

@~D!2!2~
INTRODUCTION
TO
CECOM

GENERAL _ ELECTRIC

COMPUTER DEPARTMENT

PHOENIX, ARIZONA

ERRATA SHEET GE-225 INTRODUCTION TO GECOM

In the interests of increased efficiency and capability,
several improvements have been made to the GECOM
system since the publication of the GE - 225 Introduction
to GECOM manual (CPB 230).

Major changes are mentioned briefly below. More
detailed descriptions of these and minor changes are
available in the two revised publications:

OCT 1962

Control Transfers

At the user's option, control transfers based on the
type of current record of an input file (determined by
automatic Control Key tests) are provided. These
transfers are made using statements similar to the fol­
lowing:

1. GO DEPENDING ON RECORD
GE-225 GECOM Language Specifications OF file ,.Jname.

GE-225 GECOM Operations Manual

ADDITIONAL FEATURES

Compilation

The current configuration of the GECOM system per­
mits program compilation on GE-225 systems having
four, five, or six magnetic tape handlers with commen­
surate reduction in compilation time.

Relocatable Sections

The GECOM system user can now more readilyparti­
tion a program into Segments and can thereby compile
and test each segment separately. Use of this feature
requires an appropriate control routine, which can be
a modified version of that used for the main program
segment. Segments can be compiled so that they can
be relocated in memory when all segments are rejoined
into a single program.

Common-Storage

The COMMON r' STORAGE Section of the Data Division
has been fully refined to provide for the description of
data to be stored in memory locations that are reserved
for shared usage by two or more program segments.

Nested Segments

Provision is made to allow program segments or sec­
tions to contain PERFORM sentences which execute
other sections.

"N" Controller Compilation

Compilation can be performed using magnetic tape
handlers with one to six magnetic tape controllers, as
specified by the GECOM user.

Sequence Check

At the user's option, source program card sequence
numbers can be checked.

2. If record r' name GO

SOURCE PROGRAM DECK SE~UENCE

To facilitate many of the above changes and to provide
for future improvements and extensions, the organi­
zation of the source program deck has been changed
slightly. The Data Division must precede the Pro­
cedure Division and the END PROGRAM statement
(previously at the endof the Data Division) must now be
the last statement in the Procedure Division.

Source programs which were previously compiled can
be recompiled (if desired) by inserting the Data Divi­
sion cards, less the END PROGRAM statement, before
the Procedure Division and appending a new END PRO­
GRAM statement to the Procedure Division.

EDITED LIST

Minor changes have been made to the format of the
Edited List. For example, the interchanging of Data
and Procedure Divisions described above is reflected
in the Edited List.

Also, the Edited List now provides a count of 1) the
GE-225 words that comprise the required subroutines
and supplied program segments, 2) the words generated
for the main program, and 3) the total of these two
groups of words.

FUTURE CAPABILITY

Currently under field test is an extension of the GECOM
system which enables the compiler to produce object
programs utili.ling the 16K memory.

@~D~~~ _________ _

PREFACE ix

About Programming .. ix
About This Manual ... ix

ACKNOWLEDGEMENT ... xi

INTRODUCTION 1

What is GECOM? 1
Advantages of GECOM .. 2
The Information Processing System .. 3
General Programming Concepts .. 3

GECOM PROGRAMMING LANGUAGE . 11

General ... 11
COBOL .. 11

THE BASIC GECOM SYSTEM . 13

General ... 13
GECOM System Components . 13
GECOM Language Elements . 25

EXTENSIONS TO GECOM. 33

GECOM/Report Writer .. 33
GECOM/TABSOL .. 33
COBOL-61/GECOM 38

APPLICATION OF BASIC GECOM .. 41

General ... 41
Defining the Problem . 41
Plotting the Solution . 41
Preparing the Source Program 48
Producing the Object Program . 57

APPENDICES. 71

Appendix 1. The General Compiler Vocabulary . 71
Appendix 2. Summary Guide for GECOM Form Preparation. 77
Appendix 3. Source Program Order for Compilation 91
Appendix 4. Glossary .. 93

iii

APPENDIX 4. GLOSSARY

A list of important terms (most of which are used
frequently in the body of this manual and many of
which are encountered frequently in other GECOM
literature) have been included in this glossary.
Most definitions are deliberately brief and are not
intended to be comprehensive; many of the terms
have additional meaning's. For more detailed and
more exhaustive listing's, the reader is referred to
any of several excellent glossaries of information
processing' terminology.

ADDHE:-i:-i A spccific location in storage Dr mem-
ory. Actual addresses are numeric. Addresses
used in GECOM are symbolic, that is, represented
by names.

ARITHMETIC EXPRESSION - A sequence of data
names, numeric literals, and/or mathematical
functions connected by mathematical symbols.

BCD - Binary Coded Decimal; a system for repre­
senting any character of the character set of the
computer by a group of bll1ary dIgItS.

BEGINNING FILE
(blocks) which
magnetic tape.
each file.

LABEL - A group of records
identifies a file in a multifile
It is block 0, the first block of

BINARY NUMERIC - A digit or group of characters
or symbols representing the total units using the
base two: a number expressed in binary digits
or bits, 0 and 1.

BLOCK - A group of records read from or written
on magnetic tape as a single physical tape record.

BLOCK SIZE - The number of words in a block.

BUFFER - Storage locations used to compensate for
differences in rate of data flow when transmitting
data from one device to another.

CHARACTER - One of a set of basic symbols used
to express data. Includes decimal digits 0 through
9, the letters A through Z, punctuation, and
special symbols.

CONDITIONAL EXPRESSION - An expression that
can be either true or false.

CONDITIONAL NAME - A name assigned to a pos­
sible value of a numeric or alphanumeric field
or element. A conditional name must be de­
scribed in the Data Division.

CONSTANT - A value used in a program without
alteration. Constants are either literal, figura­
tive, or numeric in GECOM.

DATA IMAGE - The characteristics of a data field:
that is, length, content, sign, and character type
for eaeh position. The data image is used within
the Dab Division tn define data input and output.

DATA NAME - A programmer-assigned word nam­
ing a file, record, field, constant, or other data.
Data names are composed of letters, numerals,
and hyphens, not exceeding 12 characters, and
may be names of records, groups, fields, arrays,
elements, sections, or true-false variables.

ELEMENT - A subdivision of a field. For example,
a date field could contain a DAY element, a
MONTH element and a YEAR element.

FIELD - A unit of data within a record. It mayor
may not be a part of a group.

FIGURATIVE CONSTANT - A special name repre­
senting specific values [ZERO(S), ZEROES, SPAC­
ES, ONE(S), through NINE (S)] . May be used
in procedure sentences to imply strings of char­
acters.

FILE - A set of records

FIXED-POINT - A number which includes a decimal
point, either between digits or following them
(1.23, 123., or 123.0)

FLOATING- POINT - A number expressed as a
whole number, a decimal fraction, and a power
of ten. (1.287*10-2)

GENERATED FIELD - A field (of data) which is
generated as a result of calculations and is not
input to the program.

INSTRUCTION - A group of symbols causing the
data processor to perform some operation.

INTEGER (as used in this manual) - A number of
5 digits or less not containing a decimal point.

~~D ~~go ___ IN_T_RO __ DU_C_T_IO_N __ T_O_G_E_C __ OM

93

1

2

3

Data Processing Elements 4

8

14

15

Source Program Processing with Assembly Programs

Programming Sequence and Task Assignment

4 Identification Division Layout

5 Environment Division Layout . 16

6 Data Division and Related Input. 18

7

8

Procedure Division Layout

The GECOM Data Division Form .. .

9 The GECOM Sentence Form .

19

20

21

10 The Compilation Process ... 22

11 General Compiler Program Organization . 23

12 GECOM Inputs and Outputs . 24

13 GECOM Characters and Corresponding Codes 26

14 GECOM Verbs 27

15 GECOM Arithmetic Operations and Functions . 30

16 GECOM Relational Expressions . 30

17 Logical Expression Truth Table 31

18

19

20

21

22

23

24

Simple Two-Dimensional Table

A Twc-Dimensional Table in Storage

Graphic Representation of a Three-Dimensional Array

The Report Section of the GECOM Data Division

Report Writer Sample Report

Division Table Format

Sample TABSOL Table in GECOM

25 Job Ticket Record Sample

26

27

28

29

30

31

Job Ticket Summary Sample

Department Man Hour Report

Process Chart for Job Summary Ticket

Job Ticket Summary Flow Chart I

Job Ticket Summary Flow Chart II

Job Ticket Summary Flow Chart III

31

31

32

34

35

37

39

42

42

43

44

45

46

47

32 Job Ticket Summary Data Division 49

33

34

35

36

Job Ticket Summary Environment Division

Job Ticket Summary Procedure Division

Job Ticket Summary Identification Division

Source Program Deck Organization

v

52

. .. 53

.. 56

.. 57

APPENDIX 3. SOURCE PROGRAM ORDER FOR COMPILATION

I. IDENTIFICATION DIVISION
PROGRAM "- ID.
NEXT""'- PROGRAM
AUTHOR.
DATE ""'-COMPILED.
INST ALLA TION.
SECURITY.
REMARKS.

II. ENVIRONMENT DIVISION.
OBJECT""'- COMPUTER.
I ""'-0 ""'-CONTRO L.
FILE"-CONTROL.
COMPUT ATION ""'-MODE.

III. PROCEDURE DIVISION.
Closed sections and decision tables delimited
by BEGIN -END
Master program

IV. DA T A DIVISION.
ARRAY SECTION.
TRUE~FALSE SECTION.
INTEGER SECTION.
FILE SECTION.
OUTPUT FILES.
INPUT FILES.
WORKING""'- STORAGE SECTION.
COMMON"-STORAGE SECTION.
CONSTANT SECTION.
END PROGRAM.

Mandatory
Mandatory
Optional
Optional
Optional
Optional
Optional
Optional

Mandatory (whether or not any sentences follow)
Optional
Optional
Optional
Optional

Mandatory

Placement mandatory if sections are used.
Mandatory

Mandatory
Optional
Optional
Optional
Mandatory*
Mandatory*
Mandatory*
Mandatory*
Optional
Optional
Mandatory*

* The section heading card is mandatory; further entries under it are optional.

~~D ~~~ __ IN_T_R_O_DU_C_T_IO_N __ TO __ G_EC_O __ M

91

SOFTWARE MANUALS

GENERAL ELECTRIC reserves the right to make
alterations, advances, or modifications to the ex­
isting program for reasons of increased efficiency.

vii

co
\0

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

Inserts a comma i n correspond ng fie 1 d

positi ons. Aut oma t cally suppressed by

floating dollar signs, z e r 0 suppression
asterisk filling.

I f position occupied b y Z i n numeric z
fie 1 d bec omes z e r 0, z e r 0 i s suppressed

and p 0 s ion p r i n s blank.

p 0 s i on o c cup ed by * becomes z e r 0 , *
* i s p r n ted

po s i on occupied by $ i Il numeric $ $
e 1 d becomes z e r 0 , move $ i Il t 0

END PROGRAM. The final entry of the data division must

beE ND P ROG RA M s tar tin gin col u m n 8 and
erminating with a period.

11 11

PREFACE

ABOUT PROGRAMMING

The programming of information processing systems
has traditionally been a costly and time-consuming
part of automatic data processing. In the past, many
applications that otherwise would readily lend them­
selves to data processing techniques were avoided
because of programming costs. Efforts to improve
programming techniques have been directed toward
producing faster, more economical, and more accu­
rate programs by placing more of the burden on the
data processing equipment.

Various combinations of symbolic coding systems
(with one-to-one correlation between machine code
and symbolic cOde). macro-instruction coding sys­
tems (with a many-to-one correlation between
machine code and macro-code), libraries of stand­
ardized subroutines, and other innovations were
developed to accelerate programming. Despite these
improvements, programmers still prepared pro­
grams in terms dictated primarily by the computer;
programming languages remained essentially
machine-oriented languages.

Today, compiler programs provide the programmer
with additional leverage. Program coding can be
done in a language more suited to the problem in­
stead of in the purely machine-oriented data proces­
sor language.

The GE-225 GECOM system, an advanced and effec­
tive automatic coding method, provides the next
logical step in programming evolution. GECOM is a
step toward fulfillment of the much-needed total sys­
tems concept--a concept that deems an information
processing system to be an integration of application,
programming, and information processor or com­
puter.

The GECOM system is further characterized by its
applicability to all classes of information processing
problems, its ability to grow, and its inherent pro­
visions for use by future General Electric general­
purpose computers. GECOM permits coding in the
problem languages of bUSiness, science, and indus­
try. GECOM can be adapted to future extensions of
existing problem languages as the requirement
arises, without obsoleting programs prepared to
present specifications.

ABOUT THIS MANUAL

This manual is presented as a general information
manual about the GE-225 GECOM system and is
organized to fill the needs of many people having
different levels of familiarity with automatic infor­
mation processing.

For readers with no previous experience in data
processing or computer programming, it is sug­
gested that the entire GE manual be covered.
Persons having such previous experience, but who
are unfamiliar with the GE-225 Information Process­
ing System, are referred to other General Electric
publications, listed below.

Readers already familiar with the fundamentals of
programming can begin directly with the section,
GECOM Programming Language, witb no loss in
continuity.

Following the section on GECOM programming lan­
guage is discussion of the Basic GECOM System.
All elements are discussed briefly with the intent
of providing overall famiiiarity with all aspects of
GECOM.

The next section treats the two major extensions to
GECOM, (TABSOL and the Report Writer), which are
first mentioned in the GECOM programming language
section, but are more effectively discussed after an
understanding of GECOM is achieved.

The reader should not assume that reading this
manual will make him a master GECOM program­
mer. The most effective use of GECOM depends
upon training and application. More detailed infor­
mation concerning the various aspects of the GECOM
system can be found in the following General Electric
publications:

GECOM GE-225 Language Specifications
GE-2,.25 General Compiler Operations
Manual, CD225Hl

TABSOL GE-225 TABSOL Manual, CPB 147
GE-225 Introduction to TABSOL, CPB
147 A

GAP GE-225 Programming Reference Man­
ual, CPB 126

UB~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ T_O_G_E_C __ OM

ix

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

9 11.

Position contains a n al ph abe i c A
character, A-Z o r a blank.

P 0 s on con t a ns a n integer o - 9 . 9

P 0 s ion con t a n s a numera 0-9 wit h R

a n 11-row overpunch when negative and

00 n 0 overpunch when positive.

"
Pos ition contains a numeral o - 9 wit h

a 12-row overpunch when the fie 1 d i s

p 0 s i ve and an 11-row overpunch when

the fie 1 d i s negative.

Indicates an assumed dec i rna po n t V

Neither the V o r the dec i rna po n t
occupy an act u a fie 1 d posit ion.

ndicates number f 0 ow i n g E i s a E

power of ten t 0 w h i c h the number
preceding the E mus be raised. E

doe s not occupy fie 1 d position.

ACKNOWLEDGEM ENT

"This publication is based in part on the COBOL
System developed in 1959 by a committee com­
posed of government users and computer manu­
facturers. The organizations participating in the
original development were:

Air Mat.eriel Command, United States Air Force
Bureau of Standards, Department of Commerce
David Taylor Model Basin, Bureau of Ships,

U. S. Navy
Electronic Data Processing' Di vision, Minnf'apolis-

Honeywell Regulator Company
BurroUl.(hs C()rporation
International Business Machine Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry Rand Corporation

In addition to the organizations listed above, the
following other organizations participated in the work
of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Corporation
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Phil co Corporation
Standard Oil Company (N. J.)
United States Steel Corporation

This COBOL-51 manual is the result of contri­
butions made by all of the above-mentioned organi­
zations. No warranty, expressed or implied, is

made by any contributor or by the committee as to
the accuracy and functioning of the programming
system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee,
in connection therewith.

