

5

SpDE

5.6

5.6.1

242

Design Considerations: Speeding Up High-Fanout Nets

This section describes several techniques for speeding up the performance of
designs created by the Warp system’s SpDE tools. For more information, refer to
Chapter 9, “Synthesis.”

For high-fanout, timing-critical nets, designers should consider improving design
performance using buffering techniques. In some cases, solutions such as
paralleling or pipelining can be used.

Five techniques that can be used to improve circuit performance are described on
the following pages:

¢ double buffering

¢ split buffering

* selective buffering
¢ paralleling

* pipelining
Double Buffering

The pASIC architecture allows two sources to drive a net in specific cases. This is
called double buffering. Using two gates to drive a high-fanout net speeds up the
performance of the net dramatically.

Figure 5-26 is an example of double buffering in a schematic.

Warp User’s Guide

SpDE

—>—————ouTo
INY
[soum
INY
—>>————sour2
INY
INO — > sours
I — L MULTI-BUFFER Iy
AND =TRVE
— > ouT4
| T — T
AND3
> ouTS
INY
[S ——— 1,
InNY
Mo
> ouT?
INY

Figure 5-26 Double buffering example

Double buffering is legal as long as the two gates driving the high-fanout net are
identical gates, with the same nets on the inputs and output. Each gate must fit
into an AND-fragment (PAfrag_a library element). Double buffering is an
excellent performance solution, and offers the best skew and delay characteristics
of all buffering solutions for fanouts of 8 to 16. An example of double buffering in
a VHDL source file is the following:

-- Regolution function for wired-or. Used to create
-- legal VHDL for double-buffering techniques

-- employed for pasic.

use work.resolutionpkg.all;

use work.GATESPKG.all;

use work.cypress.all;

use work.rtlpkg.all;

Warp User’s Guide 243

SpDE

entity DOUBLEBUF is
port (INO: IN bit;
IN1: IN bit;
IN2: IN bit;
OUT7: INOUT bit;
OUT6: INOUT bit;
OUT5: INOUT bit;
OoUT4: INOUT bit:;
ouUT3: INOUT bit:;
OUT2: INOUT bit;
OUT1: INOUT bit;
OUTO0: INOUT bit);
end DOUBLEBUF;

architecture archDOUBLEBUF of DOUBLEBUF is
-- net to be resolved
signal multiple_driver: multi_buffer bit;

begin
multiple_driver <= INO AND IN1 AND IN2; -- driver #1
multiple driver <= INO AND IN1 AND IN2; -- driver #2

OUTO0 <= NOT multiple driver;

OUT1 <= NOT multiple_driver;
OUT2 <= NOT multiple_driver;
OUT3 <= NOT multiple driver;
OUT4 <= NOT multiple_driver;
OUT5 <= NOT multiple driver;
OUT6 <= NOT multiple_driver;
OUT7 <= NOT multiple_driver;

end archDOUBLEBUF;

Note — Double buffering on an 8x12 (1000 usable gates) or 12x16
(2000 usable gates) device requires the use of express wires.
These devices have limited express wire resources, so only a few
double buffers should be used. Refer to the Section 5.4.4,
“Router,” for more information.

244 Warp User’s Guide

SpDE

5.6.2 Split Buffering

Split buffering breaks a wide-fanout net into two or more nets.

Figure 5-27 is an example of split buffering. Without the buffers, the DFF drives a
fanout of 8. As configured in the illustration, the DFF drives a fanout of 2, and
each buffer drives a fanout of 4.

3 pUToD

S puri

— puTZ

INY
——| e——8————— 13
pEF
CLE ¢ g #

™ s . DUTH
I —T L‘i-d;‘.'
DUTE

$— , DUTE

3 puT?

Figure 5-27 Circuit demonstrating split buffering

Note — Adding buffers introduces a logic cell delay to the net.
This added delay must be balanced against the gain in reducing
the fanout. Simple split buffering (as demonstrated in Figure 5-
27) is generally employed only with fanouts of 16 or greater.

Warp User's Guide 245

SpDE

5.6.3 Selective Buffering

Selective buffering is the selective use of buffers in situations where a high-fanout
net has a small number of critical destinations and a large number of less-critical
ones.

Figure 5-28 is an example of selective buffering. The DFF drives a fanout of 8, but
only one of the destinations is in the critical path of the circuit. Inserting a single

buffer between the DFF output and the 7 non-critical destinations restructures the
circuit, so that the DFF drives a fanout of two without adding any logic cell delay

in the critical path.
INY
E}“ pUTD
— pUTL
— qure
> jpurz
DFF
CLK o o
. pPUTH
o)________D; L’{;'}

e, PUTE

$—— DUTE

I 12

Figure 5-28 Circuit demonstrating selective buffering

246 Warp User’s Guide

SpDE

NEN

Hint — Buffers should be introduced with care and skill. Selective
buffering offers tremendous improvement in circumstances
where the circuit has a few clearly identifiable critical paths.

5.6.4 Paralieling

Paralleling is a design technique that duplicates the logic driving a high-fanout
load to reduce the effective fanout. Duplicating the logic avoids the delay
introduced by adding buffers to the circuit.

Successful buffering must balance reduced fanout against the additional delay
that use of buffers causes. Paralleling is an alternative that does not introduce this

added delay.

t?,, , QuTq

ny
.,__[:;,,____, ouTa

L1}
”__{:{\,3____, ouTe

L1}
INa I Y | — LITRE]

IHa ne - I'Wf; "ﬁv
I e B NN ouT4

L b bhy

_[;\‘)0____, out?
1}

Figure 5-29 Circuit demonstrating paralleling

Warp User’s Guide 247

SpDE

5.6.5

248

Figure 5-29 is an example of paralleling. The AND gate has been duplicated, with
each of its inputs tied to the corresponding input on the “twin” gate. Each AND
gate drives a fanout of 8, effectively halving the fanout, without introducing the
added delay associated with buffering. By duplicating the AND gate, however,
the fanout on each of the input nets has been increased.

Paralleling is similar to double buffering, except that the outputs are not tied
together. Paralleling should be used instead of double buffering when:

e skew is not critical

* too many express wires have already been used for high-drive inputs or
double buffers (see the section on the Router)

e thelogic to be replicated does not fit into an AND fragment of the larger
cell (no larger than a PAfrag_a library element)

Pipelining
Pipelining is the technique of inserting registers in long combinatorial paths,
effectively increasing the system clock rate.

Inserting registers in long combinatorial paths shortens the length of the critical
path and allows operations to be overlapped, increasing the system clock rate.
The pASIC architecture promotes pipelining, as each logic cell contains a D flip-
flop. As aresult, a design can be pipelined with little or no increase in the number
of logic cells used.

For more information on achieving high performance or high utilization in
designs, see Chapter 9, “Synthesis.”

Warp User’s Guide

Chapter

Nova

Nova

6.1 Introduction

Nova is Cypress Semiconductor Corporation’s name for its JEDEC-based
functional simulator.

The Nova user interface provides an easy way to:
e specify JEDEC files to simulate
e read or write stimulus files
e convert files from .jed to ViewSim format

¢ edit input waveform traces

¢ simulate the behavior of a design

* alternate between various views (i.e., collections of signals) and specify
signals to be included in each view

* specify the length and resolution of a simulation

* specify segments, where initial conditions can be reapplied and edited in
order to compare results of differing initial conditions side-by-side

¢ other useful capabilities

This manual describes how to use Nova to simulate designs. It assumes
familiarity with common user interface operations for the computer, such as the
use of scroll bars, menu buttons, and opening and closing windows.

Advanced users may refer to Section 6.9, "Nova JEDEC Simulator Quick

Reference Sheet,” for a brief overview of the major functionality.

6.2 Starting Nova

On Sun workstations, typing nova on the command line brings up the Nova
window. On PCs and compatibles, double-clicking on the Nova icon in the
Cypress group window brings up the Nova window.

By default, Nova comes up ready to run on a color screen.

To start Nova on a monochrome Sun workstation, type nova -m on the
command line.

250 Warp User’s Guide

Nova

6.3

To set Nova to come up in monochrome mode when running Windows on an
IBM PC or compatible computer, do the following:

* Select the Nova icon from the Warp R4 group window.
e Select Properties from the File menu.

¢ Edit the Command Line entry to include the -m option.
¢ Click OK.

The Nova Window

The Nova window (Figure 6-1) consists of a menu bar with several items across
the top; a column of buttons along the left side, listing pin and node numbers and
signal names; an area for displaying traces; and scroll bars across the bottom and
right sides.

Menu Bar

The menu items are File, Edit, Simulate, Views, and Options. Under each of these
items are menus for selecting related actions. The menus are ordered so that the
most common operation is at the top. The contents of each menu are described in
greater detail later in this chapter.

Only two menu items, Open and Exit, are enabled in the File menu when Nova
first opens. When the user opens a .jed file, the other menu items will be enabled.

Node Numbers, Signal Names

The left-hand side of the Nova window consists of a column of buttons,
displaying pin and node numbers and their associated signal names. A node is an
area of a circuit containing one or more points whose locations the user may wish
to trace. (For information about different values within a node, refer to

Section 6.5.4, "Nodes.”)

To change the width of the buttons where signal names are displayed, use the
Signal Name Size item in the Options menu.

Warp User’s Guide 251

Nova

6.4

252

Trace Area

The trace area displays the values of the nodes/signals listed in the left-hand
column.

Ik
i
I

File Edit

Figure 6-1 Main Nova Window

The window displays up to two measuring cursors, which allows the user to see
precisely the value(s) of several signals at a single time. To display the first cursor,
click at the bottom of the trace window. To display a second cursor, click at the
bottom of the trace window while pressing the Shift key.

To change the position of either cursor, click and hold on the cursor at the bottom
of the trace window, then drag the cursor to its new position. The cursor’s
horizontal position in simulation tics is displayed next to each cursor.

Note that a simulation tic does not represent any set amount of real-time delay.
Instead, a simulation tic is simply a unit of simulation time.

The File Menu

The File Menu contains items related to opening JEDEC files for simulation,
reading and writing stimulus files, and saving output files in various formats.

The File menu (Figure 6-2) in the Nova dialog box contains the following items:

e Open...

o Write Sim-(*.sim)
e Write Trace (*.psd)
® Read Stimulus File

Warp User’s Guide

Nova

e Write JEDEC Vectors

* Write JEDEC File (* jed)

e Disassemble to ViewSim Format (*.vhd)
e Exit

e About...

The operations of each of these menu items are discussed in greater detail on the
next few pages.

Qv i 20 SR
Edit Simulate Views Options

5

Write Sim (x.sim)

Write Trace (x.psd)

Read Stimulus File

Write JEDEC Vectors

Write JEDEC File (#.jed)

Disassemble to ViewSim format (».vhd)

Exit
About...

Figure 6-2 Nova File Menu

6.4.1 Opening Files

The Open... item in the File menu selects which .jed file to open and tells Nova
what device is targeted in simulation.

Selecting Open... brings up the Open Files dialog box (Figure 6-3). The File Name
line specifies the names of files to view or to open in the Files window. By default,
this line reads “*jed.”

Warp User’s Guide 253

Nova

254

To open a file, the user can select a file from the list shown in the Files window, or
type the name of the file on the File name line. Selecting a .jed file and clicking on
Open closes the dialog box and displays traces. (If a stimulus file of the form
filename.sim or filename.stm exists, it is also read automatically.) Clicking on Cancel
closes the dialog box without opening a file.

The Select Device dialog box (Figure 6-4) comes up when the user clicks on Open in
the Open Files dialog box, and the file to be opened is a .jed file not created by
Warp. The Select Device dialog box maps a JEDEC file to a device.

Selecting a device with the wrong number of fuses brings up a message box
stating: “Wrong device type for this JEDEC - QF doesn’t match.” This indicates
that the number of fuses in the selected device does not match the number in the
JEDEC file.

&

Note — If Nova says that it cannot find file devices.dat, check to
make sure that the CYPRESS_DIR environment variable is set
correctly. Nova uses this file to find the proper pin names and
numbers for each target device and package.

0 Choose filetoopen...

i
=]
List Files of Type: Drives:

|Files (=.ied) c: warp system .

File Name: Directories:
[tefill.ied | c:\w2tutor

filbind =~ = e\

= wtutor
Ic371
£ sch
£ sym
£ wir

1 work

Figure 6-3 Open Files Dialog Box

Warp User’s Guide

Nova

C16L8
C16R4
C16R6
C16R8
C20vs
C16va
C20G10
CZ20RAT0
c22vi0
C22vP10
C3N
C335
C346

Figure 6-4 Select Device
Dialog Box

6.4.2 Reading and Writing Stimulus Files

Write Sim and Write Trace save simulation data. Read Stimulus File reads data
stored by a previous Write Sim operation.

Write Sim saves the current simulation data to filename.sim, where filename is the
prefix of the file the user is simulating. If a .sim file already exists with this
filename, the new simulation data overwrites the old. The .sim file (see Figure 6-5)
can be re-read with the Read Stimulus File option.

Write Trace saves the trace information to filename.psd, where filename is the prefix
of the file being simulated. The .psd file (see Figure 6-6) provides a column-
oriented, human-readable record of trace values during the simulation. Bus
values are not written to the file.

Warp User’s Guide 255

Nova

256

Read Stimulus File reads simulation data from a .sim file. Because reading in the
simulation file may change some of the settings the user has set for the current
simulation, a message box is displayed, asking if the stimulus file should be read
in. A Yes reply reads in the .sim file. A No reply returns the user to the main Nova
window. The filename.sim file is automatically read when the filename.jed file is

opened.

1

clock_pint
F83EOF83EQFB3EOF83EDOF83EOFS3ENFB3EOFE3EQFB3EQOFS3E0FS3EOFB3EOFS3E
00
gpooQoQoO00O0O0O0O0OOQOODDO

pooo0oo00O0O0OO0OOCOOOOOD
goooo0oo0o0000D0O0O0O00
999

T NWO O

in2
00
00
gooo0o000O0O0OBODO0OODD

pooo0QO0OO0OO0O0O0OO0O0O0O0OCDODD

ooo0o00O0O0DOODOOODO 1]
9993

0
0

3

nickel_pin3
00FF8000
00
oo0000000O0D0D0O0DOOD

0000000000000000D
poooo0oo000000DO0DODODOOD
9993

Figure 6-5 Portion of .sim File

Warp User’s Guide

Nova

6.4.3

6.4.4

g:1000LLL
1:1000LLL
2010001LLL
3:10001LLL
4:1000LLL
S:to0000LLL
6:0000LLL
7ro0000LLL
g:01001LLL
g:0100LLL
10:1100LLL
M:1100LLL
t2r1100LLL
13:1100LLL
14:1100L L 1L
15: 01700LLL
16: 01 001LLL
17:0010LL1L
18: 0010LLL
19: 0010 LLL
2001010LLL
210101 01LLL
2:1010LL1L
23:10101LLL
24: 101 0LLL
25: 0010 LLL

Figure 6-6 Portion
of .psd File

Writing JEDEC Vectors

Write JEDEC Vectors appends vector information to the JEDEC file. The vectors
can be used to test parts after they are programmed. If the JEDEC file already
contains vector information, the new vector information overwrites the old.

Converting Between File Formats

The File menu includes items that allow the user to convert vector information
into different file formats, depending on what he wants to do with it.

Figure 6-7 shows the various file types that can be input to or output from Warp,
Nova, or a device programmer.

Write JEDEC File (*.jed) writes out a JEDEC file from the data available to the
simulator. The dialog box options include instructions in the JEDEC file to blow
the security fuse when the device is programmed, or to write the JEDEC file using
a compressed “K-field” hexadecimal representation.

Warp User’s Guide 257

Nova

Disassemble to ViewSim format (*.vhd) writes out a Viewlogic VHDL file which is
used to simulate the design in ViewSim. The file is created in the vhd.
subdirectory

WARP

JED NOVA

Y

DEVICE
PROGRAMMER

Figure 6-7 Possible Data Paths and File Formats

258 Warp User’s Guide

Nova

6.4.5 About and Exit

The File menu’s About item displays some basic information about the Nova
simulator. The Exit item exits the simulator.

Besides displaying version information about the Nova simulator, the About
dialog box also includes a Help button. Clicking on Help brings up help about
Nova.

6.5 The Edit Menu

Use the items in the Edit Menu to modify trace information displayed on the
screen. With the Edit menu, the user can set the selected range of a trace; create
and delete view nodes; create, delete and edit buses; and change the bus radix.

Items in the Edit Menu (Figure 6-8) include the following:

* High, Low sets the selected trace or portion of a trace to 1 or 0,
respectively.

* Clock sets up repetitive pulses.
* Pulse sets up a single pulse.

* Node Defaults specifies the default source for the displayed value of a
node.

* Create View Node creates a new trace and selects the point within a node at
which the displayed value is measured.

e Delete View Node deletes traces from the simulation.

¢ Create Bus groups traces for display as a single entity called a bus, used
when thinking of groups of signals as a single value is more convenient.
Bus values are only displayed when a measuring cursor is present.

* Delete Bus un-defines a previously defined bus.
e Edit Bus adds or removes signals from a bus.

* Bus Radix specifies radix used to display a bus value.

Warp User’'s Guide 259

Nova

6.5.1

260

These items are described in greater detail on the following pages.

ﬁode Defaults

Create View Node

Create Bus
Delete Bus

“=== EditBus

—

Figure 6-8 Nova Edit Menu

Setting Signals High or Low

With the Nova user interface, the user can easily set the value of all or a selected
portion of an input signal to high or low.

To set an entire input signal to high or low:

Click on the button containing the name of the signal in the Nova
window to select it. On color monitors, the button changes color, and the
trace turns blue when selected. On monochrome monitors, the button
goes to inverse video, and the trace changes to a dotted line when
selected.

Select High or Low from the Edit menu as desired, or type “1” or “0.”

To set a portion of an input signal high or low (see Figure 6-9):

De-select the signal.

Click and hold the mouse button on the trace at the left edge of the
selected area.

Drag the mouse to the right edge of the selected area.

Then select High or Low from the Edit menu, as appropriate, or type “1” or
IIO. ”

Warp User’s Guide

Nova

Both the left and middle buttons of a 3-button mouse perform the same action
when clicked to position an edge.

Figure 6-9 Setting a Portion of a Signal High or Low

Top: press and hold the mouse button at the left edge of the selected area. Middle:
drag to the right edge of the selected area, and release the mouse button. Bottom:
select High or Low from the Edit menu, or type “1” or “0” from the keyboard. |

6.5.2 Setting Up Clock Signals (Repetitive Pulses) |

The Clock item under the Edit menu allows the user to set up repetitive pulses on a
selected signal or portion thereof.

To set up a repetitive pulse or clock signal, select a signal or a portion of a signal,
then select the Clock item under the File menu. This brings up the Clock dialog box
(Figure 6-10), which allows the user to fill in various repetitive pulse parameters.

* Clock Period specifies the period of repetition for the pulse in simulator
tics.

* Clock Delay specifies the number of simulator tics to wait (beginning with
the left edge of the selected area) before starting the repetition. The
default is 0 tics.

® Clock High Time specifies the amount of time that the selected signal
should be set to 1 during each repetition. The default is 5.

* Start High and Start Low specify whether each repetition starts with the
signal set to O or 1.

* OK sets up the repetitive pulse.
® Cancel closes the Clock dialog box without affecting the trace.

Warp User’s Guide 261

Nova

Clock Period:

Clock Delay:

Clock High Time:

B

@ Start High
O Start Low

Figure 6-10 Clock Dialog Box

6.5.3 Setting Up Non-Repetitive Pulses

The Pulse item under the Edit menu allows the user to set up single pulses on a
selected signal or portion thereof.

To set up a single pulse on a signal, select a signal or a portion of a signal, then
select the Pulse item under the File menu. This brings up the Pulse dialog box
(Figure 6-11), which allows the user to fill in various pulse parameters.

* Pulse Duration specifies the length of the pulse, in simulator tics.

® Pulse Delay specifies the number of simulator tics to wait (starting from
the start of the simulation) before applying the pulse. The default is 0.

* Start High and Start Low specify whether the pulse sets the signal to 0 or 1.
¢ OKsets up the pulse.

¢ Cancel closes the Pulse dialog box without affecting the trace.

262 \ Warp User’s Guide

Nova

Pulse Delay:

Pulse Duration:

@ Start High
O Start Low

Figure 6-11 Pulse Dialog Box

6.5.4 Nodes

A node is an area of a circuit containing one or more points at which the user may
wish to trace a signal. Nova allows the user to specify the exact point or points
within a node at which to trace signal values, to set the default value of a node,
and to force one or more positions in a node to known values.

To Nova, a node is:

* any input to an array
* any output from an array
* any pin on the device

* any other electrical position that needs to be modeled but does not meet
the first three criteria

For each node, the user can:

e create a view node, i.e., specify one or more positions within a node from
which to trace values

¢ specify the means by which a node is assigned its value

¢ force any position in a node to a known value (this is often useful for
multi-segment simulations)

Each of these capabilities is discussed in greater detail on the following pages.

Warp User’s Guide 263

Nova

6.5.5

264

Selecting Node Points to View

Many nodes contain several points at which the user can trace simulation values.
Create View Node allows the user to select which of those points to view.

A view node allows the user to see what is happening at various points inside a
node. Selecting Create View Node brings up the Create View Node dialog box
(Figure 6-12), which allows the user to select points to view within a selected
node. To bring up this dialog box, the user must select a node with the current
view set to FULL. (See Section 6.7, "The Views Menu,” for information about
changing views.)

The Create View Node dialog box displays the node name with the view node
name to be created directly below it. Nova creates the view node name by taking
the node number, followed by a ‘-" and an extension to represent the selected
signal to be displayed.

The view node points that can be displayed depend upon the selected node.
Examples of view node points that can be displayed include:

* Data from Array - This is the data at the output of an OR-XOR combination
of gates. Extension is “ardat.”

® Out value before OE - This is the data on the output pin if the output enable
is asserted. This includes the output buffer inversion, if there is one.
Extension is “b_oe.”

* OE Value - This is the state of the output enable. If high, OE is asserted so
the output is driven. Extension is “oe.”

* Node Output - This is the data on the pin. This is the default view for
output nodes. Extension is “out.”

Warp User's Guide

Nova

Node:

{123-ardat

Signal to be displayed is:
@ Data from array
O Register value

O Node output

Figure 6-12 Create View Node Dialog Box

* Feedback at input - This is the data at the D input of the input register, if
there is one. If there is no input register, feedback at input and feedback
to array are identical. Extension is “fbkin.”

* Feedback to array - This is the data that is being fed to the array. It differs
from feedback at input because it may be the other side of a register.
Extension is “fbk_ar.”

Selecting OK closes the Create View Node dialog box and creates a view node,
displayed at the end of the node list. Selecting Cancel closes the Create View Node
dialog box without creating the view node.

To delete a view node, select the view node to delete, then select Delete View Node
from the Edit menu.

6.5.6 Setting Input Node Values

Node Defaults allows the user to specify the default source for the displayed value
of anode.

Selecting Node Defaults brings up the Node Defaults dialog box (Figure 6-13).

Use the Change Default Input window of the Node Defaults dialog box to specify the
source for the value of an input node. The current setting is shown highlighted
within this window.

