or schematic goal
attribute applied to it, however, and the value of the attribute is area, then the
speed value is overridden with the area value for that component.

Using VHDL attributes. VHDL permits the use of user-defined attributes to
adorn objects with information. Warp has thus created a user-defined (as opposed
to pre-defined) attribute for each directive. This permits a directive to be applied
to an object with the use of an attribute. The general syntax of an attribute used to
place a directive on a signal is the form:

attribute directive_name of object:class is value;

Such attributes are placed in the appropriate declarative region of the VHDL
code, typically in either the entity declarative region or the architecture body
declarative region. The object is the actual name or identifier of the entity,
architecture, component instantiation label, or signal. Class is used to identify the
class of the object (i.e., entity, architecture, or component instantiation label, or
Signal).

Examples of applying directives using attributes are given below. Next is a
discussion of the application of directives with schematic attributes and a top
level control file.

Using schematic attributes. Directives may be applied to objects in schematics
(with Warp3) using attributes by selecting the appropriate object and choosing
Attribute from the Add menu. After selecting Add->Attribute, a dialog box appears
in which the user may enter the directive in the form:

direct ive_name =value

The goal directive for area or speed optimization is not applied as an attribute. It
is chosen through the Add->LPM Symbol dialog box. The directive chosen here
overrides the command line or GUI switch.

Warp User's Guide

Synthesis

Using a control file. A top level control file may also be used to specify synthesis 9
directives. In the case of conflict, directives placed in a control file override
directives specified with VHDL or schematic attributes. The format of the control
file is defined in Chapter 3, "Synthesis Directives," of the Warp Reference Manual.
Each directive may be applied in the control file using a syntax similar to that of
attributes:

attribute directive_name [of] object[:class] is value[;]

The words in square brackets [] are optional and are simply ignored. Specifying
the class is also optional.

The next section illustrates how to apply directives in a design by using the
tuning strategy shown above. The two examples shown below demonstrate the
merits of both CPLDs and FPGAs. These design examples were compiled using a
pre-release version of the Warp software. Your results may vary slightly from
those presented here, but the general concepts will remain true.

9.2 Example 1-0RAM Controller

The code of the following listing is used to describe a fictitious DRAM controller.
Understanding the details of the code is not necessary for comprehending the
subsequent design optimization strategy. This example will first optimize this
design for a pASIC380 FPGA and then retarget it to a FLASH370 CPLD.

library ieee;
use ieee.std_logic_1164.all;
entity example is port(

clk, rst, ads, burst:in std_logic;
address: in std_logic_vector(3i downto 0);
cas, ras, ack, ref: buffer std_logic;
row_col_address:out std_logic_vector(ii downto 0»;

end example;

use work.std_arith.all;
architecture controller of example is

type states is (idle, 'asdet, rasa, casa, wi, w2, w3,
nocas, refad, wri, wr2);

Warp User's Guide 319

Synthesis

320

signal state, next_state: states;
signal match, ref_req:std_logic;
signal count: std_logic_vector(23 downto 0);
signal captured_address: std_logic_vector(31 downto 0);
signal captured_burst:std_logic;
signal col_ad:std_logic_vector(ll downto 0);
signal burst_cnt:std_logic_vector(l downto 0);

constant re_ad:std_logic_vector(ll downto 0) := (others
=> '0');

alias row_ad: std_logic_vector(ll downto 0) is
captured_address(23 downto 12);
begin

-- latch in address, and value of burst
adreg: process (clk, rst)

begin
if rst = '1' then

captured_address <= (others => '0');
captured_burst <= '0';

elsif clk'event and clk= '1' then
if ads = '1' then

captured_address <= address;
captured_burst <= burst;

end if;
end if;

end process;

check address contents to see if memory access
match <= '1' when captured_address(31 downto 24) =

"00000000" else '0';

Warp User's Guide

Synthesis

-- DRAM address multiplexer
mux: process (state, col_ad, row_ad)

begin
case state is

when refad I wrl I wr2 =>
row col_address <= re_ad;

when rasa I cas a I wl I w2 I w3 =>
row_col_address <= col_ad;

when asdet =>
row_col_address <= row_ad ;

when others =>
row_col_address <= (others => '-');

end case;
end process;

column address, Intel order
col_ad(ll downto 2) <= captured_address(ll downto 2);
col_ad(l) <= captured_address(l) xor burst_cnt(l);
col_ad(O) <= captured_address(O) xor burst_cnt(O);

Burst counter:
bcount: process (clk, rst)

begin
if rst = '1' then

burst_cnt <= "00";
elsif clk'event and clk = '1' then

if state = idle then
burst_cnt <= "00";

elsif state = w3 then
burst_cnt <= burst_cnt + 1;

end if;
end if;

end process;

Warp User's Guide 321

Synthesis

322

-- DRAM refress request counter
counter: process (clk, rst)

begin
if rst = '1' then

count <= (others => '0');
elsif clk'event and clk = '1' then

if ref = '1' then
count <= (others => '0');

else
count <= count + 1;

end if;
end if;

end process;
ref_req <= '1' when count = "101010101010101010101000"

else '0';

-- DRAM state machine
control: process (state, ref_req, match)

begin
case state is

when idle =>
cas <= '1'; ras <= '1';
ack <= '1'; ref <= '0';

if ref_req = '1' then
next_state <= ref ad;

elsif ads = '1' then
next_state <= asdet;

end if;

when asdet =>
cas <= '1'; ras <= '1';
ack <= '1'; ref <= '0';

if match = '1' then
next_state <= rasa;

else
next_state <= idle;

end if;

when rasa =>
c'as <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= casa;

Warp User's Guide

when casa =>
cas <= '0'; ras <= '0';
ack <= '1'; ref <= '0';

next state <= wi;

when wi =>
cas <= '0'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= w2;

when w2 =>
cas <= '0'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= w3;

when w3 =>
cas <= '0'; ras <= '0';
ack <= '0'; ref <= '0';

Synthesis

if (captured_burst = '1' and burst_cnt 1= ~11")
then

next_state <= nocas;
else

next_state <= idle;
end if;

when nocas =>
cas <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= casa;

when refad =>
cas <= '1'; ras <= '0';
ack <= '1'; ref <= '1';

next_state <= wrl;

when wrl =>

Warp User's Guide

cas <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= wr2;

323

Synthesis

9.2.1

9.2.1.1

324

when wr2 =>
cas <= '1'; ras <= '0';
ack <= '1'; ref <= '0';

next_state <= idle;
end case;

end process;

clock state machine
clocked: process (clk, rst)

begin
if rst = '1' then

state <= idle;
elsif clk'event and clk = '1' then

state <= next_state;
end if;

end process;

end controller;

FPGA Optimization

First Pass -- Default Options

On the first pass through synthesis and the place and route tools, this example
uses the default Galaxy options-buffer generation on, pad generation on, and
speed optimization for inferred arithmetic components. In the synthesis report
file, several operators are inferred:

ex3.vhd (line 49, col 68): Note: Substituting module
'warp_cmp_1s1c_ss' for '='.

ex3.vhd (line 80, col 32): Note: Substituting module
'warp_add_1s1c_ss' for '+'.

ex3.vhd (line 94, col 24): Note: Substituting module
'warp_add_1s1c_ss' for '+'.

ex3.vhd (line 98, col 61): Note: Substituting module
'warp_cmp_1s1c_ss' for '='.

ex3.vhd (line 152, col 52): Note: Substituting module
'warp_cmp_1s1c_ss' for '/='.

The two 1/+" operators are used in counters. The 1/=" and" /=" operators are used
for arithmetic comparisons. The following buffers and pads are inserted:

Warp User's Guide

Synthesis

Begin PAD Generation.

Created CLKPAD for signal 'clk'
Above signal drives 63 Clocks, 0 Set/Resets. Total

Created CLKPAD for signal 'rst'
Above signal drives 0 Clocks, 63 Set/Resets. Total

Created HD1PAD for signal 'ads'
Above signal drives 0 Clocks, 0 Set/Resets, 34 other

inputs. Total = 34

Begin Buffer Generation.

[max_ load = 7, fanout = 18J Created 2 buffers [DuplicateJ
for 'MODULE _ 5_ sO _gl _ uO _c_ l'

[max_ load = 7, fanout = 11J Created 1 buffers [DuplicateJ
for 'MODULE _ 5_ sO _gl _ uO _c_ 2'

[max_ load = 13, fanout 25J Created 1 buffers [DuplicateJ
for 'ref OUT' -

[max_ load = 13, fanout 18J Created 2 buffers [Normal
for 'stateSBV_2'

r.-,
63~
63

Clock pads were automatically selected for the clock and reset signals because
they fanout to all 63 of the flip-flops used. A high-drive pad, HDIPAD, was
selected for signal ads because it has a large internal load. Buffers were created as
well, per the defaults. The modules that were inferred have their own buffering
requirements, and the remainder of the signals in the design are buffered if their
loads are greater than 13, which is the default value of the max_load directive.

The design is imported into SpDE for place and route. In the
Tools->Options->General dialog box of SpDE, select the level 2 area optimization
(L2 area) for technology mapping. Then run all the tools, record the logic cell
utilization information from the In!o->Utilization information box, and gather the
requisite timing information to calculate setup time (ts), clock to output time (teo)
and maximum clock period (tscs) for internal operation (see Chapter 5, "SpDE,"
to calculate setup times, clock to output delays, and operating frequency). Next,
choose level 2 speed (L2 speed) optimization and gather the same information.
The results are summarized in Table 9-2. For each category (area, tSt tses, and
teo), the best result is indicated by shading in the appropriate cell of the tableThe
limiting factor for operating frequency is also listed. In this case, even though the
design can be internally clocked for a clock period of tscs, the teo value is such
that clocking at this interval would result in the outputs never being valid.

Warp User's Guide 325

Synthesis

326

Table 9-2 First pass FPGA results

L2 Area L2 Speed

Area (logic cells) 108 116

ts (ns) 14.4 14.9

tscs (ns) 22.0 20.6

teo (ns) 39.4 32.1

limiting factor teo teo

If the area and speed of this implementation are acceptable, then the job is done
the design does not need tuning. If, however, the user wishes to tune this design
to improve either the area, speed, or both, then he must begin the tuning cycle.
For the sake of continuing this example, assume that the user has not met his
goals and first optimize this design for speed, then area. For speed improvement,
the user wishes to decrease the setup time and clock to output delay. Assume that
the user wants to run the design with a 40 ns clock period (25 MHz), with a 10 ns
setup time and 30 ns clock to output delay. If the results were only a couple of
nanoseconds from the desired goals, then the path analyzer in the place and route
tool should be used to enter timing constraints. The place and route tool could
then replace and reroute in an attempt to meet those constraints. For moderate
improvement, returning to synthesis with directives is appropriate. If the user
wanted to be significantly more aggressive with the clock to output delay, he
would want to consider registering the outputs. The outputs are currently
designed to be combinational outputs decoded from the current state of the state
machine. Adding a pipeline for registering outputs is discussed in the chapter
covering state machines in the VHDL text accompanying this documentation set.
For this tutorial, the discussion will focus on using directives along with place
and route constraints to meet the timing goals.

Warp User's Guide

Synthesis

9.2.1.2 Second Pass-Speed Optimization (First Tuning Cycle)

This begins the first tuning cycle. Look at Table 9-1 to determine which directives
are applicable. The tscs goal has been achieved but not the ts or teo goal. The
second pass will use two directives to influence the synthesis process and
improve timing: (1) The pad generation directive is used to force ads to two high
drive pads (HD2P AD). This is done to improve setup times. In FLASH370 CPLDs,
delays are not dependent upon internal loading of signals. With the pASIC380
FPGAs, delays are dependent upon fanout. A high drive pad increases the drive
for the ads signal and reduce propagation delay. (2) The state_encoding
directive is used to select one-hot encoding for the state machine. This is done to
potentially improve the operating frequency and perhaps save logic cells. With
sequential encoding, the 11 states of the state machine will require 4 state bits.
With one-hot, 11 state bits will be required; however, with one-hot encoding, the
next-state logic is simpler, so fewer overall logic cells (and fewer levels of logic
cells) may be required. None of the other directives, including buffer_gen, will
be used in this pass, to avoid introducing too many directives at the same time.
Using too many directives at once limits the user's ability to determine which of
them is helping or potentially hurting. Both attributes are placed directly in the
code. The pad_gen attribute is placed in the entity declaration region, directly
before the end statement. The state_encoding attribute is placed
immediately after the type declaration. The attributes are:

attribute pad_gen of ads:signal is pad_hd2;
attribute state_encoding of states:type is one_hot_one;

After synthesis, the report file indicates that one_hot_one encoding is used:

State variable 'state' is represented by a Bit_vector
(0 to 10).

