
KD11-A processor 
maintenance manual 





( 

I 

j 

) 

) 

TillhSr 
KD11-A processor lPAb~~, 
maintenance manual 

EK-KDIIA-MM-OOI 

digital equipment corporation · maynard, massachusebts 



1st Edition, September 1973 
2nd Printing, October 1973 
3rd Printing, February 1974 
4th Printing, August 1974 
5th Printing, December 1974 
6th Printing, March 1975 

Copyright © 1973,1974,1975 by Digital Equipment Corporation 

The material in this manual is for informational 
purposes and is subject to change without notice. 

Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this 
manual. 

Printed in U.S.A •. 

The following are trademarks of Digital Equipment 

Corporation, Maynard, Massachusetts: 

DEC 

FLIP CHIP 

DIGITAL 
UNIBUS 

PDP 

FOCAL 

COMPUTER LAB 

5/76-14 

) 

-) 

) 



) 

(-) 

) 

( ) 

CHAPTER 1 

1.1 
1.2 

CHAPTER 2 

2.1 
2.2 
2.3 
2.4 
2.5 

CHAPTER 3 

3.1 
3.2 
3.2.1 
3.2.2 
3.3 
3.3.1 
3.3.2 
3.3.3 
3.3.4 
3.3.5 
3.4 
3.4.1 
3.4.2 
3.4.3 
3.4.4 
3.4.5 
3.4.6 
3.4.7 
3A.8 
3.4.9 
3.4.10 
3.4.11 
3.4.11.1 
3.4.11.2 
3.4.11.3 

CHAPTER 4 

4.1 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.5 
4.3 

CONTENTS 

Page 

INTRODUCTION 

SCOPE ............................................ 1-1 
ORGANIZATION ......................... ,............ 1-1 

MICROPROGRAMMING 

SCOPE ............................................ 2-1 
BASIC PROCESSOR . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . " 2~ 1 
CONVENTIONAL IMPLEMENTATION .......................... 2-2 
MICROPROGRAMMED IMPLEMENTATION ....................... 2-3 
BASIC READ-ONLY MEMORY (ROM) ........................... 2-5 

BLOCK DIAGRAM DESCRIPTION 

SCOPE ............................................ 3-1 
INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 3-1 

KYll-D Programmer's Console ............................ 3-1 
Unibus Timing and Control .............................. 3-2 

DATA PATHS ........................................ 3-12 
Data Paths, Multiplexers and Registers . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 
Decoding .......................... '.' ............ 3-15 
Arithmetic Logic Unit .............. , .................. 3-15 
PS Register ....................................... 3-15 
Register (REG) ..................................... 3-15 

MICROCONTROL ... . . . . . . . . . . . . . . . . . . . . '.' . . . . . . . . . . . . . 3-16 
Condition Codes Input ................................. 3-16 
ALU Control ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 
Flag Control ...................................... 3-16 
U Branch Control .................................... 3-16 
BUTMUX ....................................... 3-17 
U WORD Control ROM and U WORD Reg ...................... 3-18 
Microaddress Alteration ................................ 3-18 
JAMUPP Logic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 
PUPP Register ..................................... 3-20 
BUPP & SR MATCH .................................. 3-20 
Clock Logic ...................................... 3-21 

Clock Pulse Generator .............................. 3-21 
Clock Control .................................. 3-22 
Clock Enable Gates ............................... 3-22 

MICROPROGRAM FLOW DIAGRAMS 

SCOPE ............................................ 4-1 
HOW TO READ FLOW DIAGRAMS ............................ 4-1 

Entry Point ...................................... 4-2 
Microprogram Word .................................. 4-2 
Exit Points ....................................... 4-3 
Branch Microprogram Test (BUT) ........................... 4-3 
Operation Symbols. . .. . . . . .. . . . . . . . . . . ....... 4-11 

FLOW DIAGRAM EXAMPLES ............................... 4-12 

iii 



CHAPTER 5 

5.1 
5.2 
5.2.1 
5.2.1.1 
5.2.1.2 
5.2.1.3 
5.2.1.4 
5.2.1.5 
5.2.1.6 
5.2.1.7 
5.2.1.8 
5.2.1.9 
5.2.1.10 
5.2.1.11 
5.2.1.12 
5.2.1.13 
5.2.2 
5.2.2.1 
5.2.2.2 
5.2.2.3 
5.2.2.4 
5.3 
5.4 
5.5 
5.6 
5.7 

CHAPTER 6 

6.1 
6.2 
6.2.1 
6.2.2 
6.3 

CHAPTER 7 

7.1 
7.2 
7.2.1 
7.2.2 
7.3 
7.3.1 
7.3.2 
7.3.3 
7.3.4 
7.4 
7.4.1 
7.4.2 
7.4.3 
7.4.4 

CONTENTS (Cont) 

LOGIC DIAGRAM DESCRIPTION 

INTRODUCTION ...... . 
,PRINT FORMAT ...... . 

Circuit Schematic Format 
Logic Flow .. 
Module Pins 
Print Prefixes 
Signal Level Indicators 
Flip-Flop Outputs 
Inhibit Situations 
Parentheses and Colons 
Parentheses and Commas 
Basic and Expansion Signals 
Logic Symbols ... 
System Information 
Jumper Information 
Cable Connection 

Wire List Format ..... 
Alphabetical Searches 
Print References 
Etch Backpanel 
Forward Searching 

M7231 , DA'fAPATHS-,-IH-M0DULE 
M7232, U WORD, K2 MODULE . . . 
M7233, IR DECODE, K3 MODULE 
M7234, TIMING, K4 MODULE .... . 
M7235 , STATUS, K5 MODULE ... . 

KYII-D PROGRAMMER'S CONSOLE 

KY11-D CONSOLE 
KY11-DCONSOLE BOARD 

Print KYD-2, Display 
Print KYD-3, Switches 

CABLES ....... . 

PROCESSOR OPTIONS 

SCOPE ................... . 
KJ11-A STACK LIMIT REGISTER 

Functional Description . . . . . . 
Detailed Description .......... . 

KM11-A MAINTENANCE CONSOLE 
Functional Description 
Physical Description .. 
Configurations .... . 
Power ........ . 

KW11-L LINE FREQUENCY CLOCK 
General Description 
Address Selector 
Interrupt Control 
Status Register 

iv 

Page 

5-1 
5-1 
5-1 
5-1 
5-1 
5-1 
5-2 
5-2 
5-2 
5-2 
5-2 
5-2 
5-3 
5-3 
5-3 
5-3 
5-3 
5-3 
5-3 
5-3 
5-3 
5-3 

. . 5-21 
· 5-41 
· 5-59 
· 5-71 

6-1 
6-1 
6-1 
6-1 
6-1 

7-1 
7-1 
7-2 
7-3 
7-4 
7-7 
7-7 
7-8 
7-8 

· 7-11 
.. 7-11 

7-12 
7-12 
7-14 

) 

) 

) 

) 

) 



-~ 

) 

) 

) 

Figure No. 

2-1 
2-2 
2-3 
24 
3-1 
3-2 
3-3 
34 
3-5 
3-6 
3-7 
3-8 
3-9 
3-10 
3-11 
4-1 
4-2 
7-1 
7-2 
7-3 
7-4 
7-5 

Table No. 

1-1 
2-1 
3-1 
3-2 
3-3 
4-1 
4-2 
4-3 
4-4 
4-5 
7-1 
7-2 
7-3 
7-4 
7-5 
7-6 

ILLUSTRATIONS 

Title 

Conventional Control Section, Simplified Block Diagram 
Microprogrammed Control Section, Simplified Block Diagram 
Basic ROM Structure . . . . . . . . . . . . . . . . . . 
Microword Format ... :--.............. . 
KD 11-A Priority Transfer Timing and Control for NPRs 
KD11-A Priority Transfer Timing and Control for BRs 
NPR Priority Transfer Timing Sequence ... 
BR Priority Transfer Timing Sequence .. . . . . . 
KD11-A Bus Data XFER Timing and Control 
KD11-A DATI(P) Bus Transaction Timing Diagram 
KD11-A DATO(B) Bus Transaction Timing Diagram 
KDll-A Power Up Timing Sequence ....... . 
KD11-A Power Down Timing Sequence ..... . 
U Branch Control Sequence, Simplified Branching Operation 
KD11-A Processor Clock, Block Diagram 
Basic Flow Diagram Symbols 
Flow Diagram Example ....... . 
KD11-A Maintenance Console Overlay 
KTl1-D, KE11-E,F Maintenance Console Overlay 
KW11-L Block Diagram .......... . 
Interrupt Request Section, Simplified Diagram 
Status Register, Simplified Logic Diagram 

TABLES 

Title· 

Related Documents ...... . 
Function of Microword Bits (U WORD) 
PDP-11/40 Data Path Multiplexer Control 
Table of Combinations, 74181 ~ Arithmetic Logic Unit 
KD 11-A Functional Components 
BUTCHART ..... . 
Flow Diagram Example 1 
Flow Diagram Example 2 
Microwords (Numerical Order) 
Microwords (Alphabetical Order) 
Comparison of Address and SLR 
Detecting Type of Violation .. 
KM11-A Controls and Indicators for KD 11-A Overlay 
KM11-A Indicators for KTl1-D and KE11-E,F Overlay 
KM11-A Configurations 
Interrupt Control Flip-Flops ............. . 

v 

Page 

2-3 
24 
2-6 
2-7 
3-3 
34 
3-6 
3-7 
3-8 
3-9 

3-10 
3-11 
3-11 
3-19 
3-21 

4-1 
4-2 
7-5 
7-8 

7-11 
7-13 
7-14 

Page 

1-1 
2-8 

3-14 
3-17 
3-23 

4-5 
4-13 
4-17 
4-19 
4-25 

7-3 
74 
7-6 
7-9 

7-10 
7-13 





) 

) 

1.1 SCOPE 

CHAPTER 1 

INTRODUCTION 

This manual describes the KDll-A Processor which is the basic component of the PDP-ll/35 and PDP-ll/40 
computer systems. The processor is connected to the Unibus as a subsystem and controls time allocation of the 
Unibus for peripherals, and performs arithmetic and logic operations through instruction decoding and execution. 
The information contained in this manual pertains primarily to the processor itself, however, certain processor 
options are also described (KYll-D, lUll-A, KMll-A, and KWll-L). 

Table 1-1 lists the other manuals that are necessary for a complete understanding of the basic PDP-ll/35 or 
PDP-ll/40 system. 

Title 

PDP-11/35 (BA11-DA, 
DB 10-1/2" Mounting 
Box) System Manual 

PDP-11/40, PDP-11/35 
System Manual (21" 
Chassis) 

KEll-E & KEll-F 
Instruction Set 
Options Manual 

KT11-D Memory 
Management Option 
Manual 

1.2 ORGANIZATION 

Table 1-1 
Related Documents 

Document 
Number 

EK-11035-TM-OOI 

EK-I1040-TM-002 

EK-KE11E-TM-002 

EK-KT1ID-TM-002 

Remarks 

Describes overall PDP-11/35 system and includes sections 
on installation, operation, and programming. 

Describes overall PDP-11/40 system and includes sections 
on installation, operation, and programming. 

Covers the KE11-E Extended Instruction Set and KEll-F 
Floating Instruction Set processor options. 

Covers the KT11-D Memory Management Option. 

The description of the KD11-A Processor is divided into four major sections: microprogramming (Chapter 2), block 
diagram (Chapter 3), flow diagrams (Chapter 4), and logic diagrams (Chapter 5). 

Chapter 2 first discusses the processor and briefly covers the conventional method of implementing the instruction 
set. The remainder of the chapter is devoted to a discussion of microprogrammed implementation, the basic 
microprogram memory, and the structure of the microprogram word. 

1-1 



Chapter 3 describes the processor at a block diagram level and introduces the processor architecture by deSCribing') 
the basic block diagram which illustrates all of the major logic elements and interconnections within the processor. 
The narrative in this chapter is summarized by a table that lists each functional block on the diagram, describes the 
block, and lists inputs and outputs to and from that block. 

Most of the information required to follow a sequence of machine states on a flow diagram is contained in the flow 
diagram itself. Chapter 4 is, therefore, divided into two major parts: The first part explains the format of the flow ') 
diagram, and the second part provides examples of tracing instruction operations through the flow diagrams. 

Chapter 5 is the last section covering the KDll-A Processor. It provides a description of the processor logic and 
includes an explanation of print set conventions. 

Chapter 6 of this manual provides a complete description of the KYII-D Programmer's Console, with the exception 
of operating procedures which are covered in the PDP-ll/40, PDP-ll/35 System Manual (21" Chassis), 
EK-I1040-TM-002. 

Chapter 7 describes three of the internal processor options that may be used with the KDll-A. These options 
are: the KWll-L Line Frequency Clock, the K111-A Stack Limit Register, and KMll-A Maintenance Console. The 
other available processor options (KEll-E, KEll-F, and KT11-D) are included in the manuals listed in Table 1-1. 

A complete drawing set is supplied with this manual in a companion volume entitledPDP-ll/40 System Engineering 
Drawings. The drawing set includes the basic block diagram, rnicroword format, function tables, flow diagrams, and 
logic diagrams. Familiarity with the ISP notation (paragraph 4.2 of the PDP-ll/40 System Manual) as well as the 
print format (paragraph 5.2 of this manual) will aid in understanding the prints. 

1-2 

) 

) 



) 

2.1 SCOPE 

CHAPTER 2 

MICROPROGRAMMING 

This chapter provides a general introduction to the microprogramming techniques used in the KDII-A Processor. 
Because microprogramming is the key to KDII-A Processor operation, it is essential to understand the basic 
techniques before attempting to use the block diagram, flow diagrams, and logic diagrams. This chapter first 
describes the basic processor and briefly covers the conventional method of implementing the instruction set. An 
introduction into microprogrammed implementation i~ then covered. The remainder of the chapter is devoted to a 
discussion of the basic microprogrammed memory and the structure of the microprogrammed word. 

2.2 BASIC PROCESSOR 

A computer system must be capable of manipulating, storing, and routing data. The component of a computer that 
operates on the data is the processor. Although the processor is designed to effect complicated changes to the data 
that it receives, it actually consists of elements making only simple changes. The complex data manipulations are 
achieved by combining a large number of these simple changes in a variety of ways. 

The processor consists of logical elements, each element designed to perform a specific function. For example, some 
elements store data, some read data from another part of the computer, and others perform simple modifying 
functions such as complementing the data or combining two operands by either addition or by logical ANDing. 
These simple basic operations can be combined into functional groups known as instructions. An instruction can 
include a number of operations so that data can be combined, changed, moved, or deleted. The instructions can be 
further combined into programs which use a number of instructions to construct even more complex operations. 

The basic logical elements of a processor can perform only a small number of operations at one time. Therefore, to 
combine a number of these operations into an instruction, the instruction must be divided into either a series of 
sequential steps or into groups of functions that can be performed simultaneously. One method of describing the 
procedure the processor uses to execute an instruction is to call each operation (or group of operations) a machine 
state. An instruction then becomes a sequence of machine states which the processor always enters in a specific, 
predetermined order, depending on the individual instruction. 

The processor can be divided into three general functional parts: the INTERFACE section, which exchanges data 
with devices external to the processor; the DATA PATHS section, which performs data handling functions; and the 
MICROCONTROL section, which includes the logic that determines which operations are to be performed during a 
particular state and what the next machine state should be. (These sections of the processor and their component 
elements are shown on the KD II-A Processor Block Diagram, drawing B-BD-KD ll-A-BD.) The INTERFACE section 
consists baSically of logic necessary for transferring data between the processor, the Unibus, and the programmer's 
console. The DATA PATH and MICROCONTROL sections interact to perform the three main processor functions 
of data storage, modification, and routing. 

2-1 



L 

In order for the processor to combine data operands, it must be capable of storing data internally while 
simultaneously reading additional data. The processor often stores information about the instruction being executed, 
about the program from which the instruction was taken, and about the location of the data being handled, in 
addition to storing a number of data operands. When the processor must select some of this internally stored data, or 
store new data, the MICROCONTROL section provides the required control signals to initiate appropriate actions 
within the data storage section. 

Data manipulation is performed both on data that remains within the processor and on data being transferred 
between the processor and the rest of the system. In some instances, the data remaining within the processor is used 
to control the processor by providing in~ts to the sensing logic in the MICROCONTROL section. The various logic 
elements that actually modify data are controlled by signals from the MICROCONTROL section which selects the 
particular operation to be performed. 

Interconnections between the logic elements that store data and the logic elements that manipulate data are not 
fixed; they are established as required by the specific machine state. The MICROCONTROL section generates signals 
that cause data routing logic elements to form appropriate interconnections within the processor and between the 
INTERFACE and DATA PATHS sections of the logic. 

2.3 CONVENTIONAL IMPLEMENTATION 

Before attempting to understand the microprogramming implementation of the MICROCONTROL section, which is 
the key to the KDII-A Processor, it is advantageous to reveiw the conventional method of implementation which 
uses combinational logic networks to produce the necessary control outputs. 

In a conventional processor, each control signal is the output of a combinational network that detects all of the 
machine states, as well as other conditions, for which the signal should be asserted. The machine state is represented 
by the contents of a number of storage elements (such as flip-flops) which are loaded from signals that are, in turn, 
outputs of combinational networks. The inputs to these networks include: the current machine state, sensed 
conditions within the processor, and sensed external conditions. 

The number of logical elements in a conventional processor is often reduced by using logic networks to generate 
intermediate signals that can be used to produce a variety of control signals and/or machine states. Unfortunately, 
while this sharing of logic reduces processor size, it increases the complexity and makes it more difficult to 
understand the processor logic because it is no longer obvious what conditions cause each signal. In addition, the 
distinction between sequence control and function control is often lost, making it more difficult to determine 
whether improper operation is caused by a faulty machine state sequence or by erroneous control signalswithin an 
otherwise correct machine state. 

A simplified block diagram of a conventional control section of a processor is shown in Figure 2-1. The Instruction 
Register (IR) and associated decoding logic determine the logic function (instruction) that is to be performed. The 
major and minor state identification logic serves as a sequence control to determine the order of functions to be 
performed. The major state logic selects the major operation to be performed, such as Fetch (obtain an instruction), 
Source (obtain the source operand), Destination (obtain the destination operand), Execute (perform the action 
specified by the instruction), or Service (handle required interrupts, traps, etc.). 

Within each major state, the processor MICROCONTROL section must perform several minor operations. For 
example, the Fetch major state obtains an instruction from core memory. Minor states during Fetch 
include: retrieve the instruction from memory, update the Program Counter, load the Instruction Register, and 
decode the instruction. 

Finally, a set of subcommands must be generated to perform the elemental operations required by a minor state. 
The subcommand set that is selected is dependent on which major and minor states have been selected by the state 
control logic. 

2-2 

) 



) 

) 

~) 

) 

) 

The sequence control of the processor (major state, minor state, and subcommand set logic) is practical only if a 
well~defined set of elementary operations is generated. This is the function of the state control logic shown in Figure 
2-1. The state control consists of a complex array of combinational logic that monitors the output of the IR decoder 
which defines the instruction, the current machine states (major and minor); and external sources (state of Processor 
Status Register, console switches, Unibus signals, etc.) to set the required major and minor machine states at the 
occurrence of each system clock pulse. It should be noted that the state control logic selects the next elementary 
operation as a function of the current operation and external conditions. 

Although the KD ll-A Processor does not employ the type of MICROCONTROL section discussed in this paragraph, 
the concepts presented serve as a review of conventional control and are a desirable starting point from which to 
discuss the principles of microprogramming. In both cases, the prime function of the MICROCONTROL section is 
the same; only the hardware implementation differs. 

IR 

ON 
OFF 

HISTORY 

TIMING 

SUB 
COMMAND 

GENERATOR 

Figure 2-1 Conventional Control Section, Simplified Block Diagram 

2.4 MICROPROGRAMMED IMPLEMENTATION 

}
SUB 
COMMAND 
SET 

11-1656 

When the control system is implemented by microprogramming techniques, each control signal is completely defined 
for every machine state. The section of the processor that selects the control signals can thus be implemented as a 
storage device (read-only memory). This memory is divided into words; there is a separate word for each machine 
state. Each word, in turn, contains a bit for every control signal associated with the related machine state. During 
each machine state, the contents of the corresponding word in the read-only memory is transmitted on the control 
lines. For most control signals, the output of the memory is the control signal and no additional logic is required. 

The heart of the microprogrammed processor is the read-only memory (ROM) which stores a copy of the required 
control signals for each machine state and a list of the machine states to follow the current state. Each word in the 
ROM defines an elementary operation and the bit pattern within the word corresponds to subcommands. All that is 
required to generate a unique set of subcommands is to read out the contents of a location in the ROM. To generate 
a sequence of elementary operations, the address input to the ROM is changed with each system clock pulse. Some 
of the bits in the ROM are used to define the next location to be read, often depending on conditions sensed by the 
processor. 

Each microprogram word that defines an elementary operation or machine state is referred to as a micro word 
(sometimes referred to' as a microinstruction). Sequences of microwords are referred to as microroutines. The 
register that defines which microword is to be read is referred to as the microprogram pointer. 

2-3 



An instruction fetched from core memory is loaded into the Instruction Register, decoded, and used in generating a 
microprogram address that points to the starting location of a group of microroutines stored in the ROM. When the 
microroutines are executed, the required subcommand sets are produced to activate other elements within the 
processor, such as DATA PATHS or Unibus control in the INTERFACE section. 

The microprogram may be viewed as a group of hardware subroutines carefully designed to implement the 
PDP-ll/40 instruction set and permanently stored in the ROM. 

In order to maintain proper sequencing of a microroutine, each microword contains an address field for the next 
microword. However, provisions are made to modify this address when it is required to branch to other microwords 
or microroutines because of conditions sensed within the processor (e.g., instruction, address mode, interrupt flag, 
etc.). 

A simplified block diagram of the microprogrammed control logic is shown in Figure 2-2. As can be seen on the 
diagram, the instruction loaded into the Instruction Register (IR) from core memory is decoded to provide a ROM 
address. This address causes a specified control word (microword) to be retrieved from the ROM and loaded into a 
Buffer Register. This microword contains the control fields used by the processor to perform the selected function. 
The micro word also contains a next address field and a branch test field which are fed back to the ROM Address 
Generator to select the next microword in the sequence. The microword present in the Buffer Register operates on 
the machine while the next microword in the sequence is being fetched. 

IR 

ON 
CLOCK 

OFF 

ROM 
ADRS 

REGISTER 

CONTROL 
ROM 

BRANCH TEST 
FIELD 

NEXT ADDRESS 
FIELD 

L.. ____ CONTROL FIELDS 11-1657 

Figure 2-2 Microprogrammed Control Section, Simplified Block Diagram 

2-4 

) 

) 

) 

) 



-) 

) 

) 

The combination of the next address field and the branch test field controls the sequence of microroutines. The next 
address field provides a base address which selects the next microword to be used in the normal sequence. However, 
this base address can be modified prior to being loaded into the microprogram Address Register. 

Before discussing the address modification, it is important to understand that modification occurs prior to storage in 
the ROM ADRS Register and, therefore, is performed on the subsequent next address (the next, next address). For 
example, microword 1 in the sequence contains an address pointing to microword 2, and microword 2 contains an 
address pointing to microword 3. When microword 1 is being operated on, the next address field (microword 2) is 
already present in the ROM ADRS Register and, therefore, cannot be modified. However, when word 1 is being used 
and the address for word 2 is in the ROM ADRS Register, the address for word 3 can be modified between the ROM 
output and the ROM ADRS Register. 

The branch test field of the microword specifies conditions to be tested and controls when the test is to occur; the 
conditions determine to what location the microprogram is to branch. Logic within the processor permits testing of 
the Instruction Register, flags, and other internal and external conditions to determine if branching is reqUired. If a 
branch is necessary, processor logic modifies the address of the next ROM microword. After the modified address 
has been loaded into the ROM ADRS Register, a branch occurs to the new location and the specified micro word is 
retrieved from the ROM. 

2.5 BASIC READ-ONLY MEMORY (ROM) 

The microprogram read-only memory (ROM) contains 256 56-bit words. During each processor cycle, one word is 
fetched from this ROM and stored in a Buffer Register. The outputs of the Buffer Register are transmitted to other 
sections of the processor to act as control signals or to be used as the address of the next microword. The first eight 
bits of every microword (07:00) are used to hold the address of the next microword to be used. The remaining bits 
(56:09) are control bits. (Bit 08 is reserved for use with extended ROM addresses for Extended Instruction Set 
options.) 

Figure 2-3 illustrates the basic structure of the microwords in the ROM. The detailed format of the microword is 
shown in print D-BD-KDII-A-BD and in Figure 24. Note that this format is identical for all 256 microwords in the 
ROM. The function of each bit position in the microword is described in Table 2-1. 

NOTE 
In the KDII-A Processor documentation, the prefix MICRO 
(from the Greek Mu) is abbreviated as U (similar to J.1). The U 
abbreviation appears in the names for the microword buffer (U 
WORD), in the ROM ADRS (Microprogram Pointer, UPP), and 
in other logic block names and signal names. 

2-5 



FORMAT 

MICROWORD 
ADDRESS 
( OCTAL) 

DETAilED FORMAT OF TH E 
56-BIT MICROWORD IS 
SHOWN IN FIGURE 2-4 

: elK WR ClKS " BUS DAD SPS I SALU SBC I SD SB I UBF SR RIF UPF: 
I I I ' I I 
56 I I 00 

000 ,---I ______ -----11 
001,---1 ______ -----11 
0?21 1 

I ~------------------------------------~I------------------~--------------~ 
I I 
I I 
I [ 
I 256 56-BIT 
I MICROWORDS 

I 
I 
I 
I 
I 

3+5 ~I ______________________________________________ ~ ________________________ -J 

376~1 ____________________________________________________________________ ~ 

3771 
~5-6--------------------------------------------------------------------0~0 

11-2124 

Figure 2-3 Basic ROM Structure 

2-6 



N 
~ 

CLOCK LENGTH CONTROL-
ALLOWS MICROPROGRAM TO ALLOWS CLOCKING THE BUS 

CLOCK OFF -ALLOWS MICROPROGRAM TO TURN SPECIFIES TYPE OF DATA 

ALLOWS CLOCKING THE UNIBUS DATA ALLOWS INITIATING DATA 

mm "" 0> '""" "OC' '''''"' i '"""''' "'"''''' ,e; OFF THE PROCESSOR CLOCK TRANSFER ON UNIBUS 

I ,,---r:=;- INTO THE INSTRUCTION REGISTER I I ,-----r::=;- TRANSFER ON UNIBUS 

56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 

36 35 34 33 32 

, I " I " L ",,.'",,"',"", m OUTPUT INTO THE DREG. 

. '. ALLOWS CLOCKI.NG DMUX (15:00) 
INTO THE B REG. 

ALLOWS WRITING DMUX (7,0) INTO 

I 
DAD (3:0) -DISCRETE ALTERATION 
OF DATA-ALLOWS MICROPROGRAM 
TO ALTER OPERATION OF THE 
DATA PATH (eg, MODIFY ALU 
OPERATION AS A FUNCTION OF [IR] 

THE GENERAL REG. 

L ___________ ALLOWS WRITING DMUX (15,8) INTO THE GENERAL REG. 

31 30 29 28 27 26 25 24 23 22 21 

'~/ 

40 39 38 37 

I ''--r---l 
SELECTS LOADING SELECTS 
AND CLOCKING OF MODE OF 
THE PROCESSOR' ALU OPER-
STATUS WORD ATION 
(PSW) (ARITHMETIC 

OR LOGICAL) 

20 19 18 17 

I I I I LI ---,--~ I I~I I 

SELECTS INPUTS SELECTS INPUTS SELECTS SELECTS UBF(4: 0) - M ICROBRANCH FIELD-ALLOWS SELECTS OPERATION TO BE 
PERFORMED IN THE 
ARITHMETIC LOGIC UNIT 
(ALU) eg.(ADD,SUB,etc.) 

ALLOWS MICROPROGRAM TO 
SPECIFY CONSTANTS TO BE 
INSERTED IN BIN OF ALU 
VIA BMUX 

OF HIGH SIDE OF LOW SIDE INPUTS INPUTS MICROBRANCH CONDITION TO BE TESTED (BUT) 
OF THE BMUX OF THE BMUX 
(15:8) (7: 0) 

-, 
16 15 14 13 12 11 10 09 

SRS SRD SRBA SRI 

OF DMUX OF BUS 
ADDRESS 
MUX 

02 01 00 

T T. L ALLOWS BA (30) TO BE USED AS A UPF (7: 0) - B B IT NEXT ADDRESS ~, ELD. USED TO SPECI FY ADDRESS 
SOURCE OF GENERAL REGISTER ADDRESS OF NEXT MICROINSTRUCTION TO BE EXECUTED BUT MAY BE 

MODIFIED AS A RESULT OF A BRANCH TEST. 

L.. ________ ~~~~~~ ~RF (G2~~k~~~~E~~~~E~~~DRESS 

L ____________ ~~~~~~ ~~ ~~~~:~LB~E~7i~E:~D~RESS 

Figure 24 Microword Format 

"-1620 



Table 2-1 ') Function of Microword Bits (U WORD) 

UBit Mnemonic Meaning and Function 

56 CLKLl Clock length control. Permits the microprogram to select one of three clock 
55 CLKLO lengths. 

-" 

54 CLKOFF Permits the microprogram to tum off the processor clock. 

53 CLKlR Permits clocking Unibus data into the Instruction Register (IR). 

52 WRH Permit writing the Data Multiplexer data into the general registers. WRH writes 
51 WRL the high-order byte; WRL writes the low-order byte. 

50 CLKB Permits clocking the entire Data Multiplexer (full word) into the B Register. 

49 CLKD Permits clocking the ALU output into the D Register. 

48 CLKBA Permits clocking the Bus Address Register. 

47 CIBUS Specify the type of data transfer on the Unibus. 
46 COBUS 

45 BGBUS Initiates data transfer on the Unibus. 

44 DAD3 Discrete alteration of data. Permit the microprogram to alter operation of the ) 
43 DAD2 data path. For example, modifying the Arithmetic Logic Unit (ALU) operation 
42 DAD 1 as a function ofthe Instruction Register. 
41 DADO 

40 SPS2 Select loading and clocking situations on the Processor Status (PS) word. 
39 SPS1 
38 SPSO 

37 SALUM Selects the mode of ALU operation (mode can be either arithmetic or logical). 

36 SALU3 Select the operation to be performed by the ALU, such as add, subtract, etc. 
35 SALU2 This selection can be modified by the DAD code noted above. 
34 SALU1 
33 SALUO 

32 SBC3 Permit the microprogram to specify the constants to be inserted into the B input 
31 SBC2 of the ALU by way of the B Multiplexer. 
30 SBC1 
29 SBCO 

28 SBMH1 Select the inputs of the high-order byte of the B Multiplexer. 
27 SBMHO 

2-8 



UBit Mnemonic 

26 SBMLl 
25 SBMLO 

24 SDMI 
23 SDMO 

22 SBAM 

21 UBF4 
20 UBF3 
19 UBF2 
18 UBFl 
17 UBFO 

16 SRS 

15 SRD 

14 SRBA 
\ 

) 
13 SRI 

12 RIF3 
11 RIF2 
10 RIFI 
09 RIFO 

07 UPF7 

) 06 UPF6 
05 UPFS 
04 UPF4 
03 UPF3 
02 UPF2 
01 UPFI 
00 UPFO 

Table 2-1 (Cont) 
Function of Microword Bits (U WORD) 

Meaning and Function 

Select the inputs of the low-order byte of the B Multiplexer. 

Select the inputs of the D Multiplexer. 

Selects the inputs of the Bus Address Multiplexer. 

Represent rnicrobranch field. Select the rnicrobranch condition to be tested. 
This test is referred to as the Branch Microprogram Test (BUT). 

Permits bits (8 :6) of the Instruction Register to be used as the source of the 
general register address. 

Permits bits (2:0) of the Instruction Register to be used as the source of the 
general register address. 

Permits bits (3 :0) of the Bus Address Register to be used as the source of the 
general register address. 

Enables RIF (3 :0) of the microword for general register address. 

Permit microprogram to specify general register address, provided these bits are 
enabled by SRI (bit 13). 

Represent an 8-bit next address field that is used to specify the address of the 
next microinstruction to be executed. However, it may be modified as the result 
of a BUT. The U08 bit is for UPF8 and is provided for the KEII-E option. 

2·9 





J 

3.1 SCOPE 

CHAPTER 3 

BLOCK DIAGRAM DESCRIPTION 

This chapter introduces the KD11·A Processor architecture by describing the basic block diagram which illustrates 
all of the major logic elements and interconnections within the processor. 

The block diagram (drawing D·BD·KD11·A·BD) has been divided into three major functional groupings: 
INTERFACE, DATA PATHS, and MICROPROGRAM CONTROL. All of the components in each of these segments 
are covered in detail in succeeding paragraphs. Paragraph 3.5 contains a tabular listing of all components on the 
block diagram and includes a brief physical description as well as related inputs and outputs. This abbreviated 
summary can be used as a quick reference once the more detailed description of the block diagram is understood, or 
it can be used for a quick overview of the KD11-A Processor by those who are already familiar with PDP-ll 
processors and microprogramming techniques. 

The block diagram format provides blocks with major functions titled, and with major data and control 
interconnections, as well as specific clock and micro control signals indicated. In the lower right hand corner of each 
block is a K· reference which indicates the module schematic or schematics on which the contents of the block can 
be found. For example, K1·7 indicates sheet 7 of the Kl, or M7231 module print; K2 indicates several sheets on the 
K2, or M7232 module print. The details oflogic operation are contained in Chapter 5. 

3.2 INTERFACE 

The first section of the processor shown on the block diagram is the INTERFACE section which is used to 
interconnect the KD11·A Processor with other components of the PDp· 11 /40 system. Each of the functional blocks 
shown on the INTERFACE portion of the block diagram is covered in the following discussion. 

3.2.1 KYll-D Programmer's Console 

The KY11·D Programmer's Console is an integral part of the PDP·l1/40 system and provides the programmer with a 
direct system interface. The console allows the user to start, stop, load, modify, or continue a program. Console 
displays indicate data and address flow for monitoring processor operations. The console control logic is part of the 
processor INTERFACE section, while the Switch Register, the DATA display, and the ADDRESS display are part of 
the KY11-D console. 

The Switch Register is located on the KY11·D console and consists of the manually-operated switches with resistor 
pull-ups gated through 8881 drivers to the Unibus. During console operation, the Switch Register is addressed on the 
Unibus via a microroutine. When the Switch Register address is decoded, the driver gates are enabled, allowing the 
contents of the Switch Register to appear on the Unibus. 

3·1 



The DATA display indicates the output of the processor Data Multiplexer (DMUX) which selects information from a 
variety of sources within the processor (e.g., the Unibus, the ALU output, and BUS RD). The display consists of 
light-emitting diodes (LEDS) and associated current limiting resistors mounted in the programmer's console. The 
indicators are connected to the processor by cables. The output line of the Data Multiplexer [D MUX (15:00)] 
always controls the display, but since the multiplexer can select multiple inputs onto its output line, displayed 
information is varied. 

The ADDRESS display indicates the contents of the processor Bus Address Register (BA Register). This display also 
consists of LEDS and current limiting resistors mounted on the console and connected to the processor by cables. 
Note that there is no multiplexing involved with the ADDRESS display as there is with the DATA display. Although 
it is possible to load specific data into the Bus Address Register for display, the display usually indicates the last used 
Unibus addresses. 

Console control logic is associated with the programmer's console operational switches that proVide such manual 
functions as start, halt, load address, examine, deposit, and continue. The console contains the manual switches and 
associated set-reset flip-flops used for preliminary contact bounce filtering. However, primary console control is 
handled by the processor either by means of the microprogram, or by combinational logic and flag flip-flops. The 
microprogram senses switch activation and branches to the specific routine reqUired. The flags accommodate the 
special needs of the START and CONT switch sequences as well as the incrementation requirements of consecutive 
EXAM or DEP sequences. 