Warp User’'s Guide 265

Nova

There are four possible settings for each input. They are:
* High (1): tie the signal to Vcc
* Low (0): tie the signal to Vss (ground)
e Use Simulation Record: use the value(s) in the simulation record (sim file)

® Other Node Record: tie the signal to another node. Enter the node number
on the line to the right of the Other Node Record button

"Change Default Input:

O High (1)
O Low (0)

@ Use Simulation Record

O other Node Record D

rJam Load:
O Force Node High {1} O input Reg High {1}
@ Force Node Low [0) @ input Heg Low {0)
O Output Reg High L] O 2nd Input Reg High {1]
® Output Reg Low {0) @ Zad Input Beg Low (8]

Figure 6-13 Node Defaults Dialog Box

266 Warp User’s Guide

Nova

6.5.7

6.5.8

Forcing Output Node Values

Node Defaults also allows the user to force the value of an output node at a
specified point.

Selecting Node Defaults brings up the Node Defaults dialog box (Figure 6-13).

The Jam Load window of the Node Defaults dialog box can be used to force an
output node to a specified value. Values of these nodes rarely need to be modified
for normal simulations; however, for multi-segment simulation (for long counters
and other long-period design) or if there are problems in simulating the start-up
condition of a circuit, the values may need to be changed. The current setting is
shown highlighted.

Depending on the type of node, it may be possible to select from Force Node
High(1), Force Node Low(0), Output Reg High(1), Output Reg Low (0), Input Reg High
(1), Input Reg Low (0), 2nd Input Reg High (1), and 2nd Input Reg Low(0).

Working with Buses

At times, grouping several traces in a simulation and viewing them as a single
trace may be more convenient. This is possible with the Create Bus, Delete Bus, and
Edit Bus options in the Edit menu.

Selecting Create Bus brings up the Bus dialog box. This dialog box combines nodes
into a user-named bus. The View list in the dialog box contains the names of all
nodes in the current view. The Bus list holds the names of each node in the bus. A
bus may be made up of any number of nodes.

Selecting OK closes the Bus dialog box and creates a bus with the specified bus
name. Buses are placed at the top of the trace area. Selecting Cancel closes the Bus
dialog box without changing the trace area. It is not possible to input values to a
bus.

To add a node to the bus: select the node from the View list and select the Add>>
button. Double-clicking on the node name also adds the selected node to the bus.
The new node is added below the selected nodes of the bus.

Note — Nodes can be added only to a bus in the current view.

Warp User’s Guide 267

Nova

268

Clicking on the Add-by-Name button brings up a dialog box that asks the user to
specify the name(s) of signals to add to the bus. The use of wild card characters is
permitted. A “?” matches a single character; a “*” matches any string of
characters. The construct name[m:n] denotes a range of signals, numbered from m
through n, beginning with the characters name. For example, “input[0:3]” matches
signals input0, inputl, input2,and input3.

To remove a node from the bus: Select the node to be removed and select the Cut
button. Double-clicking on the node name in the Bus list also removes the node
from the bus.

To change a node’s position in the bus: Select the node, then click Cut. Select
another node, then click Paste. The node that was previously cut will be inserted
below the newly selected node.

To name the bus: Click on the line below the words Bus Name and enter the name
for the bus. If no name is provided, the bus is named generic bus.

To delete a bus: Select a bus trace by clicking on the bus name button or the bus
trace. After the bus is selected, selecting the Delete Bus item from the Edit menu
brings up a dialog box which can remove the bus from the trace area.

Edit Bus brings up the same Bus dialog box used for creating the bus. The bus
name line is filled in, and the nodes in the bus are displayed in the Bus list. Buses
can be added, removed, or have their names changed from this dialog box.

After all changes have been completed, selecting OK closes the bus dialog box and
applies the modifications to the selected bus. Selecting Cancel closes the dialog
box without updating the bus.

Bus Radix brings up a submenu that allows the user to choose how bus
information is displayed. The three choices are binary, octal and hexadecimal.
Hexadecimal is the default.

Warp User’s Guide

Nova

6.6 The Simulate Menu

The Simulate Menu has only one menu item: Execute.

Selecting Execute from the Simulate Menu (Figure 6-14) simulates the design’s
operation. The Nova screen is redrawn, and the resulting waveforms are
displayed.

Figure 6-14 Simulate Menu

6.7 The Views Menu

Items in the Views menu allow the user to select the views (i.e., groupings of
traces) in the trace area.

The Views menu (Figure 6-15) contains five items:

» Edit Views allows the user to create and edit views.

e Select View allows the user to select a view to display.

¢ Delete View allows the user to remove one or more views from the list.

* Zoom In (2X) multiplies the displayed timescale resolution factor by two.
* Zoom Out (1/2X) divides the displayed timescale resolution factor by two.

Each of these items is discussed in greater detail in the following pages.

Warp User’s Guide 269

Nova

6.7.1

270

2i~]

[File Edit Simulate (st Opti BGE Help

Edi ¢
Select View

Delete View

Zoom [n [2X])

Zoom Out [1/2X]

Figure 6-15 Views Menu

Editing Views

Edit Views allows the user to create new views and to add, remove, or exchange
traces in existing views.

Three views are automatically created with each .jed file: full, pins-only, and pins
& registers. The full view (default) lists all nodes in the design. This view cannot
be edited. The pins-only view contains only nodes that are attached to pins. The
pins & registers view contains all nodes attached to registers or pins.

Selecting Edit Views displays the Edit Views dialog box (Figure 6-16), used to edit
the current view. The view list on the left displays the FULL view, which contains
the default traces for all nodes. Use this list, along with appropriate buttons, to
add or remove traces from the view list on the right.

To create a new view: Click on New View. A name prompt will appear, which is
placed at the top of the right-hand view list.

To move between views: Click on Next View or Previous View.

Warp User’'s Guide

Nova

To add a trace to a view: Select one or more traces from the left (Full) view
window, then click Add>>. If a trace is also selected in the right window, the new
traces are inserted after the selection; otherwise, the new traces are added to the
end of the view.

To remove traces from a view: Select the traces in the right window, then click on
Cut.

View: FULL View: PINS and REGS

0120 bin_1_remain|#]
0123 bin_1_remain
0121 bin_2_remain|
0125 bin_2_remain

0120 bin_1_remainin
0123 bin_1_remaining
0121 bin_2_remainin

0125 bin_2_remaininﬂ

13 clk 13 clk
0122 empty_1 0122 empty_1
0124 empty_2 0124 empty_2
35 get_cola 35 get_cola
11 get_diet 11 get_diet
2 give_cola 2 give_cola
3 give_diet 3 give_diet

0117 jed_nodel17 |
0118 jed_nodel118
0119 jed_node119 |
0149 jed_node149 |
0150 jed_node150 |
0159 jed_node159 [}

0117 jed_nodel117
0118 jed_nodel18
4 refill_bins
10 reset

Figure 6-16 Edit Views Dialog Box

To exchange (i.e., re-order) traces within a view: Select one or more traces from
the right view window, then click Cut. Then, select another trace from the right
view window and click Paste. The previously cut trace(s) are inserted after the
selected trace.

Warp User’s Guide 271

Nova

Add-by-Name brings up a dialog box that asks the user to specify the name(s) of
traces to add. The use of wild card characters is permitted. A “?” matches a single
character; a “*” matches any string of characters. The construct name[m:n] denotes
a range of signals, numbered from m through n, beginning with the characters
name. For example, “input[0:3]” matches signals input0, inputl, input2,and
input3. The user can also use multiple expressions separated by spaces.

Deselect All unselects all selected traces in either window.

Selecting OK closes the Edit Views dialog box and updates the trace area to reflect
changes made to the view. Selecting Cancel closes the Edit Views dialog box
without making any changes to the view.

6.7.2 Selecting and Deleting Views

Select View allows the user to change the active view. Delete View allows the user
to remove a view from the list of available views.

Select View brings up the Select View dialog box (Figure 6-17). The View line gives
the name of the current view. To change the current view, select the desired view
from the list, then click OK or type a carriage return. Clicking Cancel closes the
Select View dialog box without affecting the active view.

Delete View also brings up the Select View dialog box. Select the view to delete
from the scrollable list. The FULL view may not be removed and is not included
in this list. Clicking OK or typing a carriage return applies the change to the list of
views. If the current active view is removed, the active view changes to FULL.
Delete View has no undo, so the user should be certain the view being deleted is
correct before clicking on OK or typing a carriage return. Cancel closes the Select
View dialog box without deleting the selected view.

272 Warp User’'s Guide

Nova

Pe) BelddiView

View: PINS and REGS

FULL
PINS ONLY
PINS and REGS

Figure 6-17 Select View
Dialog Box

6.7.3 Zoom In, Zoom Out

Zoom In doubles the time scale resolution of the trace window, i.e., by doubling
the number of pixels in the X-axis used to display one tic of simulation time. The
result is to “zoom in” on the view of displayed traces.

Zoom Out does the reverse of Zoom In.

The resolution setting must be 1 or greater. The default is 5. Attempting to set the
time scale resolution lower than 1 has no effect.

6.8 The Options Menu

The Options Menu contains items that allow the user to specify the simulation
length, create or delete simulation segments, and specify the viewing resolution
of the trace area.

Warp User’'s Guide 273

Nova

6.8.1

274

The Options Menu (Figure 6-18) contains five items:

Simulation Length allows the user to set the length of the simulation.

Create Segment allows the user to create a segment, or “new-start-point,”
within the simulation.

Delete Segment allows the user to delete a previously created segment
from the simulation.

Resolution allows the user to stretch and compress displayed traces.

Signal Name Size allows the user to specify the width in characters of
Nova’s signal name buttons.

Each of these items is described in greater detail in the following pages.

Resolution
Signal Name Size

Figure 6-18 Options Menu

Simulation Length

Simulation Length allows the user to set the length of the simulation,

Selecting Simulation Length brings up the Simulation Length dialog box (Figure 6-

19).

The minimum and default simulation length is 256 tics. The maximum simulation
length is 9984. Clicking on the up arrow adds 64 tics to the simulation length, to a
maximum of 9984. Clicking on the down arrow subtracts 64 tics from the
simulation length, to a minimum of 256 tics.

Warp User’s Guide

Nova

6.8.2

The user can also set the simulation length by typing a number on the line next to
the up and down arrows. The number will be rounded downward to the nearest
multiple of 64.

Clicking OK closes the Simulation Length dialog box and sets the simulation length
to be used on the next simulator run. Clicking Cancel closes the Simulation Length
dialog box without affecting the simulation length.

256

[£]2]

Figure 6-19 Simulation
Length Dialog Box

Note — Any repetitive input signals such as clocks should be
respecified whenever the simulation length is increased.

Creating and Deleting Segments

Create Segment allows the user to create a segment, or “new start point,” within
the simulation. Delete Segment deletes a previously created start boundary.

A segment is a point in the simulation at which various nodes are reset to their
“jam load” values (set through the Node Defaults dialog box).

To create a simulation segment, position the leftmost measuring cursor at desired
beginning of the segment, then select Create Segment from the Options menu to
bring up the Create Segment dialog box (Figure 6-20). The dialog box indicates the
starting and ending boundaries of the segment. Selecting Yes closes the dialog box
and creates the new simulation segment. Selecting No closes the dialog box
without creating the segment. Up to 15 segments may be created.

Warp User’s Guide 275

Nova

6.8.3

276

To delete a segment, position the leftmost measuring cursor within the segment to
be deleted, then select Delete Segment to bring up the Delete Segment dialog box
(Figure 6-21). The dialog box indicates the segment boundaries for the segment to
be deleted. Selecting Yes closes the dialog box and deletes the segment. Selecting
No closes the dialog box without removing the segment.

6 CREATE SEGMENT from 47 to 256

Figure 6-20 Create Segment Dialog Box

9 DELETE SEGMENT from 66 to 255

Figure 6-21 Delete Segment Dialog Box

Resolution
Resolution allows the user to stretch and compress displayed traces.

Selecting Resolution from the Options menu brings up the Resolution dialog box
(Figure 6-22). This dialog box allows the user to set the number of screen pixels on
the X-axis to be used per simulation tic. Varying this number effectively stretches
or compresses the traces displayed on the screen.

Warp User’s Guide

Nova

The pixels-per-tic setting may be any number between 1 and 100. The default is 5.
The larger the number, the more “stretched” the traces appear; the smaller the
number, the more compressed the traces appear.

Selecting OK closes the Resolution dialog box and updates the trace display.
Selecting Cancel closes the Resolution dialog box without updating the trace
display.

Please enter Pixels per tic:

E]

Figure 6-22 Resolution Dialog Box

6.8.4 Signal Name Size

Signal Name Size allows the user to specify the width in characters of Nova’s
signal name buttons.

6.9 Nova JEDEC Simulator Quick Reference Sheet

6.9.1 Simulating a Circuit

Select Nova Functional Simulator from the Galaxy tools
menu or double-click on the Nova icon in the Windows
program.

¢ Load the JEDEC file which was produced from Warp.

Select Open from the File menu.

\
|
s Start Nova.
\
|
\
Warp User’s Guide 277

Nova

6.9.2

278

¢ Edit Input Stimulus.

To edit a signal, select the signal with the left mouse
button. Go to the Edit menu to set the signal high or low,
or to configure the signal as a clock. To edit portions of
the signal, select the portion with the mouse, then type
“0” or “1” to set that portion of the signal high or low.
There is also a “pulse” feature which allows the user to
set up single pulses.

¢ Run Simulation.

Select Execute from the Simulate menu.

Arranging Signals

Using the Views menu in Nova, the user can choose what signals he wants to see
and in what order they are displayed. The default views are FULL, PINS ONLY,
and PINS and REGS.

To create a new view, choose Edit Views under the Views menu and select New
View.

When creating a new view, wild cards are recognized. To enter all available
signals, select Add by Name and type an asterisk (“*”). Optionally, enter the
names of the signals to see individually (or by using a combination of signal
names and wildcards).

When done, click on OK. This view can now be edited. To add new signals to the
view, double-click on the signal on the left-hand side. To delete a signal, double-
click on the signal in the view (on the right-hand side). Alternately, the user can
cut and paste signals in the view. Signals are always pasted under the currently
selected signal.

The order of the signals can be changed by using cut and paste or by using Add by
Name.

Warp User’s Guide

Nova

6.10 Creating Buses

If the signals are not in the current View, they cannot be added to a bus.

These signals must be deleted from the view if the user does not want to see them
individually. Don’t do this if it’s an input bus because buses are only useful for

Select Create Bus from the Edit Menu.

Choose an appropriate bus name under the Bus Name field of the pop-up
menu.

Add signal names to the bus by double clicking on the signal names on
the left-hand side, selecting the signals, and clicking on Add, or by using
Add by Name. Wildcards are allowed when using Add by Name.

Click on OK.

output. Data cannot be input as a bus, only as individual bits of a bus.

To see the bus value, a measuring cursor is necessary. A measuring cursor is
brought up by clicking the left mouse button in the white area near the bottom of
the Nova window. During a single Nova session, the measuring cursor cannot be
deleted once it has been activated. A second measuring cursor can be activated by
holding the shift key down while clicking the left mouse button in the white area
near the bottom of the Nova window.

6.11 Miscellaneous

To save input stimulus, view information, and buses for the next simulation,
select Write Sim from the File menu.

Nova is purely a functional simulator. There is no timing information in Nova.
There is only the concept of simulation tics. A given device may be modeled as
several smaller blocks. For instance, a FLASH370 device can be divided into
smaller parts:

input cells
PIM

PTM
macrocell
I/O cell

Warp User’s Guide 279

Nova

280

As aresult, the user may see a propagation between his input and his output. If
the user experiences strange results, he should increase clock period or separate
simultaneously changing input signals. Some rules of thumb (if there are

problems) are to make pulses > 20 tics wide and provide > 10 tics of setup time.

Color of traces:
Blue means the waveform can be edited.
White means an input or an output that is three-stated.
Red means an output that is being driven.

Pin numbers or node numbers are displayed to the left of the signal name. Zoom
control is available under the Views menu.

The simulation length may be changed by choosing Simulation Length under the
Options menu.

Printing Nova Output (PC):
¢ Place the mouse cursor in the window to be captured.
¢ Hit Alt and Print Screen simultaneously.

This will place the window in a buffer.

e Go into a text editor (MS Word/ Microsoft Write) and Paste from the
buffer.

e Print from the text editor.

Warp User’s Guide

[- -]

Schematic Entry

Schematic Entry

71 Overview

The Warp tools use VHDL as the primary design entry mechanism. Warp3,
however, also supports schematic entry as a design entry mechanism via
ViewDraw. Warp3 also supports mixed-mode design entry where portions of the
design are entered in VHDL and portions are entered in ViewDraw, graphically.

When using ViewDraw, Warp3 provides a very powerful and sophisticated user
interface that allows users to capture designs efficiently. With Warp3, the user
can:

* use VHDL descriptions, schematics, or both to describe any design

¢ compile and synthesize the resulting design description

» fit the resulting logic circuits into a particular PLD or CPLD, or place and
route the design into an FPGA (the resulting files may be used for
programming the device)

e verify the design with a timing simulator

There are several other tasks that can be performed, but this overview describes
how to use ViewDraw for design entry. Figure 7-1 shows this process flow.

282 Warp User’s Guide

Schematic Entry

7.2

7.2.1

0 = [

Schematics

NN

VHDL Compiler

72N

o>
Viewsim I;&%
&
Simulation Device Programmer

Figure 7-1 Warp3 design flow

LPM Library
What Is LPM?

LPM is an acronym for Library of Parameterized Modules. This is a specification
maintained by the Electronics Industries Association (EIA). The LPM
specification contains a small set of highly parametrizable library elements. This
specification is based on the EDIF (Electronic Design Interchange Format) version
2.0.0 standard and also specifies how data containing these parameterized
modules can be interchanged between third party CAE systems.

Warp User’s Guide 283

Schematic Entry

7.2.2

284

Cypress has chosen the LPM standard for its schematic library because of its
flexibility and interoperability. Warp3 provides a graphical user interface to allow
design entry with these LPM elements. With this graphical interface, the user can
create, modify and manage LPM elements. To obtain a detailed description of the
library and its functionality, the user should refer to Chapter 5, “LPM,” of the
Warp Reference Manual.

The rest of this chapter assumes that the user is familiar with ViewDraw and the
Powerview or Workview PLUS environment.

How to Use LPM

Since LPM is a set of parameterized elements where the number and width of the
pins can be varied, and the ViewDraw schematic capture system does not allow
the pins for a given symbol block to vary, Warp automatically and dynamically
creates and maintains custom symbols that are pre-programmed for a specific
use.

For example, there is a common interface for an LPM_COUNTER. With this
interface, the user can select or deselect many options such as enable, carry-in, or
load. Instead of creating a symbol that has all possible pins for a given symbol,
Warp automatically creates a custom symbol that has only those features required
by the user. This is done because some of the LPM elements have a rather large
number of optional features, and without a mechanism to create dynamic
symbols, design entry with such symbols would be cumbersome.

When the user requests an LPM symbol configured in a certain way, Warp creates
this element and stores it in a special library called Ipmlocal. The Ipmlocal library
consists of a set of symbols and data files that manage all the symbols in a user’s
private library. The names assigned to these dynamically created symbols are
meaningful only to the software and do not imply anything about the symbol
itself. The Ipmlocal library should never be edited by users manually. Warp
automatically creates and manages this information.

Warp User’s Guide

Schematic Entry

ViewDraw uses the viewdraw.ini file to locate libraries. ViewDraw searches the
current project directory as well as the directories listed in the WDIR environment
variable for this initialization file. This file contains, among other things, a set of
library names and the directories where these libraries can be found. A sample
viewdraw.ini file is shipped with Warp and can be found in the warpstd
subdirectory where Warp is installed. A portion of this file is shown here:

Format: DIR [DirType(s)] DirPath (LibName)

DirType: P or pw - primary / writable
w - writable (read/write)
r - read~only
m or rm - read-only megafile

DirPath: directory specification

LibName: library name aka library alias or VHDL library
[name (optional) 32 characters or less.
Must begin with a letters
DIR [p] .
DIR [r] c:\warp\lib\sheet (sheet)
DIR [r] c:\warp\lib\io (io)
DIR [r] c:\warp\lib\mcparts (mcparts)
DIR [r] c:\warp\lib\prim (primitive)

u,ll

Lines starting with the character are comments. The first directory below the
comments is the current project directory, and the rest of the directories are
libraries. To this list of libraries, another library must be added that represents the
Ipmlocal library. This library must be writable by the user because Warp creates
symbols dynamically on behalf of the user. An example of such a library would
be:

DIR [w] c:\mydir\myproj\lpmlocal (lpmlocal)

where c:\mydir\myproj\lpmlocal is a directory where Warp stores the symbols it
creates. Without a valid location for the Ipmlocal library, the Warp LPM
functionality will be disabled. If this directory is being shared by other users in a
network environment, this directory must be writable by everyone using this
library. The viewdraw.ini file should be copied to the current project directory,
and then this change should be made to the file.

Warp User’s Guide 285

Schematic Entry

723 Creating the Ipmlocal Library

When ViewDraw is invoked for the first time in a new Viewlogic project, the LPM
functionality is disabled and step-by-step instructions are printed on how to
enable the LPM functionality and the creation of the Ipmlocal library.

7.24 Creating an LPM Element

To create an LPM element once ViewDraw has been opened for editing a
schematic, use the menu item Add->LPM Symbol.

HiSCH) BA 7311 G oEn

Pin
Graphics
Analog »

Figure 7-2 Add LPM Symbol

286 Warp User’'s Guide

Schematic Entry

When this menu item is selected, ViewDraw prompts the user for the type of
module to be instantiated. This dialog box is titled Add Cell and is shown in the
following figure:

Figure 7-3 Add Cell dialog box

The user selects the desired module by single clicking the left mouse button. This
action results in another dialog box that prompts the user to enter all the options
that are applicable for the module selected. For example, if the Mcounter module
was selected, the following dialog box would pop up:

Figure 7-4 Mcounter dialog box

Warp User’'s Guide 287

Schematic Entry

~ 7.25

7.2.6

288

After selecting the appropriate items in this dialog box, a single mouse click on
the Accept button removes this dialog box. At this point, the custom symbol that
Warp has dynamically created is attached to the cursor and is ready to be placed
in the schematic.

Modifying an LPM Element

If the user wishes to modify an LPM symbol already placed in the schematic, he
should first select the LPM symbol to be modified and then choose the
Change->LPM Symbol menu item. Only one LPM symbol may be selected at a
time. When this menu item is selected, Warp displays the appropriate dialog box
for the given LPM symbol, identical to the dialog box that was used durmg the
initial creation of the LPM symbol.

Creating/Modifying a Non-LPM Element

A non-LPM element is essentially a user or library symbol which does not
constitute a parameterized symbol. Instances of these elements are created using
the regular ViewDraw methods. The Add->Comp menu item is used to create an
instance of a non-LPM symbol, and the Change->Comp menu item should be used
to change an existing instance. These menu items should not be used to edit or
create instances of LPM symbols. Other than this restriction, an LPM symbol is
similar to any other symbol within ViewDraw.

Warp User’s Guide

Schematic Entry

7.3 Exporting the Schematic

Once the schematic has been completed, the design can be converted into VHDL
and compiled into a PLD, CPLD, or FPGA device. This can be accomplished by
using the menu item Cypress->Export VHDL:

Schematic To Symbol...
VHDL To Symbol...
Symbol To VHDL...
Update LPM Symbols
Initialize LPM...

Print Hierarchy...