State encoding (one-hot one-state) for 'state' is:
idle:= "10000000000";
asdet := "01000000000";
rasa:= "00100000000";
casa:= "00010000000";
w1.- "00001000000";
w2:= "00000100000";
w3:= "00000010000";
nocas .- "00000001000";
refad .- "00000000100";
wr1.- "00000000010";
wr2:= "00000000001";

Warp User's Guide 327

Synthesis

328

The report file also shows that ads is indeed using HD2PAD resources:

Begin PAD Generation.

Created CLKPAD for signal 'clk'
Above signal drives 70 Clocks, 0 Set/Resets. Total 70

Created CLKPAD for signal 'rst'
Above signal drives 0 Clocks, 70 Set/Resets. Total 70

Created HD2PAD for signal 'ads'
Above signal drives 0 Clocks, 0 Set/Resets, 35 other

inputs. Total = 35
topld: ex4.vhd: Note: (N1347) When using multiple high

drive pads, manual pin assignment is suggested

Begin Buffer Generation.

[max_ load = 7, fanout = 18] Created 2 buffers [Duplicate]
for 'MODULE_4_s0_g1_uO_c_l'

[max_ load = 7, fanout = 11] Created 1 buffers [Duplicate]
for 'MODULE_4_s0_g1_uO_c_ 2'

[max_ load = 13, fanout 15] Created 2 buffers [Normal
for 'stateSBV_ l'

[max_ load = 13, fanout 28] Created 2 buffers [Normal
for 'ref OUT' -

The results of the second pass as compared to the first pass are shown in
Table 9-3, with the best results for each category highlighted.

Table 9-3 Second pass FPGA results

First Pass Second Pass

L2 Area L2 Speed L2 Area L2 Speed

Area (logic cells) 108 116 103 104

ts (ns) 14.4 14.9 7.0 7.5

tscs (ns) 22.0 20.6 19.8 18.5

teo (ns) 39.4 32.1 29.8 26.2

limiting factor teo teo teo teo

Warp User's Guide

Synthesis

These results illustrate that using directives judiciously can significantly improve 9
the design. The setup time improvement came from using two high drive pads (of
course, using two pads will increase the load external to the device and should be
considered for the overall system design). The area savings and tscs and teo
improvements came from using one_hot_one encoding.

9.2.1.3 Third Pass-Speed Optimization (Second Tuning Cycle)

The design has now exceeded the stated goals; however, continue to optimize the
design to see if additional directives bring any further advantages. Using the path
analyzer in SpDE to examine the delays shows that the worst case clock to output
path comes from decoding the state bits through the multiplexer to the output of
row_address. Highlighting these paths shows that these signals must route long
distances to several loads. In an attempt to minimize this delay, use the
max_load to buffer aggressively these signals. Since these signals are created by
the synthesis process, use the control file to add directives. VHDL attributes
cannot be used to apply these directives because these signals are not currently in
the VHDL source code. The attributes may be added if the source code is
modified. VHDL will not allow the user to apply an attribute to an object that
does not exist. In the control file, apply the directives to the names of the synthesis
created signals from the report file and in the path analyzer. The signals are
clearly generated from the state vector. To ensure that all state bits will be
buffered as appropriate, use the "*,, wildcard to find all matches:

attribute max_load of statesbv* is 5;
attribute max_load of ref is 10;

Warp User's Guide 329

Synthesis

330

The report file indicates proper buffering according to the control file:

Begin Buffer Generation.

[max_load = 7, fanout = 18] Created 2 buffers [Duplicate]
for 'MODULE_5_s0_g1_uO_c_1'

[max_load = 7, fanout = 11] Created 1 buffers [Duplicate]
for 'MODULE_5_s0_g1_uO_c_2'

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_O_BO'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_O_B1'.

[max_load = 5, fanout = 6] Created 2 buffers [Normal
for 'stateSBV_O'

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_BO'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_B1'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_B2'.

[max_load = 5, fanout = 15] Created 3 buffers [Normal
for 'stateSBV_1'

[max_load = 10, fanout
for 'ref_OUT'

28] Created 3 buffers [Normal

The results after place and route are only marginally better. The user is
approaching the best implementation possible. To improve upon this
implementation, the user could try adjusting the max_load to be slightly less
aggressive. Being too aggressive may cause too many buffers to be inserted. The
user may also iterate with the timing driven place and route tools by entering
constraints via the path analyzer. See Chapter 5, "SpDE," to learn how to do this.

The summarized results of the speed optimization passes are shown in Table 9-4,
highlighting the implementation that gave the best result in a given category.
Because the limiting factor is,teo, the results of L2 Area in the third pass work
best. Next, optimize the design for area where the results may be surprising

Warp User's Guide

9.2.1.4

Synthesis

Table 9-4 Third pass FPGA results

First Pass Second Pass Third Pass

L2 L2 L2 L2 L2 L2
Area Speed Area Speed Area Speed

Area (logic cells) 108 116 103 104 103 104

ts (ns) 14.4 14.9 7.0 7.5 7.2 7.1

tscs (ns) 22.0 20.6 19.8 18.5 18.0 18.4

teo (ns) 39.4 32.1 29.8 26.2 26.0 26.6

limiting factor teo teo teo teo teo teo

Fourth Pass-Area Optimization

Up to this point, this example has assumed that the target device is a CY7C384A,
a 2K gate device. Because only slightly more than half the resources of this device
(from 104 to 116 of the 192 available logic cells) are being used, it may be
worthwhile to optimize the design for area to see if it will fit in the CY7C382A, a
1K gate device with 96 logic cells. For this optimization, leave the pad_gan and
ona_hot attribute from the first tuning cycle, but remove the buffer generation
of the subsequent cycle. In addition, change the synthesis goal in the Galaxy
menu from speed to area, and resynthesize the design. The results are excellent
(see Table 9-5)

Warp User's Guide 331

Synthesis

9.2.2

9.2.2.1

332

Table 9-5 Fourth pass FPGA results

First Pass Second Pass Third Pass Fourth Pass

L2 L2 L2 L2 L2 L2 L2 L2
Area Speed Area Speed Area Speed Area Speed

Area
(logic 108 116 103 104 103 104 91 92
cells)

ts (ns) 14.4 14.9 7.0 7.5 7.2 7.1 5.8 5.5

tscs (ns) 22.0 20.6 19.8 18.5 18.0 18.4 22.2 22.2

teo (ns) 39.4 32.1 29.8 26.2 26.0 26.6 26.0 26.8

limiting
teo teo teo teo teo teo teo teo factor

The design fits in the 1K gate device and achieves the original timing goals. In
fact, they are superior in some respects to the ones that were achieved with the 2K
gate device. This is not surprising because the 1K gate device is smaller. Thus,
signals route smaller distances. At this point the user is finished-he has fit the
design into the smallest FPGA while meeting the timing goals.

Next, the example will fit this design into a FLASH370 CPLD.

CPLD Optimization

First Pass

On this first pass, use the default synthesis and fitting options which yield the
results summarized in Table 9-6. The "L2 Area" and "L2 Speed" columns have
been removed because a fitter for CPLDs is used instead of the SpDE place and
route tool.

Warp User's Guide

Synthesis

Table 9-6 First pass CPLD results

First Pass (default)

Macrocells 79

Product terms 225

ts (ns) 6.0

tscs (ns) 10.0

teo (ns) 16.0

limiting factor teo

This design requires a 128 macrocell member of the FLASH370 family of CPLDs.
Not surprisingly, it has excellent speed. This is because the design is essentially a
state machine, counters, and a little bit of combinational logic. This
implementation has far superior performance over the FPGA, but it also requires
a larger device. In the FPGA, however, if an additional pipeline were added to
improve clock to output delays (the limiting factor in this design), then system
speeds could approach 50 MHz. The additional pipeline would require a 2K
device, resulting in different performance numbers.

A tuning cycle will not likely improve upon the speed and area of this CPLD
implementation for two reasons: (1) The area versions of the counters will require
just as many macrocells and product terms as the speed versions. This is because
this counter is implemented very efficiently using T -type flip-flops. (2) Using the
state_encoding attribute with the one_hot_one value will neither increase
performance (it is already at its maximum-one pass through the logic array) nor
reduce the number of required macrocells. In fact, a one-hot implementation
will require more macrocells. It may reduce the number of product terms, but the
current implementation uses only 35% of the available product terms. Gray
encoding will require the same nUmber of macrocells, but could possibly require
fewer product terms. So, even though the current implementation is satisfactory,
resynthesize and fit the design using the "gray" value for the sta te_encoding
directive.

Warp User's Guide 333

Synthesis

9.2.2.2 Second Pass -- State Machine Gray Encoding

334

This pass implements the state_encoding directive with a VHDL attribute
placed in the architecture body declarative region where the state type is
declared:

attribute state_encoding of states:type is gray;

Warp reports the following fitter error:

Error: Signal stateSBV_3 uses too many input
signals, (logic+OE+AR+AP) .

This error indicates that one of the state bits requires more than the 36 inputs. The
FLASH370 allows only 36 inputs into a given logic block (no other CPLD has
more). Examine the report file to find the equation that verifies the veracity of this
error message and to see what can be done to correct it. The equation is as follows:

IstateSBV_3.D =
/stateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
Icount_2.Q * Icount_l.Q * Icount_O.Q * count_5.Q *
Icount_4.Q * count_3.Q * Icount_B.Q * count_7.Q *
Icount_6.Q * count_ll.Q * Icount_10.Q * count_9.Q *
Icount_14.Q * count_13.Q * Icount_12.Q *
count_17.Q * Icount_16.Q * count_15.Q *
Icount_20.Q * count_19.Q * Icount_18.Q *
count_23.Q * /count_22.Q * count_21.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_31.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_30.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_29.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_28.Q

+ IstateSBV_O.Q * stateSBv_3.Q * IstateSBV_2.Q *
captured_address_27.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_26.Q

+ IstateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
lads

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_25.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
captured_address_24.Q

+ IstateSBV_O.Q * stateSBV_l.Q * IstateSBV_2.Q
+ IstateSBV_l.Q * stateSBV_2.Q
+ stateSBV_O.Q * stateSBV_2.Q

Warp User's Guide

9.2.2.3

Synthesis

Here, notice that the equation for this state-bit requires all inputs of the counter. B
This is due to the state transition out of the idle state when ref_req is asserted. In •
addition, notice that capt ured_addres s is required. This is due to the state
transitions out of the asdet state when match is asserted. In the sequential
encoding, the third bit of the state vector does not require all of these inputs: the
capture_address inputs are used with a different state bit. To avoid this problem,
this equation must be factored. A natural point to break this equation is with the
captured_address signals or counter signals. The user can create a factoring point
by applying the synthesis_off directive to either the match signal or the
reLreq signal (or both). The next pass will show how to create one with the match
signal. Creating this break-point will require a second pass through the logic
array. This will result in additional delay and require additional resources.
Obviously, the implementation will be inferior to the one achieved in the first
pass. Nonetheless, this example will show how to work around this problem for
instructional purposes. After all, it would be nice to know how to get around a
problem like this one, if the user encountered' it in the first pass.

It is interesting to note that the state encoding affected the number of terms in an
equation.

Third Pass -- Synthesis_off

The synthesis_off directive is applied with a VHDL attribute, placed in the
architecture declarative region where the match signal is declared:

attribute synthesis_off of match:signal is true;

The design fits. The report file indicates that gray encoding is used:

State variable 'state' is represented by a Bit_vector
(0 to 3) .

State encoding (gray) for 'state' is:
cas a := "0010";
idle:= "0000";
asdet := "0001";
rasa:= "0011";
cas a := "0010";
w1.- "0110";
w2 : = " 0111" ;
w3 : = " 0101" ;
nocas .- "0100";
refad .- "1100";
wr1 .
wr2 :=

"1101";
"1111";

Warp User's Guide 335

Synthesis

336

The equations also show that match was used as a factoring point:

IstateSBV_3.D =
IstateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
Icount_2.Q * Icount_l.Q * Icount_O.Q * count_5.Q *
Icount_4.Q * count_3.Q * Icount_B.Q * count_7.Q *
Icount_6.Q * count_ll.Q * Icount_10.Q * count_9.Q *
Icount_14.Q * count_13.Q * Icount_12.Q *
count_17.Q * Icount_16.Q * count_15.Q *
Icount_20.Q * count_19.Q * Icount_1B.Q *
count_23.Q * Icount_22.Q * count_21.Q

+ IstateSBV_O.Q * stateSBV_3.Q * IstateSBV_2.Q *
Imatch.CMB

+ IstateSBV_O.Q * IstateSBV_3.Q * IstateSBV_2.Q *
lads

+ IstateSBV_O.Q * stateSBV_l.Q * IstateSBV_2.Q
+ IstateSBV_l.Q * stateSBV_2.Q
+ stateSBV_O.Q * stateSBV_2.Q

match
Icaptured_address_31.Q * Icaptured_address_30.Q *
Icaptured_address_29.Q * Icaptured_address_27.Q *
Icaptured_address_26.Q * Icaptured_address_25.Q *
Icaptured_address_24.Q * Icaptured_address_2B.Q

The area and speed results are summarized in Table 9-7. This implementation
requires fewer product terms, but has slower performance than the first
implementation.

