
Worldwide Technical Support

WinHLLAPI Language Reference

© 2004 Attachmate Corporation. All Rights Reserved.

If this document is distributed with software that includes an end user agreement, this document, as well as the
software described in it, is furnished under license and may be used or copied only in accordance with the terms
of such license. Except as permitted by any such license, no part of this document may be reproduced or
transmitted in any form or by any means (electronic, mechanical, recording, or otherwise) without the prior
express written permission of Attachmate Corporation. The content of this document is protected under
copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this document is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Attachmate Corporation. Attachmate Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in
this document.

Attachmate and EXTRA! are registered trademarks, the Attachmate logo is a trademark and enterprise solutions
for the e-world is a service mark of Attachmate Corporation.

All other trademarks or registered trademarks are the property of their respective owners.

Except as may be expressly stated in this document, any use of non-Attachmate Corporation trademarks in this
document is not intended to represent that the owners of such trademarks sponsor, are affiliated with, or approve
products from Attachmate Corporation.

HLLAPI Language Reference

Table of Contents

PURPOSE... 1

INTRODUCTION .. 1

ACCESSING ATTACHMATE 32-BIT WINHLLAPI .. 1

WINHLLAPI FUNCTIONS ... 3

WINDOWS ENVIRONMENT EXTENSIONS .. 7

WHAT INFORMATION IS PROVIDED FOR EACH FUNCTION? ... 7

PREREQUISITES ... 7
APPLICABLE SESSION PARAMETERS ... 7
CALL PARAMETERS... 8
FUNCTION NUMBER.. 8
DATA STRING ... 8
DATA LENGTH .. 8
PRESENTATION SPACE POSITION.. 8
RETURN PARAMETERS.. 8
DATA STRING ... 9
DATA LENGTH .. 9
RESULT CODE (PS POSITION) ... 9
NOTES .. 9

ASYNCHRONOUS WINHLLAPI FUNCTIONS .. 10

FUNCTION 1: CONNECT PRESENTATION SPACE.. 11

FUNCTION 2: DISCONNECT PRESENTATION SPACE ... 14

FUNCTION 3: SEND KEY... 16

FUNCTION 4: WAIT... 18

FUNCTION 5: COPY PRESENTATION SPACE ... 21

FUNCTION 6: SEARCH PRESENTATION SPACE ... 24

FUNCTION 7: QUERY CURSOR LOCATION ... 26

FUNCTION 8: COPY PRESENTATION SPACE TO STRING... 28

FUNCTION 9: SET SESSION PARAMETERS .. 30

HLLAPI Language Reference

FUNCTION 10: QUERY SESSIONS... 36

FUNCTION 11: RESERVE .. 38

FUNCTION 12: RELEASE... 40

FUNCTION 13: COPY OIA .. 42

FUNCTION 14: QUERY FIELD ATTRIBUTE ... 44

FUNCTION 15: COPY STRING TO PRESENTATION SPACE .. 46

FUNCTION 18: PAUSE ... 48

FUNCTION 20: QUERY SYSTEM.. 50

FUNCTION 21: RESET SYSTEM ... 52

FUNCTION 22: QUERY SESSION STATUS... 54

FUNCTION 23: START HOST NOTIFICATION ... 56

FUNCTION 24: QUERY HOST UPDATE .. 58

FUNCTION 25: STOP HOST NOTIFICATION.. 60

FUNCTION 30: SEARCH FIELD.. 61

FUNCTION 31: FIND FIELD POSITION .. 63

FUNCTION 32: FIND FIELD LENGTH ... 65

FUNCTION 33: COPY STRING TO FIELD ... 67

FUNCTION 34: COPY FIELD TO STRING ... 69

FUNCTION 40: SET CURSOR .. 71

FUNCTION 42: QUERY CLOSE INTERCEPT... 74

FUNCTION 43: STOP CLOSE INTERCEPT .. 75

FUNCTION 50: START KEYSTROKE INTERCEPT ... 77

FUNCTION 51: GET KEY.. 79

FUNCTION 52: POST INTERCEPT STATUS ... 82

FUNCTION 53: STOP KEYSTROKE INTERCEPT .. 84

FUNCTION 90: SEND FILE... 85

FUNCTION 91: RECEIVE FILE.. 88

FUNCTION 99: CONVERT POSITION OR ROWCOL .. 91

HLLAPI Language Reference

FUNCTION 101: CONNECT WINDOW SERVICES .. 93

FUNCTION 102: DISCONNECT WINDOW SERVICES.. 95

FUNCTION 103: QUERY WINDOW COORDINATES ... 96

FUNCTION 104: WINDOW STATUS.. 98

FUNCTION 105: CHANGE PS WINDOW NAME ..101

WINDOWS ENVIRONMENT EXTENSIONS ...103

WINHLLAPISTARTUP..104

WINHLLAPICLEANUP..107

WINHLLAPIASYNC ...108

WINHLLAPICANCELASYNCREQUEST ...110

APPENDIX A: GENERAL TROUBLESHOOTING PROCEDURES ...111

APPENDIX B: HOST KEYBOARD MNEMONICS ..113

APPENDIX C: INTERPRETING THE RETURNED DATA STRING FOR FUNCTION 13..............115

APPENDIX D: EXTENDED ATTRIBUTES ..120

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 1

Purpose
This document is intended to assist customers who want to enable new or existing
automation software to work with a legacy application programming interface
implemented in a current Attachmate emulator product: WinHLLAPI, EHLLAPI,
Attachmate HLLAPI, Enterprise Access Library (EAL), PCSHLL (IBM PCOMM 4.01
EHLLAPI), or WD_API (Wall Data abstraction of HLLAPI).

Attachmate recommends that new automation programs be developed using
EXTRA!'s COM (OLE Automation) interfaces. Only when a new automation program
requires obscure capability not available in a COM solution should a legacy API be
considered. In such situations, Attachmate recommends WinHLLAPI be given first
preference, if only because it came about through an industry standardization effort.
A second option would be EHLLAPI.

Introduction
An application programming interface, API, is typically provided in a software product
to facilitate development of applications that automate tasks employing the software.
For tasks that are highly repetitive, time-consuming or error-prone, automation can
raise user job satisfaction, reduce operational costs, and improve service to
customers.

Windows High-Level LanguageAPI (WinHLLAPI) is one such API, the specification for
which was written originally by a consortium of representatives from Attachmate,
Digital Communications Associates Inc., Synapse Communications, NetSoft, and Wall
Data Incorporated, and published in1993 by Microsoft. The specification for Windows
HLLAPI built on the de facto IBM EHLLAPI programming standard, employed
successfully throughout business and industry for a wide range of automation tasks.

Accessing Attachmate 32-bit WinHLLAPI
In brief, an application accesses this interface by:

• Ensuring Attachmate software, including dynamic load library WHLAPI32.DLL,
is in the system search path, so it will be found and loaded when referenced.

• Ensuring that a session is configured to be associated with a HLLAPI "short-
name".

• Declaring in application code specific reference to the WinHLLAPI entry point
and its parameter list. This reference will depend on the application
programming language, for example:

C++:
extern "C" void WINAPI WinHLLAPI(LPWORD, LPSTR, LPWORD, LPWORD);

Visual Basic:

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 2

Declare Sub WinHLLAPI Lib "WHLAPI32.DLL"
(HllFunc%, ByVal HllDataStr$, HllDataLgth%, PsPos%)

Header and lib files for EHLLAPI, WinHLLAPI, and Attachmate HLLAPI are distributed
with EXTRA!.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 3

WinHLLAPI Functions
Function Number Purpose

Connect Presentation Space 1 Connects your EHLLAPI program
to the specified presentation
space. After your program connects
to the presentation space,
that space becomes the current
presentation space and all communication
with the host computer
occurs through it.

Disconnect Presentation Space 2 Disconnects your PC program
from the current presentation
space.

Send Key 3 Places a keystroke or string of keystrokes
in the current presentation
space at the current cursor position.

Wait 4 Tests the status of the current presentation
space.

Copy Presentation Space 5 Copies the entire contents of the
presentation space to a string in
your program. Copied characters
are translated into ASCII values
before being stored in the data
string.

Search Presentation Space 6 Scans the current presentation
space for a specified string.

Query Cursor Location 7 Returns the position of the cursor
in the current presentation space.

Copy Presentation Space to
String 8 Copies the contents of all or part of

the current presentation space into
a data string defined in your program.
Translates copied characters
to ASCII before returning the
data string.

Set Session Parameters 9 Allows you to change the default
session parameters affecting the behavior of
various functions.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 4

Function Number Purpose

Query Sessions 10 Returns the number of host sessions
currently defined. It also
returns a 12-byte data string for
each session that contains the following
information:
• Short name of the session
• Long name of the session
• Type of host session
• Size of the presentation space.

Reserve 11 Locks the current presentation
space to prevent the terminal operator
from entering data.

Release 12 Unlocks the current connected
host presentation space, which
was locked with Function 11,
“Reserve.”

Copy OIA 13 Returns the contents of the Operator
Information Area (OIA) for the
current presentation space to your
program.

Query Field Attribute 14 Returns the attribute of the specified
field in the current presentation
space.

Copy String to Presentation
Space 15 Copies an ASCII string from your

program to a specific location in
the current presentation space.

Pause 18 Causes your PC program to wait a
specific amount of time for an
event to occur. Use this function
instead of a timing loop.

Query System 20 Returns a 35-byte data string indicating
the support level provided to
your program by the underlying
low-level and high-level RAM-resident
modules (and other system
related values).

Reset System 21 Reinitializes EHLLAPI to the
default options in Function 9, “Set
Session Parameters.” Also stops
host event notification, releases
any reserved host sessions, and
disconnects any connected host
presentation sessions. Must be used at
conclusion of HLLAPI work with a session.

Query Session Status 22 Returns an 18-byte data string with
information about a session.

Start Host Notification 23 Allows your EHLLAPI program to
determine if the presentation
space or OIA has been updated.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 5

Function Number Purpose

Query Host Update 24 In conjunction with Function 23,
“Start Host Notification,” enables
your EHLLAPI program to determine
if the host presentation space
or OIA has been updated since the
last time this request was made.

Stop Host Notification 25 Deactivates host notification and
disables Function 24, “Query Host
Update.” Also prohibits host events
in the specified host session from
affecting Function 18, “Pause.”

Search Field 30 Searches the designated field
within the current presentation
space for the occurrence of a
specified string.

Find Field Position 31 Returns the beginning position of a
target field in the currently connected
presentation space.

Find Field Length 32 Returns the length of a target field
in the current presentation space.

Copy String to Field 33 Copies a string of characters from
your program to a specified field in
the current presentation space.

Copy Field to String 34 Copies all the characters from a
specified field in the current presentation
space to a data string in
your program. Translates copied
characters to ASCII before returning
the data string.

Set Cursor 40 Allows you to position the cursor
within the current presentation
space.

Start Close Intercept 41 Intercepts all close requests and
suppresses them until your program
calls Function 43, “Stop
Close Intercept.”

Query Close Intercept 42 Lets your PC program determine
whether an attempt has been
made to close an emulator
window.

Stop Close Intercept 43 Lets your PC program turn off
Function 41, “Start Close
Intercept.”

Start Keystroke Intercept 50 Lets your PC program read and
evaluate keystrokes entered by a
terminal operator.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 6

Function Number Purpose

Get Key 51 Lets your PC program retrieve keystrokes
from a session and accept,
process, or reject the keystrokes.

Post Intercept Status 52 Once this function is called, the PC
beeps when a keystroke has been
rejected after calling Function 51,
“Get Key.”

Stop Keystroke Intercept 53 Disables your PC program's ability
to intercept keystrokes.

Send File 90 Sends a file to a host. Allows you
to embed the appropriate file
transfer SEND command within
your EHLLAPI program.

Receive File 91 Receives a file from a host. Lets
you embed the appropriate file
transfer receive command in your
EHLLAPI program.

Convert Position or RowCol 99 Performs one of the following
functions, depending on the
requesting parameters passed by
your program:
• Converts the presentation
space position into row and
column coordinates.
• Converts row and column
coordinates into a presentation
space position.

Connect Window Services 101 Lets your PC program manage the
presentation space windows.

Disconnect Window Services 102 Breaks the Window Services
connection between your PC
program and the specified host
presentation space.

Query Window Coordinates 103 Allows your PC program to request
the window coordinates of a
presentation space.

Window Status 104 Lets your PC program query or
change a window's presentation
space size, location, or visible
state.

Change Switch List LT Name 105 Lets your PC program change or
reset a switch list for a selected
logical terminal.

Change PS Window Name 106 Lets your PC program define a
new name for the presentation
space window or redefine the
window to the default name.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 7

Windows Environment Extensions
In addition to the above-cited functions based on the EHLLAPI standard, WinHLLAPI
provides several extensions for the Windows environment. These collateral
functions, listed below, are described more fully at the end of this document.

WINHLLAPISTARTUP() – REQUIRED BEFORE ANY OTHER WINHLLAPI CALLS.

WinHLLAPICleanup() – Required at the close of WinHLLAPI activity.
WinHLLAPIAsync()

WINHLLAPICANCELASYNCREQUEST()

What information is provided for each
function?
For each WinHLLAPI function, the following information is presented:

• The function number together with its formal name,

• Brief description of the function purpose,

• Prerequisites

• Applicable session parameters

• Call parameters

• Return parameters

• Notes

Prerequisites
Many WinHLLAPI functions require another function to be called and successfully
completed before the desired call is issued. If the prerequisites are not satisfied, an
error code is returned. If None appears, no prerequisite calls are necessary.

Applicable session parameters
Function 9, “Set Session Parameters,” allows an application program to set optional
WinHLLAPI features, or session parameters. This section indicates whether any
session parameters affect this function and, if so lists the applicable parameters and
how they affect the function. If the function is not affected by any session
parameters, None appears.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 8

Call parameters
This area lists the four parameters that must be presented in a call statement before
an application program can call a WinHLLAPI function. These parameters must be
presented in a particular format, and include the function number, data string, data
length and presentation space position.