It is reasonable to assume that a number of im­
provC'mC'nts and additions will be made to COBOL.
Every effort will be made to insure that the improve­
mf'nts and corrections will be made in an orderly
fashioll, with clue recognitioll of existing users'
ill Vl'st llH'llt s in]Jl'()l',ran1l11lnl',. However, this pro­
t("ct1On can be positively assured only by individual
i Illpl l'nl(' nto r s.

Procedures have been established for the main­
tenance of COBOL. Inquiries concerning the pro­
cedures and methods for proposing changes should
be directed to the Executive Committee of the Con­
ference on Data Sy stems Languages.

Any organization interested in reproducing the
COBOL report and initial specifications in whole
or in part, using ideas taken from this report or
utilizing this report as the basis for an instruction
manual or any other purpose is free to do so. How­
ever, all such organizations are requested to repro­
duce this section as part of the introduction to the
document. Those using a short passage, as in a
book review, are requested to mention "COBOL"
in acknowledgment of the source but need not quote
the entire section."

~~D ~~go __ I_N_T_RO __ DU_C_T_IO_N __ T_O_G_E_C_OM_

xi

co
UI

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

7 11

L Literal; no name used. All other columns are completed as for f e.lds
and el ements.

OTHER OUTPUT RECORD ENTRIES ~ Not used for output entri es.

~ ~ B o r o the r character forces lower
levels wit h numeric d a t a des c r i.p t ion

(9) t 0 b e i n standard binary f o.r m
unless ower
non - s tan da r d

eve 1 Forma t
binary data

indic.ates
A b 1 an k

in column 43 forces BCD data ou.tput

'" ~ Forces unpacked data to

L (L) justified and zero
R right (R) justified and

filled.

bel eft

fi lIed or
blank;

INTRODUCTION

WHAT IS GECOM?

The GE-225 GECOM system is an advanced and
highly effective method for preparing sets of direc­
tions for the GE-225 Information Processing System.
As a system, it consists of three elements: Lan­
guage, Compiler, and Computer. These three terms
are further explained below.

THE LANGUAGE

A language is, in general, a means of communication.
In the visual form, it u.sually (;oll.sists of a .set of
symbols (such as our alphabet), which can be ar­
ranged into meaningful groups (words). Properly
arranged aggregates of these groups or words can
communicate ideas, action, commands, and ques­
tions.

The direction of an automatic information proces­
sing system in the performance of a given operation
requires communication between man and machine.
Just as communication between two men requires a
language intelligible to both, communication between
man and machine requires a common language. This
common language can be machine-oriented (that is,
related closely to the basic means by which the com­
puter accepts and presents information, and requir­
ing tedious translation by man of his directions into
machine-acceptable form), or the language can be
problem-oriented (enabling man to express direc­
tions in a form more convenient to the application
and placing the burden of the translation on the com­
puter), or it can lie somewhere between these ex­
tremes. Machine-oriented and problem-oriented
languages are discussed further in the section,
"General Programming Concepts".

The GECOM language is a problem-oriented language
designed to handle scientific problems as well as
general business information processing. The pri­
mary basis for the language structure is COBOL, the
COmmon Business-Qriented Language for program­
ming digital computers. COBOL is further discussed
in the section, "GECOM Programming Language".

In addition to the capabilities derived from COBOL,
G ECOM language incorporates many of the features
of ALGOL, (an ALGOrithmic Language for stating
mathematical computations), such as capabilities to
evaluate complex equations, Boolean expressions,

and mathematical functions. These computations
may be performed in either fixed or floatiMg-point
arithmetic.

Further versatility is provided by the incorporation
of TABSOL and the Report Writer into the language.
TABSOL, for TABular Systems-Oriented Language,
is a system for expressing decision logic ina simple
tabular form. The Report Writer facilitates report
preparation and improves documentation. TABSOL
and the Report Writer are discussed in the se~tion,
"Extpl1sinJ1S to GECOM".

GECOM language is not limited to the language
capabilities and the extensions mentioned above.
General Compiler versatility permits inclusion of
GAP, the basiC symbolic language (machine-oriented
to a degree) of the GE-225 Information Processing
System. GAP, for General Assembly Program, is a
straightforward symbolic assembly system for the
GE-225.

THE GENERAL COMPILER

If communication with the computer is to occur in
problem-oriented language, some means must be
provided to translate that language within the com­
puter into machine-oriented form. A set of
directions for a computer, regardless of the language
in which it is prepared, is called a program or,
sometimes, a ::'outine. A program, manually pre­
pared, is generally termed a source program. A
source program which has been translated into a
machine-oriented program is an object program.
One means of translating a source program into an
object program is to use a specially-prepared pro­
gram (called a compiler) which, within the computer,
operates upon the source program as if it were data
and transforms it into an object program.

The General Compiler (from which the GECOM sys­
tem derives its name) is a unique program specifi­
cally designed to reduce sharply the traditionally
high programming costs associated with the com­
puter applications. GECOM is a highly versatile and
dynamiC "program generator"; versatile because it
accepts source programs written in a variety of lan­
guages; dynamic because both the range of languages
and the computer types to which it is applicable can

~~D ~~go __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

1

00 w

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)
5 11

FL Fie 1 d literal. Any 1 ega 1 d a t a n a me. Used for n am e d fie d s wit h f i, xed

values. R u 1 e s t hat a p ply t 0 fields a 1 s 0 a pp 1 Y t 0 fie 1 d literals.

Actual val u e of literal i s enclosed i n quotation mar k s i n co 1 umns

5 5 hrough 8 O.

OUTPUT RECORD ENTRIES:

R

*G

Output record-Name in
entry of a qualifier

columns 11 throu
in columns 24 thr

un que, I t ne e d not be qualified.

P For ces a I 1

U pack ed (P)

gh 22; may
ough 35. f

be qualifi ed
record name

e\'els within record t 0

o r unpacked (U) except

bi nary numerics.

*group na me i n col umn s 1 1 hrough 22 May be qualified. If 2

by
i s

be

qua I f e r s are needed,first goes i n columns 2 4 through 3 5 , second
n ext n e columns 2 4 through 3 5 and

P Forces

U packed

a til d e i n

lowe r 1 eve I s

or unpacked

column 7 .

t 0 be

i n

THE INFORMATION PROCESSING SYSTEM

Although the effective use of the GECOM system does
A require a detailed knowledge of machine-language

pFDgramming or data pr(){;essing systems, some such
knowledge is desirable, and perhaps is essential if a
valid evaluation of the system is to be made.

Data processing needs have resulted in the develop­
ment of a great variety of computers. While the
phy sical form and the specific logic flow differ
widely, general functions and information flow are
similar.

The modern computer or information processor
consists of five elements as illustrated in Figure 1:
Input, Output, Storage, Arithmetic-Logic, and Con­
trol. Communication with the computer is possible
only thl'llUi!:h the input and output elements.

The terlll, lI1)1ut plpmpnt, is a funrtional cnncppt, not
the n:Ull (' nf :, unit ')f equipment. Only' through thL
input element can data enter the processing system.
A system may have one or more of several input
media: punched cards, punched paper tape, magneti­
cally-encoded tape, or speCially-printed documents.
Not all computers have available all input media.

The output element makes it possible for the system
to perform a useful function; without an output in­
telligible to the user, a data processor is useless.
Output can take one or more of these forms: punched
(:ards j paper t:lpe, nlagnetic tape, printing, or any of
several special-purpose, machine-controlled forms,
such as magnetic-ink encoded (MICR) documents.

Input data must be presented to the system in such a
way that the system can manipulate and store it in­
ternally. For this reason, data is fed into the system
in a form that can be readily converted to the inter­
nal electronic language 0 f the system (machine
language). Similarly, output data is reconverted to
an externally-usable form after processing.

The storage element is functionally subdivided into
two general types of storage. One, characterized by
limited capacity, high speed, and relatively high cost,
is referred to as main storag'e, memory, core stor­
age, core memory, or simply "core". The latter
three terms are popular because tiny magnetic cores
are the storage medium in many data processors.
The other general type of storage, characterized by
high capacity, lower speed, and lower cost, is called
auxiliary storage. Auxiliary storage may take al­
most any form, with punched cards and magnetic
tape, diSCS, and drums being the most common.

The arithmetic-logic element contains the circuits
that perform the manipulations of data required by

the task or application. It adds, subtracts, multi­
plies, diVides, shifts and rearranges data, and makes
decisions, according to the purpose of the program.
Capabilities vary widely between different types of
computers.

The control element decodes and interprets the
stored instructions in proper sequence to achieve the
purpose of the program.

In a given compter, it can be difficult to recognize
physically the separate storage, control, and
arithmetic-logic elements. Functionally, they are
separate and distinct elements in all data processing
systems and should be so conSidered. The input and
output elements are more readily recog'nized; more
often than not they are packaged as separate units,
such as card readers, paper tape readers, document
handlers, magnetic tape handlers, card punches, pa­
per tape punches, and printers.

GENERAL PROGRAMMING CONCEPTS

Pl'ograllllllilli', i" essellti<.dly the irallllnl!, ()1 ,\ set ()1
directinns for a computer. A sct of such directions
prepared for, and to be communicated to, a computer
to guide and control it for a particular processing
task is a program.

A subroutine, on the other hand, is a set of directions
that is generally incomplete (by itself) in the sense
that it usually is only part of a program. Programs
frequently contain subroutines for directing the per­
formance of discrete portions of an overall data
processing application.

Programs and subroutines, in turn, consist of in­
structions, which are basic and are the smallest
meaningful part of a program. Thus, instructions
are the basic tools of the programmer from which
he frames the set of directions a computer is to
follow.

The phrase "to direct a computer" indicates com­
munication, and communication implies language. In
practice, a programmer may use several languages
in preparing programs, depending upon the computer.
Digital computers are constructed and organized so
that they can accept coded representations of letters
and numbers, and interpret them as directions to be
followed in processing data. Programming lan­
guages generally fall into one of three categories,
depending on how closely related they are to the
computer requirements for accepting information.
These three categories are: machine language,
symbolic language, and automatic coding language.

MACHINE LANGUAGE PROGRAMMING

Perhaps the most important characteristics of mod­
ern information processors is the stored-program
concept. In the information processor, instructions

U5~D ~~go __ ~IN~T~R=O~D=UC=T~IO=N~TO~G~EC~O::M
3

00 ...

SUMMARY GUIDE FOR DATA DrvrsroN FORM PREPARATION (continued)

F I n d cat e s a fie 1 d o f an

Fi e 1 d n a me i s entered i n

3 11

nput record.
columns 1 1 hrough 2 2 .

P Assumes e 1 d i s packed o r unpa ck ed

U un e s s confli c t s wit h a higher e v ,e
en r y group, record. o r f i 1 e)

1 Assumes one -word b nary numeric d a t a . ,

2

If the data is
factor must be

not
supp

nteger
i e din

a scaling,
the data

i mag e col u mn s .

Assumes
numeric
see note

two-word
data If

above.

non-standard
data is not

binary
int eg er"

S The preced ng image is to be used for

this entry Cannot be used f preceding

image has a lor 2 in column 37.

~ If any input groups or
rep eat ,e d con sec uti vel y

ields are
the numb e r

of imes repeated is entered here.

are held in the storage element along with the data
to be processed. This not only permits step-by­
step data manipulation -- it enables the machine to
manipulate its own instructions as if they were
data. Thus, it is possible for a program to modify

-itself (if prepared with this intention) and ~l€c­
tively repeat desired portions.

All information processing systems have a reper­
toire of permissible instructions; these vary in
number and scope from one machine type to another
and between manufacturers. For any given system,
however, instructions can be grouped by general
function:

1. Arithmetic
2. Decision
3. Input/Output
4. Control

Arithmetic instructions, as the name implies, enable
the data processor to perform arithmetic such as
addition, subtraction, multiplication, and division.

Decision instructions enable the system to compare
certain data with some standard (other data, per­
haps, or the status of some data processor element)
and select alternate courses of action.

Input and output instructions permit the reading in
and writing out of data via peripheral input/output
units.

Miscellaneous control instructions vary most widely
between machines and depend largely upon machine
design. In general, Simpler machines require more
control instructions to accomplish a given function
or process than do more complex machines.

Even in the most complex machine, individual in­
structions are very simple operations and a number
of them must be used in the proper order to perform
a given function.

For many reasons, most modern information proces­
sors are designed to operate internally in some form
of the binary (two-digit) number system, or a binary­
based system, rather than the conventional decimal
(ten-digit) system. Certain computer elements are
bi- stable devices (that is: conducting or noncon­
ducting, on or off, open or closed) with the two
possible conditions expressed as "0" and "1",
corresponding to "off" and "on", respectively. The
"0" and "I" represent the two digits of the binary
number system and are commonly called bits, for
binary digits. By grouping computer elements and
assigning values to them according to their posi­
tion in the group, all numbers may be expressed
in binary numbers; for example:

9 = 1001 18 = 10010 523 = 1000001011

wherein the I-bits, by virtue of their position, have
values corresponding to the powers of two (1, 2,
4, 8, 16, 32, 64, 128, 256, 512, etc. from right to
left). The O-bits, ill course, as in the deeimai ~
tem, denote zero value and establish position. Thus,
the first 1-bit following the equal sign in the exam­
ple, 9 = 1001, has a weight of eight (the third power of
two), and the rightmost I-bit has the weight of one
(the zero power of two).

A somewhat similar system permits the represen­
tation of alphabetic and special symbols in coded
binary form. In fact, the sy stem described so
briefly here is only one example of many binary
numbering schemes in use and is used primarily
to show the concept and illustrate the complexity
of programming in a pure machine language. It
is rarely necessary to program most modern com­
puters directly in binary or machine language form.

As a final example of machine language program­
ming, a simple routine or program for a hypothet­
ical binary computer is used. Assume that two
numbers are in the main storage of the computer
at locations arbitrarily called 1000 and 1001. It
is desired that the two numbers be added and the
result be placed in another storage location, 1002.
The binary coding for this program might appear
as follows:

(1) 00000000001111101000
~) OOUOIOUUOOIIIIIUIUUI
(3) 00011000001111101010

The internal computer circuits would interpret such
a program thusly:

(1) Load the contents of storage location 1000
into the arithmetic unit.

(2) Add the contents of storage location 1001
to the contents of the arithmetic unit.

(3) Store the new contents of the arithmetic
unit in storage location 1002.

Obviously, pure binary programming is slow and
tedious, partly because of the difficulty in keeping
track of long strings of bits. One innovation that
alleviates this difficulty is the use of an inter­
mediate numbering system between the pure binary
and the more familiar decimal system.

If the binary numbers in the example above are
grouped into three's, as illustrated below, and
repetitively assigned the values of the first three

~~D ~~go ___ I_N_T_R_O_D_UC_T_I_O_N_T_O_G_E_C_O __ M

5

'" \0

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION
1 11

DATA DIVISION. Starts in column 8, ends with per od No o the r entries.

ARRAY SECTION. }

TRUE~FALSE SECTION. Optional sections as

INTEGER SECTION. column 8 and end with

FILE SECTION. Identifies characteristics

required
a perio

of data

b Y
d.

i n

program. S tar t i n

nput and output

les of the objec program. Starts i n col umn 8 and end s

OU T PUT FILES.

IN PUT FILES.

with a period. Mandatory sect on.

Introduces output
and ends wit h per

Introduces n put

and end s wit h a pe

file descr ptions

od.

Ie descr ptlons.

rio d

Starts i n col u mn

Starts in column 8

WO R KIN G ~ S TOR AGE SECTION. Introd uces working storage descriptions

Starts in column 8 and ends with a period Mandatory

COMMON~STORAGE SECTION.}
CONSTANT SECTION. Optional sections as required by program.

Start in column 8 and end with period.
FD File descr pt on. Name follows in columns 11 through 22 12

characters or less.

