pory 1

AD11-K
analog to digital converter user manual

AD11-K
 analog to digital converter user manual

Copyright © 1976,1977 by Digital Equipment Corporation

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

This document was set on DIGITAL's DECset-8000 computerized typesetting system.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

DIGITAL	DECsystem-10	MASSBUS
DEC	DECSYSTEM-20	OMNIBUS
PDP	DIBOL	OS/8
DECUS	EDUSYSTEM	RSTS
UNIBUS	VAX	RSX
	VMS	IAS

CONTENTS

Page
CHAPTER 1 DESCRIPTION
1.1 GENERAL DESCRIPTION 1-1
1.2 FUNCTIONAL DESCRIPTION 1-1
1.3 A/D CONVERTER SPECIFICATIONS $1-4$
1.4 PACKAGING 1-5
1.5 POWER REQUIREMENTS 1-5
1.6 UNIBUS LOADING 1-5
CHAPTER 2 USER INTERFACING
2.1 CONNECTION 2-1
2.2 H322 DISTRIBUTION PANEL 2-1
2.3 SINGLE-ENDED AND PSEUDO-DIFFERENTIAL INPUTTING 2-1
2.4 SINGLE-ENDED ANALOG INPUTS 2-3
2.4.1 Grounded Inputs 2-3
2.4.2 Floating Inputs 2-4
2.5 TRUE DIFFERENTIAL INPUTTING 2-4
2.6 TWISTED PAIR INPUT 2-5
2.7 SHIELDED INPUT 2-5
2.8 INPUT SETTLING WITH HIGH SOURCE INPEDANCE 2-5
2.9 EXTERNAL STARTS 2-5
2.10 JUMPERS 2-6
2.11 SWITCHES 2-8
2.12 OVERFLOW OR EXTERNAL START CONNECTION 2-9
CHAPTER 3 PROGRAMMING
3.1 REGISTER AND VECTOR ADDRESSING 3-1
3.2 PRIORITY LEVEL 3-1
3.3 REGISTERS 3-1
3.3.1 Status Register 3-1
3.3.2 A/D Buffer Register 3-2
3.3.3 DAC Buffer 3-3
3.4 PROGRAMMING EXAMPLE 3-3
GLOSSARY OF A/D TERMS
ILLUSTRATIONS
Figure No. Title Page
1-1 AD11-K Block Diagram 1-2
1-2 Single-Ended Input 1.3
1-3 Pseudo-Differential Input $1-3$
$1-4$ True Differential Input 1-4
2-1 H322 Distribution Panel 2-2
2-2 AD11-K Input Referenced to User's Ground 2-3
2-3 Floating AD11-K Input Signals 2-4

ILLUSTRATIONS (Cont)

Figure No. Title Page
2-4 A009 Module 2-6
2-5 Module Jumpers 2-7
Tab Connections 2-9
A/D Status Register Format 3-1
A/D Buffer Register Format 3-2DAC Buffer Register Format3-3
TABLES
Table No Title Page
2-1 Channel Selection 2-3
2-2 Channel Pair Selection 2-5
A009 Jumper Descriptions 2-8
A009 Input Range Jumpers 2-8
Address Line Selection $2-9$
Vector Line Selection 2-9
2-6
AD11-K Status Register Bit Descriptions 3-2

AD11-K ANALOG TO DIGITAL CONVERTER

USER MANUAL

MA-1 749
AD11-K Module

CHAPTER 1

DESCRIPTION

1.1 GENERAL DESCRIPTION

The AD11-K, Analog-to-Digital (A/D) Converter, enables the user to sample analog data at specified rates and to store the equivalent digital value for subsequent processing. The basic subsystem consists of an input multiplexer (over all ranges are over with the G5036 wrap-around module A +8 V ramp circuit and +2 V 8 -bit D / A converter are used to test th A/D converter and are also available for user use. A block diagram of the AD11-K is shown in Figure 1-1
1.2 FUNCTIONAL DESCRIPTION

The AD11-K is a 12 -bit successive approximation converter where the data is right-justified in offset binary. It is controlled by the A/D Status Register

An A/D conversion may be initiated in any of three ways: Under program control, on overflow from a real time clock, or on an external input. These methods give the system the flexibility to serve in most applications requiring data acquisition.
The user can switch-select operation in single-ended or differential mode. In single-ended mode, up to 16 single ended (Figure 1-2) or pseudo-differential (Figure 1-3) channels of analog input can be selected. In true differen tial mode, up to eight differential channels of analog input can be selected (Figure 1-4). The input channel is selected by the status register. Input voltage range can be changed from the standard setup of $\pm 5 \mathrm{~V}$ to $\pm 5.12 \mathrm{~V}$ $\pm 10 \mathrm{~V}+10.24 \mathrm{~V}, 0$ to 10 V or 0 to 10.24 V by configuring jumpers on the module.