Table 9-7 Third pass CPLD results

First Pass Second Pass Third Pass
(Defaults) (Gray Encode) (Synthesis_off)

Macrocells 79 Fit Error 80

Product terms 225 Fit Error 202

ts (ns) 6.0 Fit Error 6.0

tscs (ns) 10.0 Fit Error 19.0

teo (ns) 16.0 Fit Error 16.0

limiting factor teo Fit Error tscs

Warp User's Guide

Synthesis

Either of the successful CPLD implementations provide superior speed over the
FPGA implementation, but they also require a larger density device. The next
example selects a design that favors FPGAs for speed and area.

9.3 Example 2-Multiply and Accumulate Function

9.3.1

The code of the following listing is a multiply and accumulate design. Once again,
this design will be optimized first for a pASIC380 FPGA, then for a FLASH370
CPLD.

library ieee;
use ieee.std_logic_1164.all;

entity math is port (
clk, rst, mac:std_logic;
a, b:in std_logic_vector(7 downto 0);
q: buffer std_logic_vector(lS downto 0»;

end math;

use work.std_arith.all;
architecture math of math is
begin
p1: process (rst, clk)

begin
if rst = '1' then

q <= (others => '0');
elsif clk'event and clk='l' then

q <= (a * b) + q;
end if;

end process;
end math;

FPGA Optimization

Warp User's Guide 337

Synthesis

9.3.1.1

338

First Pass -- Default Options

In the first pass through the design, use the default Galaxy options-buffer
generation on, pad generation on, and speed optimization for inferred arithmetic
components. In the report file, the two arithmetic operators are inferred:

g.vhd (line 18, col 16): Note: Substituting module
'warp_mul_2s_ss' for '*'.

g.vhd (line 18, col 21): Note: Substituting module
'warp_add_2s_ss' for '+'.

The signals elk and r s t were placed on clock pads. Some of the inputs were
also selected for high drive pads because of high internal fanout. The default
value for the rnax_l oad directive is 13, so the following buffers were inserted:

Begin PAD Generation.

Created CLKPAD for signal 'clk'
Above signal drives 16 Clocks, a Set/Resets. Total 16

Created CLKPAD for signal 'rst'
Above signal drives a Clocks, 16 Set/Resets. Total 16

Created HDIPAD for signal 'b_l'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Created HDIPAD for signal 'a_I'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Created HDIPAD for signal 'a_2'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Created HDIPAD for signal 'a_3'
Above signal drives a Clocks, a Set/Resets, 16 other
inputs. Total = 16

Warp User's Guide

Synthesis

--
Begin Buffer Generation.
--
[max load = 13, fanout 15] Created 2 buffers [Normal

for 'a _0_ IN'
[max_ load = 13, fanout 15] Created 2 buffers [Normal

for 'b _0_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _4_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _S_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _6_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'a _7_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _2_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _3_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _4_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b_5_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b_6_ IN'
[max_ load = 13, fanout 16] Created 2 buffers [Normal

for 'b _7_ IN'

The area and speed results are listed in Table 9-8. This time, setup times are the
limiting factor. That is, the design cannot be clocked at tscs because that would
violate setup times.

Table 9-8 First pass FPGA results

L2Area L2 Speed

Area 163 186

is (ns) 68.8 73.9

iscs (ns) 22.8 24.9

teo (ns) 11.3 IDA

limiting factor is ts

Warp User's Guide 339

Synthesis

9.3.1.2

9.3.2

9.3.2.1

340

If the user wanted to pursue a faster design, then he could experiment with the
max_load directive as well as the 5pDE timing driven place and route to
minimize the delays of particular paths. Going through this process may yield a
small improvement over the current speed numbers.

Second Pass-Area Optimization

Because the default options use speed optimization, rerun the design with area
optimization on. After synthesis and place and route, the results are exactly the
same as in the first pass. This is because the adder and multiplier modules for the
widths used in this design have the same implementation for both speed and area
optimized versions.

Next, this design will be implemented in a FLASH370 CPLD.

CPLD Optimization

First Pass -- Default Options

Once again, the first pass will use the default Galaxy options. This means speed
optimization. With these options, the design will not fit (fable 9-9) because it
requires too many macrocells. It also requires nearly all of the available product
terms. So, pursue area optimization.

Table 9-9 First pass CPLD results

First Pass (Defaults)

Macrocells 132

Product terms 620

ts (ns) N/A

tscs (ns) N/A

teo (ns) N/A

limiting factor did not fit

Warp User's Guide

Synthesis

9.3.2.2 Second Pass -- Area Optimization

The results of area optimization are summarized in Table 9-10:

Table 9-10 Second pass CPLD results

First Pass (Defaults) Second Pass (Area)

Macrocells 132 120

Product terms 620 605

ts (ns) N/A 87.0

tscs (ns) N/A 66.0

teo (ns) N/A 7.0

limiting factor did not fit ts

The setup time for this combination of operations-multiply and accumulate-is
the limiting factor for the maximum frequency of this design.

For this application, the FPGA performed better and required fewer resources.
This is not surprising. FPGAs often do well in datapath and register-intensive
applications.

Now each of the directives listed in Table 9-10 will be covered topically by the
categories listed in the columns-area optimization, speed optimization, specific
control, documentation/ selection.

9.4 Area Optimization

9.4.1

This section describes the directives and techniques required to successfully
implement a logic design with the minimum device resources (minimum area)
being utilized. The techniques are often different for FPGA and CPLD
architectures. The focus of this section is to provide recommended techniques for
area optimization based on device architecture.

CPLD and FPGA Considerations

This section discusses area optimization methods relating to all Cypress
programmable devices. The goal, synthesis_off, and no_factor
directives are discussed.

Warp User's Guide 341

Synthesis

9.4.1.1 The GOAL Directive

342

attribute goal of architecture_name architecture is area;

or command line option: -yga

The goal value of area indicates that all modules inferred from VHDL operators
will be optimized for area. The Warp synthesizer will select an implementation
that is optimized to use the minimum device resources. A 16-bit adder example
with the goal directive placed on an architecture is shown below. This code will
generate a ripple carry adder with a 2-bit group as the basic unit. This adder
would be implemented as carry-look-ahead if the goal was set to speed. A
comparison of the results after compilation for each goal and target device type is
shown in Table 9-11.

Table 9-11 Results of GOAL directives

FPGA CPLD

Area Opt. Speed Opt. Area Opt. Speed Opt.

24 logic cells 45 logic cells 23 macrocells 35 macro cells

8 passes 4 passes 8 passes 3 passes

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;
entity add16_a is porte

a, b:in std_logic_vector (15 downto 0);
sum:out std_logic_vector (15 downto 0»;

end add16_a;

architecture archadd16_a of add16_a is
ATTRIBUTE goal OF archadd16_a : ARCHITECTURE IS area;
begin

sum <= a + b;
end;

Warp User's Guide

Synthesis

9.4.1.2 The SYNTHESIS_OFF Directive

ATTRIBUTE synthesis_off OF signal_Dame : signal IS true;

When the synthesis_off directive is set to true, a signal is made into a
factoring point for logic equations. This directive keeps the signal from being
substituted out during the optimization process. The node number is used to
reference a macrocell within a CPLD.

Synthesis_off is useful for the following reasons:

• It gives the user control over which equations or sub-expressions need to
be factored into a node.

• It provides better results for designs where a signal with a large
functionality is being used by many other signals. If left alone, the fitter
would collapse all the internal signals (which is desirable in many cases)
and may drive the design's resource requirements beyond the available
limits.

• It helps in cutting down on compile time for designs which have a lot of
lisignal redirection" (signals getting inverted or reassigned to other
signals). This directive provides the logic optimizer a better control over
the optimization process, by reducing the number of signals it needs to
deal with.

By using the synthesis_off directive, the user can assign the commonly used
signal to a node and bring down the resource utilization.

A side effect of using the synthesis_off directive is that the design will now
take an extra pass through the array to achieve the same functionality. The extra
pass may be required anyway, if more than 16 PTs are required.

This directive is recommended only on combinatorial signals. Registered signals
are assigned to a node by natural factoring, and the synthesis_off directive
on these signals is redundant.

This directive can be associated with signals declared both in VHDL and
schematics. The BUF component can also be used in schematics and VHDL to
achieve the same results as the synthesis_off directive. Please refer to the
Warp Synthesis manual for more details.

Warp User's Guide 343

Synthesis

9.4.1.3

9.4.2

344

This directive allows the designer to force multiple passes through logic cells for
optimal density. The following example uses the synthesis_off directive and
uses 30 Macrocells in a CY7C371. This same design requires 43 Macrocells in a
CY7C371 without using the synthesis_off directive:

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity cpldadd is port(
a: in std_logic_vector(7 downto 0);
b: in std_logic_vector(7 downto 0);
c: in std_logic_vector(7 downto 0);
sum: out std_logic_vector(7 downto 0»;

end cpldadd;

architecture areacpldadd of cpldadd is
signal intsum: std_logic_vector(7 downto 0);
attribute synthesis_off of intsum:signal is true;

begin

intsum <= a + b;
sum <= intsum + c;

end areacpldadd;

The NO_FACTOR Directive

ATTRIBUTE no_factor OF signal_Dame : signal IS false;

The no_factor directive when set to true prevents logic factoring within the
Warp synthesis engine. This means that factors which can be shared among
multiple outputs are not generated. For area optimization, the no_factor
directive should always be set to false. This allows the synthesizer to create
common logic that can be shared, thus reducing the resources required.

FPGA Considerations

This section discusses area optimization methods using the Cypress pASIC380
FPGA architecture. The state_encoding and buffer_gen directives are
discussed.

Warp User's Guide

9.4.2.1

Synthesis

The STATE_ENCODING Directive

The state_encoding directive specifies the internal encoding scheme for
values of an enumerated type. For most state machine designs larger than 4 states,
the values recommended for area optimization in FPGAs are either
one_hot_one or one_hot_zero. The choice of which type to use depends on
the design being implemented. A detailed description of each encoding value is
provided below. Further information on state encoding schemes may be found in
the VHDL textbook accompanying this document set.

ATTRXBUTE state_encoding OF type_name : type XS
one_hot_zero;

When the state_encoding value is set to one_hot_zero, the encoding of
the first value in the type definition is set to o. Each succeeding value in the type
definition has its own bit position (flip-flop) in the encoding sequence. Thus, a
one_hot_zero encoding of an enumerated type with N possible values
requires N-l bits (flip-flops). The following VHDL code will generate a
one_hot_zero state machine design:

This state machine implements a simple traffic light.
The N - S light is usually green, and remains green
for a minimum of five clocks after being red. Xf a
car is travelling E-W, the E-W light turns green for
only one clock.

PACKAGE DesgnPkg XS
TYPE state XS (green_red, yellow_red, red_green,

red-yellow) ;
ATTRXBUTE state_encoding OF state: type XS one_hot_zero;
END DesgnPkg;

library ieee;
use ieee.std_logic_1164.all;
use work.desgnpkg.all;

ENTXTY traffic_light XS
PORT (clk, car: XN.STD_LOGXC;--E-W travelling car

lights: BUFFER state);
END traffic_light;

ARCHXTECTORE moorel OF traffic_light xs
The lights (outputs) are encoded in the following
states. For example, the state green_red indicates
the N-S light is green and the E-W light is red.
nscount is used to verify five consecutive N-S greens

Warp User's Guide 345

Synthesis

346

SZGNAL nscount: ZNTEGER RANGE 0 TO 5;
BEGZN

PROCESS
BEGZN

WAZT ONTZL elk = 111;
CASE lights ZS

WHEN green_red =>
ZF nscount < 5 THEN

lights <= green_red;
nscount <= nscount + 1;

ELSZF car = 111 THEN
lights <= yellow_red;
nscount <= 0;

ELSE
lights <= green_red;

END ZF;
WHEN yellow_red => lights <= red_green;
WHEN red_green =>

lights <= red-yellow;
WHEN red-yellow => lights <= green_red;
WHEN others => lights <= green_red;

END CASE;
END PROCESS;

END moore1;

The resulting state bit assignments indicated in the report file file-name.rpt for the
one_hot_zero design is shown below:

State variable
(0 to 3) .

State encoding
green_red
yellow_red
red_green
red_yellow

'lights' is represented by a Bit_vector

(one-hot zero-state) for 'lights' is:
:="000";
:="100";
:="010";
:="001";

ATTRZBUTE state_encoding OF type_name : type ZS one_hot_one;

One_hot_one state encoding is similar to one_hot_zero, except that zero
encoding is not used. Every state value has a bit position that is set to "1" when
the state variable is active. Thus, a one_hot_one encoding of a state machine
with N possible values requires N bits (flip-flops).