8

Descriptions of constants are also accepted by as­
sembly programs. Constants, such as the English
word TAX or decimal numbers like 365 are accepted
by the assembly program and converted automatical­
ly into their machine lang'uage equivalents. A legend
generally accompanies each description of a constant
in the source program to indicate what kind' of con­
stant is being described. The legend ALF could be
used, for example, to indicate alphabetic constants
and DEC for decimal constants.

An assembly program produces the machine language
ve rsions of constants and inst ructions in the obj ect
program in such a way that they can be loaded into
memory at a later time. Generally, a list is also
provided, displaying the symbolic descriptions side­
by - side with the output produced in the assembly
procf'ss Iot' £'<1ch. TIll' list, c.lllc'ci ;\n assembly
listing, provides an illlPortant doculllcntation of the
program. It often contains, also, such .lids to pro­
gram checkout as lIldications of PITCll'S in dc'scrip­
tillll" <llId lists IlL syJll1Jlllic addn~sses.

The leg'encis, such as ALF and DEC, that an, ac­
cepted by the assembly program, but do not stand
for actual machine operations, are called pseudo­
codes, or pseudo-operations. It is common for an
assembly program to provide many of these for the
programmer to use. Each extends the ability of the
assembly program to prepare or document pro­
grams.

The symbolic descriptions of instructions, together
with the pseudo-operations that are accepted by an
assembly program, constitute what is called an as­
sembly language, or a symbolic language. Although
there are numerous exceptions, there is generally
one output in machine language for each input in
assembly language. For this reason, assembling is
often considered to be a one-to-one process.

Symbolic language programming using assembly pro­
grams, while considerably simpler and faster than
machine language programming, is still highly
machine-oriented in that the programmer must have
a thorough knowledge of machine-language program­
ming. It is common for source programs written
for assembly program processing to result in object
programs that are as fast and compact as are
equivalent programs prepared directly in machine
language. Thus, because symbolic language pro­
grams are as efficient as machine language pro­
grams, symbolic language programming has almost
entirely supplanted the machine language as the
basic programming media.

Figure 2 illustrates object program preparation,
using an assembly process. First, the programmer
prepares the source program in symbolic form, using
simple mnemonic codes for the desired machine
operations and storage of program constants. Sec­
ond, the source program is converted to a form

suitable for machine entry. The most common
representations are hole patterns in punched cards
or paper tape or bit patterns on mag'netic tape.
Usually the programmer prepares his instructions-on
forms from which a keypunch operator can punch the
cards or paper tape for direct entry to the com­
puter or, alternately, for conversion to magnetic tape
and the input to the computer.

Next, the assembly program is stored in the com­
puter memory and the source program is input to
the computer. The computer, under assembly pro­
gram control, produces the output -- an obj ect pro­
gram ready for proceSSing.

At any time after assembly, the object program, now
in machine lang'uage form, is input to the computer
along with data to be processed. The resultant
output -- processed data in the form of punched
cards, papcr or magnetic tape, ur printed reports -­
is now ready for nse extern:ll to the r'OInpnter.

The assembly system available with the GE-225, as
previously mentioned, is known as GAP, for General
Assembly Program. For further details, refer to
the "G E-225 Programming Reference Manual."

AUTOMATIC CODING LANGUAGE PROGRAMMING

As pointed out above, the assembly program per­
mits an already-skilled programmer to prepare pro­
grams with a minimum of errors by eliminating
many of the details of program "housekeeping." It
also provides a more readable version of machine
language, thus reducing the need for extensive anno­
tation of machine coding. However, it does not
eliminate the need for computer and machine lan­
guage knowledge.

The compiler program permits the programmer to
take another large step away from machine-oriented
programming and toward problem-oriented language
programming. Compiler programs place even more
of the burden of object program preparation on the
computer by permitting the programmer to state the
desired operations in sentence form or in equation
form, depending upon the application and the com­
piler program.

Compilers have several advantages over assembly
programs. The language of the compiler is easier
for the programmer to learn and easier for him to
use, as it is more closely related to his problem.
The programmer using a compiler usually does not
need as intimate a knowledge of the inner workings
of the computer as does the assembly programmer.
Programming is faster; the time required to obtain
a finished, working program is greatly reduced be­
cause there is less chance for the programmer to
make a mistake and because most normal errors are
detected by the compiler.

~~D ~~~ ___ I_N_T_R_O_D_UC_T_I_O_N_T_O_G_E_C_O __ M

7

APPENDIX 2. SUMMARY GUIDE FOR GECOM FORM PREPARATION

The following pages briefly summarize the basic
rules to be followed in preparing GECOM source
programs on the General Compiler Sentence and
Data Division Forms. A copy of this appendix is
used to provide novice programmers with a con­
venient guide and a ready reference while becoming
familiar with GECOM.

~~D ~~go __ I_N_T_R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M

77

Advanced compilers are not limited to accepting
simply symbolic instructions, but can accept state­
ments approximating ordinary English sentences or
mathematical equations. Most of these compilers
al e highly restrictive in the vocabulary and Syntax
permissible and in the equipment that can be used.
The GECOM system is the first to utilize a General
Compiler program to permit both English-language
and algebraic programming and, at the same time,
to embody provisions for structured decision tables
and automatic report writing. Additionally, the Gen­
eral Compiler has built-in provision to expand its
language <.:apability to encompass other source lan­
guages yet to be constructed.

Many of the advantages of compiler programs, par­
ticularly those assuciateu with the General Compiler
are pointed out in the section, "Advantages of
GECOM". Be<.:ause the balance of this manual is
devoted to describing the GECOM system, it would
be redundant to further discuss compilers in general.

However, bv virtut~ of the ('hall,"ill~ l'f'(jllirpl11pnts
placed upon the programmer who may be engaged

in GECOM programming, some consideration should
be given to his job title.

The average data processing: application involves
two broad phases. One phase, defining the problem
and determining the general method of solution, is
generally called systems analysis. The other phase,
involving the actual preparation of the program for
computer entry, is variously called coding or pro­
gramming, although in the strict sense coding is only
a subordinate part of programming. In some instal­
lations, the two phases are performed by separate
individuals; in others, both are performed by one
person.

The programmer or systems analyst who is thor­
oughly trained in GECOM principles can communi­
cate more readily with the computer through the
General Compiler and, simultaneously, view the
overall application in proper perspective. For this
reason, the title, systems programmer, IS suggpstPrl
~\nd user! ill ttlP baLtll(,(, nf this mamn! tu describe
the GECOM-trainecl programmer.

~~D ~~go ___ I_N_T_RO __ DU_C_T_I_O_N_T_O_G_E_C_O __ M

9

WORKING ('"'-STORAGE) - A mandatory Data Divi­
sion section name.

WRITE - To display a limited amount of information
on the console typewriter.

- To release a record or group to an output
file.

ZERO(S) - A figurative constant used in procedure
sentences.

ZEROES - SAME as ZERO(S)

~~D ~~go ___ IN_T_R_O_D_UC_T_I_ON __ T_O_G_E_C __ OM

75

GECOM PROGRAMMING LANGUAGE

GENERAL

All compiler programs accept source programs pre­
pared in specialized language and produce an object
program ready for computer processing. Unlike
most compilers, GECOM is not restricted to an un­
duly limited acceptable lang'uage. The General
Compiler language is actually based on several
languages.

The G ECOM lang'uag'e evolved primarily from two
recent ma]or data processing languages, the
business-oriented COBOL and the algorithm-oriented
ALGOL. Both languagei:> were developed for solving
widely different problems, although from the view­
point of compiler development they have similar
characteristics. These similarities made it possible
to provide in one complete and compact package a
variety of proven programming techniques. COBOL,
which satisfies the needs of the broadest spectrum of
data processing applications, provided a basic vocab­
ulary (words and symbols), a basic set of rules of
grammer or syntax, and punctuation for clarity.
ALGOL, to accommodate the demands of scientific
applications, contributes Boolean expressions,
floating-point arithmetic, and the ability to express
equations concisely.

Many computer applications require neither the ex­
tensive file processing facilitated by COBOL, nor
the profound mathematics that ALGOL provides, but
do involve massive numbers of sequential decisions.
To cope effectively with these deciSions, General
Electric devised structure tables for expressing the
relationship of decision parameters. These decision
structure tables, and the language in which they are
expressed, have been termed TABSOL.

TABSOL has been incorporated into the language ac­
cepted by the General Compiler and can be used in
combination with the COBOL and ALGOL-like capa­
bilities of G ECOM.

In addition to file processing, mathematical applica­
tions, and complex decision series, much program­
ming effort is and has been devoted to applications
involving report generation. The Report Writer
format and language, fully compatible with the Gen­
eral Compiler, gives a fully documented method for
preparing reports with minimum programming and

debugging effort. The Report Writer is an extension
of GECOM and derives much of its advantage from
the GECOM system.

Both TABSOL and the Report Writer are discussed
in the section, "Extensions to GECOM".

GECOM language is not compartmentalized into the
component languages discussed above. In a given
f;ource prng-ram, it is pnssible to use COBOL state­
ments containing ALGOL-like algebraic not<ltions;
T ABSOL decision structure tables can be inter­
spersed with procedure statements; and the Report
Writer can be used for report generation. The
source program can be prepared USing one or all
facets of the GECOM language. In addition, if the
application so requires, GAP coding sequences can
be inserted at will.

COBOL

Because the GECOM language is based primarily on
COBOL, some discussion of COBOL and the history
of its development is warranted.

In 1959, a meeting was called in the Pentagon by the
Department of Defense to conSider the desirability
and feasibility of establishing a common language for
the adaptation of computers to data processing. Rep­
resentatives from both users and manufacturers were
present. The consensus was that the project was
definitely both desirable and feasible. As a result,
this Conference on Data Systems Languages
(CODASYL) established three committees, Short
Range, Intermediate Range, and Long Range, to
work in four general areas:

Data Description
Procedural Statements
Application Survey
Usage and Experience

In September, 1959, the Short Range Committee
submitted a preliminary framework upon which an
effective common business language could be built.
After acceptance by the Executive Committee of
CODASYL, the report was published in April, 1960,
by the Government Printing Office as "COBOL-A

~~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

11

LABEL

LESS

LINE COUNT

LINES

LN - Natural logarithm. A mathematical function
that may be used in arithmetic expressions. Cal­
culated in floating-point arithmetic.

LOCK - To prevent a tape from being read or
written by program control.

LOG - Common Logarithm. A mathematical func­
tion that may be used in arithmetic expressions.
Calculated in floating point arithmetic.

LS - LESS than. Used in relational expressions.

MAGNETIC - Part of descriptive name, Magnetic

NO

NOT - May be used in relational expressions. In
logical expressions, it is an exclusive negative.

NOTE - To permit tn.e ptOgra.huner to write expIan:"
atory material in the source program for
inclusion in the Edited List, but excluded from
the compilation.

OBJECT COMPUTER - An optional Environment
Division sentence name.

OBJECT PROGRAM - See Glossary

OF

OMITTED

ON

Tape Handler. ONE(S) - A figurative constant used in proeedure

MASS - Part of descriptive name, Mass Random Ac­
cess Data storage.

MEMORY - Main storage, core storage.

MODE - A system of data presentation or proces­
sing within the information processing system.

MODULE(S) - Refers to core memory size; one
module is 4096 words of storage.

MOVE - To transfer a constant, element, field
group, record, or array to a constant, element,
etc. of the same size.

MULTIPLE

MULTIPLY - To multiply two quantities and store
the result in the last-named field or the speCified
field.

NEGATIVE

NEQ - Not equal to. Used in relational expres­
sions.

NEXT---- PROGRAM - An optional Identification Divi­
sion sentence name.

NGR - Not Greater Than. Used in relational expres­
sions.

NINE(S) - A figurative constant used in procedure
sentences.

NLS - Not Less Than. Used in relational expres­
sions.

OPEN - To initiate the processing of input and out­
put files. Checks or writes labels and does other
input-output functions.

OPTIONAL

OR - A logical operator

OUTPUT - A mandatory Data Division section name.

PAGE

PAPER - Pertaining to High-Speed Printer forms.

PERFORM - To cause the speCified section to be
executed. Control automatically reverts to sen­
tence following the PERFORM.

PLUG(S) - Refers to connectors on the controller
selector to which input-output unit controllers are
attached.

POSITION

POSITIVE

PRINTER(S) - Pertaining to High-Speed Printer.

PROCEDURE - A GECOM Division name.

PROCEED

PROGRAM - A complete sequence of data process­
ing instructions. May refer to an object program
or a source program.

PROGRAM m - A mandatory Identification Divi­
sion sentence name.

~~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

73

THE BASIC GECOM SYSTEM

GENERAL

For clarity and simplicity, only the Basic GECOM
system is described in this section. Brief descrip­
tions of extensions to Basic GECOM are provided
in the section, "Extension to GECOM". These ex­
tensions, for the most part, expand the capabilities
of GECOM to encompass recent language develop­
ments.

Implementing a data processing application on a
computer involves a broad procedure that has been
outlined as follows:

1. Define the problem

2. Determine the procedure to be followed in
solving the problem

3. Prepare the computer program, including test­
ing

4. Run the program on the computer with appro­
priate input data.

If the programmer has at his disposal the auto­
matic coding system of GECOM, the above pro­
cedure becomes:

1. Define the problem

2. Determine the procedure to be followed in
solving the problem

3. Prepare the source program in problem­
oriented language

4. Compile the object program from the source
program, using the General Compiler

5. Machine-test (debug) the object program

6. Run the object program on the GE-225 with
appropriate input data.

At first glance, automatic coding seemingly com­
plicates the task of data processing. However, as
shown in Figure 3, the burden on the programmer
is no greater, and often is appreciably less. For ex­
ample, the step from item 2 to item 3, above, is
greatly facilitated by the GECOM-provided ability to

express procedural steps in English language state­
ments. Additionally, each statement the programmer
writes is several times more powerful than the
machine-language or symbolic instructions that he
would otherwise use. Also, he is materially assisted
in the machine-test or check-out phase, item 5,
by the assistance provided by the General Compiler
in the form of detailed print-outs of error conditions
and of the complete compilation process. The print­
outs are as easy to read as the programmer­
prepared procedure statements of the source pro­
gram.

This section is devoted primarily to discussion of
item 3, source program preparation, using the
GECOM system. Incidental references will be made
to the other areas, such as the compilation process,
as required.

Assuming that a well-defined data proceSSing prob­
lem has been assigned to a systems programmer, he
determines the detailed procedures for problem
solution and generally prepares a flow chart describ­
ing those procedures. Flow charts can be broad or
detailed, depending upon the problem and the pro­
grammer. Invariably, they are sufficiently detailed
to serve as a guide for programming the problem
solution. The section, " Application of Basic
GECOM." illustrates typical flow charts.

GECOM SYSTEM COMPONENTS

With these preliminaries out of the way, the pro­
grammer is ready to prepare the source program.
What does the GECOM system provide him to assist
in this task?

First, it provides him the necessary language that
eliminates tedious machine-language or symbolic
coding. Language is discussed in the following sec­
tion, "GECOM Language Elements".

Second, it provides him with a standard source pro­
gram organization, which corresponds to the format
followed by the compilation output. GECOM source
programs are partitioned into four divisions, in­
tended for separate and independent preparation.
This facilitates changes; if the procedure must be
modified, it can be done with minimal effect upon
data parameters; if data changes occur, the data
parameters can be changed without affecting the

UB~D ~~go __ �~N~T~RO~D~U~C~T~IO~N~TO~G=E=CO~M
13

APPENDIX 1. THE GENERAL COMPILER VOCABULARY

Words and terms that appear in the following list
must be considered to be part of the General Com­
piler vocabulary and must not be used by the systems
programmer in forming data or procedure names,
nor may they be used in any manner in a source
program other than as provided by the GECOM
Language Specifications.

Where warranted, many of the terms have been de­
fined or explained. Terms not so explained were
deemed to be self- evident in meaning. In addition,
the bocly of the manual contains many examples that
illustrate the use of most of the vocabulary terms.

ABS - Absolute value, or magnitude, of a number,
regardless of sign.