When a conversion is complete, a flag is set and, if the A/D interrupt is enabled, the processor will interrupt (vector) to the proper subroutine for data manipulation. The user can run in the interrupt mode or wait to see the A/D done flag.

The multichannel throughput rate is 50 kHz using a PDP-11/10 computer (start conversion to memory). Since the converted value is held in a buffer register, a second conversion can be started before the results of the first conversion are read, thus achieving high throughput.

The digital-to-analog converter (DAC) has no control logic, so software must provide the proper settling dela (approximately $30 \mu \mathrm{sec}$). The DAC is an 8 -bit converter with an 8 -bit buffer register. The D/A output range is $\pm 2 \mathrm{~V}$. Normally, the DAC is used for maintenance to test the A/D converter via the G5036 wrap-around module; however, the output is made available for the use

Figure 1-1 AD11-K Block Diagram

Figure 1-2 Single-Ended Input

Figure 1-3 Pseudo-Differential Input

Figure 1-4 True Differential Input

1.3 A/D CONVERTER SPECIFICATIONS

General

12-bit A/D converter with sample-and-hold
Accuracy at $25^{\circ} \mathrm{C}$
Number of channels

SPC - Quad module
Program - Compatible with LPS11
Pin - Compatible with AR11 at Berg connector (H854)
Expansion capabilities
Control
Output Format
Warm-up time
Power
0.025\% of full scale

16 (single-ended or pseudo-differential)
8 -true differential

Accuracy

Relative accuracy (linearity)
Differential linearity guaranteed

Uses H322 panel
Uses same wrap-around module
64 (single-ended or pseudo-differential)
32 (true differential)
Controlled by programmed instructions, clock counter overflow, or external input Parallel, 12-bit, right justified, offset binary, double buffered
Five minutes
+5 Vdc at 3.5 A (max)
0.025% full scale
No shipped states, no states wider than 2 LSB
99% of states $\pm 1 / 2$ LSB

Stability

Gain temperature coefficient

Linearity temperature coefficient
Offset temperature coefficient
Recommended calibration interval (two adjustments)

Repeatability

Rms Noise (δ)

Inputs

Bias current
Input impedance

Input Voltage Range

Resolution

$12 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C} / \mathrm{LSB}$ at full scale 3 ppm of F.S. $/{ }^{\circ} \mathrm{C}, 81^{\circ} \mathrm{C} /$ LSB 10 ppm of F.S. $/{ }^{\circ} \mathrm{C}, 24^{\circ} \mathrm{C} /$ LSB 6 months
1/2 LSB (max)
10 na (max)
10 megohms (min)
10 pF (max) OFF channel
100 pF (max) ON channel
Standard setup: $\pm 5 \mathrm{~V}$
Optional Setup: $\pm 5.12 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 10.24$
$\mathrm{V}, 0$ to 10 V or 0 to 10.24 V
12 bits (1 part in 4096)
$22 \mu \mathrm{sec}$ (includes interchannel settling and
A/D conversion)
1 LSB (max)
80 dB down at 1 kHz
(15 OFF channels into one ON channel)
70 dB (dc to 1 kHz)
500 kHz typical
$7 \mathrm{~V} / \mu \mathrm{sec}$
200 nsec typ, delay from external start
165nsec typ, delay from clock overflow
20 nsec max, delay uncertainty

1.4 PACKAGING

The AD11-K is a single quad-size module (A009) which mounts in a PDP-11 SPC slot. The RFI shields included with this option should be mounted on each side of the A009 module. These shields do not require a Unibus slot. To minimize computer noise within the analog circuitry, it is recommended that the AD11-K be mounted so that at least one slot adjacent to each side of the A009 module is left empty, or so that the A009 module is the last module on the bus assembly with adjacent slots left empty.