Function number
In this parameter, you specify the function number to be called. It must be in an
unsigned integer format.

Data string
This parameter could be a string of characters or a string of concatenated data
items, with enough space set aside to receive the requested output. If the calling
data string has special requirements, they will be discussed in “Data string features.”

Data length
Use an unsigned integer to give the length of either a character string or a list of
data items. Use an End of Text (EOT) character at the end of each string that is sent
to WinHLLAPI if you do not want to calculate your string length. If you like, you can
change the established EOT character through Function 9, “Set Session Parameters.”

Presentation space position
If the presentation space (PS) position parameter is required, it should be an
unsigned integer representing a position within the EXTRA! host session.

The chart below shows, for each 3270 model number, the range of values that may
be specified for PS position.

Model number Range of PS position values
 2 1–1920
 3 1–2560
 4 1–3440
 5 1–3564

In this manual, the words “Not applicable” may appear next to some parameters.
While it may appear as if these parameters are not required, they still must be
present in an application program before it can call a function. Call parameters must
be properly declared, then listed in a call statement. Syntax of the call statement will
vary, depending on the programming language.

Return parameters
Parameters returned to an application program by the functions are explained in this
section. These parameters include the data string, data length, and result code (PS
position).

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 9

Data string
If the data string parameter is returned, it will either be a string of characters or a
string of concatenated data items. If the returning data string has special features,
they will be discussed in “Data string features.”

Data length
When returned, the data length parameter either gives you the length of the data
string or it provides the position of the PS.

Result code (PS position)
When a function call returns, the result code takes the place of the PS position call
parameter. This code tells whether the function was successful or it encountered a
problem. Each function has a result code table that can be used to translate the code
into its message. All functions pass a result code in the fourth parameter. Many
functions use standard result codes (zero means the function completed successfully,
9 means a system error was encountered, and so on). However, certain functions
use slightly different interpretations of the result codes. See the function descriptions
in this chapter for details on result codes for each function.

Notes
This area presents guidelines and tips on how to use the function in an application
program, along with technical information about the function.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 10

Asynchronous WinHLLAPI Functions
Certain WinHLLAPI functions can be executed asynchronously, allowing an
application program to make more effective use of system resources than when
those same functions are executed in standard, “blocking” mode..In blocking mode,
the application starts an activity -- such as file transfer -- that will take an
unpredictable amount of time to finish, regaining control only after the activity
completes.

An alternative is for the application to start the activity, but request that WinHLLAPI
return control immediately, allowing the application to check status of the activity
every so often until it completes. A key difficulty with this approach is choosing the
appropriate granularity for “every so often.” Delaying too long between successive
status checks risks making the automation software performance seem ponderous;
delaying too short a time risks consuming so much system resources as to slow
down other workstation software.

Asynchronous operation allows an automation program to start an activity, regain
control immediately (so as to perform other work) and then, rather than check
status every so often, be notified when the started activity has been completed. This
option is available for six WinHLLAPI functions – 4, “Wait,” 23, “Start Host
Notification,” 41, “Start Close Intercept,” 50, “Start Keystroke Intercept,” 90, “Send
File” and 91, “Receive File.” To use this option, an application calls entry-point
WinHLLAPIAsync (or WinHLLAPIAsyncFileTransfer) instead of WinHLLAPI, and
provides the applications window handle to facilitate notification messaging.

When the asynchronous operation is complete, the application’s window hWnd
receives the message returned by RegisterWindowMessage with “WinHLLAPIAsync”
or “WinHLLAPIAsyncFileTransfer” as the input string. For STARTKSINTERCEPT, WAIT,
STARTHOSTNOTIFICATION, and STARTCLOSEINTERCEPT, The wParam argument
contains the asynchronous task handle as returned by the original function call. The
high 16 bits of lParam contain any error code. The error code may be any error as
defined in WHLLAPI.H. An error code of zero indicates successful completion of the
asynchronous function. The low 16 bits contains the original function number. For
SENDFILE and RECEIVEFILE, the wParam and lParam contain status information. See
the Asynchronous Mode section of Send File and Receive File for details.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 11

Function 1: Connect Presentation Space
This function connects a WinHLLAPI application to a specified presentation space
(PS). If the application already has a connection, the connected PS is automatically
disconnected, and a new connection established. An exclusive connection is
established with WinHLLAPI between the client application program and the PS that
requires the target session to be defined in the current EXTRA! configuration. An
application program must call this function before requesting any of the following-
listed functions.

Number Name
2 Disconnect Presentation Space
3 Send Key
4 Wait
5 Copy Presentation Space
6 Search Presentation Space
7 Query Cursor Location
8 Copy Presentation Space to String
11 Reserve
12 Release
13 Copy OIA
14 Query Field Attribute
15 Copy String to Presentation Space
30 Search Field
31 Find Field Position
32 Find Field Length
33 Copy String to Field
34 Copy Field to String
40 Set Cursor

Prerequisites
Target sessions must be defined in the current EXTRA! configuration.
WinHLLAPIStartup must be called prior to any other WinHLLAPI calls.

Applicable session parameters
The following session parameters from Function 9 affect this function.

WRITE_SUPER (default)

This application requires write access and allows only supervisory applications to
connect to its PS.

WRITE_WRITE

This application requires write access and allows other applications that have
predictable behavior to connect to its PS.

WRITE_READ

This application requires write access and allows other applications to use read-only
functions on its PS.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 12

WRITE_NONE

This application requires exclusive access to its PS. No other applications may access
its PS.

SUPER_WRITE

This supervisory application allows applications with write access to share the
connected PS. The application program setting this parameter will not cause errors
for other applications but will provide only supervisory-type functions.

WRITE_READ

This application requires read-only access and allows other applications that perform
read-only functions to connect to its PS.

CONLOG (default)

When Function 1, “Connect Presentation Space,” is called, the emulator session
corresponding to the target PS does not become the active application. The calling
application remains active. Likewise, when Function 2, “Disconnect Presentation
Space,” is called, the calling application remains active.

CONPHYS

Calling Function 1, “Connect Presentation Space,” makes the emulator session
corresponding to the target PS the active application (does a physical connect). Note
that this parameter is honored only when there is host access software attached to
the session. During Function 2, “Disconnect Presentation Space,” the host access
software becomes the active application.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 1

Data string A string containing in the first character the PS short name; which must be a

letter of the alphabet (A–Z).

Data length N/A (assumed 1)

PS position Reserved.

Return parameters

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 13

0 The function was successful; the host presentation space is unlocked
and ready for input.

1 An invalid host presentation space ID was entered.
4 Connection succeeded, but the host PS was busy.
5 Connection succeeded, but the host PS was locked (input inhibited).
9 A system error occurred.
11 The requested PS was in use by another application.

Example
WORD HllFunc = 1;
char HllDatStr[1];
/* Short name of session to connect */
HllDataStr[0] = 'B';
WORD HllDataLgth = 1;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
If the EXTRA! session specified has not already been started when this function is
called, calling this function will start the session in hidden state. Because function 1
returns immediately, the result code will be 5 (PS locked). Before attempting to use
the session, the application should repeatedly call function 4, “Wait,” until a 0
(Success) result code is obtained.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 14

Function 2: Disconnect Presentation Space
This function disconnects an application from its currently connected PS and releases
any PS keyboard reservation, but does not reset session parameters to defaults.
After calling this function, the application cannot call functions that depend on
connection to a PS.

An application automatically disconnects from the currently connected PS when it
connects to another PS.

A WinHLLAPI application program should call this function to disconnect from the
currently connected PS before exiting.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameter from Function 9 affects this function.

CONPHYS

If set (as opposed to default CONLOG), the calling application becomes activated
when WinHLLAPI function 2 is called.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 2

Data string Not applicable.

Data length Not applicable.

PS position Reserved.

Return parameters

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 15

1 The application was not connected with a host PS.
9 A system error occurred.

Example
WORD HllFunc = 2;
char HllDatStr[1];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
This function only logically disconnects an application from an EXTRA! session. It
does not signal the end of WinHLLAPI interaction by the application. In contrast, a
call to function 21, “Reset System,” frees resources used by EXTRA! and allows
disconnected session(s) to close when the application exits.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 16

Function 3: Send Key
This function sends a string of up to 255 keystrokes to the currently connected PS.
The session cannot receive keystrokes unless the keyboard is unlocked. After the
first AID key is processed by the function, keystrokes are no longer accepted and the
rest of the string is ignored.

It is possible to represent all necessary keystrokes, including special function keys in
ASCII, by using an escape character (the default value is @) followed by the
appropriate key code. Appendix B, “Keyboard Mnemonics,” provides a complete list
of these key codes.

WinHLLAPI changes the cursor position to the position immediately following the
entered string.

Prerequisites
Function 1, “Connect Presentation Space.”

The keyboard must be unlocked before keystrokes will be accepted.

Applicable session parameters
The following session parameters from Function 9 affect this function.

STRLEN (default)

String parameters are passed with an explicit length (specified in Data length).

STREOT

String parameters are passed with the character specified in the EOT session
parameter denoting the string end.

EOT= char

This character denotes the end of a string when the STREOT session parameter has
been set. Null (/0) is the default value.

ESC= char

Specifies the escape character for keystroke mnemonics (“@” is the default). Blank is
not a valid escape value.

AUTORESET (default)

Attempts to reset inhibited conditions by adding the RESET prefix to all keystroke
strings sent.

NORESET

Does not add RESET prefix to key strings.

Call parameters

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 17

An application program must pass the following parameters when calling this
function:

Function 3

Data string A string of maximum 255 characters (keystrokes)to be sent to the host PS.
The string must end with an EOT character if STREOT is set in Function 9.

Data length The string length. Overridden if STREOT is set in Function 9.

PS position Reserved.

Return parameters

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 The application was not connected with a host PS.
2 An incorrect parameter was entered.
4 Host session was busy; not all keystrokes were sent.
5 Host session was inhibited, not all keystrokes were sent.
9 A system error occurred.

Example
WORD HllFunc = 3;
char HllDataStr[10];
/* Send "Hello" followed by Enter keystroke */
strcpy (HllDataStr, "Hello@E");
/* Length of data including Escape character */
WORD HllDataLgth = 7;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
• For increased performance, an application may send entire strings using

Function 33, “Copy String to Field,” or Function 15, “Copy String to
Presentation Space,” rather than using this function; however, only function 3
may send special control keys.

• If the keystroke string is longer than 255 characters (which is the Send Key
function’s limit), use multiple calls to the Send Key function.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 18

Function 4: Wait
This function provides current status of XCLOCK or XSYSTEM conditions of the OIA.
(Function 9, “Set Session Parameters,” allows a program to vary the amount of time
this function will wait for the OIA to clear.)

The Wait function is not a good method for determining when the host is ready for
input. This function is provided to determine if the terminal session can accept
keystrokes (using “Send Key” or a copy function). To determine when the host is
ready, the application should search the screen for key fields, usually near the
bottom of the screen. Another method is to query the cursor position until it is
located at the correct field. Because host applications are so different and a terminal
cannot determine when a host application is ready for input, the WinHLLAPI
application should determine when the host is ready for more input.

If the application program is already in a Wait, Pause, Get Key, or synchronous file
transfer, the request for another delay is rejected.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

TWAIT (default)

The function waits up to one minute before it times out on XCLOCK or XSYSTEM.

LWAIT

The function waits until XCLOCK or XSYSTEM clears, then returns control to the

application once the host becomes available.

NWAIT

The function does not wait but returns immediately with XCLOCK and XSYSTEM
status.

Function call
This function can be invoked for synchronous operation via WinHLLAPI(…)

or asynchronous operation via WinHLLAPIAsync(hWnd,…).

Call parameters
An application program must pass the following parameters when calling this
function:

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 19

Function 4

Data string Not applicable.

Data length Not applicable.

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; host PS is unlocked and ready for input.
1 The application was not connected with a host PS.
4 Function timed out while in XCLOCK or XSTATUS state.
5 Keyboard is locked.
9 A system error occurred.
0xF002 Function executing asynchronously was cancelled.

Example
WORD HllFunc = 4;
char HllDatStr[1];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
• This function can be used together with a function like Function 6, “Search

Presentation Space,” to determine when the host is ready for the next input.

• The WinHLLAPI application should consider relative machine speed. For
example, a host may complete its task during a Wait on a slow machine, but
a faster machine may need another approach, as noted earlier.

Wait can be used to provide other functions, such as Send Key (function 3), enough
time to complete or be processed. An application can also use Wait to test whether
the keyboard is inhibited (return code of 4). Be aware, however, that when the Wait
return code is 0 (zero), the keyboard is unlocked and Wait has executed successfully,
but the original transaction or preceding function may not have finished processing
on the Host. If keywords or prompts are expected, Search Field (function 30) or
Search Presentation Space (function 6) should be used in combination with Wait.

The length of time that this function will wait is affected by the session options
TWAIT, LWAIT, and NWAIT. See Set Session Parameters (function 9) for details on
these session options.

Although both APIs are supported, WinHLLAPIAsync should be used instead of
WinHLLAPI whenever possible. Note that if NWAIT is specified, the WinHLLAPIAsync
call will work the same as the WinHLLAPI call and not send a message.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 20

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 21

Function 5: Copy Presentation Space
This function copies the currently connected PS to a string allocated in the calling
application.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

NOATTRB (default)

Attribute bytes and other characters not displayable in ASCII are translated into
blanks.

ATTRB

Attribute bytes and other characters not displayable in ASCII are not translated.

EAB

Extended Attribute Bytes (EABs) are copied. Two characters are placed in the
application data string for each one that appears in the PS. The EAB is the second
character. To accommodate this, the application program must allocate a data string
that is twice the number of displayable characters to be copied from the presentation
space of the current display model.

NOEAB (default)

EABs are not copied.

XLATE

EABs are translated to CGA text mode attributes.

NOXLATE (default)

EABs are not translated.