The remaining functional components of the INTERFACE portion of the processor are the Unibus timing and 
control, the bus terminator and connector module, and the Unibus drivers and receivers. 

3.2.2 Unibus Timing and Control 

The Unibus timing and control logic provides the required processor control of the Unibus, controls data transfer 
functions, bus ownership functions, and other miscellaneous functions. The control logic includes drivers and 
receivers for Unibus signal lines as well as timing and priority logic. Combinational logic, pulse circuits, and discrete 
flip-flops provide control for data transfers (DATI, DATIP, DATO, DATOB) between the processor and the Unibus 
with associated error checking (odd address, memory parity, stack overflow) and correction (data timeout). 

In addition to the data transfer function, the Unibus timing and control logic provides the necessary control for bus 
ownership, transfer of bus ownership for non-processor requests (NPRs) and bus requests (BRs), and the timeout 
function for non·response conditions. The logic also provides power·fail timing related to BUS AC LO, BUS DC LO, 
and BUS INIT signals. Combinational logic, which includes a number of one·shot timing circuits, sequences these 
signals for power on and power off conditions. 

Bus ownership is arbitrated by the processor on a priority basis. The highest priority is the NPR, followed by BR7, 
BR6, BR5, and BR4. In order for a device to gain bus ownership, its priority must be greater than that of the then 
current bus master. A flowchart showing the process of arbitrating bus ownership for NPRs is shown in Figure 3-1 
and for BRs in Figure 3-2. The timing sequence on the Unibus for NPR transfers is shown in Figure 3-3, and the 
timing sequence for BRs is shown in Figure 34. 

A device requests bus ownership by asserting its associated request line, either NPR or BRn. The request is 
acknowledged when the processor asserts a corresponding bus grant line, NPG or BGn. The bus grant signal causes 
the requesting device to then assert SACK, which is sent back to the processor. The processor has been asserting the 
BBSY signal up to this time, and when it receives SACK in response to BGn, it drops BBSY. On an NPR, BBSY is 
dropped on the next CLK BUS or P CLR MSYN after the NPR flag is set. However, the requesting device reasserts 
BBSY as soon as the processor drops it, and the requesting device is now the bus master. Several devices may share a 
common BR priority and request bus ownership simultaneously. In that event, the device closest to the processor 
has the higher priority since each BG and NPG line is serially wired through every device on the Unibus. When a 
device asserts a BR or NPR line, it also opens the BG or NPG line to the device next to it, on the side opposite from 
the processor. 

3-2 

) 



.. J 

TO 
DEVICE 

) 
FROM 
DEVICE 

) 

) 

) 

FROM-Q DEVICE BUS NPR 

K4·5 

NOTE 1 
(-AC LO) * (-OATIP) * - (SACK + NPR (1) + GRANT SR) * eLK NPR 

K4-5 

K4-5 

BUS ACTION PROCACTION PRDCACTION 

NOTE 2 
TSACK+-l BBSY(l) * (elK BUS+PClR MSYN) 

~ (PROCESSOR'S BUSY FLOP) 

~ " 15usec 
K4-5 NEGATE BUS BBSY 

15 usee 
DEVICE GENERATING ORIGINAL 

AT THIS TIME THE DEVICE 
Will ASSERT BUS BBSY AND 
NEGATE SACK. 

BUS NPR DOES NOT RESPOND AND 

NO eLR PTR OCCURS IN PROCESSOR. 

Notes: 

75 nsec 

INHIBIT BUS FLOP 

FROM TRJGGERING 
MSYN DELAY CLOCK 

(SEE DATA XFER FLOWS) 

1. NPRs are clocked frequently to determine if NPR 
Service needed. NPG occurs. 

a. BGBUS III - microword specifies a data transfer 
b. ENPR eLK - from EIS/FIS option 
c. elK I R - microprogram in FETCH 

d. BUT26"P3 - microprogram just entered SERVICE 
e. -AWBY"SET elK - clock restarting after bus cycle 
f. P MSYN - A device has asserted BUS MSYN. 

2. Microprogram either just starting or finishing a data XFER 

Bus Cycle or in Service when processor gives up the bus to 
the NPR device. 

a. elK BUS - just starting processor Data XFER -
clock will be turned off in this U word or succeeding 
Uword. 

1 DEVICE Will RELEASE BUS BY 
NEGATING BUS BBSY 

BUS SACK 

K4-6 

- (SACK + BUS BBSY + SSYN + GRANT) 

PROCESSOR TAKES CONTROL 

OF BUS AND INITIATES 

BUS CYCLE WHICH WilL 

RESTART CLOCK. 

b. PCLR MSYN - just finishing a Data XFER Bus 
Cycle -- clock is on but will go off when micro­

program reaches next Data XFER microroutine. 

c. SE RV ICE - give up the bus to do NPRs on 
BUT26 and on AWBBY. 

3. SACK timeouts will not cause a trap but will generate eLR 
PTR which cleans up the NPA Priority XFER control 
flip-flops, and will restart Processor Clock. 

Figure 3-1 KDII-A Priority Transfer Timing and Control for NPRs 

3-3 

11- 1680 



~9~ 
- (NPR (11 + SACK + GRANT BR) 

NOTE 2 I 
lOOns 

K4-6 

==='1==== PTRD (01 

BRa 

BBSY (1)" ·NPR 

1 
WAIT FOR MICROPROGRAM TO 
BRANCH TO SERVICE AS A RESULT 

OF BUT SERVICE" BRPTR (1) 

FROM 

04-6 

,....---'----, COMPARE BR lEVEL WITH PS (7:5) 

TO DETERMINE IF BR IS AT A 
HIGHER PRIORITY LEVEL THE L..---r---..... THAN THE PROCESSOR 

BRn>PS (7:5) 

I 
BUT 25 it P2 .. BRPTA (1) 

~ 
{ SER07 LOC 320 } 

K5-4 

BBSY (1)" -NPR" BRa" BRPTR(l) 

K4·5 

~~VICE~ 04-5 

FROM ~ 
OEVICE-~ 04-5 

75 nsec 

0-
BRSV (1) 

RESET PROCESSOR'S 
BUSY FLOP TO RELEASE 
THE BUS 

THE MICROPROGRAM TURNS OFF THE 
CLOCK AND IS WAITING IN SERlO - LaC 22. 
WHEN CLOCK IS RESTARTED RESULT OF BUT 07 
IN SER 10WILL CLEAR BRSV. 

~ GO TO SHEET 2 

K4-6 

1Susec 

- BUS SACK 

K4-6 

K4-5 

Notes: 

1. elK PTRD clocks a one-shot, PTRD (lOOns) CIt the 
following times: 

a. elK I R - start of each instruction 
b. BUT26 - entering service rnicroroutine 
c. MSYN - MSYN of every bus cycle jf not 

an overlap situation 

2. At the leading edge of PTRD the request is stored, during 
the 100 ns the request is arbitrated and the trailing edge 
wiliset BRPTR if BRn>PS (7:5) 

11-16BI 

Figure 3-2 KDll-A Priority Transfer Timing and Control for BRs (Sheet 1 of 2) 

34 

) 

) 

) 

) 

) 



) 

) 

) 

PASSIVE RELEASE 

- (BUS BBSY + SACK + SSYN + GRANT) 

K4-5 

r-______ ~ ______ ~K~5 

Notes: 

STARTS CLOCK 
EXECUTION OF SERlO 
RESETS BRSV (BUT071 

1. INTR normally gets reset by working BUT in trap service 

microroutine (TRP16: BUT03*Pl) KS-4 

2. SSYN Timing: 

BINTR ~ ~ T ~L-____________ __ 

INTR 111 j------------------If~ 
I 

BUS SSYN ~ 350 "'~L ____________ .J 

T= f gate delays on UNIBUS 

K~2 

TO 
DEVICE 

DEVICE HAS CONTROL OF 
THE UNIBUS AS A RESULT 
OF A SR TRANSFER 

INTR (11 

350 n5 

UPON RECEIPT OF 
SSYN THE DEVICE 
RELEASES THE BUS BY 
DROPPING BUS BBSY 
AND BUS INTR 

I 

ACTIVE RELEASE 

NOTE 1 

INTR --1 

STARTS CLOCK 
EXECUTION OF SER 10 
1. BUTS INTR 
2. RESETS BRSV (BUT07) 

FROM 
DEVICE 

K4·4 DeVICE PLACES 
VECTOR ADDRESS ON 
D LINES DURING 
INTERRUPT 

K4-2 

3. R [14] --BUS DATA (VECTOR) 

PROCESSOR 
ANSWERS 
INTERRUPT 
WITH SSYN 

¢ ER11 LOC23 

INTR (11 

MICROPROGRAM BRANCHES 
TO TRAP SERVICE MICROROUTINE 

- (BUS BBSY + SACK + SSYN + GRANT) 

PROCESSOR TAKES 
BACK CONTROL OF 
THE BUS, 11-1682 

Figure 3-2 KDII-A Priority Transfer Timing and Control for BRs (Sheet 2 of 2) 

3-5 



BUS NPR 

BG BUS 

CLK NPR 

NPR (1) 

BUS NPG 

CLK BUS 

BBSY (1) 

BUS SACK 

o SACK 

TA 

BUS BBSY n ( 

" 

TB 

~ ______ ~n~~ ____ __ 
PERI PH RELEASE n ----------------1\ .,...1, ---------' '-----__ _ 

NOTE: 
1. Setting NPR conditional upon-(DATIP+B AC LO) 
2. From TA TO T8 the NPR device has control of the Unibus n- 2125 

Figure 3-3 NPR Priority Transfer Timing Sequence 

After a device has become bus master, it proceeds to transfer data on the Unibus. The sequence is shown on the 
flowchart in Figure 3-5. The timing of data transactions are shown in Figures 3-6 and 3-7, for DATI and DATO, 
respectively. 

The power up sequence is shown on the timing diagram in Figure 3-8. BUS AC LO and BUS DC LO are generated by 
the power supply and indicate the status of the input ac power and the derived dc power. When BUS DC LO goes 
high, it triggers a 20 ms one-shot, PWRUP INIT. The PWRUP INIT signal initializes all the processor logic and all the 
Unibus devices. It also causes the microaddress 377 to be generated and set into the UPP Register in order to load it 
with Os. The trailing edge of PWRUP INIT triggers the POWER RESTART signal if AC LO is not asserted. The 
trailing edge of POWER REST ART causes a starting microaddress to be generated and set into the UPP Register, 
starts the processor clock, and inhibits the initiation of a power down sequence for 3 ms, should BUS AC LO be 
asserted. 

The timing sequence of the power down sequence is shown in Figure 3-9. Powering down causes the power supply to 
assert BUS AC LO followed by BUS DC LO. The BUS AC LO signal sets the LOWAC flip-flop, assuming the 3 ms 
PWRDN DELAY signal is not present. With LOWAC (1) set, the next PI or P3 clock pulse causes CLK PWRDN to 
be generated, setting the PWRDN flag. The LOWAC flip-flop is reset on the next PI or P3 clock pulse when PWRDN 
(1) is asserted. At the completion of the current instruction, the PWRDN flag causes the microprogram to branch to 
SERVICE and subsequently to the TRAP SERVICE microroutine. The power fail trap routine can call a subroutine 
from memory that causes all volatile information to be saved and the program to be halted at a known location for 
restarting. Meanwhile, the BUS AC LO signal causes a 15 ms AC LO signal to be generated, locking up the original 
AC low condition which mayor may not still be present. The BUS AC LO signal inhibits further NPR transactions. 
Also, a 7 ms DELAY DC LO signal was triggered at the same time. The trailing edge of this signal pulses BUS DC 
LO, which in turn generates PWRUP INIT, if BUS DC LO is not being asserted by the power supply. At the trailing 
edge of PWRUP INIT, it is possible to enter the power up sequence if BUS AC LO indicates normal power again on 
the bus. (Detailed examples of the power down and power up sequences are given in Chapter 5 in the discussion of 
the logic on Sheet K5-8.) 

3-6 

) 

) 

) 

) 



~ 

w 
.!..J 

',----, l~ '--/ 

BUS BR n ~ I~I ----------~ 
[BUT26*P~ ~~I __ --'-________ -= 

PTRD (II --100ns- 1 [I == ____________ _ 
I 

BRO r' L--
BRPTR (I) 

~-----_r----~------T_~I~'------------~------~ 
[U REG] 1 ~ SER 07 SER 08 SER 09 ' SER 10 SER II 

NOTES: 1. TIMING SEQUENCE ASSUMES BRn 

ENJOYS HIGHEST PRIORITY IN SYSTEM 

P2JL PI~II----------I 
----------~II-' ----...., 

BRSV (I) ----l ' 
GRANT BR ---....I 

BUS BGn ~ : 1-1 ----------1-
BUS SACK L-J ' 

o SACK 
-..I 75ns F " ~I ___________ -+_ 

BBSY (I) ~-----------~'I_l------~ 

BUS BBSY n __________ -II- _______ ILI ____ -+_ 

CLKOFF (I) -.J L 
IDLE (I) r 1 L...; 1_1 ____________ ~ 

* BUS INTR 

II----, 
~I-I--..J 

2 .• DEVICE SENDS VECTOR ADDRESS ON UNIBUS 0 LINES WITH INTR 

3 .... PROCESSOR STORES VECTOR AND ACTIVATES SSYN 
BINTR I~ TO RESPOND TO DEVICE. 

SETCLK I~ 
INTR(I) I~I-I--+\---L..V'--

'/ I 1 
BUS SSYN 

11-1676 

Figure 34 BR Priority Transfer Timing Sequence 

I I 

'-, 



BBSY (1) 

I 
BUS FM BA 

K4·5 

BUS A (17:00) 

ODD ADDRESS 
SITUATION 

BUT 37 • OVLAP CYCLE 
+ALLOW ClK 

NOTE 4 

STACK OVERFLOW ODD ADDRESS (PROC RELEASE + SSYNj 

ERROR "-___ --, __ '_"_"_0-," i- _________ .~ ~~y ~1)_1 
I 
1 150n5 

BUS STOP 

'O'ATO+ 

OATOB 

BBSY • OATO (B) 

