
DIGITAL 8-11 - S

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

DIGITAL-8-11-S

-PDP-8 DATAK PROGRAMMING MANUAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright 1965 by Digital Equipment Corporation

ii

PREFACE

The programs discussed in this manual, though written on the Programmed

Data Processor-8 computer, can also be used without change on Digital's

Programmed Data Processor-5. This compatability between the libraries of

the two computers results in four major advantages:

1. The PD P-8 comes to the user complete with an extensive

selection of system programs and routines making the full

data processing capability of the new computer immediately

available to each user, eliminating many of the common

initial programming delays.

2. The PD P-8 programm i ng system takes advantage of the

many man-years of field testing by PDP-5 users.

3. Each computer can take immediate advantage of the

continuing program developments for the other.

4. Programs written by users of the PDP-5 and submitted to

the users' library (DECUS Digital Equipment Corporation

Users' Society) are immediately available to PDP-8 users.

iii

Chapter

2

3

4

CONTENTS

I NTRODUC T I ON .. .

SUMMARY OF THE DATAK SYSTEM

Interfacing Transducers .•••. ., .•.......••.••...•.•..•....••.

Interface Types •••••

Digital-Parallel Input Signal Buffer •.•..••••••••..•.•••.

Serial-Parallel Input Signal Buffer •••.•••

Multiplexed Analog-to-Digital Conversion Input ••.••••.••

Programm ing ...••.••.••..•.•••••..•..•..••••...•.•...•.•.

System Inputs

System Outputs

Variables

Time

Arithmetic Operators.

Gray Binary Conversion ••••••.••••••.•••••••••••••••••

Format Statements •..••••.••••..•.••.......••.•.•.•...

GOTO Statements

THE DATAK PROGRAMMING LANGUAGE

DATAK Statements.

Clock

Variable Names

Format Statements

Conditional Program Section

ERROR MESSAGES •.•

Compilation

Run Time .•• ...

v

3

3

4

4

4

5

6

6

7

7

8

9

10

10

10

11

11

11

12

15

17

21

21

21

CONTENTS (continued)

Appendix Page

FLOW CHARTS. A 1

2 PROGRAM EXAMPLES A23

vi

CHAPTER 1

INTRODUCTION

The speed of operation and powerful operation code structure of the Programmed Data Processor-8

make possible a unique programming system for use in data acquisiiion situations.

This system, called DATAK (for data acquisition), permits a complex, program-controlled,

data acquisition system to be adapted to a particular experimental environment through the

use of a highly sophisticated and precise pseudo code. The necessity of extensive machine

programming to meet a particular data acquisition requirement is thereby elfminated.

In addition to its data acquisition appl ications, DATAK furnishes the experimenter with a means

of cal ibrating transducers and is a powerful aid in troubleshooting a complex data-gathering

system. Programs to accompl ish these objectives may be written and readily revised in the

DATAK language.

The DATAK system, when used to record experimental data on paper tape, produces a tape

that may be used as input to a FORTRAN program. Thus the program for the processing of

experimental data may be coded in a widely recognized compiler language if the user so

desires.

A typical DATAK equipment configuration is illustrated in Figure 1.

DATAK does not, of course, require all of the equipment in Figure 1. If, for example, a

given system did not inc lude a plotter, the PLOT command would never be used.

Finally, the DATAK system may be readily adapted to special-purpose peripheral devices by

specification of input/output transfer (lOT) commands appropriate to a given device. Thus a

Type 350 Plotter might be replaced by a more elaborate plotting mechanism if desired.

The DATAK language presents for the first time a unified, systematic approach to the data

acquisition, cal ibration, experiment modification, and troubleshooting requirements of the

scientist engaged in experimental analysis. The recent use of digital computers in industrial

UP TO 64-
ANALOG INPUTS

SERIAL
PULSE TRAIN

SWITCH
REGISTER

DECTAPE
CONTROL

552

DUAL DECTAPE
TRANSPORT

555

Figure 1 Typical Data Acquisition System

PARALLEL
DIGITAL
INPUTS

PARALLEL
STATIC OUTPUTS

process control has shown that it is a valuable tool for acquiring information, both digital and

analog, and making logical decisions concerning the acquisition of data while concurrently

storing, processing, and displaying that information. Certainly a method of data manipulation

simi lar to industrial control techniques would be advantageous to a scientist conducting an

experiment. DATAK is a programming system designed precisely for these purposes; this manual

explains how to use the DATAK system and language.

2

CHAPTER 2

SUMMARY OF THE DATAK SYSTEM

INTERFACII'IG TRANSDUCERS

Three basic types of interfaces are used with the PDP-7 and PD P-8 computers in order to re­

ceive data from environment sensors. These interfaces allow data to enter the computer under

control of a simple real-time symbolic compiler that gives the investigator the following flex­

ibi I ity when he sampl es the environment:

1. A variety of preprogrammed interface devices that easi Iy connect the

computer to instrumentation.

2. Simple symbol ic assignment of identifying names to physical input var­

iabl es such as pressure I temperature I etc.

3. Absolute control in sampling the experimental environment with respect

to time.

4. Computer compatibi I ity with respect to rapid response sensors using up

to 176 separate sensing devices.

5. Capabil ity to make logical decisions concerning the acquisition of data

while sampl ing the environment.

6. Storage of data for future computations as well as immediate output for

checking quality while obtaining data.

Transducers are sometimes considered unique devices that do not lend themselves to being con­

nected directly to a computer; however, by the use of basic standard interface types, most

instruments can be connected directly to a computer with little additional equipment. Let

us examine the basic types of interfaces that would be necessary to interconnect a computer

to various transducers.

3

INTERFACE TYPES

Digital-Parallel Input Signal Buffe~

This buffer permits the direct parallel insertion of a digital number into the computer, using a

method by which the number immediately becomes a computer word. Examples of devices

feeding data in by this method are shaft-position encoders, switch registers, and other all ied

devices. Figure 2 shows the general method for digital-parallel input.

o

o

o

o

o
TRANSDUCER COMPUTER

o

o

o

o
j

DEC TYPE GATING
KB02

Figure 2 Digital-Parallel Signal Buffer

This method can accommodate signals or pulses from a minimum range of 0 to -10 mv up to a

maximum of 20 to -15v. The system can include one buffer for each of several dozen variables.