If the package statement used for the one_hot_zero street light example above
is changed to use one_hot_one, then the package declaration would appear as
shown:

Warp User's Guide

Synthesis

PACKAGE DesgnPkg XS
TYPE state XS (green_red, yellow_red, red_green,

red-yellow) ;
ATTRXBUTE state_encoding OF state: type XS

one_hot_zero;
END DesgnPkg;

The resulting state bit assignments indicated in the report file vhdlJile.rpt for the
one_hot one is shown below:

9.4.2.2

State variable 'lights' is represented by a Bit_vector
(0 to 3) .

State encoding
green_red
yellow_red
red_green
red_yellow

(one-hot one-state) for 'lights' is:
:="1000";
:="0100";
:="0010";
:="0001";

Notice that the one_hot_one design uses an extra flip-flop for the first state
assignment compared to the one_hot_zero implementation.

This traffic light example takes six logic cells when implemented in a CY7C381A
using one_hot_zero and seven logic cells when using one_hot_one. This
ratio may not always be the same, depending on other specifics on how the
design is implemented. A one_hot_zero implementation is useful in situations
where only a reset is available to the registers in a PLD. If an asynchronous signal
is required for initialization of the registers in a 22vlO, then a reset is the only
option. In this case, use a one_hot_zero state machine for initialization to state
zero. The one_hot_zero may be less optimum if the Idle state (all Os) is
required to decode an output signal or multiple transitions to different states. In
this case, all the state bits would have to be decoded to verify that the machine is
in Idle.

In general, one - hot designs are faster than binary encoded because state
transition decodings are simple. For FPGA architectures, a flip-flop is a less vital
resource than product term inputs because of the finer grain logic implementation
with a flip-flop in every cell. For these reasons it makes sense to use the one-hot
technique for FPGA state machines. This is not necessarily true for CPLD state
machine designs.

Warp User's Guide 347

Synthesis

9.4.2.3

9.4.3

9.4.3.1

The BUFFER_GEN Directive

signal ZS buf_none;

orconunandlineoption:-yb

The buf fer _gen directive controls the buffering strategy for signals that have a
high fanout (exceeding max_load). If a signal has a high fanout, then signal
propagation delays increase significantly. The buffer_gen value is by default
bUf_auto. The buf_none value is preferred for least resources being used.
Buffer generation should only be used where speed is of concern. Refer to Section
9.6.2, "Speed Optimization for FPGAs" for further details on buffer_Slen.

CPLD Considerations

This section discusses area optimization methods using all Cypress PLD and
CPLD architectures. The ff_type directive applies to area optimization in
CPLDs.

The FF _ TYPE Directive

signal IS ff_opt;

or conunand line option: - f 0

The ff_type value of ff_opt tells Warp to synthesize the signaCname to the
optimum flip-flop type for the logic implemented. A flip-flop is chosen based on
the fewest resources required to implement the logic function. For instance, a D
type flip-flop may be chosen for register data storage functions, while aT-type
(toggle) flip-flop may be chosen for counters. This option is recommended for all
designs unless the designer has specific requirements to force the use of a
different flip-flop.

9.5 Specific Control

This section describes specific control features of the Warp synthesis tool.

348 Warp User's Guide

9.5.1

9.5.2

Synthesis

The FF _ TYPE Directive (CPLD Only)

ATTRIBUTE ff_type OF signal_name : signal IS ff_d;

or command line option: - f d

The ff_type value of ff_d tells Warp to synthesize the signaCname using a D
type flip-flop. This will force the synthesizer to use a D-type flip-flop to generate
signaCname. This directive will typically only be used if the Warp synthesis tool is
not using the D-type flip-flop where the designer intends.

or command line option: - f t

The ff_type value of ff_t tells Warp to synthesize the signal_name using a
T-type flip-flop. This will force the synthesizer to use a toggle flip-flop to generate
signal_name. This directive will typically only be used if the Warp synthesis
tool is not using a toggle flip-flop, which the designer intends for functional
reasons.

The FIXED_FF Directive (FPGA Only)

ATTRIBUTE fixed_ff of signal_name : signal is
register_location

or command line option: - f n [n=register location]

The fixed_ff directive locks a flip-flop to a specific cell location in the device.
This directive overrides the default placement that the SpDE placer assigns
automatically. The f ixed_f f directive is applied to the Q output signal of a flip
flop. If the fixed_ff directive is aSSigned to any other signal besides the Q
output of a flip-flop, the directive is ignored. An example follows:

library ieee;
use ieee.std_logic_1164.all;

ENTITY ff_type_test IS
PORT (clk, ff_D: IN STD_LOGIC; -- Flip-flop clock, D-input

ff_Q: OUT STD_LOGIC); -- Flip-flop Q output
ATTRIBUTE fixed_ff OF ff_Q:signal IS "Al";

END ff_type_test;

Warp User's Guide 349

Synthesis

9.5.3

350

BEGIN
PROCESS
BEGIN

WAIT UNTIL clk = Ill;
ff_Q <= ff_D; -- Generate output

END PROCESS;
END arch_ff_type_test;

The above code segment will ensure the signal f f_Q is generated from the flip
flop located in cell" AI" of a pASIC device. This allows the designer to manually
place flip-flops to override the SpDE floor planner. This directive is used to place
flip-flops in close proximity in order to reduce routing lengths for critical path
signals. Flip-flops may be grouped together to provide maximum operating
speed. Refer to Section 9.6.2, "Speed Optimization for FPGAs," for further details
on optimizing a design for speed using the f ixed_f f directive.

The NODE_NUM Directive (PLD & CPLD Only)

ATTRIBUTE Dode_Dum OF signal_name : signal IS iDteger ;

or command line option: -fn [n=node location]

The Dode_Dum directive locks a Signal to a specific location in the target device.
This directive overrides the default placement that the Warp tool would assign
automatically. This directive applies to any combinatorial or sequential node
within the design.

Example:

library ieee;
use ieee.std_Iogic_1164.all;

ENTITY Dode_Dum_test IS
PORT (elk, ff_D: IN STD_LOGIC; -- Flip-flop clock, D-iDput

ff_Q: OUT STD_LOGIC); -- Flip-flop Q output
ATTRIBUTE Dode_num OF ff_Q:SIGNAL IS 398;

END Dode_Dum_test;

ARCHITECTURE arch_node_Dum test OF node_Dum_test IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL clk = Ill;
ff_Q <= ff_D; Generate output

END PROCESS;

Warp User's Guide

9.5.4

Synthesis

The above code segment will ensure the signal f f_Q is generated from the
macro cell driving node 398 in a CY7C374 device. Node 398 refers to buried
macro cell A in logic block #1 in a CY7C374. The specific node numbers available
for each FLASH370 series device may be found in the Reference Manual .
accompanying this document set. This directive allows the designer to manually
place logic to override the Warp floor planner.

The LAB_FORCE Directive (CPLD Only)

ATTR1:BUTE lab_force OF signal_nlilJDe : signal 1:S "string";

The lab_force directive aids in grouping signals together as a requirement to
the fitter. The string contains the name of the logic block. This directive will
force signa l_name to the string internal logic block without regard for 1/0
pin assignments. In most designs, the automatic assignment by the fitter is
acceptable. In some cases, the user may want to constrain the fitter to obtain better
partitioning than can be performed automatically. This directive should only be
used if the user is intimately familiar with the target CPLD architecture. This
directive can cause routing difficulties if logic is placed in an area that can block
routing paths.

Example:

ATTRIBUTE lab_force OF ff_Q:S1:GNAL 1:8 "B2";

This will force the signal ff_Q to the lower half of logic block B in a FLASH370
device. In the following example:

ATTR1:BUTE lab_force OF ff_Q:signal 1:8 "Bl";

The signal f f_Q is forced to the upper half of logic block B.

Warp User's Guide 351

Synthesis

9.5.5

352

The SUM_SPLIT Directive (CPLD Only)

ATTR~BUTE sum_split OF signal_name : signal ~s value;

The sum_spli t value can be balanced or cascaded. The default value is
balanced. Use the balanced value if reliable balanced timing is desired at the
expense of area. The following figure describes the balanced sum split concept:

ATTR~BUTE sum_split OF sum_signal:sig.nal ~s balanced;

Figure 9-2 The balanced sum split concept

The cascaded method uses only two macrocells to implement an equation.
There is no control over which product term is assigned to which macrocell. The
signals that are not split into macrocell #1 will arrive at macrocell #2 sooner,
thereby making the timing for the outputs different based on different arrival
times. If these output signals are registered, then of course the timing generated at
the outputs are the same.

ATTR~BUTE sum_split OF sum_signal:signal ~s cascaded;

Warp User's Guide

9.5.6

18

16

2

Split
to 16

Figure 9-3 The cascaded sum split

Synthesis

OR
Result~-"'·~

Which sum_split method to use depends on the area constraints and how the
design is implemented. Use the balanced method first and then the cascaded, if
the design did not fit using balanced.

The POLARITY Directive (CPLD Only)

ATTRIBUTE polarity OF signal_name : signal IS value;

The polari ty directive is used to select polarity for signals in a design. There are
two options for polarity, pl_keep and pl_opt. The pl_keep option will
instruct the Warp compiler to keep the polarity of a signal as currently specified in
the design. The pl_keep option is useful to instruct the compiler about the
desirable output sense of a signal at power up. When a circuit is initialized, it may
be desirable to provide an output as a 1/1" or I/O" and maintain this condition
without the compiler changing the sense for optimization reasons. In another
case, it may be desirable to keep signal senses in order to debug designs in the
simulator without being concerned about compiler-induced internal inversions.
In most cases, however, the pl_opt is the best choice. This option allows the
compiler to change the sense of internal Signals to provide the best optimization
for a design.

Warp User's Guide 353

Synthesis

9.6 Speed Optimization

9.6.1

9.6.1.1

354

This section describes the synthesis directives and techniques that may be used in
optimizing a design for performance. In most cases, the techniques for speed
optimization are device dependent. The discussion will cover first those
directives applicable to both FPGAs and CPLDs, then those for FPGAs only.

Speed Optimization for both FPGAs and CPLDs

The GOAL Directive

ATTRIBUTE goal OF architecture_name: architecture IS speed;

The goal value of speed indicates that all arithmetic modules inferred from
VHDL operators will be optimized for speed. The Warp synthesizer will select an
implementation that is optimized to achieve the best performance. This is a good
first step to take when optimizing a design for performance. To demonstrate the
goal directive, observe the performance delta in the following 8-bit adder
example implemented in a FLASH370 CPLD:

library ieee;
use ieee.std_10gic_1164.a11;
use work.std_arith.a11;

entity add8_a is port(
a, b: in std_10gic_vector (7 downto 0);
sum: out std_10gic_vector (7 downto 0»;

end add8_a;

architecture archadd8 a of add8 a is
attribute goal of archadd8_a: architecture is speed;
begin

sum <= a + b;
end;

Results with goal set to area was 57.0 ns (17.5 Mhz) worst case delay.

Results with goal set to speed was 27.0 ns (37 Mhz) worst case delay.

Warp User's Guide

Synthesis

9.6.1.2 The DONT _TOUCH Directive

9.6.2

9.6.2.1

ATTRIBUTE dont_touch OF label_name: label IS true;
ATTRIBUTE dont_touch OF entity_name: entity IS true;

In some rare cases, a block of a design may need to be hand-optimized. The user
may instruct Warp to leave the individually optimized block alone by applying
the dont_touch directive to the entity or the component to prevent any
optimization on the block. Under most circumstances, this directive is not needed
since Warp's optimization usually improves performance and resource efficiency.

architecture arch~accumulator of accumulator is

attribute dont_touch of blockl: label is true;

begin
blockl: add' (a, b, sum);

OR

entity my_adderS is port (
a,b: in std_logic_vector(O to 7);

) ;
attribute dont_touch of my_adderS: entity is true;

end entity my_adderS;

Speed Optimization for FPGAs

The BUFFER_GEN and the MAX_LOAD Directives

ATTRIBUTE buffer_gen OF signal_name: signal IS value;
ATTRIBUTE max_load OF signal_name: signal IS integer;

Buffering a signal with high fanout effectively reduces the load seen by a signal,
and is used to reduce the propagation delay of that signal. Warp is capable of
implementing several methods of buffering. By default, Warp attempts automatic
buffering (buf_auto, explained below). If a different buffering technique is
desired for a particular signal, or register duplication is required, then the
buffer_gen directive may be applied to that signal. To specify a limit on the
number of loads a signal should have, the max_load directive may be used in
conjunction with the buffer_gen directive. When Warp encounters a signal
with a fanout count larger than the specified max_load value, it buffers the
signal. Warp has a default maximum load setting of 13.