1.5 POWER REQUIREMENTS

The AD11-K module (A009) only uses +5 Vdc at 3.5 A max. A dc to dc converter package, powered by the +5 Vdc , is used to supply $\pm 15 \mathrm{Vdc}$ to the analog portions of the module.

1.6 UNIBUS LOADING

All Unibus lines are one unit load, except data lines 03 through 08, which are two unit loads.

CHAPTER 2 USER INTERFACING

2.1 CONNECTION

Input signals are interfaced to the AD11-K by a 40-pin I/O connector (H854) located in the upper right corner of the A009 module. The $40-$ pin I/O connector can take a standard BC08R cable or a user-made cable terminated with an H856 40-pin I/O connector. The pin assignments are shown below:

Signal	Pin
Channel 0	VV
Channel 1	TT
Channel 2	RR
Channel 3	NN
Channel 4	LL
Channel 5	JJ
Channel 6	FF
Channel 7	DD
Channel 10	BB
Channel 11	Z
Channel 12	X
Channel 13	V
Channel 14	T
Channel 15	R
Channel 16	N
Channel 17	L
External A/D Start	U
DAC Output	F
H.Q. Ground	KK, EE, AA, W
Return	Y, CC, HH, MM
Computer Ground	P, S
Ramp Output	J

2.2 H322 DISTRIBUTION PANEL

Figure 2-1 shows an H322 distribution panel. A decal set for the AD11-K identifies each terminal of the H322 to be connected to the A009 module. Persons who want to use the H322 distribution panel can order these options together under the AD11-KT option designation, which consists of an H322, AD11-K, and one BC08R cable eight feet (243.84 cm) long.

2.3 SINGLE-ENDED AND PSEUDO-DIFFERENTIAL INPUTTING

Setting switch S1 to the 1 position will allow the AD11-K to operate in either single-ended or pseudo-differential input (Figures 1-2 and 1-3). The only difference between single-ended and pseudo-differential is that in singleended the analog input is referenced to ground (Paragraphs 2.4.1 and 2.4.2), and in pseudo-differential the analog input is referenced to a common return (Figure 1-3). This permits advantages of differential input in situations where all the signals share a single ground line. The channel selection is shown in Table 2-1.

Figure 2-1 H322 Distribution Panel

Table 2-1
Channel Selection

Status Register Mux Selection						Input Channel Code	Pin Connection
13	12	11	10	09	08		
0	0	0	0	0	0	00	VV
0	0	0	0	0	1	01	TT
0	0	0	0	1	0	02	RR
0	0	0	0	1	1	03	NN
0	0	0	1	0	0	04	LL
0	0	0	1	0	1	05	JJ
0	0	0	1	1	0	06	FF
0	0	0	1	1	1	07	DD
0	0	1	0	0	0	10	BB
0	0	1	0	0	1	11	Z
0	0	1	0	1	0	12	X
0	0	1	0	1	1	13	V
0	0	1	1	0	0	14	T
0	0	1	1	0	1	15	R
0	0	1	1	1	0	16	N
0	0	1	1	1	1	17	L

2.4 SINGLE-ENDED ANALOG INPUTS

2.4.1 Grounded Inputs

Two types of analog signals may be used as AD11-K inputs - grounded and floating. A grounded signal level is referenced to the ground of the instrument that is producing the signal (Figure 2-2). Since the instrument may be located some distance from the computer, there may be some voltage difference between the instrument ground and the computer ground. The voltage seen by the AD11-K single-ended input is the sum of this unwanted ground difference voltage and the desired signal voltage.

In cases where the input voltage is referenced to the user's ground, a wire should not be run from the user's ground to the AD11-K analog ground; this could cause undesirable ground loop currents which affect results not only on the input channel in question, but also on other channels. The ground difference should be minimized by plugging the instrument into an ac socket as close to the computer as possible.

Figure 2-2 AD11-K Input Referenced to User's Ground

2.4.2 Floating Inputs

A floating signal voltage is measured with respect to a point that is not connected to ground. Examples of this type of analog input are shown in Figure 2-3.

The return line of a floating signal must be connected to one of the AD11-K analog input grounds (Paragraph 2.1). Although there are only four analog input grounds for the 16 analog channels, these grounds may be shared among channels. The identifying characteristic of a floating source is that connecting the signal return to the AD11-K ground does not result in a current path between the AD11-K ground and the instrument ground.