L BUS 
~~~FMD-----+ 0(15:00) 

OATIP+ 
DATOB" BYTE INSTR 

~
4.4 

BCO- 1 
K4·4 

. BBSY (1) ------. BUS CO 

"-------'-----"- BBSY (l)---+- BUSC1 

BUS SSYN 

IDLE (1). MSYN'(1) 

U FOR DETAILS ON BBSY 
SEE THE PRIORITY 

f----- NO MSYN ------+ BUS MSYN 

Notes: 

XFR CONTROL & TIMING 
FLOW CHART 

1. CLKDFF, CLKBA, & BGBUS are bits in e8ch micro· 
instruction and are8sserted in U words that initiate 
d8t8transfers (CLKOFF does not h8ve to occur in 
same U word as BGBUS & ClKBA i.e., ufldating a 
reg delays turning off the clock). 

2. Overflow situations are specified by the U word DAD 
code and 8 reg. 

Odd Address situations are Sflecified by the DAD code 
8ndlRdecode=byteinstr 

3. Inhibit bus cycle if in FET048nd not an overlap 
situation orif in Uword that delivers result during 
a BIT+CMP+TST. 

4. Processor has control of the Bus and it is now getting 
ready to release itasaresultofa NPR or BR transac 
tion also SSYN is inactive. 

1Sps 

I 
NO SSYN 
RESPONSE 

K4·4 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

r---- Pl+P3 

/ IF DATI (P) CLOCK 
L -----+ UNIBUS DATA INTO 

TEMPORARY STORAGE AS 
A FUNCTION OF UWORD 

1 BREG 
2 IREG 
3 GPR 

Figure 3-5 KDII-A Bus Data XFER Timing and Control 

3-8 

50ns 

10LE"0 

) 

) 

) 

11-1679 

) 



) 

[UREG] J FET 02 I FET 03 FET 04 

BGBUS (1) lL_ _________ --.J1 

CLKOFF(l)~L-____ ----------------.~I----------------------'\ \ 
l r-----------------------~\ ~\--------------------------~ 

CLKBA(1) L.... ________ --.J '---~-----

r---------~\~\----------~ 
CLKI R (1) ___________ __1 

r----------4\'~i----------~ 
WRUll* WHR(1) ___________ __1 

r----------4\\~---------~ 
CLKB (1) __________ ----1 

CLK BUS 

CLK BA 

RECLK ________ ~---1 ~------~IlL--------
IDLE (1) ________ -\-___ --.J 

BWAIT(l) _______ ....;.,,..-_--.J. 

BUS (1) __________ ~ 

MSYN(l) 
150ns~ 

BUS MSYN ____________________ ~---4~--4----~44~~~ 
BUS SSYN 

B SSYN _______________________ ~ 

Pl ________ __1r--l~ _____ _ 

CLK 

Pl ___________ ~~~ 

P CLR MSYN 

CLK IR 

CLK B 

u 
U 

DEVICE GATES DATA 
ONTO UNIBUS D (15'00) 

MSYNA ~ WR R (15·8) U 
* WR R(7'0) 

---------------------------------
I DATIP (1) ____ ....J 

NOTES: 1. EFFECTS OF GATE DELAYS AND F.F. RESPONSE NOT SHOWN 
2. ASSUMES KD11-A HAS CONTROL OF THE UNIBUS {BBSY (1)] 
3. .. CLOCK NPR REQUESTS; IF NPR (1) THEN BBSY ...... 0 
4. • .. TRIGGERING DELAY TO CLOCK MSVN CONDITIONAL UPON 

MACHINE STATE: -- (PROe RELEASE + SSYN)" BBSY (1) 
5. MSYN BEING SET TRIGGERS 15 USEe BUS TIMEOUT DELAY 
6. INHIBIT SETTING MSYN IF BUS STOP ACTIVE: [RED ZONE OVFL + aDA ERRl TRAP 
7. SCALE: 1 INCH"" 100 NSEC. 

11-1677 

Figure 3-6 KDII-A DATI(P) Bus Transaction Timing Diagram 

3-9 



[UREG] J DEP 09 CON 05 CON 06 

BG BUS (1) J 
ClKOFF(l) J 
C1BUS(1)J 

CO BUS (1) 

ClK BUS 

BCl (1) 

BUS FM D 

REClK 

IDLE (1) 

BWAIT (1) 

BUS (1) 

** 
L-___ 150 ns -----I 

MSYN (1) 

BUS MSYN 

BUS SSYN 

B SSYN 

SET ClK 

Pl 
1l~ ______________ ~Il~ ______ __ 

P ClR MSYN 

NOTES: 1. EFFECTS OF GATE DELAYS AND F.F. RESPONSE NOT SHOWN 

2, ASSUMES KD11·A HAS CONTROL OF THE UNIBUS [BBSY(lll 

3 .• CLOCK NPR REQUESTS. IF NPR (1) THEN BBSY .... 0 

4 ..... TRIGGERING DELAY TO CLOCK MSYN CONDITIONAL 

UPON MACHINE STATE: - (PADe RELEASE + SSYN] • BBSY (1) 

5. t MSYN BEING SET TRIGGERS 15 USEe BUS TIMEOUT DELAY 

6. INHIBIT SETTING MSYN IF BUS STOP IS ACTIVE: 

[REDZONEOVFL+ODA ERRI TRAP 

7. SCALE: 1 INCH ~ 100 NSEC. 

Figure 3-7 KDII-A DATO(B) Bus Transaction Timing Diagram 

3-10 

11-1678 

) 

) 

) 

) 



) 

ON .---------------------------------------------------------~------POWER I 
OFF --1 

K5-S BUS DC LO _ _T"'2ms 

K5-S SUS AC LO 

K5-S PWRUP INIT L 
... 1.1----- 20 ms ----..... -011 

K5-S PWRRESTART H 

....-----;() ~~---, 
_________ J'I----70ms----4.-I ___ _ 

.-----------1\ ~I-----...., ,..-------{j- 2 P.s --{j- 2 P.s K4-3 JAMUPP 

DELAY POWER DOWN r---= 3(~S =:1 
) j 

11-1668 

Figure 3-8 KD11-A Power Up Timing Sequence 

\~'> 
~~-------------------------------

--:----[?~---,:.j:-----

K5-8 PULSE DC LO 

K5-8 PWRUP INIT 

----------~------_\~~\ ~ BUT 04 IN PWR FAIL TRAP SERVICE 

__________ ~j-------------15ms--------------~·I~ ________________ __ 

1+-----7ms--------~·0I1~ ________________________ __ 

NOTE: TIMING OF LOW AC, P1+P3, elK PWR ON 

PWRDN(l) 

IS EXAGGERATED FOR CLARITY 

THIS SEQUENCE IS VERY FAST 

AND COMPLETES WITHIN A FEW 

MICROSECONDS. 

=U=2ms 

"'lo--20ms -----1·1 
~. ---------\'1 .... '1 --------I. 

Figure 3-9 KD11-A Power Down Timing Sequence 

3-11 

11-1669 



The microprogram interfaces directly with the Unibus timing and control logic. The start or error checking flip-flops 
are loaded~ either directly or conditionally from the microword. The loading of Unibus data and the deactivation of 
MSYN occur as a function of the next microword after a DATI or DATIP transfer operation. The processor 
transmits address and data information to the Unibus under control of the microprogram. Note~ however~ that bus 
ownership~ the power fail logic~ and the Unibus data transfer operate asynchronously and are independent of the 
microprogram. 

The interface portion of the processor contains both bus transmitters (8881 gates) and bus receivers (380 gates) to 
provide the necessary conversion so that processor and Unibus signals are compatible. The transmitters (drivers) 
permit the processor to place groups of signals on the bus; the individual signals are noted on the block diagram on 
the output line of the associated gate. These signals include the outputs of the Bus Address (BA) Register~ the D 
Register ~ the Processor Status (PS) Register~ and the Switch Register. Inputs to the processor from the bus are gated 
through the bus receiver to the D Multiplexer~ which then routes the signals to the proper component within the 
data paths. 

The final functional component in the INTERFACE section of the processor is the bus terminator and connector 
module~ which interconnects system units and also provides the termination required by the Unibus. In the KDll-A 
Processor ~ a single set of slots (A09 ~ B09) is provided for the Unibus interface and the processor is single ended. Note 
that the Unibus Terminator module (M930) is located in~ and powered from~ the last device on the bus. 

3.3 DATA PATHS 

The DATA PATHS portion of the KD11-A Processor manipulates, stores, and routes data within the processor. 

The prime element of the data path logic is the ALU which operates, both logically and arithmetically, upon input 
data from the interface portion of the processor. To a certain extent, data path logic is ordered upon the ALU 
because of the requirements to provide data to each of its inputs and to store, or otherwise use, its output. The ALU 
and all other components in the processor data paths are described in the following paragraphs. 

For the purposes of the following discussion, the term "Scratch Pad Register" refers to one of the 16 internal 
processor registers shown on the block labeled REGISTER (REG). These registers are also referred to as the General 
Registers. 

3.3.1 Data Paths, Multiplexers and Registers 

The Scratch Pad Register supplies operands for the ALU. These operands either come directly from an instruction 
source or destination mode operation, or they are stored in the Scratch Pad Register during address calculations. In 
either case, the ALU receives a direct input from the BUS RD (15 :00) line. This input is referred to as the A input. 

In the Scratch Pad Registers, only one address may be accessed at a time, and simultaneous read and write 
operations are not permiSSible. In order to provide the two ALU operands (when both operands come from the 
Scratch Pad Register), it is necessary to provide temporary storage. This storage is provided by theB Register; the 
contents of the B Register can be fed through the B Multiplexer (B MUX) into the B input of the ALU. 

The ALU A input provides variable operands; the B input provides variable operands, constants, and swapped and 
sign-extended byte operands. The A input usually comes from the Scratch Pad Register on the wire-ORed BUS RD 
lines (as shown by the dotted OR gates on the block diagram). The Processor Status Register of the basic machine 
and certain multiplexers with the KE11-E and KE11-F options are also connected to the A input. 

The B input comes from the B MUX which receives its input from either the B constants or the B Register. The B 
Register, in turn, receives its input from the D Multiplexer (D MUX) which has four possible inputs. Therefore, the B 
input to the ALU comes from a variety of sources with two levels of multiplexing. These various inputs are discussed 
in the following paragraphs. 

3-12 

) 

1 
/ 

) 

) 

) 



) 

) 

The four inputs to the D MUX are: Unibus data lines BUS D (15 :00), which permit the ALU to receive operands 
from other devices within the system; the buffered BUS RD (15:00) lines, which permit operands from the Scratch 
Pad Register; the output of the D Register, which is the output of the ALU and can permit the result of a previous 
arithmetic operation to be used as an operand; and the shifted output of the D Register. 

The desired D MUX output can be stored in the B Register, which, in turn, can be fed to the ALU by means of the B 
MUX. Note that the buffered BUS RD signal can be fed through the D MUX into the B Register. This data path is of 
special interest in the machine instruction for the register·to-register operations, where both the A and B inputs of 
the ALU must come from the Scratch Pad Register. For example, the first operand passes through the D MUX into 
the B Register for storage. The second operand can then be fed to the A input of the ALU, and the first operand fed 
to the B input by means of the B MUX. 

The B constants, which are applied through the B MUX to the ALU, provide elementary values (such as 18 and 28 ) 

for incrementation or decrementation throughout machine operation. They also provide other values such as the 
Switch Register address, more complex constants such as trap vectors or masks for manipulating instruction offsets, 
and the conditional constants which are a function of machine status and jumper selection. 

The B input to the ALU can be either the B constants value or one of the four possible functions of the B Register. 
The four B Register functions are: 

a. B Register - The contents of the register are applied directly to the ALU. Therefore, BIN (15 :00) of the 
ALU equals B (15 :08) and B (07:00). 

b. B Extend - The B Register contents are gated so that bit 07 (MSB of the low-order byte) provides an 
extension for the high-order byte. Note that in this case, the value in the high·order byte is either allIs 
or all Os depending upon bit 07 of the B Register; the low-order byte is the B Register directly. 

c. Byte Duplication - Either the low-order byte or the high-order byte may be duplicated. Therefore, BIN 
(15:00) of the ALU equals either B (15:08) and B (15:08), or B (07:00) and B (07:00). 

d. Byte Swapping - The high-order and low-order bytes may be exchanged. Therefore, BIN (15 :08) of the 
ALU equals B (07:00) and BIN (07:00) equals B (15:08) for the high byte and the low byte, 
respectively. 

The ALU provides an altered data output that is used for Unibus addresses and data, and by internal processor 
registers such as the Scratch Pad Register and the Processor Status Register. The output of theALUis stored in the 
D Register and/or the Bus Address Register. 

The D Register storage capability permits data which has been operated upon in the ALU to be fed around to the B 
MUX for further manipulation, thus permitting data to be stored in another register (the B Register). This additional 
path and storage capability is important because it is necessary for single or double operand register operations and is 
very often necessary in iterative operations. 

Operation of the ALU is also determined by the carry-in (CIN logic) and carry-out (COUT MUX) signals. The 
carry-in signal does not come directly from the microprogrammed word but is a function of the microprogrammed 
word and the conditions (usually the Instruction Register) that are enabled at specific locations in the 
microprogrammed flow. 

The Carry-out multiplexer (COUT MUX) provides multiplexing of the specific carry information normally used in 
the PDP-II. The signals that can be selected are: COUT 15, COUT 07, ALU 15, and PS(C). The COUT 15 signal 
represents the carry from a word operation; the COUT 07 signal represents the carry from a byte operation. These 

3-13 





__ J 

) 

-) 

) 

. , 

) 

3.3.2 Decoding 

The address and data decoding logic is a combinational logic network that decodes the output of both the D and BA 
Registers. When the D Register output is decoded, the decoder senses whether or not the output (for both byte and 
word segments) is 0 [D (15:00) = 0 H). The Bus Address Register is decoded to determine if a processor address has 
occurred, or if an address is less than specified values. It should be noted that the decoding logic decodes the BA 
Register and not the Unibus address. In the first case, the processor addresses, which represent only those internal 
registers that can be accessed by the processor itself, are used to gate Unibus responses for bus operations. If the 
decoded address of the Processor Status Register or the console Switch Register, then either PS ADRS H or SR 
ADRS H is true. Other addresses also exist. If the decoded address is less than the specified value, then a stack 
overflow violation may occur and the BOVFL signal is true. Stack limit errors are either yellow zone (warning) or 
red zone (fatal) indications. 

3.3.3 Arithmetic Logic Unit 

The Arithmetic Logic Unit (ALU) is the heart of the data path logic. It performs 16 Boolean operations and 16 
arithmetic operations on two 16-bit words. The ALU is controlled by six input signals. One signal, ALUM H, selects 
either the logic or arithmetic mode of operation. Four signals (ALUSO through ALUS3) select the desired function. 
The sixth signal is the output of the carry-in (CIN) logic. Basically, the ALU receives two 16-bit words as inputs 
(AIN and BIN) and performs the operation selected by the six control signals. The output of the ALU is, therefore, 
altered data which is used for Unibus addresses and data, and is also used by the internal processor registers such as 
the Scratch Pad Register or the Processor Status Register. The output of the ALU is stored in the D Register or the 
BA Register for use. 

3.3.4 PS Register 

The Processor Status (PS) Register is an 8-bit register that stores information on the current priority of the processor 
[bits (07:05)] , the result of the previous operation (condition codes bits N, Z, V, C), and an indicator for detecting 
the execution of an instruction to be trapped during program debugging (T bit). The PS Register is located between 
two basic data paths: D MUX (15:00) and BUS RD (15:00). The register is loaded from theD MUX. In addition, 
the condition codes control logic provides inputs to the N, Z, V, and C bits. The register output is either gated 
directly onto the Unibus (in cases where the processor has addressed the Unibus as an absolute address) or is gated 
onto the BUS RD (15:00) line for use by the processor data paths. This latter case is used, for example, by the 
condition code instructions which alter the contents of the Processor Status Register. 

3.3.5 Register (REG) 

The 16 internal processor registers comprise the Scratch Pad Register. Eight of these are programmable general 
registers which include the Program Counter (PC) and Stack Pointer (SP). In the KDII-A Processor, the additional 
eight registers (not accessible to the program) are used for a variety of functions as shown on the block diagram. 
Such functions include: intermediate address (TEMP), source and destination data (SOURCE, DEST), a copy of the 
Instruction Register (IR), the last interrupt vector address (VECT), registers for console operation (TEMPC, 
ADRSC), and a stack pointer for operation of the KT11-D Memory Management Option (SP USER). 

In summation, the data path logic is the fundamental section of the processor; it performs data storage, 
modification, and routing functions. The other two sections of the processor (interface and control) exist primarily 
to support the data path logic . 

An important aspect of the data path logic is its expandability. The D MUX signals represent an outgoing bus and 
the BUS RD lines are a wired-OR input bus. Just as the Scratch Pad Register and the Processor Status Register are 
connected between these two signal buses, other devices can also be connected between them. For example, the 
KEll-E Extended Instruction Set option and the KEll-F Floating Instruction Set option are connected between 
these two signal buses for arithmetic expansion of the basic processor. 

3-15 



3.4 MICROCONTROL 

The final section of the block diagram is the microcontrol logic which provides the required control signals for the 
data path logic and the interface logic. The prime element of the control logic is the read-only memory (ROM) 
which provides the microwords. The bits in each microword (U WORD), in turn, control machine operation as 
described in Chapter 2. Other elements within the MICROCONTROL section includes microaddress and 
microaddress modification logic that receives inputs from the ROM, the Instruction Register with associated 
decoding logic, various processor flags, and basic machine timing and flag control logic. 

When an instruction is fetched from an external data storage location, the instruction enters the processor from the 
Unibus, passes through the D MUX, and is loaded into the Instruction Register under microword control. The 
output of the Instruction Register is decoded by combinational logic (IR DECODE) to provide the microbranch 
code (BUBC) for several branch conditions and the discrete auxiliary signals required by the condition code logic 
and ALU control logic. The last sections of logic are discussed immediately because of their interaction with the 
DATA PATHS section. The operation of the basic microcontrol follows. 

3.4.1 Condition Codes Input 

The condition codes are used to store information about the results of each instruction so that this information can 
be used by subsequent instructions. The information recorded in the condition code bits (N, Z, V, C) of the 
Processor Status Register differ for each instruction type, and often for the part of the instruction being executed. 
The decoded output of the IR DECODE logic and the select processor status (SPS) code of the microword 
determine which conditions are to be presented as the data input to the Processor Status Register. In addition, the 
SPS code determines when the Processor Status Register should be loaded directly from the D MUX. 

3.4.2 ALU Control 

The ALU control combinational logic receives the DAD (discrete alteration of data) code from the microword as a 
function of the IR decode logic. In general, the SALU and SALUM microword bits directly alter operation of the 
ALU; however, during the latter part of an instruction, where common instruction flow paths exist for several 
instructions, the DAD code is combined with the Instruction Register to alter operation of the ALU. 

There are 32 possible. ALU functions, depending on the state of SALU (03:00), ALUM and CIN. Some of th~se 
functions are contained in Table 3-2. 

3.4.3 Flag Control 

The flag control logic is closely related to the IR decode logic because certain instructions require specific flags, such 
as WAIT and HALT. Other flags exist for service of peripherals and console request, as wen as for error conditions. 
Flip-flops within the flag control logic interact directly with the microbranch logic to provide the required branch 
conditions in the machine flow to provide flag service. 

3.4.4 U Branch Control 

In a microprogrammed computer, the next ROM address (next machine state) is dependent on a number of previous 
conditions. The purpose of the microword branch control (U BRANCH CONTROL) logic and the Branch 
Microprogram Test (BUT) Multiplexer is to select the next proper machine state. The microbranch control proVides 
some of the inputs to the BUT decoding logic. The microbranch control combines the diverse instruction decoding 
of the Instruction Register and encodes it into two, three, four, or five bits of a microaddress alteration, called 
"basic microbranch codes," for specific BUTs [BUBC (BUT XX)]. For most of the complicated branches, such as 
the first instruction branch or some of the subsequent source or destination instruction branches, these codes are 
fairly extensive. They may also be fairly simple, consisting of only three bits or, in some cases, three bits of another 
BUT encoded with another single condition. The latter case is particularly true with the INSTR 2 BUBC and the 
(BYTE and INSTR 2) BUBC. 

3-16 

) 

) 

) 



Selection 

S3 S2 SI SO 

L L L L 
L L L H 
L L H L 
L L H H 
L H L L 
L H L H 
L H H L 

) 
L H H H 
H L L L 
H L L H 
H L H L 
H L H H 
H H L L 
H H L H 
H H H L 
H H H H 

Table 3-2 
Table of Combinations 

74181 - Arithmetic Logic Unit 

Active High Data 
ALUM=H ALUM=L Arithmetic Operations 

Logic 
Functions CIN=O CIN = 1 

F=A F=A F=A plus 1 
F=A+B F=A+B F=(A+B) plus 1 
F=AB F=A+B F=(A+B) plus 1 
F=O F=minus 1 (2's COMPL) F=O 
F=AB F=A plus AB F=A plus AS plus 1 
F=B F=(A+B) plus AB F=(A+B) plus AB plus 1 
F=A+B F=A minus B minus 1 F=A minus B 
F=AB F=AB minus 1 F=AB 
F=A+B F=A plus AB F=A plus AB plus 1 
F=A+B F=A plus B F=A plus B plus 1 
F=B F=(A+B) plus AB F=(A+B) plus AB plus 1 
F=AB F=AB minus 1 F=AB 
F=1 F=A plus A* F=A plus A plus 1 
F=A+B F=(A+B) plus A F=(A+B) plus A plus 1 
F=A+B F=(A+B) plus A F=(A+B) plus A plus 1 
F=A F=A minus 1 F=A 

) *Each bit is shifted to the next more significant position. 

3.4.5 BUT MUX 

The Branch Microprogram Test Multiplexer (BUT MUX) selects sets of address alterations to alter data into the 
Microprogram Pointer (UPP) which points to the next ROM address. The BUT MUX provides a 5·bit output with the 
number of possible inputs on the lowest order bits being greater than the number of inputs that can be selected for 
the higher order bits. This corresponds to the fact that few of the branches involve all five or six bits of address 
alteration. There are a number of address alterations that involve only one bit, usually the lowest order bit. 

The gradation of inputs in the multiplexers is as follows: there are two 6-bit multiplexers for bit 0, a single 16·bit 
multiplexer for bit 1, 8-bit multiplexers for bits 2 and 3, and a 4-bit multiplexer for bits 4 and 5. Besides this 
ordering of multiplexers, the inputs to the BUT MUX also determine the required branch. The microbranch control 
logic provides wide branch encoding situations for instruction situations (INSTR 1, INSTR 2, and INSTR 3) and a 
5-bit input is possible for the BUBC signal. In other cases, the Instruction Register itself may be used for a single 
BUBC bit code when the decision between a bit enabled or not enabled is simply a choice between two different 
microaddresses. The flag control logic also provides certain inputs which alter only one bit of the microaddress. 

The actual selection of which of these inputs (wide or narrow branch, branch on instruction, branch on flag) is to be 
used, is determined by the microprogram branch field (UBF) of the microword. The UBF field directly selects which 
inputs of the multiplexers are applied to the microaddress alteration logic (the NOT OR gate on the block diagram). 

3-17 



3.4.6 U WORD Control ROM and U WORD Reg 

The heart of the control logic is the microword control read-only memory (ROM) which stores 256 56·bit words. 
The format and purpose of these control words is described in more detail in Chapter 2. Basically, each of these 
control words represents a different machine state of the processor. The ROM provides a wired-OR output as 
indicated by BUS U (56:09) and BUS U (08:00). This wired-OR condition permits easy expansion of the processor 
as required by the KEII·E and KEII-F options. 

The microword output of the ROM is applied to a Buffer Register (U WORD Register) that permits a microword to 
be used for machine control and selection of the next address, while the ROM itself is obtainJng the contents of the 
next address. Although advantageous from a time standpoint, this implementation slightly increases the complexity 
of the hardware and concepts. 

Each microword from the ROM consists of a control portion and a next address portion. At the beginning of the 
current machine state, a ROM output microword is clocked into the U WORD Register. The bits in the control 
portion of the microword select addresses, select multiplexers, and enable clocking gates (these gates enable clock 
pulses toward the end of the machine state). The bits in the address portion of the microword access the ROM to 
obtain the next ROM word. At this point, this address is fIxed in the microword register and alteration for a BUT 
has not occurred. 

The delay in using the buffer (U WORD Register) is fIxed by the settling time of the flip-flops (approximately 
15-20 ns). This is signifIcantly better than the 60-90 ns required for addressing the ROM. For this reason, the 
buffer takes the delayed output of the ROM, clocks it at the beginning of the machine state, and provides it almost 
immediately (in that machine state) to the rest of the processor (data path, interface, and the microprogram 
control). 

The clock for the U WORD Register is taken directly from the basic processor clocking and is related to the clock 
length selection bits in the microword control. The clock is a function of a machine cycle and is the last pulse edge 
of the previous machine cycle. 

Each microword is divided into two segments: address and control. The address portion of the word is represented 
by BUS U (08:00) which is the address of the next ROM word. The control portion is represented by BUS U 
(56:09) which includes the control bits for the microword. The control bits are applied directly to the U WORD 
with the address bits passing through a NOT OR gate to the Microprogram Pointer (UPP) portion of the U WORD. 

The outputs of the U WORD Register are diverse and are used throughout the processor. Outputs control the basic 
processor clock, microcontrol branching,and elements of the interface and data path. These outputs are indicated 
both by the labels on the U WORD Register outputs and by signals prefIxed with a K2 on other blocks in the 
diagram. 

3.4.7 Microaddress Alteration 

Each microprogrammed word contains the address of the next microprogrammed word to be used by the processor. 
This address is referred to as the microprogram fIeld (UPF) of the ROM. If this address were always exactly as 
specifIed by the ROM, it would receive little attention from the processor. However, alterations to this address are 
made for branching purposes. Therefore, there must be a method of modifying and storing this address so that the 
next specifIed word can be output in parallel with current word control. As shown on the block diagram, the 
hardware used to perform these functions consists of the NOT/OR gates on the UPF output [BUS U (08:00)], the 
output of the BUT MUX and the UPP Register. The base address of the UPF can be altered by the BUT MUX inputs, 
resulting in a different next ROM word address in the UPP Register. 

3·18 

) 

) 

) 
/ 



) 

) 

In discussing the address in the rnicroaddress loop, it is important to realize that an altered next address has been 
stored in the UPP Register and that alterations for the subsequent next address are fed to the NOT/OR gate. Both of 
these addresses are clocked simultaneously; therefore, the address fed through the NOT/OR gate is clocked into the 
UPP and the address that had been stored in the UPP is clocked out. Consequently, in any given microword, the 
control portion of the U WORD is performing manipulations while the UPP address portion of that word is 
addressing the next ROM word. The last UPP contents, the rnicroaddress of the present U WORD, are stored in the 
Past Microprogram Pointer (PUPP) for reference. The logic diagram in Figure 3-10 shows, in simplified form, how an 
address change is performed. 

INPUT CONDITIONS tr 
FROM THE INSTRUCTION 

REGISTER,FLAG FLIP-FLOPS 
AND DATA PATH DECODING 

'----,.----J 

MULTIPLEXER 
SELECTION FROM 

BUT FIELD 
OF U WORD 
REGISTER 

SELECT THE CONDITION 

>--I-----iD 

UPP3 

c 0 

>--:-----+---i D 

UPP2 

C 0 

>--+---+---i D 

UPPI 

c 0 

>--+--+---i D 

UPPO 

r----'---+--! C 0 

A3 A2 AI AO 
'---y-----' CL K 

ROM OUTPUT FOR 
NEXT BASE ADDRESS 

"OR" BASE ADDRESS 
TO BRANCH CONDITIONS 

ROM ADDRESS 

11- 1659 

Figure 3-10 U Branch Control Sequence, Simplified Branching Operation 

Another address in the address loop is the output of the ROM which has been selected by the next address from the 
UPP Register. This address does not appear immediately in the machine cycle (as is the case for the UPP next 
address) because ROM access time is greater than flip-flop settling time. However, it is present about midway 
through the U WORD state. This ROM output address, which appears on BUS (08:00), is a subsequent next address 
and is applied through the NOT/OR gate to the UPP Register. The next word data is becoming available across the 
entire ROM and is to be clocked in after the current machine state ends. If the subsequent next address is fixed (i.e., 
no branches are required), then there is no real difference between the address and control portion of the ROM/U 
WORD interface. In effect, the NOT/OR gate simply inverts the already complemented address output of the ROM. 
However, if a rnicrobranch is to occur, it must occur at this point before the subsequent next address is clocked into 
the fixed UPP Register. The branch requires a subsequent next address from the ROM with Os in it; it also requires 
the BUT MUX logic to input alterations to this address. Both of these occurrences require that the current 
microword has enabled appropriate control bits in the address and control sections. 

3-19 



Note that the microbranch test in a current word cannot alter the next word. However, it can alter the following 
word (the subsequent next word) as described below. 

Assume that there are three microwords in sequence: A, B, and C. When the current word is A, the address portion 
of that word is causing word B to be accessed from the ROM (the address portion of word A selects the next word, 
which is B). Word B contains an address segment which is used for accessing word C and is present on BUS U 
(08:00). The address portion of word B, however, is a base address so that it can be altered if there is to be a branch. 
This alteration occurs in the NOT/OR gate while word A selects word B. The address for word C (contained in word 
B) can be either the base address for C or an altered address for C. For example, the altered address could be Cl or 
Cn, depending on how wide the branch is. 

This technique means that selection of branch conditions and related enabling of that selection to the NOT/OR gate 
occurs a microword ahead of the word in which the branch takes place. During word A, a decision to branch can 
affect what word is used for word C, but it cannot affect word B. If a branch to C or Cn is desired, then conditions 
must be enabled to alter C in word A. By the time the processor goes to word B, the next address for word C is 
already fixed and stored in the UPP Register. 

3.4.8 JAMUPP Logic 

The microprogram address loop is also affected by the JAM Microprogram Pointer (JAMUPP) logic which alters the 
sequential nature of the microprogram. The JAMUPP logic provides a means of jamming an address into the UPP to 
modify the microprogram for certain conditions such as bus errors, stack overflow, auto restart, etc. This logic 
provides the next microword address directly, without regard for the previous microword's address. The output of 
the JAMUPP logic directly sets or directly clears the UPP Register flip-flops to establish the required address. This 
method differs from the normal NOT/OR gate outputs which are clocked into the UPP Register flip-flops. 

3.4.9 PUPP Register 

The output of the UPP Register is also fed to the Past Microprogram Pointer (PUPP) Register at each system clock. 
The PUPP Register maintains a history of the previous UPP and displays its contents on the maintenance console. 
Note that the PUPP indicates the current microword address. The PUPP Register is clocked each time the microword 
is clocked and the data input to the register is the address of the next ROM word present in the UPP Register. As the 
microword changes to the next word, the address of that word is clocked into the PUPP Register. The address of the 
current microword is therefore available and can be referenced on the maintenance console. The PUPP Register 
serves to identify the current microword address and to permit access to the ROM listings to determine which 
control bits should be enabled or disabled, and which operations would be taking place at this time. Note that the 
register itself does not perform these functions. It is the output of the register on the maintenance console display 
that permits determination of the current address. 

3.4.10 BUPP & SR MATCH 

The output of the UPP Register is also fed to the BUPP & SR MATCH logic, which is used for maintenance 
purposes. This logic compares the contents of the UPP Register [UPP (08:00)] with the low-order bits of the Switch 
Register [SR (08:00)] and generates a MATCH Signal when UPP (08:00) equals SR (08:00). This MATCH signal can 
be used either as a synchronizing signal to trigger an oscilloscope, to stop the clock (halt the machine) in that word, 
provided the appropriate switches on the maintenance console are set. For example, to obtain a strobe signal upon 
entering ROM address 234, this address would first be set in the Switch Register on the programmer's console. When 
the contents of the UPP Register matched the Switch Register value, the end clocking pulse of that machine state 
would be enabled as a strobe signal. Because the UPP Register contains the next ROM address, the pulse would occur 
at the end of the machine state just prior to the microstate addressed in the Switch Register. 

3-20 

) 

) 

) 

) 



) 

) 

) 

3.4.11 Clock Logic 

The clock logic and related timing signals are basic to any processor. The clock signals that are generated are either 
used directly or are gated with enabling signals. These enabling signals are derived directly from either the microword 
or from machine states (flags, flip-flops, Unibus states, etc.). Data transfers and processor initializations within the 
processor itself are synchronous; they occur at specific times within machine states. Three different clock cycles are 
provided by the logic. This synchronous operation is designed for continuous running of the processor as the ROM 
sequences one microword after another. The processor should, however, be considered as a combination of both 
synchronous operation and asynchronous operation. The asynchronous nature of the processor is due to the fact 
that, upon certain conditions, the clock is turned off and waits for a restart. An obvious turn-off situation is that 
which occurs during Unibus data or bus ownership operations which are specified as asynchronous functions. 

There are three functional elements that comprise the processor clock logic: the clock pulse generator, the clock 
control logic, and the clock enable gates. A Simplified block diagram of the clock is shown in Figure 3-11. 

SYNCHRONOUS REGENERATION 

RECLK 

ASYNCHRONOUS RESTART CLOCK 
CONTROL 

MAINTENANCE CONTROL 

CLKOFF (1) .J 
CLKLI 

MICROWORD 
CLKLO REGISTER 

CONTROL 
VARIOUS { 

, , 
ENABLING , 

SIGNALS , , 

I 
r---f-!-

CLOCK 
~ - PULSE 

GENERATOR 

~ 

I 

PI 

CLOCK 
ENABLE 
GATES 

r---
--:---+ , , , , , 
f-----!-

}

OUTPUT TIMING 
PULSES TO DATA 
PATH, INTERFACE 
AND MICROCONTROL 

CL1~i __________ ~r-l~ __________________ ___ 
: P2 

TYPICAL TIMING WAVEFORMS 
CL2: n ~,-------------+----~ ~-------------

I P2 P3 

cui n ~, r,--..... 
I I I 
I I I 1---140ns __ I I 
I I I 
I I I 
1-1 ---- 200n s -------+I-I I 

I 
I 

1-------------300ns-------~-1 

Figure 3-11 KDll-A Processor Clock, Block Diagram 

11-1661 

3.4.11.1 Clock Pulse Generator - The clock pulse generator provides the system clock pulses when pulsed by the 
clock control logic. These clock pulses are used throughout the processor and are combined with the enable signals 
of the U WORD Register to act on the three major segments of the processor (INTERFACE, DATA PATHS, and 
MICROCONTROL). Three pulses are generated by the clock pulse logic: the CLl cycle, which generates a PI pulse; 
the CL2 cycle, which generates a P2 pulse; and the CL3 cycle, which essentially combines the CLl and CL2 cycles 
and consists of P2 and P3 pulses. The prime purpose of the CL3 cycle is to complete a read/write cycle around the 
data path loops to allow the transfer to the D Register and from the Scratch Pad Register storage back into the 
Scratch Pad Register. The specific cycle length (CLl, CL2, CL3) for a microword is determined by microword clock 
control bits in that word. (See print D-CS-M7234-O-1 and Figure 3-11 for CLK waveforms.) 

3-21 



3.4.11.2 Clock Control - The clock control logic consists of a clock (CLK) and an idle (IDLE) flip-flop. The CLK 
flip-flop provides a pulse to the clock pulse generator when activated by the input signals RECLK, Asynchronous 
Restart, and Maintenance Control. The pulse is not generated when the Microword Register signal CLKOFF (1) is 
active and the IDLE flip-flop is set. The clock is restarted by the Asynchronous Restart or Maintenance Control 
signals which deactivate the IDLE flip-flop and reinitiate the eLK flip-flop. 

3.4.11.3 Clock Enable Gates - The clock enable gates receive the pulses generated by the clock pulse generator. 
During each machine state, rnicrocontrol bits control the passage of these clock pulses to specific registers. When it is 
desired to clock a register, the rnicrocontrol word has the appropriate bit enabled and the clock pulse passes through 
the enable gate to the clock input of the specified register. 

3-22 

) 

) 

) 

) 



---------

~ 1,-, 
.~ '-.-/ 

Table 3-3 
KD l1-A Functional Components 

Component Description Input Output 

ADDRESS Display Indicator lights located Contents of the Bus Address Displays contents of the BA 
on the KY11-D Program- (BA) Register. Register on console ADDRESS 
mer's Console. display. 

Arithmetic Logic Four 74181 IC chips Data: AIN-16-bit wide Data: Provides 16-bit 
Unit (ALU) and one 74182 IC chip input from buffered output to either the 

provide a 16-bit arith- BUS RDbus D Register or to the 
metic logic unit with a BA Register through 
lookahead carry. BIN-16-bit wide the BAMIDe 

input from B MUX 
Dependent on mode Status: COUT 7, COUT 15, 
selected, can perform CIN -carry insert to ALU 15 to input of 
up to 16 logic functions LSB of ALU from COUT multiplexer. 
and up to 16 arithmetic CIN logic 

w 
N functions. (See ALU 
w TABLE, print Control: SALUM,SALU 

D-BD-KDll-A-BD.) (03 :00) 5-bit 
wide control that 
specifies ALU 
function. 

Arithmetic Logic One 8233 IC (dual ALU control signals from: Five control signals, SALUM, 
Unit Control 2-line to I-line multi- microword bits, IR decode SALU (03:00) that select the 
(ALU CONTROL) plexer) and combina- logic, and external control ALU function to be performed. 

tionallogic. (KE11-E). 

Generates control signals 
that are used to specify 
the ALU function. 



w 
N 
.j:>. 

~ 

Component 

B Constants 

B Multiplexer (B MDX) 

.., ~ 

____ ~. J ________ .1 

Table 3-3 (Cont) 
KDll-A Functional Components 

Description 

Combinational logic net­
work providing elemental 
values for incrementation 
and decrementation. Also 
provides more complex 
constants such as trap vec­
tors and masks. 

Eight 74153 multiplexer 
IC chips. 

Provides the means of 
selecting the data input 
to the B input (BIN) of 
the ALD. 

'-...-/ 
I 

Input 

Constants generated are a 
function of the following 
inputs: 

SBC (03:00) from the 
rnicroword. 

STPM (04:02) from the 
trap sensing logic. 

Control of the high and low 
bytes are independent sig­
nals from the microword. 