Serial-Parallel Input Signal Buffer

This method would be used, for example, in telemetry applications where the transmitter is

remotely located and able to transmit a number of input words one bit at a time along

a single conductor cable or by radio (see Figure 3).

4

TRANSDUCER

SERIAL PULSE TRAIN G t o I c I o I J I o I o I I 0 I ' o I J I DEC TYPE
KBO!

I GATING I I I I I I I I I I I

COMPUTER

Figure 3 Serial-Parallel Signal Buffer

This buffer can convert a serial pulse train to a 12-bit word in 6 ,",sec, or one bit every 500 nsec.

It accommodates ranges of input levels from a minimum of 0 to -10 mv, up to a maximum of 20

to -15v. The flexibility provided in this buffer allows the user to format the data before it is

finally assembled as computer words; that is, he can insert octal constants in the specific serial

word of his choice. It provides the programmer with the following additional instructions in

the computer:

1. Skip if data flag = O.

2. Skip if start flag = o.
3. Clear data flag and start flag.

4. Read data into the accumulator.

Multiplexed Analog-to-Digital Conversion Input

This method is particularly advantageous in data acquisition when many devices such as therm­

istors, pressure sensors, and strain gages are working together. One example of where this

method would prove advantageous is a thermistor chain in which each thermistor, pressure

sensor, or conductivity sensor could be individually sampled by the computer. Figure 4 indicates

this relationship.

0

MULTIPLEXER ANALOG TO
HRU .. DIGITAL COMPUTER CONTROL CONVERTER
n

Figure 4 Multiplexed Analog-to-Digital Conversion

5

Switching from one input to the next in the multiplexer is accompl ished in 2 jJsec, and up to

64 separate inputs can be sampled directly by the computer. The analog-to-digital converter

uses the range of 0 to - 1 Ov •

PROGRAMMI NG

The task of writing a special-purpose program for each installation could be a form idable prob­

lem involving a great deal of time and money. In order to alleviate this problem, Digital

Equipment Corporation has written DATAK, an algebraic compiler that allows the experimenter

to format his data· acquisition problem in a simple language similar to algebra. By using the

DATAK language, he is given a great deal of flexibil ity concerning the interface hardware

that he has available. This program allows him flexibil ity in choosing the frequency and con­

ditions under which he samples the experimental environment as well as making possible the

adding or changing of sensors without the major task of reprogramming in machine coding.

This program is available for the PDP-S, a compact 12-bit computer with a 1.5-jJsec cycle

time.

In summary, this program allows the investigator to analyze his sample using the following

inputs.

Up to 96 independent data variables using digital-parallel input.

Up to 64 independent data variables using a multiplexed A-to-D converter.

Up to 25 independent data variables via serial buffer input.

Each independent variable can be sampled at a rate of up to 100 times per second.

System Inputs

Data can come to the computer from the digital-parallel input buffer, the serial input buffer,

and the multiplexed analog-digital converter. Each of these devices is assigned

a symbolic name that tells the computer which device is transmitting information.

The symbols are:

DGIN: Digital-parallel signal buffer; input can be converted from Gray

code to binary.

6

BUFR: Serial buffer input.

ADCV: Multiplexed analog-digital converter.

System Outputs

Data output can be distributed to a number of specifically named devices to allow immediate

presentation as well as permanent storage. The following output symbols and their associated

devices are available:

TYPE:

PNCH:

DCTP:

PLOT:

DIG 1

DIG 4:

On-I ine teleprinter. Variables can be typed in decimal or octal.

Decimal is specified by t immediately following the variable

name.

High-speed paper tape punch. Variables can be punched in deci­

mal or octal. Decimal is specified by t immediately following

the variable name.

Digital's compact DEC tape. Variables are recorded magnetically

on DECtape in binary with identifying words.

X-Y plotter. The plotter pen is moved to a new position each

time an output is specified.

Up to four digital outputs are available through parallel buffers

to other devices such as relays, buffers, sense I ines, and range

switching devices.

Variables

Input variables to the computer are assigned alphanumeric symbols by the investigator. They

can be one to four characters long, and must begin with a letter. Some examples of these

would be:

T 123, SURF, DFEP, AIR, X, Y, TEMP, H20, H202

7

In addition, variables that are inputted through the multiplexer have specified channels; that

is, T 123 (1) would be input through channell of the multiplexer.

Time

Four types of time can be used by the computer: basic, program, variable, and reference.

Basic Time

Basic time represents the basic interval of .01 sec in which a clock interrupts the program.

Program Time

This time represents the basic rate at which the investigator desires to interrogate the sensors.

It is some multiple of the basic time and is under program control. Its symbology is simply ex­

pressed as follows:

QUNT: 50 The investigator has specified that the program time will be (50)

x (.01) = 0.5 sec; that is, each sensor will be sampled every

0.5 sec. If he desires the fastest rate possible, he may express

the following:

QUNT: 1 In which case each variable will be sampled every 0.01 sec.

Variable Time

In order to allow more flexibil ity in timing, digital inputs can be sampled at a slower rate than

the program time specifies. For example, the expression:

DGI N:Ll (4, L2 (4

specifies that the digital input variables Ll and L2 should be sampled once in four cycles of

the program time or every (4) x (0.5) = 2 sec.

8

Reference Time

It is often desirable to know the reference time in order to associate data with time. Within

the program is a 3-word variable, CLOK, which counts the number of seconds, minutes, and

hours that have elapsed since start-up time; it can be used as an output variable to reference

data with time.

Arithmetic Operations

Addition and Subtraction

Variables can have constants added to or subtracted from them as they are sampled, or the

variables can be added to or subtracted from each other.

All arithmetic operations are done in 2 1s complement arithmetic, with the operands being con­

sidered signed, fixed-point numbers. The following examples mean that the variable T2 will

have constants or variables added or subtracted before output:

T2 + 137

T2 - 3

T2 + T3

Arithmetic Comparison

Add a constant to the variable.

Subtract a constant.

Add a second variable.