Figure 2-3 Floating AD11-K Input Signals

2.5 TRUE DIFFERENTIAL INPUTTING

Setting switch S1 to position 2, 3, 4 or 5 will electrically pair input lines for true differential input operation (Figure 1-3). The least significant bit of the channel selection (Status register bit 08) is ignored. The channel pair selection is shown in Table 2-2.

Table 2-2
Channel Pair Selection

Status Register Mux Selection						New Channel Code	Input Channel Pair		Pin Connection	
13	12	11	10	09	08		+	-	+	-
0	0	0	0	0	X	00	00	01	VV	TT
0	0	0	0	1	X	02	02	03	RR	NN
0	0	0	1	0	X	04	04	05	LL	JJ
0	0	0	1	1	X	06	06	07	FF	DD
0	0	1	0	0	X	10	08	09	BB	Z
0	0	1	0	1	X	12	10	11	X	V
0	0	1	1	0	X	14	12	13	T	R
0	0	1	1	1	X	16	14	15	N	L

2.6 TWISTED PAIR INPUT

The affects of magnetic coupling on the input signals may be reduced for floating or differential inputs by twisting the signal and return lines in the input cable. If the inductive pickup voltages of the two leads match, the net effect seen at the AD11-K input is zero. Twisted pairs have no affect with a single-ended, non-floating signal (referenced to ground at the instrument end).

2.7 SHIELDED INPUT

The affects of electrostatic coupling on the input signals may be reduced by shielding the signal wires. This is especially important if the instrument or transducer has high source impedance. The shield should be connected to ground at one end of the cable only so that it does not carry any current.

2.8 INPUT SETTLING WITH HIGH SOURCE IMPEDANCE

All solid-state multiplexers have the unavoidable side affect of injecting a small amount of charge into their input lines when changing channels, causing a transient error voltage which is discharged by the input signal's source impedance.

When starting a conversion, a $10 \mu \mathrm{sec}$ interval is allowed for the AD11-K multiplexer and sample-and-hold to settle to the correct value of the newly-selected channel before the conversion begins. Normally, this is sufficient time for the input transient to settle out; however, more time may be needed when switching into an input channel with high source impedance. It may be necessary to either reduce the signal's source impedance or preset the multiplexer channel and provide a software delay before starting the conversion.

2.9 EXTERNAL STARTS

The external start signal line, pin U of the 40-pin I/O connector (H 854) or TAB2, is a TTL-compatible input which sees two TTL unit loads $(3.2 \mathrm{~mA})$. Conversions start on the high to low transition of this signal.

In most cases, the source of the external start signal is a grounded (non-floating) signal generator or logic circuitry located in a grounded instrument. Like the analog input signal, the return path for the External Start signal is through the grounds, and a separate return wire should not be run. The ground difference between the signal source and the computer should be minimized to prevent spurious start pulses due to ground noise.

In the case of a floating pulse generator only, the pulse generator's logic ground should be connected to the AD11-K's logic ground pins of the I/O connector.

When the AD11-K is used with the KW11-K programmable real-time clock, the output of Schmitt trigger one of the KW11-K is available at a FAST-ON TAB (also possessed by the AD11-K). By using a DEC 7010771 type jumper (Figure 2-4), the KW11-K's Schmitt trigger one output can be jumpered to the AD11-K's External Start input within the central processor cabinet.

2.10 JUMPERS

The AD11-K is equipped with solder jumpers (Figure 2-5) which may be changed by the user. The jumper functions and identifications are listed in Table 2-3. The jumper configuration must be set up for $\pm 5 \mathrm{~V}$ or ± 5.12 V input range when testing with the wrap-around module. Input range jumper setup is as shown in Table 2-4.