Anyone of the following 
inputs can be selected: 

a. BC (15 :00) (B con­
stants) 

b. B (15:00)(direct) 

c. B (15:08,15:08) 
(duplicate upper byte 
of B Register) 

d. B (07:00, 07:00) 
(duplicate lower byte 
of B Register) 

e. B (07:00,15:08) 
(swap bytes of B Register) 

f. B (15:08=7, 07:00) 
(sign extend lower byte 
of B Register) 

~ .~ 

Output 

Selected constants applied to 
the B MDX. 

Provides 16-bit wide input 
to the B input of the ALD. 

1 

i 
I~. 



"~ '----' L '--' '----' 

Table 3-3 (Cont) 
KD ll-A Functional Components 

Component Description Input Output 

B Register Four 74174 IC chips Input is loaded from the output Provides a data input to the 
provide a 16-bit tem- of the D MUX and is therefore B MUX. This input (which is 
porary storage register dependent on the D MUX selec- the B Register output) is par-
for the B input of the tion. titioned into a high (15 :08) 
ALU. and low (07 :00) byte. 

Bus Address Four 8233 multiplexer Receives 16~bit wide input from A 16-bit wide output that is 
Multiplexer IC chips. The BA MUX either the Register Data bus (BUS loaded into the lJus Address 
(BAMUX) loads the BA Register. RD) or the output of the ALU. (BA) Register. 

A single microword control sig-
nal selects one of the two possible 
inputs. A high signal selects the 
ALU. 

w 
N 
VI 

Bus Address Register Four 74174 IC chips Receives a 16-bit wide input Transmits a 16-bit address to 
(BA Register) that form a 16-bit from the BA MUX. the Unibus. This address is 

temporary storage applied through bus drivers 
register. to bus address lines BUS BA 

(17:00). The address is also 
applied to the address display 
and is decoded for processor 
address response. 



w 
N 
0\ 

~ 

Component 

Bus Register Data 
(BUS RD) 

Branch Microtest 
Decode 
(BUT DECODE) 

Branch Microtest 
Multiplexer 
(BUTMUX) 

,_ , __ L~ ~ ~_, 

Table 3-3 (Cont) 
KD ll-A Functional Components 

Description Input Output 

Four 74H04 IC chips Receives input from three Output provides 16-bit data 
that provide 16 inver- sources by means of a to either the A input (AIN) 
ters to establish proper wired-OR bus: of the ALU or to the bus 
input polarity for the A address (BA) multiplexer. 
Input (AIN) of the ALU. a. Scratch Pad Register 

data (16 bits) 

b. Processor Status 
Register (8 bits) 

c. External options 
(16 bits) 

Network of combina- UBF (04:00) from the Control signals, especially to 
tionallogic circuits that microword. the flag control logic. 
decodes the Microbranch 
Field (UBF) in each 
microword and generates 
auxiliary control signals. 

Six multiplexer IC chips: Anyone of the follOwing are Control signals that allow modi-
selected by microword UBF fication of the microprogram 

a. three 16-line to 1- (04:00) field: field, UPF (07:00), prior to 
line type 74150 clocking the address into the 
multiplexers a. IR Register bits UPP of the Microword Buffer 

(UWORD). 
b. two 8-line to I-line b. branch microbranch 

type 74151 multi- control signals 
plexers 

c. IR decode signals 
c. one dual 4-line to 

I-line type 74153 d. machine status and 
multiplexer flags 

~ 
I 
'~ ~' l~ 



-~ 

Component 

Buffered Microprogram 
Pointer and Switch 
Register MATCH (BUPP 
&SRMATCH) 

IN 

N 
-.l 

Clock Control 

Clock Pulse Generator 

'~ I~ ---../ 

Table 3-3 (Cont) 
KDI1-A Functional Components 

Description Input 

Nine exclusive-OR gates BUPP (08:00) and SR (08:00) 
connected as an equiva-
lence detector. 

Compares the contents of 
the Microprogram Pointer 
Register (UPP) with the 
Switch Register (SR) to 
generate a MATCH signal. 

The MATCH signal can be 
used to stop the clock during 
maintenance operation or to 
generate a scope synchronizing 
signal. 

Comparing the two registers 
permits stopping operation 
or monitoring operation at 
a specific ROM word. 

Network of combinational CLKOFF from the microword 
logic circuits and delay line as well as various restart and 
controls the CLK and IDLE continue signals. 
flip-flops. 

Three delay lines selected Pulse signal from clock con-
by combinational logic trol and the clock length sig-
circuits to generate the nals CLKLO and CLKLl from 
clock pulses speCified by the microword. 
the current microword. 

- ----- --------- ---- ---- -_ .. __ .. -- --

'-----

Output 

UPP MATCH signals 

Control signals to the clock 
pulse generator. 

Timing pulses PI, P2, and 
P3. The RECLK signal which 
provides for continuous 
microword operation. 



Table 3-3 (Cont) 
KD ll-A Functional Components 

Component Description Input Output 

Clock Enable Gates Combinational logic net- Timing pulse PI, P2, or P3 Various clock signals. (CLK 
work that routes clock from the clock pulse generator. IR, CLK D, CLK BA, etc.). 
outputs to the INTERFACE, 
DATA PATHS, and MICRO- Various clock enable signals: 
CONTROL portions of the CLKIR, CLKBA, CLKB, CLKD, 
processor. WRH, WRL bits from the current 

microword. 

D Multiplexer (D MUX) Eight 74153 multiplexer A 2-bit microcontrol field The D MUX distributes 16-bit 
IC chips. selects one of the following data word to: 

four inputs: 

a. BUS RD (including a. Instruction Register 
the Scratch Pad 

w 
N Register) b. Scratch Pad Register 
00 

b. D Register c. B Register 

c. D Register shifted d. PS Register 
right 

e. DATA display 
d. Unibus data 

f. Internal data bus (D MUX) 
for basic machine and 
options 

D Register Four 74174 IC chips Output of ALU. Provides a 16-bit output to the 
form a 16-bit temporary D Multiplexer (D MUX) and to 
storage register. the Unibus data lines [BUS D 

(15:00)] 
---- - -------~~ ---------

~'-..-/ '--....../. ,-,/ ~~ -. 1,-= ... / 



, . 
'--' 

Component 

DATA Display 

Decoding 
(ADRS & DATA) 

w 
N 
\0 

Drivers 

Instruction Register 
(INSTRREG) 

'-----
,,---,,' ~' 

Table 3-3 (Cont) 
KDII-A Functional Components 

Description Input 

Four 7380 IC chips that 16-bit output of the D MUX. 
invert the output of the 
D MUX for display on 
the consple. 

Combinational logic net- 18-bitinputs from Bus Address 
work that decodes the Bus (BA) Register and the D Register. 
Address Register and generates 
internal control signals for 
addressing processor registers. 
Sensing is provided for stack 
overflow situations and zero 
data in the D Register. 

Three 74H04 driver IC Microprogram Pointer (UPP) 
chips provide 18 buffer output of UPP Register. 
gates transmitting the 
UPP address to the PUPP 
Register and to an expan-
sionROM. 

Four 74175 IC chips Output ofD MUX clocked 
forming a 16-bit storage the instruction fetch sequence. 
register that holds the 
instruction. 

~ 

Output 

16-bit data to the console DATA 
indicators. 

Processor status (PS) Address 

Stack Limit Register (SLR) 
address (KJ11-A Option) 

Scratch Pad Register (REG) 
address 

Switch Register (SR) address 
BOVFL STOP and BOVFL 
signals D Register zero data. 

Basic Microprogram Pointer 
(BUPP) for application to 
PUPP register. 

Expansion Microprogram 
Pointer (EUPP) for anexpan-
sion ROM (KE11-E, KE11-F). 

Output applied to IR decode 
logic where it is decoded and 
used to control the micro-
program sequence. Some bits 
used directly for microbranching 
and Scratch Pad Register selec-
tion. 



- .. -~--~------------___ ~ ______________________________ ~ __ L-____________ L-____________ ~ ______________ ~ ____________ __ 

Component 

Instruction Register 
(IR) Decode 

JAM Microprogram 
Pointer (JAMUPP) 

w 
W 
o 

Processor Status (PS) 
Register 

Table 3-3 (Cont) 
KDll-A Functional Components 

Description Input 

Large network of com- 16-bit instruction from the 
binational logic circuits Instruction Register. 
that decodes the Instruc-
tion Register instruction 
and generates appropriate 
control signals to perform 
the specified function. 

Sequential logic network Internal control signals dependent 
consisting of flip-flops, on existing condition. Conditions 
one-shots, and decoders. causing JAMUPP are: 
This logic permits jamming 
an address into the UPP a. bus errors 
to modify the microprogram 
if certain conditions are b. stack overflow (red zone) 
present. 

c. auto restart (PWR UP) 

d. console switches (INIT) 

Four 7474 IC chips Input may be either from D 
providing eight storage MUX (07:00) or may be from 
flip-flops to hold the condition code logic. 
processor status word. 
This word contains 
condition codes and 
processor priority. 

~. ~ ~ 

Output 

Generates control signals that are 
a function of: the operation code, 
instruction format, and specified 
register. 

Primary control signals are sent 
to the: ALU, microbranch 
control logic, and the BUT MUX. 

Set and clear signals to UPP por-
tion of the U WORD. Timing 
signals to load newly selected 
ROM word into the Microword 
Buffer (U WORD). 

Output may be gated onto 
Unibus on lines BUS D (07:00) 
or may be gated for processor 
use on lines BUS RD (07:00). 
Individual bits used from 
branch instruction decode and 
for microbranching. 



------------~-- ------------~~--------~----

~ 
~-

Table 3-3 (Cont) 
KD ll-A Functional Components 

Component Description Input Output 

Past Microprogramming Two 74174 IC chips Loaded with the contents of Register contents display on 
Pointer (PUPP) Register providing a 9-bit the UPP Register at each sys- KM ll-A Maintenance Console 

storage register for tern clock. option when used during 
keeping a history of maintenance operation. 
the previous UPP 
address, which is the 
present microword 
address. 

Register (REG) Four 3101 IC chips Data: 16-bit input from Provides 16-bit data word to BUS 
(Scratch Pad Register) providing a 16 x 16 the D MUX RD buffer for transfer to one of 

read/write facility. the following: 
Basically, this repre- Control: 4-bit address 
sents the 16 general- input from REG a. AIN of ALU 

w 
W purpose processor ADRS input 

registers (referred to logic b. BA Multiplexer 
as the Scratch Pad 
Register). 2-bit read/write c. D Multiplexer 

control from 
micro word 

Register Address Combinational logic There are four possible sets of Provides address selection to the 
(REG ADRS) Input network used as an inputs. One of the four is selected register (REG). 

address multiplexer to by the microword signals: 
select one of the 16 
general-purpose Scratch a. IR (02:00) - 3-bit destina-
Pad Registers for reading tion field from instruction 
or writing. register 

b. IR (08 :06) - 3-bit source 
field from instruction regis-
ter. 



L___ _ _________ ,___________ _ ______ ~~ _____ L_ 

w 
W 
N 

Component 

Register Address 
(REG ADRS) 
Input (Cont) 

Microbranch Control 
(U BRANCH CONTROL) 

'! 

Table 3-3 (Cont) 
KDII-A Functional Components 

Description Input 

c. RIF (03:00) - 4-bit field 
from microword directly 

d. BA (03:00) - 4·bit field 
from Bus Address Register 

Microword signals are: 

SRD - Selects Register 
Destination, IR (02:00) 

SRS - Selects Register 
Source, IR (08:06) 

SRI - Selects Register 
Immediate, RlF (03:00) 

SRBA - Selects Register 
Bus Address, BA (03:00) 

Large network of com- Instruction Register bits 
binational logic circuits 
that provide data Signals IR decode signals 
for modifying the base 
ROM address. Machine status (i.e., switches, 

Unibus, control flip-flops, 
etc.). 

----------------- -

~' ~- ~ 

Output 

Data signals to the BUT MUX. 
These signals are used to modify 
the basic ROM address as a func-
tion of BUT MUX selection from 
the microword. 

., j~ 



'~ 

Component 

Microword Control 
(ROM) 

Microword WORD 
Register 

w 
eUWORD) 

W 
w 

'---" ',---, 

Table 3-3 (Cont) 
KDll-A Functional Components 

Description Input 

A read-only memory Contents of UPP Register 
storing the KD ll-A selects the next control 
microprogram. The ROM word to be retrieved from 
stores 256 56-bit words. the ROM. 

Fourteen ROM IC chips 
providing storage for the 
256 words. Each chip 
stores 4 bits of the 56-bit 
word. 

A 56-bit storage register Output of the NOT lOR gate 
consisting of type 74H74 that receives inputs from the 
and 74174 IC chips. This ROM, the BUT MUX, and the 
register is used to buffer EUBC for U (08:00); output 
the output of the ROM of the ROM directly for 
which provides the signals U (59:09). 
defining the operation of 
the KDll-A data path 
and control. 

Output 

56-bit microword divided into 
address bits BUS U (08:00), 
and control bits BUS U (56:09). 

UPP (08:00) are the nine low-
order bits of the U word which 
are used to select the next U 
word. 

U WORD for U (56:09) have a 
variety of mnemonics related 
to their control functions. 



w 
W 
.j:>. 

~ 

Component 

Microprogram Pointer 
(UPP) Register 

Table 3-3 (Cont) 
KDII-A Functional Components 

Description Input 

Five 74H74 IC chips Address of ROM location to 
forming an 8-bit C!-ddress be read during current machine 
register. The UPP register cycle. The address loaded is 
points to the address of a function of: 
the next microword to 
be read. a. UPF (07:00) of ROM 

word presently being 
addressed by the UPP 
Register. 

b. Basic Microbranch 
Control (BUBC) 
signals for microaddress 
modification (basic 
machine). 

c. Expansion Microbranch 
Control (EUBC) signals 
for micro address modi-
fica tion (optional 
expansion). 

~ ~. "-.-/ 

Output 

UPP (08:00) - selects one of 
256 control words stored in 
the ROM. 

It is the address portion of the 
U WORD Buffer noted above. 

l~ 



) 

) 

) 

) 

4.1 SCOPE 

CHAPTER 4 

MICROPROGRAM FLOW DIAGRAMS 

This chapter describes and explains the microprogram flow diagrams (print D-FD-KD ll-A-FD) that are included in 
the KDII-A Processor print set. These flow diagrams illustrate the operation of the processor on a machine state 
level; each operation shown on the flow diagram corresponds to one processor time cycle which, in tum, 
corresponds to one word of the microprogram ROM. The first section of this chapter describes the format, 
symbology, and layout of the flow diagrams; the second section explains their use. 

4.2 HOW TO READ FLOW DIAGRAMS 

Virtually all of the information needed to follow and understand the flow diagram is located on the flow diagram 
itself, however, it is necessary to understand the format of the diagram before this information can be easily used. 
The diagram contains two basic types of information: the operations performed by each machine state, and the 
flow of control from each machine state to all of the possible succeeding states. 

As shown in Figure 4-1, only three basic symbols are used on the flow diagrams, the most important being the box 
that represents a specific machine state. This box contains information about the operations that take place during 
the machine time cycle for the microprogram word represented by the box. In certain cases, it also contains a test 
operation to determine the path of the control information. The oval represents an entry point in the flow path; the 
diamond represents an exit point. 

( ) 

ENTRY POINT MACHINE STATE 
(MICROPROGRAM WORD) 

EXIT POINT 

Figure 4-1 Basic Flow Diagram Symbols 

11- 2127 

In Figure 4-2, a representative example taken from one of the flow diagrams, the flow is shown for logic activated 
when the console START flip-flop is sensed. The figure is annotated to indicate the type of information found on 
the flows. Each of these items is discussed separately in the following paragraphs. 

4-1 



SHEET NUMBER OF 
(11.12)~PREVIOUS FLOW EXIT 

GENERAL DESCRIPTION 

ACTION EFFECTED 
BY MICROWORD 

/ MICROWORD ADDRESS 

r---'-__ ....L..._---r--'-0..,;;3..,2 I NFORMATION I N CONSOLE 

MNEMONIC OF 
MICROWORD BRANCH TEST 

Pl:R(PC)-D 

DATA DISPLAY DURING 
SINGLE CLOCK MODE 

UBF CODE OF BRANCH 
L-. ___ "T""_BU_T_l0_-,016 MICROPROGRAM TEST 

'-BASE MICROADDRESS THAT CAN 
- BE ALTERED BY THE BRANCH 

MICROTEST(BUT 10) 

STAOI 076 

NO-OP FOR BUT R (PC) 

Pl:NO-OP 

LEADING DASH INDICATES BRANCH OCCURS HERE 
LOGICAL NEGATION ~ ~(CONDITIONS NOTED) 

4.2.1 Entry Point 

- r-~H~A~~~SW~ ____ ~~~ __ ~H~A~LT~S~W-

ADDRESS OF NEXT 
MICROWORD. BASE 

ADDRESS UNALTERED 
BY BUT 10 

EXIT POINT 

ADDRESS OF NEXT 
MICROWORD, BASE 
ADDRESS ALTERED 

BY BUT 10 

Figure 4-2 Flow Diagram Example 

11-2126 

As shown in Figure 4-2, the entry point is labeled START (1). This indicates that the section of the flow beginning 
at this point is activated when the console START flip-flop is sensed. The numbers in parentheses above the entry 
point indicate pages of the flow containing previous flow information. Thus, (11) indicates print 11, which is the 
console loop flow diagram. Following this flow through to the bottom shows that START (1) on print 12 is one of 
the possible exit points for the console loop flow. The other number (12) above START (1) indicates that this flow 
can also be entered from a point on print 12. In this case, START (1) is an exit point for the LOAD ADRS switch 
function, provided BEGIN is true. 

4.2.2 Microprogram Word 

Each box on the flow diagram indicates one specific microprogram word (machine state). As shown in Figure 4-2, 
this box contains a variety of information. 

Above the box, on the left hand side,is a mnemonic for the rnicroword. In this case it is STAOO, indicating it is the 
first (00) microword in the START(STA) sequence. Note that the numbers used with the mnemonic are decimal 
numbers and begin with 00. On the right hand side of the box is an octal number indicating the address of this 
microword in the ROM. Thus, whenever ROM address 032 is used, it is always the STAOO inicroword. 

Directly below the microword mnemonic is a line containing a general description of the function performed by the 
microword. In this case, it is LOAD NEW R(PC), which indicates that the function of the microword is to load a 
new value into the Program Counter (PC) Register. 

4-2 

) 

) 

) 

) 

) 



\ 

) 

) 

The main description of the microword operation is in a particular form which is explained more fully in Paragraph 
4.2.5. In the case illustrated in Figure 4-2, it states: PI: R(PC) +- D. This means that the D Register is being placed 
(+-) into a register R, called Program Counter, R(PC), at clock time PI in a CLl. 

The upper right hand section of the block indicates what information is shown in the console DATA display during 
this microstate. In this case, the D Register is displayed. Thus, when the maintenance console is being used and the 
program is being single clocked, the console DATA display allows the value being loaded into R(PC) to be observed. 
Operation at speed prevents this observation. 

The bottom portion of the box contains the Branch Microprogram Test information which determines the sequence 
of microwords used to perform a specific fUnction. In this case, the Branch Microprogram Test (BUT) is 
BUT(HALT). The other designation (BUT 10) indicates the octal microbranch field (UBF) code. It is important to 
note that a BUT in any microword affects not the next word, but the word after the next word. 

The purpose of the BUT(HALT) branch test is to determine if the HALT/ENAB switch on the console is set to 
HALT. This condition is tested by microword 032 (STAOO). The branch does not occur until after the next word, 
which is microword 076 (STA01). If the HALT/ENAB switch is set to HALT, then HALT is true and the flow exits 
at SERVICE C exit point. If the HALT/ENAB switch is set to ENAB, then -HALT SW is true, and the flow exits at 
the FETCH C exit point. 

A more detailed discussion of BUT instructions is given in Paragraph 4.2.4. 

4.2.3 Exit Points 

At the bottom of each flow there is a diamond(s) containing the name of the next entry point for the flow. The 
number in parentheses beneath the diamond indicates the print of the flow diagram(s) containing the entry point. 
For example, in Figure 4-2, one of the possible exit points is FETCH C, therefore, the (1) indicates print 1 of the 
flow diagrams. Turning to print 1, it can be seen that FETCH C is one of the entry points. The other exit point on 
the figure is SERVICE C which is on print 10. On print 10, SERVICE C is one of the possible entry points. 

The exit points also have a number located below the flow page reference; this is the octal address of the next ROM 
word. When the machine is microword STA01 with the microaddress 076 in the PUPP display of the KM11-A 
Maintenance Console, the UPP display indicates either 016 or 017, depending on the success of the branch 
microprogram test for BUT(HALT). Note the ORing of the low-order address bit over the base address (016 noted 
next to the BUT 10 entry of micro word STAOO) if the branch was successful; the next address would be 017. 

4.2.4 Branch Microprogram Test (BUT) 

Most machine states (or microprogrammed words) specify a unique succeeding state by means of a microprogram 
address in the microprogram word. However, the sequence of machine states can be altered. This allows a particular 
state, or sequence of states, to be shared by various larger sequences. For example, all instruction fetching is 
performed by one sequence of machine states. Once the instruction has been fetched, then specific sequences are 
followed, according to the requirements of the fetched instruction. 

The BUT instructions may be divided into two functional groups: narrow or wide branch. The first type of BUT is 
the type previously explained in Paragraph 4.2.2. In this case, the condition of the HALT/ENAB switch is sensed 
and the branch occurs, depending on whether HALT SW is true or false. An example of a wide branch is shown on 
print I of the flow diagrams. In this case, BUT 37 [labeled BUT(INSTR 1)] is a function of Instruction Register 
encoding and the program may branch to anyone of 25 different locations. 

The name of the BUT indicates the possible branches that can be taken as a result of the BUT. For example, refer to 
page 6 of the flow diagrams at the first machine state after the TRAP A entry. The BUT in this machine state is BUT 
(MM FAULT), indicating that it is testing for faults in the KTl1-D Memory Management option. The line after the 
next machine state follows one of two paths: MM FAULT or -MM FAULT. The BUT is further defined in Note 2 
on the diagram. 

4·3 



Another example of the narrow BUT occurs after the RTS entry point on the same flow diagram. This test is called 
BUT (SERVICE C + FETCH C). Looking at the flow after the next machine state, it can be seen that the program 
can branch to either the SERVICE C or FETCH C exit point. 

When a BUT instruction lists two or more possible branches as OR conditions, the priority is always from left to 
right. For example, in the expression BUT (SERVICE B + FETCH OVLAP + FETCH B), the service request always 
takes precedence over both the fetch overlap and normal fetch cycle entry. The expression also indicates that fetch 
overlap takes precedence over a normal fetch cycle. 

Table 4-1 contains a listing of all the BUT instructions along with their rnicroword addresses and rnicroword 
mnemonics. Flow diagram sheet numbers are also included. 

Notes on BUT instructions are included on each page of the flow diagrams. The notes pertain to the BUTs on that 
specific page and are used to clarify points not always obvious from the flows themselves. For example, there is a 
BUT on page 8 of the flow diagrams that is called BUT (NOWR + BYTEWR + WORDWR). By the conventions used, 
it is known that after the next machine state there is a branch to one of three places and that these three paths are 
labeled NOWR, WORDWR, and BYTEWR. However, the note on the flow diagram indicates that these branches 
provide for different register write operations as a function of the Instruction Register (IR) decoding. 

In a number of instances, the machine state general description indicates that it is a NO-OP FOR BUT. This means 
that the previous entry requires an immediate branch before entering any other state but, because a branch can 
occur only after the next machine state, it is necessary to add a non-operational state after the BUT microword. This 
is the purpose of a NO-OP FOR BUT. 

Some of the notes on the flow diagrams refer to a working BUT, which means that it performs a specific task and 
mayor may not cause the flow to branch. As an example of a working BUT, refer to the second machine state in the 
RESET flow shown on page 6 of the flow diagrams. The BUT in this machine state is called: BUT (CBR2); INIT; 
DELAY. This BUT senses the HALT switch for a console bus request and branches as a function of HALT SWor 
-HALT switch. In addition to the branching, it also activates the INIT and RESTART delay, thereby making it a 
working BUT. Another working BUT is shown on the same page as the last machine state under the TRAP D 
sequence. This BUT is called BUT (REG DEP). This particular BUT is used in the sequential clearing of various 
TRAP request flags but does not cause any branching. The branching shown below the machine state is caused by 
the previous BUT [BUT (CBR1)]. 

4-4 

) 

) 



__ . __ ~_ ~ ___ . ________ -l.. ________________ .. __ ~_-L ________ l.-.. ____________________ ~ _______ ~ 

.j::. 
v, 

BUT Number 
(octal) 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

BUT Name 

. NO-OP 

CBRI 

CBR2 

REGDEP 

REG EXAM 

BEGIN 

SWITCH 

INTR 

HALT 

MM FAULT 

D=Q 

----_._------

.-.......,...-

Table 4-1 
BUTCHART 

---

Microword 
Location 

Everywhere except 
where a BUT is used. 

332 

25 

62 

70 

333 

53 

56 

140 

51 

26 

315 

22 

32 

10 

44 

342 
---------- ~---

Microword Flow 
Mnemonic Diagram 

Sheet 

- -

TRP20 6 

RSTOI 6 

DEPOI 12 

DEP07 12 

TRP21 6 

EXMOI 12 

EXM04 12 

TRP16 6 

LADOI 12 

CON04 11 

CON13 11 

SERlO 10 

STAOO 12 

TRP03 6 

CON08 11 

SOBOl 7 
----------------



~ 

'" 

"----../ 

BUT Number 
(octal) 

13 

14 

15 

16 

BUT Name 

Not Used 

Not Used 

JSR+ JMP 

SERVICE C + FETCH C 

'-_/ 

Table 4-1 (Cont) 
BUTCHART 

'----"" 

Microword 
Location 

151 

153 

154 

155 

235 

302 

305 

110 

117 

125 

277 

306 

324 

340 

~---------------------- --~ 

Microword Flow 
Mnemonic Diagram 

Sheet 

JMPOO 5 

JMP05 5 

JMP03 5 

JMP06 5 

JMP02 5 

JMP10 5 

JM.P15 5 

NBROO 7 

SCCOO 7 

MOV22 4 

RSR10 9 

JMP12 5 

RTS02 6 

BRA01 7 

'--../ , '--../ 



.j>o. 

~ 

BUT Number 
( octal) 

16 (Cont) 

17 

20 

21 

'---' 

BUT Name 

IR03 

BYTE + SERVICE + FETCH 

IR03, BYTE AND SOURCE 

L 

Table 4-1 (Cont) 
BUTCHART 

Microword 
Location 

344 

345 

350 

356 

366 

367 

374 

166 

167 

176 

177 

160 

170 

206 

. __ J 

',----" ---/ 

Microword Flow 
Mnemonic Diagram 

Sheet 

SOB03 7 

SOB05 7 

CCCOI 7 

MRK04 5 

DOP11 8 

DOP12 8 

SSL09 9 

DST07 3 

DST06 3 

MOV06 4 

MOV05 4 

MOV19 4 

MOV18 4 

MOV08 4 



BUT Number 
(octal) 

22 

23 

24 

f" 25 
00 

26 

27 

", 
'~ 

BUT Name 

BYTE AND SOURCE 

Not Used 

CBR+HALT 

BR,WAIT + FETCH 

REQUESTS 

Table 4-1 (Cont) 
BUTCHART 

SERVICE B + FETCH OVLAP + FETCH B 

'--.../ '--.../" 

Microword 
Location 

171 

172 

174 

207 

255 

20 

2 

6 

17 

114 

123 

003 

132 

135 

271 

273 

Microword Flow 
Mnemonic Diagram 

Sheet 

MOVOO 4 

MOVOI 4 

MOV02 4 

MOVll 4 

CON12 11 

SER07 10 

SEROI 10 

SER04 10 

SER02 10 

SEROO 10 

SER03 10 

MOV21 4 

SXTOO 8 

SWBOI 7 

RSROI 9 

RSR04 9 

"'--.../ .~ 



~ o 

BUT Number 
(octal) 

27 (Cont) 

30 

31 

32 

33 

34 

BUT Name 

Various Switches 

'~~ 

Table 4-1 (Cont) 
BUTCHART 

NOWR + BYTEWR + WORDWRITE 

Not Used 

OB + INSTR4 

INSTR4 

Microword 
Location 

363 

364 

370 

371 

372 

373 

45 

102 

104 

105 

120 

260 

266 

237 

~ 

Microword Flow 
Mnemonic Diagram 

Sheet 

DOPOI 7 

DOP03 7 

DOP14 8 

DOP16 8 

SSLOI 7 

SSL03 7 

CONI0 11 

DOP02 7 

SSL02 7 

SSLOO 7 

DOP15 8 

DST03 3 

DST14 3 

DST16 3 



BUT Number 
(octal) 

35 

36 

37 

f" -o 

,;. 
'~ 

OB + INSTR3 

INSTR3 

INSTR 1 

'~ 

BUT Name 

Table 4-1 (Cont) 
BUTCHART 

l~ 

Microword Microword Flow 
Location Mnemonic Diagram 

Sheet 

240 SRC03 2 

247 SRC14 2 

137 SRC16 2 

4 FET04 1 

'~ ,~' 



) 

4.2.5 Operation Symbols 

Previous paragraphs have discussed the basic symbology and format of the KDII-A flow diagrams. Another set of 
symbols to understand is the ISP notation which provides the detailed description of each machine state. Although 
ISP is covered in the PDP-ll/40 Processor Handbook, this paragraph explains KDII-A flow diagram usage. 

In KDII-A ISP notations, a few general rules are helpful. The first item appearing in each statement always has a 
specific clock pulse, which indicates at which clock time the machine state operation occurs. The clock pulse is 
always PI, P2, or P3 and is associated with CLl, CL2, and CL3, respectively. A statement describing the machine 
state operation follows the clock pulse. These statements are always read from right to left. For example: 

P2: D +-- RO 

In the above statement, D indicates the processor D Register and RO indicates one of the eight general registers. The 
above statement is read: at clock time P2, the D Register is loaded with the contents of the RO Register, or D gets 
RO. 

A variation of the above is used when a register address appears in parentheses after the designation R (register). For 
example: 

PI: B +-- R(SF) 

The above statement is read: at clock time PI, the contents of the register, addressed by the IR source field, is 
loaded into the B Register. This type of notation is used because a number of registers or locations may be used to 
store SOURCE data. An example of this notation is shown on print 2 of the flow diagrams. This print carries a note 
which states that the Source Register is selected by the IR (Instruction Register). 

) A more complex example of machine state operation statements is: 

P2: D +-- f DAD { R(SF) AND B}; DAD 14 

Before reading this expression, it is necessary to know that the symbol f indicates "as a function of," that the term 
to the right of the semicolon is a separate statement, and that the items in brackets are considered first. Thus, the 
statement is read: D gets a function of the register, specified by the source field and the contents of the B Register. 
The function is determined by the DAD (discrete alteration of data) code and its operation on the ALU; the DAD 
14 function is used. The user can look up DAD 14 in the U WORD TABLES in print D-BD-KDII-A-BD to find the 
function of DAD 14. The table indicates that DAD 14 is used for ALU CNTL fIR; in other words, the Instruction 
Register determines what function the ALU is to perform. 

There are times that two or more completely separate actions occur at the same time pulse. The different actions are 
either separated by a semicolon, or by placing them on different lines, or both. For example: 

P2: BA +-- R(DF); DATI 
D +-- R(DF) PLUS 2 

This indicates that three separate actions take place at clock time P2. First, the register defined by the destination 
field of the IR is loaded into the Bus Address Register. Secondly, a DATI bus transfer is begun. And finally, the 
register defined by the destination field plus 2 is loaded into the D Register. 

Note that the usual use of parentheses is to further define the preceding symbol. R(PC) means that the register used 
as the Program Counter in the Scratch Pad Registers is being referenced. This is true for all situations except R(DF), 
R(SF), and R(BA) where specific address bits in the IR (for destination field and source field) or the bus address are 
used to select a Scratch Pad Register. A note to this effect occurs on print 1 of the flow diagram. 

4-11 



The above example would be exactly the same if all three actions had simply been separated by semicolons: 

P2: BA +- R(DF); DATI; D +- R(DF) PLUS 2 

or if each separate action had been placed on a separate line: 

P2: BA +- R(DF) 
DATI 
D +- R(DF) PLUS 2 

Statements that have an equal sign, such as SBC::;:7, DAD=IO, BUS CODE=06, etc., are explanatory statements that 
list the codes internally generated during performance of the operation specified in the box. The meaning of these 
codes can be determined by referring to the page of tables in the block diagram prints, D-BD-KDll-A-BD. For 
example: 

P3: PS(C) +- DOO; SPS=1 

The above expression indicates that the value on bus data line DOO is to be loaded into bit C of the processor status 
(PS) word during clock pulse time P3. The explanatory expression after the semicolon (SPS=I) indicates that a 
specific U WORD code is used to perform this function. By referring to the table, it can be seen that SPS code 1 is 
used to clock bit C of the PS word. 

4.3 FWW DIAGRAM EXAMPLES 

Once the format of the flow diagrams is understood, it is possible to follow the flows through any instruction 
sequen~e. Examples of following an operation through the flow diagrams are given in Tables 4-2 and 4-3. 

In the example in Table 4-2, the following instruction (not micro) program is present: 

Program Address 

5000 
R(SF) = (Rl) = 300 (Rl) 
R(DF) = (R2) = 400 (R2) 

Contents 

ADD (1),(2) 
5 
5 

In effect, the operation adds two numbers together. The instruction ADD (1), (2), which is 061112 in octal form, is 
loaded at location 5000. The first number to be added (Rl) is the number 5 (octal) stored at address 300. The 
second number (octalS) is stored at address 400. 

Based on the above conditions, Table 4-2 lists all microwords in the flow when performing this operation. The table 
also includes a description of what is happening during each machine state. If the table is followed carefully while 
referring to the flow diagrams, the operations should be apparent. 

Table 4-3 describes a subtract operation and is identical to Table 4-2 in format except that the description column 
has been eliminated to allow the reader to determine if he can follow the table and the flows by himself. 

Two tables are included in this chapter as an aid in rmding specific microwords on the flow diagrams. Table 4-4 is a 
numerical listing of all microwords in the ROM and includes the mnemonic, a general statement of the function, and 
the page of the flow diagrams on which it is shown. 

Table 4-5 lists all microwords in alphabetical order according to the microword mnemonic. The only other entry in 
this table is the ROM address. Once the ROM address is found on Table 4-5, then Table 4-4 can be used to find the 
microword on the flows. 

4-12 

) 

) 

) 

) 

) 



'~ 

ROM Next ROM 
Microword Address Address 
Mnemonic (PUPP) (UPP) 

FET02 016 001 

FET03 001 004 

FET04 004 005 
f" ,.... 
w 

FET05 005 141 

DATA 
Display 

5000 

061112 

5000 

5002 

l~ 

Table 4-2 
Flow Diagram Example 1 

Operation 

PI: BA +- R (PC); DATI; 
CLKOFF; SPS=O 

PI: IR, R(IR), 
B +- UNIBUS DATA 

P2: D, BA +- R(PC) PLUS 2; 
DATI IF 
OVLAP FETCH; 
BUT INSTR 1 

PCl: R(PC) +- D 

Description 

The contents of the PC is loaded into the Bus 
Address Register; a Unibus data transfer is 
performed to bring the instruction into the 
processor. The address of the instruction [ADD 
(1), (2)] is displayed. 

The instruction (Unibus data) is loaded into the B 
Register, a Scratch Pad Register, and the Instruc­
tion Register. The Unibus data for the instruction 
is displayed. 

The value of PC plus 2 is loaded into both the Bus 
Address and D Registers. No DATI is performed 
for OVERLAP FETCH. Branch test BUT (INSTR 
1) is performed, which is the first wide branch for 
all instructions. Value of current PC is displayed. 

Program Counter is updated by moving data in the 
D Register (which contains next PC+2) into the 
PC. The new PC is displayed. Note that the display 
of D in a given microword is a display of what is in 
D at the beginning of the microword - not what 
will be clocked into it this microword. The next 
microword to be used is at ROM address 141 for a 
source mode 1 (SM1) calculation on sheet 2. This 
address occurs as a function of the IR and BUT 
(INSTR 1) with ALLDOP * -SMO indicating a 
double operand instruction with a non-zero source 
mode. 



f'-
>--' 

~ 

Microword 
Mnemonic 

SRCOO 

SRC14 

SRC15 

ROM Next ROM 
Address 
(PUPP) 

141 

247 

250 

Address 
(UPP) 

247 

250 

161 

'--' 

DATA 
Display 

300 

061112 

5 

Table 4-2 (Cont) 
Flow Diagram Example 1 

Operation 

PI: BA +- R(SF); 

DATI; DAD=OI; 
. MM=14 

PI: NO-OP; CLKOFF 
BUT (OB+lNSTR 3) 

PI: B, R(SOURCE) +­

UNIBUS DATA 

~ 

Description 

The register specified by the source field (address 
of the source operand) is loaded into the Bus 
Address Register. The source address is displayed . 

NOTE 
It would be normal to expect the locat.ion of 
this microword to be 100 because that was 
the value of the previous UPP. However, the 
UPP was modified by BUT (INSTR 1) as a 
function of the instruction, resulting in 
ROM address 141 for thismicroword. 

This isa no operation word to provide a BUT. 
Clock is turned off to wait for Unibus response to 
DATI. 

The source operand (the number 5) is taken from 
external memory and stored in a temporary regis­
ter R(SOURCE). The value of the operand is dis­
played. The next microwordto be used is at ROM 
address 161 for a destination mode 1 (DMl) calcu­
lationon sheet 3. This address occurs as a function 
of the IR and BUT (OB+INSTR 3) with 
PARTDOP * -SMO * DMOindicating a double 
operand instruction with a non-zero destination 
mode. 

'--.--/' , -----./ 



________ .-l I 

'~~ 

Table 4-2 (Cont) 
Flow Diagram Example 1 

ROM Next ROM 
Microword Address Address DATA 
Mnemonic (PUPP) (UPP) Display Operation Description 

DSTOO 161 266 400 PI: BA +- R(DF); The register specified by the destination field 
DATIP; DAD=07; (address of the destination operand) is loaded into 
MM=OI the Bus Address Register. The destination address 

is displayed. Note that this microword address was 
modified by BUT (OB+INSTR 3). Referring to the 
flow diagram, the output of SRC15 followed the 
path marked -OB because an odd byte was not 
being processed. 

DSTl4 266 267 061112 I PI: NO-OP; CLKOFF l This is a no operation word to allow for a BUT. 
BUT (OB+INSTR 4) Clock is turned off to await Unibus response to 

the DATIP. 
f' .-
Ul DSTl5 267 225 5 I PI: B, R(DEST) +- The destination operand (the number 5) is taken 

UNIBUS DATA from external memory and stored in a temporary 
register, R(DEST), and in the B Register. The 
value of the operand is displayed. The next micro-
word address (225) results from the BUT 
(OB+INSTR 4) for· the PARTDOP * -DMO condi-
tion. 

DOPQ3 225 367 5 I P2: D +- f DAD R (SOURCE) The source operand and the B Register (storing the 
AND B (DATO+DATOB) destination operand) are loaded into the D Regis-
DAD=17; MM=OI ter as a function of DAD. In other words, the 

source and destination operands are added and 
moved to the D Register. The source operand is 
displayed. 



ROM Next ROM 
Microword Address Address DATA 
Mnemonic (PUPP) (UPP) Display 

DOP12 367 375 12 

DOP20 375 016 12 

f" 
FET02 016 001 5002 

...... 
0\ 

'---/ '--../. 

Table 4-2 (Cont) 
Flow Diagram Example 1 

Operation 

PI: ALTER COND CODES 
CLKOFF; DAD=12; 
SPS=3 
BUT (SERVICE C + 
FETCHC) 

PI: NO-OP 

PI: BA ~ R(PC); DATI; 
CLKOFF; SPS=O 

~. 

Description 

The condition codes are altered and the result of 
the addition of the source and destination oper-
ands is displayed. (Note that adding octal 5 to 
octalS results in octal 12.) 

This is a no operation required by the BUT in the 
previous word. The BUT determines whether the 
processor is to enter the SERVICE or FETCH 
flows. 

Fetch of next instruction. 

'---/ ~ .~ 



) Table 4-3 
Flow Diagram Example 2 

Program Conditions 

Address Contents 

5000 SUB #10, @ #6000 
5002 20 
5004 6000 
5006 NEXT INSTRUCTION 
6000 30 

ROM Next ROM 
Microword Address Address DATA 

) Mnemonic (PUPP) (UPP) Display Operation 

FET02 016 001 5000 PI: BA +- R(PC); DATI 
CLKOFF; SPS=O 

FET03 001 004 162737 PI: IR, R(IR), B +- UNIBUS 
DATA 

FET04 004 005 5000 P2: D, BA +- R(PC) PLUS 2; 

-) 
NO OVLAP FETCH 
BUT (INSTR I) 

FET05 005 142 5002 PI: R(PC) +- D 

SRCOI 142 240 5002 P2: BA +- R(SF); DATI; 
DAD=01 ; SBC=03 
D +- R(SF); PLUS I; MM=14 

SRC03 240 250 5004 PI: R(SF) +- D; CLKOFF 

) BUT (OB+INSTR 3) 

SRCI5 250 163 20 PI: B, R(SOURCE +- UNIBUS) 
DATA 

DST04 163 264 5004 P2: BA +- R(DF) DATI 
, D +- R(DF) PLUS 2 

P3: R(DF) +- D; CLKOFF 

NOTE 
New D content does not 
occur un til end of 
microword. 

DST12 264 265 6000 PI: B, R(DEST) +- UNIBUS 

) 
DATA 

4-17 



ROM 
Microword Address 
Mnemonic (PUPP) 

DSTl3 265 

DSTl4 266 

DSTl5 267 

DOP05 227 

DOP06 365 

DOP12 367 

DOP20 375 

Table 4-3 (Cont) 
Flow Diagram Example 2 

Next ROM 
Address DATA 
(UPP) Display 

266 6000 

267 162737 

227 30 