Variables can be compared against constants, compared against other variables, or compared

against themselves with respect to sample time. The basic comparison instructions are:

IFEQ X, Y if X is equal to Y

IFLS X, Y

IFGR X, Y

if X is less than Y

if X is greater than Y

An example of the comparison of a variable against a constant would be:

IFEQ X, 1000;

meaning that is X is equalto 1000a, execute the operation following the semicolon; otherwise,

go to the next line.

9

Every time a variable is recorded and outputted, its value is preserved and is given the name

of the original variable. Thus, X and @ X represent the current value of the variable X, and

its value when last used as output, respectively.

The following example of the comparison of a variable and its predecessor:

IFLS X, @ X;

means that if X is less than it was when last recorded and output, execute the operation fol­

lowing the semicolon; otherwise, go to the next line.

Gray Binary Conversion

Gray binary code can be converted to simple binary under program control if the input method

is digital (DGIN). This provides the investigator with a rapid means of conversion in order to

intercompare the usual shaft-encoded Gray binary numbers, if the shaft encoder does not con­

vert from Gray Code to simple binary prior to buffering.

The conversion is accomplished by inserting t immediately before the time multiple.

DGIN L1 t4

This means that the Gray binary variable L1 is sampled every fourth time through the program

and is converted to a simple binary number before comparison or storing.

Format Statements

Format statements are numbered from 1-15 (decimal). They contain the namesof variables and

their output forms (octal or decimal for the Teletype or punch). Format numbers appear along

with a device name in every output statement. Thus, the statement:

FORM: 1,X,Yt,z

indicates that the variables X, Y I and Z are to be outputted to the Teletype, with X typed in

octal, Y typed in decimal, and Z typed in decimal.

GOTO Statement

Program control can be unconditionally transferred through the use of the GOTO statement.

10

CHAPTER 3

-THE DATAK PROGRAMMING LANGUAGE

Every DATAK program consists of four parts:

1. Assignment of input devices.

2. Definition of output formats.

3. Unconditional outputs, i.e., outputs controlled by the clock.

4. The conditional program section. This is illustrated in the short DATAK

program below:

QUNT: 62
DGIN: SWIT (2

FORM:1,CLOK,SWIT,X, Y,Z
FORM:7, C LOK, SWIT

<7, PNCH,2>

[5: Y=1+(X=SWIT-10)~77

]

Z=Y-(X+ 17)iOUTP(l, TYPE)iOUTP(l, DCTP)
6: IFEQ@SWIT,SWITiGOTO 6

GOT05

END

INPUT ASSIGNMENT

OUTPUT DEFINITIONS

UNCONDITIONAL OUTPUTS

CONDITIONAL
PROGRAM
SECTION

END STATEMENT

The maximum hardware configuration for which DATAK is designed is illustrated in Figure 5.

DATAK STATEMENTS

Clock

All sampling of the input is controlled by the clock, except for the serial-parallel converter

which sends a signal to the PDP-8 when it has twelve bits in its buffer. Output to the devices

may be unconditionally controlled by the clock or may be initiated when certain prescribed

conditions are met. When a variable or quantity is output, its value at output time is stored

and hence may be compared with incoming values to detect changes. The basic clock cycle

is .01 sec.

11

PULSE TRAIN

UP TO.
300 BITS

64 ANALOG INPUT

12 BITS

12 BITS

PDP-B
4K MEMORY

100 CPS
CLOCK

Figure 5 Maximum Hardware Configuration

The sampling period for the analog-digital converter is some multiple of this as specified by

the statement:

QUNT: xxxx

where XXX X is a given decimal integer. Leading zeros need not be specified. For example:

QUNT: 5

means that all specified channels of the analog-digital converter are to be sampled every

0.05 sec and the va I ues stored.

Variable Names

Variable names may be IJP to four characters long, must start with a letter, and may contain

only letters and numbers:

T723 SYMB SWIT HEAD

12

Each variable is assigned two unique addresses. One is used by the input routines and contains

the most recent input value. The second address contains the value of the variable when it

was last output. The output variable may be addressed in the conditional program section by

preceding the variable name with "@o II This may be used for comparison purposes, etc.

Variable names are assigned to input devices in the following manner:

1. Analog-to-Digital Converter

ADCV:

followed by variable names and channel numbers; thus:

ADCV: T723(6), HEAD(4)

This means that channels 6 and 4 of the analog converter-multiplexer will

be sampled and the values stored in registers T723 and HEAD, respectively.

These will be sampled at some multiple of .01 sec, where the multiple is

specified by a QUNT: statement.

QUNT: 5
ADCV: T723(6), HEAD (4)

Channels 6 and 4 of the converter-multiplexer will be sampled every .05 sec.

2. Serial-Parallel Converter

BUFR:

The serial-parallel converter sends a start pulse to the computer, followed by

data pulses every time twelve bits have been assembled. BUFR: is followed

by variable names in the order in which the 12-bit words are received. If

the computer received. If the computer receives more data pulses than there

are variables, additional data from the converter is ignored. If more variables

are specified than there are data pulses, the remaining variables are not used.

Each start pu Ise causes the I ist to be reset.

BUFR: SYMB, THIS

13

After the start pulse from the buffer, succeeding data pulses cause the 12-bit

words to go into registers named SYMB, THIS. If a third data pulse is received

before the start pulse, it is ignored.

3. Digital Inputs

The program is capable of handling up to eight 12-bit digital inputs. These

are sampled at periods that are multiples of the period specified by the QUNT:

statement. These inputs may be converted from 12-bit Gray code to 12-bit

binary if specified.

QUNT: 2
DGIN: SWIT(6, CODEt2

This means that the first digital input (usually the switch register) is to be

sampled and stored at a period that is six times the period specified by

QUNT: 2 or every .12 sec. The second digital input is sampled every (2)

(.02) sec or .04 sec and is to be converted from Gray code to binary before

it is stored. This is useful when sampling shaft encoders, etc.

4. Digital Outputs

Output is specified with a format number and a device name. Format state­

ments contain the format number and a list of variables. Output form de­

pends on the output device.

DIG1
DIG2
DIG3
DIG4

Teleprinter

These are static output devices; i.e., relay buffers, etc. The first

variable in the spec ified format statement is output to the

appropriate device as a 12-bit binary number.