DISPLAY (default)

Non-display fields are copied to the target buffer in the same manner as the display
fields.

NODISPLAY

Non-display fields are copied to the target buffer as a string of nulls. This allows an
application program to display the copied buffer in the presentation window without
displaying confidential information, such as passwords.

Call parameters

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 22

An application program must pass the following parameters when calling this
function:

Function 5

Data string A string large enough to accommodate data from the current PS display
Model (including EABs if requested). See chart below.

Data length Not applicable (PS length implied).

PS position Reserved.

Model number Data string length required
 2 1920 (3840 with EABs)
 3 2560 (5120 with EABs)
 4 3440 (6880 with EABs)
 5 3564 (7128 with EABs)

Return parameters

Data string

Function replaces content of call parameter Data string with text from the
presentation space.

Refer to Appendix D, “Extended Attributes,” for information on EAB interpretation.

Result code
Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 Success; text from the PS has been copied to data string.
1 The application was not connected with a host PS.
4 The copy was successful, but PS was waiting for host response.
5 The copy was successful, but the keyboard is locked.
9 A system error occurred.

Example
WORD HllFunc = 5;
/* Reserve string for text from Model 2 screen w/o EABs */
char HllDataStr[1920];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
• Use this function only when the entire PS is needed; otherwise, use Function

8, “Copy Presentation Space to String,” or Function 34, “Copy Field to String.”

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 23

• Use Function 10, “Query Sessions,” or Function 22, “Query Session Status,”
to check host session PS size (which may be changed by the host).

• This function does not format the data string returned. To format the string
for printing and have the information appear as it does in EXTRA!, the
application must determine the number of columns currently displayed (use
function 22, “Query Session Status,” for this purpose), then insert a line
break (newline, or CR LF) at the end of each line (that is, that many
columns).

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 24

Function 6: Search Presentation Space
This function searches the currently connected PS for first or last occurrence of
specified text.

This function is useful for determining whether a specific host panel is present. For
example, if the application is expecting a prompt before sending data, this function
will search for the message or string before moving on. If the prompt or message is
not found, the application program can call Function 18, “Pause,” or Function 24,
“Query Host Update,” and continue to call Function 6 until the string is found.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

SRCHALL and SRCHFRWD (default)

The function scans the entire PS for the first occurrence of the specified string.

SRCHALL and SRCHBKWD

The function scans the entire PS for the last occurrence of the specified string.

SRCHFROM and SRCHFRWD

The function scans the PS from the specified PS position for the first occurrence of
the string.

SRCHFROM and SRCHBKWD

The function scans the PS from the specified PS position for the last occurrence of
the string.

STRLEN (default)

String parameters are passed with an explicit length (specified in Data length).

STREOT

String parameters are passed with the character specified in the EOT session
parameter denoting the string end.

EOT= char

This character denotes the end of a string when the STREOT session parameter has
been set. Null (/0) is the default value.

Call parameters
An application program must pass the following parameters when calling this
function:

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 25

Function 6

Data string Text to be searched for in the PS

Data length Length of the data string. (Ignored if in EOT mode.)

PS position Start position where the search function is to begin (SRCHFRWD) or to end
(SRCHBKWD). This parameter is ignored if SRCHALL is set.

Return parameters

PS Position

Function replaces the value of call parameter Data length with the PS position where
specified text was found, or 0 if the text was not found.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful (the specified text was found).
1 The application was not connected with a host PS.
2 An incorrect parameter was entered.
7 An invalid PS position was specified for beginning the search
9 A system error occurred
24 The specified text was not found.

Example
WORD HllFunc = 6;
char HllDataStr[10];
/* Text to search for: "Hello" */
strcpy (HllDataStr, "Hello");
WORD HllDataLgth = 5;
/* Start search at PS position 199 */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
• The SRCHFROM option is useful when you are searching for a string that may

occur several times.

• The search carried out by this function is case-sensitive.

• To determine when the host is ready for input, the application should search
the screen for key fields, usually near the bottom of the screen.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 26

Function 7: Query Cursor Location
This function returns the position of the cursor in the currently connected PS.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 7

Data string Not applicable.

Data length Not applicable.

PS position Reserved.

Return parameters
PS Position

Function replaces the value of call parameter Data length with the PS position of the
cursor.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful (the specified text was found).
1 The application was not connected with a host PS.
9 A system error occurred

Example
WORD HllFunc = 7;
char HllDataStr[];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 27

Notes
• This function is one method of determining whether a host session is at a

particular screen, assuming the position where the cursor will appear on that
screen is known in advance.

• To make this determination, the application can repeatedly query cursor
position until it is located at the correct field.

• 5250 emulators support a Presentation Space of 24 rows by 80 columns.
When an error message from the host or when the operator presses the
SysReq key, a 25th row is displayed. When the row 25 is displayed, it is a
valid area for this function.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 28

Function 8: Copy Presentation Space to
String
This function copies all or part of the currently connected PS to a string allocated in
the calling application.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

NOATTRB (default)

Attribute bytes and other characters not displayable in ASCII are translated into
blanks.

ATTRB Attribute bytes and other characters not displayable in ASCII are not
translated.

EAB

Extended Attribute Bytes are copied. Two characters are placed in the application
data string for each one that appears in the PS. The EAB is the second character. To
accommodate this, the application program must allocate a data string that is twice
the number of displayable characters to be copied. For example, 160 bytes should be
allotted to copy the first 80 characters with EABs.

NOEAB (default)

Extended Attribute Bytes are not copied.

XLATE

Extended Attribute Bytes are translated to CGA text mode attributes.

NOXLATE (default)

Extended Attribute Bytes are not translated.

DISPLAY (default)

Text in non-display fields is copied to the data string in the same manner as display
fields.

NODISPLAY

Text in non-display fields is copied to the data string as null characters.

Call parameters

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 29

An application program must pass the following parameters when calling this
function:

Function 8

Data string A string of sufficient size to hold data requested from the PS, including
EABs if requested

Data length The number of characters allocated in Data string.

PS position The PS position where the copying should begin.

Return parameters

Data string

Function replaces content of call parameter Data string with text from the
presentation space.

Refer to Appendix D, “Extended Attributes,” for information on EAB interpretation.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; requested data was copied to the string.
1 The application program was not connected to a valid PS.
2 String length was specified as zero, or extended past the end of the PS.
4 Requested data was copied, but the PS was waiting for host response.
5 Requested data was copied, but the keyboard was locked.
7 An invalid PS position was specified for beginning the copy.
9 A system error occurred.

Example
WORD HllFunc = 8;
/* At least the size of returned data */
char HllDataStr[5];
/* Length of string to copy */
WORD HllDataLgth = 5;
/* Start position to copy */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 30

Function 9: Set Session Parameters
This function sets session parameters in WinHLLAPI. Parameters set with this
function affect many other WinHLLAPI functions, as noted in individual function
descriptions (“Applicable session parameters”) and in the descriptions of this
function’s call parameters.

Session parameter values set using this function remain in effect until one of the
following occurs:

• Function 21, “Reset System,” which resets the session parameters to default
values

• A new value is specified by a second function 9 call

• The WinHLLAPI client application program terminates

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 9

Data string A string containing one or more session parameters, which can be separated
by commas or blanks. The following sections explain the possible session
parameters and values.

Data length The number of characters in Data string. (EOT is not allowed.)

PS position Reserved.

Copy parameters
The following session parameters affect all copy functions.

ATTRB

EBCDIC characters that cannot be translated to displayable ASCII characters are not
translated.

NOATTRB (default)

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 31

EBCDIC characters that cannot be translated to displayable ASCII characters are
translated to blanks (0x20).

EAB

Extended Attribute Bytes are copied along with data.

NOEAB (default)

EABs are not copied (data only).

STRLEN (default)

String parameters are passed with an explicit length (specified in Data length).

STREOT

String parameters are passed with the character specified in the EOT session
parameter denoting the string end.

EOT= char

This character denotes the end of a string when the STREOT session parameter has
been set. Null (/0) is the default value.

XLATE

Copied Extended Attribute Bytes are translated to CGA color codes.

NOXLATE (default)

Copied Extended Attribute Bytes are returned without translation.

DISPLAY (default)

Non-display fields are copied to the target buffer in the same manner as the display
fields.

NODISPLAY

Non-display fields are copied to the target buffer as nulls.

Connect parameters
The following session parameters affect Function 1, “Connect Presentation Space,”
and Function 2, “Disconnect Presentation Space.”

CONLOG (default)

When Function 1, “Connect Presentation Space,” is called, the emulator session
corresponding to the target PS does not become the active application. The calling
application remains active. Likewise, when Function 2, “Disconnect Presentation
Space,” is called, the calling application remains active.

CONPHYS

Calling Function 1, “Connect Presentation Space,” makes the emulator session
corresponding to the target PS the active application (does a physical connect). Note
that this parameter is honored only when there is host access software attached to
the session. During Function 2, “Disconnect Presentation Space,” the host access
software becomes the active application.

WRITE_SUPER (default)

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 32

This parameter is set by a client application program that requires write access and
allows only supervisory applications to connect to its PS.

WRITE_WRITE

This parameter is set by a client application program that requires write access and
allows other applications that have predictable behavior to connect to its PS.

WRITE_READ

This parameter is set by a client application program that requires write access and
allows other applications to use read-only functions on its PS.

WRITE_NONE

This parameter is set by a client application program that requires exclusive access
to its PS. No other applications will have access to its PS.

SUPER_WRITE

This parameter is set by a supervisory client application program that allows
applications with write access to share the connected PS. The client application
program setting this parameter will not cause errors for other applications, but will
provide only supervisory-type functions.

WRITE_READ

This parameter is set by a client application program that requires read-only access
and allows other applications that perform read-only functions to connect to its PS.

KEY$nnnnnnnn

This parameter allows the client application program to restrict sharing the PS. The
keyword must be exactly 8 bytes long.

NOKEY (default)

This parameter allows the client application program to be compatible with existing
applications that do not specify the KEY parameter.

Esc/Reset parameters
The following session parameters affect Function 3, “Send Key,” and Function
51,“Get Key.”

ESC= char

Specifies the escape character for keystroke mnemonics (“@” is the default). Blank is
not a valid escape value.

AUTORESET (default)

Attempts to reset all inhibited conditions by adding the prefix RESET to all keystroke
strings sent using Function 3, “Send Key.”

NORESET

Does not add RESET prefix to function 3 key strings.

Search parameters
The following session parameters affect all search functions.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 33

SRCHALL (default)

Scans the entire PS or field.

SRCHFROM

Starts the scan from a specified location in the PS or field.

SCRCHFRWD (default)

Performs the scan in an ascending direction.

SRCHBKWD

Performs the scan in a descending direction through the PS or field.

OIA parameters
The following session parameters affect Function 13, “Copy OIA,” and specify the
format for the data returned by the function.

OLDOIA (default)

OIA data are returned in EBCDIC. Since OIA data are always returned in ASCII
format in 5250 support, OLDOIA is accepted but ignored.

NEWOIA

OIA data are returned in ASCII format.

Pause parameters
The following session parameters affect Function 18, “Pause,” determining the type
of pause to perform.

Note: An application can make multiple Function 23 calls, and an event satisfying
any of the calls will interrupt the pause.

FPAUSE (default)

Full-duration pause. Control returns to the calling application when the number of
half-second intervals specified in the Function 18 call have elapsed.

IPAUSE

Interruptible pause; Control returns to the calling application when a system even
specified in a preceding Function 23, “Start Host Notification,” call has occurred, or
the number of half-second intervals specified in the Function 18 call have elapsed.

PS size parameters
The following session parameters affect Function 10, “Query Sessions.”

NOCFGSIZE

Function 10 returns the current size of the connected PS.

CFGSIZE (default)

Function 10 ignores any override of the PS by the host and returns the configured
size of the PS.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 34

Time parameters
The following session parameters affect Function 90, “Send File,” and Function 91,
“Receive File.”

NOQUIET (default)

Displays SEND and RECEIVE messages showing progress of the file transfer.

QUIET

Does not display SEND and RECEIVE messages.

TIMEOUT=char

Specifies how much time shall elapse before CTRL BREAK is issued to terminate an
in-progress file transfer. (Blank is not accepted.)

Character Seconds
0 (default) 30
1 30
2 60
3 90
4 120
5 150
6 180
7 210
8 240
9 270
J 300
K 330
L 360
M 390
N 420

Trace parameters
The following session parameters determines whether to enable or disable Windows
HLLAPI tracing.

TROFF (default)

Turns tracing off.

TRON

Turns tracing on. With tracing enabled, all executed Windows HLLAPI functions are
traced.

Wait parameters
The following session parameters affect Function 4, “Wait,” and Function 51, “Get
Key.”

TWAIT (default)

For Function 4, “Wait,” TWAIT waits up to a minute before timing out on XCLOCK or
XSYSTEM.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 35

For Function 51, “Get Key,” TWAIT does not return control to the WinHLLAPI client
application program until it has intercepted a key (a normal or AID key, based on the
option code specified under Function 50, “Start Keystroke Intercept”).

LWAIT

For Function 4, “Wait,” LWAIT waits until XCLOCK / XSYSTEM clears. This option is
not recommended because XSYSTEM or permanent XCLOCK will prevent control
being returned to the application.

For Function 51, “Get Key,” LWAIT does not return control to your application until it
has intercepted a key. The intercepted key could be a normal or AID key, based on
the option specified under Function 50, “Start Keystroke Intercept.”

NWAIT

For Function 4, “Wait,” NWAIT checks status and returns immediately (no wait).

For Function 51, “Get Key,” NWAIT returns code 25 (keystroke not available) if
nothing matching the option specified under Function 50, “Start Keystroke
Intercept,” is queued.

Return parameters
Parameters accepted

Function replaces the value of call parameter Data length with the number of session
parameters that were set.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
2 One or more parameter names were not recognized; all recognized

parameters were accepted.
9 A system error occurred.