365 20 

367 30 

375 10 

016 10 

4-18 

Operation 

PI: BA +- R(DEST) DATIP; 
DAD=OI; MM=OI 

PI: NO-OP; CLKOFF; 
BUT (OB+lNSTR4) 

PI: B, R(DEST) +- UNIBUS 
DATA 

PI: B +- R(SOURCE) ) 
P2: D +- R(DEST) MINUS B; 

DAD=10 DATO; MM=OI 

PI: ALTER COND CODES; 
CLKOFF; DAD=12; 
SPS=3; BUT (SERVICE C 
+ FETCHC) 

PI: NO-OP - If no service ) 
request, go to FET02 

) 

) 



) 

ROM Microword 
Address Mnemonic 

000 FET01 
001 FET03 
002 SER01 
003 MOV21 
004 FET04 
005 FET05 
006 SER04 
007 TRP08 
010 TRP03 
Oll CONOl 

) 012 SER06 
013 FETOO 
014 SER09 
015 SER05 
016 FET02 
017 SER02 
020 SER07 
021 SER08 
022 SERIO 
023 SER11 

-) 024 CON03 
025 RST01 
026 CON04 
027 CON07 
030 CON05 
031 EXM06 
032 STAOO 
033 LAD03 
034 DEPOO 
035 EXMOO 
036 eNTOO ) 
037 LADOO 
040 RST02' 
041 CON02 
042 RST04 
043 RST03 
044 CON08 
045 CON10 
046 CON06 
047 CON09 
050 CON11 
051 LAD01 
052 LAD02 
053 EXM01 
054 EXM02 
055 EXM05 
056 EXM04 ) 

Table 4-4 
Microwords (Numerical Order) 

General Function 

Fetch next instruction 
Store instruction 
Clock for PTR 
Sign extend byte data 
Modify register (PC) 
Restore modified register (PC) 
Clock for PTR 
Get new status 
Form, store trap vector 
Display register (PC) 
AWait bus busy 
Fetch next instruction 
Wait for interrupt 
No-op for BUT 
Fetch next instruction 
Clock for PTR 
Clock again for PTR 

. No-op for BUT 
Store vector, flags 
No-op for BUT 
Display register 
Reset delay and INIT 
Test for switch 
Contact bounce count 
No-op for console entry 
Get data, timeout flag 
Load new register (PC) 
Display zero data 
Load console address 
Load console address 
No-op after a BUT 
Get address data from SR 
No-op for BUT 
Await bus busy 
No-op for fetch entry 
No-op for console entry 
Test count 
Test which switch 
No-op for BUT 
Increment count 
Load last console address 
Store data as console address 
Display console address 
Console flags 
Conditional plus 1 
Read register of bus address 
Console flag 

4-19 

Flow 
Print 

1 
1 

10 
4 
1 
1 

10 
6 
6 

11 
10 

1 
10 
10 

1 
10 
10 
10 
10 
10 
11 
6 

11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
6 

11 
6 
6 

11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 



ROM Microword 
Address Mnemonic 

057 EXM03 
060 EXM07 
061 EXM08 
062 DEP01 
063 DEP02 
064 DEP03 
065 DEP04 
066 DEP05 
067 DEP06 
070 DEP07 
071 DEP08 
072 DEP09 
073 DEP10 
074 DOP21 
075 SSL11 
076 STA01 
077 TRP15 
100 FET07 
101 RTIOO 
102 DOP02 
103 DOPOO 
104 SSL02 
105 SSLOO 
106 RSROO 
107 RSR02 
110 NBROO 
111 BRAOO 
112 MRKOO 
113 TRP12 
114 SEROO 
115 TRP09 
116 CCCOO 
117 SCCOO 
120 DOP15 
121 DOP13 
122 CONOO 
123 SER03 
124 RTSOO 
125 MOV22 
126 TRP06 
127 RSTOO 
130 SOBOO 
131 
132 SXTOO 
133 
134 SWBOO 
135 SWB01 

Table 44 (Cont) 
Microwords (Nnmerical Order) 

General Fnnction 

Conditional plus 1 
Store data 
Display data 
Console flags 
Conditional plus 1 
Conditional plus 1 
Get deposit data from SR 
Store deposit data 
Load console address 
Load deposit data 
No-op for BUT 
Deposit data 
Deposit data 
Alter codes 
Alter codes 
No-op for BUT 
Enable new status 
No-op after a BUT 
Get new register (PC), modify 
Put destination into B 
Put source into B 
Operate upon destination 
Put destination into B 
Operate upon destination 
Put destination into B 
No-op after a BUT 
Add half of offset 
Double offset 
Deskew word for DATO 
OockforPTR 
Store new status 
Mask register (IR) for PS mask 
Mask register (IR) for PS mask 
Put destination into B 
Put source into B 
Display register (PC) 
Oock for PTR 
Get new register (PC) 
Alter condition codes 
Form, store trap vector 
Get reset data display 
Decrement count 

Extend sign 

Put destination into B 
Swap bytes 

4-20 

) 

Flow 
Print 

12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 

) 
12 

8 
9 

12 
6 
1 
6 
7 
7 
7 
7 
9 
9 
7 
7 
5 
6 

10 
6 ) 
7 
7 
8 
8 

10 
10 
6 
4 
6 
6 
7 

8 

7 
7 ) 



ROM Microword 
Address Mnemonic 

136 FET06 
137 SRC16 
140 TRP16 
141 SRCOO 
142 SRCOI 
143 SRC04 
144 SRC02 
145 SRC05 
146 SRC06 
147 SRC09 

) 150 TRP07 
151 JMPOO 
152 JMPOI 
153 JMP05 
154 JMP03 
155 JMP06 
156 JMP08 
157 JMP07 
160 MOV19 
161 DSTOO 

) 162 DSTOI 
163 DST04 
164 DST02 
165 DST05 
166 DST07 
167 DST06 
170 MOV18 
171 MOVOO 
172 MOVOI 
173 MOV03 
174 MOV02 
175 MOV04 
176 MOV06 
177 MOV05 
200 MOV16 
201 MOV17 
202 MOV14 
203 MOV13 
204 MOV20 
205 MOV15 
206 MOV08 
207 MOVll 
210 MOV12 
211 SSLlO 
212 MOV09 
213 MOVIO 
214 TRP05 

Table 4-4 (Cont) 
Microwords (Numerical Order) 

General Function 

Modify, store register (PC) 
Duplicate upper byte 
Load new status 
Get source data 
Get source data, modify 
Get address, modify, restore 
Get source data, modify 
Get address, modify, restore 
Get index data, modify 
Get index data, modify 
FOnTI, store trap vector 
Get destination address 
Post modification 
Get address, modify, restore 
Get destination address, modify 
Get address, modify, restore 
Overlap, modify register (PC) 
Overlap, modify register (PC) 
Get destination data 
Get destination data 
Get destination data, modify 
Get address, modify, restore 
Get destination data, modify 
Get address, modify, restore 
Overlap, modify register (PC) 
Get index data, modify 
Get destination data 
Load destination address 
Load destination address, modify 
Get address, modify, restore 
Load destination address, modify 
Get address, modify, restore 
Overlap, modify register (PC) 
Get index data, modify 
Store data 
Store data 
Load byte data 
Load byte data 
Store destination data 
Store justified data 
Store index data 
Store address data 
Load destination address 
Alter code PS(C) 
Store indexed destination address 
Get indexed address 
Store MM vector 

4-21 

Flow 
Print 

1 
2 
6 
2 
2 
2 
2 
2 
2 
2 
6 
5 
5 
5 
5 
5 
5 
5 
4 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
9 
4 
4 
6 



ROM Microword 
Address Mnemonic 

215 TRP02 
216 TRP04 
217 FET08 
220 SSL06 
221 SSL04 
222 SSL08 
223 SSL07 
224 DOP07 
225 DOP03 
226 DOP04 
227 DOP05 
230 DOP09. 
231 DOPI0 
232 RSR06 
233 RSR08 
234 SXTOI 
235 JMP02 .. 

236 SSL05 
237 DSTl6 
240 SRC03 
241 SRC07 
242 SRC08 
243 SRCI0 
244 SRCII 
245 SRC12 
246 SRC13 
247 SRC14 
250 SRC15 
251 SRC17 
252 FET09 
253 SSL12 
254 DOP22 
255 CON 12 
256 
257 MOV07 
260 DST03 
261 DST09 
262 DSTlO 
263 DSTlI 
264 DSTl2 
265 DSTl3 
266 DSTl4 
267 DSTl5 
270 DSTl7 
271 RSROI 
272 RSR03 
273 RSR04 

Table 4-4 (Cont) 
Microwords (Numerical Order) 

General Function 

Get new status 
Get MM vector (250) 
New instruction from MM 
Operate upon destination, store 
Negate destination, store 
Operate upon destination 
Negate destination 
Operate upon B, source, store 
Operate upon B, source, store 
Put source into B 
Put source into B 
Operate upon B, source 
Operate upon B, source 
Operate upon destination 
Operate upon destination 
Extend sign, store 
Get destination address 
Swap bytes, store 
Duplicate upper byte 
Restore modified base 
Store index data 
Get indexed source data 
Store index data 
Get indexed address data 
Store address data 
Get source data 
No-op for BUT 
Store source data 
Store justified data 
Store new instruction 
Alter code PS(C) 
Alter code PS(C) 
Display status 

Restore base address 
Restore modified base 
Store index data 
Get indexed destination data 

. Get indexed address 
Store address data 
Get destination data 
No-op for BUT 
Store destination data 
Store justified data 
Store destination 
Operate upon destination 
Duplicate byte, store 

4-22 

Flow 
Print 

6 
6 
1 
9 
9 
9 
9 
8 
8 
8 
8 
8 

) 
8 
9 
9 
8 
5 
9 
3 
2 
2 ) 
2 
2 
2 
2 
2 
2 
2 
2 
1 
9 

) 
8 

11 

4 
3 
3 
3 
3 
3 
3 
3 
3 
3 
9 
9 
9 ) 



) 

ROM Microword 
Address Mnemonic 

274 RSR05 
275 RSR07 
276 RSR09 
277 RSRI0 
300 JMP04 
301 JMP09 
302 JMPlO 
303 JMPII 
304 JMP14 
305 JMP15 

) 306 JMP12 
307 JSROO 
310 JSROI 
311 JSR02 
312 JSR03 
313 JMP13 
314 
315 CON 13 
316 
317 TRPOI 

) 320 RTIOI 
321 RTI02 
322 RTI03 
323 RTSOI 
324 RTS02 
325 RTS03 
326 TRPlO 
327 TRP11 
330 TRP13 

) 331 TRP14 
332 TRP20 
333 TRP21 
334 TRP18 
335 TRP19 
336 TRPOO 
337 TRP17 
340 BRAOI 
341 BRA02 
342 SOBOl 
343 SOB02 
344 SOB03 
345 SOB05 
346 SOB04 
347 SOB06 
350 CCCOI 
351 CCC02 
352 SCCOl ) 

Table 44 (Cont) 
Microwords (Numerical Order) 

, General Function, 

Alter codes 
Store destination 
Duplicate byte, store 
Alter codes, finish store 
Store destination address 
Store index data 
Get indexed address 
Store destination address 
Store index data 
Get destination address 
Get destination address 
Modify Stack Pointer 
Stack Linkage Pointer 
Get new linkage 
Store new linkage 
Store as new register (PC) 

Test for switch 

Form, store trap vector 
Store new register (PC) 
Get new status, modify 
Store new status 
Store new register (PC) 
Get top of stack, modify 

- Store top of stack 
Modify stack pointer 
Store old status on stack 
Modify stack pointer 
Store old PC on stack 

" Get new PC 
Store new PC 
Get new status 

, Store new status 
Jam register SP to 4 
Form, store power up vector 
Modify PC 
Rest of offset, modify 
Test count 
Mask IR register for offset 
Subtract half of offset 
No-op for BUT 
Subtract half of offset 
No-op for BUT 
Complement PS mask bits 
AND PS mask to PS 
OR PS mask to PS 

4-23 

Flow 
Print 

9 
9 
9 
9 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

11 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 



ROM Microword 
Address Mnemonic 

353 MRKOI 
354 - MRK02 
355 MRK03 
356 MRK04 
357 MRK05 
360 DOP19 
361 DOP18 
362 DOP17 
363 DOPOI 
364 DOP03 
365 DOP06 
366 DOPII 
367 DOP12 
370 DOP14 
371 DOP16 
372 SSLOI 
373 SSL03 
374 SSL09 
375 DOP20 
376 RSRII 
377 

Table 4-4 (Cont) 
Microwords (Numerical Order) 

General Function 

Modify PC with offset 
Form new Stack Pointer 
Stack points to old R5 
Load R5 with old R5 
Load PC with old PC 
Alter codes, word store 
Alter codes, byte store 
Alter codes, no store 
Subtract B from destination 
Operate upon B, source 
Subtract B from destination, store 
Duplicate lower byte, store 
Alter codes, finish store 
Subtract B from destination 
Operate upon B, source 
Negate destination 
No-op for BUT 
Duplicate byte, store 
No-op for BUT 
No-op for BUT 

4-24 

) 

Flow 
Print 

5 
5 
5 
5 
5 
8 
8 
8 
7 
7 
8 
8 

) 
8 
8 
8 
7 
7 
9 
8 
9 

) 

) 

) 



) 

Microword ROM 
Mnemonic Address 

BRAOO 111 
BRA01 340 
BRA02 341 

CCCOO 116 
CCCOI 350 
CCC02 351 

CONOO 122 
CON01 011 
CON02 041 

) 
CON03 024 
CON04 026 
CON05 030 
CON06 046 
CON07 027 
CON08 044 
CON09 047 
CON 10 045 
CON 11 050 
CON12 
CON 13 315 

CNTOO 036 

DEPOO 034 

) DEP01 062 
DEP02 063 
DEP03 064 
DEP04 065 
DEP05 066 
DEP06 067 
DEP07 070 
DEP08 071 
DEP09 072 
DEPlO 073 

) 

Table 4-S 
Microwords (Alphabetical Order) 

Microword ROM 
Mnemonic Address 

DOPOO 103 
DOP01 364 
DOP02 102 
DOP03 225 
DOP04 226 
DOP05 227 
DOP06 365 
DOP07 224 
DOP08 
DOP09 230 
DOPlO 231 
DOP11 366 
DOP12 367 
DOP13 121 
DOP14 370 
DOP15 120 
DOP16 371 
DOP17 362 
DOP18 361 
DOP19 360 
DOP20 375 
DOP21 074 
DOP22 254 

DSTOO 161 
DST01 162 
DST02 164 
DST03 260 
DST04 163 
DST05 165 
DST06 167 
DST07 166 
DST08 
DST09 261 
DSTlO 262 
DSTll 263 
DST12 264 
DSTl3 265 
DSTl4 266 
DSTl5 267 
DSTl6 237 
DSTl7 270 

4-25 

Microword ROM 
Mnemonic Address 

EXMOO 035 
EXMOI 053 
EXM02 054 
EXM03 057 
EXM04 056 
EXM05 055 
EXM06 031 
EXM07 060 
EXM08 061 

FETOO 013 
FET01 000 
FET02 016 
FET03 001 
FET04 004 
FET05 005 
FET06 136 
FET07 100 
FET08 217 
FET09 252 

JMPOO 151 
JMP01 152 
JMP02 235 
JMP03 154 
JMP04 300 
JMP05 153 
JMP06 155 
JMP07 157 
JMP08 156 
JMP09 301 
JMP10 302 
JMP11 303 
JMP12 306 
JMP13 313 
JMP14 304 
J,MP15 305 



Microword ROM 
Mnemonic Address 

LADOO 037 
LAD01 051 
LAD02 052 
LAD03 033 

MOVOO 171 
MOV01 172 
MOV02 174 
MOV03 173 
MOV04 175 
MOV05 177 
MOV06 176 
MOV07 257 
MOV08 206 
MOV09 212 
MOV10 213 
MOV11 207 
MOV12 210 
MOV13 203 
MOV14 202 
MOV15 205 
MOV16 200 
MOV17 201 
MOV18 170 
MOV19 160 
MOV20 204 
MOV21 003 
MOV22 125 

MRKOO 112 
MRK01 353 
MRK02 354 
MRK03 355 
MRK04 356 
MRK05 357 

NBROO 110 

Table 4-5 (Cont) 
Microwords (Alphabetical Order) 

Microword ROM 
Mnemonic Address 

RSROO 106 
RSR01 271 
RSR02 107 
RSR03 272 
RSR04 273 
RSR05 274 
RSR06 232 
RSR07 275 
RSR08 233 
RSR09 276 
RSR10 277 
RSR11 376 

RSTOO 127 
RSTOl 025 
RST02 040 
RST03 043 
RST04 042 

RTIOO 101 
RTI01 320 
RTI02 321 
RTI03 322 

RTSOO 124 
RTS01 323 
RTS02 324 
RTS03 325 

SCCOO 117 
SCCOl 352 

SEROO 114 
SER01 002 
SER02 017 
SER03 123 
SER04 006 
SER05 015 
SER06 012 
SER07 020 
SER08 021 
SER09 014 
SERIO 022 
SERll 023 

4-26 

) 

Microword ROM· 
Mnemonic Address 

SOBOO 130 
SOBOl 342 
SOB02 343 
SOB03 344 
SOB04 346 
SOB05 345 
SOB06 347 

SRCOO 141 
SRC01 142 
SRC02 144 
SRC03 240 ) 
SRC04 143 
SRC05 145 
SRC06 146 
SRC07 241 
SRC08 242 
SRC09 147 
SRC10 243 
SRCll 244 
SRC12 245 
SRC13 246 ) 
SRC14 247 
SRC15 250 
SRC16 137 

SSLOO 105 
SSL01 372 
SSL02 104 
SSL03 373 
SSL04 221 
SSL05 236 
SSL06 220 
SSL07 223 
SSL08 222 
SSL09 374 
SSLlO 211 
SSLll 075 
SSLl2 253 

STAOO 032 
STA01 076 

SWBOO 134 
SWBOl 135 

) 



Microword 
Mnemonic 

SXTOO 

TRPOO 
TRPOI 

'i 

TRP02 
TRP03 
TRP04 
TRP05 
TRP06 
TRP07 
TRP08 

) TRP09 

) 

) 

Table 4-5 (Cont) 
Microwords (Alphabetical Order) 

ROM Microword 
Address Mnemonic 

132 TRPIO 
TRPII 

336 TRP12 

317 TRP13 

215 TRP14 

010 TRP15 
216 TRP16 
214 TRP17 
126 TRP18 
150 TRP19 
007 TRP20 
115 TRP21 

4-27 

ROM 
Address 

326 
327 
113 
330 
331 
077 
140 
337 
334 
335 
332 
333 





) 

) 

) 

5.1 INTRODUCTION 

CHAPTER 5 

LOGIC DIAGRAM DESCRIPTION 

Detailed logic discussions are presented in Paragraphs 5.3 through 5.7 for each of the basic KDl1-A Processor 
modules. These discussions correlate with the previous information on the block and flow diagrams. 

The forniat of the discussion is ordered toward quick reference with each module and each module print identified 
separately. Detailed information on specific output logic signals is coupled with information on overall logic 
operation. The balance between these two varies as a function of the logic. 

5.2 PRINT FORMAT 

Certain print formats are used in the Circuit Schematics and Wire List of the KDII-A Processor, and its processor 
options (KEll·E, KEll-F, Ktll-D, and KJlI-A). Since information is resident in these formats, they are noted in 
the following paragraphs. 

5.2.1 Circuit Schematic Fonnat 

S.2.1.1 Logic Flow - Logic flow is from left to right with inputs on the left and outputs on the right. All inputs of 
a given name are interconnected on a given print unless different module pins exist. Signals which output to module 
pins are brought to the extreme right. Signals which do not have module pins may not be brought to the extreme 
right. In any case, signal names are grouped in vertical columns wherever possible. Connectors with input signals have 
the signal name to the right of the connector, output signals are referenced to the left of the connector. 

5.2.1.2 Module Pins -Module pins are redundantly noted for each signal occurrence. If a signal occurs on several 
sheets of a module, the module pin appears for each entry. Module pins are presented in their backpanel context 
with machine slot and section noted. For example, F07Dl refers to the Dl module pin in section F of slot 07. 

5.2.1.3 Print PrefIXes - Print prefixes are provided for each signal to identify the print upon which,the signal was 
generated. Since a most usual manner of logic debugging involves the tracing of signals back to their source, the print 
prefixes are most important. For example, Kl-7 BOVFL L signal indicates a source print of KI-7, which is sheet 7 
ofthe Kl print set for the :M7231, DATA PATHS module. Print prefixes for the various modules are correlated as 
follows. 

5·1 



Module 

M7231 
M7232 
M7233 
M7234 
M7235 
M7236' 
M7237 
M7238 
M7239 

Print PrefIX 

Kl 
K2 
K3 
K4 
KS 
KT 
KJ 
KE 
KF 

Option 

KD ll-A Processor 

KTII-D Memory Management 
KJll-A Stack Limit Register 
KEll-E Expanded Instruction Set 
KEII-F Floating Instruction Set 

Sheet information for each print prefix occurs as a dash and number after the print prefix. BUS print prefixes occur 
when multiple sources for a signal can exist; these signals are usually associated with wired-OR signal connections. 

5.2.1.4 Signal Level Indicators - Signal level indicators are provided by print suffixes of Bfor high and Lfor low. 
These indicators attempt to relate a level with signal activation. The high and low levels in the KDll-A Processor 
usually correlate with TTL logic levels. For example, K3-6 WAIT L indicates that the line, so labeled, will be low 
when the situation WAIT exists, 

Two exceptions and qualifications to this nomenclature exist. The BUS U (56:09) L signals from the ROM have a 
low indicator because of the wired-OR nature of the bus; in reality, the U WORD Buffer and ROM are active for 
high levels out. Clock signals such as K4-2 CLK IR H are active on the positive transition of the signal as they clock 
D-edge type flip~flops. .. . . 

5.2.1.5 Flip-Flop Outputs - Flip-flop outputs are allowed two forms for a single signal output. The 1 output of a 
flip-flop can be represented as (1) H or (0) L with corresponding references for the 0 output of (0) H or (1) L. This 
nomenclature recognizes the duality of any given logic signal, but in the KDII-A Processor, it is allowed only on the 
flip-flops. Signals such as K3-8 CINOOL are not presented as K3-8 -CINOO H, where the leading dash represents 
negation of the signal name. 

5.2.1.6 Inhibit Situations - Inhibit situations are noted on the input to logic gates when the signal level indicator 
of the input signal does not match the state indicator on the logic gate input. This technique allows the assignment 
of a singular name to a lOgic . line, with the duality of names resolved in a gate inhibIt. Instead of trying to match an 
input state indicator with a signal level indicator and a negated name, a direct inhibit appears in the conflict between 
the state indicator and the singularly named signals with assigned signal level indicators. . . 

5.2.1.7 Parentheses and Colons - Parentheses and colons are used to indicate inclusive' groups of bits. A signal BUS 
U (56:09) L indicates the BUS U signals for bits 56 through bit 09. This grouping of bits occurs in actual signal 
names used on the prints; itis also used to group for discussion, signals of like nature that appear singularly on the 
prints. 

5.2.1.8 Parentheses and Commas - Parentheses and commas are used to specify singular bits'in a signal. The signal 
K4-3 CLR UPP (7, 6, 2) L indicates a clearing operation on bit 7, bit 6, and bit 2. 

5.2.1.9 Basic and Expansion Signals - Basic and expansion signals in the machine are noted with leading Bs or Es. 
For example, Kl-7 BOVFL STOP H is a signal generated in the basic KDII-A Processor, while KJ-2 EOVFL STOP 
H is a signal generated in an option or expansion of the ba~ic processor. 

5-2 

) 

) 

) 

) 



) 

) 

-) 

) 

) 

5.2.1.10 Logic Symbols - Logic symbols for the KDll-A Processor include simple logic gates and flip-flops, and 
complicated medium and large scale integration (MSI and LSI) gates. Symbols for the latter devices tend to be 
rectangular with function information and grouping provided on the symbols. Truth tables are provided on the 
appropriate logic prints. 

5.2.1.11 System Information - System information is provided on a number of logic prints in the form of tables 
and waveforms. 

5.2.1.12 Jumper Information - Jumper information is provided on each print for option connection. Fixed 
formats on the etch board also provide information. Jumper numbers (WI, W2, etc.) are etched in the rest (or basic) 
position where two jumper positions are possible. Note on the STATUS board that W notations for the PWR UP 
jumpers provide the basic vector of 24. 

5.2.1.13 Cable Connection - Cable connection information is provided on each print and on the etch boards. 
Special attention must be given to shield location as noted on the prints and on the etch. 

5.2.2 Wire List Format 

5.2.2.1 Alphabetical Searches - Alphabetical searches for signal names are eased by the listing of signal names 
without their print prefixes. The print prefix can still be determined by noting the source print in the REMARK 
column. The print prefix is needed in identifying the signal on the logic prints. 

5.2.2.2 Print References - Print references are noted in the DRAW column for all prints on which a signal occurs. 
Multiple sheet entries within a print set are noted without commas between the sheet references. For example, the 
entry K4-235 indicates that the signal occurs on sheets 2, 3, and 5 of the K4 print set (no print sets have more than 
nine sheets). 

5.2.2.3 Etch Backpanel - Etch backpanel information is contained in the wire list and is identified by an H in the 
Q column and a P in the REMARK column. EXCEPTION column notations for etch connections should be ignored. 

5.2.2.4 Forward Searching - Forward searching for logic interaction (where the signals are used) is best done 
through the wire list. All signals for a given name are noted with appropriate print references. 

5.3 M7231 , DATA PATHS, Kl MODULE 

The DATA PATHS module includes the following logic: 

a. The Arithmetic Logic Unit (ALU) with an A input and a B input with multiplexer (B MUX) and register 
(B), and an output register (D). 

b. The Bus Address Register (BA) with its input multiplexer (BA MUX) and output drivers to the Unibus. 

c. Processor address decoding upon the internal Bus Address Register. This address decoding is not on the 
Unibus; therefore, these addresses only respond to processor (console or program) addressing. 

d. D Register decoding for sensing when portions or all of D is zero. 

e. The Scratch Pad Register (REG) with its associated addressing selection under direct microword control. 

f. A console interface with drivers for data display of the D MUX signals, input receivers of the Switch 
Register setting on the console, and XOR matching circuit between the low order Switch Register (SR) 
settings and the Buffered Microprogram Pointer (BUPP) to determine when the microprogram matches 
the console switch settings. 

5-3 Kl 





i 

1 
I 

Print Kl-2: DATA PATHS (03:00) 

This print shows the data path for the data bits 03 to 00. It has the ALU and its associated A and B input logic as 
well as the output D Register and Bus Address Multiplexer (BA MUX). 

Kl-2 D MUX (03 :00) H signals at the output of the D Multiplexer provide a main data path in the machine with 
inputs to the B Register associated with the ALU and to each of the other processor registers including the Scratch 
Pad (REG) and the Processor Status (PS) Registers. These signals are also available on the back panel and are used in 
processor options (KE11-E, KEll-F, KT11-D). 

The following inputs are combined or multiplexed into the D MUX signal: the D Register at the output of the ALU, 
the buffered UNIBUS BUS D signals, a right shifted output of the D Register, and the buffered BUS RD signals. The 
latter signals (BUS RD) are from the outputs of the various processor registers located in the DATA PATHS section 
of the machine and include Scratch Pad (REG), Instruction (IR), and Processor Status (PS) Registers, as well as 

) other processor option registers. The D MUX signals are displayed on the DATA display on the console. 

) 

Kl-2 COUT03 L signal is the carry out of the third bit of the ALU. It is a signal derived in the carry bridging 
network of the 74182. This carry bridging is used to allow a faster settling of the 74181 by looking ahead to 
determine if carries exist. 

Kl-2 D (03:00) (1) H signals output the D Register as noted, input to driver 8881 gates to the UNIBUS, and feed 
around to the D MUX on the input to the B side of the ALU. The D Register is essential in the data path because of 
the need to hold data for Unibus operations and for rewrite to the Scratch Pad Register (REG). The latch nature of 
the Scratch Pad Register requires a storage device in the data loop to avoid a simultaneous read and write situation in 
the scratch pad. The Kl-2 DOO (1) H signal is also used for carry data (K3-9 C DATA H) in a Rotate Right 
instruction. 

BUS D (03 :00) L provide the Unibus BUS D signals through appropriate drivers (8881s) with gating signal K4·5 BUS 
FMDH. 

Kl-2 CLR D H signal is noted as an output only to avoid repetition of the pull-up resistor throughout the next three 
prints. The clear input of the D Register is essentially tied high and is not used as a signal. The D Register, as many 
of the other registers in the KDII-A Processor, are never cleared; they are assumed to have erroneous information 
until proper information is clocked into them. 

Kl-2 BA MUX (03 :00) H signals are the inputs to the Bus Address Register (BA) located on the module (print 
Kl-6). Multiplexed signals allow selection of either the output of the ALU or the buffered bus RD signals as the 
input to the Bus Address Register. The choice of these inputs is a function of microcontrol for a flow operation in 
process. The buffered bus RD input is provided for speed for operations in which the machine waits on bus 
operation, with the address coming from the Scratch Pad Register (REG). The ALU input accommodates those 
situations in which data is altered before use. 

5-5 Kl-2 





) 

) 

" 

) 

Kl-3 D MUX (07:04) H 
Kl-3 D (07:04) (l) H 
BUS D (07:04) L 
Kl-3 BA MUX (07:04) H 
Kl-3 COUT07 L 

Print Kl-3: DATA PATHS (07:04) 

With the exception of bit references, these signals are 
similar to signals on the Kl-2 print. 

Kl-3 D07 (1) H signal provides sign information for byte data and is used as an input to the condition codes on print 
K5-2. 

Kl-3 RD07 H signal is the highest order bit of byte data for the A input of the ALU. It is used in the status module 
(print K5-2) to determine overflow conditions in the ALU. 

Kl-3 B MUX07 H signal is the high order bit of the byte input to the B input of the ALU. It is used in the status 
module (print K5-2) to determine the overflow condition. 

Kl-3 ALU07 H signal is the direct output of the ALU prior to the B Register. It is provided for test purposes. 

5-7 Kl-3 





) 

) 

Kl-5 D MUX (15 :12) H 
Kl-5 D (15:12) (1) H 
BUSD(15:12)L 
Kl-5 BAMUX(15:12) H 

Print KI-5: DATA PATHS (15:12) 

With the exception of bit references, these signals are 
similar to signals on the KI-2 print. 

KI-5 D(C) (1) H signal is fed around into the D MUX on this same sheet and is used in a rotate right situation. The 
D(C) flip-flop is an extension of the D Register for the carry bit. The COUT MUX allows microcontrol selection of 
the carry output of the ALU on its inputs for word or byte, the carry bit of Processor Status PS(C), and bit 15 of 
the ALU output for shift or rotate. 

Kl-5 COUT MUX (L) signal is the selection of the aforementioned signals on the input to the D(C) flip-flop. The 
signal provides a test point. 

KI-5 COUT15 L signal is the carry output of bit 15 of the ALU. It is used as one of the inputs for the COUT MUX 
and is used in the KEII-E option. 

Kl-5 RD 15 H signal inputs to bit 15 of the arithmetic input on the A side. This signal is used in this module as an 
input to the D MUX and BA MUX, as are all of the buffered BUS RD signals. It is also used as an input to the 
condition code logic for determination of word overflow conditions (print K5-2). 

KI-5 B MUX15 H provides the bit 15 input to the ALU on the B side. This intermediate signal is used on the 
STATUS board in the condition code logic to determine word overflow conditions (print K5-2). 

Kl-5 ALUI5· H is the output of bit 15 of the ALU and is used as an input to the D Register, the BA MUX, and the 
COUTMUX. 

KI-5 B15 (1) H signal is bit 15 of the B Register. It is used as an input to the B MUX on this print and the SWAP 
BYTE input on print Kl-3. The KEll-E and KE11-F options also utilize this signal. 

5-11 Kl-5 





) 

-) 

) 

',To 

) 

Print Kl-6: BA (15:00) 

This print contains the Bus Address Regjster (BA) and the bus driving gates to the Unibus. The bus address signals 
for bits 16 and 17 are derived from bits 13,14, and 15 for the basic KDl1-A.1'he Unibus drivers, BUS A (15:00), 
on the print can be disabled when the KTll·D option is installed; then the above bus address bits are provided by 
logic on the M7236 module of the option. 

KI-6 BA (17*16) H signal is a direct function of the bus address bits 15,14, and 13 being set. This signal is used for 
display purposes (print KI-9) and with the KTl1·D option. 

BUS A (17:00) L Unibus signals provide the bus address signals from the processor and ate gated by K4-5 BUS FM 
BA H. If the KTll·D option is installed, a jumper (WI0) grounds the enabling signal of the 8881 gates for bus 
address bits (15 :06). 

KI-6 BA (15:00) (1) H signals are the direct output of the Bus Address Register. These direct outputs are used for 
driving the Unibus gates on this print, for decoding of processor addresses (print Kl·9), for data display (print K.5-7), 
and for generation of Unibus addresses fOr the KT11·D option (if installed). Some of the signals are used with the 
KJl1 option for comparison against the Stack Limit Register. Low order signals for bits 03 to 00 are used as one of 
the REG selection address inputs. Additional uses for the BAOO are odd byte address sensing, allowance of odd byte 
(print K44)j and byte branching information for the BUBe codes (print i<.3-7). 

5-13 





) 
Print Kl-7: ADRS DECODE 

The decoding of the Bus Address Register prior to the Unibus limits the use of these addresses to processor 
references. The addresses are not derived from the Unibus and it is not possible for a peripheral to access these 
addresses. The Bus Address Register is also decoded to determine the absoluteness of an address for stack overflow 
sensing. Decoding logic is also provided on the D Register to sense the status of its contents on byte or word basis. 
The table at the right of the sheet provides correlation between the mnemonic for an address and the octal value of 
the address in the bus address register. Notes are also provided for jumper selection. 

Kl-7 PS ADRS H decodes the processor status address to enable the combinational logic inputs to the Processor 
Status Register (print K5-2) and sequencing of a BUS SSYN response by the processor (print K4-6). The address is 
also utilized in the microbranch code to ensure a reservice of possible bus requests because of a change in machine or 
processor status (print K5-7). The signal is provided by the KT1I-D option when installed; the jumper (WI) is 
removed and the option provides the processor status address. 

KI-7 SLR ADRS H addresses the Stack Limit Register and is normally disabled by a jumper (W2) to ground, unless 
the option KJll-A is installed. When KJll-A is installed, the signal provides selection of that register and the 
sequencing of a BUS SSYN through logic on print K4-6. The signal is also wired to the KT1I-D slot so that if this 
option is installed it can provide the address. The jumper (W2) is removed and the KT1I-D provides the Stack Limit 
Register address. 

KI-7 REG ADRS H provides the scratch pad Unibus addresses used during console operation. The jumper (W3) 
allows generation of the signal from this source or from the KT1I-D option, if installed. The signal, when present, is 
utilized in the branch circuits of console operation to effect proper incrementation and access under console 
operation (print K3-2). Access to the Scratch Pad Register during instruction operation is through Instruction 
Register decode. Direct speCification of registers is done by the address selection logic on print KI-8 under 
microprogram control. 

KI-7 SR ADRS H provides Switch Register address decoding and allows derivation, either from this module or by 
removal of the W4 jumper from the KT11-D option. The generation of this address, as with other processor 
addresses, results in the sequencing of BUS SSYN through the logic shown on print K4-6. 

KI-7 BA (06 :03) = 0 H signal is a test point for determining that those bits of the bus address are zero. 

) KI-7 BA (07:05) = 1 L signal is a decoding of the segment of the bus address bit 07-05, and is used with the 
KJ1I-A option. 

KI-7 BA (15 :08) = I L signal is a decoding of the Bus Address Register to determine content and not an address 
situation. This output is for test purposes. 

KI-7 BOVFL STOP H signal detects a red zone stack violation and is used to interrupt the microflow (print K44). 

KI-7 BOVFL L signal is used to sense a yellow zone stack violation and is used to set a trap servicing flag (print 
K54). 

KI-7 D (15 :00) = 0 H indicates that those bits of the D Register are zero. This signal is used as an input to the 
condition codes for the Z bit of processor status (print K5-2); it is also used as an input to the microbranch logic 
(print K3-2). This signal is also used in the KEII-E and KEII-F options. 

KI-7 D (03:00) = 0 H signal is used for a partial indication that the byte data of bits D (07:00) is zero for the inputs 
) to the conditional codes of processor status (prints K5-2). 

5-15 Kl-7 





) 

-) 

) 

) 

Print Kl-8:REG [15:00] (15:00) 

This print contains the Scratch Pad Register (REG), basic to the PDP-II architecture. There is address selection 
enabling either direct and complete selection by the microprogram control,or selection by the Instruction Register 
source field, the Instruction Register destination field, or the lower bits of the Bus Address Register. Some variations 
in the addressing are affected by jumpers (W5, W6, and W9) when the KTlI-D option is installed. The registers 
themselves take data from the D MUX signals and output data onto the BUS RD lines. The resistor terminator for 
this Wired-OR BUS RD bus are shown on this print. 

BUS RD (15:00) Lcommon input bus in the data paths has several sources. Its input is shown on prints KI-2 
through KI-5, With SOurces ftom the Scratch Pad Register (REG) (this print), from the processor status system (PS) 
(print K5-2), and from the KEII·E and KEII-F options, as well as the KTlI-D options. 

KI·8 R (X6+ X7) H signal senses selection of either register 6, 7, 16, or 17 (octal addresses) and is used to force an 
increment of 2 on any byte operations referencing register 6 or 7 in the instruction set (print 10-8). It is also used to 
enable the check overflow logic when the Processor Stack Register is accessed (print K44). This last use requires the 
KI-8 RADRSO L signal. 

KI-8 RADRS (03:00) L. These are the actual signals applied to the Scratch Pad Register les. They are the 
complement of the address applied to the selection AND/NOR gates. The signal KI-8 RADRS 0 L is used in 
conjunctioh with KI.s R (X6+X7) H to specifically indicate the Stack Pointer (REG 06) to enable the check 
overflow logic in the bus timing circuitry (print K44). 

5-17 Kl-8 





) 

) 

-) 

) 

) 

Print Kl-9: CONSOLE AND MATCH 

This print shows the connector interface to the KYII-D console. The DATA display is provided with type 380 gates 
buffering the D MUX (15 :00) signals. In addition; the Switch Register signals from the console are brought in and 
enabled by the K14 BUS FM SR H signal through type 8881 gates to the Unibus BUS D (15:00). A matching circuit 
is provided which compares the lower order Switch Register settings [SR (08:00)] with the basic microprogram 
pointer (BUPP) signals. Upon a match, pulse KI-9 P MATCH L is generated. this pulse occurs at the beginning of 
the microword specified in the Switch Register. The signal KI-9 UPP MATCH H is used with the maintenance 
console for a HALT on match. (See restrictions below.) 

KI-9 SR (17: 16) H signals for the bits 17 and 16 Switch Register settings come from the console through this 
module and are provided to the KT11-D option, which allows a physical address involving these address bits (print 
KT -9) during console operation. 

BUS D (15 :00) L Unibus signals are enabled by K44 BUS FM SR H to allow the Switch Register settings onto the 
Unibus. 

KI-9 UPP MATCH H signal provides a level output when the Switch Register settings bits (08:00) match the 
buffered UPP signals. This signal is used on the timing board in conjunction with the KMII-A Maintenance Console 
option to halt the machine at the specified microaddress. The limitation is that the matching address must have a 
CL2 or CL3 preceding it. 

KI-9 P MATCH L is a timing pulse which occurs at the end of a machine cycle, gated against the aforementioned 
match signal to provide a scope triggering pulse at the beginning of the selected word. This occurs independently of 
the maintenance module and is of value in situations where the machine will not be halted. For both of these 
instructions, the maintenance console section should be referenced for specifics of operation. 

5-19 Kl-9 





) 

-) 

) 

) 

5.4 M7232, U WORD, K2 MODULE 

The M7232 module for the U WORD (U is used in place of the Greek letter Mu for micro) provides the central 
portion of the microcontrol. It contains the basic processor's read-only memory (ROM), the U WORD Register 
(various mnemonics per function), the Past Microprogram Pointer Register (pUPP), and certain driving buffering 
gates for signals BUPP (08:00) and EUPP (08:00). Connectors at the back module edge interconnect to the KEll-E 
option for expansion of the basic microword ROM. 

The U WORD logic on the M7232 module is very regular. The ROM has 256 words, each of which has 56 bits. 
Output signals from the ROM, BUS U (56:00), feed a resistor terminator with a wired-OR input from the module 
connectors located on the rear of the module. l'hese inputs are for optional expansion of the ROM beyond 256 
words. The BUS U signals feed the U WORD Register that controls the machine. The first segment of the ROM 
(07:00), on prints K2-2 and K2-3, is concerned with the microaddress and has 74HlO gates between the ROM 
output and the U WORD Register [UPP (08;00)] . These gates allow the next base address, BUS U (08:00), to be 
modified, if necessary, by basic microbranching logic [K3-2 BUBC (04:00)] or expanded microbranching [KE4 
EUBC (04:01)]. Additional logic exists on the output of the UPP portion of the U WORD for driving expansion 
ROMs and for storage of the present rnicroaddress, PUPP (08 :00). 

The use of the BUS U (56:00) L signals and the low state indicator on the ROM gate output indicate the physical 
wired.QR nature of these signals. No absolute correlation should be made between low active and the state of the 
ROM output or the U WORD Register. For U (56:09), a high level indicates a true or active signal, both at the ROM 
output and in the U WORD Register. This is presented in the microflow diagrams on sheets 9 through 12. For U 
(08:00), the microaddress portion of the microword, a low output at the ROM output represents an active or true 
signal. This complementing of the ROM pattern occurs because of the inversion in the 74HlO gate prior to the U 
WORD Register, UPP (08:00). In the U WORD Register, a high level represents an active or true signal. The flow 
diagrams on sheets 9 through 12 show the complement of the ROM output for the UPF field; this is done to allow 
the address reference from the flow diagrams without the need to complement. Note that the UPF field represents 
the complemented ROM output of the next address without reference to microbranch inputs. If there are not 
microbranch inputs, the UPF field represents the U WORD Register, UPP (08:00). 

The output signals noted in detail for this module are primarily those of the U WORD Register. These signals, with 
the alterations possible to the UPF field, are directly compatible to the BASIC U WORD noted in the block diagram 
of the U WORD and the tables shown on engineering drawing D-BD-RDI1-A-BD. This drawing also provides 
numerous tables of the microprogram control fields, noting the codes, the effect, and occasionally the purpose. 

The signals on prints K24 through K2-8 are presented in order from bottom to top. This is in order of ascending 
BUS U allocation, and represents a logical presentation of the functions. 

5-21 K2 





) 

J 

) 

) 

Print K2-2: U (03:00) 

K2-2 BUPP (03 :00) H signals are the Buffered Microprogram Pointer signals for the noted bits. They are used to 
address expansion ROMs in the KTll-D, KEll-E, and KEll-F options. They are also displayed on the KMll-A 
Maintenance Console and are matched against the Switch Register for a HALT or for scope timing pulses (print 