TYPE The entire I ist of variables in the specified format statement is

typed in octal (or decimal) on the 33 ASR. Each output is pre­

ceded by twodecimaldigitswhicharetheformat number, followed

by the values of the variables separated by spaces, and finally

a carriage return-line feed. Decimal output is specified in the

format statement.

14

High-Speed Paper Tape Punch

PNCH

DECtape

DCTP

X-Y Platter

PLOT

Output format is identical to the teleprinter format. Since the

format number starts every line, this tape may be processed with

the PDP-8 FORTRAN System.

The datum is recorded on DECtape using block lengths of 201 8 •

The first word of each block indicates whether or not it is the

last block. The second word conta ins the number of 12-bit words

of data on the block. Each command to output to DECtape causes

a 12-bit identifier word to be placed on the tape followed by 12-

bit binary words. Decimal specifications in format statements are

overridden. When the DECtape nears the end of the tape, a message

is typed and a fresh tape may be mounted on the second transport.

The first two variables in the spec ified format statements represent,

respectively, the X and Y coordinates. The plotter pen is moved

from its previous position to this specified position. It is initially

set to location (O.O)--the lower left-hand corner of the plotting

area.

Format Statements

Format statements are of the following form:

FORM: 6,SWlTt,HEAD

This is format statement number 6 which consists of the variables SWIT and HEAD. If output is

to the teleprinter or punch, SWIT is converted to decimal when it is outputted.

There is a fixed system variable called CLOK. This is a 3-register variable containing, respec­

tively, the hours, minuhcs, and seconds. The seconds are initially set to 0, and the hours

and minutes are set from the switch register when the execution of the program is initiated.

15

When output is to the teleprinter or to the punch and CLOK is in the specified format statement,

it is outputted as three 2-digit decimal numbers. When it is output to the DECtape, it is

written as three 12-bit words. CLOK may not be output to the plotter or to any of the four

digital outputs • However, the following is perm issible:

FORM: 12, X, Y, CLOK

with format statement 12 being specified in output statements to the punch and to the plotter.

Output may be initiated unconditionally (i.e., by the clock) or conditionally. Unconditional

output statements contain the format statement number, the device name, and the output period

(a multiple of the clock period established by the QUNT: statement).

The unconditional output statements are delimited by angle brackets < >.

Example: A program to:

1. Sample the contents of the switch register every .5 sec;

2. Punch this value in octal every .5 sec; and

3. Type the value in decimal, along with the time, every 2 sec;

could be programmed as follows:

QUNT: 50
DGIN: SWIT(l
FORM: 7,CLOK,SWlTt
FORM: 6, SWIT
<7, TYPE, 4

6, PNCH, 1 >
END

The first statement, QUNT: 50, established the time interval as (50) • (.01 sec) = . 5 sec.

The second statement, DGI N: SWIT(l, identifies the first digital input as the variable SWIT

which is to be sampled every (l) (.5 sec) = .5 sec.

16

The next two statements identify the output variables. Decimal output is specified for SWIT

in format statement number 7.

The unconditional output statements are interpreted as follows:

7, TYPE,4 output to the teleprinter under control of format statement num­

ber 7 every (4) (.5 sec) = 2 sec.

6, PNC H, 1 output to the punch under control of format statement number

6 every (1) (.5 sec) = .5 sec.

Format numbers are dec ima I and may be from 1- 15.

Conditional Program Section

The conditional program section consists of algebraic and control statements that may be used

to initiate output, test for tolerance levels, or alter variables.

There are four types of statements allowable in this section of the program:

1. AI gebra ic Express ions

Variable = Variable Operator Variable

For example:

Y=A+B.

These statements may be nested to any reasonable degree:

: Y=A+(B=C+D)

There are four bas ic operators:

A+B
A+B

A:B
A-B

2 1s Complement Addition
21s Complement Subtraction

Inclusive OR
Clear bit. For every bit in
B that is a 1, clear the cor­
responding bit in A. A/\B

17

Arithmetic Operators
Arithmetic Operators

Boolean Operators
Boolean Operators

Truth tables for the logical operations are as follows:

A B A:B A-B

0 0 0 0
0 1 1 0
1 0 1
1 1 0

Examples:

A B A+B A-B A:B A-B

6000 7000 5000 7000 7000 0000
0077 0017 0116 0060 0077 0060

Expressions within parentheses are evaluated first. The Boolean operators

have a higher priority than the arithmetic operators:

: Y=A+B-C

is interpreted as if it had been written:

: Y=A+(B-c)

The equal sign (=) means replace the single variable on the left with the value

of the expression on the right. Thus:

: X=B+(Y=C-D)

is perfectly val id. Two equal signs may not be used in one expression at the

same level. Thus:

: A=B=O

is not valid, although:

: A=(B=O)

is val id.

An arithmetic statement is terminated by either a carriage-return or a semi­

colon (;). The single quote (') acts as a line continuer as it does in all pro-

gram sections.

18

: Y=A+B; Z=Y+D A

is a valid line and is evaluated from left to right.

2. Unconditional Transfer

Any statement may begin with a statement number delimited by a colon (:).

There is one transfer instruction:

: GOTO XX

which says: transfer control to statement number XX.

Example:

6: Y=A+(B=C-D)
GOT06

The GOTO statement must be the last statement on a line, although it need

not be the first.

6: Y=A+(B=C-D); GOTO 7

3. Conditional Expressions

In addition to the unconditional transfer instruction, there must be condi­

tional expressions. Conditional expressions are of the following general

form:

FUNCTION EXPRESSION, EXPRESSION;

If the conditions are met, the instruction following the semicolon is executed;

if they are not met, execute on the next line. The express ions may be a

single variable or a statement within parentheses. The conditional functions

are:

I FEe X, Y; If equal. If X=Y, the statement is true. The

arguments are considered unsigned.

19

IFLS X, Yi If less than. If X is less than Y in absolute

va I ue, the statement is true. The arguments

are considered to be signed integers. Thus:

7770 <211

IFGR X, Y; If greater than. If X is greater than Y in ab­

solute value, the statement is true. The argu­

ments are considered to be signed integers.

IFBE X, Yi If bit equal. If there are any corresponding

lis in X or Y, the statement is true.

IFBE 177,1; is true.