ACCESS - Part of descriptive name Mass Random
Access Data Storage.

ADD - To add two quantities and store the sum in
either the last-named field or the specified field.

ADVANCE - To vertically skip or slew the printer
paper.

AFTER

ALL

AL TER - To modify a sequence of operations speci­
fied in one or more GO sentences.

AND - A logical operator.

ARE

ARRAY - A multi-valued field that may be refer­
enced by name and subscript. An array may be
one, two, or three dimensional and may have cor­
responding number of subscripts. An array must
be defined in the Array Section of the Data Divi­
sion.

ASSIGN - To direct the placement of a file or pro­
gram to an input-output media.

ASSIGNMENT - To evaluate an arithmetic expres­
sion and assign the result to a field. To equate
data names.

AT AN - Are tangent. A mathematical function that
may be used within arithmetic expressions. Cal­
culated in floating point arithmetic.

AUTHOR - An optional Identification Division sen­
tence name.

BEGIN - Entrance point to a source program sec­
tion.

BEGINNING

BGN~FIL'""'-LABL - A tape record preceding each
file of a multi-file tape.

BGN~TAP'"'-LABL - The first record on any tape
except in multi-file tape.

BINARY - Pertaining to the binary number system,
as opposed to decimal or binary coded decimal.

BLOCK - See Glossary

BUFFER - A device which stores data temporarily
during transfer operations.

BY

CARD

CLOSE - To terminate processing of input or output
reels and files with optional rewind and/or lock.

COMMON ('" STORAGE) - An optional Data Division
Section name.

COMPUTATION'""'- MODE - An optional Environment
Division sentence name.

CONSTANT - An optional Data Division section
name.

CONTAINS

CONTROL - Interpretation and execution of oper­
ations.

CONTROL"'KEY - The field or fields by which a
record is identified.

COpy - To duplicate from another area.

~~D ~~go ___ I_N_TR_O_D_U_C_T_IO_N __ T_O_G_E_C_O_M

71

procedure. In addition, standardization of divisions,
sections, procedure statements, and other program
elements facilitates communication between pro­
grammers and permits program debugging in the
same language in which the program was written.

The four divisions of a GECOM source program are:

1. The Identification Division

2. The Environment Division

3. The Data Division

4. The Procedure Division

The Identification Division, Figure 4, provides the
programmer with the means for labelling and des­
cribing the source program in English-language
form. In addition to the program name, author (pro­
grammer) and date compiled, this division can include
other pertinent information, such as next-program­
in-sequence, security classification, location, and
explanatory comments as needed. During compila­
tion, this data becomes the label for the object
program and is automatically reproduced on output
listings, such as the Edited List.

Programmer use of the Identification Division is
flexible. The only portion required by the General
Compiler is the division name and the PROGRAM ill
sentence; all other sentences are at the program­
mer's option.

Preparation of the Identification Division is discussed
further in the section, Application of Basic GECOM.

The Environment Division, Figure 5, provides a link
between the source program and the data processing
equipment. It defines the computer system configu­
ration and its relationship to the source and object
program. The General Compiler depends upon the

PROGRAM
,

J PROGRAMMER
GENERAL REQUISITIONS (S)
G E CO ER D

SEQUENCE
NUMBER

Environment Division to provide information which
associates input and output equipment with the data
names for each file to be used in processing. The
information in the Environment Division is speCified
by the systems programmer in English language
clauses.

In preparing the Environment Division, the program­
mer enters the information in a predetermined way.
This format is sectionalized under four sentence
headings as described below:

1. The OBJECT,...,COMPUTER sentence, the first
entry, is used to describe the computer on which
the object program is to be run.

2. The I,.....O~CONTROL (input/output control)
sentence, the second entry, specifies nonstandard
error and tape label checking procedures. In
addition, programming control is facilitated by
permitting the specification of program rerun
points, memory dump assignments, and identifi­
cation of multifile magnetic tape reels.

3. The third sentence, FILE CONTROL, identi­
fies input/output files and provides for their
assignment to speCific input/output units.

4. The COMPUTATION-MODE sentence assigns
the internal mode of calculation. Sentence use is
optional; it is used only when it is desired that
computation occur in the floating-point mode,
either programmed or in the optional Auxiliary
Arithmetic Unit.

The accompanying example illustrates typical entries
describing the environment for a representative pro­
gram. Entry 10 describes the data processing
system for which the object program is intended:
a GE-225 system with two memory modules (8192
words of core storage), one card reader, one card

'1'1 '1'1 'I' 7 8[911°111 12lul141 15 T6f 17 1 18 /"[20 121 [2112312./25 "1"1 28 1"1 30 l"I"J" l "I" "I "I" I" l"l "I "I "I
1 I DE N T I F I CATION D I~ I S ION

1 0 PROG RAM~ I D • ;R,E,Q~ R,t N~S .
20 AUTH OR G E CODE R

30 DATE ~C O,M PILED. MA,Y 1 0 1 9 6 2 •

4 0 I,NST A LI.,A TION. GE C OMP DEPT P flO EN IX
I
I 5,0 S.E ,en R, T :r,Y ,TT ,N ,C ,L A,S S ,I F,I E DJ........L-'--1_

I 6 0 RE,MA RKS USE D AT A F,M R E,Q CAR Ins
I

Figure 4. Identification Division Layout

UE~D ~~~ __ I_N_TR_O_D_U_C_T_IO_N __ TO __ G_EC_O __ M

15

GECOM LIsn NG OF JTS PAGE 011

GE CODER JUL 17

o B J E C T LIS TIN G (CONT.)
INPUT-OUTPUT CODING (Parti al Listing)

01100 LOC 1100
01100 0000262 02S ALF 02S
01101 0000010 OCT 10
01102 2500200 RCD 128
01103 2500400 RCD 256
01104 2000001 EXT 1
01105 0000000 OCT 0
01106 0000000 OCT 0
01107 0000000 OCT 0

01461 ORG BIN
01461 0001504 02U LOA o 2W- 5

LOCATION ASSIGNMENTS FOR GECOM COMMON CONSTANTS (Partial Listing)
(ASSEMBLED IN FRONT OF PROCEDURE CODING)

01144 TV2 BSS 0
00572 IXY EQU 378
00252 ZER EQU 170
00252 ZOO EQU ZER
00254 ZOl EQU 172
00255 Z02 EQU 173
00256 L03 EQU 174
00257 z04 EQU 175
00260 Z05 EQU 176
00261 z06 EQU 177
00262 Z07 EQU 178
00263 z08 EQU 179
00264 Z09 EQU 180
00265 Z10 EQU 181
00266 Z 11 EQU 182
00267 Z12 EQU 183
00270 Z17 EQU 184
00271 Z18 EQU 185
00272 Z19 EQU 186
00273 Z20 EQU 187
00274 z24 EQU 188
00275 Z25 EQU 189

END OF GECOM LISTING

Figure 46. Edited list

~~D ~~go ___ I_N_TR_O_D_U_C_TI_O_N_T_O_G_E_CO __ M

69

5. Elements. In a few cases, for convenience,
fields are further subdivided into "elements."
For example, a part numbering system could be
so organized that portions of the part number had
added significance. For example: 18253702, NPN
Transistor; 18 meaning electrical, 2 meaning a
component (not a subassembly), 53 meaning tubes
and solid-state devices, and 702 to identify the
particular item.

The relationship between these various data levels
are readily shown:

FILE
RECORD

GROUP 1
GROUP 2

FIELD
FIELD

ELEMENT
ELEMENT

FIELD
GnOUp 3
GROUP 4

As mentioned earlier, all data to be used or created
by the object program must be defined. A typical
Data Division for G ECOM is shown in Figure 6;
giving representative examples of data definitions.
The Data Division for a representative problem is
presented and explained in the section, "Application
of Basic GECOM". The relationship between Data
Division and input data is also shown in Figure 6.

The Procedure Division. Figure 7. indicates the
steps that the programmer wishes the obj ect pro­
gram to accomplish. These steps are expressed in
English words, symbols, and sentences that have
meaning to the General Compiler. Although the
steps described in the Procedure Division closely
parallel those of the eventual object program, it is
misleading to consider the Procedure Division alone
to be the source program. The source program is
not complete without Data, Environment, and Identi­
fication Divisions.

Sentences in the Procedure Division invariably con­
tain verbs to denote the desired action, names (of
data, constants, etc.) or operands to show what is to
be acted upon, and various modifiers for clarity.
Sentences can be grouped into sections to facilitate
reference and permit the performance of a series of
sentences out of the normal sequence.

Procedure statements or sentences can be simple:

ADD 0.5, RATE OF PAY "'FILE.

This will create coding in the object program to
add the constant 0.5 to whatever value (of the RATE
from the PAY'" FILE) had been read into the com­
puter. Or statements can be highly complex, involv­
ing several clauses and modifiers, such as:

IF PART,,--NUMBER OF MSTR,,--INVNTRY IS
LESS THAN PART--, .. NUMBER OF TRANSAC­
TIONS GO TO WRITE"'MASTER, IF EQUAL GO
TO UPDAT,,--MASTER, IF GREATER GO
TO NEW"'RECORD.

This statement would result in object program cod­
ing to cause the following:

1. The part number of the master inventory
record (previously read in) would be compared
with the part number of the current transaction
record.

2. If the part number of the master inventory
record is:

a. the lesser of the two, program control is
transferred to a routine called WRITE"--MAS­
TER, which causes the master inventory record
to be written out as part of a master file,

b. equal to the transaction part number, pro­
gram control is transferred to a routine called
UPDAT----MASTER, which modifies the master
inventory record in some manner,

c. the greater of the two, program control
transfers to a routine called NEW"'-RECORD,
which causes a new record to be added to the
master file.

Procedure Division sentences are performed in the
sequence in which they appear, unless that sequence
is modified by a "GO" or a "PERFORM" statement
as explained in the next section of this chapter,
"GECOM Language Elements".

Typical Procedure Division statements are illus­
trated in Figure 13. Note that sentences can be
named (for reference to them by other sentences)
or unnamed. Lines 20, 30 and 70 have been named
SENT'"'-l, SENT"-2, and SENT,,- 3, although more
descriptive names can be assigned at the program­
mer's discretion. More detailed information for
preparing a source program Procedure Division is
covered in the section, " Application of Basic
GECOM".

In addition to LANGUAGE and ORGANIZATION, the
third item that the GECOM system provides for the
programmer is a set of forms to facilitate source
program preparation and documentation. Two basic
forms are provided, the General Compiler Data Divi­
sion Form, number CA-14, and the General Com­
piler Sentence Form, number CA-13.

Both forms are designed to make it easy to translate
the programmer-prepared source program informa­
tion into a machine-readable form, such as punched
cards or paper tape. Each horizontal line of either
form provides for up to 80 units of information,
corresponding to 80 punched card columns.

~~D ~~~ ___ IN_T_R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M

17

GECOM LISTING OF JTS PAGE 009

GE CODE R J UL 17

o B J E C T L I S TIN G (C o N T.

01265 1001370 OLD 02A
01266 0721143 SPB FXP
01267 0101376 ADO 05A
01270 0023025 OCT 0023025
01271 0721143 SPB FXP
01272 0300025 STA 021
01273 1301370 DST 02A

31 35 ADD OT HRS TO ACC OT HRS. 0290 - -

01274 1001372 OLD o 3A
01275 1101400 DAD 06A
01276 1301 372 DST 03A

.-, 1 I,,",, IF L 1~!E C C)',-"I~! T ~~I~IA~S :1 r; (1 T(1 c: ') I 7r1 01,00 j I rv

01277 0001405 LOA PC6
01300 0201454 SUB OJ5
01301 2514002 BZE A14
01302 2601313

3145 S3145. WRITE DETAIL REC ORO. 0310

01303 0722036 A15 SPB 01W02

3150 SW3150. GO TO S3155. 0320

01304 2601305 A12 BRU A13

3155 S3155. MOVE SPACES TO DE PT OF WS. 0330

01305 0001460 A13 LOA OA6
01306 0301404 STA 02J

3160 ALTER SW3150 TO PROCEED TO S3075. 0340

01307 0001214 LOA A03
01310 0001307 LOA ,', - 1
01311 2701304 STO A12

3165 GO TO S3075. 0350

01312 2601214 BRU A03

3170 S3170. PERFORM WPH SECn ON. 0360

01313 0721145 A14 SPB A02

317'1 GO TO S3145. 0370

01314 2601303 BRU A15

3180 S3180. ALTER SW3107 TO PROCEED TO S3182. 0380

Figure 44. Edited List

@~D~~~
INTRODUCTION TO GECOM

67

....
~

PROGRAM

iPROGRAMMER

SEQUENCE
HUM8ER

1 i' I '1'1'1'
10

20

3,0

40

50

.5,1

60

.7,0

,
,

,

7 '1'1"1"
PR OC

SEN T

SE NT

,

BEN,T

,

-- I DATE

ICOMPUTER I PAGE

12 113 \ 14
1
15 16i 17 118 1 19120\211271 23IU!25 26 127 ! 2~l29130J 31\ 321_31t3c135 "[37In[n [COICI142jol U[H U!n!48Ic'ISO\S1\52[Sltls5 56157158159160161162163164165 66\67168169]70171172173\74175[761.77178179180

E DUR E D I V I B I o,r;
~1 OPEN IN P.l T T RAN S ~ F I .L M.B T R ~ F I L ~IN OUTPUT MS T,R ~,FJJ. f-,O,U,T .H..fLI' ~ ,R.EoP~T

~ 2. R,EA.D TRA,N S-~FIL

READ ,MS T;R ~ F I L~ IN. I F EN,D GO TO FIN AL~BTOP

IF ,T RA N B AC ~ COD E. E QUA LS 1 GO TO S H I PMENT. E Q,U A L S 2 GO TO

R.E,C,E,IP T ,EIQUALS 3 GO TO CHANGE E,Q UA L S 4 GO '1'0 ,DE L E TE

STOP F I L~,MAI NT

~ 3. PE R ,F ,O;R M, DE D~C.OMP SE C TION US I NG DED OF TR ANS~FIL G I VING

TOTAL~DED. ,

, ,
, ,

"--- ~, , ,

, , , , , , 1_- ~~~ __ j I , , I , <--L--...l.-_L-
, I I I

Figure 7. Procedure Division Layout

GECOM LISTING OF JTS PAGE 007

GE CODER JUL 17

o B J E C T L I S T I N G (C o N T.

01 175 0001450 LOA OJ3
01176 0721142 SPB AOV
01177 0000006 OC T 0000006
01200 0001450 LOA OJ3
01201 0101405 ADD PC6
01202 0301405 STA PC6

3050 END WPH SECTION. 0110

01203 2601203 A02/~5) BRU AO 2/'§!

3055 S 305 S . OPEN ALL FILES. 0120

U 120 /+ 07216 Lf6 ADI SP[J :JOU
(\ 1 'In r (\7')17')/ SP8 1\ I [I U I LV) V I L I I) I

UiLUti u/2i:"oi ~~3

3060 HOVE 0 TO PAGE COU~JT. 0130

01207 0001452 LOA OJ4
01210 0301363 STA OOA

3065 PERFORM WPH SECTION. 0140

01211 0721145 SPB A02

3070 i~OVE ZZ:! TO LAST DEPT. 0150

01212 0001 Cf57 LOA OA5
01213 0301 LfO 3 STA 01J

3075 S 30 75. READ JOB FILE REC ORO IF END FILE GO TO S3180. 0160

01214 0001315 A03 LOA A04
01215 0001214 LOA ,', - 1
01216 2701571 STO 02T
01217 0721511 SPB 02W

3080 IF DEPT OF JOB TICKET EQUALS LAST DEPT GO TO S3125. 0170
-

01220 0001403 LOA 01 J
01221 2000314 EXT EXB
01222 0300654 STA XYZ
01223 0001402 LOA OOJ
01224 2000314 EXT EXB
01225 0200654 SUB XYZ
01226 2514002 BZE A05
01227 2601262

3085 SW3085, GO TO S3090. 0180

01230 2601231 A06 BRU A07

3090 S3090. ALTER SW3085 TO PROCEED TO S3100. 0190

Figure 42. Edited List

@ ~ D ~~ ~ ______________________________ IN_T_R_O_D_U_CT_IO_N_T_O_G_E_CO_M

65

I\)

GENERAL. ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

I PROGRAM

iPROGRAMMER

SEQUENCE

NUMBEi!