Kl-2). Note that the microword address present here is the address of the next microword. Alterations for 
microbranching will have already occurred prior to the input to the UPP Register, if they were to occur. Only a 
microjam (JAM CLK on print K4-3) can alter this address by setting or clearing the UPP Register. This change is 
then reflected in the signals. 

K2-2 PUPP (03:00) (1) H signals are the output of the Past Microprogram Pointer Register. It provides the 
microprogram address of the microword presently in the U WORD Register. The PUPP Register is displayed in the 
KMll-A Maintenance Console option for the basic machine. This register is necessary to record the present 
microword address since the microword in the U WORD Register contains only the next address. As this word is 
changed [K4-2 CLK (UPP*PUPP) H], the next address (now the present address) is transferred to the PUPP 
Register. Most searches in the microflow diagrams (prints 9 through 12 of the M7232) for detailed operation will use 
the PUPP address as the starting point. 

K2-2 CLR PUPP L signal is used only to hold the CLR input of the PUPP Register high. It is labeled for reference on 
print K2-3 to eliminate repetition of the pull-up resistors. 

5-23 K2-2 





) 

) 

) 

) 

Print K2-4: U (16:09) 

K24 CLR U (16:09) signal represents a pull-up resistor to the clear lines noted for the U WORD Register. 

K24 RIFO (0) H is used on the address input to the Scratch Pad Register for a special situation in which the 
KT II-D Memory Management option provides the user Stack Pointer instead of the usual REG 06 Stack Pointer. 
The RIF notation is discussed in the following paragraph. 

K24 RIF (03 :00) (1) H are the Register Immediate Field signals which allow direct microprogram addressing of the 
16 Scratch Pad Registers (REG) when the Select Register Immediate microcontrol is enabled. Direct microword 
selection of a Scratch Pad Register occurs at several points in the microflow. It is used during FETCH and in the 
immediate address mode to explicitly select the program counter for incrementation. Trap sequences RTI and RTS 
instructions directly address the Stack Pointer and Program Counter registers. REG 0 is selected during the 
execution of the HALT instruction and during console operations. 

K24 R125 PULL UP H signal is an identification of the resistor pull-up noted for use on print K2-3. 

K24 SRI (1) H is the Select Register Immediate signal which is used in the Scratch Pad Register selection logic 
(Kl-8). It enables the register immediate field provided by the microword to directly select a Scratch Pad Register 
(REG). 

K24 SRBA (1) H signal is the Select Register Bus Address signal which enables the lower four bits of the Bus 
Address Register to select a Scratch Pad Register. This selection is used in the EXAMINE and DEPOSIT microflow 
for console operation. It is specifically used when an internal Scratch Pad Register address is accessed. The 
nomenclature used in the flow diagrams is R(BA), which indicates an internal register addressed by the Bus Address 
Register. 

K24 SRD (1) H is the Select Register Destination signal which is used in the scratch pad address logic to enable the 
destination field of the Instruction Register IR (02:00). This field is used for various instructions that have 
destination addresses. 

K24 SRS (1) H is the Select Register Source signal which is used in the Scratch Pad Address logic to enable the 
source field of the Instruction Register IR (08:06). This field is used in binary instructions. 

NOTE 
The use of discrete 74H74 flip-flops for the U WORD Buffer 
for REG addressing controls reflects the emphasis on reducing 
access time for data. 

5-27 K2-4 





) 

) 

Print K2-5: U (28:17) 

K2-5 UBF (04:00) (1) H are the Microbranch Field signals which enable various test conditions for branching the 
microprogram address. The actual switching of various conditions is done in the multiplexers shown on print K3-2. 
A total of 32 possible microbranch tests are enabled throughout the microflows and are directly noted in the flow 
diagrams by the BUT notation (Branch Microprogram Test) and in the table on print D-BD-KDII-A-BD. The 
enabled tests may consist of a number of bits or a single bit and may relate to the Instruction Register or to a single 
flag flip-flop. 

The UBF field is also decoded on the STATUS board (print K5-3) to provide enabling signals during the microwords 
in which this field of a specific BUT is present. The decoded signals are used to clear or set flags relating to the tests 
upon which a Branch Microprogram Test is being performed. 

K2-5 SBAM (1) H is the Select Bus Address Multiplexer signal and is used on the data path to control the Bus 
Address Multiplexer (prints KI-2, 3,4,5). It selects either the buffered BUS RD data or the output of the ALU for 
input to the BA Register. A high level in this microcode control bit enables the ALU output to the Bus Address 
Register data input. 

K2-5 SDM (01 :00) (1) H are Select D Multiplexer signals and are used in the data path (KI-2 through KI-5) to select 
the D MUX signal from four possible sources. The output code, or enabling levels, provided by this field can be 
directly associated with the 74153 multiplexer logic symbol and truth table located on the DATA PATHS prints. 
Essentially, a 00 SDM code selects the A input (BUS RD); a 01 SDM code selects the C input (D Register); a 10 code 
selects the buffer Unibus data (BUS D); and a 11 SDM code selects the D input (right shifted D Register). 

K2-5 SBML (01 :00) (1) H are Select B Multiplexer Low microcontrol signals which provide selection signals to the 
lower eight bits of the B MUX in the DATA PATHS shown on prints Kl-2 and Kl-3. The separation of the B MUX 
into an upper and lower portion for microcontrol allows additional flexibility in handling byte, sign extend, or SWap 
byte situations. The code enables the following to the B input of the ALU: 

a. An SBML code of 00 selects the low byte of the B Register directly. 

b. An SBML code of 01 selects the low byte of the B Register directly and is used for sign extension in the 
upper byte [B MUX (15 :08)] . 

c. An SBML code of 10 selects the upper byte of the B Register for a swap byte instruction. For example, 
bit 8 of the B Register is put in the bit a position of the ALU; this is true in sequence for the other bits. 

d. An SBML code of 11 selects the B constants [BC (07:00)] as inputs to the ALU. 

K2-5 SBMH (01 :00) (1) H are the Select B Multiplexer High signals Which provide selection signals to the upper byte 
of the B MUX in the DATA PATHS on print K14, 5. The code enables the following to the B input of the 
arithmetic logic. 

a. An SBMH code of 00 selects the B Register directly for the B input. 

b. An SBMH code of a 1 selects the sign extension bit (B07) for the B input. 

c. An SBMH code of 10 selects the lower byte of the B Register for a swap byte situation. 

d. An SBMH code of 11 selects the B constants. These constants are not discrete for each bit input on the 
higher byte, but instead consist of a discrete input for bit 11 and a composite input BC (15: 12, 10:08) H 
for the other inputs. 

5-29 K2-5 





) 

--! 

Print K2-6: U (40:29) 

K2-6 SBC (03:00) (l) H are Select B Constant signals which provide selection through combinational logic (print 
KS-S) of a possible 16 constants for use by the B Multiplexer. The encoding of constants selection is utilized to 
conserve microcontrol storage (ROM) bits. A table of the constants is provided on print KS-S and the block diagram 
print D-BD-KD11-A-BD. 

K2-6 SALU (03:00) (l) H are the Select Arithmetic Logic Unit signals which provide direct microcode selection of 
the functions that the ALU will perform. These signals are selected by logic on print K3-8 for direct ALU control 
unless a DAD microcode of 11XX is present. (See the DAD table on print D-BD-KD11-A-BD. The ALU table on the 
same print also notes the Instruction Register and ALU interaction.) 

K2-6 SALUM (l) H is the Select Arithmetic Logic Unit Mode signal which is used in the same way as the SALU 
codes previously mentioned. It is used directly on the logic shown on print K3-8 and comprises a DAD code which 
allows IR selection of the ALU function. 

K2-6 SPS (02:00) (l) H are the Select Processor Status signals which provide an encoded combination for various 
functions on the processor status word. These operations on the processor status word are not unlike the encoding 
of the microword for the discrete alteration of data (DAD) codes. A table of SPS codes and functions is noted on 
the block diagram print D-BD-KD11-A-BD. Specific bits perform certain functions, and there is also a total decoding 
of these bits to perform other functions. The code is used in the logic shown on print KS-2 to directly select the 
inputs to the Processor Status Register, in the logic shown on print KS-2 to directly select the inputs to the 
Processor Status Register, and in the logic shown on print K3-9 to effect the condition code inputs. 

5-31 K2-6 





) 

) 

) 

Print K2-7: U (52:41) 

K2-7 DAD (03:00) (1) H are the Discrete Alteration of Data signals which provide an encoded portion of the 
mictoword used throughout the machine to allow exceptions. It is used with Unibus cycles to check for odd address 
or stack overflow, and in the ALU logic to allow alteration of the code as a function of the Instruction Register. The 
DAD code is also used within the console loop for setting and clearing EXAM and DEP flags on consecutive 
operations. A summary of usage is provided in the DAD table on the block diagram, U WORD, and tables, print 
D-BD-KDll-A-BD. 

K2-7 BGBUS (1) H is the Begin Bus signal which forms a clock bus signal with a PI or P2 pulse (print K44). This 
clock bus signal, in tum, is used to clock the initiating signals shown on print K44 to begin a bus cycle, and also to 
load registers with various error and stack conditions which should be checked on each operation. Signal BGBUS, 
shown on print K4-5, is used to clock the NPR signals. 

K2-7 C (01 :00) BUS (1) H signals consist of the Cl BUS and CO BUS signals usual to the Unibus. These control 
signals are clocked into holding flip-flops shown on print K44 for use throughout the bus cycle. 

K2-7 CLKBA (1) H is the Clock Bus Address signal and it provides an enabling signal for the pulses (print K4-2) used 
to clock the Bus Address Register. 

K2-7 CLKD (1) H is the Clock D signal which provides an enabling signal for the pulses (print K4-2) used to clock 
the D Register. 

CLKB (1) H is the Clock B signal which provides an enabling signal for the pulses (print K4-2) used to clock the B 
Register. 

K2-7 WRL (1) H is the Write Low signal which provides a signal to enable a Write signal (print K4-2) to the Scratch 
Pad Register for the lower byte. 

K2-7 WRH (1) H is the Write High signal which provides a signal to enable a Write signal (print K4-2) to the Scratch 
Pad Register for the upper byte. 

5-33 K2-7 





) 

) 

-) 

) 

) 

Print K2-8: U (56:53) AND CONNECTORS 

K2-8 CLKIR (1) H is the Clock IR signal which provides an enabling signal for the pulses (print K4-2) used to clock 
the Instruction Register. It is enabled only during the FETCH cycle. 

K2-8 CLKOFF (1) H is the Clock OFF signal which is used in the logic shown on print K4-2 to provide direct 
microprogram control of clock continuance. When this bit is enabled, the Clock IDLE flip-flop is clocked on while 
the Clock RUN flip-flop is clocked off. The CLKOFF microcontrol stops the processor directly after the micro word 
in which it appears. The processor then waits for an external asynchronous start signal on the set input of the RUN 
flip-flop. 

K2-8 CLKL (01 :00) (1) H are the Clock Length Code signals which provide selection of the cycle lengths used in the 
current microword. This signal (print K4-2) controls the pulse stream within the delay line chains. A CLKL code of 
00 or 01 causes a Clock Length 1 (CLl) signal. If the CLKL code 00 is used, a special overlap situation may be in 
effect. A CLKL code of 10 effects a Clock Length 2 (CL2), a CLKL code of 11 effects a Clock Length 3 (CL3). The 
normal duration of these respective cycles are: 

CLl 140 ns 
CL2 200 ns 
CL3 300 ns 

K2-8 CLKL (01 :00) (0) H signals are the complement of the clock length code and are used to ensure direct and 
rapid gating of the basic clock signals within the delay line chains. 

CONNECTORS - On this sheet, the interconnection to the KE11-E and KE11-F options are shown. The BUS 
signals noted as inputs (signals to the right of the connector) are wire-ORed throughout the module to the basic 
ROM output. EUPP (07:00) output signals (to the left of the connector) provide the address signals for the 
expansion ROM. 

5-35 K2-8 





) 

) 

-) 

) 

) 

U WORD Microprogram Listing 

Sheet 9 (ADROOO-077) 
Sheet 10 (ADR100-177) 
Sheet 11 (ADR200-277) 
Sheet 12 (ADR300-377) 

The U WORD Microprogram Listing presents the--read-only memory (ROM) content of the M7232 module and of 
the KDII-A Processor. The format is as follows: 

Octal notation is used throughout the listing for word addresses and the contents of the individual 
microprogram fields. 

Addresses of the U WORD are presented downward in octal numerical sequence under the ADR (address) 
column. The addresses correspond to those noted in the flow diagrams (D-FD-KDll-A-FD). Each address 
presents the complete microword for that address in the same horizontal line. 

Functions of the U WORD are listed across the top of each table. These functions represent individual bits in 
the U WORD and, are presented in fields. The fields are associated with the individual U WORD bits in the 
block diagram, U WORD, and tables print D-BD-KD11-A~BD. 

The mnemonics for the U WORD fields (right to left) are as follows: 

UPF 
U(08:00) 

RIF 
U(12:09) 

SRX 
U(16:13) 

UBF 
U(21:18) 

Microprogram Pointer Field represents the next microword base address in the present ROM word. 
This field is complemented at the output of the ROM. The field is uncomplemented in the U 
WORD Buffer Registers (UPP 08 :00) but may have microbranch alterations already made to the 
ROM output. At this point, the address becomes that of the next ROM word and is used to 
address the ROM. The transfer of this address to the PUPP Register when the next ROM word 
enters the U WORD Buffer Register facilitates comparison of the U WORD and the Microprogram 
Listing. In the single clock mode of the maintenance console option (KMI1-A), the PUPP address 
can be used in the ADR column to find the current controlling microword. The Microprogram 
Listing can also be correlated with the flow diagram from its microword address. 

NOTE 
With the exception of the UPF field, the function and states of 
the other fields are directly (uncomplemented) represented at 
the output of the ROM and in the U WORD Buffer. Details of 
operation have already been presented in the logic discussion 
on the U WORD Buffer signal outputs. 

Register Immediate Field selects a scratch pad address when enabled by the Select Register 
Immediate bit (U13) of the SRX field. 

Select Register provides an address mode for Scratch Pad Register selection where X can be Select 
Register Immediate (SRI), Select Register Bus Address (SRBA), Select Register Destination 
(SRD), or Select Register Source (SRS). 

Microbranch Field enables the logic which can alter the UPF microword address to allow a 
branching of the microprogram flow. The U WORD Buffer for this field is UBF (04:00). A 
correlation is made between the Branch Microprogram Test (BUT) number and its purpose on 
print D-BD-KDII-A-BD. 

5-37 U-WORD 



SBA 
U22 

SDM 
U(24:23) 

SBM 
U(28:2S) 

SBC 
U(32:29) 

ALU 
U(37:33) 

SPS 
U(44:41) 

DAD 
U(44:41) 

BUS 
U(47:4S) 

CBA 
U48 

CD 
U49 

CB 
USO 

WR 
U(S2:S1) 

crR 
USS 

CLK 

U-WORD 

Select Bus Address directly controls the Bus Address Multiplexer on the input to the Bus Address 
Register. When enabled, the U WORD Buffer signal, SBAM, selects the ALU output instead of the 
BUS RD signal output. 

Select D Multiplexer directly controls the selection of inputs on the D Multiplexer (D MUX). Its 
octal codes 0, 1,2, and 3 correlate respectively to the A, B, C, or D inputs in the logic symbol. 

Select B Multiplexer directly controls the selection of the inputs on the upper and lower byte 
sections of the B Multiplexer (B MUX). 

Select B Constants controls the logic which generates B constants, which are then selected by the 
B Multiplexer. The code, the constants, and the purpose of the codes are presented in the SBC 
table on print D-BD-KDII-A-BD. 

Arithmetic Logic Unit controls the mode of operation of the ALU in the data paths. The code is 
not used directly and allows discrete alteration as a function of the Instruction Register. This 
interaction is shown in the ALU table of the block diagram, U WORD, and tables print 
D-DA-KDII-A-BD. 

Select Processor Status provides a discrete and encoded microcontrol of the input and clocking of 
the processor status word. This control is especially concerned with the individual response by the 
condition code portion to each instruction. 

Discrete Alteration of Data is a microcode field that provides for the alteration of usual usages of 
data (including microcode data). A usual alteration is the checking for odd addresses or stack limit 
violations during bus operations initiated by microprogram data. A table of functions and codes is 
noted on the block diagram, U WORD and tables print D-BD-KDII-A-BD. 

BUS operations for the Unibus are controlled by this micro control field. Included are the bus 
control signals, Cl BUS and CO BUS, and their initiating signal BGBUS. A table of bus operations 
(including the non-data transfers) is shown on print D-BD-KDII-A-BD. 

Clock Bus Address field provides the direct enabling signal for clocking the Bus Address Register. 

Clock D field provides the direct enabling signal for clocking the D Register. 

Clock B field provides the direct enabling signal for clocking the B Register. 

Write field provides two directly used micro word bits for writing into upper or lower byte of the 
Scratch Pad Register. 

Clock IR field provides the direct enabling signal for clocking the Instruction Register. 

Clock field contains both the clock cycle length control (CLKL 0, CLKL I) and on-off control 
(CLKOFF). 

5-38 

) 

) 

) 



) 

) 

-) 

) 

The three other columns contained in the Microprogram Listing are: 

ADR 

STATE 

FLOWS 

The microprogram address of the microword displayed on that line. This address can be obtained 
from the flow diagram or from direct observation of the PUPP Register with the KMII-A 
Maintenance Console option., 

The mnemonic used in the flow diagram (D-FD-KDll-A-FD) to provide an immediate 
identification of a microword. It is possible to refer to a microword in easier terms than its 
address. 

The page in the flow diagram (D-FD-KDll-A-FD) upon which the microword occurs. This 
reference provides for a backward search from an address to a microword in its flow context. 

5-39 U-WORD 





) 5.5 M7233, IR DECODE, K3 MODULE 

) 

-~ 

) 

) 

The IR DECODE module contains extensive combinational logic which decodes the Instruction Register (IR), 
providing discrete instruction signals, as well as re-encoded rnicroaddress information necessary for the 
microbranches. The Instruction Register is present on this module, as is the BUT Multiplexer. In addition, 
combinational logic exists for instruction control of the ALU and condition code inputs for the carry (C) and 
overflow (V) bits of the Processor Status Register. 

541 K3 





__ J 

Print K3-2: BUT MUX 

This print shows the Branch Microprogram Test Multiplexer which combines diverse microbranch tests into a limited 
number of bits for a next microprogram address. There are essentially six multiplexers, two of which affect bit 0 of 
the address; the other four multiplexers affect bit 1 through bit 4 of the address. The conditions gated to the address 
are occasionally Singular and named by the actual signal condition, such as JSR. The conditions are often complex 
and affect more than one address bit; they are named in the standard way, such as K3 -S, BUBCO (BUT37) H. This 
signal is essentially a basic rnicrobranch code that will affect the 0 bit of the microaddress for the BUT37. A table of 
these branch rnicrotests and their mnemonics appears on the block diagram print D-BD-KDll-A-BD. BUT37 is the 
INSTRI branch occurring in FETCH; it branches to all the various response microflows for instruction 
implementation. It has an input to each of the five affected address bits. Other BUTs only require one or two bits, 
and therefore only input into one or two address bits. For this reason, the type of multiplexer related to specific 
address bits changes. On bit 0 there are two multiplexers which input into two possible inputs in the NOR/OR gate. 
For the next address bit there is a single 16-input multiplexer. For the next two address bits, there are 8-input 
multiplexers and the upper two address bits have only 4-input multiplexers. 

K3-2 BUT (37:34) L is a decoding of the rnicrobranch field (UBF) for BUTS 37 through 34. It is a single pin run and 
is provided for test purposes. 

K3-2 BUT (3X) signal is a decoding of the rnicrobranch field (UBF). The signal is used to enable the multiplexers on 
this sheet and on the STATUS module (prints KS-3 and KS-6) as an enabling signal for clocking flag flip-flops. The 
signal is a partial decoding of branch microprogram test for BUT 30 through 37 octal. 

K3-2 BUBC (OS:OI) L signals represent the basic microbranch code for address bits S through 1. They each represent 
a single input to the NOR/OR gate where they can modify a base address when a branch test is called. These bits 
provide the inputs for all branch tests, unlike the input for the 0 address bit which required two distinct inputs for 
lower order and higher order BUTs. Selection of these inputs is a function of the microbranch field from the U 
WORD applied against the appropriate multiplexers. In conjunction with the basic microbranch code, there are 
expansion microbranch code bits also input to the NOR/OR gate. 

K3-2 BUBCO (BUT37:20) L provides basic rnicrobranch code 0 for BUT 37 through 20 (the notation is octal). It is 
used in conjunction with the next signal to the exclusion of the expansion microbranch code for this bit. It is used 
on K2-2 print in the NOR/OR gate. 

K3-2 BUBCO (BUT17:00) L provides the basic microbranch code for bit 0 for the BUT 17 through 00. The signal is 
selected as a function of the multiplexer and the UBF field in the U WORD, with the UBF field selecting the BUT 
being applied against the base address. Thus, bit 0 has many test conditions applied against it, not only in the 
complex codes but the single bit codes. 

S43 K3-2 





) 

) 

) 

Print K3-3: IR AND DECODE 

This print shows the complete Instruction Register (IR), which has input data from D MUX (15:00). All of the IR is 
brought to the module edge for expansion and basic machine use. In addition to the IR, the first level of decoding is 
provided by the 8251 Decoders. The binary instructions, the source mode, the destination modes, and intermediate 
IR bit patterns are decoded. 

1(3-3 IR (15:00) (1) H is the (1) side of the IR brought out for use within the basic and expansion machine. It is 
used on various inputs in the IR DECODE itself, on other prints within the basic machine; it is also used in the 
KEll-E option, the KEll-F option, and the KTll-D option. The low order bits, in the case of the Source or 
Destination Registers, are used in the register selection logic associated with the Scratch Pad Register. 

1(3-3 IR (14:12)=0 L is a partial decod~ng of the IR for bits 14 through 12 equal to 0 and is utilized on the STATUS 
module for branch instruction decoding and enabling. 

1(3-3 SM=1 L 
1(3-3 SM=2 L 
K3-3 SM=3 L 

These signals are partial decoding of the IR (bits 11 
through 09) for the source mode equal to the 
respective number. They are used on the STATUS 
board (K5-3) for branch instruction decoding and 
enabling. 

K3-3 SM=O L is a partial decoding of that portion of the IR (bits 11 through 09) for source mode equal to o. It is 
used throughout the IR module, on the STATUS board (K5-3) for branch instruction decoding, and on the KTII-D 
option (print KT-9). 

K3-3 SM=7 L is a partial decoding of the IR for source modes equal to 7 (bits 11 through 09). This is a single pin 
entry and is a test point. 

1(3-3 IR (08 :06)=6 L is a partial decoding of the IR, indicating that the octal code for bits 8 through 6 inclusive is 6. 
It is used in the KTlI-D option. 

1(3-3 IR (08:06)=0 L is a partial decoding of the IR Register, indicating that bits 8 through 6 are o. It is used in the 
KEI1-F option. 

1(3-3 DM=O L is a partial decoding of the IR for a destination mode O. It is used in the KTlI-D option. 

K3-3 CLR IR L sigrial is a pull-up resistor signal for the clear input of the IR. 

5-45 K3-3 





) 

Print K3-4: IRD & OVLAP 

This print contains additional decoding of the IR with a relatively fast and direct decoding of the single operand 
instructions. In addition, the low order bits IR (02:00) are decoded. Combinational logic is provided for the overlap 
signals with the signals consisting of an overlap cycle and an overlap instruction. 

K34 IR (02:00)=6 L is a partial decode of the IR Register bit 2 through 0 inclusive, equal to 6 octal. It is utilized by 
the KT11-D option. 

K34 OVLAP CYCLE L includes the next signal overlap instruction, as well as additional situations. An overlap cycle 
is based on the same premise as an overlap instruction; i.e., the next bus address desired in FETCH is the 
incremented PC. 

In certain instructions, time can be saved by beginning the address calculation which uses the incremented PC (this is 
true in index operations), and, in this case, it is done for destination modes 6 or 7 on single operand instructions of 
JMP and JSR. It is also done for destination mode 6 or 7 if the source mode of a double operand instruction is 0; it 
is done for a source mode 6 or 7. Here the exceptions for service between instructions do not prohibit the overlap 
cycle; the overlap cycles pertaining to internal instruction operations occur. The signal is used on TIMING (print 
K44) to initiate another bus cycle during FETCH. 

K34 OVLAP INSTR H signal for overlap instructions is active for certain instructions with certain address modes. It 
is also necessary that specific service requirements and some instruction modes do not exist. Overlap is a situation 
where, in the FETCH of a given instruction as the PC is being incremented, it is possible to initiate a bus cycle using 
the incremented PC. This can only be done when it is known that the next bus address desired is a DATI to the 
incremented PC. If this is true, the cycle can begin while the processor is still busy with the present instruction. The 
situations where overlap instructions occur are usually single operands with destination mode 0, or double operands 
with both source and destination modes O. Exceptions to this are that the Destination Register cannot be REG 07, 
nor can the Program Counter that is being used as the next address be in the process of change. Other exceptions to 
overlap involve service requirements for bus requests, power fail, console bus requests (HALT switch), and the 
TRACE bit in the STATUS word. MOVE instructions for byte operations are not overlapped. This signal is used on 
STATUS (print KS4) as a data input to the OVLAP flag. The flag ensures proper re-entry into the FETCH 
microflow. 

K34 IRIS Hand K34 IRIS L are buffered signals provided for the additional drive requirements of this particular 
bit of the IR. 

S-47 K3-4 





( 

( 

( 

Print K3-S: BUBC (INSTRl) 

This signal is basic microbranch code for instruction 1. The print contains combinational logic Which further decodes 
the initial IRD decoding, provided On the previous pages, into specific instruction signals. In addition, some of the 
instruction signals from this sheet and instructions from subsequent sheets are re-encoded into basic microbranch 
code (BUBC) for the first instruction branch. This instruction branch is known as INSTRI for BUT37 and appears 
On sheet 1 ofthe flow diagram (D-FD-KDII-A-FD). 

K3-5 BUBC (05:00) (BUT37) H is the basic microbranch code for microaddress bits 5 through 0 and is activated on 
the INSTRI branch test for BUT37. It is decoded from the IR and is available on the input to the mUltiplexer. The 
multiplexer itself on print K3-2 provides the selection for BUT37 and this code is en!lbled oVer the base 
microaddress for this test. This branching code is especially critical and basic to the machine since it is the first 
instruction branch in FETCH. 

K3·5 DOP * -SMO L is a double operand instruction and not sotlroe mode zero encoded together and provided for 
use within the IR board. 

5-49 





) 

) 

~) 

) 

Print K3-6: IR DISCRETE 

Combinational logic shown on this print further decodes the initial decoding of print K2-3 and provides discrete 
signals for certain instructions. These instructions are the non-double operand and non-single operand instruction 
which often require a flag set or a unique function performed. These signals are at the right and at the interior of the 
print. 

Most of the instruction signals noted are mutually exclusive and are active (H) or low (L) as noted. Some signals of 
interest are noted below. 

K3-6 PRIV INSTR L signal provides the KT11-D option with information on privileged instructions (HALT and 
RESET) to make their implementation in USER mode appear as NO-OPs. Note the inhibiting of the discrete HALT 
and WAIT signals by the KT02 PS15 (0) H signal. 

K3-6 IlKO (CINSTR) L is an internal intermediate signal for instruction 1 constant for bit 0 for C instructions. It is 
used as an element of the BUBCO (BUT37) signal for bit 0 on print K3-5. Like other elements of the BUBC signal, it 
represents a micro address re-encoding from the decoded Instruction Register. 

5-51 K3-6 





) 

~. 

) 

) 

Print K3-7: BUBC (OTHER) 

Located on this print are various basic microbranch codes (BUBC) for tests other than INSTR1, consisting of 
different numbers of address bit inputs for different BUTs. The ones shown on the extreme right are as important as 
the ones shown on the left or center. Essentially, BUBC codes for BUTs 20,21,25,26,27,31,33,34,35, and 36 
are shown. There are also some additional Instruction Register signals, such as SERVICE, TRACE, and BYTE 
CODES. The majority of signals (BUBC codes) are used on print K3-2 as inputs to the multiplexers. A table of the 
BUTs used is on the block diagram, U WORD, and table print D-BD-KD11-A-BD, as well as in Table 4-1. 

K3-7 TRACE L signal provides for an immediate trace trap during service if PS(T) is set and the IR does not contain 
an RTT instruction. The signal is used on this print in the BUBC1 (BUT26) signal and on STATUS prints K54, 5 for 
flag control and trap vector generation. 

K3-7 SERVICE H is a definition of the reasons to enter the service section of the microflows after instruction 
execution. It contains flags and inputs for internal (bus error, basic overflow on the stack, power down, and trace) 
and external (BUS Request Priority flag, console bus request, and reference to processor status address) situations 
requiring service. The signal is used on this print in the BUBC1 (BUT20) signal for microbranching and is provided as 
a test point. 

K3-7 BYTE CODES H signal indicates to the condition codes logic (print K5-2) that a byte instruction is in the IR. 
The signal is used on STATUS (print K5-2) for selection of input data to the condition codes of the Processor Status 
Register. 

K3-7 BUBC (5,03:00) (BUT36) H is the basic microbranch code for microaddress bits 5, 3, and 0 for the BUT36. 
BUT36 is the INSTR3 branch associated with the next flow sequences after SOURCE calculations. 

K3-7 BUBC (5,03:00) (BUT35) H is the basic microbranch code for microaddress bit 5 and bits 3 through 0 for 
BUT35. BUT35 is the odd byte and INSTR3 branch associated with byte formatting of incoming data or the next 
flow sequences after SOURCE calculations. 

K3-7 BUBC (03:00) (BUT34) H is the basic microbranch code for microaddress bits 3 through 0 for BUT34. BUT34 
is the INSTR4 branch associated with the next flow sequences after destination calculations. 

K3-7 BUBC (03:00) (BUT33) H is the basic microbranch code for microaddress bits 3 through 0 for BUT33. BUT33 
is the odd byte and INSTR4 branch associated with byte formatting of incoming data or the next flow sequences 
after destination calculations. 

K3-7 ODD BYTE L is the combination of a BYTE instruction decode from the IR and a 1 in bit 00 of the Bus 
Address Register. This signal is used within the IR DECODE module in the microbranching logic of BUBC (BUT33). 

K3-7 BUBC (01 :00) (BUT20) H is the basic microbranch code for microaddress bits 1 and 0 for BUT20. BUT20 is 
the Byte, Service, or Fetch branch associated with the end of instruction execution. 

K3-7 BUBCO (BUT31) H is the basic micro branch code for microaddress bit 0 for BUT31. BUT31 is the No Write or 
Byte Write or Word Write associated with instructions of destination mode zero requiring register rewrite. 

K3-7 BUBCO (BUT27) H is the basic microbranch code for microaddress bit 0 for BUT27. BUT27 is the Service B or 
Fetch Overlap or Fetch B branch associated with the end of instruction execution where an overlap situation might 
exist. 

5-53 K3·7 





) 

) 

) 

) 

Print 10-8: ALU CONTROL 

This print shows two sets of combinational logic. One set is ordered toward the ALU control signals and provides for 
a multiplexer selection of either the U WORD directly, or control as a function of IR decode. Multiplexer selection 
is a function of the DAD code. The other set of logic is the carry-in for the ALU and control of the Carry-Out 
Multiplexer. See Table 3-2 for ALU functions. 

10-8 COMUXS (01 :00) H provide the inputs of the COUT Multiplexer Selection (print Kl-5) which forms the data 
input of the D(C) flip-flop. Selection is solely a function of the IR decode and inputs from the KEII-E option; no 
direct control from the U WORD exists. 

10-8 CINOO L provides the carry-in for bit 00 of the ALU (print Kl-2). Control of this data input is a function of 
the IR decode and indirect control from the U WORD through the Discrete Alteration of Data (DAD) and Select 
Arithmetic Logic Unit (SALV). 

K3-8 BIT+CMP+TST H is a simple combination of the bit test, compare, and test instruction from the IR decode. It 
is used with the IR DECODE module and TIMING (print K44) to alter DATIP bus cycles to DATI bus cycles for 
destination data references. 

K3-8 ALUS (03 :00) H are the direct control for the ALU selection signals on prints Kl-2, 3, 4, and 5. The 
multiplexer selects either direct U WORD control by the SALU Signals, or Instruction Register control by either the 
basic processor or KEII-E option. Multiplexer selection is controlled by the Discrete Alteration of Data (DAD) 
signals of the U WORD. 

K3-8 ALUM H is the direct control of the ALU mode on prints Kl-2, 3, 4, and 5. Combinational logic allows U 
WORD control by the DAD microfield or IR decode. 

K3-8 DAD (3*2) L is a decoding of discrete bits in the DAD microfield. It is used in the KEII-E and KEll-F 
options. 

5-55 K3-8 





) 

) 

-) 

) 

Print K3-9: CODES C,V 

This print shows combinational logic associated with the input data required for the C and V bits of the condition 
codes. Conditioning of these data inputs is a function of the IR decode and the present processor status, 

K3-9 V DATA L is the V DATA input of the overflow bit of the condition code portion of the processor status 
word. This input reflects direct loading inputs (D MUXOI) as well as instruction data inputs: V(ROTSHF), 
V(COMPAREI), and V(COMPARE2). The signal is used on print KS-2 of STATUS. 

K3-9 C DATA H is the C DATA input of the C or carry bit of the condition code portion of the processor status 
word. This input reflects direct loading inputs (D MUXOO), as well as instruction data inputs. The signal is used on 
print KS-2 of STATUS. 

5·57 K3-9 





) 

5.6 M7234, TIMING, K4 MODULE 

Timing for the KDII-A Processor consists of the basic processor clock for data path and microcontrol, and the 
Unibus-ordered control for data and bus ownership transfers. Microcontrol techniques are used in each section, but 
discrete flip-flop, combinational logic, discrete timing (delay or pulse) circuits are necessary. These circuits and logics 
are discussed in context with the overall timing and not ordered upon output signals. 

5-59 K4 





) 

Print K4-2: CLOCK 

This print contains the basic processor clock which consists of the CLK flip-flop, pulse-width forming delay line 
logic, and cycle-length forming delay line logic. Necessary peripheral logic provides on/off control (IDLE flip-flop), 
asynchronous restart inputs, and output enabling gates. 

Assuming sequential, uninterrupted operation, the end of one clock cycle is the beginning of the next clock cycle. 
The trailing edge of the K4-2 RECLK H signal clocks a I to the CLK flip-flop (assuming continuous operation) 
which activates the pulse forming logic loop with Delay Line 1 (DLl). After the delay, the DLl loop clears the CLK 
flip-flop. The CLK flip-flop, therefore, forms a pulse of approximately 40 ns (DLl time plus gate time). This pulse is 
now passed through additional delay lines to form the various cycle lengths (CLI, CL2 and CL3). 

A CLl is formed by passing the CLK pulse through Delay Line 2 (adjustable per CLOCK ADJUSTMENT note) to 
74HOO gates at E63 (output pins 08 and 11). If a CLl was specified by the U WORD CLK field, the signal K2·8 
CLKLl (0) H enables the CLK pulse through the upper 74HOO gate (E63, output pin 08) where, after inversion 
(74HOO gate at E66, output pin 06), it becomes K4-2 PI H. 

A CL2 is formed by the CLK pulse if, after passing through Delay Line 2, the bottom 74HOO gate (E63, output pin 
11) is enabled by K2-8 CLKL1 (1) H signal. The upper 74HOO gate (E63, output pin 08) is disabled. The CLK pulse 
now passes through Delay Line 3 to the 74HOO gates at E72 (output pins 08 and 11). Here a P2 pulse .is generated 
with the upper 74HOO gate (output pin 08) allowing the pulse as an End of Cycle signal to the microcontrol and 
clock. 

If a CL3 is to be formed, the bottom 74HOO gate (En, output pin 11) enables the P2 pulse to the data path and to 
the next delay line (DL4). The upper 74HOO gate (En, output pin 08) is not enabled to allow the P2 pulse as an 
End of Cycle signal. That signal is provided by the P3 pulse from the 74HOO gate at En (output pin 03). 

Reference to the CLK WAVEFORMS table allows correlation between the clock output pulses, their relative timing, 
and the U WORD enabling signals. 

The output enabling gates service the three sections of the KD11-A Processor: the INTERFACE, the DATA 
PATHS, and the MICROCONTROL. The micro control clocking signals (CLK U signals, RECLK P END, and PART P 
END) are ordered toward end-of-cycle pulses. For a CLl, this is a PI pulse; for a CL2, a P2 pulse; and for a CL3, a 
P3 pulse. Clocking to the U WORD and the clock logic is not conditioned by any enabling signal and is usually on 
the final pulse transition. The End of Cycle signals are also used in the flag control logic of STATUS, especially P 
END and PART P END. Here the signals may be used as set or clear pulses with enabling BUT signals. 

The output enabling gates for data path and interface control use a variety of the PI, P2, and P3 pulses. The pulses 
are enabled singularly or in combination by specific U WORD control bits to provide the several CLK signals noted. 
The pulse signals are also provided directly for generation of other CLK signals in the basic (STATUS) and expansion 
(KE11-E, KE11-F, KIll-D) processor. Note that any end (enabled) eLK signal must have only one gate (H series) 
between the pulse signals (PI, P2, P3) and the end CLK Signal; this prevents excessive clock skew. 

5-61 K4-2 



Continuance of clock cycles, one after another, is determined by the End of Cycle signal, K4-2 RECLK H, and the 
data input signal to the IDLE flip-flop. If a new clock cycle (microword, machine state) is to begin, the IDLE 