For example, if:

6: IFEQ A, B; GOTO 6
GOT05

This waits in a loop until A and B are unequal. To reverse it:

6: IFEQ A, B; GOTO 5
GOT06

This waits in a loop until A and B are equal.

4. Output Statements

Output statements are expressed in the conditional section as follows:

OUTP (format number, device name)

Whenever a variable is output, its value at output time is recorded in a loca­

tion that has, as a name, the original variable name preceded by "@."

The conditional program section is del imited by square brackets [] .

The last statement in a program is END.

20

CHAPTER 4

ERROR MESSAGES

COMPI LA TION

During compilation, there may be two diagnostic messages:

LANGUAGE ERROR

S # NOT FOUND

There was some error in the source language. Since

the source language is typed out as it is processed,

the programmer can see where the error occurred.

A statement number was referenced by a GOTO

statement in the conditional program section, but

has not been defined anywhere in the program.

Both of these errors cause the compiler to halt. It must be restarted at 2008 •

RUN TIME

At run time, there may be several diagnostic messages:

EX INTR

INTR OVR

FORM OVR

STACK ERROR

Extraneous interrupt. Some device that is not used

by DATAK has caused an interrupt.

Interrupt overflow. DATAK was interrupted at a

rate higher than its processing rate.

Format overflow. The output devices are incapable

of handl ing the specified output rates. The format

I ist is about 30 positions long.

Indicates an error in the arithmetic statements that

was not detected by the compiler.

The above errors are catastrophic; that is, no recovery from these errors is possible, and the

ob ject system ha I ts.

21

DT ERROR

TIMING ERROR

READY TO SWITCH

The DECtape error flag was raised for something

other than an end-zone condition. DATAK will

clear the flag and attempt to proceed.

Th€ DECtape buffer was filled before the second

buffer could be written. DATAK will continue

although some information will be lost.

DECtape block number 2400 is being written.

The write routines will switch from DECtape

unit 1 to DECtape unit 2 at block number 2700.

The next time the switch will be from DECtape

unit 2 to DECtape unit 1, etc.

22

APPENDIX 1

FLOW CHARTS

EXPLANATION OF FLOW CHARTS

DATAK consists of two basic elements: the compiler and the operating system. The function

of the compiler is to read the source language from the ASR-33 Paper Tape Reader or Keyboard.

The compiler produces the structured lists and other elements that control the operating system,

and compiles the logical and arithmetic statements into an interpretive code that is executed

at run time. When the compiler reads the word END, it initializes the operating system and

halts. The switch register is set to the current time of day and when the CONTINUE Key is

depressed, the CLOK registers are set to this value and the operating system is started.

The operating system consists of three major sections:

1. The arithmetic interpreter, which executes the interpretive code generated

by the compiler from the arithmetic and logical statements.

2. The output controlling routines, which call routines for specific devices

and initiate output through use of the interrupt system.

3. The interrupt system, which handles all of the actual output operations,

counts elapsed time, and initiates sampling and unconditional output.

The arithmetic interpreter may call the output controlling routines {conditional outputs}, as

may the clock service routines {unconditional outputs}. Either type of routine may be inter­

rupted except for the DECtape flag servicing routines, which are accorded the highest priority.

Page A3 of the flow charts shows the overall flow of events at run time. After each interpre­

tive instruction is executed, the status of the output waiting I ist is tested. If there is an out­

put word waiting to be processed, it is transmitted to the appropriate device handling routine.

Page A4 shows the overo! I flow of the compi ler.

Pages A5 and A6 show the list structures used by the input/output routines.

Al

Page A7 shows the interrupt servicing technique. If the interrupt was not caused by the DEC­

tape; the C(AC), C(L) and the return address are pushed down onto a list. When the flag

causing the interrupt has been determined, it is cleared and the interru',pt is reenabled.

Page AS shows the clock service routine. It counts to 1 sec before incrementing the CLOK

registers. It also counts to 1 time quantum (specified by QUNT:) before testing to see if any

input or output is to be initi.:lted. It may call the routines ADCSER (analog-digital converter

service routine), DISERV (digital input service routine) or CG01 (unconditional output con­

troller).

Page A9 illustrates the serial-parallel buffer service routine.

Page A9 shows the teleprinter and punch service routines. Both of these routines have buf­

fers which are cleared before new data is read in.

Pages A 10 and All show the routines called by the clock service routine to initiate sampl ing

or output. The digital input routines contain a I ist of eight 10TIs that the user may define to

correspond to his particular equipment configuration.

Page All shows the output-control routines . FORMAT is used to place an output word on the

waiting I ist and to test for overflow. TFORM tests to see whether or not the waiting I ist is

empty. If it is not empty, the top word on the I ist is saved and a II others are moved up one

position on the list. FOP1 is then called to operate on this format-output word. If the list is

empty, TFORM exits. FOP1 calls the appropriate device routine and then returns to TFORM

to test the waiting list status.

Page A12 contains the digital-output routines. The user may define up to four lOT instructions,

one each for DIG 1, DIG2, DIG3, and DIG4, to correspond to his equipment configuration.

Pages A12 through A15 contain routines used for teleprinter and punch output.

Pages A 15 through A20 contain the DECtape output routines. DECtape uses two buffers in core

memory and one may be filled while the second is being written. The write routine DWRT

determines whether or not the tape is nearing the end; if it is, the message "READY TO SWITCH"

is typed, and 3008 blocks later write-out is continued on another DECtape unit. The DECtape

search routine is informed of the setting of the DT flag by the interrupt service routine 10SERV.

A2

Page A21 contains the plotter service routines. The plotter attempts to draw a diagonal line

from its previous position to its new position.

Page A22 contains the arithmetic interpreter. It calls routines to carry out indicated opera­

tions. This is tile main "background" program for DATAK. If there are no arithmetic state­

ments in the source program, DATAK executes a loop in the interpreter.