Figure 7-5 Export VHDL menu selection

Warp User’s Guide 289

Schematic Entry

290

When this option is selected, the following dialog box pops up:

Figure 7-6 Export VHDL dialog box

In this dialog box, Design Name is simply the name of the schematic being
netlisted and Output Directory is the directory in which the netlist should be
created. Leaving the Output Directory blank will create the netlist in the current
project directory.

At this time, the user can also choose the type of netlist to be produced by the
netlister. Currently, two types are supported: bit and std_logic.In VHDL,
each signal has a type associated with it. This option simply allows a choice
between these two different types. The bit type is supported only for
compatibility with the previous release. The std_logic type is recommended
for all new designs.

Clicking the left mouse button on the button marked Accept will cause the
following actions:

e Check and Save the current schematic if it is not already saved.
e Invoke the batch program hi1076 to perform the actual netlisting.
e Netlist any synthesis directives found in the design.

The output file name has the same name as the top level design with a .vhd
extension. This file also contains a hierarchical netlist for all the lower level
blocks. Once this file is created, the design is ready to be synthesized using the
Warp compiler.

Warp User’s Guide

Schematic Entry

7.4 Back-Annotation

Once a design has been successfully placed into a device, Warp allows the user to
fix the pinout for that design.

To back-annotate pin-numbers into the design schematic, the user must select the
menu item Cypress->Back-Annotation....

1‘ Eile View Edit Change Add Select Info Props Utils e

Schematic To Symbol...
VHDL To Symbol...
Symbol To VHDL...
Update LPM Symbols
Initialize LPM...

Print Hierarchy...

Figure 7-7 Back-Annotation menu selection

A simple dialog box appears showing the design name to be back-annotated.
Clicking on OK does the following:

* Invokes a batch program that queries the pinout results and creates a list
of pin names and their associated pin-numbers.

e Edits the current schematic (and all its associated sheets) to place the #
attribute, so that future VHDL netlisting will force the pins to be placed in
the same location.

Warp User’s Guide 291

Schematic Entry

The buses are back-annotated in a special way. Buses require that multiple pin-
numbers must be back-annotated. This is accomplished by creating an attribute

4"

with a “,” (comma) separated list of pin-numbers.

Note — Back-annotation will have no effect if the design has not
been successfully fit or placed and routed into a device.

7.5 Using the Schematic Libraries from Release 3.5

The release 3.5 library and the release 4.0 library elements are not compatible with
each other. To use the release 3.5 library mechanism, the user must do the
following:

On the PC

In the Warp R4 Program Group, invoke the program item named Library. This
program will modify the viewdraw.ini file located in the c:\warp\warpstd
directory as well as reconfigure the library directory in preparation for synthesis
using the appropriate library. This will allow the user to create a new project
directory via the Cockpit configured for either the release 3.5 or 4.0 library.

On UNIX Systems

The user must first login as the user who installed Warp on the system, to ensure
that he has the proper permissions to modify the installation directory and then
execute the program cypver. This assumes that SCYPRESS_DIR/bin is in the
user’s path and that the environment variable $CYPRESS_DIR is pointing to the
Warp installation directory. The cypver command modifies the Warp
installation allowing the user to switch between the 3.5 and 4.0 libraries.

The above programs do not automatically modify all projects and any
viewdraw.ini files that might exist in those directories. Following the template
provided in §CYPRESS_DIR/warp/warpstd/viewdraw.ini, the user must modify
his own viewdraw.ini files.

292 Warp User’s Guide

Schematic Entry

7.6 Schematic to Symbol

In Warp3, the user can use the Schematic to Symbol found in the Cypress menu to
generate a symbol for a schematic circuit. The resulting symbol can then be
instantiated in other, higher-level schematics.

When Schematic to Symbol is run, a dialog box allows the inputs and the outputs of
the symbol to be reordered. Once the ordering of the pins is satisfied, clicking on
Accept will create the symbol.

Figure 7-8 Schematic To Symbol dialog box

Note — A new symbol cannot be generated if the symbol is
already loaded into ViewDraw. To work around this problem,
simply close all other ViewDraw windows or re-renter View-
Draw and only load the schematic for which the symbol is
needed.

7.7 VHDL To Symbol

The VHDL To Symbol utility can be invoked in ViewDraw under the Cypress
menu bar. This utility differs from the Viewlogic VHDL2sym tool, which can be
found in the Circuit Design drawer. The Cypress version of the VHDL To Symbol
translator requires that the VHDL file be first compiled using Galaxy as a non top-
level file.

Warp User’s Guide 293

Schematic Entry

When this utility is invoked, a list of VHDL components for which symbols can be
generated is displayed so that the user can select exactly which symbols need to
be generated. If errors have been detected for symbols, the dialog box for VHDL
To Symbol allows viewing these errors. The order of the pins for each of the
symbols is determined by the order in which they were listed in the VHDL file.
Please note that these VHDL components must be defined within a package.

This utility is useful for designing in a bottom-up fashion, in which the user starts
at the lowest level (being VHDL) and works up to a top-level graphical schematic.

&

Note — A new symbol cannot be generated if the symbol is
already loaded into ViewDraw. To work around this problem,
simply close all other ViewDraw windows or re-renter View-
Draw and only load the schematic for which the symbol is
needed.

To run VHDL To Symbol, invoke the VHDL To Symbol and enter the name of the
VHDL file (without the .vhd) extension.

Symbol to VHDL

Symbol to VHDL takes as input the name of a symbol, and translates a ViewDraw
symbol into a VHDL file. The VHDL file has the same name as the symbol, except
with a .vhd extension. This implies that the symbol name should be a VHDL legal
name. The VHDL entity name is the same as the symbol name.

Symbol To VHDL

Figure 7-9 Symbol to VHDL dialog box

294 Warp User’s Guide

Schematic Entry

7.9 Update Library

Since the Ipmlocal library contains symbols that are sequentially named as the
user requests new LPM symbols, it is highly likely that two different users using
different lpmlocal libraries can have a like-named LPM symbol whose feature set
may be completely different. Furthermore, a symbol with a given feature set may
exist in one library and not in the other. Sharing or transporting of user
schematics would therefore be impossible. To solve this problem, Warp provides
a synchronization utility. Whenever a schematic is imported from another user,
selecting the Cypress->Update LPM Symbols will ensure the integrity of the current
schematic and its hierarchy by resolving any conflicts and regenerating all of the
LPM symbols.

Export VHDL...

B Back Annotation...
Schematic To Symbol...
VHDL To Symbol...

Print Hierarchy...

Figure 7-10 Cypress Update LPM Symbols

7.10 Print Hierarchy

This menu item prints the hierarchy for a schematic. This is helpful in being able
to view a schematic’s organization when the schematic contains many lower level
schematics or modules. Please note that this utility cannot analyze the hierarchy

of VHDL modules.

Warp User’s Guide 295

Schematic Entry

296 Warp User’s Guide

Chapter 8

Simulation

Simulation

8.1

298

Introduction

Warp supports pre-synthesis VHDL simulation and post-synthesis VHDL and
Verilog simulation. For post-synthesis simulation, Warp adheres to the following
methodology: it generates all the VHDL and Verilog files required to simulate the
design, and provides an easy way to integrate these HDL (Hardware Description
Languages) files into the target simulation environment. In order to simulate the
design, the user should be familiar with the desired simulation environment.

The VHDL and Verilog simulators supported are listed in Tables 8-1 and 8-2,

respectively.
Tablie 8-1 Supported VHDL simulators
Simulator Vendor Pre-/Post-synthesis
ViewSim Viewlogic Post-synthesis
SpeedWave ™ Viewlogic Pre-/Post-synthesis
V-System™/ Quick HDL™ mﬁf;:éﬂ;ﬁ;gy/ Pre-/Post-synthesis
VSS ™ Synopsys Pre-/Post-synthesis
Leapfrog ™ Cadence Pre-/Post-synthesis
IEEE1164 VHDL N/A Pre- /Post-synthesis
Table 8-2 Supported Verilog simulators
Simulator Vendor Pre-/Post-synthesis
VeriBest Intergraph Post-synthesis
VCS ™/ Chronologic Viewlogic Post-synthesis
Verilog-XL ™ Cadence Post-synthesis
IEEE1364 Verilog N/A Post-synthesis

Unless otherwise specified, pre- and post-synthesis simulation support is

available for all devices.

Warp User’s Guide

Simulation

8.2

Pre-synthesis Simulation

V-System

Scripts for compiling the Cypress pre-synthesis libraries into the user’s work
directory are available in $CYPRESS_DIR fwarp/lib/prim/presynth/scripts
(c:\warp\lib\prim\presynth\scripts). On UNIX platforms, to build the complete
library for STD_LOGIC types, run the following command:

$CYPRESS_DIR/lib/prim/presynth/scripts/vsys_std

This command will compile all the necessary files in a work directory at the
current location.

The std_logic_1164, std_logic_arith, std_logic_unsigned,
numeric_bit, and numeric_std packages are already part of the compiled
ieee library and accelerated for V-System /Workstation V4.4g (V-System/VHDL
Windows V4.3g).

On PCs, for the Windows version of V-System, invoke the V-System, pull down
the File->Directory and select the directory in which the library is to be compiled.
Then in the Transcript window, the following is entered (note the “do”
command):

do c:\warp\lib\prim\presynth\scripts\vsys_std

Similarly, to run pre-synthesis simulation using BIT types, use the following
commands:

(V-System/UNIX Workstation)
$CYPRESS_DIR/lib/prim/presynth/scripts/vsys_bit
(V-System /VHDL Windows)

do c:\warp\lib\prim\presynth\scripts\vsys_bit

If the user already has command files written for ViewSim or SpeedWave (cmd),
they can be easily converted to V-System (do) files. In order to make this
conversion seamless, the user must not use the shorthand commands for
ViewSim (i.e., a for assign, c for cycle, 1 for low, h for high, etc.). If the longhand
conventions are used, they will map directly to the .do file syntax.

Warp User’'s Guide 299

Simulation

SpeedWave

Scripts for compiling the Cypress pre-synthesis libraries into the user’s work
directory are available in $CYPRESS_DIR/lib/prim/presynth/scripts. To build the
complete library for STD_LOGIC types, run the following command:

$CYPRESS_DIR/lib/prim/presynth/scripts/spwv_std

This command will compile all the necessary files in a work directory at the
current location.

To run pre-synthesis simulation using BIT types, run the following command:

S$CYPRESS_DIR/lib/prim/presynth/scripts/spwv_bit

These commands will build the necessary directory for pre-synthesis simulation
of the user’s design. If the user already has command files for ViewSim, they can
be used with SpeedWave with minor changes. All port signals must be prefixed
with a / in the SpeedWave command file. This change is not backward
compatible with ViewSim.

Before running the above scripts, make sure that the environment variable
VANTAGE_VSS is set correctly, to point to SpeedWave root directory.

Other Simulators

For the rest of the simulators specified in Table 8-1, compile the packages in
$CYPRESS_DIR/lib/prim/presynth/std or $CYPRESS_DIR/lib/prim/presynth/bit (on
PCs, c:\warp\lib\prim\presynth\std or c:\warp\lib\prim\presynth\bit) and the
VHDL design file into your work library and simulate using the target simulator
commands. The proper order of compiling these files can be obtained by looking
at one of the scripts in §CYPRESS_DIR/lib/prim/fpresynth/scripts
(c:\warp\lib\prim\presynth\scripts). The process for other simulators is similar to
that mentioned above.

300 Warp User’s Guide

Simulation

8.3 Post-synthesis Simulation Design Flow for PLDs and CPLDs

The design flow for the post-synthesis simulation support for Cypress PLD and
CPLD devices is shown in Figure 8-1.

Select design and
simulator in Galaxy
@)mpile and synthesizD

verilog files in vlg directory
vhdl files in vhd directory

Compile and simulate
in target simulation
environment

Figure 8-1 Simulation design flow for PLDs and CPLDs

8.3.1 Select a Design

Refer to Chapter 4, “Galaxy,” for details on how to select a design and a device.

8.3.2 Select a Simulator

The supported simulators are listed in the Devices dialog box of the Galaxy
window, under the Post-JEDEC Sim section. Select the target device and package
from the Device and Package menus, respectively, and the simulator from the Post-
JEDEC Sim menu.

Warp User’s Guide 301

Simulation

833

8.3.4

302

Compile a Design

After selecting the design, target device, and simulator, compile the design from
the Galaxy window. Warp creates a set of VHDL or Verilog files which are
required for simulation in the vhd or vlg sub-directories, respectively. The vhd and
vlg sub-directories are created automatically if they do not already exist. The
filenames for the post-synthesis simulation models will have the same base name
as the top-level design file.

VHDL Simulation

V-System

A script for compiling the Cypress post-synthesis primitive libraries into the
user’s primitive directory is available in $CYPRESS_DIR/lib/prim/presynth/scripts/
vsysprim (on PCs, c:\warp\lib\prim\presynth\scripts\vsysprim). On UNIX
platforms, to build the complete primitives library run the following command:

$CYPRESS_DIR/lib/prim/presynth/scripts/vsysprim

This command will compile all the necessary files in a primitive directory at the
current location.

On PCs, for the Windows version of V-System, pull down the File->Directory and
select the directory in which the library is to be compiled. Then in the Transcript
window the following is entered (note the “do” command), write the following
command:

do c:\warp\lib\prim\presynth\scripts\vsysprim

Once the primitive library has been built, the target design can be compiled
(vcom) and simulated (vsim) with commands such as the following:

e wvcom vhd\<file name>.vhd

e vsim <entity name>

Warp User’s Guide

Simulation

8.3.5

SpeedWave

A script for coxr;piling the Cypress post-synthesis primitive libraries into the
user’s primitive directory is available in $CYPRESS_DIR/lib/prim/presynth/scripts/
spwuprim. To build the complete primitives library run the following command:

$CYPRESS_DIR/lib/prim/presynth/scripts/spwvprim

Once the primitive library has been built, the target design can be compiled into a
selected work area using the following command:

analyze ~dbg 2 -libfile veslib.ini -src vhd/<file name>.vhd

The simulation process at that point is the same as for ViewSim simulation.

Other Simulators

For the rest of the simulators specified, compile the packages in $CYPRESS_DIR/
lib/prim/vhdl (on PCs, c:\warp\lib\prim\vhdl) and the VHDL design file into your
primitive library and simulate using the target simulator commands. The proper
order of compiling these files can be obtained by looking at one of the scripts in
$CYPRESS_DIR/lib/prim/presynth/scripts/*prim (on PCs,
c:\warp\lib\prim\presynth\scripts\ *prim). The process for these other simulators
is similar to that mentioned below for Verilog Simulation.

Verilog Simulation

In order to simulate the design, the user should be familiar with the target
simulation environment. When a Verilog simulator is selected, Warp creates a
template file which assists the user in submitting the correct set of Verilog files, in
the proper order, to the target Verilog compiler. The template file, whose name
and format vary with the target simulator, is created in the vlg directory. The
steps needed to compile the design in different simulator environments are
described below.

VeriBest

The template file that Warp creates is called design_name.sup. Its format is
conformed to the support file format within VeriBest (refer to the VeriBest
simulator manual for details). Load the support file into the VeriBest environment
(File->Open_Setup_File) and select the analyze command to compile. The design is
now ready for simulation in the VeriBest environment.

Warp User's Guide 303

Simulation

VCS

The template file that Warp creates is called design_name.fls. This file contains the
list of files and their respective order to be compiled with the Verilog compiler.
Specify this file name in the VCS command line, as shown below.

ves -f <top_level_design>.fls

Verilog-XL

The template file that Warp creates is called design_name.fls. This file contains the
list of files and their respective order to be compiled with the Verilog compiler.
Once the files are compiled, they are ready for simulation in the Verilog-XL
environment.

Note — Make sure that the vlg directory is in the search path of
the target simulator.

304 Warp User’s Guide

Simulation

8.4 Post-synthesis Simulation Design Flow for FPGAs

The design flow for the post-synthesis simulation support is shown in Figure 8-2.

(Select design and device in Galaxy)

<Compile and synthesize)

(Select simulator, in SpDE>

'

Compile and simulate
in target simulation
environment

Figure 8-2 Simulation design flow for FPGAs

8.4.1 Select a Design

Refer to Chapter 4, “Galaxy,” for details on how to select a design and device.

8.4.2 Compile a Design

After selecting the design and target device, compile the design from the Galaxy
window.

8.4.3 Select a Simuiator

A variety of simulators are supported for post-synthesis simulation. The
supported simulators are listed in the Tools->Options->Simulator dialog box
within the SpDE place and route tool. Select the target simulator from this menu.
See Chapter 5, “SpDE” for more information on the SpDE place and route tool.

- Warp User’s Guide 305

Simulation

8.4.4

8.4.5

8.4.6

8.4.7

306

Run SpDE

After selecting the simulator, run SpDE with the back-annotation tool selected.

ViewSim Simulation

Warp3 integrates directly into the Viewlogic Powerview and Workview PLUS
environments, and FPGA post-synthesis simulation is fully supported with the
ViewSim simulator. After running SpDE, the spde2vl executable must be run.
This program is run by double-clicking on the pASIC->VSim icon in the Cockpit.
This utility will generate the necessary files for ViewSim simulation.

VHDL Simulation

For VHDL Simulation, simply select the appropriate simulator from the SpDE
Tools->Options->Simulator menu and run the back-annotation tool from within
SpDE. This will create a .vhd file and a .sdf file compliant with the VITAL
specification. These files in conjunction with the VHDL primitive models
provided allow the user to simulate a design with any VITAL compliant VHDL
simulator.

Verilog Simulation

When a Verilog simulator is selected, Warp creates a verilog design file (design.vg)
and a delay back-annotation file (design.sdf) where design is the top-level design
name. The device specific primitives used in the design are available in
$CYPRESS_DIR/spde/data/qlprim.v (on PCs, c:\warp\spde\data\q\prim.v). To
simulate the design, compile design.vq and the above mentioned primitive file in
the target simulator environment.

Warp User’'s Guide

Simulation

8.5 Post-synthesis VHDL Simulation in ModelT Environment

The following are the steps required for post-synthesis/layout simulation of
PpASIC targeted designs with Model T’s V-System:

* A glprims library needs to be created with the mtiprim.vhd file which is
supplied by Cypress. Follow these steps:

Create a glmodel directory.

Copy the file mtiprim.vhd (from $CYPRESS_DIR/spde/data) to the glmodel
directory.

While in the glmodel directory, create a new library called glprims with the
V-System’s vlib.

vlib glprims

Map the glprims library to it’s source:

vmap glprims <path>/gqlmodel/qglprims
Compile the mtiprim.vhd file to the glprims library:
vcom -work qglprims mtiprims.vhd

* Load design (<design.qdf>) into SpDE and select Model Tech V-System
from the Tools -> Options -> Simulator menu. SpDE will create
<design>.vhq and <design>.sdf files when the tools are run.

Note — As SpDE creates the .vhq file, it may inform you that vec-
tors in your entity will be broken out into individual signals
unless you have a .vhh file. Please ignore these messages as this
feature is not yet supported by Warp.

¢ Compile <design>.vhq:
vcom <design>.vhqg

e Simulate:
veim -t ps -sdftyp/-sdfmin/-sdfmax <design>.sdf
<design>

Warp User’'s Guide 307

Simulation

8.6

308

Note - ‘-t ps’ must be used because timing numbers in the SDF
file are in picoseconds. Because of this you must be careful about
the default cycle time which is 100 time units (in this case 100ps).
Either reset the default time units/cycle or explicitly indicate a
time for your ‘run’ statements in the .do file to prevent surprises.

Post-synthesis Verilog Simulation In VeriBest Environment

Following are the steps involved in the post-synthesis simulation of a CPLD
targeted design in the Intergraph VeriBest environment.

Select Intergraph from Devices dialog box of Galaxy and compile the
design.

Create a test bench model to give test vectors to the design. Following is a
test bench model:

module <design>_tbench () ;

// test bench name is <design>_tbench
reg inl, ;
wire outl, ;

initial
begin

// specify test vectors
end

// instantiate the design
<design> instl (inl,, outl,)
// In the above, <design> is the Verilog model name
of the design. It is created by Warp and is in
the file <design>.vlg in vlg sub-directory

endmodule

Load and compile the Verilog files generated by Warp into the Veribest™
environment and simulate the design.
% veribld

File->Open_Setup File <design>.sup

Analyze

Simulate

// in the above, File, Analyze, Simulate are the
menu buttons in veribld

Warp User’'s Guide

Simulation

Following are the steps involved in the post-synthesis simulation of a pASIC
targeted design in the Intergraph VeriBest environment:

* Load design (<design>.gdf) into SpDE and select Verilog from the
Tools->Options->Simulator dialog box of SpDE

* Run SpDE tools from Tools->Run Tools dialog box making sure that the
back-annotation option is selected.

e Create a test bench model to give test vectors to the design. The following
is a test bench model:

module <design>_tbench () :

// test bench name is <design>_tbench
reg inl, ;
wire outl, ;

initial
begin

// specify test vectors
end

// instantiate the design
<design> instl (inl, , outl,)
// In the above, <design> is the Verilog model name
of the design. It is created by SpDE and is in
the file <design>.vq

// Include <design>.sdf file generated by SpDE
initial
begin
$sdf_ annotate(“<design>.sdf”, <design>_tbench.instl) ;
end

endmodule

Warp User's Guide 309

Simulation

* Load and compile the Verilog files generated by SpDE into the Veribest
environment and simulate the design.

% veribld

Add->$CYPRESS DIR/spde/data/qglprim.v
Add-><design>.vqg
Add-><design_tbench>

Analyze

Simulate

// in the above, Add, RAnalyze, Simulate are the
menu buttons in veribld

Note — Refer to the Verilog language reference manual and Simu-
lator guide for details of test bench model and simulator usage.

310 Warp User’s Guide

R RS RIS ¢ T i s s
{ . e

Synthesis

Synthesis

9.1

9.1.1

312

Synthesis Directives

This chapter introduces synthesis directives—what they are, what they are used
for, how to use them, and when to use them. This chapter is organized into five
sections. The first section is an introduction. It explains directives and discusses a
strategy for using them effectively. It also includes two design examples to
illustrate how to apply them. The second section describes those directives that
can be used to optimize a design for the fewest device resources. The third section
describes those directives that can be used to optimize a design for timing goals,
including operating frequency, clock to output delay, setup time, and
combinatorial propagation delays. The fourth section describes directives used
for controlling the type and location of specific resources used in a device. The
final section describes directives used for documentation, including part selection
and pin number assignment.

Understanding Synthesis Directives

Synthesis directives may be used to influence the implementation of a design.
They are used in an iterative fashion to refine, improve, or constrain the results of
synthesis. For example, the goal directive is used by the synthesizer to select
either area-efficient or speed-efficient design implementations. Synthesis
directives may be applied to components that have been either instantiated in a
schematic or inferred by the synthesizer from VHDL code. The buffer_gen
directive causes buffers to be inserted for high-fanout signals. Synthesis_off
creates a factoring point for logic equations and is used for area or speed
optimization (or both). The pin_numbers directive specifies the pin numbers to
be used for signals. These and other directives are discussed in the pages to
follow, but the following section discusses a strategy for designing with synthesis
directives.