flip-flop data input is inactive (a high logic level); the CLK flip-flop data input is therefore the inverse (74HOO gate at 
E73, output pin 03), and the CLK flip-flop is clocked to the 1 state. This begins the pulse forming and delay 
sequences already noted. If a next clock cycle is not to begin, the IDLE flip~flop data input is active (a low logic 
level) and· the flip-flop is clocked to the 1 state; the CLK flip "flop is not clocked to the 1 state and no pulse forming 
occurs. Conditions to halt the clock are noted on the inputs to the 74H53 gate at E77; the most common input 
would be theU WORD control signal K2-8 CLKOFF (1) H. Note that the U WORD is clocked by the last pulse 
transition of the halting clock cycle, the machine halts in the beginning of the next microword and awaits timing 
signals. 

The restarting of the clock is effected by the combination logic on the set input of the CLK flip-flop. This input has 
interlocking signals from the CLK pulse forming logic and IDLE flip-flop to ensure that the clock restarts without 
partial pulses and that the clock is completely off before restart. The actual restart inputs provide for a fast direct 
restart for data transfer situations (K4-6 B SSYN H input) and a combination oflower priority (time wise) restarts. 
Common to each of theserestart inputs are the enablingconditions for the restart condition and the restart signal. 

An additional control flip-flop, MCLK, is provided for single clock manual operation. This flip-flop functions in 
parallel with the CLK flip-flop and generates the beginning transition to the pulse forming logic. It does this as a 
function of maintenance console switch activation (KM-2 MCLK L). The IDLE flip-flop is not directly affected by 
this manual operation mode. The CLKflip-flop is affectively disabled with neither its data or set inputs enabled. 
Details of maintenance console interaction are contained in Paragraph 7.3 of this manual. 

K4-2 

) 

) 

) 



) 

) 

) 

) 

Print K4-3: CLK JAM 

Discontinuities exist in the microprogram flow. The majority of these interruptions are accommodated by halting 
and restarting the CLK logic (noted for print K4-2); the next microword after the halting signal [usually K2-8 
CLKOFF (1) H] is entered and the machine awaits a restart signal. An interruption (or pause) has occurred in the 
microprogram flow, but sequential flow still occurs after restart. 

The CLK JAM logic is ordered toward non-sequential interruptions of the microprogram flow. Error conditions or 
power-up sequences enable this timing such that the usual microcontrol timing is disabled (K4-3 JAMUPP H signal 
on IDLE flip-flop input) and special clocking signals are provided to force the microprogram flow to specific 
microaddresses. The microprogram flow is irrevocably JAMmed to a specific operating flow. The JAMUPP 
ADDRESSES table on this print correlates the reasons (USE) for the microprogram jam and the new microaddresses 
(UPP). 

The eLK JAM logic has three parts: error sensing and power-up flag flip-flops, asynchronous serial timing logic, and 
combination logic for the new microprogram address generation. 

The flag flip-flops which are clocked to the 1 state for activation are the JBERR flag for odd address bus errors and 
red zone stack overflow, and the JPUP flag for START switch activation in the HALT mode and Power Restart. The 
PERJ RS type flip-flop is set when a memory parity error is detected. These three flags, with additional inputs from 
the NODAT flag (print K4-6) for non-existent bus address error and PWRUP INIT (print K5-8), activate the timing 
logic. 

The JAMUPP one-shot, when activated, provides an enabling signal to the combination logic generating the new 
microaddress. This logic encodes the various error and power up flags to provide direct set and clear signals to the 
Microprogram Pointer (UPP) Register. Usual machine timing is disabled (IDLE data input of print K4-2); less 
important machine flags (TRAP and INTR of print K54) are cleared; and the BERR flag and STALL flag are 
clocked (print K54). Deactivation of the JAMUPP one-shot removes the set and clear signals to the UPP Register, 
and after a delay (0 = 100 ns), provides the K4-3 JAM CLK H signal. This signal clocks the newly selected 
microword (see JAMUPP ADDRESSES table) into the U WORD Buffer and activates the JAM START one-shot. The 
pulse output of the JAM START one-shot clears the NODAT flag (print K4-6) if appropriate, and restarts the CLK 
logic. 

The PERR flip-flop stores the fact that a memory parity error has occurred and is used to generate the parity trap 
vector. 

5-63 K4-3 





) 

) 

) 

Print K4-4: BUS DATA CNTL 

The logic shown on this print is associated with processor Unibus data transfers and the variety of required error 
checking and cycle alterations. Some decoding of the Unibus BUS C signals is provided for processor and prpcessor 
option use. The logic consists of control flip-flops (BUS, CKOVF, CKODA, BWAIT, BC1, and BCO) which are 
activated by U WORD and IR decode input. Delays for skew correction are provided between the bus activating 
control flip-flop (BUS) and the actual MSYN flip-flops. Appropriate checking logic combines error conditions with 
error check enabling signals. Bus cycles are aborted or allowed with error conditions affecting the flag flip-flops of 
STATUS (print K54). Tables are provided for the BUS and DAD fields of the microword. 

BUS, MSYN, MSYNA Flip-Flop - The BUS flip-flop initiates all processor Unibus cycles. It is clocked to the 1 state 
by K4-2 CLK BUS H signal (derived from BGBUS of the U WORD), except for the DAD code (1X1X) in the 
execution flow of the BIT or CMP or TST instruction, and the non-existence of an overlap cycle in the FETCH flow 
(BUT37 at FET04 microword). The activation of the flip-flop is gated by bus ownership signals in the 74H20 gate 
(E9, output pin 06). For a bus cycle to occur, the processor must be in charge of the bus [K4-5 BBSY (1) H], no 
Unibus cycles are in process (K4-6 B SSYN L), and the processor is not giving up bus ownership (K4-5 PROC 
RELEASE L). With these conditions met, the delays associated with Unibus data skew and address decode are 
activated. Two delays exist: one for normal Unibus delay to the MSYN flip-flop, and a shorter delay to the MSYNA 
flip-flop. 

During the deskewing delay, error conditions disable the data inputs of the MSYN and MSYNA flip-flops. Normally, 
however the flip-flops are clocked to the 1 state and drive the Unibus through appropriate gates. Disabling exists for 
the KTl1-D option. The MSYN, MSYNA and BUS flip-flops are pulsed clear from the BWAIT flip-flop. 

CKOVF Flip-Flop - The CKOVF flip-flop controls the check of overflow on the processor Stack Pointer. Only 
certain address modes in certain bus operations need to be checked. This is controlled by the DAD code (XlIX) of 
the U WORD with register selection information; a disabling flag [K54 STALL (1) L] from STATUS can inhibit the 
check. The CKOVF flip-flop is clocked by the K4-2 CLK BA H signal with activation of the flip-flop further 
conditioned by the KTl1-D option and the Unibus cycle type. The check enabling signal enables the error detection 
signals and provides for possible abortion of the Unibus cycle (inhibits data input to MSYN flip-flop) with 
corresponding raising of error flags. This occurs here only for red zone stack overflow; the yellow zone stack 
overflow is handled solely by the error flags. 

CKODA Flip-Flop - The CKODA flip-flop controls the check of odd address errors on processor data bus cycles. 
The flip-flop is always clocked to the 1 state by the K4-2 CLK BA H signal unless a byte instruction exists with a 
DAD code (XXXI) from the U WORD. Checking, however, is further conditioned by console operation and the 
KTlI-D option. The check enabling signal enables the error detection signals [Kl-7 BAOO (1) H or KT-3 FAULT H] 
and provides for possible abortion of the Unibus cycle (inhibits data input to MSYN flip-flops) with corresponding 
raising of error flags. 

BWAIT Flip-Flop - The BWAIT flip-flop provides the clearing signal (K44 P CLR MSYN L) for the processor BUS, 
MSYN, and MSYNA flip-flops. The flip-flop is set by activation of the IDLE flip-flop (print K4-2); this is usual for 
processor data bus cycles. The BWAIT flip-flop remains set during BWAIT for the usual peripheral response (K4-6 B 
SSYN L), which restarts the CLK. Usual deactivation of BUS, MSYN, and MSYNA flip-flops occurs at the end of the 
first microword [K4-2 (PI + P3) H] when the BWAIT flip-flop is clocked to the 0 state. Other clearing signals are 
combined in the pulse logic to accommodate situations where no peripheral response is made (NODAT error, 
micro control JAMUPP for other bus errors) and processor initializing. 

5-65 K44 



BCI and BCO Flip-Flops - The Unibus control signals are held in the BCI arid BCO flip-flops. The flip-flops are 
loaded from ClBUS and COBUS bits of the U WORD by the K4-2 CLK BUS H signal (derived from BBUS of the U 
WORD). Modification of the data input for BCO is made for byte instructions (to change DATa operation to 
DATOB) and for BIT or CMP or TST instructions (to change DATIP operation to DATI). Appropriate gates drive 
the Unibus with additional logic providing conditioning inputs to processor and processor options (KJ Il-A 
especialJy) which respond through the processor to absolute bus addresses. 

K4-4 5-66 

) 

) 

) 

) 



) Print K4-S: BUS OWNERSHIP 

Shown on this print are the discrete flip-flops and combinational logic associated with the granting and acceptance 
of Unibus ownership by the KDll-A Processor. Processor ownership exists with the BBSY flag in the 1 state, and is 
necessary on power-up, console operation, processor data bus cycles, RESET instruction, power fail, and prior to 
release of bus ownership for bus requests. The processor usually controls the bus unless it has specifically given up 
control. 

The granting of bus ownership requires that peripheral requests for ownership are acquired by the processor in the 
appropriate flag flip-flops: the NPR flag for a non-processor request; the BRPTR flag for bus requests with a 
priority request greater than processor status priority; and the CBR flag for the KYII-D Console HALT switch. 
Clocking signals combining various inputs are necessary with proper sequencing of Unibus bus ownership signals 
[BUS SACK L, BUS NPG H, and the BUS BG (07:04) H] on the Unibus (PDP-ll Peripherals and Interfacing 
Handbook). 

The major clocks for priority determination and acquisitions of requests are K4-5 CLK NPR Hand K4-5 CLK PTRD 
H. Both clocks contain clocking signals with a BUS MSYN clock necessary for situations when the processor is 
inactive; no separate continuous clocking exists in the processor for the priority determination logic. 

The K4-5 CLK NPR H signal, in addition to the BUS MSYN clock, has clock inputs for clock restart (K4-2 SET CLK 
L), data bus cycle beginnings [K2-7 BG BUS (1) H] , BUT26 in service flow, the activation of MSYN (K4-5 P MSYN 
H pulse), and CLK IR for overlap situations. Independent of clocking, the data input to the NPR flag is inhibited for 
power fail (K5-8 B AC LO L), during console operations, and across DATIP/DATO operations. A DATIP flag 
flip-flop prevents the granting of bus control for non-processor requests across DATIP/DATO cycles as the DATIP 

) address location is still selected by the processor with the probability of a partial read/restore cycle in the peripheral. 

) 

BGBUS (1) H produces a pulse which strobes the NPR line each time the processor is ready to initiate a bus data 
cycle. If any NPR is present, it will be serviced prior to the execution of the processor data cycle. 

B MSYN L and SET CLK L clock the NPR flag during and upon restart following a processor bus data cycle. NPRs 
clocked in by either of these signals will be serviced immediately following the bus cycle. 

BUT26 in the SERVICE flow provides clocking of the NPR flag while the WAIT instruction is being executed. 
ENPRCLK provides an external clock from the KEII-E option. Both of these signals clear the BBSY flag directly so 
that all NPRs are serviced immediately. 

The BBSY flag is clocked each time the processor initiates (K4-2 CLK BUS H) and terminates (K44 P CLR MSYN 
L) a bus data cycle. It is cleared, relinquishing bus control, whenever an NPR is clocked into the NPR flag. 

Clocking for the K4-5 CLK PTRD H occurs for BUS MSYN clock and for BUT26 in the SERVICE flow and CLK IR 
for overlap situations. Associated with this clock is the PTRD one-shot that delays the actual clocking of the BRPTR 
flag flip-flop until the comparison of peripheral bus request priority levels can be made against processor status 
priority levels (print K4-6). The result of that comparison is signal K4-6 BRQ H on the data input of the BRPTR 
flag. The BRPTR flag is used to store the fact that a bus request of higher priority than the present processor 
priority has been received. It is used as a source of information for branching to SERVICE at the end of an 
instruction and also for branching to the interrupt service microflow. 

Console control of the processor via the HALT switch is gained in a manner similar to the servicing of a bus request. 
The PTRD one-shot clocks the CBR flag which stores the condition of the HALT switch. If the HALT switch is 
activated, the processor will branch to SERVICE at the end of the current instruction, at which time BUT26 will 
cause the machine to enter the CONSOLE microflow. 

5-67 K4-S 





) 

-) 

) 

Print K4-6: BUS RESPONSE 

Three types of bus response are provided by the logic shown on this print: the Bus Grant signals in response to Bus 
Requests; the SSYN and Bus Address selection of processor registers in response to processor or console bus cycles; 
and the processor timeout flags for NO SACK and NODAT. 

The Bus Grant signals [BUS BG (07:04) H] are generated by comparison logic for the incoming Bus Request signals 
and the existing Processor Status signals. The results of the comparison are used in the bus ownership logic shown on 
print K4-5 to determine if the BRPTR flag should be enabled. With the flag enabled, processor service of the flag 
results in the K4-5 GRANT BR H signal activating one of the BUS BG (07:04) H signals on the Unibus. 

Processor register response to absolute bus addresses is not completely specified by microprogram control. Bus 
address decoding (print KI-7) and Unibus control decoding (print K44) are combined to read or write these 
registers. Timing signals are provided for Unibus response (BUS SSYN L) and clocking of the registers [K4-6 PS (P 
PM BUS) H]. Note that a read from a processor register usually results in data gated onto the Unibus; a Write to a 
processor register results in the data being available on the D MUX signals. The Scratch Pad Register (REG) does not 
respond with SSYN to processor and console Bus Address references; rather, it responds to console references 
directly, and then under microprogram control. 

The processor register addresses that respond with SSYN are PS ADRS (Processor Status Register), SR ADRS 
(Switch Register), and if the KJll-A option is present, the SLR ADRS (Stack Limit Register). Normally, the Load 
Address function addresses the Switch Register for the address data, however, in the case of a BEGIN operation, the 
Switch Register data gating enable (K4-6 BUS PM SR H) is inhibited. BEGIN is a remote Load Address/Start 
function, and the address data must be provided by the remote device. A further discussion of the BEGIN function 
is contained in the logic description of the K5 print. 

The timeout flags for no SACK and no data provide a processor response when peripherals fail to respond. The 
NOSACK flag is set when peripherals granted bus ownership fail to respond; the NODAT flag is set when data bus 
operation receives no SSYN response. In each case, the timeout duration is 15 J1S. The service of the timeout flags 
differs. The NODAT flag results in microprogram interruption (JAMUPP) and a trap sequence. The NOSACK flag 
merely allows the processor to regain bus ownership and continue operation. Each timeout may be disabled for 
maintenance operation. See the note on the print or details of maintenance module operation in Paragraph 7.3 of 
this manual. 

5-69 K4-6 





) 5.7 M723S, STATUS, KS MODULE 

The STATUS module contains miscellaneous combinational logic relating to processor status. This includes: 

) 

) 

) 

a. Processor status word with priority bits for comparison to bus request, a TRACE bit, and condition 
codes N, Z, V, and C. 

b. Branch instruction implementation with comparison of the condition codes with IR decoding. 

c. Branch Microprogram Test (BUT) decoding with discrete outputs as a function of specific microwords. 

d. Flag flip·flops for a variety of machine and error states that require unique servicing. 

e. B constants decoding with Special Trap Pointer Marker (STPM) signals for trap vectors. 

f. Console flags for START, BEGIN, and proper incrementation on double EXAMs and DEPs. 

g. Console interface for the ADDRESS display and control inputs. 

h. Power fail and bus delay one-shots for proper sequence of some Unibus signals (BUS AC LO L, BUS DC 
LO L, BUS INIT L), as well as processor start-up. 

5-71 K5 





) 

-) 

) 

) 

Print KS-2: PS (07:00) 

The processor status word consists of PS (07 :00), with PS (07 :05) associated with the priority of machine operation. 
It is this portion of processor status that is compared against the bus request signals to determine whether a bus 
request should be granted. These processor status bits are represented by discrete flip-flops and are loaded from the 
D MUX signals upon a specific LOAD processor status clock. Other bits of the processor status are the PS(T) bit and 
the condition codes. PS(T) is the TRACE bit and its function is described in detail in the appropriate Processor 
Handbook. Loading of the TRACE bit does not occur as a function of a processor reference to an absolute bus 
address. The TRACE bit is implicitly altered only in RTI and RTT instructions and in trap sequences. 

The condition codes portion of the processor status word consists of bits PS(N), PS(Z) , PS(V), and PS(C). These bits 
are loaded from the D MUX upon a specific LOAD processor status clock from the processor, in addition to 
conditional inputs as a function of instruction operations and data results from those operations. The conditional 
inputs for PS(C) and PS(V) are already generated upon the IR DECODE module (print K3-9). The inputs for PS(Z) 
and PS(N) are generated by the combinational logic on this module. The major conditions of all these inputs are 
indicated in the Processor Handbook for each instruction. 

Other logic on the K5-2 print is the PASTA and PASTC flip-flops necessary for holding PASTA input (to the ALU) 
and PASTC [PS(C)] information for condition code operations. A multiplexer is used for the selection of input 
data, usually high byte or low byte for the PASTA flip-flop and other condition code logic [PS(N) and PASTB]. 
Combinational logic is utilized in the generation of the processor status clocking signal with direct interaction 
occurring between the clock pulses [K4-2 PS(Pl+P3) H], U WORD control [K2-6 SPS (02:00) (I) H], address 
decoding (KI-7 PS ADRS H), and instruction decoding (K3-6 CC INSTR H). 

. K5-2 PS (07:05) (1) H are the priority bits of the Processor Status Register and are compared against the bus request 
signals on the TIMING module (print K4-6). These flip-flops are loaded from the D MUX (07:05) lines when the 
processor status word is referenced by the processor or console with its absolute bus address. 

BUS RD (07:00) L are the signals connecting the Processor Status Register to the internal Processor Register Data 
Bus. These signals allow the routing of the processor status word through the machine in trap sequences and 
condition code instructions. 

BUS D (07:00) L are the Unibus signals that allow the Processor Status to respond to processor or console requests 
to its absolute bus address. 

K5-2 PS(T) (1) H is the TRACE bit of the processor status word and is used on the IR DECODE module (print 
K3-7) to generate a branch to SERVICE (no RTT instruction present). Signals K3-7 TRACE Land K3-7 SERVICE 
L reflect this input with the appropriate flag flip-flop on the STATUS module (print K54) being set. The PS(T) bit 
is not loaded with the rest of the processor status word, it is implicitly altered only on RTI and RTT instructions 
and during trap sequences. 

K5-2 PS(N) (1) H is the negative bit of the condition codes portion of the processor status word. It is loaded as a 
function of absolute bus address reference to the processor status or under microprogram control in instruction or 
trap operations. Input data for condition code operation comes from combinations of logic which select upper or 
lower byte information. The signal is used in combinational logic generating the ALU control signal K3-8 ALUM H 
on the DATA PATHS module and in the branch instruction logic (print K5-3). 

K5-2 PS(Z) (I) H is. the zero bit of the condition codes portion of the processor status word. It is loaded as a 
function of absolute bus address reference to the processor status, or under microprogram control in instruction or 
trap operations. Input data for condition code operation consists simply of combinational logic to sense word or 
byte zeroing of the D Register. The signal is used in the branch instruction logic (print K5-3). 

5-73 KS-2 



KS-2 PS(V) (1) H is the overflow bit of the condition codes portion of the processor status word. It is loaded as a 
function of absolute bus address reference to processor status, or under microprogram control in instruction or trap 
operation. Input data for condition code operation is provided by K3-9 V DATA L from the IR DECODE module. 
The PS(V) signal is used in the branch instruction logic (print KS-3). 

KS-2 PS(C) (1) H is the carry bit of the condition codes portion of the processor status word. It is loaded as a 
function of absolute bus address reference to processor status, or under microprogram control in instruction or trap 
operations. Input data for condition code operation is provided by K3-9 C DATA H from the IR DECODE module. 
The PS(C) signal is used in the branch instruction logic (print KS-3), on the input multiplexer for D(C) Register 
(print Kl-S), and in combinational logic for generation of signals K3-8 CINOO L, K3-9 V DATA L, and K3-9 C 
DATAH. 

KS-2 BUSRD FM PS H gates the processor status word to the Bus Register data lines for condition code instructions 
and for microcontrol Select Processor Status (SPS) codes of 6 for trap sequences and console display. 

KS-2 N DATA L is the input data to PS(N) and provides byte-selected data [DIS (1) H or DO? (1) H] to the 
combinational logic generating K3-9 V DATA L on the IR DECODE module (print K3-9). 

KS-2 LOAD PS L is the enabling signal for the combinational logic on the data inputs of the condition codes to 
allow the D MUX data signals instead of condition code inputs. The signal is used on this print and on the IR 
DECODE module (print K3-9). 

KS-2 PASTA (1) H is a holding flip-flop for the most significant bit (word or byte) for the AIN input of the ALU. 
This signal is necessary in the calculation of overflow data (K3-9 V DATA L); storage of the input is required 
because the condition code calculation occurs after the AIN input is removed. 

KS-2 PASTB H is a simple gating of the most significant bit (word or byte) for the BIN input of the ALU. The signal 
is necessary to the calculation of overflow data (K3-9 V DATA L). 

KS-2 PASTC (1) L is a holding flip-flop for the past value of the PS(C) flip-flop. The signal is used in the 
combinational logic generating signal K3-9 V DATA L for SBC and DEC instructions, and in signal K3-9 C DATA H. 

KS-2 SPS (02:00)=7 H is a decoding of the Select Processor Status (SPS) code and is used with the KT11-D option. 

KS-2 5-74 

) 

) 

) 

:;. 

) 



-) Print K5-3: BUT & BRANCH 

Two distinct sets of combinational logic are shown on this print: branch instruction logic for comparison of 
instruction decoding with condition codes; and BUT decoding of the microprogram field. 

K5-3 TRUE BR L indicates that TRUE conditions specified by the Instruction 'Register for a branch instruction have 
been met by the condition codes. The signal, when active, provides BUBC signals (print K3-5) to alter flows and 
implement the instruction. 

K5-3 FALSE BR L indicates that FALSE conditions specified by the Instruction Register for a branch instruction 
have been met by the condition codes. The signal, when active, provides BUBC signals to alter flows and implement 
the instruction. 

K5-3 BR INSTR L is the decode of the Instruction Register for a branch instruction. It is used in the BUBC signals 
) (K34 print) for the INSTRI microbranch. 

-) 

) 

) 

BUT signals noted for this print are decoded from the microbranch field (UBF) of the U WORD. These decoded 
signals are used throughout the processor as auxiliary timing signals unique to the microword in which a specific 
BUT is called. A table on the print correlates the numeric code of a BUT with its mnemonic function; BUTs that are 
decoded and used for auxilliary purposes (besides branching the microflow) are called "working BUTs." Flow 
diagram notations (D-FD-KDll-A-FD) indicate when and what functions these BUTs perform. A usual function is to 
clear and set machine flag flip-flops such as those on STATUS module prints K54, K5-6, and K5-8. In these 
instances, the BUT signal acts as an enabling signal to a timing pulse. 

5-75 KS-3 





) 

) 

) 
J 

) 

Print K54: FLAGS 

Flag flip-flops for error conditions and machine sequencing are shown on this print. The logic discussion will deal 
with the interaction and function of each flag flip-flop instead of discussing output signals. 

Provided below, from top to bottom, is the sequence of service to the internal processor traps, external interrupts, 
and HALT and WAIT. This order of sequence is affected by the interaction of the flag flip-flops and is basic to 
understanding their operation. 

BUS ERROR Traps - Odd Address Fatal Stack Overflow (Red) Memory Management Violations to 250 (if 
KT1l-D) and Memory Parity Errors. 

HALT Instruction - Console Operation (and certain changes if KT11-D). 

TRAP Instructions - Illegal or Reserved Instructions, BPT, lOT, EMT, TRAP. 

TRACE Trap - T Bit of Processor Status. 

OVFL Trap - Warning (Yellow) Stack Overflow. 

PWR FAIL Trap - Power Down. 

BERR Flag - The Bus Error flip-flop provides a flag for trap service upon the Qccurrence of a NODAT or odd 
address error in a processor Unibus data transfer. The flip-flop is clocked to the 1 state by the activation of the data 
inputs from the NODAT flip-flop (on TIMING) or the Odd Address Error signal with the clocking signal K4-3 
JAMUPP H (which also jams the microflow to a trap routine). The BERR flag output generates appropriate STPM 
constants from trap vectors and accommodates the ordered sequence of service for the various processor flags. This 
sequence is noted in the Processor Handbook and is repeated in the introduction to this print. 

Certain clearing signals are common to the BERR, TRAP, and INTR flag flip-flops. They are: the processor 
Initialize (INIT) signal; the External Pulse Clear Trap signal from the KEII-E option; BUT03 in TRP16 rnicroword 
at micro address 140 in the trap sequence; and the establishment of a new stack at location 024 for a power-down 
situation. Common clearing signals work for BERR, TRAP, and INTR flag flip-flops because their service is mutually 
exclusive. A BERR flag aborts the other two, TRAP service is due to instruction operation, and INTR service occurs 
only after instruction operations. 

In addition to the common clearing signals, the BERR flag is cleared and held clear for KYll-D Console operation. 
This allows the bus error of NODAT and Odd Address Error to occur without a trap sequence that would alter 
Processor Status, the Program Counter, or the Stack Pointer. No trap response to the bus error in console operation 
is considered the safe response. The JAMUPP signal does occur but the rnicroflow is jammed to the console switch 
loop microflow. 

Normal sequential servicing of the BERR flag results in the BUT03 clearing the flag. The BERR is first priority and 
prohibits the clearing oflower order priority flag flip-flops during its trap service, 

TRAP Flag - The TRAP flip-flop provides a flag for trap service in proper sequence for trap instructions (BPT, lOT, 
EMT, and TRAP). The flip-flop is clocked to the 1 state by the data input of an IR decode of a trap instruction with 
the clocking signal K5-6 P BUT37 H, which occurs in the FETCH cycle. The micrologic branches to the trap 
sequence for service with appropriate STPM constants generated by the TRAP flag and the IR decoding. 

5-77 KS-4 



In addition to the common clearing signals noted under the BERR flag, the JAMUPP signal directly clears the TRAP 
flag. TRAP flag service is aborted if a JAMUPP signal occurs. Normal sequential servicing of the TRAP flag results in 
the BUT03 clearing the flag with lower priority flag flip-flops unaltered. 

INTR Flag - The Interrupt (INTR) flip-flop is clocked to the 1 state by the data and clock input of the K44 B 
INTR H signal (decoded from the Unibus) with the clocking signal requiring the non-existence of the INTR flag, and 
the K4-2 SET CLK L signal for machine restart. (If the KMII-A Maintenance Module is present, single clock mode 
inhibits the K4-2 SET CLK L signal and the P3 signal is used to clock. Note that the INTR bus cycle waits for the 
next signal clock before completion.) After the INTR flag is set, the micrologic branches to the trap sequence with 
the trap vector provided by the interrupting peripheral. Exactly the same clearing signals used for the TRAP flag are 
used for the INTR flag. 

The INTR flag is used both within this module for the sequential clearing of flags and on print K5-6 for Slave Sync 
(SSYN) response for the INTR bus cycle. Normal sequential clearing of this flag is done by BUT03 in the trap 
service. 

AWBY Flag - The Await Bus Busy signal is utilized by the processor in its instruction flow and defines no trap 
service condition. It is set for specific U WORD BUS codes (CI BUS=O, COBUS=I, BGBUS=O) with PI or P3 timing 
pulses. These codes are generated in the SERVICE flow where the processor must have absolute control of the bus 
prior to granting the bus requests. 

The A WBY flag is cleared by a PI or P3 pulse and the absence of the U WORD bus codes previously used to set 
AWBY. This occurs directly after the machine restarts. Clearing also occurs for the processor INIT signal and the 
operation of a new stack at location 04 at power down. This last set of clearing signals is named K54 FLAG CLR H 
and is common to other flags. 

The output of the A WBY flip-flop is utilized directly on TIMING (print K4-2) to enable machine restart on 
processor BBSY (1) H. It is also used on print K4-5 to disable the SET CLK signal from clocking the NPR flag. 

BOVFLW Flag - The Basic Overflow flag senses stack overflow error for red zone violations (K4-4 OVFLW ERR L) 
and for yellow zone violations (Kl-7 BOVFL, or KJ-2 EOVFL if the KJll-A option is installed). The BOVFLW 
flip-flop is clocked to the 1 state by the K44 CLK OVFLW H signal if either error is present. Once the flag is set, a 
feedback signal to the data input allows further clocking without zeroing the flag. The output of the BOVFLW flag 
generates the STPM constants for the trap vector and provides for proper trap sequencing. 

A red zone stack error results in a JAMUPP signal so that the BERR, TRAP, and INTR flags are zeroed. The jam 
entry into the trap sequence provides for the clearing of the BOVFLW flag by BUTOl in the TRP20 microword at 
address 332. (Note that the T bit of new Processor Status should not be set so that the K3-7 TRACE L signal is not 
active.) 

A yellow zone stack error results in a normal microprogram flow with the BOVFLW flag being serviced in sequence; 
appropriate BUBC bits for a micro branch to SERVICE are enabled on IR DECODE (print K3-3). The BOVFLW flag 
is still cleared in sequence by BUTOI in TRP20 microword but only if the higher priority flags (BERR, TRAP, or 
INTR) have been serviced. If they are not serviced, the microprogram flow recycles through the trap sequence until 
service is complete. 

PWRDN Flag - The Power Down flip-flop is clocked by the power fail synchronizing signal K5-8 CLK PWR DN H. 
The flag output alters microprogram flow by enabling appropriate BUBC bits for a microbranch to SERVICE on IR 
DECODE (print K3-3); STPM constants for the trap vector are also generated. Normal sequential service results in 
the flag being cleared by BUT04 of the TRP21 microword at address 333. The higher priority flags (BERR, TRAP, 
INTR, and BOVFLW) must have been serviced or recycling through the trap sequence. 

KS-4 5-78 

) 

) 

) 



\) 
If a JAMUPP signal occurs when the PWRDN flag is enabled, power fail takes precedence by clearing (K54 FLAG 
CLR H) the higher priority flags and using the new stack at location 04. 

STALL Flag - The STALL flag inhibits the jam stack overflow checking and provides a no trap service condit·ion. 
The flip-flop is clocked to the 1 state for Double Bus Error, red zone stack overflow (K44 OVFLW ERR L) or 
PWRDN flag with the clocking signal K4-3 JAMUPP L. Feedback from itself prevents the flag from being lost on 
reclocking. The STALL flag directly inhibits the overflow checking logic on TIMING (print K44). The flag is cleared 
by the processor INIT signal and by BUT04 in the TRP21 microword in the trap service. No inhibits exist on the 
BUT04 clearing of the STALL flag since the error condition requiring a suspension of overflow checking is serviced 
in the first trap service. 

WAIT Flag - The WAIT flip-flop is clocked to the 1 state by the IR decode of the WAIT instruction with the K54 P 
BUT37 L clocking signal during the FETCH cycle. The flag enables BUBC signals for a WAIT loop in the SERVICE 
segment of the microflows. 

BRSV Flag - The Bus Request Service flag is set in the SERVICE flows if a bus request requires service. The actual 
signal is BUT26 (in SER07 microword at address 020) and the BRPTR flag is active. The flag is used to enable 
asynchronous restarting signals to the CLK flip-flop (TIMING, print K4-2) after the bus request; the flag is also used 
to inhibit the clearing of BBSY and to generate the K4-5 PART GRANT BR H signal. The flag is cleared by the same 
signal used for WAIT clear, with the BUT07 clearing in the bus request SERVICE flow being the most usual. 

OVLAP Flag - The Overlap flag is clocked to the 1 state by the data input of K34 OVLAP INSTR H with the K54 
P BUT37 L clocking signal during the FETCH cycle. Once set, the flip-flop remains set (unless K54 FLAG CLR H 
occurs) for the instruction and provides proper microbranching information (BUBC signals of print K3-7) for a 
FETCH OVLAP entry to the FETCH flow sequence for the next instruction. The flag also enables the IDLE flip-flop 
(print K4-2) on FETCH OVLAP entry and proVides an additional PTR clock (print K4-5). The flag is reclocked 
during the next FETCH cycle and is clocked to 1 or 0, depending upon the K34 OVLAP INSTR H signal. 

5-79 KS-4 





) 

) 

Print KS-S: CONSTANTS 

Two sets of constants are generated on this print: STPM constants for trap vectors; and the B constants used 
throughout the microflows. Tables note the constants and their use. 

KS-S STPM (4,3,2) H are Special Trap Markers used for trap vectors. Input signals from IR decode and flag flip-flops 
proVide the highest priority trap vector as the output STPM constant. The STPM signals input to the B constant logic 
where they are enabledby a BC code of 00. The STPM constants and use are noted in the STPM table. 

KS-S SBC=lO L is a decoded signal of the Select B Constant microcode used on the KT11-D option. 

Ks-S BC (15:12,10:09) H 
KS-S BC (11,08) H 
KS-S BC (07:00) H signals are the B constants generated and selected by the Select B Constant (SBC) microcode of 
the U WORD. Correlation between the SBC code, the B constants, and their use can be found in the SBC table. Of 
special interest are the jumpers (W2 through W7) which allow a power-up vector different from 24 to be used; the 
initial jumper selection, however, is for location 24. 

Jumper W8 allows the signal PERR(1) L in conjunction with BERR (1) L to generate the trap vector 114 for 
memory parity errors. 

KS-S BCON (1 +2) H is a conditional B constant output which allows a B constant of 1 to become 2 by proViding a 
K3-8 CINOO L signal. The signal results from the SBC=3 code and is used through the flows in address calculations 
where the last address incrementation may be byte or word ordered. A REG (X6+ X7) input forces the 
incrementation to 2 for byte incrementation on PC or SP Registers. 

KS-S SBC=16 L is a decoded signal of the Select B Constant microcode used on the KT11-D option. 

5-81 KS-S 





) 

) 
I 

-) 

) 

) 

Print K5-6: CONSOLE 

The logic associated with this print provides the necessary flags and BUBCs for console operation. The following 
logic discussion is ordered toward console operation rather than output signals. A functional description of console 
switch operation is presented in Chapter 3 of the PDP-ll/40 System Manual. 

Console logic consists of the flag flip-flops necessary to service the control switches with associated combinational 
logic to set and clear the .flags. Some additional logic is necessary to generate the BUBCs utilized in the console 
SERVICE flow for microbranches to the individual switch SERVICE flows. 

Activation of any console control switch (except HALT/ENAB) results in the SWITCH flag flip-flop being clocked 
to the 1 state. This flag is sensed directly through the BUT MUX of print K3-2 in the console loop by BUT06 in 
CON04 microword at location 026. The transitions that clock the SWITCH flag also provide the signal levels 
necessary for the Basic Microbranch Test [BUBC (02:00) (BUT30)] to access the individual switch flow responses. 
Reference to the flow diagram (D-FD-KDII-A-FD) for console operation and BUT30 shows the exclusive nature of 
the switch BUBC code; only one switch can be serviced. The SWITCH flag is cleared by the processor INIT signal, by 
BUT37 in the FETCH cycle (for START), and by BUT3X (at BUT30 when switch type is being sensed). The PART 
P END signal indicates a cycle end pulse for a CL2 or CL3 only. 

The START and BEGIN switches require console flags. Each produces a non-filtered (contact bounce exists) INIT 
signal when the console switch is activated. Each clocks its flag flip-flop (and the SWITCH flag) to the 1 state as the 
switch is released. Both flag flip-flops provide inputs to the BUBC logic for switch sensing; the BEGIN flag is also 
used for microbranching to sequence a START flow sequence after a LOAD ADRS flow sequence. The flags are each 
cleared by the processor INIT signal by BUT37 in the FETCH flow or by BUTlO in the START flow. 

The CONSL flag flip-flop is clocked to the 1 state on entry into the console loop by BUT24 in CON 12 microword at 
address 255 and by BUT06 in CON04 microword at address 026; both are in the console flow. The CONSL flag 
allows single instruction operation by inhibiting the HALT signal in the BUBC (BUT26) signal (print K3-7) in the 
SERVICE flow. This allows the CONT switch one instruction FETCH before the HALT switch is serviced as a 
console bus request. The CONSL flag also inhibits usual bus error responses by disabling logic for ODA ERR (print 
K44) and altering the JAMUPP microaddress (print K4-3). Clocking for NPRs and BRs is also disabled (print K44). 
The flag is also used in the KT11-D option. The CONSL flag is clocked to the 0 state by a BUTlO in the START 
flow, by a BUT04 if BEGIN, and by a BUT26 in SERVICE flow. 

The EXAM and DEP flags are used for essentially the same purpose. They provide automatic address incrementation 
for console operations which are consecutive EXAMs or DEPs. The flags are clocked to the 1 state during the latter 
part of their respective flow sequences: the EXAM flag is clocked by BUT04 and DADO (1) H; the DEP flag is 