Example
/* Set session parameters */
WORD HllFunc = 9;
char HllDataStr[20];
strcpy (HllDataStr,"SRCHFROM,SRCHFRWD");
/* Length of parameter string */
WORD HllDataLgth = 17;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 36

Function 10: Query Sessions
This function returns summary information about each currently started session. The
information is returned in a 12-byte data string for each session.

Prerequisites
None.

Applicable session parameters
The following session parameters from Function 9 affect this function.

NOCFGSIZE

The function returns the current size of the connected PS.

CFGSIZE (default)

The function returns the configured size of the PS, ignoring any host overrides

.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 10

Data string A pre-allocated string of 12 bytes per configured session.

Data length 12 bytes per configured session with a maximum of 312 bytes
(26 maximum allowable active sessions x 12 bytes).

PS position Reserved.

Return parameters
Session information

Function replaces content of call parameter Data string with information about
currently-open sessions, twelve bytes per session, as follows:

Byte Description
1 Session short name.
2–9 Session long name.
10 Session type: ‘H’ = host session, ‘P’ = personal computer.
11–12 PS size in binary.

Sessions started

Function replaces the value of call parameter Data length with the number of started
sessions for which information was returned.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 37

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
2 String length specified was not valid.
9 A system error occurred.

Example
WORD HllFunc = 10;
/* 12 bytes per session, max. 26 sessions */
char HllDataStr[312];
WORD HllDataLgth = 312;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
Text returned as the session "long name" will be the first eight characters of the
name of the configuration ("*.EDP") file used to open the session:

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 38

Function 11: Reserve
This function locks the currently connected PS, preventing another application
program or terminal operator from entering data into it. Once the PS is locked, it is
not accessible until it is unlocked.

The PS can be unlocked with Function 12, “Release”; Function 21, “Reset System”;
Function 2, “Disconnect Presentation Space”; or Function 1, “Connect Presentation
Space.” Function 1 performs an implicit disconnect. (Terminating a session with Task
Manager also unlocks it.)

This function is useful for preventing users from gaining access to the session while
an application program sends a series of transactions to the host.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 11

Data string Not applicable.

Data length Not applicable.

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 The application is not connected to a valid PS.
5 Presentation space cannot be used.
9 A system error occurred.

Example

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 39

WORD HllFunc = 11;
char HllDataStr[];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 40

Function 12: Release
This function unlocks a PS that was reserved using Function 11, “Reserve.” The
target is the currently connected PS.

Release also occurs automatically when the client application program calls Function
2, “Disconnect Presentation Space”; Function 1, “Connect Presentation Space”;
Function 21, “Reset System”; or terminates, or the session itself is terminated.

Because release occurs automatically on disconnect, it is not crucial that you use the
Release function whenever you end an application.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 12

Data string Not applicable.

Data length Not applicable.

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 The application is not connected to a valid PS.
9 A system error occurred.

Example
WORD HllFunc = 12;
char HllDataStr[];
WORD HllDataLgth;
WORD PsPos;

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 41

WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 42

Function 13: Copy OIA
This function returns the contents of the OIA from the currently connected PS. The
length of the OIA data does not change with the terminal model. Refer to Appendix C
for information on interpreting the contents of returned OIA data.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

OLDOIA (default)

OIA data are returned in EBCDIC. Ignored for 5250 sessions, because 5250 OIA
image is always returned in ASCII.

NEWOIA

OIA data are returned in ASCII.

Call parameters
The following session parameters from Function 9 affect this function.

Function 13

Data string A pre-allocated 103-byte data string

Data length 103

PS position Reserved.

Return parameters

OIA data

Function replaces content of call parameter Data string with data from the OIA for
the currently-connected PS, organized as follows:

Byte Description
1 The OIA Format Byte for the host access program.
2–81 These bytes contain the untranslatable image of the OIA in hexadecimal codes.
82–103 The OIA bit group.

Detailed explanation of information contained in this string is given in Appendix C,
“Interpreting the Returning Data String for Function 13.”

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 43

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 OIA data were copied; PS is unlocked.
1 The application is not connected to a valid PS.
2 Data string length specified was not valid.
4 OIA data were copied, but the PS is busy.
5 OIA data were copied, but the keyboard is locked.
9 A system error occurred.

Example
WORD HllFunc = 13;
char HllDataStr[103];
/* Length of allocated data area */
WORD HllDataLgth = 103;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 44

Function 14: Query Field Attribute
This function returns the field attribute byte for the PS position.

The returning parameter contains the field attribute for the specified PS position. The
value of the attribute byte is C0-DF (unprotected field attributes) and E0-FF
(protected attributes). A zero attribute means that no field attribute was found in the
PS.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 14

Data string Not applicable.

Data length Not applicable.

PS position The PS position for which field information is wanted
.

Return parameters

Attribute value

Function replaces the value of call parameter Data length with the attribute byte for
the specified field. If zero, the PS is unformatted and no attribute can be returned.

3270 Field attribute

Bit Meaning
0-1 Both = 1, field attribute value
2 0 = unprotected; 1 = protected
3 0 = alphanumeric; 1 = numeric only
4-5 00 = normal intensity, not pen detectable

01 = normal intensity, pen detectable
10 = high intensity, pen selectable
11 = nondisplay, not pen detectable

6 Reserved

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 45

7 0 = field has not been modified; 1 = field has been modified

5250 Field attribute

Bit Meaning
0 0 = nonfield attribute; 1 = field attribute
1 0 = nondisplay; 1 = display
2 0 = unprotected; 1 = protected
3 0 = normal intensity; 1 = high intensity
4-6 000 = alphameric data; all characters available

001 = alphabetic only, u/c and l/c, comma, period, hyphen, blank and Dup available
010 = numeric shift; automatic shift for number
011 = numeric only: 0-9, comma, period, plus, minus, blank and Dup available
101 = numeric only: 0-9 or Dup available
110 = magnetic strip reading device data only
111 = signed numeric data: 0-9, plus, minus and Dup are available

7 0 = field has not been modified; 1 = field has been modified

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 Function was successful.
1 The application is not connected to a valid PS.
7 An invalid PS position was specified.
9 A system error occurred.
24 The PS was unformatted.

Example
WORD HllFunc = 14;
char HllDataStr[];
WORD HllDataLgth;
/* Query field attribute at this position */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 46

Function 15: Copy String to Presentation
Space
This function copies a string directly into the currently connected PS at the specified
location. When the copy operation is complete, the cursor’s physical location remains
unchanged.

The data string to be copied cannot be any larger than the size of the designated
writable area or field. Unprintable characters in the string are translated into blanks
in the host system session.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

STRLEN (default)

Application must specify the length of the data string to be copied.

STREOT

The string must end to be copied must end with the EOT character.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 15

Data string ASCII text to be copied into the PS. Last byte of the string is EOT if session
parameter STREOT is set.

Refer to Appendix D, “Extended Attributes,” for information on EAB format.

Data length Data string length if session parameter STRLEN is set, else not applicable.

PS position Position of the PS where function is to begin copying data.

Note: This function cannot send keyboard mnemonics.

Return parameters

Result code

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 47

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 Function was successful.
1 The application is not connected to a valid PS.
2 Function was called with an invalid parameter.
5 PS is busy or locked, or the data string contained illegal data. The

string was not copied.
6 The string was copied, but truncated at the end of the field or screen.
7 An invalid PS position was specified.
9 A system error occurred.

Example
WORD HllFunc = 15;
char HllDataStr[20];
/* Copy "Hello World" to PS */
strcpy(HllDataStr, "Hello World");
/* Length of string to copy */
WORD HllDataLgth = 11;
/* Position on host screen where string will start*/
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
To copy data to the current PS position, use Function 7, “Query Cursor Location,” to
obtain the PS position, then use that value as the PS position calling parameter of
this function.

Result code 6 indicates attempt was made to copy data into a protected field. Before
writing application code to use this function, the programmer should check that the
location where data are to be copied to the PS is (a) an unprotected field and (b) of
sufficient extent to accept all the data to be copied.

Position in the Host session presentation space is determined by starting in the upper
left corner of the screen display (row 1, column 1). At the end of each screen display
row, the next Host session presentation space position is column 1 of the following
screen display row. This process continues until the end of the Host session
presentation space (screen display) is reached.

5250 emulators support a Presentation Space of 24 rows by 80 columns. When an
error message from the host or when the operator presses the SysReq key, a 25th
row is displayed. When the row 25 is displayed, it is a valid area for this function.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 48

Function 18: Pause
This function waits a specified amount of time or until a host-initiated update occurs.

If the client application program is already in a Wait, Pause, Get Key, or synchronous
file transfer delay, the request for another delay is rejected.

Prerequisites
Function 23, “Start Host Notification,” must be called if the application program uses
session parameter IPAUSE.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

FPAUSE (default)

The function waits the amount of time specified if session parameter FPAUSE is in
effect.

IPAUSE

The function waits until a specified host update occurs if session parameter IPAUSE is
set and the application has called Function 23, “Start Host Notification. The
application must call Function 24, “Query Host Update,” before setting the next
pause; otherwise, the next pause will be immediately satisfied by the pending event.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 18

Data string NA

Data length The pause duration in 1/2-second multiples. (240 => 120 seconds.)

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The pause duration expired.
9 A system error occurred.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 49

26 A host session PS or OIA update has occurred.

Example
WORD HllFunc = 18;
char HllDataStr[];
/* Wait for 10 sec. or until interrupted */
WORD HllDataLgth = 20;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
This function consumes some system resources. A practical maximum duration for
the pause is 7200 (60 minutes). The application program should not tie up other
resources such as keyboard reservations, session connections, and so forth, before
entering a pause.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 50

Function 20: Query System
This function returns information about system state that may be useful for
determining the cause of a result code 9 being received from some other function
call.

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 20

Data string A 35-byte string pre-allocated to receive system information.

Data length Not applicable (35 bytes is implied).

PS position Reserved.

Return parameters
System information

Function replaces content of call parameter Data string with information about the
system state, organized as follows:

Byte Description
1 Version number.
2–3 Level number.
4–9 Date (month, date, year).
10–12 Reserved.
13 Always ‘U’.
14 Always ‘E’.
15–16 WinHLLAPI product version number
17–18 WinHLLAPI product level number
19 Reserved
20-23 Reserved
24-27 Reserved
28-29 Reserved
30-31 Reserved
32 Reserved
33-35 Reserved.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 51

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; the data string was returned.
9 A system error occurred.

Example
WORD HllFunc = 20;
char HllDataStr[35];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 52

Function 21: Reset System
This function resets session parameters changed in Function 9, “Set Session
Parameters,” to their default state and releases any reserved sessions. This function
also releases any connected PSs, and cancels any keystroke interceptions and host
update monitors.

An application can call this function at any time to restore session parameters to
default values. This function should always be called just before a WinHLLAPI
application program exits.

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 21

Data string Not applicable.

Data length Not applicable.

PS position Reserved.

Return parameters

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; the data string was returned.
9 A system error occurred.

Example
WORD HllFunc = 21;
char HllDataStr[];
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 53

Notes
If a session is visible when this function is called, the session will not be released
from memory, though any WinHLLAPI connection of the application with the session
will be disconnected.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 54

Function 22: Query Session Status
This function returns specific information about the specified session. It returns the
following information in the data string:

• Short and long names

• Terminal type

• Number of rows and columns in the PS

This function provides more information on individual sessions than the allsessions
call (Function 10, “Query Sessions”).

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 22

Data string An 18-byte string pre-allocated to receive session information, the first byte
of which contains

• a session short name, or
• blank or null, indicating the currently-connected PS, or
• asterisk ('*'), indicating the session currently with keyboard focus

Data length 18

PS position Reserved.

Return parameters
Session information

Function replaces content of call parameter Data string with information about the
session, organized as follows:

Byte Description
1 Session short name.
2-9 Session long name.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 55

10 Session type:
‘D’ = 3270 Host
‘E’ = 3270 Printer
‘F’ = 5250 Host
‘G’ = 5250 Printer
‘P’ = personal computer

11 Session characteristics:
Bit 0: 0=No EAB; 1=EABs
Bit 1: 0=No programmed symbols
 1=Programmed symbols
Bit 2–7: Reserved

12–13 Number of rows (binary).
14–15 Number of columns (binary).
16–17 Host code page (binary).
18 Reserved

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; the data string was returned.
1 An invalid session short name was specified.
2 An invalid string length was sent to the function.
9 A system error occurred.

Example
WORD HllFunc = 22;
char HllDataStr[18];
/* Request status of connected session */
HllDataStr[0] = ' ';
/* Length of data string */
WORD HllDataLgth = 18;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 56

Function 23: Start Host Notification
This function begins the process by which WinHLLAPI determines if the host session
PS or OIA has been updated. Your application can then call Function 24, “Query Host
Update,” to find out more specific information about the update. This function also
enables the designated host session event to end an interruptible pause started with
Function 18, “Pause.”

Prerequisites
None.

Applicable session parameters
None.

Function call
This function can be invoked for

synchronous operation via WinHLLAPI(…)

or asynchronous operation via WinHLLAPIAsync(hWnd,…)

Call parameters
An application program must pass the following parameters when calling this
function:

Function 23

Data string A 7-byte string. (See format below).

Data length Length of host event buffer (256 recommended)

PS position Reserved.

Data string format

Byte Description
1 Session short name. If blank or null, the session to which the

application is currently connected.
2 One of the following characters:

“P”—Notification of PS update
“O”—Notification of OIA update
“B”—Notification of both OIA and PS updates
“A” —Asynchronous-mode notification requested.

3-6 Not used
7 If byte 5 contains “A”, one of the following characters:

“P”—Notification of PS update

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 57

“O”—Notification of OIA update
“B”—Notification of both OIA and PS updates

If byte 5 does not contain “A”, reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid session short name was specified.
2 An invalid parameter was specified.
9 A system error occurred.
0xF002 Asynchronous function cancelled

Example
WORD HllFunc = 23;
char HllDataStr[7];
/* Short name of session */
HllDataStr[0] = 'E';
/* Both OIA and PS updates */
HllDataStr[1] = 'B';
/* Host event buffer length */
WORD HllDataLgth = 256;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

Notes
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function
initiates host notification and immediately returns the calling application. This frees
the application to perform other tasks while waiting for host updates.