Figure 2-4 A009 Module

Figure 2-5 Module Jumpers

Table 2-3
A009 Jumper Descriptions

Jumper ID (See Figure 2-4)	Description
W1 - Factory Installed	Provides 5 V Input W1 A - User Installed Provides 5 V Input
W1 B - User Installed	Provides 10 V Input
W2 - Factory Installed	Provides Bipolar Input Provides Bipolar Input
W2A - User Installed	Provides Unipolar Input
W2B - User Installed	NPR - Removed only if PDP-11/20 or 11/15
W3 - Factory Installed	without a KH11 option
	$\pm 5.12 \mathrm{~V}, \pm 10.24 \mathrm{~V}$, or $0 \rightarrow+10.24 \mathrm{~V}$ Input

Table 2-4
A009 Input Range Jumpers

Jumper	Input Range				
	5 V Bipolar	10 V Bipolar	$0 \text { to }+10 \mathrm{~V}$ Unipolar	5.12 V Bipolar	10.24 V Bipolar
W1*	In	Out	Out	In	Out
W1 A	Out	Out	Out	Out	Out
W1B	Out	In	In	Out	In
W2*	In	In	Out	In	In
W2A	Out	Out	Out	Out	Out
W2B	Out	Out	In	Out	Out
W4	Out	Out	Out	In	In

*Once W1 and W2 are removed, they are not to be re-installed. These jumpers are paralleled by jumpers W1A and W 2 A respectively.

2.11 SWITCHES

A double pole switch (Figure 2-4) is provided for switching between single-ended and differential input configurations. When S 1 is in position 2, 3, 4 or 5 , the AD11-K is in true differential configuration and when S 1 is in position 1, the AD11-K is in single-ended or pseudo-differential configuration. Single pole/single throw switches in switch packs are used to change the register and vector addressing (Paragraph 3.1) of the AD11-K. The switch identification for the address lines and vector lines is shown in Tables 2-5 and 2-6, respectively. Register address lines are switched on for a logical 0 ; vector address lines are switched on for a logical 1.

Table 2-5
Address Line Selection

Switch	Address Line
Not Selectable	A15
Not Selectable	A14
Not Selectable	A13
S2-10	A12
S2-9	A11
S2-8	A10
S2-7	A09
S2-6	A08
S2-5	A07
S2-4	A06
S2-3	A05
S2-2	A04
S2-1	A03
S3-8	A02
Not Selectable	A01
Not Selectable	A00

Table 2-6
Vector Line Selection

Switch	Vector Line
S3-1	D3
S3-2	D4
S3-3	D5
S3-4	D6
S3-5	D7
S3-6	D8

2.12 OVERFLOW OR EXTERNAL START CONNECTION

Two FAST-ON TABS are available on the A009 for inputting signals from the KW11-K programmable realtime clock option. The KW11-K (M7025) also has two FAST-ON TABS (Figure 2-6) for outputting two signals - A Overflow and Schmitt trigger one. These signals can be jumpered between the A009 and M7025 models by using DEC 7010771 type jumpers (included with the AD11-K). This allows for signal connection within the processor cabinet and does not interfere with the regular I/O connector on each module. TAB 1 of the KW11-K is A Overflow and is re-named A Event Out. This can be jumpered to TAB 1 of the AD11-K, which is called KW Overflow.

TAB 2 of the KW11-K is Schmitt Trigger one. This can be jumpered to TAB 2 of the AD11-K, which is called External Start.

Figure 2-6 Tab Connections

CHAPTER 3 PROGRAMMING

3.1 REGISTER AND VECTOR ADDRESSING

Register and vector addresses are configured prior to shipment in standard configurations, but may be changed by means of switches on the A009 module. Paragraph 2.11 describes the procedure for changing the register and vector addresses.

The AD11-K has a floating address to allow the use of more than one AD11-K in a system, or to avoid any device address conflict with other options. The register address is selected by switches on the A009 module representing address lines A12 through A02. The standard register addresses selected for the AD11-K are:

170400 R/W - Status register
170402 Write - Loads DAC buffer register
Read - Reads A/D buffer register
The vector address is selected by switches on the A009 module representing vector lines (Unibus "D" Lines) D08 through D03. The standard vector address selected for the AD11-K is 340_{8}.

3.2 PRIORITY LEVEL

The A009 is normally shipped with a priority level configuration of BR6; this level may be changed by replacing the priority connector for another level.

3.3 REGISTERS

3.3.1 Status Register

The A/D Status register is illustrated in Figure 3-1 and described in Table 3-1.