Warp User’s Guide

Synthesis

9.1.2

Design Flow and Strategy for Using Directives

Directives are a powerful mechanism to influence the synthesis process, but they
should be used judiciously. Careless or excessive use of directives can, in fact,
subvert the very design goals that are sought. This section describes a strategy for
using directives and choosing the appropriate one(s) to achieve the user’s goals.

Until the user becomes familiar with the effects of using the different directives,
Cypress does not recommend applying any of them in the first iteration of a
design. After synthesis and fitting—or place and route, in the case of an FPGA
design—the design may fit in the desired device and meet timing goals. In this
case, the design is complete—no directives are necessary. If, however, after the
inijtial iteration of synthesis and fitting, the design does not fit or meet timing
goals, the design may need tuning. Tuning, illustrated in Figure 9-1, is the process
of (1) identifying and applying an appropriate directive that may help to reduce
resource utilization or realize timing targets, (2) resynthesizing and fitting the
design, and (3) verifying that the design meets area and speed goals. In some
cases, this tuning process may have to be repeated in order to compare multiple
implementations of the design.

Warp User's Guide . 313

Synthesis

314

‘ START ’

!

5>

Schematics

}

VHDL

and/or

.

entity ()

architecture
begin
end;

]

<F_>

Synthesis

Fitter
or
Place & Route
Tool

RESULTS

Area: 91 cells
tS: 5.8ns
tSCS: 22.2ns
tCO: 26ns

Use Directives

goal = area
maxload = 8
state_encoding

FINISH

Figure 9-1 Tuning

tuning
cycle

Warp User’s Guide

Synthesis

9.1.3 Available Directives

Table 9-1 can be used to select an appropriate directive for tuning a design. Those
directives listed first are most likely to have the greatest impact on a design
implementation and should be selected first when tuning. The other directives are
used in special cases or for documentation purposes. Device selection and pin
number assignment are included in the documentation category, although they
are also functional directives that can have a significant impact on area and speed.
Later in this chapter, each of the directives listed in the table is explained in
greater detail, with the focus on understanding scenarios when using a particular
directive is appropriate. The syntax and effect of all directives is explained in
“Synthesis Directives,” Chapter 3, of the Warp Reference Manual.

For each of the directives listed in Table 9-1, the “Applicable Devices” column
indicates whether the directive is useful for CPLDs, FPGAs, or both. The “Used
for...” column indicates whether the directive can be used for area optimization,
speed optimization, specific control, or documentation.

The next section describes how to apply directives.

Warp User’s Guide ' 315

Synthesis

Table 9-1 Available Synthesis Directives

o gep‘};ilciz:ble Used for...

Directive
CPLDs | FPGAs | area speed | control doc.

goal X X X X
state_encoding | x X X X
buffer_gen X X X
max_load X X
pad_gen X X X
synthesis_off X X X X X
dont_touch X X X X
no_latch X X X X
lab_force X X
pin_avoid X X
polarity X X
sum_split X X
node_num X X
fixed_ff X X
ff_type X b
no_factor X X X
opt_level X X X X X
part_name X X X ' X X
order_code X X X X X
pin_numbers X X X X X

316 Warp User’s Guide

Synthesis

9.1.4

9.1.5

Scope and Inheritance

Each of the synthesis directives has a scope: some are intended for signals, others
for components. Some of the directives also have an inheritance. A directive
intended for a signal can be placed on an architecture or entity so that all signals
defined in that architecture or entity inherit that directive. This is called
hierarchical inheritance. Not all directives have an inheritance, however. Non-
hierarchical directives are meant for the exact object that they are attached to and
will be ignored if not applied to the appropriate object.

Hierarchical directives have the following order of precedence (from least to
greatest):

* entity

e architecture

¢ component declarations
* component instantiations
* signals

Thus, a hierarchical directive placed on an architecture is overridden by a
directive placed on a signal within that architecture. In other words, a hierarchical
directive intended for a signal, if placed on an architecture, serves as a default for
all signals within that architecture. Likewise, a hierarchical directive placed on a
component instantiation overrides a directive placed on an architecture. This
allows for an occurrence of a component to have a different value than the default
directive for all components.

Applying Directives

Some directives are available via the command line or Galaxy switches. Warp also
provides three other methods for applying synthesis directives: with VHDL
attributes, with schematic attributes, or with a top-level control file. Values of
directives passed through the GUI or the command line act as default values.
Directives applied using VHDL attributes, schematic attributes, or the control file
override default values. The only exceptions are the part_name and
order_code directives. The GUI or command line, discussed below, will
override all part _name and order_code atiributes.

Warp User’s Guide 317

Synthesis

Using the GUI or command line. Certain directives may be controlled from the
GUI or command line. An example of this is the goal attribute which can be
selected to provide area or speed optimization. If speed is selected, then it
becomes the default value. If a component has a VHDL or schematic goal
attribute applied to it, however, and the value of the attribute is area, then the
speed value is overridden with the area value for that component.

Using VHDL attributes. VHDL permits the use of user-defined attributes to
adorn objects with information. Warp has thus created a user-defined (as opposed
to pre-defined) attribute for each directive. This permits a directive to be applied
to an object with the use of an attribute. The general syntax of an attribute used to
place a directive on a signal is the form:

attribute directive name of object:class is value;

Such attributes are placed in the appropriate declarative region of the VHDL
code, typically in either the entity declarative region or the architecture body
declarative region. The object is the actual name or identifier of the entity,
architecture, component instantiation label, or signal. Class is used to identify the
class of the object (i.e., entity, architecture, or component instantiation label, or
signal).

Examples of applying directives using attributes are given below. Next is a
discussion of the application of directives with schematic attributes and a top-
level control file.

Using schematic attributes. Directives may be applied to objects in schematics
(with Warp3) using attributes by selecting the appropriate object and choosing
Attribute from the Add menu. After selecting Add->Attribute, a dialog box appears
in which the user may enter the directive in the form:

directive_name=value

The goal directive for area or speed optimization is not applied as an attribute. It
is chosen through the Add->LPM Symbol dialog box. The directive chosen here
overrides the command line or GUI switch.

318 Warp User’s Guide

Synthesis

9.2

Using a control file. A top level control file may also be used to specify synthesis
directives. In the case of conflict, directives placed in a control file override
directives specified with VHDL or schematic attributes. The format of the control
file is defined in Chapter 3, "Synthesis Directives,” of the Warp Reference Manual.
Each directive may be applied in the control file using a syntax similar to that of
attributes:

attribute directive_name [of] objectl[:class] is valuel;]

The words in square brackets [] are optional and are simply ignored. Specifying
the class is also optional.

The next section illustrates how to apply directives in a design by using the
tuning strategy shown above. The two examples shown below demonstrate the
merits of both CPLDs and FPGAs. These design examples were compiled using a
pre-release version of the Warp software. Your results may vary slightly from
those presented here, but the general concepts will remain true.

Example 1—DRAM Controller

The code of the following listing is used to describe a fictitious DRAM controller.
Understanding the details of the code is not necessary for comprehending the
subsequent design optimization strategy. This example will first optimize this
design for a pASIC380 FPGA and then retarget it to a FLASH370 CPLD.

library ieee;
use ieee.std_logic_1164.all;
entity example is port(
clk, rst, ads, burst:in std_logic;
address: in std_logic_vector(31 downto 0);
cas, ras, ack, ref: buffer std_logic;
row_col_address:out std_logic_vector(ll downto 0));
end example;

use work.std_arith.all;
architecture controller of example is
type states is (idle, asdet, rasa, casa, wl, w2, w3,
nocas, refad, wrl, wr2);

Warp User’s Guide ‘ 319

Synthesis

signal state, next_state: states;

signal match, ref_ reqg:std_logic;

signal count: std_logic_vector(23 downto 0);

signal captured_address: std_logic_vector(31l downto 0);
signal captured_burst:std_logic;

signal col_ad:std_logic_vector (1l downto 0);

signal burst_cnt:std_logic_vector(l downto 0);

constant re_ad:std _logic_vector(ll downto 0) := (others
=> '0");

alias row_ad: std_logic_vector(ll downto 0) is
captured_address (23 downto 12);
begin

-- latch in address, and value of burst
adreg: process (clk, rst)
begin
if rst = ‘1’ then
captured_address <= (others => 0’);
captured_burst <= ‘0’;
elsif clk’event and clk= ‘1’ then
if ads = ‘1’ then
captured_address <= address;
captured _burst <= burst;
end if;
end if;
end process;

-- check address contents to see if memory access

match <= ‘1’ when captured address(31 downto 24) =
“00000000” else ‘0’;

320 Warp User’s Guide

Synthesis

-- DRAM address multiplexer

mux: process (state, col_ad, row_ad)

begin
case state is
when refad | wrl |
row_col_address
when rasa | casa |
row_col_address
when asdet =>
row_col_address
when others =>
row_col_address
end case;
end process;

-- column address, Intel order

wr2 =>

re_ad;
| w2 | w3 =>
col_ad;

row_ad ;

(others => ‘-7);

col_ad(ll downto 2) <= captured address(ll downto 2);
col_ad(l) <= captured_address(l) xor burst_cnt(l);
col_ad(0) <= captured_address(0) xor burst_cnt(0);

-- Burst counter:
bcount: process (clk, rst)
begin
if rst = ‘1’ then
burst_cnt <= “007;

elsif clk’event and clk
if state = idle then
burst_cnt <= “00”;
elgif state = w3 then

‘1’ then

burst_cnt <= burst _cnt + 1;

end if;
end if;
end process;

Warp User’s Guide

321

Synthesis

-~ DRAM refress request counter
counter: process (clk, rst)
begin
if rst = ‘1’ then
count <= (others => ‘0/);
elsif clk’event and clk = ‘1’ then
if ref = *1’ then
count <= (others => ‘0’);
else
count <= count + 1;
end if;
end if;
end process;
ref _req <= ‘1’ when count = “101010101010101010101000”
else ‘0’;

-~ DRAM state machine
control: process (state, ref reg, match)
begin '
case state is
when idle =>
cas <= ‘l’; ras <= ‘1’;
ack <= ‘1’; ref <= ‘0’;

if ref_regq = ‘1’ then
next_state <= refad;
elgif ads = ‘1’ then
next_ state <= asdet;
end if;

when asdet =>
cas <= ‘l‘’; ras <= ‘1l/’;
ack <= ‘17; ref <= ‘0’;

if match = ‘1’ then
next_state <= rasa;
else
next_state <= idle;
end if;

when rasa =>
cas <= ‘1’; ras <= ‘0’;
ack <= ‘1’; ref <= ‘0’;

next_ state <= casa;

322 Warp User’s Guide

Synthesis

when casa =>
cas <= ‘0’; ras <= ‘0’;
ack <= ‘1’; ref <= ‘0’;

next_state <= wl;

when wl =>
cags <= ‘0’; ras <= ‘0’;
ack <= ‘1’; ref <= ‘0’;
next_state <= w2;

when w2 =>
cas <= ‘0’; ras <= ‘0’;
ack <= ‘1’; ref <= ‘0’;
next_state <= w3;

when w3 =>
cas <= ‘0’; ras <= ‘0’;

ack <= ‘0’; ref <= ‘0’;

if (captured burst = ‘1’ and burst_cnt /= “117)

then

next_ state <= nocas;
else

next state <= idle;
end if;

when nocas =>
cas <= ‘l1l’; ras <= ‘0’;
ack <= ‘'1’; ref <= ‘0/;
next_state <= casa;
when refad =>
cas <= ‘1l’; ras <= ‘0’;
ack <= ‘1’; ref <= ‘1’/;
next_state <= wrl;
when wrl =>
cas <= ‘l’; ras <= ‘0’;

ack <= ‘1’; ref <= ‘0’;

next_state <= wr2;

Warp User’s Guide 323

Synthesis

when wr2 =>
cas <= ‘l’; ras <= ‘0’;
ack <= ‘1’; ref <= ‘0’;

next_state <= idle;
end case;
end process;

-- clock state machine
clocked: process (clk, rst)
begin
if rst = ‘1’ then
state <= idle;
elsif clk’event and clk = ‘1’ then
state <= next_state;
end if;
end process;

end controller;

921 ° FPGA Optimization

9.2.1.1 First Pass -- Default Options

On the first pass through synthesis and the place and route tools, this example
uses the default Galaxy options—buffer generation on, pad generation on, and
speed optimization for inferred arithmetic components. In the synthesis report
file, several operators are inferred:

ex3.vhd (line 49, col 68): Note: Substituting module
‘warp_cmp_1lslc_ss' for '='.

ex3.vhd (line 80, col 32): Note: Substituting module
'warp_add_lslc_ss' for '+'.

ex3.vhd (line 94, col 24): Note: Substituting module
'warp_add_1lslc_ss' for '+'.

ex3.vhd (line 98, col 61): Note: Substituting module
'warp_cmp_1lslc_ss' for '='.

ex3.vhd (line 152, col 52): Note: Substituting module

'warp_cmp_lslc_ss' for '/='.

The two “+” operators are used in counters. The “=" and /=" operators are used
for arithmetic comparisons. The following buffers and pads are inserted:

324 ‘ Warp User’s Guide

Synthesis

Created CLKPAD for signal

Above signal drives

Created CLKPAD for signal

Above signal drives

Created HD1PAD for signal

Above signal drives
inputs. Total = 34

[max_load = 7, fanout

'clk’
63 Clocks, 0 Set/Resets. Total = 63
'‘rst’
0 Clocks, 63 Set/Resets. Total = 63
'ads'
0 Clocks, 0 Set/Resets, 34 other
= 18] Created 2 buffers [Duplicate]
for 'MODULE_5_s0_gl_u0O_c_1°'
[max_load = 7, fanout = 11] Created 1 buffers [Duplicate]
for 'MODULE_5_s0_gl u0O_c_2"
[max_load = 13, fanout = 25] Created 1 buffers [Duplicate]
for 'ref_OUT'
[max_load = 13, fanout = 18] Created 2 buffers [Normal]
for 'stateSBV_2'

Clock pads were automatically selected for the clock and reset signals because
they fanout to all 63 of the flip-flops used. A high-drive pad, HD1PAD, was
selected for signal ads because it has a large internal load. Buffers were created as
well, per the defaults. The modules that were inferred have their own buffering
requirements, and the remainder of the signals in the design are buffered if their
loads are greater than 13, which is the default value of the max_ 1oad directive.

The design is imported into SpDE for place and route. In the
Tools->Options->General dialog box of SpDE, select the level 2 area optimization
(L2 area) for technology mapping. Then run all the tools, record the logic cell
utilization information from the Info->Utilization information box, and gather the
requisite timing information to calculate setup time (tg), clock to output time (tco)
and maximum clock period (tgcg) for internal operation (see Chapter 5, “SpDE,”
to calculate setup times, clock to output delays, and operating frequency). Next,
choose level 2 speed (L2 speed) optimization and gather the same information.
The results are summarized in Table 9-2. For each category (area, tg, t5cg, and
tco), the best result is indicated by shading in the appropriate cell of the tableThe
limiting factor for operating frequency is also listed. In this case, even though the
design can be internally clocked for a clock period of tgcg, the tcg value is such
that clocking at this interval would result in the outputs never being valid.

Warp User’s Guide

325

Synthesis

Table 9-2 First pass FPGA results

L2 Area L2 Speed
Area (logic cells) | 108 116
ts (ns) 14.4 14.9
tgcs (ns) 22.0 20.6
tco (ns) 394 321
limiting factor tco tco

If the area and speed of this implementation are acceptable, then the job is done—
the design does not need tuning. If, however, the user wishes to tune this design
to improve either the area, speed, or both, then he must begin the tuning cycle.
For the sake of continuing this example, assume that the user has not met his
goals and first optimize this design for speed, then area. For speed improvement,
the user wishes to decrease the setup time and clock to output delay. Assume that
the user wants to run the design with a 40 ns clock period (25 MHz), witha 10 ns
setup time and 30 ns clock to output delay. If the results were only a couple of
nanoseconds from the desired goals, then the path analyzer in the place and route
tool should be used to enter timing constraints. The place and route tool could
then replace and reroute in an attempt to meet those constraints. For moderate
improvement, returning to synthesis with directives is appropriate. If the user
wanted to be significantly more aggressive with the clock to output delay, he
would want to consider registering the outputs. The outputs are currently
designed to be combinational outputs decoded from the current state of the state
machine. Adding a pipeline for registering outputs is discussed in the chapter
covering state machines in the VHDL text accompanying this documentation set.
For this tutorial, the discussion will focus on using directives along with place
and route constraints to meet the timing goals.

326 Warp User's Guide

Synthesis

9.2.1.2 Second Pass—Speed Optimization (First Tuning Cycle)

This begins the first tuning cycle. Look at Table 9-1 to determine which directives
are applicable. The tg-g goal has been achieved but not the tg or t-g goal. The
second pass will use two directives to influence the synthesis process and
improve timing: (1) The pad generation directive is used to force ads to two high
drive pads (HD2PAD). This is done to improve setup times. In FLASH370 CPLDs,
delays are not dependent upon internal loading of signals. With the pASIC380
FPGAs, delays are dependent upon fanout. A high drive pad increases the drive
for the ads signal and reduce propagation delay. (2) The state_encoding
directive is used to select one-hot encoding for the state machine. This is done to
potentially improve the operating frequency and perhaps save logic cells. With
sequential encoding, the 11 states of the state machine will require 4 state bits.
With one-hot, 11 state bits will be required; however, with one-hot encoding, the
next-state logic is simpler, so fewer overall logic cells (and fewer levels of logic
cells) may be required. None of the other directives, including buf fer_gen, will
be used in this pass, to avoid introducing too many directives at the same time.
Using too many directives at once limits the user’s ability to determine which of
them is helping or potentially hurting. Both attributes are placed directly in the
code. The pad_gen attribute is placed in the entity declaration region, directly
before the end statement. The state_encoding attribute is placed
immediately after the type declaration. The attributes are:

attribute pad _gen of ads:signal is pad_hd2;
attribute state_encoding of states:type is one_hot_one;

After synthesis, the report file indicates that one_hot_one encoding is used:

State variable 'state' is represented by a Bit_vector

(0 to 10).

State encoding (one-hot one-state) for 'state' 1is:
idle := "10000000000";
asdet := "01000000000";
rasa := "00100000000";
casa := "00010000000";
wl := "00001000000";
w2 := "00000100000";
w3 := *00000010000";
nocas := "00000001000";
refad := "00000000100";
wrl := "00000000010";
wr2 := "00000000001";

Warp User’s Guide 327

Synthesis

The report file also shows that ads is indeed using HD2PAD resources:

Created CLKPAD for signal ‘'clk’
Above signal drives 70 Clocks, 0 Set/Resets. Total = 70
Created CLKPAD for signal 'rst'
Above signal drives 0 Clocks, 70 Set/Resets. Total = 70
Created HD2PAD for signal 'ads'
Above signal drives 0 Clocks, 0 Set/Resets, 35 other
inputs. Total = 35
topld: ex4.vhd: Note: (N1347) When using multiple high-
drive pads, manual pin assignment is suggested

[max_load = 7, fanout = 18] Created 2 buffers [Duplicate]
for 'MODULE_4_s0_gl ulO_c_1"
[max_load = 7, fanout = 11] Created 1 buffers [Duplicate]

for 'MODULE_4_s0_gl u0_c_2'

[max_load = 13, fanout = 15] Created 2 buffers [Normal]
for 'stateSBV_1°

[max_load = 13, fanout = 28] Created 2 buffers [Normal]
for 'ref_oUT'

The results of the second pass as compared to the first pass are shown in
Table 9-3, with the best results for each category highlighted.

Table 9-3 Second pass FPGA results

First Pass Second Pass
L2 Area L2 Speed L2 Area L2 Speed
Area (logic cells) | 108 116 103 104
t5 (ns) 144 14.9 7.0 7.5
tgeg (ns) 22.0 20.6 19.8 185
tco (ns) 394 32.1 298 26.2
limiting factor tco tco tco tco

328 A Warp User’'s Guide

Synthesis

These results illustrate that using directives judiciously can significantly improve
the design. The setup time improvement came from using two high drive pads (of
course, using two pads will increase the load external to the device and should be
considered for the overall system design). The area savings and tgcg and tcg
improvements came from using one_hot_one encoding.

9.2.1.3 Third Pass—Speed Optimization (Second Tuning Cycie)

The design has now exceeded the stated goals; however, continue to optimize the
design to see if additional directives bring any further advantages. Using the path
analyzer in SpDE to examine the delays shows that the worst case clock to output
path comes from decoding the state bits through the multiplexer to the output of
row_address. Highlighting these paths shows that these signals must route long
distances to several loads. In an attempt to minimize this delay, use the
max_1load to buffer aggressively these signals. Since these signals are created by
the synthesis process, use the control file to add directives. VHDL attributes
cannot be used to apply these directives because these signals are not currently in
the VHDL source code. The attributes may be added if the source code is
modified. VHDL will not allow the user to apply an attribute to an object that
does not exist. In the control file, apply the directives to the names of the synthesis
created signals from the report file and in the path analyzer. The signals are
clearly generated from the state vector. To ensure that all state bits will be
buffered as appropriate, use the “*” wildcard to find all matches:

attribute max load of statesbv* is 5;
attribute max_load of ref is 10;

Warp User’s Guide 329

Synthesis

The report file indicates proper buffering according to the control file:

[max_load = 7, fanout = 18] Created 2 buffers [Duplicate]
for 'MODULE_5_s0_gl_ ulO_c_1"
[max_load = 7, fanout = 11] Created 1 buffers [Duplicate]

for 'MODULE_5_s0_gl ul_c_2'

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_0_BO0'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_0_Bl'.

[max_load = 5, fanout = 6] Created 2 buffers [Normal]
for 'stateSBV_0'

Note: Using config. rule 'statesbv*' to set attribute
‘max_load' on 'stateSBV_1_BO'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_Bl'.

Note: Using config. rule 'statesbv*' to set attribute
'max_load' on 'stateSBV_1_B2'.

[max_load = 5, fanout = 15] Created 3 buffers [Normal]
for 'stateSBV_1'

[max_load = 10, fanout = 28] Created 3 buffers [Normal]
for 'ref_OUT'

The results after place and route are only marginally better. The user is
approaching the best implementation possible. To improve upon this
implementation, the user could try adjusting the max_1oad to be slightly less
aggressive. Being too aggressive may cause too many buffers to be inserted. The
user may also iterate with the timing driven place and route tools by entering
constraints via the path analyzer. See Chapter 5, “SpDE,” to learn how to do this.