TFORM

FORMAT

SAMPLE
DIGITAL
INPUTS

H TELETYPE SERVICE l
ROUTINE

HpUNCH SERVICE I.
ROUTINE

H~SERIAL BUFFER, l
SERVICE ROUTI NE

INTPGO
EVERY

INSTRUCTION ARITHMETIC
TEST STATUS INTERPRETER

OF OUTPUT LIST EMPTY (ARITHMETIC AND LIST
LOGICAL STATEMENTS)

! T
CALL OUTPUT

CONTROLLING ROUTINE EXECUTE INTERPRETIVE

INSTRUCTIONS; CALL

EXECUTION ROUTINES:

DIGITl (STATIC) Jff. XFER

DIGIT2 ..!£h. LOAD

DIGIT3 ..!£Q... STORE

DIGIT4 ~
PLOTF (START MOTION) ~ OUT

PUFOR }
TTFOR BUFFERED

OUTPUT
DECTPE

PLACE FORMAT WORD
ON WAITING LIST

r 1 ~NCONDITIONAL
OUTPUT

CLOCK SERVICE
(INTERRUPT ENABLED)

! i
PROGRAM INTERRUPT
SERVICE ROUTINE

DECTAPE HAS
HIGHEST PRIORITY

INTERRUPT IS ENABLED
AFTER EACH PROGRAM

INTERRUPT

CLB

STB

SUBT

ADD

DECR

SAMPLE ANALOG
INPUTS AND

STORE

J DECTAPE SERVICE
ROUTINE

IOSERV

ADCSER

DISMISS
INTERRUPT

PROGRAM
INTERRUPT

Figure A 1 Overall Flow (Run Time)

A3

(INPUT SYMBOL)

(END)
STOPCM

(CARRIAGE -RETURN)

Figure A2 Overall Flow (Compile Time)

A4

CONTROL LIST FOR ADC

ATABlE,

12810
POSITIONS

CHANNEL.

ADDRESS

1-'-1..:..1...:.1...:.1 __ --i TERMINATOR

CONTROL LIST FOR SERIALI PARALLEL CONVERTER

25 ,0
POSITIONS

BUFTAB, { ADDRESS C(SCONTR)--NUMBER OF INPUTS-I

ADDRESS

CONTROL LIST FOR DIGITAL INPUTS

DTABlE,

3210
POSITlONS

TYPE CODE

CURRENT COUNT

ADDRESS

RESET COUNT

..........

1111

CODE <0 BINARY INPUT

1 GREY INPUT

1111 TERMINATOR

Figure A3 Input Device Control Lists

FORMAT WORO

DEVICE
000
001

010

011

100

101

110

111

'---------+ NUMBER OF 12-BIT WORDS

NAME
DIGITAL 1
DIGITAL 2

DIGITAL 3
DIGITAL 4

PLOTTER

PUNCH

TELEPRINTER

DECTAPE

FORMAT STATEMENT NUYSER

FORMTB.

O~

.. TYPE CODE

ADDRESS

TYPE CODE
...........

1 7777
2 __________________ ~~~~~T~YP~E~C~O~DE~~

_ __________________________ ~ ADDRESS

: l ~~.~;-~~.~~-.. -.-.-.-.~
£» ETC

7

10

17

UNCONDITIONAL OUTPUT USTS TYPE CODE

o -CLDK

UTABLE.

9010
POSITIONS
LDNG

CURRENT COUNT

FORMAT WORD

RESET COUNT
..........
FORMAT WORD

RESET COUNT

1 -DECIMAL

2-0CTAL

3-MESSAGE OUTPUT
7777 - TERMINATOR

C(UCOUNTc -NUMBER OF UNCONDITIONAL
OUTPUT STATEMENTS

Figure A4 Output Control Lists

A6

(HALT)

PROGRAM INTERRUPT

EXTRANEOUS
INTERRUPT

INTERR (EX INTR)

Figure A5

STOP THE
PROGRAM

Interrupt Service Routines

A7

CLOCK

(WAIT FOR
I SECONO)

(I QUANTUM
OF TIME 1)

(RESET
QUANTUM)

CALLE 0 FROM IOSERV

ADCSER

Figure A6 Clock Service Routine

A8

SERIAL / PARALLEL BUFFER

BUFFER

Figure A7 Buffer Service Routine

Figure AS Teletype Service Routine Figure A9 Punch Service Routine

A9

ADCSER

RETURN TO CLOCK

Figure A10 Analog-Digital Service Routine Figure All Digital Input Service Routine

A10

FORMAT

RETURN TO CLDCK SERVICE

Figure A12 Unconditional Outputs

LOOK-UP
OEVICE

HANDLER

LOOK-UP
FORMAT

LIST

RETURN TO
TFORM

TEST STATUS OF
WAITING UST

Figure A14 Call Output Device
Format Routines

All

FORMAT

..IfQRM..
TEST FORMAT
WAITING LIST

CALLED BY ~

Figure A13 Format Output Routines

(AT VARIABLE)

Figure A15 Digital Output Formot Routine

CALLED BY
FOP1

PUFOR (FORMAT)

Figure A16 Punch Format Routine

A12

CALLED BY
FOP'

Figure A17 Teleprinter Format Routine

A13

NO

CALLED BY PUNCH OR TELETYPE
FORMAT ROUTINES

Figure A18 OSUBR

Figure A19 OEXIT

A14

DECMAL

Figure A20 Conversion Routines

A15

CALLED BY
EQf!

Figure A21 DECtape Format Routines

A16

DWRT

Figure A22 DECtape Write

A17

Figure A22 DECtape Write (continued)

A18

CALLED BY Q!.!!!

OTURN

Figure A23 DECtape Search

A19

(TURN AROUND)

ERFlAG

NO

EXIT SEARCH
ROUTINE (TO DWRT)

TURN AROUND

MOVING IN
CORRECT DIRECTION ?

CONTINUE IN
THIS DIRECTION

Figure A23 DECtape Search (continued)

A20

NO

CALLED BY
FOP!

MFLAG
• 0?

YES

Figure A24

PWAIT (JMS PWAI-T)

Plotter Format Routines

A21

STACK
OPERATION

IFE = 1
IFL = 2
IFG = 3
IFBE = 4
OUT = 5
CLB = 6
STB = 7
SUBT = 10
ADD = 11
DECR = 12

Figure A25 Arithmetic Interpreter Interrupted by
Clock and I/o Devices

A22

APPENDIX 2

PROG RAM EXAM PLES

PROBLEM 1: A SIMPLE PROGRAMMING PROBLEM

An in situ pressure, temperature, and salinity sensing instrument is lowered into the ocean.

Data is transmitted along a single conductor cable and is brought into the computer using a

serial buffer input.