Figure 3-1 A/D Status Register Format

Table 3-1
AD11-K Status Register Bit Descriptions

Bit	Name	Description
15	ERROR FLAG (R/W)	This bit sets when:
		1. A second A / D conversion ends before data from the previous A / D conversion is read. 2. A second A / D start is initiated before the first conversion is complete.
13-8	Mux Channel (R/W)	Defines which A/D input channel of the multiplexer is to be sampled.
7	DONE FLAG (R)	Sets upon completion of an A/D conversion. Cleared by hardware when the A/D interrupt bus cycle is completed or when the buffer register is read.
6	INTERRUPT ENABLE (R/W)	When a conversion is completed, the done flag will cause an interrupt if this bit is set.
5	OVERFLOW ENABLE (R/W)	Permits overflow from KW11-K Real-Time Clock to cause an A/D start. This allows channel sampling at precisely timed intervals independent of software. Data may then be read by testing the A/D done flag or by enabling the interrupt.
4	EXTERNAL START ENABLE (R/W)	Permits an external event to initiate an A/D conversion.
0	A/D Start (R/W)	Starts an A/D conversion. Cleared at end of conversion.

3.3.2 A/D Buffer Register

The A/D Buffer register is a read only register. It furnishes the 12-bit converted value, formatted in 12-bit rightjustified offset binary after an A/D conversion is complted (Figure 3-2).

$12-$ BIT RESULTS (OCTAL)	INPUT VOLTAGE RANGE					
	$\pm 5 \mathrm{~V}$	$\pm 5.12 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10.24 \mathrm{~V}$	$0-10 \mathrm{~V}$	$0-10.24 \mathrm{~V}$
007777	+4.9976 V	+5.1175 V	+9.995 V	+10.235 V	+9.9976 V	+10.2375 V
004000	0 V	0 V	0 V	0 V	+5.0 V	+5.12 V
000000	-5.0 V	-5.120 V	-10.0 V	-10.240 V	0 V	0 V
RESOLUTION	2.44 MV	2.5 MV	4.88 MV	5.0 MV	2.44 MV	2.5 MV

a) AID RANGE CHART

Figure 3-2 A/D Buffer Register Format

3.3.3 DAC Buffer

The DAC Buffer is a write only register. It is a 8-bit register which holds the digital value to be converted to an analog signal (Figure 3-3).

$8-$ BIT INPUT (OCTAL)	OUTPUT RANGE
000377 000200 000000	+1.860 V OV -1.875 V
RESOLUTION	14.64 mV

a) DAC RANGE CHART

Figure 3-3 DAC Buffer Register Format

3.4 PROGRAMMING EXAMPLE

Read $64_{10}\left(100_{8}\right)$ A/D conversions from channel 0 into locations $4000_{8}-4176_{8}$ and halt.

$\mathrm{RO}=\% 0$			
START:	CLR	@ADSR	;CLEAR A/D STATUS REGISTER
	MOV	\#4000,R0	;SET UP FIRST ADDRESS
	INC	@ADSR	;START A/D CONVERSION ON CHANNEL 0
LOOP:	TSTB	@ADSR	;CHECK DONE FLAG
	BPL	LOOP	;WAIT UNTIL FLAG SET
	INC	@ADSR	;START NEXT CONVERSION
	MOV	@ADBR,(R0)+	;PLACE CONVERTED VALUE FROM A/D
			;BUFFER INTO CORE LOCATION AND SET UP
			;NEXT CORE LOCATION FOR TRANSFER
	CMP	R0,\#4200	;CHECK IF 64. CONVERSIONS HAVE BEEN
			;DONE
	BNE	LOOP	;NO, GET NEXT CONVERSION
	HALT		;DONE
ADSR:	170400		;A/D STATUS REGISTER ADDRESS
ADBR:	170402		;A/D BUFFER REGISTER ADDRESS
	.END	START	

Reader's Comments

 EK-AD11 K-OP-002Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well written, etc.? Is it easy to use?

What features are most useful? \qquad
\qquad

What faults do you find with the manual? \qquad
\qquad
\qquad

Does this manual satisfy the need you think it was intended to satisfy?
Does it satisfy your needs?
Why? \qquad
\qquad
\qquad
\qquad
Would you please indicate any factual errors you have found. \qquad
\qquad
\qquad

Pleasẹ describe your position. \qquad
Name
Organization \qquad
Street
Department \qquad
City \quad State _ Zip or Country \qquad

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation Techinical Documentation Department 146 Main Street Maynard, Massuchusetts 01754

Eabuba

digital equipment corporation