The summarized results of the speed optimization passes are shown in Table 9-4,
highlighting the implementation that gave the best result in a given category.
Because the limiting factor is.t-q, the results of L2 Area in the third pass work
best. Next, optimize the design for area where the results may be surprising

330 Warp User’s Guide

Synthesis

Table 9-4 Third pass FPGA results

First Pass Second Pass Third Pass
L2 L2 L2 L2 L2 L2
Area | Speed | Area | Speed | Area | Speed
Area (logic cells) | 108 116 103 104 103 104
tg (ns) 14.4 14.9 7.0 7.5 7.2 7.1
tscs (ns) 22.0 20.6 19.8 18.5 18.0 184
tco (ns) 394 32.1 298 26.2 26.0 | 26.6
limiting factor | tco | tco tco |tco |tco |tco

9.2.1.4 Fourth Pass—Area Optimization

Up to this point, this example has assumed that the target device is a CY7C384A,
a 2K gate device. Because only slightly more than half the resources of this device
(from 104 to 116 of the 192 available logic cells) are being used, it may be
worthwhile to optimize the design for area to see if it will fit in the CY7C382A, a
1K gate device with 96 logic cells. For this optimization, leave the pad_gen and
one_hot attribute from the first tuning cycle, but remove the buffer generation

of the subsequent cycle. In addition, change the synthesis goal in the Galaxy

menu from speed to area, and resynthesize the design. The results are excellent

(see Table 9-5)

Warp User’s Guide

331

Synthesis

Table 9-5 Fourth pass FPGA results

First Pass Second Pass Third Pass Fourth Pass

L2 L2 L2 L2 L2 L2 L2 L2
Area | Speed | Area | Speed | Area | Speed | Area | Speed

Area

(logic 108 116 103 104 103 104 91 92
cells)

tg (ns) 14.4 14.9 7.0 7.5 7.2 7.1 5.8 5.5

tscs (ns) | 220 | 206 | 198 | 185 | 180 | 184 | 222 | 222

tco (ns) 394 321 29.8 26.2 26.0 26.6 26.0 26.8

limiting

factor tco | tco | tco | tco | tco | tco | tco | tco

The design fits in the 1K gate device and achieves the original timing goals. In
fact, they are superior in some respects to the ones that were achieved with the 2K
gate device. This is not surprising because the 1K gate device is smaller. Thus,
signals route smaller distances. At this point the user is finished—he has fit the
design into the smallest FPGA while meeting the timing goals.

Next, the example will fit this design into a FLASH370 CPLD.

9.2.2 CPLD Optimization

9.2.2.1 First Pass

On this first pass, use the default synthesis and fitting options which yield the
results summarized in Table 9-6. The “L2 Area” and “L2 Speed” columns have
been removed because a fitter for CPLDs is used instead of the SpDE place and
route tool.

332 Warp User’s Guide

Synthesis

Table 9-6 First pass CPLD results

First Pass (default)
Macrocells 79
Product terms 225
tg (ns) 6.0
tscs (ns) 10.0
tco (ns) 16.0
limiting factor tco

This design requires a 128 macrocell member of the FLASH370 family of CPLDs.
Not surprisingly, it has excellent speed. This is because the design is essentially a
state machine, counters, and a little bit of combinational logic. This
implementation has far superior performance over the FPGA, but it also requires
a larger device. In the FPGA, however, if an additional pipeline were added to
improve clock to output delays (the limiting factor in this design), then system
speeds could approach 50 MHz. The additional pipeline would require a 2K
device, resulting in different performance numbers.

A tuning cycle will not likely improve upon the speed and area of this CPLD
implementation for two reasons: (1) The area versions of the counters will require
just as many macrocells and product terms as the speed versions. This is because
this counter is implemented very efficiently using T-type flip-flops. (2) Using the
state_encoding attribute with the one_hot_one value will neither increase
performance (it is already at its maximum-—one pass through the logic array) nor
reduce the number of required macrocells. In fact, 2 one-hot implementation
will require more macrocells. It may reduce the number of product terms, but the
current implementation uses only 35% of the available product terms. Gray
encoding will require the same number of macrocells, but could possibly require
fewer product terms. So, even though the current implementation is satisfactory,
resynthesize and fit the design using the “gray” value for the state_encoding
directive.

Warp User’s Guide 333

Synthesis

9.2.2.2 Second Pass -- State Machine Gray Encoding

This pass implements the state_encoding directive with a VHDL attribute
placed in the architecture body declarative region where the state type is
declared:

attribute state_encoding of states:type is gray:;
Warp reports the following fitter error:

Error: Signal stateSBV_3 uses too many input
signals, (logic+OE+AR+AP) .

This error indicates that one of the state bits requires more than the 36 inputs. The
FLASH370 allows only 36 inputs into a given logic block (no other CPLD has

more). Examine the report file to find the equation that verifies the veracity of this
error message and to see what can be done to correct it. The equation is as follows:

/stateSBV_3.D =
/stateSBV_0.Q * /stateSBV_3.Q * /stateSBV_2.Q *
/count_2.Q * /count_1.Q * /count_0.Q * count_5.Q *
/count_4.Q * count_3.Q * /count_8.Q * count_7.Q *
/count_6.Q * count_11.Q * /count_10.Q * count_9.Q *
/count_14.Q * count_13.Q * /count_12.Q *
count_17.Q * /count_16.Q * count_15.Q *
/count_20.Q * count_19.Q * /count_18.Q *
count_23.Q * /count_22.Q * count_21.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.
captured_address_31.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.
captured_address_30.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.
captured_address_29.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.
captured_address_28.0Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.
captured_address_27.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.
captured_address_26.Q
+ /stateSBV_0.Q * /stateSBV_3.Q * /stateSBV_2.Q *
/ads
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.Q *
captured_address_25.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.Q *
captured_address_24.Q
+ /stateSBV_0.Q * stateSBV_1.Q * /stateSBV_2.Q
/stateSBV_1.Q * stateSBV_2.Q
+ stateSBV_0.Q * stateSBV_2.Q

© 0 0O O O ©
*

+

334 Warp User’s Guide

Synthesis

Here, notice that the equation for this state-bit requires all inputs of the counter.
This is due to the state transition out of the idle state when ref_req is asserted. In
addition, notice that captured_address is required. This is due to the state
transitions out of the asdet state when match is asserted. In the sequential
encoding, the third bit of the state vector does not require all of these inputs: the
capture_address inputs are used with a different state bit. To avoid this problem,
this equation must be factored. A natural point to break this equation is with the
captured_address signals or counter signals. The user can create a factoring point
by applying the synthesis_o£f directive to either the match signal or the
ref_req signal (or both). The next pass will show how to create one with the match
signal. Creating this break-point will require a second pass through the logic
array. This will result in additional delay and require additional resources.
Obviously, the implementation will be inferior to the one achieved in the first
pass. Nonetheless, this example will show how to work around this problem for
instructional purposes. After all, it would be nice to know how to get around a
problem like this one, if the user encountered:it in the first pass.

It is interesting to note that the state encoding affected the number of terms in an
equation.
9.2.2.3 Third Pass -- Synthesis_off

The synthesis_off directive is applied with a VHDL attribute, placed in the
architecture declarative region where the match signal is declared:

attribute synthesis_off of match:signal is true;

The design fits. The report file indicates that gray encoding is used:

State variable 'state' is represented by a Bit_vector

(0 to 3).

State encoding (gray) for 'state' is:
casa := "0010";
idle := "0000";
asdet := "0001";
rasa := "0011";
casa := "0010";
wl := "0110";
w2 = "0111";
w3 := "0101";
nocas := "0100";
refad := "1100";
wrl := "1101";
wr2 := "1111";

Warp User’s Guide 335

Synthesis

The equations also show that match was used as a factoring point:

/stateSBV_3.D =
/stateSBV_0.Q * /stateSBV_3.Q * /stateSBV_2.Q *
/count_2.Q * /count_1.Q * /count_0.Q * count_5.Q *
/count_4.Q * count_3.Q * /count_8.Q * count_7.Q *
/count_6.Q * count_11.Q * /count_10.Q * count_9.Q *
/count_14.Q * count_13.Q * /count_12.Q *
count_17.Q * /count_16.Q * count_15.Q *
/count_20.Q * count_19.Q * /count_18.Q *
count_23.Q * /count_22.Q * count_21.Q
+ /stateSBV_0.Q * stateSBV_3.Q * /stateSBV_2.Q *
/match.CMB
+ /stateSBV_0.Q * /stateSBV_3.Q * /stateSBV_2.Q *
/ads
+ /stateSBV_0.Q * stateSBV_1.Q * /stateSBV_2.Q
/stateSBV_1.Q0 * stateSBV_2.Q
+ stateSBV_0.Q * stateSBV_2.0Q

+

match =
/captured_address_31.Q * /captured_address_30.Q *
/captured_address_29.Q * /captured_address_27.Q *
/captured_address_26.Q * /captured_address_25.Q *
/captured_address_24.Q * /captured_address_28.Q

The area and speed results are summarized in Table 9-7. This implementation
requires fewer product terms, but has slower performance than the first
implementation.

Table 9-7 Third pass CPLD results

First Pass | Second Pass Third Pass
(Defaults) | (Gray Encode) | (Synthesis_off)
Macrocells 79 Fit Error 80
Product terms 225 Fit Error 202
tg (ns) 6.0 Fit Error 6.0
tgcg (ns) 10.0 Fit Error 19.0
tco (ns) 16.0 Fit Error 16.0
limiting factor tco Fit Error tscs

336 Warp User’s Guide

Synthesis

Either of the successful CPLD implementations provide superior speed over the
FPGA implementation, but they also require a larger density device. The next
example selects a design that favors FPGAs for speed and area.

9.3 Example 2—Multiply and Accumulate Function

The code of the following listing is a multiply and accumulate design. Once again,
this design will be optimized first for a pASIC380 FPGA, then for a FLASH370
CPLD.

library ieee;
use ieee.std logic_1l164.all;

entity math is port (

clk, rst, mac:std_logic;

a, b:in std_logic_vector(7 downto 0);

g: buffer std_logic_vector (15 downto 0));
end math;

use work.std _arith.all;
architecture math of math is
begin
pl: process (rst, clk)
begin
if rst = ‘1’ then
q <= (others => ‘0’);
elsif clk’event and clk=’1’ then
q <= (a *b) + q;
end if;
end process;
end math;

9.3.1 FPGA Optimization

Warp User’s Guide 337

Synthesis

93.1.1

338

First Pass -- Default Options

In the first pass through the design, use the default Galaxy options—buffer
generation on, pad generation on, and speed optimization for inferred arithmetic
components. In the report file, the two arithmetic operators are inferred:

g.vhd (line 18, col 16): Note: Substituting module

'‘warp_mul_2s_ss' for '*'.

g.vhd (line 18, col 21): Note: Substituting module

'warp_add_2s_ss' for '+'.

The signals c1k and rst were placed on clock pads. Some of the inputs were
also selected for high drive pads because of high internal fanout. The default
value for the max_1oad directive is 13, so the following buffers were inserted:

Created CLKPAD for signal 'clk'
Above signal drives 16 Clocks,

Created CLKPAD for signal 'rst'
Above signal drives 0 Clocks,

Created HD1PAD for signal 'b_1'
Above signal drives 0 Clocks,
inputs. Total = 16

Created HD1PAD for signal 'a_l'
Above signal drives 0 Clocks,
inputs. Total = 16

Created HD1PAD for signal 'a_2'
Above signal drives 0 Clocks,
inputs. Total = 16

Created HD1PAD for signal 'a_3"
Above signal drives 0 Clocks,
inputs. Total = 16

16

0

0

Set/Resets. Total = 16
Set/Resets. Total = 16

Set/Resets, 16 other

Set/Resets, 16 other

Set/Resets, 16 other

Set/Resets, 16 other

Warp User's Guide

Synthesis

[max_load = 13, fanout = 15] Created 2 buffers [Normal]
for 'a_O_IN'

[max_load = 13, fanout = 15] Created 2 buffers [Normal]
for 'b_0_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal 1
for 'a_4_1IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'a_5_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'a_6_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'a_7_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'b_2_1IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'b_3_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'b_4_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'b_5_IN'

[max _load = 13, fanout = 16] Created 2 buffers [Normal]
for 'b_6_IN'

[max_load = 13, fanout = 16] Created 2 buffers [Normal]
for 'b_7_IN'

The area and speed results are listed in Table 9-8. This time, setup times are the
limiting factor. That is, the design cannot be clocked at ty; because that would
violate setup times.

Table 9-8 First pass FPGA results

L2 Area L2 Speed
Area 163 186
tg (ns) 68.8 73.9
tscg (ns) 228 249
tco (ns) 113 104
limiting factor tg tg

Warp User’s Guide 339

Synthesis

If the user wanted to pursue a faster design, then he could experiment with the
max_1load directive as well as the SpDE timing driven place and route to
minimize the delays of particular paths. Going through this process may yield a
small improvement over the current speed numbers.

9.3.1.2 Second Pass—Area Optimization

Because the default options use speed optimization, rerun the design with area
optimization on. After synthesis and place and route, the results are exactly the
same as in the first pass. This is because the adder and multiplier modules for the
widths used in this design have the same implementation for both speed and area
optimized versions.

Next, this design will be implemented in a FLASH370 CPLD.

9.3.2 CPLD Optimization

9.3.2.1 First Pass -- Default Options

Once again, the first pass will use the default Galaxy options. This means speed
optimization. With these options, the design will not fit (Table 9-9) because it
requires too many macrocells. It also requires nearly all of the available product
terms. So, pursue area optimization.

Table 9-9 First pass CPLD results

First Pass (Defaults)
Macrocells 132
Product terms 620
tg (ns) N/A
tscs (ns) N/A
tco (ns) N/A
limiting factor did not fit

340 Warp User's Guide

Synthesis

9.3.2.2 Second Pass -- Area Optimization
The results of area optimization are summarized in Table 9-10:

Table 9-10 Second pass CPLD results

First Pass (Defaults) | Second Pass (Area)
Macrocells 132 120
Product terms 620 605
ts (ns) N/A 87.0
tgcg (ns) N/A 66.0
tco (ns) N/A 7.0
limiting factor did not fit tg

The setup time for this combination of operations—multiply and accumulate—is
the limiting factor for the maximum frequency of this design.

For this application, the FPGA performed better and required fewer resources.
This is not surprising. FPGAs often do well in datapath and register-intensive
applications.

Now each of the directives listed in Table 9-10 will be covered topically by the
categories listed in the columns—area optimization, speed optimization, specific
control, documentation/selection.

9.4 Area Optimization

This section describes the directives and techniques required to successfully
implement a logic design with the minimum device resources (minimum area)
being utilized. The techniques are often different for FPGA and CPLD
architectures. The focus of this section is to provide recommended techniques for
area optimization based on device architecture.

9.4.1 CPLD and FPGA Considerations

This section discusses area optimization methods relating to all Cypress
programmable devices. The goal, synthesis_off, and no_£factor
directives are discussed.

Warp User’s Guide 341

Synthesis

94.1.1 The GOAL Directive
attribute goal of architecture name : architecture is area;

or command line option: -yga

The goal value of area indicates that all modules inferred from VHDL operators
will be optimized for area. The Warp synthesizer will select an implementation
that is optimized to use the minimum device resources. A 16-bit adder example
with the goal directive placed on an architecture is shown below. This code will
generate a ripple carry adder with a 2-bit group as the basic unit. This adder
would be implemented as carry-look-ahead if the goal was set to speed. A
comparison of the results after compilation for each goal and target device type is
shown in Table 9-11.

Table 9-11 Results of GOAL directives

FPGA CPLD
Area Opt. Speed Opt. Area Opt. Speed Opt.
24 logic cells 45 logic cells 23 macrocells 35 macrocells
8 passes 4 passes 8 passes 3 passes

library ieee;
use ieee.std_logic_1ll64.all;
use work.std_arith.all;
entity addlé_a is porxrt(
a, b:in std_logic_vector (15 downto 0);
sum:out std logic_vector (15 downto 0));
end addlé_a;

architecture archaddl6_a of addlé_a is
ATTRIBUTE goal OF archaddl6_a : ARCHITECTURE IS area;
begin
sum <= a + b;
end;

342 Warp User’s Guide

Synthesis

9.4.1.2 The SYNTHESIS_OFF Directive

ATTRIBUTE synthesis_off OF signal name : signal IS true;

When the synthesis_o£f£ directiveis set to true, a signal is made into a

factoring point for logic equations. This directive keeps the signal from being
substituted out during the optimization process. The node number is used to
reference a macrocell within a CPLD.

synthesis_of£ is useful for the following reasons:

* It gives the user control over which equations or sub-expressions need to
be factored into a node.

e It provides better results for designs where a signal with a large
functionality is being used by many other signals. If left alone, the fitter
would collapse all the internal signals (which is desirable in many cases)
and may drive the design's resource requirements beyond the available
limits.

* Ithelps in cutting down on compile time for designs which have a lot of
“signal redirection” (signals getting inverted or reassigned to other
signals). This directive provides the logic optimizer a better control over
the optimization process, by reducing the number of signals it needs to
deal with.

By using the synthesis_of£ directive, the user can assign the commonly used
signal to a node and bring down the resource utilization.

A side effect of using the synthesis_o££ directive is that the design will now
take an extra pass through the array to achieve the same functionality. The extra
pass may be required anyway, if more than 16 PTs are required.

This directive is recommended only on combinatorial signals. Registered signals
are assigned to a node by natural factoring, and the synthesis_o££ directive
on these signals is redundant.

This directive can be associated with signals declared both in VHDL and
schematics. The BUF component can also be used in schematics and VHDL to
achieve the same results as the synthesis_of££ directive. Pleaserefer to the
Warp Synthesis manual for more details.

Warp User’s Guide 343

Synthesis

This directive allows the designer to force multiple passes through logic cells for
optimal density. The following example uses the synthesis_of £ directive and
uses 30 Macrocells in a CY7C371. This same design requires 43 Macrocells in a
CY7C371 without using the synthesis_off directive:

library ieee;
use ieee.std _logic_1l164.all;
use work.std arith.all;

entity cpldadd is port(
a: in std_logic_vector(7 downto 0);
b: in std_logic_vector(7 downto 0);
c: in std_logic_vector(7 downto 0);
sum: out std_logic_vector(7 downto 0));
end cpldadd;

architecture areacpldadd of cpldadd is
signal intsum: std_logic_vector(7 downto 0):;
attribute synthesis_off of intsum:signal is true;
begin

intsum <= a + b;
sum <= intsum + c;

end areacpldadd;

94.1.3 The NO_FACTOR Directive

94.2

344

ATTRIBUTE no_factor OF signal name : signal IS false;

The no_factor directive when set to t rue prevents logic factoring within the
Warp synthesis engine. This means that factors which can be shared among
multiple outputs are not generated. For area optimization, the no_£factor
directive should always be set to £alse. This allows the synthesizer to create
common logic that can be shared, thus reducing the resources required.

FPGA Considerations

This section discusses area optimization methods using the Cypress pASIC380
FPGA architecture. The state_encoding and buffer_gen directives are
discussed.

Warp User’s Guide

Synthesis

9.4.2.1 The STATE_ENCODING Directive

The state_encoding directive specifies the internal encoding scheme for
values of an enumerated type. For most state machine designs larger than 4 states,
the values recommended for area optimization in FPGAs are either
one_hot_one or one_hot_zero. The choice of which type to use depends on
the design being implemented. A detailed description of each encoding value is
provided below. Further information on state encoding schemes may be found in
the VHDL textbook accompanying this document set.

ATTRIBUTE state_encoding OF type name : type 1S
one_hot_zero;

When the state_encoding value is set to one_hot_zero, the encoding of
the first value in the type definition is set to 0. Each succeeding value in the type
definition has its own bit position (flip-flop) in the encoding sequence. Thus, a
one_hot_zero encoding of an enumerated type with N possible values
requires N-1 bits (flip-flops). The following VHDL code will generate a
one_hot_zero state machine design:

-- This state machine implements a simple traffic light.

-- The N - S8 light is usually green, and remains green

-- for a minimum of five clocks after being red. If a

-- car is travelling E-W, the E-W light turns green for

-- only one clock.

PACKAGE DesgnPkg IS

TYPE state IS (green_red, yvellow_red, red green,
red_yellow);

ATTRIBUTE state_encoding OF state: type IS one_hot_zero;

END DesgnPkg;

library ieee;
use ieee.std logic_1164.all;
use work.desgnpkg.all;

ENTITY traffic_light IS
PORT (clk, car: IN STD LOGIC;--E-W travelling car
lights: BUFFER state);
END traffic_light;

ARCHITECTURE moorel OF traffic_light IS

-- The lights (outputs) are encoded in the following

-- states. For example, the state green_red indicates

-~ the N-S light is green and the E-W light is red.

-- nscount is used to verify five consecutive N-S greens

Warp User’s Guide 345

Synthesis

346

SIGNAL nscount: INTEGER RANGE 0 TO 5;
BEGIN
PROCESS
BEGIN
WAIT UNTIL clk = '1';
CASE lights IS
WHEN green_red =>
IF nscount < 5 THEN
lights <= green_red;
nscount <= nscount + 1;
ELSIF car = 'l' THEN
lights <= yellow_red;
nscount <= 0;

ELSE
lights <= green_red;
END IF;
WHEN yellow_red => lights <= red_green;

WHEN red_green =>
lights <= red_yellow;

WHEN red_vellow => lights <= green_red;
WHEN others => lights <= green_red;
END CASE;

END PROCESS;
END moorel;

The resulting state bit assignments indicated in the report file file-name.rpt for the
one_hot_zero design is shown below:

State variable 'lights' is represented by a Bit_vector

(0 to 3).
State encoding (one-hot zero-state) for 'lights' is:
green_red :="000";
vellow_red ="100";
red_green ="010";
red_yellow ="001";

ATTRIBUTE state_encoding OF type_name : type IS one_hot_one;

One_hot_one state encoding is similar to one_hot_zero, except that zero
encoding is not used. Every state value has a bit position that is set to “1” when
the state variable is active. Thus, a one_hot_one encoding of a state machine
with N possible values requires N bits (flip-flops).

If the package statement used for the one_hot_zero street light example above
is changed to use one_hot_one, then the package declaration would appear as
shown:

Warp User’s Guide

Synthesis

PACKAGE DesgnPkg IS
TYPE state IS (green_red, yellow red, red_green,
red_vyellow);
ATTRIBUTE state_encoding OF state: type IS
one_hot_zero;

END DesgnPkg;

The resulting state bit assignments indicated in the report file vhdi_file.rpt for the
one_hot_one is shown below:

State variable 'lights' is represented by a Bit_vector

(0 to 3).
State encoding (one-hot one-state) for 'lights' is:
green_red :="1000";
yvyellow_red :="0100";
red_green :="0010";

red_yellow :="0001";

94.2.2 Comparing one_hot_zero to one_hot_one

Notice that the one_hot_one design uses an extra flip-flop for the first state
assignment compared to the one_hot_zero implementation.

This traffic light example takes six logic cells when implemented in a CY7C381A
using one_hot_zero and seven logic cells when using one_hot_one. This
ratio may not always be the same, depending on other specifics on how the
design is implemented. A one_hot_zero implementation is useful in situations
where only a reset is available to the registers in a PLD. If an asynchronous signal
is required for initialization of the registers in a 22v10, then a reset is the only
option. In this case, use a one_hot_zero state machine for initialization to state
zero. The one_hot_zero may be less optimum if the Idle state (all 0s) is
required to decode an output signal or multiple transitions to different states. In
this case, all the state bits would have to be decoded to verify that the machine is
in Idle.

In general, one-hot designs are faster than binary encoded because state
transition decodings are simple. For FPGA architectures, a flip-flop is a less vital
resource than product term inputs because of the finer grain logic implementation
with a flip-flop in every cell. For these reasons it makes sense to use the one-hot
technique for FPGA state machines. This is not necessarily true for CPLD state
machine designs.

Warp User’s Guide 347

Synthesis

9.4.2.3 The BUFFER_GEN Directive

ATTRIBUTE buffer gen OF signal name : signal IS buf_ none;

or command line option: -yb

The buf fer_gen directive controls the buffering strategy for signals that have a
high fanout (exceeding max_1load). If a signal has a high fanout, then signal
propagation delays increase significantly. The buf fex_gen value is by default
buf_auto.Thebuf_none value is preferred for least resources being used.
Buffer generation should only be used where speed is of concern. Refer to Section
9.6.2, "Speed Optimization for FPGAs” for further details on buffer_gen.