We want to sample the ocean in the following manner:

1. From the surface to 100 meters, record a} each meter the pressure, tem­

perature, and salinity.

2. From 100 meters to 1000 meters, record the pressure, temperature, and

salinity whenever the absolute change of temperature is greater than .05°C

or the absolute change of salinity is greater than .02 %0. Also record the

pressure, temperature, and salinity every 100 meters from 100 meters to

1 000 meters.

Let us assume that the oceanographic sensors have the following precision; that is, unity is

equal to the following:

unit of pressure = 1 meter

unit of temperature = .01°C

unit of salinity = .01 %0

A program to accompl ish this sampl ing is written as follows:

BUFR :
FORM:

[

PRES, TEMP, COND
1, PRES, TEMP, COND

OUTP (1, DCTP)
IFGR PRES, 144; GOTO 2
IFGR (PRES -@PRES), 1; OUTP (1, DCTP)
GOTO 1

A23

2 IFLS (PRES -@PRES), 144; IFLS (TEMP -@TEMP), 5;1
IFLS (COND -@COND), 1; GOTO 2
OUTP (l, DCTP); GOTO 2

]

END

This program says, in effect:

BUFR: PRES, TEMP, COND

Three variables named PRES, TEMP, and COND are to be sampled using the serial buffer.

FORM: 1, PRES, TEMP, COND

Three variables named PRES, TEMP, and COND are to be outputted together.

:OUTP (1, DCTP)

This says output is to be recorded on magnetic tape.

l:IFGR PRES, 144; GOTO 2

This states that if the absolute change of pressure is greater than 100 (1448), the control of the

sampling will be transferred to statement number 2; otherwise, it will go to the next line.

:IFGR(PRES -@PRES), 1; OUTP (1, DCTP)

This I ine states that if the absolute change of the pressure between two successive readings is

greater than 1, output onto magnetic tape according to Format 1; that is, OUTP (1, DCTP)

which means store data on DECtape using Format 1; otherwise, go to the next line.

GOTO 1

This says to go to statement number 1 and test the environment again.

2: IFLS (PRES -@PRES), 144; IFLS (TEMP -@TEMP), 5;1
IFLS (COND -@COND), 1; GOTO 2

This states that if the absolute change of pressure is less than 100 meters or the absolute change

of temperature is less than .05°C, or if the absolute change in salinity is less than .02 %0

then go to statement number 2 which begins the tests over again. Otherwise go to the next line.

A24

:OUTP (1, DCTP)i GOTO 2

Th is says to output data onto magnetic tape and transfer control to statement number 2. The

sampl ing and testing procedure begins again.

END

This last instruction is self explanatory.

As shown in the above description, the computer has been programmed to make logical deci­

sions specified by the investigator in sampl ing the marine environment. It also has been used

as a means of storing data. In the above instance, data has been stored on magnetic tape and

can be used in other programs to determine variables such as Sigma T, anomaly of specific

volume, and sound velocity. Table Al shows a portion of the calculated output from stored

data on magnetic tape transport number 1 that can be run immediately after the sample program.

TABLE Al REDUCED DATA

INPUT SOURCE? T
OBSERVED VALUES

DEPTH TEMP. SALIN. SIGMA-T DELTA-A SOUND-VEL

0000 8.35 34.17 +26.590 +145.53 +1483.4
0001 8.28 34.19 +26.616 +143.08 +1483.2
0002 8.20 34.21 +36.644 + 140.45 +1482.9
0003 8.13 34.24 +26.678 +137.20 + 1482.7
0004 8.05 34.26 +26.706 +134.59 +1482.4
0005 7.98 34.28 +26.732 + 132. 19 +1482.2
0006 7.91 34.31 +26.766 +128.98 +1482.0
0007 7.83 34.33 +26.793 +126.38 + 1481.7
0008 7.76 34.35 +26.819 +123.94 + 1481.4
0009 7.69 34.37 +26.845 + 121.45 +1481.2
0010 7.61 34.39 +26.873 + 118.89 +1480.9

PROBLEM 2: A MORE SOPHISTICATED PROGRAM

For a better demonstration of the flexibility of this programming technique, consider the follow­

ing program.

An investigator desires to use a thermistor, pressure, and conductivity chain towed from an

oceanographic vessel. He will sample at the same time a telemetering buoy that transmits

A25

data from these current meters. In addition, he desires to obtain Loran I ines of position and

sample the ship's speed and ship's heading. These can be summarized as follows:

1. Log the time on magnetic tape every 50 meters of distance traveled. Ship's

speed is 10 knots; it will cover 50 meters in approximately 9.70 sec.

2. Sample each thermistor, conductivity, and pressure sensor in the chain

every half second. This defines the program time as QUNT: 62.

3. Sample the Loran, ship's speed, and ship's heading every 2 sec, thus,

L1 (4, L2(4, SP(4, HEAD(4.

4. Conditional Output - Since the near-surface values of temperature and

conductivity will fluctuate the most, it might be most desirable to set thres­

holds so that relatively large changes of temperature and sal inity will be

stored. However, deeper values will not change as significantly, so small

incremental changes have more meaning and thus should be outputted and

stored. Arbitrary values have been chosen and are shown in Table A3.

Determination of Octal Constants to be Used in Testing - In order to test the

variable it must be determined to what its unit value corresponds. This is

found by dividing the range of the thermistor, pressure transducer, or other

device by the precision of measurement; thus if the range of the therm istor is

20°C and the precision of measurement is 1 part in 2000, then each unit

equals .01 °C.

Variable

Thermistor
Pressure
Conductivity
Vane
Compass
Rotor

TABLE A2 SUMMARY

Range

20°C
100 meters
20 %0
360°
360°

Precision

1 :2000
1 :2000
1 :2000
1: 120
1: 120

A26

UNITY Corresponds to

':\! .01 °C
':\! .05 meters
'" .01 %0

':\! 3°
':\! 3°

':\! 1 centimeter per second

5. General Output Requirement

Every variable should be recorded on magnetic tape if the specified con­

ditions are met.

Plot TO versus SO if it is recorded.

Type Current Meter Data in Decimal if it is recorded.

Pu nch TO, PO, and SO if they are recorded.