Because asynchronous mode returns control immediately, you must use Windows
version 3.x message notification to determine when host updates have occurred. Use
the RegisterWindowsMessage() function to register the message “WinHLLAPIAsync”.
See WinHLLAPIAsync in Chapter 2 for details.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 58

Function 24: Query Host Update
This function allows your application to determine if the host has updated the PS or
OIA since the last time Function 23, “Start Host Notification” or this function was
called.

The application program need not be connected to the PS for updates; however, it
must specify the short name for the desired session.

Prerequisites
Function 23, “Start Host Notification.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 24

Data string A string, the first character of which is the short name of the
desired session, or blank or null requesting the connected session.

Data length Not applicable (1 is implied).

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 No updates occurred since the last call.
1 An invalid PS was specified.
8 Function 23, “Start Host Notification,” has not been called for this PS.
9 A system error occurred.
21 The OIA was updated.
22 The PS was updated.
23 Both OIA and PS were updated.

Example
WORD HllFunc = 24;

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 59

char HllDataStr[4];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 60

Function 25: Stop Host Notification
This function disables the capability of Function 24, “Query Host Update.” This
function can also be used to stop host events from affecting Function 18, “Pause.”

Prerequisites
Function 23, “Start Host Notification.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 25

Data string A string, the first character of which is the short name of the
desired session, or blank or null requesting the connected session.

Data length Not applicable (1 is implied)

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The stop notification was successful.
1 An invalid session short name was specified.
8 Function 23, “Start Host Notification,” has not been called for this PS.
9 A system error occurred.

Example
WORD HllFunc = 25;
char HllDataStr[1];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 61

Function 30: Search Field
This function searches through a specified field of the currently connected PS for a
specified string. It can be used to search for a string in either protected or
unprotected fields of a field formatted host PS. If the target string is found, this
function returns the starting position of the string.

This search is always case-sensitive. This function requires a complete match of
target string to field contents, regardless of the direction of the search.

Note: If the field at the end of the host presentation space wraps, wrapping occurs
when the end of the presentation space is reached.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

SRCHALL (default)

The entire field containing the specified PS position is searched.

SRCHFROM

Search begins at the specified position in the field.

SRCHFRWD (default)

Search finds first instance of the string between the origin and the end of the field.

SRCHBKWD

Search finds the last instance of the string between the field origin and the end of
the field, or the specified PS position (if SRCHFROM is set).

STRLEN (default)

Application must specify the length of the data string to be copied.

STREOT

The string must end to be copied must end with the EOT character.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 30

Data string ASCII text to be searched for in the field. Last byte of the string is EOT if
session parameter STREOT is set.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 62

Data length Data string length if session parameter STRLEN is set, else not applicable.

PS position Specifies a PS position within the target field or on the field attribute that
begins it.. For SRCHALL, this can be any PS position within the field. For
SRCHFROM, search begins here for SRCHFRWD or ends here for
SRCHBKWD.

Return parameters
PS Position

Function replaces the value of call parameter Data length with the PS position where
the specified text was found. If zero, the specified text was not found.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; the string was found.
1 The application is not connected to a valid PS.
2 The string length was zero; or, if STREOT was in effect, no EOT

character was found in the given search string.
7 An invalid PS position was specified.
9 A system error occurred.
24 The string was not found.

Example
WORD HllFunc = 30;
char HllDataStr[100];
/* Target string to search for "Hello" */
strcpy (HllDataStr, "Hello");
WORD HllDataLgth = 5;
WORD PsPos;
/* Start position for search */
PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 63

Function 31: Find Field Position
This function searches through the currently connected PS for a field’s beginning
position and returns the position. This function will search for either protected or
unprotected fields, but the fields must be in a field-formatted host PS.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 31

Data string A 2-character code specifying the field to find. (See format below.)

Data length Not applicable (2 is implied).

PS position A position in the PS that lies within the field or on the field attribute that
begins it.

Data string format

Content Description
^^ or T^ This field.
N^ Next field (protected or unprotected).
NP Next protected field.
NU Next unprotected field.
P^ Previous field (protected or unprotected)
PP Previous protected field.
PU Previous unprotected field.

^ = a space

Return parameters
Field position

Function replaces the value of call parameter Data length with the PS position where the
specified field begins. If zero, the field is either zero length or the PS is unformatted.

Result code

Function replaces the value of call parameter PS position with one of the following codes:

Code Description

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 64

0 The function was successful; the field was found.
1 The application is not connected to a valid PS.
2 An incorrect parameter was specified.
7 An invalid PS position was specified.
9 A system error occurred.
24 Either the field was not found, or the PS was unformatted.
28 The field length is zero bytes.

Example
WORD HllFunc = 31;
char HllDataStr[10];
/* Find start position of this field (t, space) */
strcpy (HllDataStr, "T ");
WORD HllDataLgth;
/* Start search at PS position */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 65

Function 32: Find Field Length
This function returns the length of a specified PS field, protected or unprotected, and
is the number of characters contained in the field between the attribute byte that
begins the field and the next-following field attribute.

NOTE: This function wraps from the end to the beginning of the PS.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 32

Data string A 2-character code specifying the field to find. (See format below.)

Data length Not applicable (2 is implied).

PS position A position in the PS that lies within the field or on the field attribute that
begins it.

Data string format

Content Description
^^ or T^ This field.
N^ Next field (protected or unprotected).
NP Next protected field.
NU Next unprotected field.
P^ Previous field (protected or unprotected)
PP Previous protected field.
PU Previous unprotected field.

^ = a space

Return parameters
Field length

Function replaces the value of call parameter Data length with the length of the
specified field. If zero, the field was not found, or is zero length, or the PS is
unformatted.

Note: If a field attribute is followed by another field attribute, the field is assumed to
have a length of zero.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 66

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful; the field was found.
1 The application is not connected to a valid PS.
2 An incorrect parameter was specified.
7 An invalid PS position was specified.
9 A system error occurred.
24 Either the field was not found, or the PS was unformatted.

Example
WORD HllFunc = 32;
char HllDataStr[10];
/* Find length of this field (t, space) */
strcpy (HllDataStr, "T ");
WORD HllDataLgth;
/* Start search at PS position */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 67

Function 33: Copy String to Field
This function copies characters to a specific unprotected field in a field-formatted PS.

The copy operation ends when one of four conditions is met:

• The entire string has been copied.

• The text has been written to the last field position.

• The function has copied the specified number of characters in the data length
parameter.

• The character before the EOT character is copied when EOT is specified.

Note: AID key character sequences are not evaluated when using this function. They
will be copied to the field as literal strings. Function 3, “Send Key,” must be used to
send an AID key to a session.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

EAB

Text and EABs are copied from the data string.

NOEAB (default)

The data string does not contain EABs.

XLATE

EABs are translated from CGA text mode attributes.

NOXLATE (default)

EABs are copied without translation.

STRLEN (default)

Application must specify the length of the data string to be copied.

STREOT

The string must end to be copied must end with the EOT character.

Call parameters
An application program must pass the following parameters when calling this
function:

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 68

Function 33

Data string ASCII text to be copied into the field. Last byte of the string is EOT if
session parameter STREOT is set.

Refer to Appendix D, “Extended Attributes,” for information on EAB formats.

Data length Data string length if session parameter STRLEN is set, else not applicable.

PS position A position in the PS that lies within the field or on the field attribute that
begins it. Copy always starts at the beginning of the field.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 Success; the string was copied to the target field in the PS.
1 The application is not connected to a valid PS.
2 A string length of zero was specified.
5 Either the target field was protected or inhibited; or a nondisplayable

character was included in the string.
6 The string was copied, but it was truncated because the field was

shorter than the string.
7 An invalid PS position was specified.
9 A system error occurred.
24 The host PS is unformatted.

Example
WORD HllFunc = 33;
char HllDataStr[20];
/* Copy "Hello World" to field */
strcpy (HllDataStr, "Hello World");
/* Length of string to copy */
WORD HllDataLgth = 11;
/* Copy to field containing this position */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 69

Function 34: Copy Field to String
This function copies all characters from a field in the currently connected PS into a
string. It can be used with either protected or unprotected fields, but only in a field-
formatted PS.

The copy operation begins at the field’s origin. This position and length information
can be found by using Function 31, “Find Field Position,” and Function 32, “Find Field
Length.”

This function ends when one of two conditions is met:

• The last character in the field was copied.

• All character positions in the copy string have been filled.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

EAB

Text and EABs are copied to the buffer.

NOEAB (default)

EABs are not copied.

XLATE

EABs are translated to CGA text mode attributes.

NOXLATE (default)

EABs are not translated.

DISPLAY (default)

Non-display text is copied to the target buffer in the same manner as the display
data.

NODISPLAY

Non-display text is copied to the target buffer as nulls.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 34

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 70

Data string The string to which the program copies the contents of the field.

Data length The number of characters to be copied.

NOTE: Data string must be at least twice this length if the EAB session parameter is set.

PS position A position in the PS that lies within the field or on the field attribute that
begins it. Copy starts at the beginning of the field.

Return parameters
Field content

Function replaces content of call parameter Data string with text from the field.

Refer to Appendix D, “Extended Attributes,” for information on EAB interpretation.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 Success; text from the field has been copied to data string.
1 The application was not connected with a host PS.
2 A parameter error was detected.
6 The string was copied, but it was truncated because the string was

shorter than the field.
7 An invalid PS position was specified.
9 A system error occurred.
24 The presentation space is unformatted.

Example
WORD HllFunc = 34;
/* Allocated data buffer */
char HllDataStr[10];
/* Length of allocated buffer */
WORD HllDataLgth = 10;
/* Copy from field containing this position */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 71

Function 40: Set Cursor
This function sets the cursor position to the target PS position in the currently
connected PS.

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 40

Data string Not applicable.

Data length Not applicable.

PS position The desired cursor position in the PS.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 Success; text from the field has been copied to data string.
1 The application was not connected with a host PS.
4 The PS is busy.
7 An invalid PS position was specified.
9 A system error occurred.

Example
WORD HllFunc = 40;
char HllDataStr[];
WORD HllDataLgth;
/* Where to put cursor */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 72

Function 41: Start Close Intercept
This function allows the application to intercept user-generated close requests. The
function intercepts and discards the close request until the client application program
requests Function 43, “Stop Close Intercept.” Multiple client application programs
can request this function for the same session.

Prerequisites
None.

Applicable session parameters
None.

Function call
This function can be invoked for

synchronous operation via WinHLLAPI(…)

or asynchronous operation via WinHLLAPIAsync(hWnd,…)

Call parameters
An application program must pass the following parameters when calling this
function:

Function 41

Data string A 12-byte string. (See format below).

Data length 12

PS position Reserved.

Data string format

Byte Description
1 Session short name. If blank or null, the session to which the

application is currently connected.
2-4 Reserved
5 “M” —Asynchronous message-mode notification requested.

Any other value, asynchronous message mode not requested.
6-8 Reserved
9-12 If byte 5 contains “M”, RegisterWindowMessage("WinHLLAPI”) return

value, not zero. (Bytes 11 and 12 are ignored.)
If byte 5 does not contain “M”, bytes 9-12 are reserved.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 73

Return parameters
Asynchronous notification outcome

When a value other than "M" appears in byte 5 of call parameter Data string,
function replaces the value of call parameter Data string with the following
information:

Byte Description
1 Session short name.
2–8 Reserved
9-12 Address of the event object returned by WinHLLAPI. The application can

wait on
this event

Asynchronous message mode outcome

When "M" appears in byte 5 of call parameter Data string, function replaces the
value of call parameter Data string with the following information:

Byte Description
1 Session short name.
2–8 Reserved
9-10 Task ID of asynchronous message mode.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid PS was specified.
2 A string length of zero was specified.
9 A system error occurred.
10 Function is not supported by the emulator.

Example
WORD HllFunc = 41;
char HllDataStr[12];
/* Short name of session */
HllDataStr[0] = 'B';
HllDataStr[5] = 0;
WORD HllDataLgth = 12;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 74

Function 42: Query Close Intercept
This function allows the application to determine if a user-generated close request
has been issued.

Prerequisites
Function 41, “Start Close Intercept.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 42

Data string A text string of which the first character is the session short name.

Data length 1

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 No close intercept event has occurred.
1 An invalid PS was specified.
2 A string length of zero was specified.
8 No call to Function 41, “Start Close Intercept,” was issued
9 A system error occurred.
12 The session was stopped.
26 A close intercept event has occurred since the last call to this function.

Example
WORD HllFunc = 42;
char HllDataStr[1];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth = 1;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 75

Function 43: Stop Close Intercept
This function ends the intercept started by Function 41, “Start Close Intercept.” Once
the application calls this function, all user generated close requests are processed in
the normal way.

Prerequisites
Function 41, “Start Close Intercept.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 43

Data string The session short name.

Data length 1

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid PS was specified.
2 A string length of zero was specified.
8 Function 41, “Start Close Intercept,” was not called prior to this function.
9 A system error occurred.
12 The session was stopped.

Example
WORD HllFunc = 43;
char HllDataStr[1];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth = 4;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 76

.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 77

Function 50: Start Keystroke Intercept
This function allows an application to filter any keystrokes sent to a session by a
terminal operator. After a call to this function, keystrokes are intercepted and saved
until the keystroke buffer overflows or call is made to Function 21, “Reset System,”
or Function 53, “Stop Keystroke Intercept.”

Intercepted keystrokes can be

• received through Function 51, “Get Key,” and sent to the same or another
session with Function 3, “Send Key”

• accepted or rejected through Function 52, “Post Intercept Status”

• replaced by other keystrokes with Function 3, “Send Key”

• used to trigger other processes.