-'tiil 'l 'J' 7 '1'\ '°1" "1"1"["

,

,

I , I , ,

.-1..

1 1'[d,I5 [. 7 .[,["1,, 12\13114115
013(10&1)

GENERAL COMPILER SENTENCE FORM

i.DATE

!COMPUTER
- ------

JPAGE

-

"1"1"1"\20["["i"["I" "1171"1"1"1"1"1"1"1" 16137138~~'f+H45 4,T.84' }~~_ ~ +5 5~~[~~H~E;EfE5 ~'Io~~·T.;r;-o T ;;FG::F:;;Gt781;'Ia~

I

,
~--~

,
,

-~ ----'---'-~

-----'----

~

,
~~ ~--'----'-

--'-

,

~~~- _.---1-_--.l.-~-----!-......-. 

~---L-.-~ --- _ l-_-----L '-~_L__"__L_ 

I I 

~I , , I -'--'---"-'- I _~_,-.-l_ --
_~-----..l_-----L--I-----I.----.--l------I--- I ~----.l_--I.--.-L_.l_--"-----L-_~~ 

, 

--'--'- I I I ~~ ~ 

, I I I ~~ 

, , -L-L I -1_----L~ _--1_ ~-'--

"1"!"I"I"I,,I;,I,,I"\'5 26127128129/30131\32133134135 361371381391401 41142j 4314~ \45 46\HiHi49\SO\5r:t\54\'5 561571 ,,15,160 I., I "\63 1 .. 1'5 .. i67I .. \"I70i7l1"1711"1"1,,ld,,I79I,, 

Figure 9. The GECOM Sentence Form 



GECOM LISTING OF JTS 

GE CODER 

REF E R E N C E TAB L E S 

PROCEDURE NAME TO GAP SYMBOL 

(GAP PROCEDURE NAME) 

A01 S3055 
A03 S3075 
A07 S3090 
A08 S3100 
All S3110 
A09 S3115 
A05 S3125 
A15 S3145 
A13 S315'i 
A14 S3170 
A04 S3180 
A16 S3182 
A06 SW3085 
A10 SW3107 
A12 SW 3150 
A02 WPH 

NAMES OF SUB-ROUTINES REQUIRED 

(GAP SECTION NAME) 

ADV 
FLX 
FXP 
RCS 
RLC 
TYP 
ZAM 
ZBN 
ZCB 
ZED 
ZNB 
ZNN 
ZOT 
ZSC 
ZSG 
ZUA 

GAP SYMBOLIC TO OCTAL LOCATION 

(GAP OCTAL GAP OCTAL GAP 

OOA 01363 OOJ 01402 OOS 
OOV 01714 OOWOO 01664 OOWE 

OOZOO 02040 01A 01366 01J 
01U 01737 01V 02007 01WOO 
01W 01755 01X 01406 01Z00 

OCTAL GAP OCTAL 

01110 OOTCP 01713 
01675 OOW 01664 
01403 01S 01120 
02032 01W01 02034 
02076 01 ZO 1 02120 

Figure 40. Edited List 

PAGE 004 

JUL 17 

GAP OCTAL GAP OC TAL) 

OOTXT 01712 OOU 01646 
OOX 01406 OOY 01406 

o lTCP 02006 o lTXT 02005 
01W02 02036 01WE 01772 
01 Z02 02133 02A 01370 

~~D ~~~ _________________________________________________________ I_N_TR_O_D_U_CT_I_ON __ T_O_G_EC_O __ M 

63 



The Data Division Form, Figure 8, is used exclu­
sively for describing data to be used in the object 
program. Headings are provided to guide the proper 
placement of data. These are discussed in the later 
section, Data Division Preparation. 

The Sentence Form, Figure 9, is used for the 
preparation of data for the Identification, Environ­
ment, and Procedure Divisions. Headings, which 
would add little, are omitted. Rules for Sentence 
Form preparation are few and simple. 

Where applicable, such rules are discussed in the 
section, "Application of Basic G ECOM," along with 
the preparation of the four divisions of the source 
program. The fourth major tool provided by the 
GECOM system, is the General Compiler itself. 
Examination shows considerable similarity between 
the General Compiler program and a complex bus­
iness data processing object program. 

1. The General Compiler operates upon input: 
thf' source-language program. 

2. Compiler processing consists of repetitive 
runs of a set of instructions: the General Com­
piler. 

3. It produces an output: the object program. 

4. It produces reports: the Edited List and error 
messages. 

Figure 10 illustrates, in broad terms, the relation­
ships between the programmer-produced source pro­
grams, the General Compiler, the computer, and the 
output obj ect program. 

Up to this point, the General Compiler has been 
discussed as if it were a single program, and it 
can still be considered as such. Conversely, it can 
also be considered to be a series of sequential pro­
grams as illustrated in Figure 11. Note that there 
are five major groupings: Transformer, Reformer, 
Assembler, Editor, and Subroutines. 

The transformer phase translates the source pro­
gram into an intermediate internal language suitable 
for processing, prints out Identification and Environ­
ment Divisions as required, groups and organizes 
Procedure and Data Division material for further 
processing while checking for validity and consis­
tency, prints error messages, screens out unessen­
tial optional wordS, and initiates the preparation of 
the object program. 

The reformer phase is essentially executive in that it 
calls forth from the generator library (also a part of 
the Compiler) those routines required to produce the 
object program. 

1. Transformer Phase 

2. Reformer Phase 

3. Generator Phase 

4. Assembler Phase 

5. Editor Phase 

6. Object Program 
Subroutine Library 

Figure 11. General Compiler Program Organization 

The assembler phase translates from the inter­
mediate language, assembles the coding into machine 
language, and produces the completed obj ect pro­
gram either in punched cards or on magnetic tape. 

The editor phase provides the documentation of the 
program in the form of the Edited List. This 
includes a print-out of the entire original source 
program, a merged list showing the generated sym­
bolic coding and the machine-language coding, and 
cross-reference tables. Additionally, it lists, from 
the master list of subroutines belOW, those required 
to complete the object program. Examples of the 
Edited List are included in the section, "Application 
of Basic GECOM." 

The subroutine library is a collection of previously­
prepared subroutines common to most object pro­
grams that may be required to complete the object 
program. While these could be produced during 
compilations, to reduce compilation time and avoid 
repetitive processing during compiling, the General 
Compiler shows (on the Edited List) all such sub­
routines which will be needed when the object 
program is run. A special program loading routine 
will place into memory the object program and the 

~~D ~~go _______________________________________________________________ IN_T_R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M 

23 



-

GECOM LISTING OF JTS PAGE 002 

GE CODER JUL 17 

SOU R C E L I S TIN G ( CON T. ) 

3145 S3145. WRITE DETAIL RECORD. 0310 
3150 SW3150. GO TO S3155. 0320 
3155 S3155. MOVE SPACES TO DEPT OF WS. 0330 
3160 ALTER SW3150 TO PROCEED TO S 3075. 0340 
3165 GO TO S3075. 0350 
3170 S3170. PERFORM WPH SECTION. 0360 
3175 GO TO S3145. 0370 
3180 S3180. ALTER SW3107 TO PROCEED TO S3182. 0380 
3181 GO TO S3100. 0390 
3182 S3182. C L OS E JOB F I L E , SUMMARY FILE . 0400 
3185 STOP RUN #JTS#. 0410 

4000 DATA DIVISION. 

(SEQ GAP T DATA NAME QUALIFIER F RPT B J E MS LS DATA IMAGE) 

4005 
4010 
4015 
4020 
4021 
4022 
4023 
4024 
4025 
4100 
4105 
4110 
4115 
4120 
4125 
4130 
4135 
4140 
4145 

FILE SECTION 
OUTPUT FILES. 
OOOFD SUMMARY FILE. 
000 R SUMMARrCARD 

F LAST DEPT 
F MAN COUNT 
F ACC-REG HRS 
F ACeOT HRS 
F TOTAL HRS 

001FD DMH REPORT. 
000 R RPrTITLE 

L 

L 
F PAGE COUNT 

001 R COL TITLES 
L 

L 
4150 002 R DETAIL 
4155 F DEPT WS 
4160 F MAN NBR 
4165 F NAME 
4170 F JOB CODE 
4175 F REG-HRS 
4180 F OT HRS 
4500 INPUT FILES. 
4505 002FD JOB FILE. 
4510 000 R JOB-TICKET 
4515 F MAN-NBR 
4520 OOJ F DEPT 
!.t525 F NAME 
4530 F JOB CODE 
4535 05A F REG-HRS 

P 

P 

P 

P 

Figure 38. Edited list 

xx B(5) 
999 B(29) 
9(6)V9 B(4) 
9999V9 B(5) 
9( n V9 B( 12) 

BBB #DEPARTMENT MAN HOUR R 
EPORT# 
B(42) #PAGE# 
B ZZZ9 

B(7) #DEPT MAN NUMBER NAME 
# 
B(18) #JOB REG-HRS OT-HRS# 

B( n XX BBB 
X(5) B(6) 
A( 21 ) B 
XX BB 
ZZZ.9 BBB 
ZZ.9 

X(5) 
XX BB 
A( 21 ) 
XX B(7) 
999V9 

@~ 0 ~~~ ____________________________ '_NT_R_O_DU_C_T_IO_N_T_O_G_E_CO_M 

61 



required subroutines which the operator has pre­
viously extracted from the library of subroutines 
provided. At the user's option, required subroutines 
can be appended to the object program automatically 
or manually during compilations. 

GECOM lANGUAGE ElEMENTS 

Because the GECOM system was developed with 
COBOL in mind as the basic programming language, 
the GECOM language elements most closely resem­
ble those of the COBOL language. Also, because the 
intent is to provide English-language programming, 
G ECOM elements parallel those of English. 

GECOM has a basic vocabulary consisting of words 
and symbols; it has rules of grammar or syntax; 
and it has punctuation symbols for clarity. In each 
case, there is greater simplicity than in English: 
the vocabulary is small: the rules of grammar are 
simple, yet precise: the use of punctuation is lim­
ited. Thpsp are true because the demands placed 
upon the user arc kf'pt simplp and unambig·uous. 
The source programming language is required to 
state facts and give instructions clearly and specifi­
cally; it is a language of command, not narration, 
and thus consists primarily of verbs and nouns. 
These can be formed into simple and complex sen­
tences usually intelligible without special training, 
although sentences acceptable to the General Com­
piler cannot be written without familiarity with the 
grammar. 

Words and symbols are the tools of the GECOM 
programmer ::Ind are composed of individual letters, 
numbers, and special characters. The basic charac­
ter set of GECOM and equivalent GE-225 character 
codes are illustrated in the accompanying table, 
Figure 13. Special character sets are available for 
the printer. 

Many of the basic characters, in addition to being 
used in words, have special meanings for GECOM; 
these will be discussed where appropriate. 

Words, in GECOM, are divided into two major 
groups - names and verbs. 

VERBS 

As in English, verbs denote action; unlike English, 
GECOM verbs are never taken in the passive VOice, 
the narrative or declarative sense, or in any tense 
other than the present tense. Each verb that the 
programmer uses in the source program (except the 
verb NOTE) will have some effect in the object 
program. 

Most verbs will be reflected directly in the machine­
language coding of the compiled object progTam; 
others do not appear in the object program, but do 
act with the compiler to construct the object pro­
gram. 

Certain words that, in English, are not verbs are 
considered as such by the General Compiler. The 
most commonly-used and most useful of these is the 
word, IF, which is used in expressing conditions, 
relationships, and comparisons. For example, in 
the expressions: 

IF NOT END OF FILE, GO TO 
OR 

IF A EQUALS B, GO TO .. 

IF causes a comparison between the actual condi­
tion and the stated END OF FILE condition or, in 
the second example, causes a comparison between A 
and B. Such near-verbs will be discussed as if they 
were verbs. 

The GECOM verbs and examples of how each might 
be used are listed in Figure 14. 

NAMES 

Most words in the GECOM source program will be 
names. The progrJ.llllllel' is preparing a program for 
handling data, but is not concerned with tht actual 
data itself; he is more concerned with preparing data 
manipulation procedures, but once they are written 
they are only of as much importance as the data they 
manipulate. For these reasons, and to take advan­
tage of the leverage that GECOM provides, the 
programmer will refer to data and previously written 
procedures by name whenever possible. 

Names can be readily grouped by type and fall within 
these groups: 

1. Data Names 
2. Procedure Names 
3. Conditional Names 
4. Constants 

DATA NAMES 

Data names represent data to be used in an object 
program, and are programmer-assigned, not to spe­
cific data, but to kinds of data. For example, in a 
file processing application, data names would be 
assigned to all input and output files, such as: 

MASTER~FILE 

TRANSAC TIONS 
PRINT~FILE 

etc. 

and, within a file, records would bear data names, 
such as: 

STOCK"" RCD 
PAY""RCD 
INV"'- RCD'"'- 1 
etc. 

~~D ~~~ ______________________________________________________________ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M 

25 



The Object Listing includes an "Input/Output 
Coding" print-out showing all input! output file 
tables, control coding, and service routines. 
A complete listing of this subsection for the 
sample problem requires 439 line entries. Part 
of the Input/Output Coding list is shown in 
Figure 46. 

The final print-out of the Object Listing and the 
Edited List is "Location Assignments for GECOM 
Common Constants," Figure 46. This print-out 
contains the memory locations for object program 
constants and the compiler-assigned symbols for 
the constants. For the sample problem, the com­
plete constant listing contains 138 entries. 

~~D ~~~ _________________________________________________________________ I_N_TR_O_D_U_C_T_IO_N __ T_O_G_E_C_O_M 

59 



VERB 

ADD 

ADVANCE 

ALTER 

~(Assignment) 

CLOSE 

DIVIDE 

ENTER 

EXCHANGE 

GO 

IF 

MOVE 

MULTIPLY 

NOTE 

OPEN 

PERFORM 

READ 

STOP 

SUBTRACT 

VARY 

WRITE 

EXAMPLE 

ADD TOTL~RECVD TO ON~HAND~QTY 

ADVANCE PAY~REGISTER 20 LINES 
(to slew or skip printer paper) 

ALTER SENT~25 TO PROCEED TO SENT~33. 
(to change a previously established sequence of operations. ) 

QTY~ON~HAND = OLD~QTY + NO~RECVD 
(to assign an evaluated arithmetic expression to a specified field) 

CLOSE PAYROL~FILE 
(to terminate processing of a file) 

DIVIDE NUMBER INTO TOTAL GIVING AVERAGE 

ENTER GAP AT ROUTINE~3 
(to permit insertion of General Assembly Program coding in a GECOM source 
program. ) 

EXCHANGE OLD~TAX, NEW~TAX 
~to transpose the contents of two fields) 

GO TO SENT~lD 
(to depart from the normal sequence of operations) 

IF LINE-COUNT EQ 58 GO TO ADVANCE~PAGE. 
(to test a condition and transfer to another operation if condition is satisfied) 

MOVE TOTAL TO SAVE~AREA 
(to transfer data to another location) 

MULTIPLY D. lR BY PAY GIVING TAX 

NOTE THIS SENTENCE IS USED FOR CLARITY. 