Warp User's Guide 355

Synthesis

356

Buffer generation options are:

buf_none: When the buf_gen directive is set to this value, Warp will not buffer
this signal. It prevents resources from being used unnecessarily as buffers. This
value should be used for signals which are not timing critical.

buf_auto : This is the default setting Warp uses for buffer generation. With this
setting, Warp first attempts buf_duplicate, then attempts buf_normal. The
buf_register will not be attempted.

buf_normal : A buffer tree is created between the signal source and its loads
until every node has a fanout of less than the maximum load count as specified by
the max_load directive. This technique is best used for signals that have very high
fanout (greater than 24) and need to meet a maximum propagation delay.

buf_duplicate: The logic gate that produced the source signal is duplicated
multiple times. This "paralleling" of signal sources does not create additional
levels of logic but does increase the load at the source inputs. For fanout loads of
less than 24, duplicate buffering will usually yield better performance than
normal buffering. The source logic must fit into a pASIC primitive P AfragA,
P AfragF, logico or the like. This method increases the load at the source inputs.

buf_register: Similar to duplicate buffering, registers are duplicated in
parallel. This method does not create additional logic levels and works best for
synchronous designs. For registered Signals, this method usually yields better
performance than normal buffering. This method increases the load at the register
input.

Example:

library ieee;
use ieee.std_logic_1164.all;

entity ld_reg is porte
d: in std_logic_vector (31 downto 0);
address: in std_logic_vector (3 downto 0);
q: inout std_logic_vector (31 downto 0);
clk: in std_logic); ,

end ld_reg;

architecture arch_ld_reg of ld_reg is
signal reg_en: std_logic;
attribute buffer_gen of reg_en: signal is buf_normal;
attribute max_load of reg_en: signal is 8;

Warp User's Guide

begin
main: process(clk)

begin
if (clk'event and clk = '1') then

if (reg_en = '1') then
q <= d;

else
q <= q;

end if;
end if;

end process;

reg_en <= '1' when (address = "1001") else '0';

Synthesis

Without buffering of any kind (automatic buffer generation disabled), the
reg_en signal has a fanout of 32. When importing into SpDE, the tool will warn
that the reg_en signal has a high fanout. SpDE's path analyzer reveals that the
worst case delay for a CY7C384A-2JC is 33.5 ns (-30 Mhz). To improve the
performance, the VHDL file may be recompiled with buffer generation enabled in
the device window of Galaxy (default), and max_load directive placed on the
reg_en signal. With the max_load set to 8, the worst case delay is brought
down to 18.2 ns (-55 Mhz). As a guideline, max_load should generally be set in
the range of 5 to 13. Above 13 loads, the delay of a signal is mostly due to the
number of loads and their associative routing. Between 5 and 13 loads, the tPD of
the added buffer with its associating routing may begin to balance out the fanout
delay. Below 5 loads, the buffering delay begins to outweigh the savings from
load reduction. For example, when max_load is set to 4, the worst case delay is
19.1 ns (52 Mhz), worse than when max_load is 8. It should be remembered that
delays in an FPGA are design-dependent and place-and-route dependent. This
means that for the same max_load setting, different designs and place-and
route iterations will have different performances, hence the recommended range
of 5 to 13 loads.

If the reg_en signal is a register~d signal, as in the code below, then the
buf_register setting should be used with the buffer_gen directive. In
register buffering (maX_load = 8), the register source is repeated. In this case,
the register is automatically repeated four times to bring the worst case delay
down to 15.6 ns (~64 Mhz).

Warp User's Guide 357

Synthesis

9.6.2.2

358

architecture arch_ld_reg of ld_reg is
signal reg_en: std_logic;
attribute buffer_gen of reg_en: signal is buf_register;
attribute max_load of reg_en: signal is 8;

begin
main: process(clk)

begin
if (clklevent and clk = Ill) then

if (address = "1001") then
reg_en <= Ill;

else
reg_en <= 10 1;

end if;

if (reg_en = Ill) then
q <= d;

else
q <= q;

end if;
end if;

end process;

The PAD_GEN Directive

attribute pad_gen or sigual_name: signal ZS value;

The pASIC380 family has three different types of pins. Bidirectional pins may be
configured as bidirectionals, inputs only, and three statable outputs. There are
also dedicated inputs and clock input pins. The dedicated inputs are high drive
inputs for use with signals with high internal fanout. Clock inputs utilize an
internal clock distribution tree to achieve low skew. (Clock inputs can also double
as high drive inputs.) The type of input can be specified by using the pad_gen
directive.

entity counter is port (
clock: in std_logic;

) ;
attribute pad_gen of clock: signal is pad_clock;

end entity counter;

Warp User's Guide

9.6.2.3

Synthesis

Automatic: Warp defaults to this setting. This setting attempts to find the type of
pad that best suits the implementation of the signal (bidirectional I/O, clock, or
highdrive). This setting is activated when the automatic pad generation is enabled
in the device window of Galaxy, and thepad_gen directive is set to pad_auto
or no directive for pad_gen exists.

Bidirectional I/O: The majority of input signals and all output signals use a
bidirectional I/O pin. These pins can be configured as always active outputs,
three-state outputs, inputs, and bidirectionals. To indicate to Warp that a signal
should utilize an I/O pin, the above directive may be used with the value set to
pad_none or pad_io.

Dedicated High-Drive Input: When an input signal drives many internal logic
gates (on the order of 8 or more loads), a dedicated high drive input can be used
to reduce propagation delays. The high drive inputs have double the drive
capability of a regular I/O input driver. Because they are intended for multiple
loads in mind, high drive inputs require the use of express wires for routing.
Express wires are routing resources that traverse the entire length of the device.
For very large fanout counts, multiple high drive input drivers may have their
outputs tied together. This requires that the input signal at the pins is the same.
To have Warp utilize the dedicated inputs, use the above directive with the value
set to: pad_hdl, pad_hd2, pad_hd3, or pad_hd4.

Clock Input: To maintain a chip-wide skew of less than one nanosecond, the
clock distribution tree limits clock input signals to being wired to the reset, preset
and clock inputs of each logic cell's register. To utilize the clock inputs, use the
above directive with the value set to pad_clock.

The FIXED_FF directive

ATTRIBUTE fixed_ff OF signal_name: signal IS
register_location;

Hand placement of logic cells within the device is generally not recommended,
since an unrestricted place and route tool will be able to move logic cells near
each other when necessary during placement to reduce delays and routing
utilization. For cases where the user needs strict control over logic cell placement,
however, hand placement of logic cells is possible using the directive f ixed_f f
on the registered signal. The signal being fixed must be a signal on the Q output
of a flip-flop or logic cell. The two most common situations which potentially
benefit from assigning logic cell placement are discussed below.

Warp User's Guide 359

Synthesis

360

Logic cell placement in a column arrangement is useful when used in conjunction
with high drive inputs (dedicated inputs which can drive larger loads than the
standard I/O). High drive inputs require the use of vertical routing lines that
span the entire height of the device for small devices (express wires) or four logic
cells for larger devices (quad wires). Because of this, arranging logic cells in a
single column will require the use of only one express wire or a minimum
number of quad wires, thus saving resources as well as decreasing the
propagation delay. Fifo and shift register applications often will have this type of
situation; however, it is recommended that this be the last step in optimizing a
design for performance.

Logic cell placement can also aid in minimizing register to pin delays. The Warp
development system usually attempts to place the source logic cell near the
output pin. To insure that critical output pin signals have minimal clock to valid
times, however, the f ixed_f f directive may be used to lock the logic cell near
the output pin.

An example, counter4. vhd, is shown below (a 4-bit counter with enable). It is
desired that the registers for the vector data be placed in a column. Since VHDL
does not allow directives to be placed on individual signals of a vector, Warp's
control file is used.

library ieee;
use ieee.std_logic_1164.all;
use work.std_arith.all;

entity counter4 is porte
data: inout std_logic_vector (3 downto 0);
clk,rst: in std_logic);

end counter4;

architecture arch_counter4 of counter4 is
begin
process (clk,rst)

begin
if (rst=11 1) then

data <= (others => 10 1);
elsif (clklevent and clk=11') then

data <= data + 1;
end if;

end process;

end arch_counter4;

Warp User's Guide

Synthesis

After compilation, it is noted that the data signal vector has been broken down
into individual signals with labels da ta_ 0, da ta_l, etc. A control file is made
by creating a new file called counter4.ctl. This file contains the code:

attribute fixed - ff of data - 0: signal is "Bl";
attribute fixed - ff of data - 1: signal is "B2" ;
attribute fixed_ ff of data - 2: signal is "B3" ;
attribute fixed_ ff of data - 3: signal is "B'" ;

Warp User's Guide 361

Synthesis

This results in the layout shown below:

B

'.1_.1

Figure 9-4 Layout with fixed_ff directive

362 Warp User's Guide

Synthesis

9.6.2.4 The STATE_ENCODING Directive

9.7

9.7.1

9.7.2

ATTRIBUTE state_encoding OF type_name: type IS value;

Next-state equations for state machines with sequential encoding can be complex
and product-term intensive. This is particularly undesirable in FPGAs because
several cascaded logic cells may be required to complete the equations. A
different state encoding scheme can reduce the complexity of the state encoding
equations, thus reducing logic cell utilization and ultimately reducing state
decode propagation delays. Two state encoding schemes which accomplish this
are one-hot-one and one-hot-zero state encoding.

See Section 9.4.2.1, "The STATE_ENCODING Directive," for more information.

Documentation Directives

The PART_NAME Directive

A user may want to specify a particular device so that the original design
documents specify which device it was designed for. This directive will override
any target device command line switch or a Galaxy dialog box setting.

entity counter is port
a,b: in std_logic;

) ;

attribute part_name of counter: entity is "c371";
end entity counter;

The ORDER_CODE Directive

ATTRIBUTE order_code OF entity_name: entity IS "order_code";

A particular package and speed bin of a device can be specified to the Warp
synthesis tool by using the directive order_code within the design to ensure
timing information reflects the speed grade of the desired part. The order codes
can be found in the Ordering Code column of the ordering information table for
each device in the Cypress Semiconductor Programmable Logic Data Book. Timing
delays for CPLDs are calculated according to the speed bin specified by this
directive, or if no directive is specified in the VHDL code, the compiler will use
the directive specified in the device window of Galaxy.

Warp User's Guide 363

Synthesis

9.7.3

entity counter is port
a,b: in std_logic;

) ;
attribute order_code of counter: entity is "CY7C371-
66JC";
end entity counter;

The PIN_NUMBERS Directive

ATTRZBUTE pin_numbers OF entity_name: entity ZS "strinv';

Once a design has been completed and the board is defined, it may be desirable to
maintain the pin out configuration when modifications to the programmable
logic design are made. Locking signals to a particular pin can be accomplished by
using the pin_numbers directive in the design.

entity counter is port
a,b: in std_logic;

) ;
attribute pin_numbers of counter: entity is "a:6 b:7 ";

end entity counter;

It is recommended that whenever possible, particularly the first time a design is
fitted to a device, the pins of a device should not be locked. When the pins are not
locked, the fitting tools can choose the optimal fitting arrangement within the
device for performance as well as minimal resource utilization. In some rare
occasions, certain pin arrangements can render a fitting impossible.

Once a design has been fitted to a device (and the tool has already chosen a
working pin configuration), the pin assignments can be back-annotated to the
design schematic. The pin_numbers directive can also be used to set the pins of
the design.

9.8 Directive Format Summary

364

A summary of the VHDL attribute formats, possible values, and command line
switches are provided in Table 9-12.

Warp User's Guide

Synthesis

Table 9-12 Directive formats

Directive VHDLFormat Values (D=Default)
Cmd
line

goal attribute goal of arch_name: speed (D), area, or ygs
architecture is value; combinatorial yga

ygc

state_encoding attribute state_encoding of sequential (D),
type_name: type is value; one_hoCzero, --

one_hot_one, or gray

buffer_gen attribute buffer_gen of buCauto (D),
signaCname : signal is value; buCnone, buCnormal,

yb
buCduplicate, or
buCregister

max_load attribute max_load of 13 (D) or positive inte-
signaCname : signal is integer; ger

ym

pad_gen attribute pad_gen of pad_auto (D),
signaCname : signal is value; pad_none, pad_clock,

pad_hd1, pad_hd2, yp

pad_hd3, pad_hd4, or
pad_io

synthesis_off attribute synthesis_off of false (D) or true --signaCname : signal is value;

dont_touch attribute dont_touch of false (D) or true
labeCname : label is value; --attribute dont_touch of
entity_name: entity is value;

no_latch attribute no_latch of false (D) or true
yl

signaCname : signal is value;

lab_force attribute lab_force of Example: "A1" --signaCname : signal is location;

pin_avoid attribute pin_avoid of Example: "1 2 3" --entity_name: entity is location;

Warp User's Guide 365

Synthesis

Directive VHDLFormat Values (D==Default)
Cmd
line

polarity attribute polarity of pLdefault (D), pLkeep, fk
signaCname : signal is value; orpLopt fp

sum_split attribute sum_split of balanced (D) or cas- --signaCname : signal is value; caded

node_num attribute node_num of nd_auto (D) or positive
fn

signaCname : signal is value; integer

fixed_ff attribute fixed_ff of Example: II A2"
fn

signaCname : signal is location;

ff_type attribute ff_type of fLdefault (D), ff_d, ff_t, fd
signaCname : signal is value; or fLopt ft

fo

no_factor attribute no_factor of false (D) or true
f1

signaCname : signal is value;

opt_level attribute opt_level of 2 (D), 1, or 0
0

signaCname : signal is integer;

part_Dame attribute part_name of Example: "c371"
d

entity_name: entity is string;

order_code attribute order_code of Example: "PALC22VI0-
entity_name: entity is string; 25HC"

p

piD_Dumbers attribute pin_numbers of Example: "sigl:l " &
ff

entity_name: entity is string; "sig2:2"

366 Warp User's Guide

Chapter 10
Device Programming

Device Programming

10.1

368

Once a design has been compiled, synthesized, and simulated, it is ready to be
implemented in silicon. This implementation consists of two steps: the generation
of a programming file and the programming of the device. In this section, both
steps will be discussed for all devices in the Cypress programmable logic family.