94.3 CPLD Considerations

This section discusses area optimization methods using all Cypress PLD and
CPLD architectures. The ££_type directive applies to area optimization in
CPLDs.

9.4.3.1 The FF_TYPE Directive

ATTRIBUTE ff_type OF signal name : signal IS f£f_opt;
or command line option: -fo

The ££_type value of ££_opt tells Warp to synthesize the signal_name to the
optimum flip-flop type for the logic implemented. A flip-flop is chosen based on
the fewest resources required to implement the logic function. For instance, a D-
type flip-flop may be chosen for register data storage functions, while a T-type
(toggle) flip-flop may be chosen for counters. This option is recommended for all
designs unless the designer has specific requirements to force the use of a
different flip-flop.

9.5 Specific Control

This section describes specific control features of the Warp synthesis tool.

348 Warp User’s Guide

Synthesis

95.1 The FF_TYPE Directive (CPLD Only)
ATTRIBUTE ff type OF signal name : signal IS f££f_d;
or command line option: -£d

The ££_type value of ££_4d tells Warp to synthesize the signal_name using a D-
type flip-flop. This will force the synthesizer to use a D-type flip-flop to generate
signal_name. This directive will typically only be used if the Warp synthesis tool is
not using the D-type flip-flop where the designer intends.

ATTRIBUTE ff type OF signal name : signal IS ff_t;
or command line option: -ft

The ££_type value of ££_t tells Warp to synthesize the signal_name usinga
T-type flip-flop. This will force the synthesizer to use a toggle flip-flop to generate
signal_name. This directive will typically only be used if the Warp synthesis
tool is not using a toggle flip-flop, which the designer intends for functional
reasons.

9.5.2 The FIXED_FF Directive (FPGA Only)

ATTRIBUTE fixed ff of signal name : signal is
register_ location

or command line option: -£n [n=register location]

The £ixed_££ directive locks a flip-flop to a specific cell location in the device.
This directive overrides the default placement that the SpDE placer assigns
automatically. The £ixed_££ directive is applied to the Q output signal of a flip-
flop. If the £ixed_££ directive is assigned to any other signal besides the Q
output of a flip-flop, the directive is ignored. An example follows:

library ieee:;
use ieee.std_logic_1164.all;

ENTITY f££f_ type test IS
PORT (clk, f££_D: IN STD_ LOGIC; -- Flip-flop clock, D-input
£ff Q: OUT STD_LOGIC); -- Flip-flop Q output
ATTRIBUTE fixed ff OF ff Q:signal IS "Al";
END f£f_type_test:;

ARCHITECTURE arch ff type test OF ff type test IS

Warp User’s Guide 349

Synthesis

9.5.3

350

BEGIN
PROCESS
BEGIN
WAIT UNTIL clk = '1';
ff Q <= £f£f_D; -- Generate output
END PROCESS;
END arch_ff type_test:;

The above code segment will ensure the signal £ £_Q is generated from the flip-
flop located in cell “A1” of a pASIC device. This allows the designer to manually
place flip-flops to override the SpDE floor planner. This directive is used to place
flip-flops in close proximity in order to reduce routing lengths for critical path
signals. Flip-flops may be grouped together to provide maximum operating
speed. Refer to Section 9.6.2, "Speed Optimization for FPGAs,” for further details
on optimizing a design for speed using the £ixed_££ directive.

The NODE_NUM Directive (PLD & CPLD Only)

ATTRIBUTE node_num OF signal name : signal IS integer ;

or command line option: ~£n [n=node location]

The node_num directive locks a signal to a specific location in the target device.
This directive overrides the default placement that the Warp tool would assign
automatically. This directive applies to any combinatorial or sequential node
within the design.

Example:

library ieee;
use ieee.std_logic_1164.all;

ENTITY node_num_test IS
PORT (clk, f£f_D: IN STD LOGIC:; -- Flip~flop clock, D-input
£ff Q: OUT STD_LOGIC); -- Flip-flop Q output
ATTRIBUTE node_num OF ff Q:SIGNAL IS 398;
END node_num test;

ARCHITECTURE arch_node_num_test OF node_num_ test IS
BEGIN

PROCESS

BEGIN

WAIT UNTIL clk = '1';
ff Q <= £ff D; -- Generate output

END PROCESS;

END arch_node_num test;

Warp User’s Guide

Synthesis

The above code segment will ensure the signal ££_Q is generated from the
macrocell driving node 398 in a CY7C374 device. Node 398 refers to buried
macrocell A in logic block #1 in a CY7C374. The specific node numbers available
for each FLASH370 series device may be found in the Reference Manual
accompanying this document set. This directive allows the designer to manually
place logic to override the Warp floor planner.

9.5.4 The LAB_FORCE Directive (CPLD Only)

ATTRIBUTE lab_force OF signal name : signal IS "“string”;

The 1ab_£force directive aids in grouping signals together as a requirement to
the fitter. The string contains the name of the logic block. This directive will
force signal_name to the string internal logic block without regard for I/0O
pin assignments. In most designs, the automatic assignment by the fitter is
acceptable. In some cases, the user may want to constrain the fitter to obtain better
partitioning than can be performed automatically. This directive should only be
used if the user is intimately familiar with the target CPLD architecture. This
directive can cause routing difficulties if logic is placed in an area that can block
routing paths.

Example:

ATTRIBUTE lab_force OF ff Q:SIGNAL IS “B2”;

This will force the signal ££_Q to the lower half of logic block B in a FLASH370
device. In the following example:

ATTRIBUTE lab force OF ff_ Q:signal IS “Bl”;

The signal ££_Q is forced to the upper half of logic block B.

Warp User’'s Guide 351

Synthesis

9.5.5 The SUM_SPLIT Directive (CPLD Only)

ATTRIBUTE sum_split OF signal name : signal IS value;

The sum_split value can be balanced or cascaded. The default value is
balanced. Use the balanced value if reliable balanced timing is desired at the
expense of area. The following figure describes the balanced sum split concept:

ATTRIBUTE sum_split OF sum signal:signal IS balanced;

Split
to 16

18

OR ..

Result

Split _II+

to 2

Figure 9-2 The balanced sum split concept

The cascaded method uses only two macrocells to implement an equation.
There is no control over which product term is assigned to which macrocell. The
signals that are not split into macrocell #1 will arrive at macrocell #2 sooner,
thereby making the timing for the outputs different based on different arrival

times. If these output signals are registered, then of course the timing generated at
the outputs are the same.

ATTRIBUTE sum_split OF sum_signal:signal IS cascaded;

352 Warp User’s Guide

Synthesis

9.5.6

16

Split
to 16

18

OR
> Result_>

2

Figure 9-3 The cascaded sum split

Which sum_split method to use depends on the area constraints and how the
design is implemented. Use the balanced method first and then the cascaded, if
the design did not fit using balanced.

The POLARITY Directive (CPLD Only)

ATTRIBUTE polarity OF signal name : signal IS value;

The polarity directive is used to select polarity for signals in a design. There are
two options for polarity, p1_keep and pl_opt. The pl_keep option will
instruct the Warp compiler to keep the polarity of a signal as currently specified in
the design. The p1_keep option is useful to instruct the compiler about the
desirable output sense of a signal at power up. When a circuit is initialized, it may
be desirable to provide an output as a “1” or “0” and maintain this condition
without the compiler changing the sense for optimization reasons. In another
case, it may be desirable to keep signal senses in order to debug designs in the
simulator without being concerned about compiler-induced internal inversions.
In most cases, however, the p1_opt is the best choice. This option allows the
compiler to change the sense of internal signals to provide the best optimization
for a design.

Warp User’s Guide 353

Synthesis

9.6 Speed Optimization

This section describes the synthesis directives and techniques that may be used in
optimizing a design for performance. In most cases, the techniques for speed
optimization are device dependent. The discussion will cover first those
directives applicable to both FPGAs and CPLDs, then those for FPGAs only.

9.6.1 Speed Optimization for both FPGAs and CPLDs

9.6.1.1 The GOAL Directive

ATTRIBUTE goal OF architecture_name: architecture IS speed;

The goal value of speed indicates that all arithmetic modules inferred from
VHDL operators will be optimized for speed. The Warp synthesizer will select an
implementation that is optimized to achieve the best performance. This is a good
first step to take when optimizing a design for performance. To demonstrate the
goal directive, observe the performance delta in the following 8-bit adder
example implemented in a FLASH370 CPLD:

library ieee;
use ieee.std logic_1164.all;
use work.std arith.all;

entity add8_a is port(
a, b: in std_logic_vector (7 downto 0);
sum: out std_logic vector (7 downto 0)):
end adds8_a;

architecture archadd8 _a of add8_a is
attribute goal of archadd8_a: architecture is speed;
begin
sum <= a + b;
end;

Results with goal set to area was 57.0 ns (17.5 Mhz) worst case delay.

Results with goal set to speed was 27.0 ns (37 Mhz) worst case delay.

354 Warp User’s Guide

Synthesis

9.6.1.2 The DONT_TOUCH Directive

ATTRIBUTE dont_touch OF label name: label IS true;
ATTRIBUTE dont_touch OF entity name: entity IS true;

In some rare cases, a block of a design may need to be hand-optimized. The user
may instruct Warp to leave the individually optimized block alone by applying
the dont_touch directive to the entity or the component to prevent any
optimization on the block. Under most circumstances, this directive is not needed
since Warp’s optimization usually improves performance and resource efficiency.

architecture arch accumulator of accumulator is

attribute dont_touch of blockl: label is true;

begin
blockl: add4 (a, b, sum);

OR

entity my adder8 is port (
a,b: in std_logic_vector(0 to 7);

);:
attribute dont_touch of my adder8: entity is true;
end entity my_ adders$8;

9.6.2 Speed Optimization for FPGAs

9.6.2.1 The BUFFER_GEN and the MAX_LOAD Directives

ATTRIBUTE buffer_gen OF signal name: signal IS value;
ATTRIBUTE max_load OF signal name: signal IS integer;

Buffering a signal with high fanout effectively reduces the load seen by a signal,
and is used to reduce the propagation delay of that signal. Warp is capable of
implementing several methods of buffering. By default, Warp attempts automatic
buffering (buf_auto, explained below). If a different buffering technique is
desired for a particular signal, or register duplication is required, then the
buffer_gen directive may be applied to that signal. To specify a limit on the
number of loads a signal should have, the max_1oad directive may be used in
conjunction with the buf fer_gen directive. When Warp encounters a signal
with a fanout count larger than the specified max_1load value, it buffers the
signal. Warp has a default maximum load setting of 13.

Warp User’s Guide 355

Synthesis

356

Buffer generation options are:

buf_none: When the buf_gen directive is set to this value, Warp will not buffer
this signal. It prevents resources from being used unnecessarily as buffers. This
value should be used for signals which are not timing critical.

buf_auto: This is the default setting Warp uses for buffer generation. With this
setting, Warp first attempts buf_duplicate, then attempts buf_normal. The
buf_register will not be attempted.

buf_normal : A buffer tree is created between the signal source and its loads
until every node has a fanout of less than the maximum load count as specified by
the max_load directive. This technique is best used for signals that have very high
fanout (greater than 24) and need to meet a maximum propagation delay.

buf_duplicate : The logic gate that produced the source signal is duplicated
multiple times. This “paralleling” of signal sources does not create additional
levels of logic but does increase the load at the source inputs. For fanout loads of
less than 24, duplicate buffering will usually yield better performance than
normal buffering. The source logic must fit into a pASIC primitive PAfragA,
PAfragF, logico or the like. This method increases the load at the source inputs.

buf_register : Similar to duplicate buffering, registers are duplicated in
parallel. This method does not create additional logic levels and works best for
synchronous designs. For registered signals, this method usually yields better
performance than normal buffering. This method increases the load at the register
input.

Example:

library ieee;
use ieee.std_logic_1164.all;

entity 1ld_reg is port(
d: in std_logic_vector (31 downto 0);
address: in std_logic_vector (3 downto 0);
g: inout std_logic_vector (31 downto 0);
clk: in std_logic); \

end l1ld_reg;

architecture arch _ld reg of 1ld_reg is

signal reg en: std_logic:

attribute buffer gen of reg en: signal is buf_ normal;
attribute max_load of reg en: signal is 8;

Warp User’s Guide

Synthesis

begin
main: process(clk)
begin
if (clk’event and clk = ‘1’) then
if (reg_en = ‘'1’) then

q <= 4;
else
q <= q;
end if;
end if;

end process;
reg en <= ‘1’ when (address = “1001”) else ‘0’;

end arch_ld_reg;

Without buffering of any kind (automatic buffer generation disabled), the
reg_en signal has a fanout of 32. When importing into SpDE, the tool will warn
that the reg_ en signal has a high fanout. SpDE’s path analyzer reveals that the
worst case delay for a CY7C384A-2]JC is 33.5 ns (~30 Mhz). To improve the
performance, the VHDL file may be recompiled with buffer generation enabled in
the device window of Galaxy (default), and max_1load directive placed on the
reg_en signal. With the max_load set to 8, the worst case delay is brought
down to 18.2 ns (~55 Mhz). As a guideline, max_1oad should generally be set in
the range of 5 to 13. Above 13 loads, the delay of a signal is mostly due to the
number of loads and their associative routing. Between 5 and 13 loads, the tPD of
the added buffer with its associating routing may begin to balance out the fanout
delay. Below 5 loads, the buffering delay begins to outweigh the savings from
load reduction. For example, when max_load is set to 4, the worst case delay is
19.1 ns (52 Mhz), worse than when max_1oad is 8. It should be remembered that
delays in an FPGA are design-dependent and place-and-route dependent. This
means that for the same max_1oad setting, different designs and place-and-
route iterations will have different performances, hence the recommended range
of 5 to 13 loads.

If the reg_en signal is a registered signal, as in the code below, then the
buf_register setting should be used with the buffer_gen directive. In
register buffering (max_1oad = 8), the register source is repeated. In this case,
the register is automatically repeated four times to bring the worst case delay
down to 15.6 ns (~64 Mhz).

Warp User’s Guide 357

Synthesis

architecture arch_ld_reg of 1d_reg is

signal reg_en: std_logic;

attribute buffer gen of reg en: signal is buf_register;
attribute max load of reg en: signal is 8;

begin
main: process(clk)
begin
if (clk'event and clk = '1') then
if (address = "1001") then
reg en <= '1';

else
reg en <= '0';

end if;

if (reg_en = '1') then
q <= d4;

else
g <= q;

end if;

end if;

end process:;

end arch l1ld_reg:;

9.6.2.2 The PAD_GEN Directive

358

attribute pad_gen OF signal name: signal IS value;

The pASIC380 family has three different types of pins. Bidirectional pins may be
configured as bidirectionals, inputs only, and three statable outputs. There are
also dedicated inputs and clock input pins. The dedicated inputs are high drive
inputs for use with signals with high internal fanout. Clock inputs utilize an
internal clock distribution tree to achieve low skew. (Clock inputs can also double
as high drive inputs.) The type of input can be specified by using the pad_gen
directive.

entity counter is port (
clock: in std_logic;

)
attribute pad _gen of clock: signal is pad_clock;

end entity counter;

Warp User’s Guide

Synthesis

Automatic : Warp defaults to this setting. This setting attempts to find the type of
pad that best suits the implementation of the signal (bidirectional 1/0, clock, or
highdrive). This setting is activated when the automatic pad generation is enabled
in the device window of Galaxy, and the pad_gen directive is set to pad_auto
or no directive for pad_gen exists.

Bidirectional I/O : The majority of input signals and all output signals use a
bidirectional I/ O pin. These pins can be configured as always active outputs,
three-state outputs, inputs, and bidirectionals. To indicate to Warp that a signal
should utilize an I/O pin, the above directive may be used with the value set to
pad_none orpad_io.

Dedicated High-Drive Input: When an input signal drives many internal logic
gates (on the order of 8 or more loads), a dedicated high drive input can be used
to reduce propagation delays. The high drive inputs have double the drive
capability of a regular I/O input driver. Because they are intended for multiple
loads in mind, high drive inputs require the use of express wires for routing,.
Express wires are routing resources that traverse the entire length of the device.
For very large fanout counts, multiple high drive input drivers may have their
outputs tied together. This requires that the input signal at the pins is the same.
To have Warp utilize the dedicated inputs, use the above directive with the value
set to: pad_hdl, pad_hd2,pad_hd3, or pad_hdd4d.

Clock Input : To maintain a chip-wide skew of less than one nanosecond, the
clock distribution tree limits clock input signals to being wired to the reset, preset
and clock inputs of each logic cell’s register. To utilize the clock inputs, use the
above directive with the value set to pad_clock.

9.6.2.3 The FIXED_FF directive

ATTRIBUTE fixed ff OF signal name: signal IS
register location;

Hand placement of logic cells within the device is generally not recommended,
since an unrestricted place and route tool will be able to move logic cells near
each other when necessary during placement to reduce delays and routing
utilization. For cases where the user needs strict control over logic cell placement,
however, hand placement of logic cells is possible using the directive £ixed_££
on the registered signal. The signal being fixed must be a signal on the Q output
of a flip-flop or logic cell. The two most common situations which potentially
benefit from assigning logic cell placement are discussed below.

Warp User’'s Guide 359

Synthesis

360

Logic cell placement in a column arrangement is useful when used in conjunction
with high drive inputs (dedicated inputs which can drive larger loads than the
standard I/0O). High drive inputs require the use of vertical routing lines that
span the entire height of the device for small devices (express wires) or four logic
cells for larger devices (quad wires). Because of this, arranging logic cells in a
single column will require the use of only one express wire or a minimum
number of quad wires, thus saving resources as well as decreasing the
propagation delay. Fifo and shift register applications often will have this type of
situation; however, it is recommended that this be the last step in optimizing a
design for performance.

Logic cell placement can also aid in minimizing register to pin delays. The Warp
development system usually attempts to place the source logic cell near the
output pin. To insure that critical output pin signals have minimal clock to valid
times, however, the £ixed_£ £ directive may be used to lock the logic cell near
the output pin.

An example, counter4.vhd, is shown below (a 4-bit counter with enable). It is
desired that the registers for the vector data be placed in a column. Since VHDL
does not allow directives to be placed on individual signals of a vector, Warp’s
control file is used.

library ieee;
use ieee.std logic_1164.all;
use work.std_arith.all;

entity counterd4 is port(
data: inout std_logic_vector (3 downto 0);
clk,rst: in std_logic):;

end counterd;

architecture arch _counterd4 of counterd is
begin
process (clk,rst)
begin
if (xrst='1') then
data <= (others => '0');
elsif (clk'event and clk='1l') then
data <= data + 1;
end if;
end process;

end arch counterd;

Warp User’s Guide

Synthesis

After compilation, it is noted that the data signal vector has been broken down
into individual signals with labels data_0,data_1, etc. A control file is made
by creating a new file called counter4.ctl. This file contains the code:

attribute
attribute
attribute
attribute

Warp User’s Guide

fixed ff
fixed ff
fixed ff
fixed ff

of data_0:
of data_1:
of data_2:
of data_3:

signal
signal
signal
gsignal

llHlll;
Ile II;
IIHBII;
IIH4 Il;

361

Synthesis

This results in the layout shown below:

&

hz

-
N

-
V
hH
H

Figure 9-4 Layout with fixed_ff directive

362 Warp User's Guide

Synthesis

9.6.2.4 The STATE_ENCODING Directive

9.7
9.7.1

9.7.2

ATTRIBUTE state_encoding OF type_name: type IS value;

Next-state equations for state machines with sequential encoding can be complex
and product-term intensive. This is particularly undesirable in FPGAs because
several cascaded logic cells may be required to complete the equations. A
different state encoding scheme can reduce the complexity of the state encoding
equations, thus reducing logic cell utilization and ultimately reducing state
decode propagation delays. Two state encoding schemes which accomplish this
are one-hot-one and one-hot-zero state encoding.

See Section 9.4.2.1, "The STATE_ENCODING Directive,” for more information.

Documentation Directives

The PART_NAME Directive

ATTRIBUTE part_name OF entity name: entity IS “part name”;

A user may want to specify a particular device so that the original design
documents specify which device it was designed for. This directive will override
any target device command line switch or a Galaxy dialog box setting.

entity counter is port (

a,b: in std_logic:;

):

attribute part_name of counter: entity is “¢371~7;
end entity counter;

The ORDER_CODE Directive

ATTRIBUTE order_code OF entity name: entity IS “order code”;

A particular package and speed bin of a device can be specified to the Warp
synthesis tool by using the directive order_code within the design to ensure
timing information reflects the speed grade of the desired part. The order codes
can be found in the Ordering Code column of the ordering information table for
each device in the Cypress Semiconductor Programmable Logic Data Book. Timing
delays for CPLDs are calculated according to the speed bin specified by this
directive, or if no directive is specified in the VHDL code, the compiler will use
the directive specified in the device window of Galaxy.

Warp User’s Guide 363

Synthesis

9.7.3

9.8

364

entity counter is port (
a,b: in std_logic;

):

attribute order_code of counter: entity is “CY7C371-
66JC” ;

end entity counter;

The PIN_N'UMBERS Directive

ATTRIBUTE pin_numbers OF entity name: entity IS “string”;

Once a design has been completed and the board is defined, it may be desirable to
maintain the pin out configuration when modifications to the programmable
logic design are made. Locking signals to a particular pin can be accomplished by
using the pin_numbers directive in the design.

entity counter is port (
a,b: in std_logic;

);
attribute pin_numbers of counter: entity is “a:6 b:7 ~;
end entity counter;

It is recommended that whenever possible, particularly the first time a design is
fitted to a device, the pins of a device should not be locked. When the pins are not
locked, the fitting tools can choose the optimal fitting arrangement within the
device for performance as well as minimal resource utilization. In some rare
occasions, certain pin arrangements can render a fitting impossible.

Once a design has been fitted to a device (and the tool has already chosen a
working pin configuration), the pin assignments can be back-annotated to the
design schematic. The pin_numbers directive can also be used to set the pins of
the design.

Directive Format Summary

A summary of the VHDL attribute formats, possible values, and command line
switches are provided in Table 9-12.