(to permit insertion of explanatory text not intended for compilation) 

OPEN ALL ·INPUT FILES 
(to initiate file processing) 

PERFORM FICA~COMP SECTION 
(to cause execution of a routine in the desired sequence and then return to 
the sentence following the PERFORM statement. ) 

READ TIME-CARD RECORD 
(to make input file records available to the program) 

STOP 
(to halt processing of the object program permanently or temporarily. ) 

SUBTRACT RECEIPTS OF TRANSAC~FILE FROM ON-ORDER-QTY OF 
ORDER-FILE GIVING ADJ-ORDER~QTY, IF SIZE ERROR GO TO ZERO-RTN. 

VARY CHK-AMT FROM 1 BY 1 UNTIL CHK-AMT GR 5 
(to initiate and control the repeated execution of the sentence it precedes. ) 

WRITE RECORD-l OF FILE-6 
(to permit output of data) 

Figure 14. GECOM Verbs 

~~D ~~~ ______________________________________________________________ '_N_TR_O_D_U_C_T_'O_N __ TO __ G_EC_O __ M 

27 



3185 STOP RUN "JTS" 

This statement is used to generate object program 
coding for halting processing. In the form used 
here, the results will be 

1. Program halts 

2. END is printed by the console typewriter. 

3. The literal "JTS" is printed by the console 
typewriter. 

IDENTIFICATION DIVISION PREPARATION 

This division enables the programmer to label the 
source program and provide program identification 
in the output Edited List. 

The Identification Division is prepared on the Gen­
eral Compiler Sentence Form, as illustrated in Fig­
ure 35. 

Entries f()r the J()b Ticket Summary problem are ex­
plained: 

1000 IDENTIFICATION DIVISION. 

This mandatory heading indicates that entries fol­
lowing are for program identification only. The 
name should begin in column 8 and be followed by 
a period. 

1005 PROGRAM--ID. JTS. 

This entry is mandatory; the name, PROGRAM-­
ID, should appear beginning in column 8 and fol­
lowed by a period. The actual program name, 
JTS, can consist of up to nine typewriter charac­
ters followed by a blank, a comma, or a period 
and can be indented any number of spaces. This 
name will appear as part of the heading of each 
page of the Edited List. 

1010 AUTHOR. GE CODER 

This entry is optional. If used, the sentence name 
should start in column 8 and be followed by a 
period. The sentence can be indented as desired, 
contain up to 30 BCD characters, and ended with 
a period. If provided, the author's name appears 
on each page of the Edited List. 

1015 DATE COMPILED. JUL. 17 

This entry is optional. It can contain up to 30 
characters followed by a period. If provided, 
the compilation date appears on each page of the 
Edited List. 

1020 INSTALLATION. 
1025 REMARKS •.•. 

These two sentences, as well as a NEXT ~ 
PROGRAM and a SECURITY sentence, are op­
tional. If used, they can contain any information 
that the programmer wants to appear in the Edited 
List. 

The Identification Division has no effect upon the 
compilation of the object program, other than that 
of appearing in the Edited List as described. 

PRODUCING THE OBJECT PROGRAM 

Upon completion of the GECOM forms for the source 
program, the data forms are transcribed to standard 
punched cards to form the source program deck and 
organized as shown in Figure 36. 

e<' 
f1J-~ 

-Q;-e 
<.0 

0~ 

'0':" 
eO 

~e 
0'­

."o~ 
eC> 

-9"<' 

Figure 36. Source Program Deck Organization 

A special GECOM call deck is placed before the 
source program deck and the cards are ready for 
input to the GE-225 via the card reader. 

The minimum GE-225 system configuration for com­
piling the source program is: 

GE-225 Central Processor (with 8192 words of 
core storage) 
Console Typewriter 
Card Reader 
Card Punch 
High-Speed Printer 
Magnetic Tape Controller 
Four Magnetic Tape Handlers 
Five Magnetic Tape Handlers (optional) 
Six Magnetic Tape Handlers (optional) 

The GECOM Master Tape is mounted on the first 
magnetic tape handler on the system and includes a 
library of subroutines that might be required to com­
plete the compiled object program. The source 

~~D ~~~ ____________________________________________________________________________________________________________________________ I_NT_R_O_D_U_C_T_IO_N_T_O ____ G_EC_O __ M 

57 



In preparing the source program, the programmer 
may have difficulty in keeping track of codes that 
of themselves have no meaning. To provide a refer­
ence term, he can assign names to them, thusly: 

HOURLY = 0 
WEEKLY = 1 

MONTHLY = 2 

Once names are assigned, they can be used in pro­
cedure statements within the source program. Such 
names as those described above are called condi­
tional names for convenience. In actuality, they are 
special data names, and are formed subject to the 
same limitations. 

CONSTANTS 

Data names are generally assigned by the systems 
programmer to kinds of data, rather than to specific 
values, because the actual value of the data named 
is generally a variable (from record to record, for 
example) or possibly an unknown to be computed by 
the object program. 

Occasionally (even frequently), the programmer will 
need to place various kinds of specific data in the 
program - data which remain the same throughout 
the program. Such constants are designated as 
literal constants, numeric constants, and figurative 
constants. 

Literal constants are those the programmer intends 
to use in the program exactly as written. They may 
be any combination of up to 30 (or 83, depending 
upon where used) letters, numbers, and symbols of 
the GECOM character set. To distinguish them from 
other names, they must be enclosed in quotation 
marks: 

MOVE "FILE~NAME" TO COLUMN~HD. 

Literals can be used in output fields to generate 
headings. They cannot be used in arithmetic calcu­
lations. 

Numeric constants are comprised of the numerals 0 
through 9, plus or minus sign, the letter E for 
floating-point, and a decimal point. They can be 
used in three forms of arithmetic calculations: 
fixed-point, integer, and floating-point. 

Fixed-point numerics can contain up to 11 digits, 
excluding plus or minus sign, and a decimal. Typical 
fixed-point numerics are: 

+2.308 
0.03 

-853.001 
9.11 

Integers must not exceed 5 digits: 

2308 
3 

85300 
911 

For floating-point computations, numerics can be 
written with mantissas of up to nine digits (one of 
which must be the left of the decimal) and an expo­
nent between +75 and -75. The largest and smallest 
floating-point numbers that can be represented are, 
respectively: 

9.99999999E+75 and 0.00000001E-75 

If any numeric constant is enclosed in quotation 
marks, it loses its numeric value and becomes a 
literal constant. 

The constants, 0 through 9 and space (or blank) 
have been defined within the General Compiler and 
assigned names. This permits the programmer to 
use the names within his source program without 
defining them. These pre-named constants are 
called figurative constants and are: 

o ZERO or ZEROES 
SPACES 

1 ONE(S) 
2 TWO(S) 
3 THREE(S) 
4 FOUR(S) 
5 FIVE(S) 
6 SIX(ES) 
7 SEVEN(S) 
8 EIGHT(S) 
9 NINE(S) 

Figurative constants may be used in the Singular to 
denote the constant itself or in the plural to imply a 
string of constants. 

The programmer combines words and symbols into 
procedure statements to direct computer operations. 
To facilitate the formulation of such statements 
showing the relationships and combinations of data 
names, conditional names, and constants, he has the 
assistance of arithmetic, relational, and logical ex­
pressions. 

An arithmetic expression is a sequence of data 
names, numeric constants, and/or mathematical 
functions that are combined with symbols which 
represent arithmetic operations. 

Operations and functions available to the programmer 
and their proper GECOM form are shown in Figure 
15. They are listed in priority order, from highest 
to lowest. All of the listed functions are readily 
available as part of the GE- 225 standard subroutine 
library and need not be generated during source 
program compilation or manually by the program­
mer. Previously-prepared subroutines materially 
reduce compilation time and programmer effort. 

The natural priority of the table can be overridden 
by parentheses. Parentheses cause the evaluation to 
be performed from within the innermost set of 

~~D ~~~ ______________________________________________________________ �~N~T~RO~D~U~C~T_IO~N __ TO~G_E_CO~M 

29 



3110 S3110. ALTER. ... 

This statement sets SW3150 to proceed to S3155 
the next time it is processed. SW3150 handles 
the group suppression of printing of DEPT~ NO. 
When a new department is detected at 3080, it is 
necessary to print that department number from 
working storage, but immediately after, blanks are 
moved to that working storage field (part of the 
Detail Record) and the MOVE of blanks must be 
bypassed until the next new department is en­
countered. 

3115 S3115. MOVE. 

This statement places the contents of the memory 
location assigned to hold the job ticket department 
number to the memory locations assigned to hold 
the last department number and the working 
storage department number. The LAST~ DEPT 
is for comparison with the department of the cur­
rent Job Ticket to determine a change of depart­
ment at 3080, while the department of working 
storagE is to provide the department number for 
the first printing of a detail record for a new 
department, and blanks afterward. 

3120 MAN~COUNT= ...• 

This is an assignment statement that sets to zero 
the memory locations reserved for the named 
field. 

3125 S3125. ADD. 

The man count memory location is increased by 
one. 

3130 ADD. 

The two named fields are added and the result 
replaces the previous value of ACC~REG~HRS. 

3135 ADD •••. 

The two named fields are added and the result 
replaces the previous value of ACC--OT--HRS. 

3140 IF ... 

The contents of the LINE--COUNT memory loca­
tion are compared with the constant, 51. If they 
are equal, control transfers to procedure state­
ment S3170; if they are not equal, the next state­
ment in sequence is taken (3145). LINE ....... 
COUNT = 51 indicates that the last line of a 
printer page has been printed and a new page 
(and new headings) must be started. 

3145 S3145. WRITE .•.• 

The DETAIL RECORD, defined in Data Division 
statements 4150 through 4180, which includes 

DEPT, MAN--NBR, NAME, JOB--CODE, REG ...... 
HRS, and OT--HRS fields, is printed as a line 
by the high-speed printer. 

3150 SW3150. GO TO. • . • 

This is another program switch' similar to SW3085 
and SW3107. It governs whether the detail record 
print line contains an actual department number 
or blanks. 

3155 S3155. MOVE. 

This statement replaces the contents of the work­
ing storage DEPT field with blanks. 

3160 ALTER. ..• 

This statement changes the obj ect of the GO state­
ment at SW3150 from S3155 to S3075 to bypass 
S3155 and 3160 until a new department is read. 

3165 GO TO .... 

This statement unconditionally transfers control 
to S3145. 

3170 S3170. PERFORM. . • . 

Like statement 3065, this sentence transfers con­
trol to the WPH SECTION beginning at 3005. 
Upon completion of this section, control automa­
tically reverts to the next statement in sequence, 
3175. This is used to head up a new page after the 
capacity of the preceding page has been filled by 
a department's records. 

3175 GO TO .•.• 

This statement unconditionally transfers control 
to S3145. 

3180 S3180. ALTER. ••• 

This statement changes the object of the GO state­
ment at SW 3107 from S3110 to S3182, so that 
CLOSE will occur after the final summary card 
is punched. 

3181 GO TO •• 

This statement unconditionally transfers control 
to S3100 to compute the final summary card TOTAL 
......HRS. 

3182 S3182. CLOSE ..•• 

This statement terminates processings of the 
JOB ...... FILE and the SUMMARY ....... FILE. The card 
counts for the card reader and the card punch 
are printed out on the console typewriter. 

~~D ~~~ ______________________________________________________________ I_N_T_RO __ DU_C_T_IO_N __ T_O_G_E_C_O_M 

55 



No. A B Not-A Not-B AANDB A ORB 

1. True True False False True True 
2. True False False True False True 
3. False True True False False True 
4. False False True True False False 

Figure 17. logical Expression Truth Table 

No. A B C D 

1 Al BI CI DI 
2 A2 B2 C2 D2 
3 A3 B3 C3 D3 
4 A4 B4 C4 D4 
5 A5 B5 C5 D5 

Figure 18. Simple Two·Dimensional Table 

Lists and tables of data can be stored within a data 
processing system for program reference also, per­
mitting the programmer to instruct the program to 
perform "table look-up" operations. Such tables 
are stored in series within the system instead of in 
the grid-like manner illustrated above. The same 
table in the data processor might appear as a list, 
shown in Figure 19. 

Even though the table data is stored as a long list, 
the programmer can still readily specify the re­
quired table data in essentially the same manner as 
a clerk would in instructing another clerk how to 
use the table first shown. The clerk would specify 
the table name, then the horizontal row and vertical 
column headings: TABLE 1, row 3, column C. The 
GECOM programmer does the same thing in a simi­
lar shorthand: 

TABLE"""I (3, 3) 
meaning TABLE"-I, row 3, column 3. 

Lists, tables, and matrices can all be represented 
in GECOM source programs and are referred to 
generically as arrays. A list is a one-dimensional 
array; a table, two-dimensional. 

A three-dimensional array can be depicted graphi­