The programming file type that the designer generates depends upon the device
type to be programmed. Three programming file types exist for Cypress devices,
JEDEC 'jed), POF 'po!), and LOF pof>. The table below summarizes the file type
needed for each of the Cypress device types as well as the steps required to
generate these files. These steps are described in detail in this section.

Table 10-1 Programming file types

Device Type
Programming File

How to Generate File
Type

Run Galaxy
Small PLDs, FLASH370

JEDEC
Go to Device menu

CPLDs Output: JEDEC Normal
Compile Design

Run Galaxy
Go to Device menu

MAX340 CPLDs POF Output: JEDEC Normal
Compile Design
Run jed2pof.exe from DOS

Run Galaxy
Go to Device menu
Output: QDIF

pASIC380 FPGAs LOF
Compile Design
RunSpDE
ImportQDIF
Run place and route
Export LDF

Generating a JEDEC File

For programming a small PLD or a FLASH370 CPLD, a JEDEC file is required. In
the Warp design environment, this file is created as the last step of compiling a
design. JEDEC file generation is enabled in Galaxy by clicking on the Device
button in the main project window, and then selecting JEDEC Normal as the

Warp User's Guide

Device Programming

Output option. This programming file will have the same base name as the top
level design file with a .jed extension.

Two output file formats are possible when a small PLD or CPLD is selected,
JEDEC Normal and JEDEC Hex. Both files contain the same information but
slightly differ in format. Whereas the JEDEC Normal represents fuse addresses
and data in binary (0 and 1), the JEDEC Hex represents them in hexadecimal
(0 through F). Most device programmers require the JEDEC Normal format, and
the programmer software will generate errors if the JEDEC Hex file format is
used.

Some portions of a JEDEC file are included below to provide an example of the
information that it contains:

Cypress c371 Jedec Fuse File: test.jed

This file was created on 12/11/95 at 10:20:55
by C37XFXT.EXE 06/MAR/95 [v3.17B] 3.5 XR x96

ABc371*
QP44*
QF13274*
FO*
GO*
NOTE DEVXCE c371*

Number of Pins*
Number of Fuses*
Note: Default fuse setting 0*
Note: Security bit Unprogr~ed*

NOTE PACKAGE CY7C371-143JC*
NOTE PXNS aeqb:2 b_3:10 b_2:11
NOTE PXNS a_0:42 a_1:43 *
NOTE NODES *
NOTE NODES *
LOOOOOO
000000000010000000000011100000000000000000100000000000000011
100000000000
* Note: LAB 1 BANK OE 0*

L000072
000000010000000011111000000000000000100000000000001000100000
010000000000
* Note: LAB 1 BANK OE 1*
(etc.)

Warp User's Guide 369

Device Programming

370

CC3B5* Note: Fuse Checksum*

QV4l5l* Note: NUmber of Test Vectors*
VOOOl NLllBFZZ010NC10Zl0ZZZNNZZZLllZlllNOZLLLHHZLN*
V0002 NLllBLZZ010NC10Zl0ZZZNNZZZLllZlllNOZLLLHHZLN*
V0003 NLllBLZZOOONC10Zl0ZZZNNZZZLllZlllNOZLLLBRZLN*
(etc.)

V4l5l NLllFF10Z00NCZZZZZZZZNNZZZLZZZ001N1ZLLHLHZBN*
"'CI'FAO Note: File Checksum*

At the top of the file is information about the design compilation, including the
software revision number, date of compilation, and filename. Further down in the
file is the design and device information. The QP field (QP44) tells the user that
this file is for a 44-pin device. The QF field denotes the total number of fuses that
can be programmed: 13,274 for a CY7C371. A few lines below this are several
NOTE fields detailing the device, package, and signal names for the design
signals. The device programmer does not use these fields, but simulators use
them for package-specific pin numbers and signal names during simulation.
Because the programming algorithm does not use this pin information, but rather
only uses the fuse numbers for addressing internal locations within the device,
the user can program any package of a given device type with the same JEDEC
for that device. For example, the designer could use a TQFP package to compile
and simulate a design, and then use the resulting JEDEC file to program a PLCC
package of the same device. In short, the package information in the file is
relevant not for programming but for simulation.

Mter the NOTE fields, the fuse address and data begins. Each L field in the
JEDEC file corresponds to a region of the device. The data following the L field
corresponds to the values to be programmed in those locations (1 = programmed,
0= unprogrammed).

Near the end of the file are two checksums, a fuse checksum and a file checksum.
First, the fuse checksum represents the sum of all of the fuse values in the JEDEC
file. Device programmers often use this sum to verify that the pattern
programmed into the device (number of fuses programmed) matches the number
in the JEDEC file. By reading the fuse values from a programmed device, the
programmer determines the number of fuses that were programmed. In the
sample JEDEC file above, the fuse checksum is C3B5. The checksum value is
always preceded by a C.

Warp User's Guide

Device Programming

The file checksum, which is the last line in the file, represents a total value for all
characters in the JEDEC file, including both fuse values and notes, comments, and
signal names. Using this checksum value, the designer can tell if the
programming file has been corrupted or modified. If the file has been changed,
the file checksum computed by the device programmer will not match the
checksum in the file, and an error will be reported. In the sample JEDEC file, the
file checksum is FFAO, preceded by I\C.

Between the fuse checksum and the file checksum are test vectors for the design.
Device programmers use these vectors to test the functionality of the
programmed device. Using these vectors in sequence, the programmer applies
inputs to the device and checks the outputs for the expected values. The QV field,
found immediately after the fuse checksum, represents the number of test vectors.
This sample design has 4,151 test vectors. Many third-party software companies
offer products that automatically generate test vectors for a design using a JEDEC
file as the input.

10.2 Generating POF Files for MAX340 CPLDs

The steps required to program the MAX340 CPLDs are identical to those
discussed above for FLASH370 CPLDs with one additional step required to
produce the programming file. After the design is compiled and produces a
JEDEC Normal file, that file must be converted to a POF 'pof) file. POF files are
binary programming files which are not based on the JEDEC standard.
Programming algOrithms developed for the MAX340 CPLDs use this format
instead of the JEDEC format.

To perform the conversion from JEDEC to POF, the executable jed2pofexe must be
run from DOS. This program takes the device type and JEDEC filename as input
and produces a file with the same base name and a .pof extension. The part can
then be programmed on a device programmer. If you are using the Warp
software on a PC, this utility can be found in the c:\warp\bin\jed2poJ directory.
If you are using a workstation, you can obtain this program from the Cypress
Bulletin Board System (BBS) at (408) 943-2954.

Warp User's Guide 371

Device Programming

10.3 Generating LOF Files for pASIC380 FPGAs

Cypress pASIC380 FPGAs require a different programming file format, the LOF
~loj) format. After performing place and route on a design using SpDE, the
designer can generate a LOF file by going to the File menu in SpDE and selecting
Export LOF. The fuse information is then stored in the LOF file (design.lof). If
running SpDE on a PC platform, the user then has the option of zipping the LOF
file after it has been generated. Doing so significantly reduces the size of the file
(which can be several megabytes) and produces the format required by the Data
I/O Unisite programmer. The Cypress Impulse3 programmer uses the unzipped
version of the LOF file instead of the zipped version. If the file has been zipped,
the user would unzip it using pkunzip.exe, a popular shareware utility available
on the Cypress BBS.

At the top of any LOF file are several fields containing information about the
device type, programming file, and the software revision of the SpDE software
used to generate the file. Some portions of the LOF file header are included below:

Design name: test
Part name: p16x24b*
QP144*
(etc.)

QRS.06*
(etc.)

In the example above, the QP field represents the number of pins on the device -
144 in this case. The QR field gives the revision number of the SpDE place and
route software used to generate the LOF file.

10.4 Device Programmers

372

Cypress sells a programmer called the Impulse3 that supports PROMs, small
PLDs, CPLDs, and FPGAs. Different part and package combinations require
various programming adapters that fit onto the base unit of the programmer. By
using the correct programming adapter and generating the programming file as
discussed earlier in this section, all of the Cypress devices can be programmed
using Impulse3. Software updates for Impulse3 are free and are available on the
Cypress World Wide Web home page.

Warp User's Guide

Device Programming

Other third-party vendors such as Data I/O, BP Microsystems, SMS, System
General, and Logical Devices offer varying degrees of programming support for
Cypress devices. The Data I/O Unisite has the most complete support for Cypress
devices of these third-party programmers. The designer should directly contact
the manufacturer of these third-party programmers for device support questions.
The design flow for programming each type of device is summarized in the
following graph.

GALAXY

"Device" button
Output: JEDEC Normal

"Device" button
Output: QDF

Small PLDs
FLASH370

MAX340 pASIC380

JEDEC
(.jed)

JEDEC
(.jed)

jed2pof.exe
(from DOS)

POF
'pof)

QDIF
(.qdf)

SpDE
Place and
Route

File->Export LOF

LOF
(.Iof)

DEVICE PROGRAMMER

Figure 10-1 Design flow for device programming

Warp User's Guide 373

Device Programming

374 Warp User's Guide

Index
A
Adobe Acrobat Reader

PC Installation '" '" 2
Programmable Logic Data Book 2, 5
SunOS/Solaris/HP installation 4-5

About command
Nova Help menu 259
SpDE Help menu 211

Acrobat Reader '" '" , 2
ALU circuit design tutorial

architecture , '" 145-146
back-annotation pin assignments 167
compiling and synthesizing top-level

schematic .. 159
entity declaration 144
exporting top-level schematic 158
generally .. 110
generating a symbol- from the '" .. .

schematic .. 143
instantiating components, described

...................................... 133-141, 155-157
instantiating LPM components

...................................... 114-116,150-151
labeling nets and buses '"

...................................... 132-141, 153-157
libraries .. 147
package declaration 146-147
placing and routing 159-161
PLD schematic described 116-128
positioning of components .. '"

...................................... 128-129, 151-15i
project, creation of.. '" 111
schematic, creation of top-leveL

... 112, 150
schematic, saving of.. .. : 142, 157-158

starting Warp3 '" '" 11 0
VHDL file, generating a symbol for 149
VHDL file, verifying of 148-149
VHDL file, writing of 143-144
ViewDraw 112-114
ViewSim 162, 163-166
wiring components together '"

...................................... 130-131, 152-153
wiring components together, '"

described 133-141, 155-157
Architecture

ALU circuit design, use in 145-146
parking garage monitor design, use

in .. 74, 77-79
soda machine design, use in 33,35-37

Area optimization
CPLD and FPGA considerations

. .. 341-344
CPLD considerations 348
FPGA considerations 344-348

Areal speed optimization in SpDE Logic
Optimizer ... 214

Arranging signals in Nova 278
Attributes used for applying synthesis

directives 317-318
A TVG Coverage command in SpDE Info

menu ... 210
See also Automatic Test Vector
Generation (ATVG)

Automatic pad generation 359
Automatic Test Vector Generator (ATVG)

defined ... 212, 225
design considerations 228-231
fault grading , 228
stuck-at faults 226-228
testing overview '" 226

D

Index

Available list box in SpDE Path Analyzer
... 237

B
Back-annotating pin assignment

information
ALU circuit design, use in 167
parking garage monitor design, use

in .. 105-106
soda machine design, use in 66-67

Back-Annotation
ALU circuit design tutorial.. 167
Galaxy .. 194
parking garage monitor design

tutorial .. 105
schematic entry 291-292
soda machine design tutorial 66-67
SpDE ... 208, 212
SpDE simulation 220, 224-225

Bidirectional I/O pin in pASIC380 358-359
BIGWIN Windows extender 3
Bold convention .. 24
Browser tool ... 74, 193
Buffer_gen directive in FPGA

area optimization , , 348
speed optimization 355-358

Buffer generation in Galaxy 181
Buses in Nova Edit menu 259,267-268
Buses, labeling of 132-133, 153-157
Bus Radix command in Nova Edit menu