Warp User’s Guide

Synthesis

Table 9-12 Directive formats

Directive VHDL Format Values (D=Default) ?nr?g
goal attribute goal of arch_name : speed (D), area, or ygs
architecture is value; combinatorial yga
ygc
state_encoding | attribute state_encoding of sequential (D),
type_name : type is value; one_hot_zero, --
one_hot_one, or gray
buffer_gen attribute buffer_gen of buf_auto (D),
signal_name : signal is value; buf _none, buf normal, b
buf_duplicate, or ¥
buf_register
max_load attribute max_load of 13 (D) or positive inte-
signal_name : signal is integer; | ger ym
pad_gen attribute pad_gen of pad_auto (D),
signal_name : signal is value; pad_none, pad_clock,
pad_hd1, pad_hd2, vp
pad_hd3, pad_hd4, or
pad_io
synthesis_off attribute synthesis_off of false (D) or true L
signal_name : signal is value;
dont_touch attribute dont_touch of false (D) or true
label_name : label is value; L
attribute dont_touch of
entity_name : entity is value;
no_latch attribute no_latch of false (D) or true 1
signal_name : signal is value; ¥
lab_force attribute lab_force of Example: “A1” _
signal_name : signal is location;
pin_avoid attribute pin_avoid of Example: “1 2 3” .
entity_name : entity is location;
Warp User’s Guide 365

Synthesis

entity_name : entity is string;

Directive VHDL Format Values (D=Default) (ljxr::
polarity attribute polarity of pl_default (D), pl_keep, | £k
' signal_name : signal is value; or pl_opt fp
sum_split attribute sum_split of balanced (D) or cas- .
signal_name : signal is value; caded
node_num attribute node_num of nd_auto (D) or positive on
signal_name : signal is value; integer
fixed_ff attribute fixed_ff of Example: “A2” £n
signal_name : signal is location;
£f_type attribute ff_type of ff_default (D), ff_d, ff t, | £4
signal_name : signal is value; or ff_opt ft
fo
no_factor attribute no_factor of false (D) or true n
signal_name : signal is value;
opt_level attribute opt_level of 2(D),1,0r0 o
signal_name : signal is integer;
part_name attribute part_name of Example: “c371” a
entity_name : entity is string;
order_code attribute order_code of Example: “PALC22V10-
entity_name : entity is string; 25HC” P
pin_numbers attribute pin_numbers of Example: “sigl:1 “ & g

“sig2:2”

366

Warp User’s Guide

e e e
| s e

Device Programming

Device Programming

10.1

368

Once a design has been compiled, synthesized, and simulated, it is ready to be
implemented in silicon. This implementation consists of two steps: the generation
of a programming file and the programming of the device. In this section, both
steps will be discussed for all devices in the Cypress programmable logic family.

The programming file type that the designer generates depends upon the device
type to be programmed. Three programming file types exist for Cypress devices,
JEDEC (jed), POF (pof), and LOF (lof). The table below summarizes the file type
needed for each of the Cypress device types as well as the steps required to
generate these files. These steps are described in detail in this section.

Table 10-1 Programming file types

Programming File

How to Generate File
Type

Device Type

Run Galaxy

Go to Device menu
Output: JEDEC Normal
Compile Design

Small PLDs, FLASH370

CPLDs JEDEC

Run Galaxy

Go to Device menu
MAX340 CPLDs POF Output: JEDEC Normal
Compile Design

Run jed2pof.exe from DOS

Run Galaxy

Go to Device menu
Output: QDIF
Compile Design
Run SpDE

Import QDIF

Run place and route

pASIC380 FPGAs LOF

Export LDF

Generating a JEDEC File

For programming a small PLD or a FLASH370 CPLD, a JEDEC file is required. In
the Warp design environment, this file is created as the last step of compiling a
design. JEDEC file generation is enabled in Galaxy by clicking on the Device
button in the main project window, and then selecting JEDEC Normal as the

Warp User’s Guide

Device Programming

Output option. This programming file will have the same base name as the top-
level design file with a .jed extension.

Two output file formats are possible when a small PLD or CPLD is selected,
JEDEC Normal and JEDEC Hex. Both files contain the same information but
slightly differ in format. Whereas the JEDEC Normal represents fuse addresses
and data in binary (0 and 1), the JEDEC Hex represents them in hexadecimal

(0 through F). Most device programmers require the JEDEC Normal format, and
the programmer software will generate errors if the JEDEC Hex file format is
used.

Some portions of a JEDEC file are included below to provide an example of the
information that it contains:

Cypress c371 Jedec Fuse File: test.jed

This file was created on 12/11/95 at 10:20:55

by C37XFIT.EXE 06 /MAR/95 [v3.17B] 3.5 IR x96
ABc371*

QP44+ Number of Pins*

QF13274~* Number of Fuses*

FO* Note: Default fuse setting 0*
GO* Note: Security bit Unprogrammed*

NOTE DEVICE c371*

NOTE PACKAGE CY7C371-143JC*

NOTE PINS aegb:2 b_3:10 b_2:11 b_1:13 b_0:32 a_3:33 a_2:35
NOTE PINS a_0:42 a_1:43 *

NOTE NODES *

NOTE NODES *

L000000
000000000010000000000011100000000000000000100000000000000011
100000000000

* Note: LAB 1 BANK OE O*

L000072
000000010000000011111000000000000000100000000000001000100000
010000000000

* Note: LAB 1 BANK OE 1*

(etc.)

Warp User’s Guide 369

Device Programming

370

CC3B5* Note: Fuse Checksum*

QV4151* Note: Number of Test Vectors*
V0001l NL11HFZZ010NC10Z10ZZZNNZZZL11Z111NOZLLLHHZLN*
V0002 NL11lHLZZ010NC10Z210ZZZNNZZZL11Z111NOZLLLHHZLN*

V0003 NL1lHLZZOOONC10Z10ZZZNNZZZL11Z111NOZLLLHHZLN*
(etc.)

V4151 NL11FF10ZOONCZZZZZZZZNNZZZLZZZ001N1ZLLHLHZHN*
ACFFAO Note: File Checksum*

At the top of the file is information about the design compilation, including the
software revision number, date of compilation, and filename. Further down in the
file is the design and device information. The QP field (QP44) tells the user that
this file is for a 44-pin device. The QF field denotes the total number of fuses that
can be programmed: 13,274 for a CY7C371. A few lines below this are several
NOTE fields detailing the device, package, and signal names for the design
signals. The device programmer does not use these fields, but simulators use
them for package-specific pin numbers and signal names during simulation.
Because the programming algorithm does not use this pin information, but rather
only uses the fuse numbers for addressing internal locations within the device,
the user can program any package of a given device type with the same JEDEC
for that device. For example, the designer could use a TQFP package to compile
and simulate a design, and then use the resulting JEDEC file to program a PLCC
package of the same device. In short, the package information in the file is
relevant not for programming but for simulation.

After the NOTE fields, the fuse address and data begins. Each L field in the
JEDEC file corresponds to a region of the device. The data following the L field
corresponds to the values to be programmed in those locations (1 = programmed,
0 = unprogrammed).

Near the end of the file are two checksums, a fuse checksum and a file checksum.
First, the fuse checksum represents the sum of all of the fuse values in the JEDEC
file. Device programmers often use this sum to verify that the pattern
programmed into the device (number of fuses programmed) matches the number
in the JEDEC file. By reading the fuse values from a programmed device, the
programmer determines the number of fuses that were programmed. In the
sample JEDEC file above, the fuse checksum is C3B5. The checksum value is
always preceded by a C.

Warp User’s Guide

Device Programming

10.2

The file checksum, which is the last line in the file, represents a total value for all
characters in the JEDEC file, including both fuse values and notes, comments, and
signal names. Using this checksum value, the designer can tell if the
programming file has been corrupted or modified. If the file has been changed,
the file checksum computed by the device programmer will not match the
checksum in the file, and an error will be reported. In the sample JEDEC file, the
file checksum is FFAQ, preceded by ~C.

Between the fuse checksum and the file checksum are test vectors for the design.
Device programmers use these vectors to test the functionality of the
programmed device. Using these vectors in sequence, the programmer applies

inputs to the device and checks the outputs for the expected values. The QV field, 1 0
found immediately after the fuse checksum, represents the number of test vectors.

This sample design has 4,151 test vectors. Many third-party software companies
offer products that automatically generate test vectors for a design using a JEDEC
file as the input.

Generating POF Files for MAX340 CPLDs

The steps required to program the MAX340 CPLDs are identical to those
discussed above for FLASH370 CPLDs with one additional step required to
produce the programming file. After the design is compiled and produces a
JEDEC Normal file, that file must be converted to a POF (pof) file. POF files are
binary programming files which are not based on the JEDEC standard.
Programming algorithms developed for the MAX340 CPLDs use this format
instead of the JEDEC format.

To perform the conversion from JEDEC to POF, the executable jed2pof.exe must be
run from DOS. This program takes the device type and JEDEC filename as input
and produces a file with the same base name and a .pof extension. The part can
then be programmed on a device programmer. If you are using the Warp
software on a PC, this utility can be found in the c:\warp\bin\jed2pof directory.
If you are using a workstation, you can obtain this program from the Cypress
Bulletin Board System (BBS) at (408) 943-2954.

Warp User’s Guide 371

Device Programming

10.3

104

372

Generating LOF Files for pASIC380 FPGAs

Cypress pASIC380 FPGAs require a different programming file format, the LOF
(lof) format. After performing place and route on a design using SpDE, the
designer can generate a LOF file by going to the File menu in SpDE and selecting
Export LOF. The fuse information is then stored in the LOF file (design.lof). If
running SpDE on a PC platform, the user then has the option of zipping the LOF
file after it has been generated. Doing so significantly reduces the size of the file
(which can be several megabytes) and produces the format required by the Data
I/0 Unisite programmer. The Cypress Impulse3 programmer uses the unzipped
version of the LOF file instead of the zipped version. If the file has been zipped,
the user would unzip it using pkunzip.exe, a popular shareware utility available
on the Cypress BBS.

At the top of any LOF file are several fields containing information about the
device type, programming file, and the software revision of the SpDE software
used to generate the file. Some portions of the LOF file header are included below:

Design name: test
Part name: plé6x24b¥*
QP144+*

(etc.)

QR5.06*
(etc.)

In the example above, the QP field represents the number of pins on the device -
144 in this case. The QR field gives the revision number of the SpDE place and
route software used to generate the LOF file.

Device Programmers

Cypress sells a programmer called the Impulse3 that supports PROMs, small
PLDs, CPLDs, and FPGAs. Different part and package combinations require
various programming adapters that fit onto the base unit of the programmer. By
using the correct programming adapter and generating the programming file as
discussed earlier in this section, all of the Cypress devices can be programmed
using Impulse3. Software updates for Impulse3 are free and are available on the
Cypress World Wide Web home page.

Warp User’s Guide

Device Programming

Other third-party vendors such as Data I/O, BP Microsystems, SMS, System
General, and Logical Devices offer varying degrees of programming support for
Cypress devices. The Data I/O Unisite has the most complete support for Cypress
devices of these third-party programmers. The designer should directly contact
the manufacturer of these third-party programmers for device support questions.
The design flow for programming each type of device is summarized in the

following graph.
GALAXY
“Device” button “Device” button
Output: JEDEC Normal Output: QDF
Small PLDs
FLASH370 ¢ MAX340 ¢ pASIC380 ¢
JEDEC JEDEC QDIF ‘
(jed) (jed) (-C;if) ‘
SpDE ‘
jed2pof.exe Place and
(from DOS) Route
File->Export LOF

e 33|11
= T
< 55|1]1]1]

y

DEVICE PROGRAMMER

Figure 10-1 Design flow for device programming

Warp User’s Guide 373

Device Programming

374 Warp User's Guide

A
Adobe Acrobat Reader
PC Installation ... -)
Programmable Loglc Data Book 2,5
SunQOS/Solaris/HP installation 4-5
About command
Nova Help menu.....cceeecivrvemiccriennenen 259
SpDE Help menu ..211
Acrobat Reader... w2
ALU circuit de51gn tutorial
architecture... .. 145-146

back—annotation pin assignments cerennn 167
compiling and synthesizing top-level

schematic ...ccvvnvercnrciecie e 159
entity declaration s 144
exporting top -level schematic e 158
generally..... 110
generating a symbol' from the

schematic...
instantiating components described
- ... 133-141, 155-157
mstantiatmg LPM components
...114-116, 150-151

‘ labehng nets and buses -
132 141 153-157

hbranes

..147
package declaration 146-147
placing and routing............. ... 159-161
PLD schematic described 116-128

positioning of components ...
e 128-129 151 152

pro]ect creation of S 111
schematic, creation of top—level
..112, 150
142, 157-158

schematic, saving of

starting Warp3.... N ..110
VHDL file, generatmg a symbol for .149

VHDL file, verifying of 148-149
VHDL file, writing of.... ... 143-144
ViewDraw ... creernesennene e 112-114
ViewSim .. 162 163-166

wiring components together .
veeesnenaesens 130-131 152-153
wmng components together .

describedcccoovuuuune. 133-141 155-157
Architecture
ALU circuit design, use in 145-146
parking garage monitor de51gn use
13 (PR ..74,77-79

soda machine de51gn, use in....... 33, 35-37
Area optimization
CPLD and FPGA considerations ..
341 344
CPLD con51derations 348
FPGA consuierations................. ... 344-348

Area/speed optimization in SpDE Logic

Optimizer.... ceeerienerans ..214
Arranging signals in Nova ..278
Attributes used for applymg synthe51s

directives... crenees . 317-318
ATVG Coverage command in SpDE Info

menu.. w210

See also Automatic Test Vector

Generation (ATVG)

Automatic pad generation...............359

Automatic Test Vector Generator (ATVG)

defined... ..212, 225
design considerations 228-231
fault gradingccoeeeenrsesnrcnirs i .. 228
stuck-at faults.......oeeeeerernrrnnnn. 226-228

testing overviewcvviininenriininnnn . 226

Index

Available list box in SpDE Path Analyzer.......

B

Back-annotating pin assignment

information
ALU circuit design, use in 167
parking garage monitor design, use..

M, 105 106
soda machme desrgn, usein.. ... 66-67

Back-Annotation

ALU circuit design tutorial.... ..167
Galaxy.... ..194
parking garage momtor desrgn

tutorial .. crevernnan e serasneensess 105
schematic entry 291-292
soda machine design tutorial 66-67
SpDE.... ermesssmn s snesennnn 208, 212

SpDE srmulatlon e 220, 224-225
Bidirectional I/O pin in pASIC380..... 358-359
BIGWIN Windows extenderccouveevienen3

Bold convention .. 24
Browser tool... 74 193
Buffer_gen drrechve in FPGA
area optimization veneenenen 348
speed optimization......................... 355-358
Buffer generation in Galaxy.........cccevueceve.... 181
Buses in Nova Edit menu 259, 267-268

Buses, labeling of.................... 132-133, 153-157
Bus Radix command in Nova Edit menu........
....259, 268

C

Calculations in SpDE Path Analyzer..........239
Cell Utilization command in SpDE Info
menu 208-209
Checksums in]EDEC frles ...370-371
Choose FF types option in Galaxy R VL

Circuit, simulation of, in Nova............ 277-278
Click mouse convention............... reerrenennenn2B
Clock input pins in pASIC380............. 358-359

Clock networks in SpDE Router..................219
Clock signal in Nova

376

parking garage monitor desrgn use
1 4 DO U .. 95-98
setting up 259, 261 262
soda machine design, use in...................53
Clock Skew in SpDE Path Analyzer...........239
Cockpit, Viewlogic, in Warp3.... ..17,23
Command line switches, summary
364—366
Compilation
launching retargeted parking garage
monitor designoceeeeeeuennn. 101-102
launching retargeted soda machine

design........c....... .. 61-63
selecting flles for soda machlne
design.... s .. 43-44
synthesrzmg flles for parkmg garage
monitor designc........ .. 91-92
synthesizing files for soda machine
design.... crsrninrensenn s 48
top-level schemahc veretesaerensennesnnns 159
Compiler for Warp VHDL
component in Warp2........ccoecneicininnnn 22
component in Warp3 .23
Galaxy RO ¥/ 4
libraries, hnkmg to SRR .
Compiling a design in Galaxy 187-189
Command line, synthesis controlled
from.....cceeeeene .. 317-318
Component ports labelmg of 132, 153-154

Components
positioning of................... 128-129, 151-152
wiring together................ 130-131, 152-153

Computer platforms available in Warp.......16

Control file used in applymg synthe51s

directives... ..317, 319
Conventions
file naming rerrererneesneetesresnessensessenensesssennes 24
generallyciemvvneienecnsriesiesennennn. 2425
mouse.. rertrsnrnetsreneenes 20
Corner radjo button group in SpDE
Delay Modeler... e 222
Courier convention ... ivcnneeisnnneen 24
CPLD
JEDEC file generation.................... 368-371
target design in Warp........cccciernn 16

Warp User’s Guide

Index

Create Bus command in Nova Edit menu..
“ ..259, 267, 279
Create Segment command in Nova
Options menu.. .. 274, 275-276
Create View Node command in Nova

Edit menu.. ...259, 264
CY7C381A FPGA, retargetmg de51gns to...
- .58, 99
D
Dedicated high-drive input pins in
PASIC380.......ccverrevereierenrennee.. 358-359
Delay Histogram graph in SpDE Path
Analyzer.... weerreennnensn 238
Delay Modeler in SpDE desrgn
tools... .. 211, 220-223
Delete Bus command in Nova Edit
INENU oveirrrceat oot i ..259, 268
Delete Segment command in Nova
Options menu.. .. 274, 275-276
Delete View in Nova Views MeNUcoverueannnens
.. 269, 272-273
Delete View Node in Nova Edit menu..
259 265

Description creation of top-level
parking garage monitor desxgn........ 82-87

soda machine design 40-43
Design process... e .17
Design Verifier in SpDE de51gn tools -

- 211 212
Detailed report error message in Galaxy
Device programming

file types.... - SSOORC |:1.
JEDEC file, generation of .eeee 368-371

LOF files, generation of372
POF files, generation of R 74|
programmers .. . 372 373
Device selection. See also Targeting a
device in Galaxy
parking garage monitor design......89, 100

soda machine design ...
Directive format summary
Directives - See Synthesis d1rect1ves

Warp User’s Guide

Display differences between operating

systems verreennnn 26
Display radio buttons in SpDE Path

Analyzer.... rrreesreaneeeenn 236
Documentation directives used in

synthesis........ccocoeeieeevevereennnnnn. 363-364
Dont_touch directive in FPGA and

CPLD speed optimization355
Double buffermg in SpDE high fanout

nets.. teetreeeere e aeraeaa ..242-244
Double—chck mouse convention reeenen 2D
Drag mouse convention.................................25
DRAM controller

area optimizationccccveeunnne. 331-332
CPLD optimization, first pass...... 332-333

default options in FPGA

optimization.... .. 324-326
example of v 319-324
speed ophmrzation in FPGA (fll‘St

tuning cycle) 327-329
speed optimization in FPGA (second

tuning cycle)ccccverineriennnnen. 329-331
state machine gray encoding in

CPLD optimization.................. 334-335
synthesis_off directive in CPLD

optimization............ccccoceuuueenen. 335-337

E

Edit Bus command in Nova Edit menu..

- 259 268
Edit Views command in Nova View
MENU ..ovrrrsvernrernresevereneeenee 269, 270-272
Editing files in Galaxy 191-193
Effort generic option in Galaxy.................184
Entity declaration
ALU circuit design, use in144
parking garage monitor de51gn use
in...... 7477
soda machme desxgn, use in............. 33-34
Error message compﬂer optlons in
Galaxy.... s .. 185-186
Error tracking in de51gn compilation
In Galaxy ..eeveeievisernseriesirinnieenen s 189
Exit command

377

Index

Nova File menu
SpDE File menu........
Expanding paths in SpDE Path Analyzer

........234

Export LOF command in SpDE F 1le

menu. e ...200
Exporting of schematlc 289-290
Express wires.. 220
F
Factor cost synthesis parameter 182
Factor logic in Galaxy.... R180
Fault grading in SpDE ATVG 228
Ff_type directive in CPLD synthe31s e
File. See VHDL fxle
File editing in Galaxyc.eeceveennennen. 191-193

File formats in Nova File menu 257-258
File menu in Nova.... conenene 252-259
File menu in SpDE 199-200
File naming conventions............cccccceevsuucen. 24
File, top-level

compiling and synthesizing.............. 43-48

Setting ofcvveevennveierccrnnnennieennnnd7, 91
Fitting of logic equations18
Fixed_ff directive in FPGA

speed optimization........ ... 359-362

synthesis ... R .. 349-350
Fixed placement in SpDE Placer 217
Flip-Flops, fixing placement in SpDE

Placer... cereenrennnnn 218

Float nodes optlon in Galaxy180
Float pins option in Galaxy180

FPGA. See also Galaxy
pASIC380 family ...
target design in Warp R
Full Fit command in SpDE Vlew menu..

G

Galaxy. See also Device selection;
Package selection; SpDE tools;

378

Speed bin selection; Starting

Galaxy
back-annotation..........cccoeeeeerreeersnenn.. 194
compiling a design ... 187-188
generally.......ccccouuene. ISR——" 4
generic optionscowveeienrinnnn.. 184-186
integrated editor..........ccooeuueuneeenn. 191-193
library management 189-191
OVEIVIEW..oveevirvvi ettt envene e 170
project management .. 171-177
simulation... 194
targeting a device cevevenirenerenseesneneen 177-183

Generic options in Galaxy 184-186
Gnd LPM component.... e 124-125
Goal directive in CPLD and FPGA
area optimizationccoceeeeiicininnn.nn . 342
speed optmuzatlon SRR 1.7
Graphical User Interface. See GUI
Graphing in SpDE Path Analyzer.............238
Guaranteed mode in SpDE Delay
Modeler ... ververnnnnn 221
GUI
in Galaxy.... SR V4
synthesis controlled from . 317-318
H
Help Menu in SpDE.... .Y i |
Hierarchy, pnntmg of in schematlc
entry.... s ensen s 299
High drive mputs . —)
High-Drive Pads (HDPADs) in SpDE
Router .. w220
High-fanout nets, acceleratmg of e 242
Highlight net command in SpDE Vlew
MENU c.ecvernrresasesns .. 201, 203-204
Highlight Net mode in SpDE analy51s
1070) C TS ..232-233
Hint conventxon ...25
Hold time in SpDE Path Analyzer241

Import command in SpDE File menu.........199
Impulse3 programmerccceeeeneennenen 372

Warp User’s Guide

Index

In LPM componentccccevereeinreennn. 125-126
Info menu in SpDE........ecivvrneen.. 208-210
Inheritance, hierarchical........ccccveeeennnn.. 317
Input node values in Nova Edit menu.............