cally as a series of two-dimensional planes; as 

shown in Figure 20. Three-dimensional arrays could 
also be represented in storage as a series of sequen­
tial lists (one for each plane) like that described for 
the example above. 

Array s are assigned identifying names by the pro­
grammer. To identify array values, subscripts are 
used to specify rows, columns, and planes. 

One-dimensional list = A (I) 
Two-dimensional table = A(I,J) 
Three-dimensional table = A(I,J,K) 

Subscripts can be written as arithmetic expressions, 
if need be, containing other subscripted arrays, and 
nested to up to ten deep in anyone procedure state­
ment. 

LIST (A+C) 
RATE (A-B*C, L(I,J),X) 

In the second example A-B*C is the i-subscript, 
L(I,J) is the j-subscript, and X is the k-subscript 
for a matrix called RATE. Parentheses are always 
used to enclose subscripts which must immediately 
follow the array name. 

Figure 19. A Two·Dimensional Table in Storage 

~~D ~~~ ____________________________________________________________ IN_T_R_O_D_UC_T_IO_N __ TO __ G_E_CO __ M 

31 



GENERAL. ELECTRIC 
COIIPUTER DEPARUENT,PHOENIX, ARrtolU 

GENERAL COMPILER SENTENCE FORM 

PROGRAM 
Jo'B TICKET SUMMARY (JTS) 

10 ... TE JUL. 17 
PROGUUER 

G. E. CODER JCOMPUTER GE-225 I PAGE 

SEQUENCE 
NUMBER 

,,[.[,[.[. , !19jrojll 12111lujlS 16111jlBl"j20121112j Ull~ 125 2'12112812'130 Illl12j13IHI15 36i 1711lInl.ol.114214~-:~ Ur47r4aI49-150151r51l~l-I~4~~-~ 56r57rS8159160161T6~F1IUI'S 66167168i69170171111j71174115l~ 
3,0,0,0 ,R,o',C ,D,U, IE, ,D, I ,V,I ,8 ,I ,o',N 

3 0 0 1 Go' TO, S 3 0 5 5 • 

3 0 0 5 W,PH SE C T I o'N. 

f-'-..a O ,0 :,E,G, ~ " L 

3,0 1 nv, ',r.,F. .n,M, H. ,R. Ip,O,R.T, .1',0. ,'I'. ,O.!? l' ,10.". 

3 0 2 0 ADD 1 TO, PAGE- Co'UNT. 

3 0 2 5 !ADVA NCE DM,IV-- RE Po'RT 4 LI N ~,S • 

3 0 3 0 WR IT E RPT-·TITL E. 
, 

3 0,3,5 "D,V, ,C,E ,D,M,Hr,R, Ip,D,R T 3 L,I,N ,8 

3 0 4 0 WR T E CD L- TIT L E8 • 

" "0,4;;, ' nv IN.r. F. DeM, Hr- R,E PDRT 2 LI N ES r 
,3 ,0,5 0 ~,NJ), I~PH 8 ECT,I .Q"N,~~ --'---,----'-----'-- ~,O ~~ ~- ., ",~,~,~~ 

L-.J __ l?~2_5 8,3 o ,5 5, • 0, PEN ALL FI I, E 8 . 

,,~ 
:3 0 G 0 IMDV,E ,0 ,T,n, ,p, .G ',Q,\J.N,'· , ,_LO._ .. ~ f-'-- ,,,~-~ 

, :1 ,0 6 5 PER F QRM WPH S E C TID N • ._.-_.- " - --~.-- --_. 
:l 07 0 MOV E " Z 7," TO LART- DEPT 

~ ----- --,-;' -'·"----~I 

C--.L-i1 0 7 5 8 ;l.Jl.J 5 • R EA~._~___'_Q_'_1?___'_":'~,I b,b, R E,C 0, 1!.J2.. IL,~~L Go' TO, S 3 1 ~ 0 • ....L...I •• L~~_~~~I 
3 08 0 IF D PT DF JDB -T I CK,ET E,Q AL8 LA8T- DE P T Go' TO, S 3 1 2 5 i 

I 3 0 85 8 ~3 0 8,5 Go' To' 8 3 09 0 

3 0 9 0 8 30 9 0 • A LT);: R 8 ~3 08 5 ,T 0, PRDC E ED TO, 83 1 0 0 

3 0 9 5 Go' TO, 8 3 I 15 

3 1 0 0 83 I 0 T DT A L- H,R,8 = ,.. C Co. R E G-,~ RS + AC C-D T-HRS 

3 I 0 5 'NcR IT E SUMMARY- C ,A,RD • 

3 1 0 7 8 W3 1 0 7 • Go' TO, 8 3 1 1 o • 
3 1 1 0 8 3 1 1 o • A LT ER S W3 1 5 0 T.o P,RDCE ED TO, 8 3 15 5 • 

3 1 1 5 8 a 1 1 5 • ,MDV E DEPT DF JDB-TICK ET To' LA8 T DEPT DEPT DF WS. 

3 12 0 
~ 

M,A N,- CDUNT = AC C-,REG-HR8 = ACC-DT-H ~,8 = 0 

3 1 2 5 8 3 1 2 5 ADD 1 To' ,M,A N-CDUNT. 

3 1 3 0 n,n. R,E.fi: ........ ,l-!~,H, 1'.0 .A r..C~REG ....... H R8. , 

3 1 35 ADD DT- HR8 TO, ACC-DT-HR,8 • 

3 14 0 F LINE CDUNT E,Q,U A L 8 5 1 Go' ,T,D, ,S,3 .7 

3 1 4 5 83 1 4 5 WRI T);: DETAIL RECDRD. 

3 1 50 8W3 1 5,0 • Go' TO, 8,31,55 

,3 1 5 5 S 3 I 5 5 • ,M DVE 8,P ,A,C E 8 TO, DEPT DF W8 • 

3 16,0 A,L T E R SW3150 To' PRDCEED TO, 8 3 P 7 5 
, .. ," Ir.O.T ,.,' ,0 ,7 ," 

3 1 7 0 83 1 7 o • P ERFDR.M, WP,H SECTIDN. 

,3 1 7 5 Go' To' 8 3 1 4 5 • 

3 1 8 0 8 3 1 8 o. A LT ER 8 W3 10 7 TO, PRDC);: ~D~.E 1 8 2 • , , 
3 1 81 G,D TO, 83100. 

3 1 8 2 S 3 1 8 2, CL D8E J 0, B- F I LE 8 UM,MARY FILE. 

3 18 5 8T DP RUN " J T 8" 

• 1.1.1.1,1. , .1.1 .. 1" 121nlulls "I .. 1 .. 1 "I.~"I"I "1,,1,, 26121llll1911Qllllul13juj15 .. I .. ! .. I .. I .. I"I"I .. I .. I .. 461471181.9isolsl/nlsl\s4js5 ,,1,,1,,1 .. 1 .. 1,,1,,1 .. 1 .. 1 .. .. 1 .. 1 .. 1 .. 1,,1,,1,,1,,1,,1,,1,,1,,1,,1 .. 1 .. 

Figure 34. Job Ticket Summary Procedure Division 

~~D ~~go ______________________________________________________________ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M 

53 



EXTENSIONS TO GECOM 

GECOM/REPORT WRITER 

The GECOM/Report Writer requires the same com­
piling configuration as Basic GECOM, and is an 
extension of the basic compiler. Report writing 
programs can readily be described in the Basic 
GECOM language, but the Report Writer facilitates 
report preparation by enabling the user to describe 
reports concisely on a layout form which can be 
inserted into the GECOM Data Division. It also 
provides such features as automatic page and line 
control, facilitates programming, and provides better 
documentations of report writing programs. 

Report specifications are written within the frame­
work of a GECOM source program, and, in straight­
forward situations, are contained entirely within the 
Data and Environment Divisions. A knowledge of file 
and report formats and which record fields are the 
file sequence keys is all that is needed beyond a 
knowledge of GECOM to prepare procedure state­
ments for most business reports. The user need 
only define the unique features of his job outside of 
the normal file processing procedure. The Report 
\Vriter tailors the basic framework to the program­
mer's needs and produces an object program for 
execution. The primary advantages to be gained by 
this method of description are minimized program­
ming and debugging effort and readily-understandable 
program documentation. 

With proper preparation of the source program, the 
Report Writer with GECOM will generate an object 
program which: 

1. Prints report headings once at the beginning of 
the report. 
2. Prints report footings once at the end of the 
report. 
3. Maintains page control by line count and skips 
to a new page as specified. 
4. Maintains line spacing on the page. 
5. Prints page headings at the top of each report 
page. 
6. Prints page footings at the bottom of each re­
port page. 
7. Numbers pages. 
8. Issues detail lines according to the presence 
or absence of control conditions. 
9. Accumulates detail field values to one or more 
levels of total. 

10. Counts detail field conditions and detail lines 
to one or more levels of total. 
11. Detects control breaks at one or more levels 
to control tabulation, issue control totals, and 
issue control headings. 
12. Edits data fields for reporting by zero sup­
preSSion, character insertion, fixing or floating 
dollar signs, and fixing or floating arithmetic 
signs. 
13. Assigns and calculates values for report 
fields. 
14. Reads a single file on one or more reels. 
15. Reads successive files on multifile reels. 
16. Performs normal file opening and closing 
functions. 
17. Creates final totals and terminates reports at 
end of input. 
18. Prepares a report(s) file for deferred print­
ing. 

Report descriptions are contained in the Report Sec­
tion of the GECOM Data Division, under the head­
ing REPORT SECTION, immediately following the 
File Section. All entries in this section must con­
form to the format of the Report Description Form, 
Figure 21, which is used in place of the standard 
GECOM Data Division form. Not shown are the sup­
porting entries required in the Working Storage Sec­
tion of the Data Division. Figure 21 illustrates a 
typical report as laid out in the Report Section of 
the Data Division, while Figure 22 shows the result­
ing printed report after processing of the object 
program containing the report description. 

GECOM/TABSOl 

The GECOM/TABSOL extension requires the same 
compiling configuration as BaSic GECOM and allows 
source programs to be described in tabular form. 
Although the same programs could be described in 
the baSic GECOM procedural sentences, certain 
benefits are provided by the T ABSOL extension. 

TABSOL, which stands for Tabular Systems Oriented 
Language, is basically a structuring technique used 
to systematically describe the step by step decision 
logic in the process of solving a problem. The basic 
advantage of the TABSOL language is that it is easily 
learned and understood and can be applied to many 
analytical situations. 

~~D ~~~ ______________________________________________________________ I_N_T_RO_D_U_C_T_IO_N __ T_O_G_E_C_O_M 

33 



The I'"'-O'"'-CONTROL sentence is used only if non­
standard label-checking rerun information and/or 
multifile magnetic tapes are required. 

The FILE'"'-CONTROL sentence is used when the 
source program requires the identification and/or 
assignment of input/output files or hardware units. 
If the source program does not process input/output 
data, the FILE~ CONTROL sentence can be omitted. 

The COMPUTATION~MODE sentence is used when 
it is desired to perform computations on data in 
floating point format using floating point arithmetic. 

For the Job Ticket Summary problem, the Environ­
ment Division would be prepared as shown in Figure 
33. 

The General Compiler Sentence Form is used; head­
ing information, such as program and programmer 
identification are discretionary. Actual line entries 
must adhere to the rules detailed in the GE-225 
GECOM Language SpeCifications. Some of these 
rules ~\rP mentinJwri in thp linp pntry pxplanatinnl' 
that follow. 

2000 ENVIRONMENT DIVISION. 

The division heading is always the first entry for 
the division. The heading should begin in column 
8 (recommended) or may be indented any number 
of spaces to the right. The heading must be 
followed by a period and no other information 
should follow on that line. 

2005 and 2010 OBJECT~ COMPUTER. 

If this sentence is used, the sentence name should 
be started in column 8 and followed by a period. 
The sentence can start on the same line as the 
sentence name. In Figure 33, the compiler 
interprets the sentence to mean that the object 
program is to be performed on a GE-225 system 
with a 8192 word memory (2 MODULES) and the 
object program is to be input via card reader. 
To accomplish this, the General Compiler must 
produce the object program on punched cards via 
the card punch. Note that the sentence was too 
long to be completed on one line and was carried 
over to line 2010 and indented for clarity. 

2015 FILE'"'- CONTROL. 

Like other sentence names, this one begins in 
column 8 as recommended. The first sentence is 
begun immediately after the name (with a blank 
between) and terminated with a period. All sub­
sequent sentences must begin on a new line. The 
2015 sentence in Figure 33 assigns the JOB ~ 
FILE (input) to the card reader buffer. The 
General Compiler interprets this to mean that 
data input through the card reader is to be 
treated as job file data. 

2020 SELEC T SUMMARY'"'- FILE. • • • 

This sentence assigns the SUMMARY ~ FILE to 
the card punch for output. 

2025 SELECT DMH'"'-REPORT. 

This sentence assigns the DMH REPORT to the 
high-speed printer for output. The DMH REPORT 
is considered as an output file and is therefore 
assigned to a peripheral like all files in the 
FILE~CONTROL Section. 

PROCEDURE DIVISION PREPARATION 

Once the programmer has flow charted the procedure 
to be followed and has defined all input and output 
data, it becomes relatively easy to state the process­
ing steps to be followed in producing the desired 
output. 

The programmer, having developed a working knowl­
edge of GECOM language elements (verbs, names, 
~onstants, pxprpssions, et~.) and their effects upon 
the object program, is prepared to document the 
procedure. Figure 34 illustrates the completed Gen­
eral Compiler Sentence Form for the Procedure 
Division of the Job Ticket Summary Problem. By 
relating the individual procedure statements and 
their explanations below to the flow charts in Figures 
29 through 31, the overall procedure is more readily 
understood. 

3000 PROCEDURE DIVISION. 

Invai-iably the first entry for this division (and 
others) is the division name. It must be entered 
starting (preferably) in column 8 and terminated 
with a period. 

3001 GO •.. 

This opening sentence immediately and uncon­
ditionally transfers operation to the sentence 
identified by the sentence name, S3055. 

3005 WPH SECTION. 

This statement indicates that all procedure state­
ments that follow are to be conSidered part of the 
WPH (Write Printer Heading) section until an 
END SECTION is encountered. 

3010 through 3045 

These statements comprise the WPH section which 
functions to advance the high-speed printer paper 
to the top of the page (3015), count pages (3020), 
space paper to the first print position (3025), 
print out the report title as defined by the literal 
entry at 4110 of the Data Division (3030), space 
paper to the next print line (3035), print out the 
column titles defined at 4135 through 4145 (3040), 

UB~D ~~go ______________________________________________________________ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M 

51 



WEEKLY-PAYROLL REPORT PAGE 28 

12-01-61 

ORG PAY JOB REGULAR OVERTIME GROSS 
CODE NUMBER EMPLOYEE NAME SEX CLASS HOURS HOURS EARNINGS 

5484 0671 J JONES MALE BOI 40.0 10.0 $ 123.44 
0983 A JOHNSON MALE Al0 37.5 184.01 
1201 B SMITH FEMALE C50 40.0 8.0 148.02 
1452 SCHROEDER MALE DA2 32.0 84.66 
2352 C BROWN MALE 011 40.0 .4 105.19 

5484 COUNT OF EMPLOYEES 05 189.5 18.4 645.32 

5485 0108 R EDWARDS MALE 080 40.0 100.01 
0112 P SMYTHE FEMALE B 11 35.2 115.55 

CAl 1389 A ANDREWS FEMALE BOI 40.0 8.0 72.06 
UI 1545 R MICHELSON MALE Al0 40.0 12.0 123.11 