... 259,268

c
Calculations in SpDE Path Analyzer 239
Cell Utilization command in SpDE Info

menu ... 208-209
Checksums in JEDEC files 370-371
Choose FF types option in Galaxy 179
Circuit, simulation of, in Nova 277-278
Click mouse convention 25
Clock input pins in pASIC380 358-359
Clock networks in SpDE Router 219
Clock signal in Nova

376

parking garage monitor design, use
in .. 95-98

setting up 259,261-262
soda machine design, use in 53

Clock Skew in SpDE Path Analyzer 239
Cockpit, Viewlogic, in Warp3 17, 23
Command line switches, summary ... ,

... 364-366
Compilation

launching retargeted parking garage
monitor design 101-102

launching retargeted soda machine
design .. 61-63

selecting files for soda machine
design .. 43-44

synthesizing files for parking garage
monitor design 91-92

synthesizing files for soda machine
design .. 48

top-level schematic 159
Compiler for Warp VHDL

component in Warp2 22
component in Warp3 23
Galaxy .. 17
libraries, linking to 38

Compiling a design in Galaxy 187-189
Command line, synthesis controlled

from ... 317-318
Component ports, labeling of 132,153-154
Components

positioning of 128-129, 151-152
wiring together 130-131, 152-153

Computer platforms available in Warp 16
Control file used in applying synthesis

directives 317, 319
Conventions

file naming , 24
generally .. 24-25
mouse ... 25

Corner radio button group in SpDE
Delay Modeler 222

Courier convention ... 24
CPLD

JEDEC file generation , 368-371
target design in Warp 16

Warp User's Guide

Create Bus command in Nova Edit menu
... 259, 267,279

Create Segment command in Nova
Options menu 274, 275-276

Create View Node command in Nova
Edit menu 259, 264

CY7C381A FPGA, retargeting designs to
...................... ~ 58,99

D
Dedicated high-drive input pins in

pASIC380 358-359
Delay Histogram graph in SpDE Path

Analyzer ... 238
Delay Modeler in SpDE design

tools 211, 220-223
Delete Bus command in Nova Edit

menu ... 259, 268
Delete Segment command in Nova

Options menu 274, 275-276
Delete View in Nova Views menu

... 269, 272-273
Delete View Node in Nova Edit menu

... 259,265
Description, creation of top-level

parking garage monitor design 82-87
soda machine design 40-43

Design process ... 17
Design Verifier in SpDE design tools

... 211,212
Detailed report error message in Galaxy

... 186
Device programming

file types ... 368
JEDEC file, generation of 368-371
LOF files, generation of 372
POF files, generation of 371
programmers 372-373

Device selection. See also Targeting a
device in Galaxy

parking garage monitor design 89, 100
soda machine design45, 60

Directive format summary 364-366
Directives - See Synthesis directives

Warp User's Guide

Index

Display differences between operating
systems ... 26

Display radio buttons in SpDE Path
Analyzer ... 236

Documentation directives used in
synthesis 363-364

DonCtouch directive in FPGA and
CPLD speed optimization•.... 355

Double buffering in SpDE high-fanout
nets .. 242-244

Double-click mouse convention 25
Drag mouse convention 25
DRAM controller

area optimization 331-332
CPLD optimization, first pass 332-333
default options in FPGA

optimization 324-326
example of 319-324
speed optimization in FPGA (first

tuning cycle) 327-329
speed optimization in FPGA (second

tuning cycle) 329-331
state machine gray encoding in

CPLD optimization 334-335
synthesis_off directive in CPLD

optimization 335-337

E
Edit Bus command in Nova Edit menu

. .. 259,268
Edit Views command in Nova View

menu 269,270-272
Editing files in Galaxy 191-193
Effort generic option in Galaxy 184
Entity declaration

ALU circuit design, use in 144
parking garage monitor design, use

in .. 74-77
soda machine design, use in 33-34

Error message compiler options in
Galaxy ... 185-186

Error tracking in design compilation
in Galaxy .. 189

Exit command

377

II

Index

Nova File menu '" , , .. 259
SpDE File menu 200

Expanding paths in SpDE Path Analyzer
... 234

Export LOF command in SpDE File
menu ... 200

Exporting of schematic 289-290
Express wires , , , , .. 220

F
Factor cost synthesis parameter , .. 182
Factor logic in Galaxy 180
Fault grading in SpDE ATVG 228
FCtype directive in CPLD synthesis .,. '"

... 348,349
File. See VHDL file
File editing in Galaxy 191-193
File formats in Nova File menu 257-258
File menu in Nova 252-259
File menu in SpDE 199-200
File naming conventions ,. '" 24
File, top-level

compiling and synthesizing 43-48
setting of .. 47, 91

Fitting of logic equations 18
Fixed_ff directive in FPGA

speed optimization 359-362
synthesis , 349-350

Fixed placement in SpDE Placer 217
Flip-Flops, fixing placement in SpDE

Placer ... 218
Float nodes option in Galaxy , , .. 180
Float pins option in Galaxy , , .. 180
FPGA. See also Galaxy

CY7C381A ... 58, 99
pASIC380 family 58, 99 .
target design in Warp 16

Full Fit command in SpDE View menu
... 200

G
Galaxy. See also Device selection;

Package selection; SpDE tools;

378

Speed bin selection; Starting
Galaxy

back-annotation 194
compiling a design 187-188
generally .. 17
generic options 184-186
integrated editor 191-193
library management 189-191
overview ... '" .. , '" '" .,. '" .. 170
project management 171-177
simulation .. 194
targeting a device 177-183

Generic options in Galaxy 184-186
Gnd LPM component.. 124-125
Goal directive in CPLD and FPGA

area optimization , 342
speed optimization 354

Graphical User Interface. See GUI
Graphing in SpDE Path Analyzer 238
Guaranteed mode in SpDE Delay

Modeler , '" 221
GUI

in Galaxy .. 17
synthesis controlled from 317-318

H
Help Menu in SpDE. 211
Hierarchy, printing of, in schematic

entry .. 295
High drive inputs .. 360
High-Drive Pads (HDPADs) in SpDE

Router ... 220
High-fanout nets, accelerating of 242
Highlight net command in SpDE View

menu 201, 203-204
Highlight Net mode in SpDE analysis

tools ... 232-233
Hint convention .. 25
Hold time in SpDE Path Analyzer 241

Import command in SpDE File menu 199
Impulse3 programmer 372

Warp User's Guide

In LPM component 125-126
Info menu in SpDE 208-210
Inheritance, hierarchical 317
Input node values in Nova Edit menu

... 265-266
Installation onto PC 1-4
Installation onto SunOS/Solaris/HP 4-12
Instantiating, described 133-141, 155-151
Instantiating LPM components

...................................... 114-116, 150-151
Integrated editor in Galaxy 191-193
Interconnect resources in SpDE Router

... 219-220
I/O pads, fixing placement, in SpDE

Placer ... 217

J
JEDEC (.jed) file 170, 368-371
JEDEC vectors, writing in Nova File

menu ... 257

K
Keep polarity option in Galaxy 179-180

L
Lab30rce directive in CPLD synthesis 351
Labeling

component ports 132, 153-154
described 133-141, 155-157
nets and buses 132-141, 153-157

Libraries included in the creation of
VHDLfile

ALU circuit design 147
soda machine design '" 38

Library management in Galaxy
assigning a name 191
compiling design files 190
Create library command 190
Delete library command 190
library, defined 189
Library window in Galaxy 190
Remove design command 190

Warp User's Guide

Index

using design units 191
Library of Parameterized Modules

(LPM). See LPM
Licensing for Viewlogic Tools in Warp3

... 2,13
LOF (.lof) file 62, 368, 372
Logic cell placement 359-360
Logic optimization modes 214
Logic Optimizer in SpDE design tools

... 211, 212-214
LPM Components

Gnd ... 124-125
In .. 125-126
instantiating 114-116, 150-151
Madd_sub .. 116-118
Mand .. 119-120
Mcompare 118-119
Minv ... 122
Mmux ... 123-124
Mor ... 120-121
Mxor ... 121
Out .. 127-128

LPM
defined ... 297
element, creation of.. 286-288
element, modification of 288
element, non-LPM 288
lpmlocallibrary, creation of 286
release 3.5, use of schematic libraries

... 292
use of .. 284-285

lpmlocallibrary command 284-286, 295

M
Madd_sub LPM component.. 116-118
Mand LPM component 119-120
MAX340 CPLD, POF file generation 371
Max. Errors message in Galaxy 186
Max_load directive in FPGA speed

optimization 355-357
Max. Load synthesis parameter 182
Max. warnings error message in

Galaxy ... 186
Mcompare LPM component.. 118-119

379

Index

Menu item convention 24 Nova JEDEC functional simulator
Mice support in Warp4 clock signal, designation of.. 53, 95-98
Minv LPM component 122 color of traces .. 280
Mmux LPM component 123-124 component in Warp2 22
ModelT environment, post-synthesis component in Warp3 23

VHDL simulation 307-308 creating buses ... 279
Mor LPM component 120-121, design behavior simulation
Mouse conventions ... 25 .. 49-58, 92-105
Multiply and accumulate function, design simulation, used in 18

example of Edit menu .. 259-268
area optimization in CPLD 341 File menu ... 252-259
area optimization in FPGA 340 generally .. 250
default options in CPLD optimization Options menu 273-277

... 340 printing output 280
default options in FPGA optimization quick reference sheet 277-278

... 338-340 Simulate menu .. 269
Mxor LPM component 121 simulation length 53, 95, 280

simulation, running of.. 57-58
simulation tics 279-280

I
N
Naming restrictions .. 26
Netlist, generation of VHDL 17
Nets, labeling of.. 132-141, 153-157
New command in SpDE File menu 199
New project, creation of

starting 49-51, 93, 250-251
stimulus signal values, setting of 54-57
view, creation of 51-52
Views menu 269-273
window .. 251-252
Write Sim command in File menu 279

ALU circuit .. 111
parking garage monitor 73-74
soda machine 29-31 o

No_factor directive in CPLD and FPGA On-line documentation, reading of 13
area optimization 344 One_hot_zero and one_hot_one

Node cost synthesis parameter 182 compared ... 347
Node Defaults command in Nova Edit Open command

menu 259,265-267 Nova File menu 253-255
Node_num directive in PLD and CPLD SpDE File menu 199

synthesis 350-351 Operating frequency in SpDE Path
Node numbers in Nova window 251 Analyzer ... 240
Node points to view, selection of, in Operating Range radio button group in

Nova Edit menu 259, 264-265 SpDE Delay Modeler 221
Nodes in Nova Edit menu 259, 263 Operating systems, differences between 26
Non-repetitive pulses, setting up, in Optimization level generic options in

Nova Edit menu 259, 262-263 Galaxy ... 184-186
Normal Fit c;ommand in SpDE View Options command in SpDE Tools

menu ... 200 menu ... 206
Note convention .. 25 Options menu in Nova 273-277
Note fields in generating JEDEC file 370

380 Warp User's Guide

Index

Ordeccode documentation directive solution of design 71
... 363-364 VHDL file, creation of 74-75

Out LPM component. 127-128 Part_name documentation directive 363
Out-Pad Load radio button group in pASIC380 FPGA family

SpDE Delay Modeler 222 LOF file generation 372
Output format option in Galaxy 183 retargeting of design 58, 99
Output node values, forcing, in Nova pASIC-VSim, running of

Edit menu '" 267 ALU circuit design, use in 162
Output options in Galaxy 183 parking garage monitor, use in l05
Overview of features 16-18 soda machine design, use in '" 66

Path Analyzer in SpDE

p
capabilities of 206, 233-234
clock skew ... 239

Package declaration
ALU circuit design, use in 146-147
parking garage monitor design, use

in '" '" 74, 80-82
soda machine design, use in 33,37-38

Package selection
parking garage design 90, 100
soda machine design 45-46,61
top-level file .. 45-46

Packer in SpDE Logic Optimizer 213
Pad_gen directive in FPGA speed

optimization 358-359
Pad generation in Galaxy 181
Pan to Net Driver in SpDE analysis tools

... 233

design flow '" 198
expanding paths 234
generally , '" 196
graphing .. 238
hold time ... 241
key calculations '" 239
operating frequency 240
options ... 235-237
setup time .. 240-241

Path analyzer (static timing analyzer),
generally ... 18

Path Delay radio buttons in SpDE Path
Analyzer ... 236

Path names convention 24
Path vs. Delay graph in SpDE Path

Parallel logic in SpDE Router 220
Paralleling in SpDE high-fanout nets

... 247-248

Analyzer ... 238
Physical Viewer in SpDE 196, 198
Pin assignment, back-annotating

Parking garage monitor design tutorial
architecture 74,77-79

ALU circuit design, use in 167
locking down previous pin

back-annotating pin assignment 105
compiling and synthesizing 88-92
description of design 71
designing of, generally 70-71
entity declaration 74-77
Galaxy, starting of 72
new project, creation of 73-74
package declaration 74, 80-82
simulating the behavior with Nova