If AID-key-only intercept is requested (option “D” is specified), non-AID keys will be
sent to the PS and only AID keys will be available to the application.

Note: Extended processing of each keystroke may cause unacceptable delays for
keyboard users.

Prerequisites
None.

Applicable session parameters
None.

Function call
This function can be invoked for

synchronous operation via WinHLLAPI(…)

or asynchronous operation via WinHLLAPIAsync(hWnd,…)

Call parameters
An application program must pass the following parameters when calling this
function:

Function 50

Data string A 16-byte structure specifying the intercept desired. (See format below.)

Data length 16

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 78

PS position Reserved.

Data string format

Byte Description
1 Session short name. If blank or null, the session to which the

application is currently connected.
2-4 Reserved
5 One of the following characters:

D for AID keystrokes only
L for all keystrokes
M for asynchronous message mode notification

9-12 If byte 5 contains “M”, RegisterWindowMessage("WinHLLAPI”) return
value, not zero. (Bytes 11 and 12 are ignored.)
If byte 5 does not contain “M”, bytes 9-12 are reserved.

13 If byte 5 contains “M”, one of the following characters:
D for AID keystrokes only
L for all keystrokes

If byte 5 does not contain “M”, ignored.
14-16 Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid PS was specified.
2 An invalid option was specified.
4 The PS is busy.
9 A system error occurred.

Example
WORD HllFunc = 50;
char HllDataStr[16];
/* Short name of session */
HllDataStr[0] = 'B';
/* All keystrokes */
HllDataStr[4] = 'D';
/* Event buffer space */
WORD HllDataLgth = 16;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 79

Function 51: Get Key
This function allows your application to receive the keystrokes for the sessions that
were specified with Function 50, “Start Keystroke Intercept.”

Use Function 3, “Send Key,” to pass keystrokes to the target PS.

When keystrokes are available, they are read into the data area that you have
provided in your client application program. Each keystroke is represented by one of
the key codes listed in Appendix B, “Keyboard Mnemonics.”

The CAPSLOCK key on the PC works like the SHIFTLOCK key on the host system; it
produces the uppercase of all keys, not just alphanumeric keys. So if the application
is getting keys with CAPSLOCK on, it gets all keys in the shifted state.

Prerequisites
Function 50, “Start Keystroke Intercept.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

TWAIT (default)

The function does not return control to the calling application until a key has been
intercepted.

LWAIT

The function does not return control to the calling application until a key has been
intercepted.

NWAIT

The function checks for intercepted keystrokes and returns immediately.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 51

Data string An 8-character code specifying the intercept desired. (See format below.)

Data length Not applicable (8 is assumed)

PS position Reserved.

Data string format

Byte Description
1 Session short name. If blank or null, the session to which the

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 80

application is currently connected.
2-8 Blanks reserving space for the intercepted data.

Return parameters
Intercept string

Function replaces content of call parameter Data string with information describing
the keystroke intercepted.

Byte Description
1 A 1-character session short name; if or blank/null indicating a intercept

is for the currently connected PS.
2 Code character, one of the following:

• A= ASCII returned
• M= Keystroke mnemonic
• S = Special key-modifier state (SHIFT, CTRL, ALT)

3-8 Allocated buffer used for queuing and dequeuing keystrokes. This buffer

contains the following:
• If the key returned is a character key, bytes 6 and 7 contain
the ASCII character followed by 00. If it is a 3270 key, bytes 6
and 7 will contain a mnemonic for the keystroke (for example,
@5 represents PF5).
• Bytes 8 through 11 contain nulls, unless the key returned
was a combination key such as ERASEINPUT, for which bytes 6
through 9 would contain @A@F and bytes 10-11 nulls.

Typical intercept strings

Intercept strings Function 51 might return are shown below with their keyboard
equivalents

Intercept string Keyboard equivalent
BAt “B” represents the session and “A” informs your WinHLLAPI application

that the keystrokes will be received as ASCII; the returning key is a
lowercase “t” (bytes 4-8 = X’00’).

FM@2 “F” represents the session, “M” indicates that the keystrokes will be
returned as key mnemonics, and “@2” indicates the key being returned
is PF2 (bytes 5–8 = X’00’).

KS@Aa “K” represents the session, “S” indicates the keystroke is returned with
a special modifier (ALT), so the keystroke returned is ALT-A (bytes 6-8 =

0X’00’).
MS@rA “M” is the short name session ID of the Host session. Returned

keystroke with a special-key modifier is CTRL+SHIFT+A (bytes 6-8 =
0X’00’). Note that because both CTRL and SHIFT keys are active, only
the CTRL key modifier is indicated, but the SHIFT key is implied by the
uppercase A.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid PS was specified.
5 Inhibited to non-AID keys.
8 Function 50, “Start Keystroke Intercept,” was not called prior to calling

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 81

this function for the specified PS.
9 A system error occurred.
20 An undefined keystroke combination was entered.
25 The requested keystrokes are not available.
31 The keystroke queue overflowed and keystrokes were lost.

Example
WORD HllFunc = 51;
/* Allocate space for returned key */
char HllDataStr[8];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 82

Function 52: Post Intercept Status
This function places a sentinel on keyboard input that sounds a beep if the keystroke
obtained through Function 51, “Get Key,” was rejected.

Prerequisites
Function 50, “Start Keystroke Intercept.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 52

Data string A 2- byte string specifying status to be posted. (See format below.)

Data length Not applicable (2 is implied)

PS position Reserved.

Data string format

Byte Description
1 Session short name. If blank or null, the session to which the

application is currently connected.
2 One of the following:

• A for keystrokes accepted
• R for keystrokes rejected

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid PS was specified.
2 An invalid option was specified.
8 Function 50, “Start Keystroke Intercept,” was not called prior to calling

this function for the specified PS.
9 A system error occurred.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 83

Example
WORD HllFunc = 52;
char HllDataStr[2];
/* Short name of session */
HllDataStr[0] = 'B';
/* Rejected keystroke */
HllDataStr[1] = 'R';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 84

Function 53: Stop Keystroke Intercept
This function ends an application’s ability to intercept keystrokes for the specified
session.

Prerequisites
Function 50, “Start Keystroke Intercept.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 53

Data string A string of which the first character is the session short name or a
blank/null character indicating a request for the currently connected PS.

Data length Not applicable (1 is implied)

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid session short name was specified.
8 Function 50, “Start Keystroke Intercept,” was not called prior to calling

this function for the specified PS.
9 A system error occurred.

Example
WORD HllFunc = 53;
char HllDataStr[1];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth = 1;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 85

Function 90: Send File
This function allows the client application program to send a file to a host session.
You cannot use this function for 5250 sessions.

WinHLLAPI-initiated file transfers are synchronous, returning control on completion
of the file transfer.

The program requesting synchronous file transfers must not be intercepting
keystrokes for any sessions, must not be awaiting the outcome of another
synchronous file transfer, and must not be waiting for host events in any session.

Prerequisites
The session to be used for a file transfer must be logged on and at a host system
prompt.

Applicable session parameters
The following session parameters from Function 9 affect this function.

NOQUIET (default)

SEND messages are displayed

QUIET

SEND messages are not displayed.

STRLEN (default)

Strings are passed with an explicit length. The client application program provides
the value.

STREOT

All strings are passed with the character specified in the EOT session parameter
denoting the string end instead of the explicit length.

EOT= char

This character denotes the end of a string when the STREOT session parameter has
been set. Null (/0) is the default value.

TIMEOUT= char

The character specifies how many 30-second cycles may elapse before CTRL BREAK
is issued.

Function call
This function can be invoked for

synchronous operation via WinHLLAPI(…)

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 86

or asynchronous operation via WinHLLAPIAsync(hWnd,…)

Call parameters
An application program must pass the following parameters when calling this
function:

Function 90

Data string A string (maximum 255 bytes) containing the send command string. Last
byte of the string is EOT if session parameter STREOT is set.

Data length Data string length if session parameter STRLEN is set, else not applicable.

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
2 A parameter error occurred.
3 The file was transferred.
4 The file was transferred with records segmented.
5 Workstation file name not valid or file not found.
9 A system error occurred.
27 The file transfer was terminated by CTRL C.
301 Invalid function number.
302 File not found.
303 Path not found.
305 Access denied.
308 Insufficient memory.
310 Invalid environment.
311 Invalid format.

Example
WORD HllFunc = 90;
/* Send command string Assumes */
/* PC filename = pcfile.ext */
/* Session short name = D */
/* Host filename = hostfile.ext */
/* CMS transfer options = ASCII,CRLF */
char HllDataStr [] = "pcfile.ext d: hostfile ext (ASCII CRLF";
/* Length of data string */
WORD HllDataLgth = strlen(HllDataStr);
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 87

Notes
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function
initiates the file transfer and immediately returns control to the calling application.
This frees the application to perform other tasks while the file transfer is occurring.

Because asynchronous mode returns control immediately, Windows message
notification must be used to determine the completion status of the file transfer. Use
function RegisterWindowsMessage() to register the message
“WinHLLAPIAsyncFileTransfer”. The subsequent message notification will be in the
format:

(wMsgID, wParm, lParm)

where
wMsgID is the message ID returned by RegisterWindowsMessage
wParam is the status indicator: the high byte contains the short name

session ID, the low byte contains the status. If the low byte
is zero, the file transfer is still in progress. If the low byte is

one the file transfer has completed.
lParam depends on the low byte of wParam. If the low byte of

wParam is zero (in progress), lParam is the number of
bytes that have been transferred. If the low byte of wParam

is one (completed), lParam is the two-digit Host TRANS
code.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 88

Function 91: Receive File
This function allows the client application program to receive a file from a host
session. You cannot use this function for 5250 sessions.

WinHLLAPI-initiated file transfers are synchronous, returning control on completion
of the file transfer.

The program requesting synchronous file transfers must not be intercepting
keystrokes for any sessions, must not be awaiting the outcome of another
synchronous file transfer, and must not be waiting for host events in any session.

Prerequisites
The session to be used for a file transfer must be logged on and at a host system
prompt.

Applicable session parameters
The following session parameters from Function 9 affect this function.

NOQUIET (default)

SEND messages are displayed

QUIET

SEND messages are not displayed.

STRLEN (default)

Strings are passed with an explicit length. The client application program provides
the value.

STREOT

All strings are passed with the character specified in the EOT session parameter
denoting the string end instead of the explicit length.

EOT= char

This character denotes the end of a string when the STREOT session parameter has
been set. Null (/0) is the default value.

TIMEOUT= char

The character specifies how many 30-second cycles may elapse before CTRL BREAK
is issued.

Function call
This function can be invoked for

synchronous operation via WinHLLAPI(…)

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 89

or asynchronous operation via WinHLLAPIAsync(hWnd,…)

Call parameters
An application program must pass the following parameters when calling this
function:

Function 91

Data string A string (maximum 255 bytes) containing the receive command string. Last
byte of the string is EOT if session parameter STREOT is set.

Data length Data string length if session parameter STRLEN is set, else not applicable.

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
2 A parameter error occurred.
3 The file was transferred.
4 The file was transferred with records segmented.
9 A system error occurred.
27 The file transfer was terminated by CTRL C.
301 Invalid function number.
302 File not found.
303 Path not found.
305 Access denied.
308 Insufficient memory.
310 Invalid environment.
311 Invalid format.

Example
WORD HllFunc = 91;
/* Receive command string Assumes */
/* PC filename = pcfile.ext */
/* Session short name = B */
/* Host filename = hostfile.ext */
/* CMS transfer options = ASCII,CRLF */
char HllDataStr [] = "pcfile.ext b: hostfile ext (ASCII CRLF";
/* Length of data string */
WORD HllDataLgth = strlen(HllDataStr);
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 90

Notes
When asynchronous mode is enabled by calling WinHLLAPIAsync, the function
initiates the file transfer and immediately returns control to the calling application.
This frees the application to perform other tasks while the file transfer is occurring.

Because asynchronous mode returns control immediately, Windows version 3.x
message notification must be used to determine the completion status of the file
transfer. Use function RegisterWindowsMessage() to register the message
“WinHLLAPIAsyncFileTransfer”. The subsequent message notification will be in the
format:

(wMsgID, wParm, lParm)

where
wMsgID is the message ID returned by RegisterWindowsMessage
wParam is the status indicator: the high byte contains the short name

session ID, the low byte contains the status. If the low byte
is zero, the file transfer is still in progress. If the low byte is

one the file transfer has completed.
lParam depends on the low byte of wParam. If the low byte of

wParam is zero (in progress), lParam is the number of
bytes that have been transferred. If the low byte of wParam

is one (completed), lParam is the two-digit Host TRANS
code.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 91

Function 99: Convert Position or RowCol
This function converts a PS position value into display row/column coordinates or a
row/column value into PS position display coordinates.

When the conversion is made, the function considers the model number of the host
system display type being emulated. This function does not change the cursor
position.

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 99

Data string A 2-byte string containing the conversion request. (See format below.)

Data length If “R” is specified in the data string, the data length specifies the row
number.
If “P” is specified in the data string, the data length is not applicable.

PS position If “P” is specified in the data string, this must specify a valid PS position.
If “R” is specified in the data string, this must specify a valid column
number (1 to 132).

Data string format

Byte Description
1 A 1-character session short name.
2 One of the following:

• “P” to convert from PS position to row-column coordinates.
• “R” to convert from row-column coordinates to PS position.

Return parameters
Row number

If converting PS position to row-column coordinates, function replaces the value of
call parameter Data length with the row number for the PS position. If the value
returned is zero, the row number is invalid for the PS.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 92

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 An invalid PS position or column was specified.
>0 The PS position or column number, depending on the type of

conversion being performed.
9998 An invalid session short name was specified.
9999 Second character in data string was not an uppercase “P” or “R.”