clocked by BUT03 and DADO (1) H. The outputs are ORed together (K5-6 CONSL INC H) and used in the B 
constant for SBC=7. To prevent the incrementation when EXAM and DEP are directly intermixed, the EXAM flag is 
zeroed at input to the DEP flow and the DEP flag is zeroed at the input to the EXAM flow (BUT03 and BUT04, 
respectively). Both flags are cleared on entry in the CONSOLE flow (BUT24), in the SERVICE flow (BUT26), and 
in the START flow (BUT05). 

5-83 KS-6 





Print KS-7: CABLES 

Two connectors are shown on this print. The KYll-D connector (n) has associated logic to drive the ADDRESS 
display and accommodate the console control signals utilized on print K5-6. 

The other connector (J2) provides an interface for a remote Unibus console to allow remote control of the stop, 
initialize, and start functions at a console-provided Unibus address. A manual or automatic remote console interface 

, may be used, however, care must be taken to avoid simultaneous use of the remote console and the programmer's 
console, as both consoles are logically active. Signal interconnections should be twisted pair cables, with the ground 
returns provided on the connector. Length is limited to twenty feet. The remote console's Unibus interconnection 
for the starting address is governed by appropriate Unibus rules. 

) 

) 

) 

The characteristics of the connector signals are noted in their order of activation. 

REMOTE STOP L input signal is logically ORed with the KYll-D HALT switch to halt the machine after 
instruction completion. This signal should be asserted for a minimum of 100 ms. 

K5-7 CONSOLE H output signal indicates that the processor is in console mode, awaiting switch activation. This 
signal should be present before either REMOTE INIT L or REMOTE START L are activated. The K5-7 CONSOLE 
H signal should become active sometime during the REMOTE STOP L signal activation. It is cleared during 
REMOTE INIT L activation and is reasserted under control of the microprogram approximately 450 ns after the 
deactivation of REMOTE INIT L. It is deactivated again under control of the microprogram approximately 40 ms 
after activation of REMOTE LOAD L. 

REMOTE INIT L signal input clears both the Unibus and the processor. This signal should be asserted for a 
minimum of 100 ms and only if the processor has responded to the REMOTE STOP L signal with K5-7 CONSOLE 
H. Note that direct enabling of REMOTE INIT L by K5-7 CONSOLE H is not possible due to variations in the KS-7 
CONSOLE H signal. 

REMOTE LOAD L input signal clocks the BEGIN flip-flop to the 1 state and activates the microprogram BEGIN 
sequence. This sequence consists of a LOAD ADRS and a START. The REMOTE LOAD L signal should be a 
minimum 2 iJ.S pulse with a Unibus address provided at activation and maintained as noted below; actual 
microprogram action begins at the trailing edge of the pulse. The signal should be asserted when the K5-7 CONSOLE 
H is reasserted after the REMOTE INIT. 

BUS D (15:00) L Unibus signals are used to provide the starting address for the BEGIN sequence. Electrical 
characteristics of these signals are the same as for any other device on the Unibus data lines. The address should be 
gated upon the Unibus at the leading edge of the REMOTE LOAD L signal and can be removed with the next 
deactivation of K5-7 CONSOLE H. . 

5-85 KS-7 





'. 

) 

) 

) 

Print KS-8: BUS DELAYS 

Delay circuits associated with Unibus and processor operation are shown on this print. Several delays sequence the 
BUS AC LO L and BUS DC LO L signals of the Unibus for power fail operation. Another two delays provide a 
RESET instruction Unibus INIT signal and a RESET RESTART signal. Start-up delays for processor operation are 
provided by the PWRUP INIT and POWER RESTART one-shots. 

K5-8 CLK PWRDN H is the Clock Power Down clock signal to the PWRDN flag flip-flop on print K54. Necessary to 
this signal is the synchronizing LOWAC flip-flop; this flip-flop, with its associated gating, ensures that no power fail 
indication (the activation of BUS AC LO L) is missed and that none provides more than one clocking signal. Sensing 
of power failure occurs immediately unless the DELAY POWER DOWN delay is still active after the power-up 
situation. Some of the other power fail delays interact (AC LO delay) but these are ordered primarily toward the 
proper sequencing of BUS AC LO L and BUS DC LO L signals on the Unibus. Typical waveforms are shown in the 
table USUAL POWER FAIL WAVEFORMS. Examples of the power-down and power-up sequences are presented in 
detail in Chapter 3. 

K5-8 PWR REST ART H signal initiates a JAMUPP to begin microprogram sequences (print K4-3) approximately 
70 ms after the deactivation of BUS AC LO L. The PWR flip-flop associated with the POWER RESTART delay 
prevents the one-shot from firing unless a power-up situation exists; variations in BUS AC ill L for power-down are 
ignored. 

K5-8 P END RESET L signal is an asynchronous pulse restart signal to the CLK flip-flop (print K4-2) for the RESET 
instruction. This restart Signal occurs approximately 70 ms after the halt in the RESET flow at RSTOI microword at 
address 025 containing a BUT02. 

K5-8 RESET RESTART L signal indicates the status of the 70 ms RESET RESTART one-shot. 

K5-8 INIT + RESET H signal provides a test point for the signal producing the BUS INIT signaL 

BUS INIT L is the Unibus INIT Signal consisting of a RESET initialize and the processor initialize (INIT 1). The 
signal is used by Unibus peripherals. 

K5-8INIT 1 L 
K5-8 INIT 2 L 
K5-8 INIT H are signals for the processor to initialize itself and the system. The signal consists of START and 
BEGIN switch initialize, direct BUS DC LO L initialize, and a PWRUP INIT one-shot initialize which becomes active 
at the deactivation of BUS DC LO L. The signal is used by the processor control flip-flops and all Unibus peripherals. 

KS-8 PWRUP INIT L signal is approximately 20 ms and occurs on the deactivation of BUS DC LO L. The signal 
initiates a JAMUPP in the microcontrol (print K4-3) to location 377, which contains all Os. 

, K5-8 B DC LO H is an identification signal for the buffered BUS DC LO L signal. 

) 

K5-8 D DC LO L is the buffered BUS DC LO L signal and is used to directly set the IDLE flip-flop on print K4-2. 

K5-8 B AC LO L is the buffered BUS AC LO L signal used as a data input to the JPUP flip-flop and as an inhibit to 
the clocking of NPRs. 

BUS DC LO L is the Unibus signal indicating low dc voltages. See table of USUAL POWER FAIL WAVEFORMS. 

BUS AC LO L is the Unibus signal indicating low ac voltages. See table of USUAL POWER FAIL WAVEFORMS. 

5-87 KS-8 





) 

) 

) 

) 

6.1 KYll-D CONSOLE 

CHAPTER 6 

KYII-D PROGRAMMER'S CONSOLE 

The KYll-D Programmer's Console consists of the KYll-D Console Board (5409701) and two cables (BC08R-03) 
which are used to interconnect the console to the KDII-A Processor. Both power and logic signals are provided by 
these cables that connect to the DATA PATHS (M7231) board and the STATUS (M7235) board. Operating 
instructions for the console are included in the PDP-ll/40 System Manual. 

A remote Unibus console interface also exists in the KDII-A Processor. This interface is described in Chapter 5 in 
relation to print K5-7. 

6.2 KYll-D CONSOLE BOARD 

The KYll-D Console Board shown on print D-CD-5409701.Q-l consists of displays with data and control switch 
inputs. 

6.2.1 Print KYD-2, Display 

The display on the console consists simply of light-emitting diodes (LEDs) with current limiting resistors; the drivers 
for these displays are located on the DATA PATHS and STATUS boards of the KDII-A Processor. Input signals 
from the processor are shown at the left of the displays; actual console panel notation for the displays is shown in 
parentheses near the diode symbol. 

Connectors (11, J2) for processor interconnection are also shown on this print. These connectors provide for the 
display signals from the processor, as well as the Switch Register data and control signals to the processor. 

6.2.2 Print KYD-3, Switches 

The data switch inputs from the Switch Register are shown at the right. Simple resistor inputs are used. The console 
functions are shown in parentheses [(SR09) for example] with the connector signals at the right. 

The control switches have Set-Reset flip-flops to eliminate contact bounce, in addition to a driving gate. The console 
functions are noted in parentheses; the connector signals are at the right. 

An additional switch for OFF/POWER/PANEL LOCK is also shown. Its connectors (B, J4) consist of two quick 
disconnect tabs to allow direct interconnection to the cabinet power control unit. 

6.3 CABLES 

The BC08R-03 cables are interconnected to the KYll-D console (11, J2) and the M7231 and M7235 modules 
according to the instructions on the printed circuit boards and the circuit schematics. Orientation of the shield is 
specified and required for proper interconnection. Connection for power control to B and J4 is simple: this 
connector provides only a switch closure and, therefore, either interconnection of the two wires is acceptable. 

6-1 





) 

) 

) 
-

) 

) 

7.1 SCOPE 

CHAPTER 7 

PROCESSOR OPTIONS 

This chapter provides a complete description of three of the internal processor options that may be used with the 
KDll-A Processor. These options are: 

a. 

b. 

c. 

KJ11-A Stack Limit 
Register 

KMII-A Maintenance 
Console 

KWII-L Line Fre-
quency Clock 

In the basic machine, a fixed boundary is provided to prevent stacks 
from expanding into locations containing other information. The Stack 
Limit Register provides a programmable boundary with both warning 
(yellow) and fatal (red) stack error indications. 

This option provides indicators and switches for manually operating the 
system imd for monitoring the status of key signals during maintenance 
procedures. 

This option references real intervals and generates a repetitive interrupt 
request to the processor. The rate of interrupt is derived from the ac 
line frequency. 

Processor options differ from bus options in two respects: they are physically mounted -within the processor, and 
they interact with the processor without necessarily using the Unibus. For example, for many processor options, 
jumpers are often added or removed from the processor modules so that the option is logically connected directly to 
the processor. 

Other processor options are available for use with the KDll-A. Because of their size and relative complexity, they 
are covered in other manuals. The KEll-E Extended Instruction Set and KEll-F Floating Instruction Set are both 
covered in the KEll-E and KEll-F InstructionSet Options Manual. The KT11-D Memory Management option is 
covered in the KTII-D Memory Management Option Manual. 

7.2 KJlI-A STACK LIMIT REGISTER 

The KDll-A Processor is capable of performing hardware stack operations. Because the number of locations 
occupied by a stack is unpredictable, some form of protection must be provided to prevent the stack from 
expanding into locations containing other information. In the basic machine, the protection is provided by a fixed 
boundary; the KJ1l-A Stack Limit Register provides a progratnrnable boundary. 

The K111-A consists of a single addressable register, accessible to both the console and the processor, that is used to 
change the stack limit and to provide warning (yellow zone violation) and error (red zone violation) indications for 
the stack. The Stack Limit Register is an 8-bit register (high-order byte) that can be addressed either as a high-order 
byte (777775) or as a full word (777774). 

7-1 



During operation, the register is loaded with an address signifying the lower limit of the stack (stack violations occur 
at or below this limit). During subsequent stack pOinter related operations of certain bus cycle types (DATa, 
DATOB, and DATIP), if the address of the bus operation is less than the contents of the Stack Limit Register, an 
error condition exists. 

If the difference is less than or equal to 16 words, a yellow zone violation occurs. The operations that caused the 
yellow zone violation are completed and then a bus error trap occurs. This error trap, which itself uses the stack, 
executes without causing an additional violation. 

If the space between the bus address and the Stack Limit Register is greater than 16 words, a red zone violation 
occurs and the operation causing the error is aborted. The stack is repositioned and a bus error trap occurs; i.e., the 
old PS and PC are pushed into locations 2 and 0 and the new PC and PS are taken from locations 4 and 6. A red 
zone violation is a fatal stack error. Note that these two stack error conditions exist in the basic KDII-A Processor; 
however, in this case the stack limit is fixed at memory location 4008 . Other fatal stack errors are odd stack or 
non-existent stack. 

The KJ1I-A Stack Limit Register Option is a single-height module that plugs into slot E03 of the processor. It 
requires the movement or removal of the following jumpers on KDII-A Processor modules. 

Module Print Jumper New Position 

M7231 KI-7 W2 Connect W2 between module pin E04H2 and pin 06 of E63. 

M7234 K4-4 WI Connect WI between module pin B07F2 and pin 10 of E 16. 

M7235 K5-4 WI Connect WI between module pin D06R2 and pin 01 of E51. 

7.2.1 Functional Description 

The Stack Limit Register logically determines if a particular address is within valid limits or if it is in the yellow 
(warning) or red (error) zone of the stack. The logic first compares the high-order byte of the address with the value 
in the Stack Limit Register. If the high-order byte is greater than the Stack Limit Register value, then the address is 
valid and not infringing on the stack. If, however, the high-order byte of the address and the contents of the Stack 
Limit Register are equal, then the address is not valid and the logic must determine which type of violation (yellow 
or red) has occurred. The logic then examines bits (07:05) of the low-order byte of the address to determine if the 
violation is a yellow zone or red zone violation. If the high-order byte of the address is less than the Stack Limit 
Register value, a red zone violation has occurred. 

The comparison of the high-order byte of the address and the contents of the Stack Limit Register is shown in Table 
7-1. 

For the situation where the upper bytes of the Stack Limit Register and the bus address are equal, it is necessary 
only to monitor the value of bits (07:05) to determine if a red or yellow zone violation has occurred. If all three of 
these bitsiare set, then the value of the low-order byte must be somewhere in the range of 340 to 377 (20 octal or 16 
decimal word locations) which is a yellow zone violation. If anyone of the bits is not set, then the highest possible 
address would be 337, which is the upper limit of the red zone. 

Table 7-2 summarizes the method of monitoring the low-order byte to determine whether a red or yellow zone 
violation is present. 

7-2 

) 

) 

) 



) 

'J 

) 

-) 

) 

) 

Bit Position 
(High Byte) 15 

Bus Address 0 
SLR Contents 0 

Bus Address 0 
SLR Contents 0 

Bus Address 0 
SLR Contents 0 

7.2.2 Detailed Description 

14 

Table 7-1 
Comparison of Address arid SLR 

13 12 11 10 

VALID ADDRESS (GREATER THAN) 

1 1 0 1 1 
1 1 0 1 0 

INVALID ADDRESS (EQUAL) 

1 1 0 1 0 
1 1 0 1 0 

INVALID ADDRESS (LESS THAN) 

1 1 0 1 0 
1 1 0 1 1 

09 08 Octal Value 

0 0 0660 
1 0 0650 

1 0 0650 
1 0 0650 

1 0 0650 
0 0 0660 

The Stack Limit Register logic is shown on print D-CS-M7237-O-1. The prime elements of this logic are two 74175 
IC circuits (D type registers) and two 7485 IC circuits (4-bit comparators). 

The high byte of the Stack Limit Register is loaded by a Unibus reference by the processor or console to the SLR 
bus address. The processor decodes this address and routes the data through the D MUX to the Stack Limit Register 
logic, providing a proper SSYN signal on the Unibus. These D MUX signals are loaded through the 5384 gates to the 
74175 registers with the processor providing the clocking Signals. The clock input is true when the Stack Limit 
Register has been selected for use (ADRS 777774 H is true) and is being loaded (DATI HIGH H is true). Under these 
conditions, the register is clocked, storing the desired value, and the value of the Stack Limit Register is applied to 
the input lines of the comparators. The 8881 gates provide a Unibus output so that the Stack Limit Register can be 
read. A processor or console reference to the SLR address with a DATI bus cycle enables the 8881 gates. Again, the 
basic KDII-A Process9r provides all Unibus signals in addition to the gating signals. 

The two comparator ICs function as a single 8-bit comparator circuit. The 8-bit byte that indicates the value of the 
Stack Limit Register is the A input to the comparator. The high byte of the Bus Address Register (which indicates 
the address of the bus operation being performed) is applied as the B input to the comparator circuit. 

If A<B, indicating that the bus operation is not infringing on the stack because the bus address is higher than the 
stack limit value, no action occurs. 

If A=B, it indicates that either a yellow (warning) or red (fatal) stack error exists because the stack limit value and 
the high byte of the bus address are identical. In this case (A=B), bits 07 through 05 are examined by the processor 
address decoding logic. If all three of these bits are set, then KI-7 BA (07:05)=1 L is true, gates are enabled, and 
KJ-2 EOVFLW L indicates a yellow zone violation. Note that one line on the gate that produces KJ-2EOVFLW L is 
tied to +5 V. When the KT11-DMemory Management option is installed, that input is used to inhibit all overflow 
conditions in user mode. 

7·3 



If anyone of the bus address bits 07 through 05 is not set, then the signal KI-7 BA (07:05)=1 L is high and qualifies 
an AND gate for KJ-2 BOVFLSTOP 11, thereby indicating a red zone violation. 

If A>B, indicating that the bus operation is infringing on the stack because the bus address is lower than the stack 
limit value, then a red zone violation occurs and the logic produces KJ-2 EOVFL STOP H, which is used by the 
processor to provide appropriate service of the error. 

Table 7-2 
Detecting Type of Violation 

High-Order Byte Low-Order Byte 

Bus 
Address 15 14 13 12 11 10 09 08 07 06 05 04 03 02 

421 - 1 0 0 0 1 0 0 

~ 
More than SLR ~1 

400 0 0 0 0 0 0 

377 0' 1 1 1 1 1 1 
-

EqUwtoSLR~ 
bits7,6,S"" ~ 
all set 

340 0 1 1 1 0 0 0 

337 . 0 1 1 0 1 1 1 

EqUwtoSLR~ 
bits 7,6,5 are, 

not all set ~ 

000 . 0 0 0 0 0 0 0 

NOTES: 1. In above example, SLR is loaded with 000. 

2. In all cases, highest yellow zone address must end in either 377 or 777. 

3. In all cases, highest red zone address must end in either 337 or 737. 

7.3 KMII-A MAINTENANCE CONSOLE 

01 00 

0 1 

VALID 

0 O~ 
... 

1 1 

> YELLOW 

0 0 
., 

1 1 

). RED 

0 0 
J 

The KMI1-A Maintenance Console (also referred to as the mairitenancemodule) provides the user with a means of 
manually operating the system and monitoring machine states during maiittenance operations. 

7-4 

) 

) 

-) 

) 

) 



) 

) 

) 

The maintenance console itself contains four switches and 28 indicators that monitor various signals within the 
processor. When an indicator lights, it means that the associated logic level is high. An overlay can be attached to the 
module to indicate what signals are being monitored. This overlay is .,necessary because the console is designed as a 
general-purpose device and can be used, with different overlays, in many PDP-II devices. The specific functions 
monitored by the console depend on the logic signals wired to the device. 

If the maintenance console is to be used for monitoring KDll-A Processor operation, then the KDll-A overlay 
(Figure 7-1) is used and the module is inserted into processor slot FO!. The functions controlled by the switches and 
monitored by the indicators are listed in Table 7-3. 

PUPP PUPP PUPP 
8 7 6 

PUPP PUPP PUPP 
5 4 3 

T 
PUPP R PUPP PUPP 

A 2 1 a 
P 
5 S· BUPP BUPP BUPP 
Y 8 7 6 
N 
M 

BUPP BUPP 5 BUPP 
y 5 4 3 
N 

T BUPP BUPP BUPP 
2 1 a 

N z V C 

MCLK ~ 

MCLK 
ENAB ! MSTOP! 

KDll-A 

Figure 7-1 KDll-A Maintenance Console Overlay 
(A-SS-5509081-0-12) 

7-5 



Control 
Indicator 

PUPP (08:00) 

BUPP (08:00) 

TRAP 

SSYN 

MSYN 

T 

C 

v 

Z 

N 

MCLKENAB 

MCLK 

Table 7-3 
KMll-A Controls and Indicators for KDII-A Overlay 

Indication 

Indicates the Previous Microprogram Pointer (pUPP). These nine 
indicators represent a 3-digit octal word from 000 to 777. These 
indicators are the ROM address of the present U WORD. 

Indicates the output of the Basic Microprogram Pointer (UPP) 
Register. In effect, displays the address of the next U WORD 
(includes branching). 

Indicates that the TRAP signal is present. 

Unibus Slave Sync (SSYN) is present. 

Unibus Master Sync (MSYN) is present. 

T bit of the processor status word is present. This bit is used in 
program debugging and results in a trap sequence. 

Carry bit of the processor status word condition code is present 
(previous operation resulted in a carry from the most significant bit). 

Overflow bit of the processor status word condition code (operation 
resulted in arithmetic overflow). 

Zero bit of the processor status word condition code is present 
(result of operation was 0). 

Negative bit of the processor status word condition code is present 
(result of operation was negative). 

When active (in direction of arrow) this switch prevents the 
automatic reclocking of the CLK flip-flop on TIMING (print K4-2). 
The asynchronous restart of the CLK after bus cycles is also 
inhibited. The machine halts after each microword and during bus 
cycles (including INTR). The IDLE flip-flop is not affected, and 
NODAT timeout flag (print K4-6) is disabled. 

This switch (when moved toward the arrow) clocks the MCLK 
flip-flop on TIMING (K4-6) print and provides the timing pulses for 
the present rnicroword. The user can follow the flow diagrams one 
rnicroword at a time (Chapter 4 of this manual) to determine the 
proper indications on .the maintenance module and the 
programmer's console. Use of this maintenance clock is considered 
to be single clock operation. 

7·6 

Print Showing 
Signal Origin 

K2-2, K2-3. 

K2-2, K2-3 

K3 

K4-6 

K4-4 

KS-2 

KS-2 

KS-2 

KS-2 

KS-2 

) 

) 

) 

.1 

., 
'. 

) 



) 

Control 
Indicator 

MSTOP 

Table 7-3 (Cont) 
KMII-A Controls and Indicators for KD11-A Overlay 

Indication 

This switch is used to examine a specific microword in a program. 
The address of the microword to be examined is set into the 
programmer's console Switch Register bits (08 :00) and MSTOP is set 
to ON (toward arrow). The program is then started in a normal 
manner and continues running until it reaches the microword 
address that has been set into the Switch Register. At that time, the 
Kl-9 UPP MATCH H signal loads the IDLE flip-flop of TIMING 
(print K4-2) to ai, causing a machine halt. MCLK can continue 
operation. Note that MSTOP can only be used at the machine speed 
if the previous microword is of a CL2 or CL3. A CLl word does not 
allow the UPP MATCH logic sufficient time for comparison. If single 
clock operation is being used, all cycle lengths may be used. 

Print Showing 
Signal Origin 

If the console is to be used for monitoring operation of the KTl1-D Memory Management Option and/or the 
KEII-E Extended Instruction Set and KE11-F Floating Instruction Set Options, then the KTl1-D, KEI1-E,F 
overlay (Figure 7-2) is used and the module is inserted into processorslot EOl. In this case, the 16 indicators at the 
end of the overlay are used for the KTlI-D functions and the 12 indicators near the switches are used for the 
KEII-E,F functions. Note that none of the switches are operational when the console is used for this purpose. The 
functions monitored by the indicators are listed in Table 7-4 and must be correlated with the information in specific 
microwords of the flow diagram. 

7.3.1 Functional Description 

The KMll-A Maintenance Console consists of 28 indicator lights, four control switches, control switch logic, and 28 
indicator driver circuits mounted on a 2-module set. 

The 28 indicator driver circuits provide a low output level (activating the lamps) when a high logic level is the input. 
The driving circuits have a high input impedance and can be used on fully loaded TTL logic output. 

The four control switches and associated control switch logic initiate logic sequences and conditions in the unit 
tested by generating three key logic signals (switches S2, S3, and S4) with a grounding control signal (S1). Switches 
S2 and S4 are normally used for clock enable and clock signals, respectively. 

7.3.2 Physical Description 

The KMII-A Maintenance Console is contained on two modules: Maintenance Board 1 (W130 module) and 
Maintenance Board 2 (W131 module). The W130 module contains the 28 indicator driver circuits and connects the 
control switch signals and +5 V between the unit under test and the W131 module. The W131 module contains the 
indicator lights, the control switches, and the control switch logic. The maintenance console is shown on print 
D-BS-KM11-O-MB. 

The W131 module plugs into the W130 module, which, in turn, plugs into the unit under test. Pin and signal 
designations for the W131 connector are shown on printKM-3. 

7-7 



7.3.3 Configurations 

Because of the number of functions to be monitored, somePDP-ll units have two slots for use with the KMll-A. In 
these instances, the KMll-A can be used in one slot or the other, depending on what is being monitored; or, two 
KMll-A consoles qm be used so that all functions can be monitored simultaneously. Table 7-5 lists PDP-l1 units 
tested and includes the number of available slots. 

7.3.4 Power 
) 

The KMll-A receives two voltages from the unit under test. The +5 V power is applied at pin A2 of the W130 
connector and is used to. drive the Wl3l control switch logic. Nominal +8 V power is applied at pin B 1 of the Wl30 
connector and provides power to the indicator lights. Each indicator driver circuit controls the voltage across its 
respective indicator light. The driver circuits ate driven by the logic power of the signals being monitored. 

Note that no +8 V power is available in the KDll"A Processor backplane; +5 V power is used for the indicator lights. 

o , 

LL. 
L.J , 

ROM 
A 

ROM 
B 

ROM 
C 

ROM 
D 

EXP 
OVFL 

MSR 
01 

EPS 
(N) 

PBA PBA PBA 
17 16 15 

PBA PBA PBA 
14 13 12 

PBA PBA PBA 
11 10 09 

PBA PBA PBA 
08 07 06 

EXP ECiN 
B15 UNFL 00 

MSR DR09 DRoo 
00 

EPS EPS EPS 
eZ) (V) eC) 

KT11-D 
KE11-E.F 

Figure 7-2 KT1l-D, KEll·E,F Maintenance Console Overlay 
(A-SS·550908l-0-13) 

7-8 

) 

) 

) 

) 

) 



) 

) 

) 

Indicator 

* PBA (15:06) 

* ROM A, 
ROMB 

*ROMC 

*ROMD 

B15 

ECIN 00 

EXPUNFL 

EXPOVFL 

DROO 

DR09 

Table 7-4 
KMll-A Indicators for KTll-D and KEll-E, F Overlay 

Indication 

Indicates alogic 1 in the associated bit of the physical bus address. 
Note that the physical bus address is the address from the KT11-D 
and may be different from the address in the Bus Address Register 
of the processor. 

These two lights form a pattern to indicate the appropriate mode 
and the space to be used on a memory access. The pattern is listed 
below. A 0 indicates the light is off; a 1 indicates it is on. 

ROM A 

o 
o 

1 

ROMB 

o 
1 
o 

Current Mode 
Temporary Mode 
MTPI/D, Previous Mode 

or 
not MTPI/D, Current Mode 

MFPIjD, Previous Mode 
or 

not MFPIjD, Current Mode 

Indicates presence of ROM bit C which is used to enable clocking of 
PS (15:14) current mode into PS (13 :12) previous mode for future 
controlled access and clocking of T (15: 14). 

Indicates presence of ROM bit D which is used in conjunction with 
the final bus cycle of the KDll instructions for relocation in 

. destination mode only. 

Bit 15 of CPU B Register. In divide, used with DROO to determine 
the ALU function to be performed in division loop. 

An external carry-in to the ALU. 

Indicates exponential underflow during EXI 1 of floating point 
flows. 

Indicates exponential overflow during EXIl of floating point flows. 

Used in conjunction with other bits to indicate various conditions; 
e.g., with B15 in divide to determine ALU functions and to 
determine need for divisor correction. See EPS(C) for other use. 

Used as test for normalization. 

Print Showing 
Signal Origin 

KT-4 

KT-2 

KT-2 

KT-2 

KI-5 

KE-5 

KF4 

KF4 

KE-2 

KE-2 

*These indicators are used only with the KTll-D Memory Management Option; the remaining indicators are used with the KEll-E 

EIS and the KEll-F FIS Options. 

7-9 



Indicator 

MSROO· 

MSROI 

EPS(C) 

EPS(V) 

EPS(Z) 

EPS(N) 

Table 74 (Cont) 
K.MII-A Indicators for KT1I-D and KEII-E, F Overlay 

Indication 

Bit 00 ofMSR Register. Indicates ALU function in FDIV. 

Bit 01 ofMSR Register. Indicates ALU function in FMUL. 

C bit of extended processor status. In MUL, used with DRaa to 
detennine ALU function in multiply loop. 

Overflow bit of the extended processor status. 

Zero bit of the extended processor status. 

Negative bit of the extended processor status. 

Print Showing 
Signal Origin 

KF-2 

KE-6 

KE-6 

KE-6 

NOTE: The functions described in Table 74 describe the general purpose of the indicator. At times, a single 
indicator may show a number of functions, depending on the current state of the processor and option. 
This is why in order to use the maintenance module properly, the flow diagrams should be followed to 
determine the significance of an indication at anyone time. 

Unit Tested 

KD II-A Processor 

KT1I-D Memory Management 

KEII-E, F Extended 
Instruction Sets 

TMll DECmagtape Control 

DT11 Bus Switch 

RKII-C Moving Head Disk 
Drive Control 

Table 7-5 
K.MII-A Configurations 

Available 
Slots 

2 

a 

a 

I 

2 

7-10 

Remarks 

one slot used for KDll-A; 
one slot used for KT1I, KEI1-E, F 

uses KD11-A Processor slot 
shares overlay with KEl1 

use KD11-A Processor slot 
shares overlay with KT11 

peripheral controller 

peripheral controller 
overlays labeled: 

RK11-1 
RKll-2 

,. , 

\ 

) 

) 

) 

) 



) 

) 

) 

) 

) 

7.4 KWII-L LINt: FREQUENCY CLOCK 

The KW11-L Line Frequency Clock is a PDP-ll/40 processor option that provides a method of referencing real 
intervals. This option generates a repetitive interrupt request to the processor. The rate of interrupt is derived from 
the ac line frequency, either 50 Hz or 60 Hz. The accuracy of the clock period, therefore, is dependent on the 
accuracy of this frequency source. 

The KWll-L Line Frequency Clock can be operated in either an interrupt or non-interrupt mode. When the 
interrupt mode is used, the clock option interrupts the processor each time it receives a pulse from the line 
frequency source. In the non-interrupt mode, the clock option functions as a program switch that the processor can 
either examine or ignore. Mode selection is made by the program. 

The KWll-L Line Frequency Clock is installed in slot F03 of the KDll-A Processor backpanel. Installation requires 
that a backpanel wire between pins F03R2 and F03V2 be removed. This places the KW11-L option in the BG6H 
signal line. 

7.4.1 General Description 

The KWll-L Line Frequency Clock is a single-height module containing an address selector, threshold detector, 
interrupt control, and a 2-bit Status Register. A block diagram of the clock is shown in Figure 7-3 with details on 
prints D-BS-KWll-L-O-l and D-CS-M787 -0-1 of the PDP-ll /40 System Engineering Drawings. 

I\~ 
ADDRESS 

A(17'01} SELECTOR 
C 1 
MSYN 
SSYN 

U 
N STATUS I REGISTER I B D (OG:07) 
U INIT 
S 

~~NE~UENCY- THRESHOLD 
DETECTOR 

INTERRUPT J 
BRG CONTROL 

BGG IN 
BGG OUT 
SACK 
INTR 
BBSY 
DOG 

V SSYN 
11-019 

Figure 7-3 KWll-L Block Diagram 

When the KWll-L is in interrupt mode, the interrupt control section of the option provides the circuits and logic 
required to make bus requests, gain bus control, and generate interrupts. Wheneverthe threshold deteCtor provides a 
pulse from the line frequency source, the interrupt control section of the clock initiates a bus request on priority 
level 6 (BR6), which is the priority level of the clock. 

7-11 



The priority logic in the processor recognizes the request and issues a Bus Grant signal if the clock is the highest 
priority device requesting an interrupt. The KWJ1-L responds with a Selection Acknowledge (SACK) signal. When 
the requirements for becoming bus master have been fulfilled, the clock asserts Bus Busy (BBSY); an Interrupt 
(INTR) signal, and an interrupt vector address of 100. The processor generates a Slave Sync (SSYN) signal, then 
responds to the interrupt with an interrupt service routine. The interrupt control section of the clock then enters a 
rest state until the next initialization. 

The 2-bit Status Register in the clock consists of bits 6 and 7 on the data bus line. When bit 6 is set, the clock isin 
the interrupt mode; when it is .. clear, the dock is in the non-interrupt mode. Bit 6 is loaded by a Unibus DATO to the 
clock; it is also cleared by Unibus INIT. Bit 7 is.loaded to a 1 by a line clock pulse from the threshold detector or 
cleared by a Unibus INIT; it is cleared by any Unibus DATO to the clock. 

Bit 7 can be used by the processor to determine which device causes the interrupt. The interrupt service routine 
should include a DATI which reads the interrupt monitor bit (bit 7) to serve as a partial check on the origin of the 
interrupt vector. Thus, if bit 7 is clear there is an indication to the processor that the cl ock did not request the 
interrupt. 

In the non-interrupt mode, the clock performs a more passive function by serving as a program switch that the 
processor can examine or ignore. The interrupt control section is disabled so that the clock cannot assert a bus 
request (BR6) and, therefore, cannot go into an interrupt sequence. A programmedDATOmlist be used to return 
the clock to the interrupt mode; programmed DATIs must be used to examine the status of the clock. In the 
non-interrupt mode, the clock is controlled by programmed instructions from the processor. 

7.4.2 Address Selector 

The address selector logic of the KWII-L clock is pennanently wired to respond to incoming address 777546. Input 

) 

J 

) 

signals consist of address, BUS A (17:00); Bus Control, BUS Cl; and BUS MSYN (drawing D-BS-KW11-L-0). BUS ) 
AOO, which is used for word or byte control, is not brought into the clock because the KWII-L deals only with full ~ 

16-bit words. When the address is decoded by the address selector and BUS MSYN is active, gateE3 output goes 
high (drawing D-BS-KWII-L-Ol), thereby signaling that the. clock has been addressed. 

7.4.3 Interrupt Control 

The interrupt control section of the KWll-L Clock provides the necessary logic for issuing bus requests, gaining bus 
control, and generating interrupts. The interrupt logic uses three flip-flops: INTERRUPT REQUEST, FF1, and FF2 
(Figure 74). Table 7-6lists.the settings of these flip-flops in relation to the bus states and the signals asserted. 

When the clock is not issuing an interrupt request, all three flip-flops are in the Ostate and no signals are asserted on 
the bus. The request state is entered when the INTERRUPT REQUEST flip-flop is set by a line clock pulse. This 
setting of the flip-flop can occur only when the status bit 6 flip-flop (interrupt enable) is in the 1 state. Setting the 
INTERRUPT REQUEST flip-flop generates a BR6 request. 

The priority arbitration logic of the processor determines whether priority level 6 is the highest requesting level. If 
BR6 is the highest level, then the processor asserts a Bus Grant signal (BG6 IN H) that sets the FFI flip-flop. Signal 
BG6 is blocked from being passed on to the next device and the assertion of BR6 is dropped. With flip-flop FFI set 
and flip-flop FF2 clear, the Selection Acknowledge (SACK) signal is asserted on the bus. 

On receiving the SACK signal, the processor drops BG6 IN and flip-flop FF2 is set, provided SSYN and BBSY are 
both unasserted. The BBSY and INTR signals are then asserted on the bus, as well as interrupt vector address 100 
(BUSD06). . . 

The processor responds to these signals by asserting a Slave Sync (SSYN) signal that clears the INTERRUPT 
REQUEST flip-flop_ Flip-flops FFI and FF2 are subsequently cleared, causing the interrupt control section of the 
KWII-L Clock to return to the non-requesting state. At the same time SSYN is asserted, the processor enters the 
interrupt service routine at vector address 100. 

7-12 

) 

) 



ADDRESS H 

BUS C1 H 

) 

Interrupt 
Request 

0 

1 

1 

1 

BUS S SVN H 
BG6 IN H 

INTERRUPT 
REQUEST 

2 6 
\---+_---1 

BR6 L 

BUS 
INTR L 

o----_~~~y L 

BUS 
SACK L 

BG 6 
OUT 

11-0196 

Figure 74 Interrupt Request Section, Simplified Diagram 

FFI 

0 

0 

1 

1 

Table 7-6 
Interrupt Control Flip-Flops 

FF2 State 

0 Not requesting 

0 Requesting 

0 Granted 

1 Master 

7-13 

Signals 

None 

BR6 

SACK, BG6 OUT inhibited 

BBSY, INTR, BUS D06 
(vector address) 



7.4.4 Status Register 

The Status Register of the KWII-L contains the INTERRUPT ENABLE and the INTERRUPT MONITOR flip-flops 
(Figure 7-5). Operation of the Status Register logic is controlled by INIT, the line clock pulse, and DATO and DATI 
transfers. 

The INIT signal is generated by either pressing the START switch on. the programmer's console or by issuing a 
programmed RESET instruction. The INIT signal clears the flip-flops to initialize the Status Register for a new 
operation. 

The line clock pulse supplied by the threshold detector is used to set the INTERRUPT MONITOR flip-flop (bit 07). 
A DATO and ADDRESS H clear the INTERRUPT MONITOR flip-flop, provided BUS D07 is high, by applying a 
signal to the direct clear input of the flip-flop. 

In order for DATO and DATI transfers to affect the logic of the Status Register, the address of the KWll-L and 
MSYN must be asserted on the bus to provide the ADDRESS H input as shown in Figure 7-5. The ADDRESS H 
signal is also used, after a delay, to assert SSYN on the bus. 

The combination of DATO and ADDRESS provides a Signal to the clock input of the INTERRUPT ENABLE 
flip-flop. Depending on BUS D06, the flip-flop is either set or cleared. Thus, the processor can write a bit into this 
flip-flop by issuing a DATO and BUS D06=1 for a 1 and a DATO and BUS D06=0 for a o. The 0 side output of the 
INTERRUPT ENABLE flip-flop controls the interrupt function of the clock by holding the INTERRUPT 
REQUEST flip-flop in the interrupt control section ina cleared state when INTERRUPT ENABLE is in the 0 state. 

A DATI and ADDRESS H provide gating that reads the contents of INTERRUPT ENABLE on BUS D06 and the 
contents of INTERRUPT MONITOR onto BUS D07. 

BUS 
Cl L 

ADDRESS H 

= 

BUS 5 
SYN L 

INTERRUPT 
MONITOR 2 

LINE CLOCK:3 C 

BUS 006 

TO INTERRUPT CONTROL SECTION 

BUS 007 

4 

11-0198 

Figure 7-5 Status Register, Simplified Logic Diagram 

7-14 

) 

.') 

) 

) 



t 

~) I 
I 

'. J 
" , 

I 
1 
1 

) I 
1 

I 
. (.IJ 

KDll-A PROCESSOR 
MAINTENANCE MANUAL 
EK-KD11 A-MM-OOl 

Reader's Comments 

Your comments .andsuggestions will help us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete,accurate, wetIorganized, well 

written, etc.? Is it easy to use? 

What features are most useful? 
------------------~--------------------

.~) I~s 
_ What faults do you find with the manual? _______ - _______________ _ 

( 
1> 

I~ -----------------------------------
o 

I~ 
::> )I U 

I 
I 
I 
1 

Does this manual satisfy the need you think it was intended to satisfy? 

Does it satisfy your needs? ' _________ Why? __________________ - __ 

Would you please indicate any factual errors you have found. 

Please describe your position. 

Name _________________ Organization 

Street ______ ........ ---------- Department 
Qty ________ ____ State ____________ Zip or Country 



-.----------~~-------.-.----

- - _.-. - .-.- -- -- -- Do Not Tear· Fold Here and Staple - - - .- _. - - - -

8USIN~SS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STArES 

Postage WIll be paid by: 

Digital E(IUipment Corporation 
Technical Documentation Department 
146 Main Street 
Maynard. Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 

) 

) 

) 

) 

.} 

) 





digital equipment corporation 

Printed in U.S.A. 