... 92-99

assignment ... 218
parking garage monitor design, use

in .. 105-106
soda machine design, use in 66-67

Pin_numbers documentation directive 364
Pipelining in SpDE high-fanout nets 248
Place and route tool

ALU circuit design, used in 159-161
capabilities of .. 18
SpDE 63-65, 102-105, 196

Simulating the behavior with
ViewSim 106-109

Placement modes in SpDE Placer 215
Placer in SpDE design tools 211,214-218
Placer seed in SpDE Placer 215

Warp User's Guide 381

Index

PLD schematic, creation of. See also
LPM components

components, positioning of
...................................... 128-129, 151-152

generally .. 116
PLD, target design in Warp 16
POF (.pof) file ... 368, 371
Polarity directive in CPLD synthesis 353
Post-synthesis simulation design flow

for FPGAs 305-306
Post-synthesis simulation design flow

for PLDs and CPLDs
design compilation 302
design selection 301
generally .. 301
simulator selection 301
Verilog simulation 303-304
VHDL simulation 302-303

Powerview in Warp3 23
Preferences command SpDE View menu

... 200, 201-203
Preliminary mode in SpDE Delay

Modeler .. 221
Pre-synthesis simulation 299-300
Print command in SpDE File menu 200
Print Hierarchy utility 295
Print Setup command in SpDE File menu

... 200
Printing output in Nova 280
Product descriptions for Warp 22-23
Programmable Logic Data Book

viewing of, on a PC 2
viewing of, on SunOS/Solaris/HP 5

Programmable logic design tool.. 16
Programming. See Device programming
Project, creation of new

ALU circuit .. 111
parking garage monitor 73-74
soda machine 29-31

Project management in Galaxy
creation of .. 173-175
definition of project 171-172
design files included 175-176
setting design file as top level 176-177
Warp vs. Viewlogic project 172

382

Q

.qdf file .. 62, 170
QDIF, importing into SpDE. 197
Quad wires in SpDE Router 220
Quiet error message in Galaxy 185

R
Read Stimulus File command in Nova

File menu .. 256
Redraw command in SpDE View menu 201
Repetitive pulses, setting up, in Nova

Edit menu 259,261-262
Report file command in SpDE Info menu

... 210
Report files in design compilation in

Galaxy ... 188
Resolution command in Nova Options

menu 274,276-277
Retain XORs compiler option in

Galaxy ... 185
Retargeting of design

launching of compilation in parking
garage monitor design 101-102

launching of compilation in soda
machine design 61-63

to an FPGA in parking garage
monitor design 99

to an FPGA in soda machine design 58
Router in SpDE design tools 211,219-220
.rpt file .. 62
Run tools command in SpDE Tools menu

... 205
Running Warp ... 13

s
Save As command in SpDE File menu 199
Save command in SpDE File menu 199
Schematic attributes used in applying

synthesis directives 317-319
Schematic, creation of, in ALU circuit

design. See also LPM components;
PLD schematic, creation of

Warp User's Guide

compiling and synthesizing of 159
components, positioning of

...................................... 128-129, 151-152
components, wiring together

...................................... 130-131, 152-153
exporting of top-level 158
generally .. 112
instantiating, described

...................................... 133-141, 155-157
instantiating LPM components

...................................... 114-116, 150-151
labeling nets and buses 132-141
saving of 142, 157-158
symbol generation 143
top-level, creation of 150
ViewDraw 112-114
wiring components together

....................... 130-131, 133-141, 152-153
Schematic entry

back-annotation 291-292
exporting of 289-290
libraries, using from release 3.5 292
library update ... 295
LPM library 283-288
overview .. 282
printing hierarchy 295
Schematic to Symbol command 293
Symbol to VHDL utility 294
VHDL to Symbol utility 293-294

Schematic to Symbol command 293
Scope of synthesis directives 317
Seed value in SpDE Router 219
Segmented wires in SpDE Router 219
Select mouse convention 25
Select View command in Nova Views

menu 269, 272-273
Selective buffering in SpDE high-fanout

nets .. 246-247
Sequencer in SpDE design tools 212, 231
Setup time in SpDE Path Analyzer 240-241
Signal Name Size command in Nova

Options menu 274, 277
Signal names in Nova window 251
Signals

arranging of ... 278

Warp User's Guide

Index

setting high or low in Nova Edit
menu 259,260-261

Simulate menu in Nova 269
Simulating design behavior. See Nova

JEDEC functional simulator;
ViewSim simulator

Simulation
generally .. 298
ModelT environment 307-308
post-synthesis design flow for

FPGAs ... 305-306
post-synthesis design flow for PLDs

and CPLDs 301-304
pre-synthesis 299-300
VeriBest environment 308-310
Verilog simulators supported 298
VHDL simulators supported 298

Simulation in Galaxy 194
Simulation length in Nova

command in Options menu
... 274-275, 280

parking garage monitor design, use
in .. 95

soda machine deSign, use in 53
Simulation output option in Galaxy 183
Simulation, running of, using Nova

... 57-58
Simulation tics in Nova 279-280
Simulator Option window in SpDE

Tools menu .. 208
Simulators, others 300, 303
SMARTDRIVE program 3

Soda machine design tutorial
architecture 33, 35-37
back-annotating pin assignment 66-67
description of controller 27
designing of .. 27
entity declaration 33-34
libraries .. 38
new project, creation of 29-31
package declaration 33, 37-38
retargeting to an FPGA 58
simulating the behavior with Nova

... 49-58
simulating the behavior with

ViewSim ... 67-70

383

Index

solution of .. 27-28
starting Warp .. 28
top-level description 40-43
top-level file, compiling and

synthesizing 43-48
VHDL file, creation of 32-33
VHDL syntax, verifying of 38-39

SpDE analysis tools
Highlight Net 232-233
Path Analyzer 233-234

SpDE design considerations 242-248
SpDE design tools

Automatic Test Vector Generator
... 212, 225-231

Back-Annotation 212, 220, 224-225
Delay Modeler 211-212, 220-223
Design Verifier 211, 212
Logic Optimizer 211,212-214
Placer. 211, 214-218
Router 211, 219-220
Sequencer .. 212, 231

SpDE place and route tool
running of, in ALU circuit design

... 159-161
running of, in parking garage monitor

design .. 102-105
running of, in soda machine design

... 63-65
ViewSim model, generation of

....................................... 66, 105, 162-166
SpDE tool kit. See also SpDE analysis

tools; SpDE design tools; SpDE
Window

component in Warp2 22
component in Warp3 23
exporting files ... 198
file formats .. 199
importing files .. 197
running tools ... 197
saving files ... 198
starting SpDE .. 197
viewing and path analysis 198

SpDEWindow
File menu ... 199-200
Help menu ... 211
Info menu .. 208-210

384

Tools menu 205-208
View menu 200-204

Speed bin selection
. parking garage monitor 90, 100

soda machine design 45-46, 61
Speed Grade radio button group in SpDE

Delay Modeler 222
Speed optimization 354-363
SpeedWave pre-synthesis simulation

... 300,303
Split buffering in SpDE high-fanout nets

... 245
Start Set radio buttons in SpDE Path

Analyzer ... 236
Starting Galaxy

ALU circuit design, use in 148
parking garage monitor design, use

in .. 72, 88, 99-100
PC running Windows 171
soda machine design, use in 59
UNIX workstation 171

Starting Nova ... 250-251
Starting Warp .. 28-29
State_encoding directive in FPGA

area optimization 345-347
speed optimization 363

Static timing analyzer (path analyzer) 18
Stimulus files in Nova File menu 255-257
Stimulus signal values, setting of, using

Nova .. 54-57
Stop Set radio buttons in SpDE Path

Analyzer ... 236
Stuck-at faults in SpDE A TVG 226-228
Sum_split directive in CPLD synthesis

... 352-353
Symbol generation

for VHDL file .. 149
from a schematic 143

Symbol to VHDL utility 294
Syntax, verification of VHDL 38-39
Synthesis directives. See also DRAM

controller
application of 317-319
area optimization 341-348
available directives 315-316
control features 348-353

Warp User's Guide

design flow and strategy 313-314
directive format summary 364-366
documentation 363-364
generally .. 312
inheritance ... 317
multiply and accumulate function,

example of 337-341
scope ... 317
speed optimization 354-363
uses of .. 312

Synthesis of design ... 17
Synthesis_off directive in CPLD and

FPGA area optimization 343-344
Synthesis goals compiler option in

Galaxy ... 185
Synthesis parameters, controlling of, in

Galaxy ... 182

T
Targeting a device in Galaxy. See also

Technology mapping/ synthesis
selection in Galaxy

controlling synthesis parameters 182
device and package selection 177-178
generic options 184-186
output options, setting of 183

Tech mapping options
creation of top-level file, used in 47
parking garage monitor design, used

in .. 90, 101
soda machine design, used in47, 61

Technology Mapper SpDE Logic
Optimizer ... 213

Technology mapping/ synthesis selection
in Galaxy

buffer generation 181
choose FF types 179
factor logic 180-Un
float nodes ... 180
float pins .. 180
keep polarity 179-180
pad generation .. 181

Temperature setting in SpDE design
tools ... 222-223

Warp User's Guide

Index

Test vectors, defined 227
Timing-driven placement in SpDE Placer..

... 216-217
Tool Versions command in SpDE Info

menu ... 210
Tools menu in SpDE 205-208
Top-level description

parking garage monitor design, use
in .. 82-87

soda machine design, use in 40-43
Top-level file

compilation, selecting files for 43-44
compiling and synthesizing 48, 91-92
device selection ... 45
setting of .. 47, 91
tech mapping options 47
unused outputs, resolution of 46

Top-level schematic
compiling and synthesizing of 159
creation of .. 150
exporting of ... 158
saving of .. 157-158

Trace area in Nova window 252
Traces, color of, in Nova 280
Tuning, defined 313-314

u
UltraGen module generation technology 17
Unused output option in Galaxy 183
Unused outputs, resolution of

parking garage monitor 90
soda machine design 46

Update library utility 295

v
Values, directive format, summary 364-366
VCS command line 304
VeriBest simulator 303, 308-310
Verilog simulators

FPGAs .. 306
PLDs and CPLDs 303-304
supported in Warp 298
VeriBest environment.. 303, 308-310

385

Index

VerilogXL environment , , .304
VHDL attributes 317-318, 364-366
VHDL Browser in Galaxy 74, 193
VHDL file. See also Architecture;

Entity declaration; Package
declaration

Browser tool 74, 193,
compilation of, in ALU circuit

design .. 148-149
creation of 32-33, 74-75
libraries .. 38, 147
symbol generation for 149
verification of, in ALU circuit

design .. 148
writing for ALU circuit design 143-144

VHDL netlist, generation of 17
VHDL post-synthesis simulation 307-308
VHDL simulators 298, 306
VHDL syntax, verification of 38-39
VHDL to Symbol utility 293-294
View, creation of, with Nova

parking garage monitor design 94-95
soda machine design 51-52

View menu in SpDE 200-204
View Draw tool

ALU circuit design, use in 112-114
design entry ... 17
LPM library, use in 285
Warp3 application, used in 23

Viewlogic. See also View Draw
Cockpit ... 17, 23
Powerview in Warp3 23
ViewSim simulator 18, 23
ViewTrace .. 18, 23
Workview PLUS in Warp3 23

Viewlogic project vs. Warp project 172
Viewlogic Tools, PC licensing for Warp3

... 2, 13
Views menu in Nova 269-273
ViewSim model, generation of

ALU circuit design, use in 162-166
parking garage monitor design, use

in .. 105
soda machine design, use in 66

ViewSim simulator
FPGA post-synthesis, use in 306

386

Nova applications, use in 18
parking garage monitor design, use

in .. 106-109
soda machine design, use in 67-70
Warp3 applications, use in 23

ViewText editor ... 143
ViewTrace

described ... 18
observations from window 108-109
Warp3 application, use in 23

Voltage setting in SpDE design tools
... 222-223

V-System pre-synthesis simulation
... 299, 302

w
Warp project vs. Viewlogic project 172
Warp, starting of, in soda machine

design .. 28-29
Warp2, product descriptions 22
Warp3

product description 22-23
starting, in ALU circuit design 110-111

Wildcard selection in SpDE View menu
... 204, 232

Wires in SpDE routing resource 219-220
Wiring components together

...................................... 130-131, 152-153
Wiring, described 133-141, 155-157
Workview PLUS in Warp3 23
Write JEDEC vectors command in Nova

File menu .. 257
Write Sim Command in Nova 255, 279
Write Trace command in Nova File

menu ... 255

z
Zoom In command

Nova Views menu 269, 273
SpDE View menu 200

Zoom Out command
Nova Views menu 269, 273
SpDE View menu 200

Warp User's Guide

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
Tel. : (408) 943-2600
FAX: 408-943-2741
FAX-Back: (800) 213-5120
Internet: http://www.cypress.com

© 1996 Cypress Semiconductor