Example
WORD HllFunc = 99;
/* Short name of session */
char HllDataStr[2];
HllDataStr[0] = 'B';
/* Convert position to row column */
HllDataStr[1] = 'P';
WORD HllDataLgth;
/* Convert this position to row column */
WORD PsPos = 199;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 93

Function 101: Connect Window Services
This function allows a WinHLLAPI application to connect to and manage the PS
window.

A WinHLLAPI application can be connected to more than one PS window at the same
time. The application can switch between windows without having to disconnect.

Only one WinHLLAPI application can be connected to a PS window at any one time.
Another application can access the PS window only if the first application exits the
connection or switches to another PS window connection.

Function 21, “Reset System,” reinitializes the WinHLLAPI application to its starting
point.

Prerequisites
None.

Applicable session parameters
The following session parameters from Function 9 affect this function.

WRITE_SUPER (default)

This parameter is set by a client application program that requires write access and
allows only supervisory applications to connect to its PS.

WRITE_WRITE

This parameter is set by a client application program that requires write access and
allows other applications that have predictable behavior to connect to its PS.

WRITE_READ

This parameter is set by a client application program that requires write access and
allows other applications to use read-only functions on its PS.

WRITE_NONE

This parameter is set by a client application program that requires exclusive access
to its PS. No other applications will have access to its PS.

SUPER_WRITE

This parameter is set by a supervisory client application program that allows
applications with write access to share the connected PS. The client application
program setting this parameter will not cause errors for other applications, but will
provide only supervisory-type functions.

WRITE_READ

This parameter is set by a client application program that requires read-only access
and allows other applications that perform read-only functions to connect to its PS.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 94

Call parameters
An application program must pass the following parameters when calling this
function:

Function 101

Data string A text string of which the first character is the session short name.

Data length Not applicable (assumed 1)

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid session short name was specified.
9 A system error occurred.
10 The function is not supported.
11 The PS was busy.

Example
WORD HllFunc = 101;
char HllDataStr[1];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 95

Function 102: Disconnect Window Services
This function disconnects the window services connection between an WinHLLAPI
application and the PS.

Prerequisites
Function 101, “Connect Window Services.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 102

Data string A text string of which the first character is the session short name.

Data length 4.

PS position Reserved.

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid session short name was specified.
9 A system error occurred.

Example
WORD HllFunc = 102;
char HllDataStr[1];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 96

Function 103: Query Window Coordinates
This function requests the window coordinates of a PS. Window coordinates are
returned in pixels.

Prerequisites
Function 101, “Connect Window Services.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 103

Data string A 17-byte data string. (See format below.)

Data length Not applicable (17 is implied).

PS position Reserved.

Data string format

Byte Description
1 Session short name, or blank/null indicating a request for the currently

connected PS.
2-17 Reserved

Return parameters

Window coordinates

Function replaces content of call parameter Data string with information about the
session window coordinates.

Byte Description
1 Session short name, or blank/null indicating a request for the currently

connected PS.
2–17 Four 32-bit unsigned integers (Xleft, Ybottom, Xright, Ytop) that return

the coordinates (in pixels) of a rectangular window relative to the
desktop window.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 97

Code Description
0 The function was successful.
1 An invalid session short name was specified.
9 A system error occurred.
12 The host session was stopped.

Example
WORD HllFunc = 103;
char HllDataStr[20];
/* Short name of session */
HllDataStr[0] = 'B';
WORD HllDataLgth;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 98

Function 104: Window Status
This function allows the application to query or change the PS window. The
application can change the size, location, or visible state of a PS window. The
function can return information regarding the size, location, relative placement, and
visible state of a PS window.

Prerequisites
Function 101, “Connect Window Services.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 104

Data string A 16 or 20-byte data string. (See formats below.)

Data length 20 if extended status is requested; 16 otherwise.

PS position Reserved.

Data string format, Set status request

Byte Description
1 A 1-character session short name.
2 X01 – Set status
3-4 The status set bits. The following codes are valid:

• X’0001’ — Change window size
• X’0002’ — Move window
• X’0004’ — ZORDER window replacement
• X’0008’ — Set window to visible
• X’0010’ — Set window to invisible
• X’0080’ — Activate window
• X’0100’ — Deactivate window
• X’0400’ — Minimize window
• X’0800’ — Maximize window
• X’1000’ — Restore window

5-6 The X-window position coordinate in pixels. (These bytes are ignored if
the move option is not set).

7-8 The Y-window position coordinate in pixels. (These bytes are ignored if
the move option is not set).

9-10 The X-window size in pixels. (These bytes are ignored if the size option

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 99

is not set).
11-12 The Y-window size in pixels. (These bytes are ignored if the size option

is not set).
13-16 The window handle for relative window placement. (These bytes are

ignored if the ZORDER option is not set.)
• X’00000003’ — Place window in front of siblings
• X’00000004’ — Place window behind siblings

Data string format, Query status request

Byte Description
1 A 1-character session short name.
2 X02 – Query status.
3-4 X’0000’
5-16 Reserved.

Data string format, Query extended status request

Byte Description
1 A 1-character session short name.
2 03 – Query extended status.
3-4 X’0000’
5-20 Reserved.

Return parameters
Query status result

If the request option (byte 2 of call parameter Data string) was 2 (query status),
content of bytes 3 – 16 of call parameter Data string is updated as follows:

Byte Description
3-4 A word containing a logical OR of bits indicating window state:

• X’0008’ — The window is visible
• X’0010’ — The window is invisible
• X’0080’ — The window is activated
• X’0100’ — The window is deactivated
• X’0400’ — The window is minimized
• X’0800’ — The window is maximized

5-6 The X-window position coordinate.
7-8 The Y-window position coordinate.
9-10 The X-window size in device units.
11-12 The Y-window size in device units.
13-16 The window handle of the session.

Query extended status result

If the request option (byte 2 of call parameter Data string) was 3 (query extended
status), content of bytes 3 – 20 of call parameter Data string is updated as follows:

Byte Description
3-4 A word containing a logical OR of bits indicating window state:

• X’0008’ — The window is visible
• X’0010’ — The window is invisible
• X’0080’ — The window is activated
• X’0100’ — The window is deactivated
• X’0400’ — The window is minimized

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 100

• X’0800’ — The window is maximized
5-6 The X-dimension font size in pixels.
7-8 The Y-dimension font size in pixels.
9-10 Distance from left edge of window to first displayed column in PS
11-12 Distance from top edge of window to first displayed row in PS
13-14 The row number of the first visible character of the PS
15-16 The column number of the first visible character of the PS.
21-24 The window handle of the session.

Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid session short name was specified.
2 A parameter error was detected.
9 A system error occurred.
12 The host session was stopped.

Example
WORD HllFunc = 104;
char HllDataStr[20];
/* Query extended status for session B */
HllDataStr[0] = 'B';
HllDataStr[1] = 3;
WORD HllDataLgth = 20;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 101

Function 105: Change PS Window Name
This function allows the application to change or reset a PS window name.

The exit list processing will reset the name if the application does not do so before
exiting. To retain the changed PS name, use Function 102, “Disconnect Window
Services.”

Prerequisites
Function 101, “Connect Window Services.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function 106

Data string A 63-byte string. (See format below.)

Data length 3 - 63

PS position Reserved.

The length of call parameter Data string must be specified in the call and the data
string must end with a null character. If a null character is found before the specified
length, the string is truncated at that point and the remaining data are lost. If the
specified length is reached and the data does not end with a null character, the last
byte of the specified length is replaced with a null character and the rest of the data
string is lost.

Data string format

Byte Description
1 1-character session short name
2 One of the following:

• X’01’ — Change the PS window name
• X’02’ — Reset the PS window name

3–63 An ASCII string of 1 to 61 bytes including terminating null character.
For 5250 emulation, at least one non-null character must precede the
terminating null.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 102

Return parameters
Result code

Function replaces the value of call parameter PS position with one of the following
codes:

Code Description
0 The function was successful.
1 An invalid session short name was specified.
2 A parameter error was detected.
9 A system error occurred.
12 The host session was stopped.

Example
WORD HllFunc = 106;
char HllDataStr[63];
/* Change session B PS window name */
strcpy(HllDataStr, "B^Monitor");
HllDataStr[1] = 1;
HllDataStr[10] = 0;
WORD HllDataLgth = 11;
WORD PsPos;
WinHLLAPI(&HllFunc, HllDataStr, &HllDataLgth, &PsPos);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 103

Windows Environment Extensions
This section describes API extensions to Windows HLLAPI that allow asynchronous
communication. These extensions are designed for all implementations and versions
of the Microsoft Windows graphical environment starting from Microsoft Windows
version 3.0. They provide for Windows HLLAPI implementations and applications in
both 16- and 32-bit operating environments.

Windows HLLAPI allows multi-threaded Windows-based processes. A process
contains on or more threads of execution. All references to threads in this chapter
refer to actual threads in multithreaded Windows environments.

The extensions for the Windows environment included in Windows HLLAPI are
provided for maximum Microsoft Windows programming compatibility and optimum
application performance.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 104

WinHLLAPIStartup
This function allows an application to specify the version of Windows HLLAPI required
and to retrieve details of the specific Windows HLLAPI implementation. This function
MUST be called by an application before issuing any further Windows HLLAPI calls to
register itself with a Windows HLLAPI implementation.

Prerequisites
None.

Applicable session parameters
None.

Function call

int WinHLLAPIStartup(WORD VersionReq, LPWHLLAPIDATA DataString)

Call parameters

VersionReq Specifies the version of Windows HLLAPI support required. The high-order

byte specifies the minor version (revision) number; the low-order byte
specifies the major version. For Attachmate WinHLLAPI, specify this value
as integer 1.

DataString 130-byte string. (Reserved)

Return parameters
Function replaces content of call parameter DataString with information in the
following format describing the WinHLLAPI implementation.

Implementation format

Byte Description
1-2 Two bytes reporting major (low-order) and minor (high-order) version

number
3–130 An ASCII string of 1 to 128 bytes including terminating null character

identifying the WinHLLAPI vendor (“Attachmate”) and product.

Result code

Function returns an integer with one of the following codes:

Code Description

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 105

0 The function was successful.
0xF001 WinHLLAPI version specified by application is not supported by this DLL
0xF003 The underlying network system is not ready for communication.
0xF004 WinHLLAPI version specified by application is not supported by this

implementation of WinHLLAPI.

Example
WORD VersionReq = 1;
WHLLAPIDATA whldata;
Whldata.wVersion = 1;
int Result = WinHLLAPIStartup(VersionReq, &whldata);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 106

Notes
To support future Windows HLLAPI implementations and applications that may have
functionality differences from Windows HLLAPI version 1.0, a negotiation takes place
in WinHLLAPIStartup(). An application passes to WinHLLAPIStartup() the Windows
HLLAPI version of which it can take advantage. If this version is lower than the
lowest version supported by the Windows HLLAPI DLL, then the DLL cannot support
the application and the WinHLLAPIStartup() call fails. Otherwise, the call succeeds
and returns the highest version of Windows HLLAPI supported by the DLL. If this
version is lower than the lowest version supported by the application, the application
either fails its initialization or attempts to find another Windows HLLAPI DLL on the
system.

This negotiation allows both a Windows HLLAPI DLL and a Windows HLLAPI
application to support a range of Windows HLLAPI versions. An application can thus
successfully use a DLL if there is any overlap in the versions.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 107

WinHLLAPICleanup
This function deregisters an application from a Windows HLLAPI implementation.

Prerequisites
WinHLLAPIStartup.

Applicable session parameters
None.

Function call

BOOL WinHLLAPICleanup(void)

Call parameters
None.

Return parameters
Result code

Function returns non-zero if deregistration was successful; otherwise, zero.

Example
BOOL Result = WinHLLAPICleanup();

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 108

WinHLLAPIAsync
This function provides asynchronous flavor to HLLAPI functions 4, “Wait,” 23, “Start
Host Notification,” 41, “Start Close Intercept,” 50, “Start Keystroke Intercept,” 90,
“Send File” and 91, “Receive File.” Wherever possible, an application should invoke
these functions with WinHLLAPIAsync() instead of WinHLLAPI().

Prerequisites
WinHLLAPIStartup.

Applicable session parameters
None.

Function call

HANDLE WinHLLAPIAsync(hWnd,lpwFunction,lpbyString,lpwLength,lpwReturnCode)

Call parameters
Refer to this topic under discussion of affected functions:

4 Wait
23 StartHostNotification
41 StartCloseIntercept
50 StartKeystrokeIntercept
90 SendFile
91 ReceiveFile

Return parameters
The return value specifies whether the asynchronous resolution request was
successful. It is nonzero if the operation was successful and the actual return value is
an asynchronous task handle that can be subsequently used to cancel the
asynchronous resolution request if necessary. It is zero if the function failed.

Notes
The asynchronous function can be canceled at any time by passing the handle
returned by WinHLLAPIAsync to WinHLLAPICancelAsyncRequest().

When the asynchronous operation is complete, the application’s window hWnd
receives the message returned by RegisterWindowMessage with “WinHLLAPIAsync”
or “WinHLLAPIAsyncFileTransfer” as the input string.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 109

For functions 4, “Wait,” 23, “Start Host Notification,” 41, “Start Close Intercept” and
50, “Start Keystroke Intercept,” the wParam argument contains the asynchronous
task handle as returned by the original function call. The high 16 bits of lParam
contain any error code. The error code may be any error as defined in WHLLAPI.H.
An error code of zero indicates successful completion of the asynchronous function.
The low 16 bits contains the original function number.

For functions 90, “Send File” and 91, “Receive File,” the wParam and lParam contain
status information. See the Asynchronous Mode section of Send File and Receive File
for details.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 110

WinHLLAPICancelAsyncRequest
This function cancels an outstanding WinHLLAPIAsync()-based request.

Prerequisites
WinHLLAPIStartup and WinHLLAPIAsync.

Applicable session parameters
None.

Function call

int WinHLLAPICancelAsyncRequest(HANDLE hAsyncTaskID,WORD wFunction)

An asynchronous task previously initiated by issuing a WinHLLAPIAsync() function
can be canceled prior to completion by issuing the WinHLLAPICancelAsyncRequest()
function and specifying the asynchronous task ID as returned by the initial function
in the hAsyncTaskID parameter and the WinHLLAPI function number.