By outlining the problem, the investigator will have thresholds established for recording changes

in the variables listed in Tables A3, A4, and A5. Figure A26 shows the equipment needed to

do the work.

The program I isting to sample these variables and record those which exceed the establ ished

thresholds is given below.

ADCV:

BUFR :
DGIN:
QUNT:
FORM:

FORM:
FORM:

FORM:
FORM:

[
3

1
2

TO(O), Tl(l), T2(2), T3(3), T4(4), T5(5), PO(6),'
Pl (7), P2(10), P3(11), P4(12), P5(13), 50(14), 51 (15),1
52(16), 53(17), 54(20), 55(21)
Vl, Cl, R1, V2, C2, R2, V3, C3, R3
L 1 (4, L2(4, 5P(4, HEAD t4
62
1, TO, Tl, T2, T3, T4, T5, PO, Pl, P2, P3,'
P4, P5, SO, 51, 52, 53, 54, 55
2, TO, SO
3, V1 , C1 , R1 , V2 , C2 , R2 , V3 ,1
C3 , R3
4, TO, PO, SO
5, L1, L2, 5P, HEAD, CLOK
< 5, DCTP, 22 >
OUTP(l, DCTPh OUTP(2, PLDT); OUTP(3, TYPE); OUTP(4, PNCH)
IFEQ (Vl+C2), 3; GOTO 1
IFEQ (V2+C2), 2; GOTO 1
IFEQ (V3+C3), 1; GOTO 1
IFL5 Rl, 12; IFL5 R2, 12; IFL5 R3, 12; GOTO 2
OUTP (3, TYPE)
I FL5 (TO - @TO), 12; I FL5 (PO -@PO), 12; I FL5 (SO - @50), 5; 1
IFL5 (Tl -@Tl), 7; IFL5 (P1 -@P1), 12; IFL5 (51 -@51), 5;1
I FL5 (T2 -@T2), 5; I FL5 (P2 -@P2), 2; I FL5 (52 -@52), 4; 1
IFL5 (T3 -@T3), 3; IFL5 (P3 -@P3), 6; IFL5 (53 -@53), 3;1
I FL5 (T 4 -@T4), 2; I FL5 (P4 -@ P4), 4; I FL5 (54 -@ 54), 2; 1
IFL5 (T5 -@T5), 2; IFL5 (P5 -@P5), 2; IFL5 (55 -@55), 1;1
GOT02
OUTP(l, DCTP); OUTP(2, PLDT); OUTP(4, PNCH)i GOTO 3

END
A27

»
'" 00

TABLE A3 MULTIPLEXER A-D CONVERTER ASSIGNMENT (ADCV)
(Data Originating in Thermistor Chain)

Depth Thermistor Multi- Record if Pressure Multi- Record if Conductivity Multi- Record if
in Variable plexer Absolute Variable plexer Absolute Variable plexer Absolute

Meters Name Channel # Change of Name Channel # Change of Name Channel # Change of

a TO (a) . 1°C PO (6) · S meter

10 T1 (1) .07°C P1 (7) .S meter

20 T2 (2) .0SoC P2 (10) • S meter

30 T3 (3) .03°C P3 (11) .3 meter

40 T4 (4) .02°C P4 (12) .2 meter

SO TS (S) .01°C PS (13) • 1 meter

TABLE A4 SERIAL DATA INPUT BUFFER ASSIGNMENT (BUFR)
(Data Originating in Moored Current Meter String)

Vane Compass Rotor
Variable Variable Record/if Variable Record if

Name Name Name

Current Meter 1 V1 C1 V1 + C1 = 9° R1 R1 > 10

Current Meter 2 V2 C2 V2 + C2 = 6° R2 R2 > 10

Current Meter 3 V3 C3 V3 + C3 = 3 R3 R3 > 10

SO (14) .OS %0

S1 (1S) .OS %0
S2 (16) .04 %0
S3 (17) .03 %0
S4 (20) .02 %0
SS (21) .01 %0

TABLE AS DIGITAL INPUT BUFFER
ASSIGNMENT (DGIN)

(Data Originating in Ship's Instrumentation)

Loran Line

Loran Line

Ship's Speed

Ship's Head

Variable Time Gray
Name Multiple Code?

L1

L2

SP

HEAD

{4

{4

{4

t4 yes

»
N
-.0

MOORED CURRENT
METER STRING

..
~

SERIALI PARALLEL
BUFFER

(BUFR)

138B
ADCV

~

(ADCV)

139 MULTIPLEXER
CONTROL

If. • • • • • • •
~ J ---..... y

THERMISTOR CHAIN

PARALLEL

-
_ --. --.. ...

SHIP'S INSTRUMENTATION
r-______ ~A ______ ~

(U · · · · U'
PARALLEL BUFFERS

(OGIN)

w *
PDP-8 COMPUTER

100 CPS

CLOCK

(CLOK)

• w

PARALLEL BUFFERS

•• • • • • .W I.: • • • J
Y

OUTPUT CONTROL SIGNALS

Figure A26 Equipment Configuration for Problem 2

-~

-•

-)

.. -,.

TELETYPE
33 ASR

PAPER TAPE
PUNCH

75B

555/552
DECTAPE

X-V
PLOTTER

DATAK ADDENDA

STANDARD DATAK CLOCK lOT'S

Skip 4 Clock flag = 0 lOT 1

lOT 2

lOT 4

Clear Clock flag and Connect Flag to interrupt

Disconnect Clock flag from interrrupt

INSTRUCTION LIST

1. Skip if Flag 0

2. Clear Flag and enable Clock

3. Disable Clock

Af o

1------l>l:...:::1---l> AE E

IOP 1 o.::A::..:O __ -+l...,j~

..-vvv-........ -+ AM

AL

IOP 2.,.:A::.::K_-+.....c.::J

r--------<> I os

I NT.

Refer to FLIP CHIP Catalog for further information about module logical design.

5605

mO·OD 0
Washington, D. C. • Parsippany, N. J. • Los
Angeles • Palo Alto • Chicago • Ann Arbor
Pittsburgh • Denver • Huntsville • Orlando
Carleton Place, Ont. • Reading, England· Paris,
France· Munich, Germany· Sydney, Australia

PRINTED IN U.S.A. 20-12/65