... 265-266
Installation onto PC ... 1-4

Installation onto SunOS/Solaris/HP 4-12
Instantiating, described......... 133-141, 155-151
Instantiating LPM components....
114—1 16 150 151

Integrated edltor in Galaxy .. 191-193
Interconnect resources in SpDE Router
219 220

1/0 pads, ﬁxmg placement in SpDE
Placer... cerennenennn 217

J
JEDEC (.jed) file... ..170, 368-371
JEDEC vectors, wntmg in Nova File

menu. e st ssnes s 207
K
Keep polarity option in Galaxy........... 179-180
L
Lab_force directive in CPLD synthesis......351
Labeling
component ports..................... 132, 153-154
described133-141, 155-157
nets and buses..................132-141, 153-157
Libraries included in the creation of
VHDL file
ALU circuit design.....coeeeceerrennnnn. 147

soda machine designccccecvvereirnn..38
Library management in Galaxy
assigning a name..........ceveervenrenrerennennn. 191
compiling design files...........c..e0eevue.e.e.. 190
Create library command........................190
Delete library command......
library, defined.........cccooveuremruerenn.ce..... 189
Library window in Galaxy....................190
Remove design command.....................190

Warp User’s Guide

using design units.......cccceevcuveevnennn. 191
Library of Parametenzed Modules
(LPM). See LPM
Licensing for Vlewloglc Tools in Warp3

. 2 13
LOF (. lof) flle SRR 62, 368, 372
Logic cell placement - weeeree 359-360
Logic optimization modes - ..214
Logic Optimizer in SpDE de51gn tools
. 211, 212-214

LPM Components
GRd..ooerenienr et ia e 124-125
In e, crerernrenninanens 125-126
instantiating............. - 114 116 150-151
Madd_sub... 116-118
Mand.............. 119-120
Mcomparecoevecvienveieniennes 118-119
123-124
crevemresnnnesssnnsssessessesieenen 120-121
MXOT ccverernietrnerernmisesisenssseseseemesssnseneenss 121
Ottt vessenneenen 127-128

LPM
definedcocveveevervenrinenenncesreessiesesresnrnne s 297
element, creation of............ ... 286-288

element, modification of cveenrennn 288
element, NON-LPM........coevevvreivrreerecnnne 288
Ipmlocal library, creation of286
release 3.5, use of schematic libraries........
..292
use of . 284—285
Ipmlocal hbrary command 284 286, 295
M
Madd_sub LPM component................ 116-118
Mand LPM component 119-120
MAX340 CPLD, POF file generation.......... 371
Max. Errors message in Galaxy186
Max_load directive in FPGA speed
optimization.........c..cceeevenrrreennen. 355-357
Max. Load synthesis parameter 182
Max. warnings error message in
Galaxy.... wreetstese e enrenssre s snssesene o 186
Mcompare LPM component 118-119

379

/

Index

Menu item conventioncuirinneninnn. 24
Mice support in Warpcccuumievnnnieneceeennd
Minv LPM component 122
Mmux LPM component.........c..couuc.n 123-124
ModelT environment, post—synthe51s
VHDL simulation..................... 307-308
Mor LPM component 120-121.
Mouse conventions .. e .25
Multiply and accumulate function,
example of
area optimization in CPLD................... 341
area optimization in FPGA....................340
default options in CPLD optimization......
default options in FPGA optimization
- .. 338- 340
Mxor LPM component P 3 |
N
Naming restrictions.. .26
Netlist, generation of VHDL 17
Nets, labeling of... 132—141 153-157
New command in SpDE File menu............199
New project, creation of
ALU circuit...
parking garage monltor

soda machine ..
No_factor directive in CPLD and FPGA

area optimizationc.............344
Node cost synthesis parameter-...................182
Node Defaults command in Nova Edit............
MNENU cvrerernrerereeenrerreneennneen 209, 265-267

Node_num directive in PLD and CPLD

synthesisccooerveninveniinsnennn. 350-351
Node numbers in Nova window.................251
Node points to view, selection of, in

Nova Edit menu................. 259, 264-265
Nodes in Nova Edit menu...................259, 263
Non-repetitive pulses, setting up, in

Nova Edit menu................. 259, 262-263
Normal Fit command in SpDE View

menu. e 200
Note convention .11
Note fields in generatmg]EDEC file ..370

380

Nova JEDEC functional simulator
clock signal, designation of......... 53, 95-98
color of traces.....cccouuvcrveeevrenecnrccrnennnn. 280
component in Warp2.......ccoeeeereeeenennienn 22
component in Warp3................
creating buses ...
design behavior sxmulation

49-58 92—105

de51gn sunulatlon, used in.. .18
Edit menu.. 259-268
File menu.... ... 252-259

generally ... niinecneennenneenerennens 250

Options Menucccueeveeververenrrerenns 273-277
printing output.....ccevvienrieiene.e. . 280
quick reference sheet 277-278
Simulate MeNU.....ccevverrieviereerervreneenens 269
simulation length53, 95, 280

simulation, running of..................... 57-58
simulation tics......ccoverceinrinencnnnn. 279-280

starting.......c.ccveenr e 49-51, 93, 250-251
stimulus signal values, setting of..... 54-57
view, creation ofceeeeevvevveriesienean. 51-52
Views menu . 269-273

window... wereenn 251-252
Write Sim command in File menu.......279

)

On-line documentation, reading of..............13
One_hot_zero and one_hot_one........

OmMPAredcoeevreeseinsvennnessineennn . 347
Open command

Nova File menu.. .. 253-255
SpDE File menu.. ...199
Operating frequency in SpDE Path
Analyzer.... B—2
Operating Range radio button group in
SpDE Delay Modeler... ..221

Operating systems, differences between.....26
Optimization level generic options in

Galaxy.... .. 184-186
Options command in SpDE Tools

menu .. oo206
Options menu in Nova cervrnssainennsenns 273-277

Warp User’'s Guide

Order_code documentation directive..............
Out LPM component..........cccccevevennen. 127-128
Out-Pad Load radio button group in

SpDE Delay Modeler.........................222
Output format option in Galaxy.................183
Output node values, forcing, in Nova

Edit menu.. ceevennrenieine e 267
Output options in Galaxy 183

Overview of features... rrvreerrenreesreennens 16-18

P

Package declaration
ALU circuit design, use in 146-147
parking garage monitor design use
5o DO .. 74, 80-82

soda machme de51gn, use in....... 33, 37-38
Package selection
parking garage design.....................90, 100
soda machine design 45-46, 61
top-level file .. S, ... 45-46
Packer in SpDE Log1c Optumzer 213
Pad_gen directive in FPGA speed
optimization.... .. 358-359
Pad generation in Galaxy ...181
Pan to Net Driver in SpDE analy51s tools
Parallel logic in SpDE Router e 220
Parallelmg in SpDE high- fanout nets .
247—248
Parkmg garage momtor de51gn tutor1a1
architecture... ..74,77-79

back-annotating pin assignment verennnnn 105
compiling and synthesizing.............. 88-92
description of designccovevvvereneennn .71
designing of, generally 70-71
entity declaration.........ccoeeenvevenncnnen. 74-77
Galaxy, starting of ... 72
new project, creahon of —yic L
package declaration ... 74 80-82
simulating the behavior w1th Nova

92 99

sunulatlng the behav1or thh

ViewSim 106-109

Warp User’s Guide

solution of design.......cceevveriverrrrvenninnn 71
VHDL file, creation ofccuceevveeen. 7475
Part_name documentation directive..........363

pASIC380 FPGA family
LOF file generationc.c..coovurrvierennnnn 372
retargeting of design..........................58, 99
pASIC-VSim, running of
ALU circuit design, use in.........ccceeneu 162
parking garage monitor, use in.. ..105
soda machine design, use in..................66
Path Analyzer in SpDE
capabilities ofcccvemrirnrennnn. 206, 233-234
clock SKeWcvviemeeiiertnneeieis e 239
design flow it sttt 198
expanding paths 234
generallyoveriviiiinieeserenns 196
graphing....... —ict.
hold time ... 241
key calculationscc.ccceeceineniercrnnne . 239
operating frequency... e 240
OPHONS oottt 235 237
setup time.. R .. 240-241
Path analyzer (statlc tumng analyzer),
generally.... e 18
Path Delay radio buttons in SpDE Path
Analyzer.... ...236
Path names conventlon .24
Path vs. Delay graph in SpDE Path
Analyzer.... - e 238
Physical Viewer in SpDE 196 198
Pin assignment, back-annotating
ALU circuit design, use in.....................167
locking down previous pin
assignmentc.c.eu... o218
parking garage momtor desxgn, use
5 DR .. 105-106
soda machme de51gn, use in.. .. 66-67
Pin_numbers documentation du'ectlve 364

Pipelining in SpDE high-fanout nets 248
Place and route tool

ALU circuit design, used in.......... 159-161
capabilities of18
SpDE ... - 63-65 102—105 196
Placement modes in SpDE Placer...............215
Placer in SpDE design tools......... 211, 214218
Placer seed in SpDE Placer.........................215

381

Index

PLD schematic, creation of. See also
LPM components

components posxhonmg of i,

. .. 128- 129 151 152

generally

PLD, target desxgn in Warp
POF (.pof) file... 368 371
Polarity directive in CPLD synthesxs 353
Post-synthesis simulation design flow
fOr FPGAS ..ottt ers 305-306
Post-synthesis simulation design flow
for PLDs and CPLDs
design compilation..........ccceeeeesvirinrinnenn.302
design selectionc.occveceveeeieennrinennas 301
generallycccc....... ..301

simulator selection.........cceeeeveriinnnnnn. 301
Verilog simulation..........ccceceeuueae.
VHDL simulation........coceeivnnneens
Powerview in Warp3...........
Preferences command SpDE View menu

.. 200, 201-203

Prehmmary mode in SpDE Delay
Modeler ... 221
Pre-synthesis simulation...................... 299-300

Print command in SpDE File menu............200
Print Hierarchy utilitycoccovvrriiiininnninnnn. 295
Print Setup command in SpDE File menu.......
Printing output in Nova........cccccerueunenn.nn.... 280
Product descriptions for Warp................ 22-23
Programmable Logic Data Book

viewing of, ona PC.........cccou.ue 2
viewing of, on SunOS/ Solans/ HP w5
Programmable logic design tool...16

Programming. See Device programming
Project, creation of new
ALU Circuit s seneeniinenns
parking garage monitor
soda machine........ccevcveveecerinneruniones
Project management in Galaxy
creation ofvieveeciieineieecnnnne

173-175

definition of project..........ccevuerenne 171-172

design files included... . 175-176

setting design file as top level . 176-177

Warp vs. Viewlogic project.... w172
382

Q

.qdf file...

QDIF, unpornng 1nt0 SpDE
Quad wires in SpDE Router
Quiet error message in Galaxy....................

...62,170
...197
....220
185

R

Read Stimulus File command in Nova

File menu.. ...256
Redraw command in SpDE V1ew menu....201
Repetitive pulses, setting up, in Nova

Edit menu.......cccoeerereveennnen. 259, 261-262
Report file command in SpDE Info menu.......

Report files in design compilation in
Galaxy.... e 188
Resolution command in Nova Optlons
menu.. .. 274,276-277
Retain XORs compller optlon in
Galaxy.... reerrrrsreenernsessssssnneseaness 185
Retargeting of de51gn

launching of compilation in parking
garage monitor design 101-102
launching of compilation in soda
machine design............cceveureevnnn.. 61-63
to an FPGA in parking garage
monitor designcceo.u..... .99
to an FPGA in soda machme de51gn .58

Router in SpDE de51gn tools 211, 219-220

rptfile .. .62

Run tools command in SpDE Tools menu.
205

Running Warp 13

S

Save As command in SpDE File menu.......199

Save command in SpDE File menu............199
Schematic attributes used in applying
synthesis directives................... 317-319

Schematic, creation of, in ALU circuit
design. See also LPM components;
PLD schematic, creation of

Warp User’s Guide

Index

compiling and synthesizing of159
components, posrtronmg o3 SR
..128- 129 151 152
components, w1r1ng together we
...130- 131 152 153
exportmg of top-level werereenrennnnns 158
generally wrvenreresssinsssssen e ssssnsens 112
mstanhatlng, descnbed
. 133 141 155 157
1nstant1at1ng LPM components
..114- 116 150—151

labehng nets and buses ... 132-141
saving of .. 142, 157-158
symbol generation...... ...143
top-level, creation of150
ViewDraw .. 1 12—1 14

wiring components together
R ...130-131, 133- 141 152—153
Schematlc entry
back-annotation..........eccceeeevenennn. 291-292
exporting of 289-290
libraries, using from release 3.5............292

library update.....coecvcreeeriinnvennnnn. 295
LPM library 283-288
overview282
printing hrerarchy295
Schematic to Symbol command293
Symbol to VHDL utility ... e 294
VHDL to Symbol utility 293—294
Schematic to Symbol command..................293

Scope of synthesis directives.......................317
Seed value in SpDE Router..........ccccevver.ee. 219
Segmented wires in SpDE Router219
Select mouse convention..........eeeeeeersesnensenn 25
Select View command in Nova Views

INENU cveeeernrrnreasererrenressennnnes 209, 272-273
Selective buffering in SpDE high -fanout

nets 246-247
Sequencer in SpDE de51gn tools .212, 231
Setup time in SpDE Path Analyzer 240-241

Signal Name Size command in Nova
Options menu.......cccceeenrernenennn. 274, 277
Signal names in Nova window....................251
Signals
arranging of ..o eeeeceissnnenrennenn e 278

Warp User’s Guide

setting high or low in Nova Edit
MENU ...oinnireirerecesirnnesenneen 209, 260-261
Simulate menu in Novaccecuvieerncnnnnn.. 269
Simulating design behavior. See Nova
JEDEC functional simulator;
ViewSim simulator

Simulation
generally ... reerrerre s ensrens s enn s 298
ModelT env1ronment 307-308

post-synthesis design flow for
FPGAS...ocverrtrinrinnrisisirrnsnn s 305-306
post-synthesis design flow for PLDs
and CPLDs......ccccoveruveeruverennnenen 301-304

pre-synthesis.....c.ccovvivercirririnnen. 299-300
VeriBest environment.................... 308-310
Verilog simulators supported298

VHDL simulators supported................298
Simulation in Galaxyucwemeerininen . 194
Simulation length in Nova

command in Optlons menu..

. . 274-275 280
parkmg garage momtor desrgn, use

in.. ...95
soda machme desrgn, use iN....coovererenrnnn 53
Simulation output option in Galaxy 183
Simulation, running of, using Nova...

57 58
Sunulatlon tlcs in Nova 279-280
Simulator Option wmdow in SpDE

Tools menu .
Simulators, others .
SMARTDRIVE programccueeeerenes

Soda machine design tutorial
architectureccecceenreenecenecnneen. 33, 35-37
back-annotating pin assignment...... 66-67
description of controller...........ccccoeeueeennn 27

designing ofoeceeviunns e 27
entity declarationoeeu....... 33-34
libraries............. SRR |-
new pro;ect creatron of v 29-31
package declaration 33, 37-38
retargeting to an FPGA 58
simulating the behavior with Nova ..
- 49 58
srmulatmg the behavror w1th
ViewSimuoeeeveienecnncisceninnnnnn. 67-70

383

/

Index

solution ofcccvuviveeevnierveeiincenniiennn. 27-28
starting Warp ..o eeennnnn 28
top-level description.......................... 40-43
top-level file, compiling and
SyNthesizingccoeccererrinrrennnn.n. 43-48

VHDL file, creation of 32-33
VHDL syntax, venfylng of.... ...38-39
SpDE analysis tools
Highlight Net... ... 232-233
Path Analyzer oo 233-234
SpDE design consxderations ... 242-248
SpDE design tools
Automatic Test Vector Generator...............
... 212, 225-231
Back-Annotation............. 212, 220, 224-225
Delay Modeler211-212, 220-223
Design Verifier... ...211, 212
Logic Optlmlzer . 211, 212-214
Placer........coouvcimuennns .. 211, 214-218
Router............. 211, 219-220
Sequencer212, 231

SpDE place and route tool
runmng of, in ALU circuit design
159 161
runmng of in parkmg garage momtor
de51gn .. 102-105
running of in soda machine desrgn
- 63 65
ViewSun model generatxon of
e .. 66, 105 162 166
SpDE tool klt See also SpDE analysis
tools; SpDE design tools; SpDE
Window
component in Warp2oveeenicnenennn22
component in Warp3......

...198

exporting files -

file formats w...199
importing filescccecoiemeiiriinnnnn . 197
running tools......ueececevcecierencniinnenn.. 197

saving files......... e 198
starting SpDE........ccccccouvriniiinnnnnnnnnn. 197

viewing and path analysis198
SpDE Window

File menu......oveeevecreveevnneneernninen. 199-200

Help menu.......cooivivennivnneneivenininennnn 211

Infomenucoeeveerienevccrneeennn.. 208-210
384

Tools menu.........cccoouevevreirrucnernnnnns 205-208
View menu........cccevnevrenenrennenennene 200-204
Speed bin selection
. parking garage monitor90, 100
soda machine design 45-46, 61

Speed Grade radio button group in SpDE

Delay Modeler-... 222
Speed optimization.... 354—363
SpeedWave pre—synthesxs sunulation
. ...300, 303
Split buffermg in SpDE hlgh-fanout nets..
.....245
Start Set radio buttons in SpDE Path
Analyzer 236
Starting Galaxy
ALU circuit design, use inccevu... 148
parking garage monitor de31gn use
in...... .. 72, 88, 99-100
PC runmng Wmdows 171
soda machine desrgn, use iN..eeeerecrens 59
UNIX workstation...........cccvevviinrennnn 171
Starting Nova... .. 250-251
Starting Warp .. 28-29
State_encoding directive in FPGA
area optimization 345-347

speed optimization 363
Static timing analyzer (path analyzer)......... 18
Stimulus files in Nova File menu 255-257
Stimulus signal values, setting of, using

Nova... ..54-57
Stop Set radio buttons in SpDE Path
Analyzer.... - ..236
Stuck-at faults in SpDE ATVG S 226-228
Sum_split directive in CPLD synthesis
... 352-353
Symbol generation
for VHDL filecoovvereneiierierirencireceninns 149
from a schematic143
Symbol to VHDL utihty294
Syntax, verification of VHDL .38-39

Synthesis directives. See also DRAM

controller
application ofcceceeeeieenrriennne 317-319
area optimizationccceeeneeeen. 341-348
available directivescceeue....... 315-316
control features........ccueeververcerennnns 348-353

Warp User's Guide

Index

design flow and strategy............... 313-314
directive format summary............ 364-366
documentation...........ceeererennn. 363-364
generally SRR RRRRIPIC) 1/
inheritance ..317
multiply and accumulate function,
example of ... cereerrnenssensenennn 337-341
scope... st s 317

speed optirmzation 354-363

uses of .. 312
Synthesis of de51gn .17
Synthesis_off direchve in CPLD and

FPGA area optimization 343-344
Synthesis goals compiler option in

Galaxy.... winnn 185
Synthesis parameters controlhng of in

Galaxy.... rrersesntsesssssnnm s sesenss 182

T

Targeting a device in Galaxy. See also
Technology mapping/synthesis
selection in Galaxy

controlling synthesis parameters.........182
device and package selection 177-178

generic optionscccoveevveenneee.. 184-186
output options, setting of183
Tech mapping options
creation of top-level file, used in............47
parking garage monitor design used
5 WO ...90, 101
soda machme de51gn used in...........47, 61
~ Technology Mapper SpDE Logic
Optimizer ... - —y
Technology mapping/ synthesxs selection
in Galaxy
buffer generation.........ccccoeerieennenne.n 181
choose FF types....
factor logic............
float nodes..........ccoeurureciiveserenncenn.... 180
float Pinsccceeeveriecrierre e 180
keep polarity 179-180
pad generation...........cocueeviveenee ..181
Temperature settmg in SpDE de51gn
t0OIS ..ot ..222-223

Warp User’s Guide

Test vectors, defined... reerenrereeresrnninerneesn 227
Timing-driven placement in SpDE Placer
216—217
Tool Verswns comrnand in SpDE Info
IMENU wvctetieeee i ersreseenresees 210
Tools menu in SpDE S 205-208
Top-level description
parking garage monitor de51gn use
in..... e ernrries .. 82-87
soda machine design, use in.......ce... 40-43
Top-level file
compilation, selecting files for 43-44

compiling and synthesizing 48, 91-92
device selection........ccvvererrinvincniniiiennnn 45
setting of47,91
tech mappmg options e .47
unused outputs, resolution of46

Top-level schematic
compiling and synthesizing of159

creation ofceevervevnennennciiieeeseneennenn s 150
expOrting of ..cc.oeveverveireeenenciieneeserieennnnn . 158
Saving ofccceeeeveveinereeseesecerecneeens 157-158

Trace area in Nova window .. 1y}
Traces, color of, in Novacccccceeverevvennenn.. 280
Tuning, defined.........cccevveeeenniininnnnnn. 313-314

u

UltraGen module generation technology....17

Unused output option in Galaxy183
Unused outputs, resolution of
parking garage monitor90
soda machine design crvereneennn 46
Update library utilitycccocevvverrireniniinnnen. 295

\'

Values, directive format, summary.... 364-366
VCS command line.......cccccoeevevvvveereeneneennene . 304
VeriBest simulator 303, 308-310
Verilog simulators

FPGAs... reverteeresiesresransesessesssesessessen 300
PLDs and CPLDs werereenemeen 303-304
supported in Warp....... -.298
VeriBest environment............ 303 308-310

385

/

Index

VerilogXL environment304
VHDL attributes... 317-318 364-366
VHDL Browser in Galaxy...... vereeeeeenn. 74, 193
VHDL file. See also Architecture;
Entity declaration; Package
declaration
Browser tool ..o veevvennicereerennnnnnnn 74, 193+

compilation of, in ALU circuit
de51gn 148-149

creation of32-33, 74-75
libraries.... " .38, 147
symbol generatlon for 149
verification of, in ALU c1rcu1t
design.... vesesennenan 148
writing for ALU cucuxt desxgn 143-144
VHDL netlist, generation of ... RV, V4
VHDL post-synthesis simulation 307 308
VHDL simulators...298, 306
VHDL syntax, verlﬁcatlon of 38-39
VHDL to Symbol utilityccoo. ... 293-294
View, creation of, with Nova
parking garage monitor design........ 94-95
soda machine design 51-52
View menu in SpDE 200-204
ViewDraw tool
ALU circuit design, usein 112-114
design entry.......coereeevenne v 17
LPM library, use in.. cereerernrnnnenn: 285

Warp3 application, used Mecririieiennen.23
Viewlogic. See also ViewDraw '

Cockpit.... revvenseersressrennnsaseserseene 17, 23
Powerv1ew in Warp3 SO X
ViewSim simulatorccccu............ 18, 23
ViewTrace... reeeeeenen 18,23
Workview PLUS in Warp3 cererrnnren e 23
Viewlogic project vs. Warp prolect ..172
VlerOglC Tools, PC hcensmg for Warp3
. 2, 13
Views menu in Nova 269-273
ViewSim model, generation of
ALU circuit design, use in 162-166
parkmg garage monitor de51gn, use
Mo ...105
soda machine de81gn usein..66

ViewSim simulator
FPGA post-synthesis, use in..................306

386

Nova applications, use in.. wrrerennnn 18
parking garage monitor de51gn use
in.. .. 106-109
soda machme desxgn use in.. ... 67-70
Warp3 applications, use in . e 23
ViewText edltor 143
ViewTrace
described .. SYUURRVOUENRRIIPIORRROY €.)
observatlons from wmdow - 108—109
Warp3 application, use in23
Voltage settmg in SpDE desxgn tools
- 222—223
V- System pre synthe51s sxmulatlon
299 302

W

Warp project vs. Viewlogic project172
Warp, starting of, in soda machine
design............... ceerererensesnsenns 28-29
Warp2, product descnptlons 22
Warp3
product descriptioncccecoveuvenenn. 22-23
starting, in ALU circuit design..... 110-111
Wildcard selection in SpDE View menu ..
...204, 232
Wires in SpDE routmg resource......... 219-220
Wiring components together

130—131 152-153
Wmng, descnbed ..133-141, 155-157
Workview PLUS in WarpS e e e 20
Write JEDEC vectors command in Nova

File menu.. SRUURRURRRRUNY.1o /4
Write Sim Command in Nova ... 255, 279
Write Trace command in Nova Flle

INENU cevererrecrernnervarenssennssasseesnrvessessrarses 20D

Z

Zoom In command
Nova Views menu..........cccecverveereen. 269, 273
SpDE View menu.......eerirnierescernnenn. 200
Zoom Out command
Nova Views menu.............ccc.......... 269, 273
SpDE View menu......cc.cccecemerseeissnnnenen 200

Warp User’s Guide

d
W

\

Cypress Semiconductor

3901 North First Street

San José, CA 95134

Tel.: (408) 943-2600

FAX: 408-943-2741

FAX-Back: (800) 213-5120
Internet: http://www.cypress.com

© 1996 Cypress Semiconductor WUSRDOC.01