Call parameters

hAsyncTaskID Handle to the asynchronous task to be canceled.

wFunction Integer specifying the function to be canceled.

Return parameters
Result code

Function returns one of the following codes:

Code Description
0 The function was successful.
0xF000 The task specified for cancellation has already completed.
0xF001 The asynchronous Task ID (handle) is not valid.

Example
char HllDataStr[];
/* Start asynchronous Wait */
HANDLE hAsyncTaskID = WinHLLAPIAsync(this.hWnd, 4, HllDataStr,
NULL, NULL);
/* Cancel asynchronous wait */
int Result = WinHLLAPICancelAsyncRequest(hAsyncTaskID, 4);

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 111

Appendix A: General troubleshooting
procedures
If you have problems running your automation software with Attachmate product,
consider the following.

1. Check that EXTRA! is in the path. Often the reason an application will fail
to start is that the system cannot find the emulator software. At a command
prompt, type EXTRA and press Enter. A response like “Unknown command or
file name” indicates EXTRA! is not in the system search path. Make needed
correction, then re-test to verify.

2. Check the configuration options. Many problems occur when a session
with a short name required by an application has not been configured. Start a
session, choose Global Preferences… from the Options menu, then select
Advanced properties. Verify that the HLLAPI short name needed by the
application has an appropriate session assigned. If not, make needed
correction and run the application again to verify.

3. Check connections. While faulty cable connections are rare in newer
hardware, inspect plugs and jacks to confirm they are securely attached. A
more common cause of “failed to connect” errors is improper specification of
connection parameters, for example, host TCP/IP network address. Use a
technique such as PING to check the connection configuration, and correct as
necessary.

4. Check the session. On occasion, host application programmers may modify
content or organization of screens to meet changing need. If workstation
automation software has been written to expect specific text in a particular
place on a particular screen, software error of some kind is likely to result.
Because host applications are rarely changed without notice, systematically
review all such advisories. In the event an issue of this type does occur, use a
tool such as an API trace to determine exactly where in the software failure
occurs, then use that information to identify specifics of the change, and
develop appropriate updates for automation software.

5. Check workload and timings. If an automation program has been in use
for several years, chances are good that hardware at the host, in the
network, or the workstation will have been upgraded – or, if not, that
workloads on the hardware have changed. In either case, time required to
receive and process requests will change, possibly enough that host
applications and automation software can get “out of synch”, expecting (and
trying to process) information that has not yet arrived. Problems like these
can be perplexing to diagnose and resolve. Review automation-software logic

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 112

to verify that suitably robust techniques are being used to synchronize host
and workstation operations. If necessary, Attachmate Technical Support can
assist by analyzing communications traces to provide information about
turnaround times and other details of host/workstation data exchanges.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 113

Appendix B: Host keyboard mnemonics
Table B-1 shows the key codes that allow you to represent special function keys in
your calling data strings. You can use these codes with Function 3, “Send Key,” to
specify the keystrokes you want to send, as well as with Function 51, “Get Key,”
which receives the keystrokes sent through Function 3.

These codes rely on ASCII characters to represent the special function keys of the
3270-PC. For example, to send the keystroke PF1, you would code “@1”. And to
represent a System Request keystroke, you would code “@A@H”.

Each key code represents the actual key that is being sent or received. Keep in mind
that placing an Alt (@A) or Shift (@S) before a key code will change its meaning.
When sending text keystrokes, be sure the codes are entered just as you want them
to be received, including the correct case.

Since the Escape character defaults to the at sign (@), you must code the character
twice in order to send the escape character as a keystroke. For example, to send a
single “@”, you must code “@@”. When your program calls Function 51, “Get Key,”
you send a pointer to a keystroke structure used for the returning keystroke. Each
keystroke is represented by the following key codes:

• Each key has a number between 1 and 133, which represents the key position
on the keyboard.

• Every key has four states: Lower Case, Upper Case, Alt State, and Ctrl State.

Symbols used throughout the tables have the following meanings:

Shift keys: this symbol indicates that what follows will be a mnemonic key code.

* These key positions are not used.

E A host session’s short name.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 114

Table B-1. Windows keyboard mnemonics

Host key Mnemonic Host key Mnemonic
@ @@ Home @0
Alternate Cursor @$ Insert @I
Attention @A@Q Jump @J
Backspace @< New Line @N
Backtab @B Num Lock @t
Blue @A@h Page Down @v
Caps Lock @Y Page Up @u
Clear @C PA1 @x
Cursor Down @V PA2 @y
Cursor Left @L PA3 @z
Cursor Left Double @A@L PF1 @1
Cursor Right @Z PF2 @2
Cursor Right Double @A@Z PF3 @3
Cursor Select @A@J PF4 @4
Cursor Up @U PF5 @5
Delete @D PF6 @6
Delete Word @A@D PF7 @7
Device Cancel @A@R PF8 @8
DUP @S@x PF9 @9
End @q PF10 @a
Enter @E PF11 @b
Erase to EOF @F PF12 @c
Erase Input @A@F PF13 @d
Reset Reverse Video @A@c PF14 @e
Field Mark @S@y PF15 @f
Green @A@f PF16 @g
Reset Host Colors @A@l PF17 @h
Reverse Video On @A@9 PF18 @i
Scr Lock @s PF19 @j
System Request @A@H PF20 @k
Tab @T PF21 @l
Test @A@C PF22 @m
Turquoise @A@i PF23 @n
Underscore @A@b PF24 @o
White @A@j Pink @A@e
Word Tab Back @A@z Print PS @A@T
Word Tab Forward @A@y Print Screen @P
Yellow @A@g Queue Overrun @/
(reserved) @X Red @A@d
Reset @R Field Exit @A@E
Cursor Up Double @A@U Cursor Down Double @A@V

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 115

Appendix C: Interpreting the Returned Data
String for Function 13
This appendix explains how to decode the data string that Function 13, “Copy OIA,”
returns. To interpret this information, you must be able to decipher the OIA image
symbols that are returned in positions 2 to 81 of the string, as well as the bits that
are returned in positions 82 to 103 of the string.

Position 1 (OIA format byte)
Position 1 of the returning data string always returns the format byte, 1 for 3270
terminal emulation or 9 for 5250.

Positions 2 to 81 (OIA image symbols)
The following chart displays symbols found in the DFT host and CUT host
presentation spaces. These symbols can be part of the OIA image returned in
positions 2 to 81 of the returning data string.

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 116

Positions 82 to 103 (OIA bit groups)
Remaining positions in the returned data string can be interpreted with the help of
the following sections. Each position or group returns a bit number that explains a
particular OIA characteristic. The list below summarizes the different groups, the OIA
characteristic, and the position number associated with it.

Group Characteristic explained Position number
1 Online and Screen Ownership 82
2 Character Selection 83
3 Shift State 84
4 PSS, Part 1 85
5 Highlight, Part 1 86
6 Color, Part 1 87
7 Insert 88
8 Input Inhibited (5 bytes) 89–93
9 PSS, Part 2 94
10 Highlight, Part 2 95
11 Color, Part 2 96
12 Communication Error Reminder 97
13 Printer Status 98
14 Reserved (3270) / Graphic (5250) 99
15 Reserved Group 100
16 Automatic Key Play/Record Status 101
17 Automatic Key Quit/Stop State 102
18 Enlarge State Position 103

Group1: Online and screen ownership

This bit group is the 82nd byte of the OIA data returned to an application by Function
13. This group contains 1 byte of information, describing who owns the current
session.

Bit 3270 Description 5250 Description
0 Setup Reserved
1 Test Reserved
2 SSCP–LU session owns screen Reserved
3 LU–LU session owns screen System available
4 Online and not owned Reserved
5 Subsystem ready Subsystem ready
6–7 Reserved Reserved

Group 2: Character selection

This group is the 83rd byte in the OIA data returned to an application by Function
13. The group contains 1 byte of data and defines the character set currently used in
the OIA.

Bit 3270 Description 5250 Description
0 Extended select Reserved
1 APL Reserved
2 Kana Katakana (Japan only)
3 Alphanumeric Alphanumeric
4 Text Reserved
5 Reserved Reserved
6 Reserved Hiragana (Japan only)
7 Reserved Double-byte character

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 117

Group 3: Shift state

This group is the 84th byte in the OIA data, showing whether caps lock and numeric
lock are active.

Bit 3270 Description 5250 Description
0 Upper Shift Reserved
1 Numeric Keyboard shift
2 CAPS CAPS
3-6 Reserved
7 Reserved Double-byte char available

Group 4: Program symbol support, part 1

This group is the 85th byte in the OIA data.

Bit Description
0–7 Reserved

Group 5: Highlight, part 1

This group is the 86th byte in the OIA data and contains highlighting information for
the current PS.

Bit 3270 Description 5250 Description
0 User selectable Reserved
1 Field inherit Reserved
2–7 Reserved Reserved

Group 6: Color, part 1

This group is the 87th byte in the OIA data, defining some of the color characteristics
being used in the current PS by this operator.

Bit 3270 Description 5250 Description
0 User selectable Reserved
1 Field inherit Reserved
2–7 Reserved Reserved

Group 7: Insert

This group is the 88th byte in the OIA data, defining whether the current PS is in
insert mode.

Bit Description
0 Insert mode
1–7 Reserved

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 118

Group 8: Input inhibited

This group consists of bytes 89 through 93 in the OIA data, and indicates why input
is inhibited in the current PS.

Byte Bit 3270 Description 5250 Description
1 0 Non-resettable machine check Reserved

1 Reserved for security key Reserved
2 Machine check Reserved
3 Communications check Reserved
4 Program check Reserved
5-7 Reserved Reserved

2 0 Device busy Reserved
1 Terminal wait Reserved
2 Minus symbol Reserved
3 Minus function Reserved
4 Too much entered Reserved
5-7 Reserved Reserved

3 0-2 Reserved Reserved
3 Invalid dead key combination Reserved
4 Wrong place Reserved
5 Reserved Operator input error
6-7 Reserved Reserved

4 0-1 Reserved Reserved
2 System wait System wait
3-7 Reserved Reserved

5 0-7 Reserved Reserved

Group 9: Program symbol support, part 2

This is the 94th byte of the OIA data, providing additional information about program
symbol support.

Bit Description
0–7 Reserved

Group 10: Highlight, part 2

This is the 95th byte in the OIA data, and defines more highlight options in the
current PS.

Bit Description
0–7 Reserved

Group 11: Color, part 2

This is the 96th byte in the OIA data. The group defines more color options available
to the operator in the information area.

Bit Description
0–7 Reserved

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 119

Group 12: Communications error reminder

This is the 97th byte in the OIA data. Bits in this group define whether the host and
the current PS are communicating.

Bit 3270 Description 5250 Description
0 Communications error Reserved
1–6 Reserved Reserved
7 Reserved Message wait

Group 13: Printer status error reminder

This is the 98th byte in the OIA data. Bits in this group describe the status of the
printer connected to the current PS.

Bit Description
0–7 Reserved

Group 14: Reserved (3270) / Graphics (5250)

This is the 99th byte in the OIA data.

Bit Description
0–7 Reserved

Group 15: Reserved

This is the 100th byte in the OIA data.

Bit Description
0–7 Reserved

Group 16: Automatic key play/record state

This group is the 101st byte in the OIA data.

Bit Description
0–7 Reserved

Group 17: Automatic key quit/stop state

This group is the 102nd byte in the OIA data.

Bit Description
0–7 Reserved

Group 18: Expanded state

This is the 103rd byte in the OIA data.

Bit Description
0–7 Reserved

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 120

Appendix D: Extended Attributes

Function 5, “Copy Presentation Space,” Function 8, “Copy Presentation Space to
String,” Function 15, “Copy String to Presentation Space,” Function 33, “Copy String
to Field,” and Function 34, “Copy Field to String,” allow an application to access
extended attribute bytes (EABs) in a 3270 or 5250 presentation space. Information
in this Appendix explains format and interpretation of EABs.

3270 Character Attributes
When a subject function is executed with session parameters EAB and NOXLATE in
effect, EAB data are passed to or from a 3270 presentation space in the following
format:

Bit Meaning
0–1 Character highlighting

00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

2-4 Character color
000 = Default
001 = Blue
010 = Red
011 = Pink
100 = Green
101 = Turquoise
110 = Yellow
111 = White

5-7 Reserved

5250 Character Attributes
When a subject function is executed with session parameters EAB and NOXLATE in
effect, EAB data are passed to or from a 5250 presentation space in the following
format:

Bit Meaning
0 0 = normal image, 1 = reverse image
1 0 = no underline, 1 = underline
2 0 = no blink, 1 = blink
3 0 = no column separator, 1 = column separator
4-7 Reserved

WINHLLAPI LANGUAGE REFERENCE

Prepared by Attachmate Technical Support 121

Color Attributes
When a subject function is executed with session parameters EAB and XLATE in
effect, EAB data are translated in the following format to or from application store:

Bit Meaning
0–3 Background character color

0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red
0101 = Magenta
0110 = Brown (3270), Yellow (5250)
0111 = White

4-7 Foreground character color
0000 = Black
0001 = Blue
0010 = Green
0011 = Cyan
0100 = Red
0101 = Magenta
0110 = Brown (3270), Yellow (5250)
0111 = White
1000 = Gray
1001 = Light blue
1010 = Light green
1011 = Light cyan
1100 = Light red
1101 = Light magenta
1110 = Yellow
1111 = White (high intensity)

	Accessing Attachmate 32-bit WinHLLAPI
	
	
	Function Number Purpose
	Function Number Purpose
	Function Number Purpose
	Function Number Purpose

	Prerequisites
	Applicable session parameters
	Call parameters
	Function number
	Data string
	Data length
	Presentation space position
	Return parameters
	Data string
	Data length
	Result code (PS position)
	Notes