1547 J BERG MALE SOl 38.2 182.78 
1999 A McMILLAN FEMALE C09 40.0 2.2 78.23 
2103 J GWYNN MALE BOI 40.0 1.8 101. 11 

5485 COUNT OF EMPLOYEES 07 273.4 24.0 842.85 

5480 COUNl OF EMPLOYEES 12 422.9 42.4 1,388.16 

5400 COUNT OF EMPLOYEES 33 1302.1 108.0 4,125.29 

5501 0133 C STEVENSEN MALE E22 40.0 138.06 
0134 L ELLISON MALE A09 40.0 149.55 
0222 H MURPHY FEMALE C53 40.0 99.99 
2102 J OZER MALE BOI 40.0 123.02 
2359 A AMBERCROMBIE MALE B 11 40.0 154.84 

Figure 22. Report Writer Sample Report 



GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM 

COIPUTERDEPARTMEIIT,'HOEMIX,oUIZOM" 

JOB TICKET SUMMARY (JTS) lOUE JUL. 17 
PROGUnER G. E. CODER ICOMPUTER IPAGE 

i ELEMENt 

i IS LS 

A,O 0,0 In, T ,nI ,VI,S r ,D,N -+.~f-cl-'-++-~ L---.l __ -.:. _~--L- ~ __ ~ ---'- ------1--...-L_ ........... .........I-----_---'--

." 4 0 0 5 FI ESE C T .L~N-"'~"-I+~~ ~~~~~+_+-+-i__"_~__+_+_+-+-~,--'-"---J--j~+-+~~~~ ~.~~~' ~.-., ,.~~" ~~~'--

4010 OUTPUT FI,L,ES,.~ 

.~ . .l.Jl FD SUMMARY FI LE • ~~~~+_I-++~ .. +--I++-I-'-~+-c.++YI-+ LLC-' "" •. ~~~~~~~~"-~.--+---L-"---

~_~4~0~2~,0+-~R~4BS~U~M~M~A~R~,y~,~-~C~A~,R~D~.~~~~~--".~LJ-L~+P~+-~-+~~~~_~-+~~~~~ .. ~~~~~~~~, _____ _______ 

~.~2~1t-~FYr+L~A~S~TL-~,~D~E~P~T~LJ-r+-~-L~~~~~~t1-r+-LJ-r~~~~-+~t1-L4-¥X~X~~,B~I~(5~'~')-L~~~~~~LJ~_~ ____ -4 
4 0 2 2 F IMAN - C O,U N T _~ '-I-.-I-."-1--I'9~9 9 B,I 2 9) 

4023 F AC,C-REG-HRS 9,16,)V9,R,14')' -.-'.~. ,--~~ 

.,LO,~~4 f-l' 

L~02~ .I-.l' 
,41.0.0 F D 

,4,I,O,5.11 

C,C-OT-IIRS, 

~L.A,LC"'~L 

DMII-HE P9R,T., 

.Ji.,P..:r'-,T,I T,LE 

,4 1 ,1,0 _ ... L'4-f-c--~~-L---1--'-

.,1,1.15." 

,4 1\2 ,0 ,L 

4 1 2 5 F PA G E - C OU NT 

~,-1,3,0 .,R C,CJ2-:C::,T I T LfiLS, 

, ,4J.,;l.J[ .,L , 

-.J..,LLQ. ,_~ ,,"~~~.~ '-.L~ 

4 15 0 R InETAI I, 
.41,5,5 F DEPT 

4 1 6 0 F IM.AN-N,B,R 

4 1 6 5 F NA,ME ,~ l "-~ 

P ~.---l--l---l--l---l~--I 

ws 

j) .9 ,9 ,LY.Lc!liJi.L ,_, , , 
9L,7.J..J' 9 B ( 1 2 L,~~,~.~"~ ______ ~,~ 

'. 

~.}3"lt llllD,EIPlAcR.r~~Lr, __ ~~~N .H.O.U.R It. 

E.POJl,T," '-

~!( !4.2J. ~1I"p_.A1G)E_". 

B Z Z Z 9 

,'., ~"~ .. -~ 

~,( .7,) ,"JU;,P:r M,A1LJ'LlJ"M • .Il,E,!\,...ILA..MJl 

" ,." ", _~' ' __ "_,,,.~~._'_' .L~~,-"--,-

BI 1 R nT "" '''','' ,RRS ()1' "R,O" 

-.1_ .L----'------"-_ 

x (,5) B ( 6 ), 

4 1 7 0 ,F JOB~~~~--->-_-, ++~~~~~-L~~'-+++_f--'~++-H-+~,-+.~+_f-c4--l"X~?C-.-l-_.L~i~.L_-'_L-'-_J--'-----'------'-----'----+- L-L.L . .....I---I. ___ .... ---'---<--_-I_ 

f-~."4~ .. f-,f R_1!';_1 GL", .LI:I--'-~--L~ L---'-__ -.l __ l __ ""-

4 1 8 0 F O,T- IIRS 
z . .l~--lZI._i9--"- _,B+-B-,!3! --.1_ +----'-----' __ 1- +-_-'-_-'-- __ -'---_..l_, 

I-'----"'-"'--'-"'-'++-""--H='-'----=='-L--'-~~~+_Ic' .~~~_'_'~....L. ~+_-I--lI-+---L~I-+-++_f-c~+~~~--I--I'Z~'~'"-_~-----I-_l-----!_~_L~LJI~--'--'-'~.~~~~__1 
f--c--A" 5 0 0 ·fLN ~ ~--...KJ . .L~b:;; .. ~~L...L.....J..._ 

4 5 0.5 FD JO,B-FI,LE .. '---'--"---

1-'---"4",5"-",1'-""-0+_lf-JR"l---I"-J",O!-,,,,,B=""'J~K.L:t.:3--l------I- _-1_L_ J I. j I 

4 5 1 5 F M A,N -,N B R X ( 5 ) 

~--"4,-,,,5~2 ..... 0,+-~-,,-F~I"'D'.JE,,-,_~_,_r_L.-L ... i-----! ..... J.._j __ l. ~_-l.-.....L-.L.......I.--l. • ..J"'--4-H-+---L-'---H+4-+--"--'-+~H~4-fb~!:,~XCL.,.,B,-,B"-'--__'_~~---L-'---"--,~~-L-~~--'-"-J~---L-'--l 
4 5 2 5 F N A ,Ill: E , .,,--+-j~++--'--'-++-+++--"-'-4---++-y+,A",(~2~1'.J..L) ~--'--'--'----L-L-~~~--'--"---'-~ ~ 

~,5"-",3J'O~f--',,-FI---I'J,--,,-,O-,-"B,-,,,-=,C,",O~D-,-",E'"----'-'---'--I-+---L_'_'---L-'------L-'--~--'-I-+-l--l--- ~--I-+_I--I--l--'--'--+- X X, B J 7 ) ~,~ 
--->."4"'5 ....... 3c-5't-/--"F+-f1L .. ","'-'< ,,,,,-,,,lJr.,,,,,,R ,,0,,-,--, -'--'--'--"---1f-+--'-L--'---L-'--.L---L-L----L-'--~-++--'--++f-++--'--'-+-'---I+-'--Ji--+!9!..'9 9 V 9 , , 

454,0 F OT-H,RS -++-L-jH99,V9, B(3,4\ 

5000 WORKIN~-STORAGE SECTION. 

5005 F MAN~COUNT 

f-,--"5,-""0-"-,-1-"0't--f--'",Ff-cI"A,"C,,",C'.i--=-e..R,,,EC'G,,-lC"=H"2'R,,S,,-,--++-, .. ~~~---L~ 

f-~~5~0~1~5't--+-~-,,-F+-~A~C~C~-~O~ALR~ 

~.Q~ .X. T,o T,A Lrv H,R,S ~-L 

9 9 9 
9,( 6,) V 9 

,-'-- 9~.~,V.hI!9.L1 -'--'---L ~-~~~-'--L-~---L~~~-'-1 
5025 F PAGE COUNT ~~.'L-_~~+4-+~~~+4-+~+-+~-+~.~o,~oiliL·o~---L~~~~---L~~~~~~~ 

5 0 30 .1 LAS ,T - ,D,E P T, 'y 

5035 F DEPT ry 

Figure 32. Job Ticket Summary Data Division 

~~D ~~go ____________________________________________________________ ~I~N~TR~O~D~U~C~T~IO~N~TO~G~E~CO~M 
49 



Primary 
Row 

Secondary 
Rows 

< 
I' 

< 

l 

I 
F 

1 

AGE EQ 

26 

A A A 
N N N 
D D D 

2 3 

A T 
N H 
D E 

k N 2 3 m 

AGE 

26 

~~--------------~vr--------------~~ ~~--------------~v~--------------~/ 

Conditions Actions 

Figure 23. Decision Table Format 

2 

3 

4 

5 

6 

7 

n 

~~D ~~~ ______________________________________________________________ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO_M_ 

37 



B 

Close 
Files 

From 
Figure 29 

Add 
Acc-Reg-Hrs to 
Acc-OT-Hrs for 

Total-Hours 

Punch Summary 
Card 

Set SW 3150 
ToA 

From 
Figure 29 

6 

Figure 31. Job Ticket Summary Flow Chart (continued) 

From 
Figure 29 

2 

Set SW 3085 
ToB 

J ob-Ticket-Dept 
-Last-Dept 

and WS Dept. 

Set Man-Count, 
Acc-Reg-Hrs, 
Acc-OT-Hrs=O 

Add 1 to 
Man-Count 

To 
Figure 30 

~~D ~~go _______________________________________________________________ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO ___ M 

47 



W 
10 

GENERAL. ELECTRIC 
GENERAL COMPILER SENTENCE FORM 

COMPUTER DEPARTMENT, PHOENIX, ARIZONA 

PROGRAM I DATE 
SAMPLE DECISION TABLE 

PROGRAMMER 
ICOMPUTER lpAGE 

SEQUENCE 
NUMBER 

'1'1+1'1' 7 el'[10111 12[ 13 114 [15 16~ 17[18[19 t 20 [21 [22123124125 26127[21129130131132/33[34135 "I" 'ainl"l +~"H" .. j"}±9j5~5152El'·l55 56157158Is9i601~3164165 
,f; 'PRO(: IlCnTu; ·lC, ,n, I ,V, I ,S, I,OoN 

1 0 IOPEli I NPUT MAS TER-FI,LE. 
~ 

1 5 GET-IREC.C IRD RE,AD N. AS T,ER-F I LE RECORD I F ,E,N.D. F I L E Ie; 0 T 0 lC. N,n-

20 I F ,F IE,MALE GOT o G,ET-R EC,C IRD 

,25 IR'l(,p,lC IR,T,lC.N.f"',lC- ,F\,1 _ V,R._,lC.M,P. T lov,];'. n ,P,R,H IV,.-,E,x,p , 

30 T,ABL IE EX AM,PL E. 3 C OND I T I ON S 2 ACTIONS 5 ROWS. 

3 5 IY,RV IRY ,F 10, EXP,ERIEN IrE TIT,I.E T (: 10 '1' 0 

40 6 E.O 2 PROGRA,lIi IMER 1 ':i I¥PE-OUT 

4 5 7 E,O 3, PRO GRA,lIi IMER .OR ANA II YS T 2 .. 
50 A ,n,R, . ~ ,A,N,A ,LV,': ,'1 <! .. , 

,5,5 9, G,R 4 ,A.N,A,T.'v,S " ,O,R ,S,R A,N,A ILV,S,'T' 4 .. , 

60 10 G,R 4 S R ,ANA~ Y,a,T, 5 .. 

65 GO T a G,ET~R,EC,C RD. 

7 ,0 1'T'.VP,li h..nn'T ,WR T.T,R ,n,li Ip,ART,MF.,N,T. ,~ lAM, F., ,T. I.T.1,F. ILEv,F. L-....E 'l(Pli IRT.lC,N.f"'R .O,N. 

,7,5 IT:O,T,A II. (, I ) - ,T,0,1 A, I ,( I ) ,+ 1 
80 GO T 10 G E T-,RECO RD. I I I I I 

85 IE N,n,~ IRU,N ,c,r. 0 S,E MA S T ER-F I L,E 
,9,0 IWR,T,T IF. ,TnT,A.T ( 1) ,T,o'TA,T (,2 ) TOT, A. I. (3) T OTAL ( 4J~ T ,e TAL (5) ,O,N, 

9 5 STOP "END ,RUN" 
,\,1,1.1,1. 7 .\'\'0111 12113114115 16117!"I"I'~21I"I"I"I, 5 26f27l2l1291301n\nJn\ulu "I,,! .. 1 .. 1 "I "1 .. 1 .. 1 .. 1,, .. 1"1 .. 1 .. 1,, ,J,},J,J, 5 56' 571ss159 160 I 6,162 63164165 
CA UOI/il) 

Figure 24. Sample TABSOl Table in GECOM 

+++H "1"1 731 "["I"I"I,,H": 

laTTN 

I I I ' I I I I I I 

1'T',vp,lCWR 1.'1' ];'.R, 

TY P,E,W,R I T,E.R 

..r.~ .. I.J,~I7II"I731 ,,1,,1 ,,1,,1,,1,,1 .. 



From 
Figure 30 

4 

Set SW3107 
To B 

From 
Figure 30 5 

Yes 

ZZ's to 
Last-Dept. 

Read in 
Job-File Record 

To Figure 31 

Yes 

No 

No 

Open All Files 

Initialize 
Page Count 

Write Report 
Headings 

First Page? 

Does Dept. 
of Job Ticket = 

Last Dept? 

Figure 29. Job Ticket Summary Flow Chart 

Yes 

6 

To 
Figure 30 

To 
Figure 31 

~~D ~~~ _________________________________________________________________ I_N_T_RO __ DU_C_T_I_O_N_T_O_G_E_C_O __ M 

45 



APPLICATION OF BASIC GECOM 

GENERAL 

To more closely relate the use of the GECOM system 
to actual applications, the following pages carry a 
sample problem through the programming process. 
Although not all of the capabilities of Basic GECOM 
are exercised, enough material is presented to pro­
vide perspective and insight into the scope of 
GECOM. 

First, the problem is presented and the objective 
is defined. 

Second, the procedure to be followed is outlined, 
the required inputs and desired outputs are identi­
fied, and a flow chart is prepared. 

Third, the source program is produced. Each of the 
four divisions of the GECOM source program are 
illustrated and discussed where appropriate. The 
compilations and debugging of the object program, 
performed on the GE-225, are not covered in detail. 
Procedures for compilation are fully discussed in 
the GE-225 GECOM Operations Manual, CD 225H1. 

Finally, the outputs of the compilation process, the 
Edited List and the object program, are presented 
and discussed. 

DEFINING THE PROBLEM 

The sample problem selected involves a typical man­
ufacturing plant that uses job ticket records for each 
employee to produce time and job accounting data. 
Assuming that the individual Job Ticket Records 
follow the format illustrated in Figure 25, the prob­
lem is to prepare a program that will produce two 
outputs: 

1. A punched card summary record for each de­
partment, showing the: 

Department Number 
Number of Men 
Accumulated Regular Hours 
Accuumulated Overtime Hours 
Total HOurs 

2. A printed report providing, by department and 
man number, this information for each man: 

Department Number 
Man Number 
Name 
Job 
Regular Hours 
Overtime Hours 

Figure 26 shows a representative punched card sum­
mary record, while Figure 27 shows the desired 
printed report. 

In an actual application, it is quite possible that 
the input data (the Job Ticket Record) and the de­
sired outputs (the Job Ticket Summary and the De­
partment Man Hour Report) would not already be 
defined. The problem might be as informally stated 
as, "we need to know what our people are doing and 
how long it takes to do it." 

In these circumstances, the problem would also en­
tail determining what input data is needed, how to 
collect it, and how to record it for computer input. 
It would also be necessary to determine (more pre­
cisely than the quoted Problem states) what output 
is desired and what form and organization it should 
follow. 

Here, these preliminary decisions have been made. 
It remains for the programmer to document the 
process to be performed by the data processor, de­
tail the procedure the program must follow (via a 
flow chart), and prepare the source program. 

PLOITING THE SOLUTION 

In the sample problem, documenting the process in­
volves little more than translating the problem 
statement into a diagram. The input is already 
defined; the purpose of the program has been stated; 
and the desired outputs have been described. 
Graphically the process chart appears as shown in 
Figure 28. 

A more realistic application might involve several 
inputs and outputs via several media. Additionally, 
multiple "runs" or processes by the data processor 

UE~D ~~~ ____________________________________________________________ IN_T_R_O_D_U_CT_IO_N __ T_O_G_E_CO_M_ 

41 



DEPARTMENT MAN HOUR REPORT 

DEPT MAN NUMBER 

20 10076 
18270 
28883 
30106 
35596 

Input 

Processor 

Output 

NAME JOB REG-HRS OT-HRS 

FIELY, CR 75 40.0 4.2 
JOHNSON, HA 82 40.0 6.4 
RANGEL, MM 17 40.0 8.6 
STRONG, AB 24 40.0 8.8 
HA YS, E R 33 40.0 ') " L.V 

Figure 27. Department Man Hour Report 

Card Reader 

GE-225 
Information 
Processing 

System 

Job Ticket File 

Run Job Ticket Summary 

Job 
Ticket 
Summary 
File 

High 
Speed 
Printer 

Department Man Hour 
Report 

Figure 28. Process Chart for Job Ticket Summary 

PAGE 1 

~~D ~~~ ______________________________________________________________ �_N_T~RO~D_U_C_T_IO_N __ TO __ G_E_CO __ M 

43 



.'. 

.: 

DEPARTMENT MAN HOUR REPORT 

DEPT MAN NUMBER 

20 10076 
18270 
28883 
30106 
35596 

Input 

Processor 

Output 

NAME JOB REG-HRS OT-HRS 

FIELY, CR 75 40.0 4.2 
JOHNSON, HA 82 40.0 6.4 
RANGEL, MM 17 40.0 8.6 
STRONG, AB 24 40.0 8.8 
HAYS, ER 33 40.0 2.0 

Figure 27. Department Man Hour Report 

Card Reader 

GE-225 
Information 
Processing 

System 

Card Punch 

Job Ticket File 

Run Job Ticket Summary 

Job 
Ticket 
Summary 
File 

High 
Speed 
Printer 

Department Man Hour 
Report 

Figure 28. Process Chart for Job Ticket Summary 

PAGE 1 

~~D ~~~ __________________________________________________________ ~IN_T~R~O~D~U~CT_I_ON __ T_O_G_E_CO __ M 

43 



APPLICATION OF BASIC GECOM 

GENERAL 

To more closely relate the use of the GECOM system 
to actual applications, the following pages carry a 
sample problem through the programming process. 
Although not all of the capabilities of Basic GECOM 
are exercised, enough material is presented to pro­
vide perspective and insight into the scope of 
GECOM. 

First, the problem is presented and the objective 
is defined. 

Second, the procedure to be followed is outlined, 
the required inputs and desired outputs are identi­
fied, and a flow chart is prepared. 

Third, the source program is produced. Each of the 
four divisions of the GECOM source program are 
illustrated and discussed where appropriate. The 
compilations and debugging of the object program, 
performed on the GE-225, are not covered in detail. 
Procedures for compilation are fully discussed in 
the GE-225 GECOM Operations Manual, CD 225H1. 

Finally, the outputs of the compilation process, the 
Edited List and the object program, are presented 
and discussed. 

DEFINING THE PROBLEM 

The sample problem selected involves a typical man­
ufacturing plant that uses job ticket records for each 
employee to produce time and job accounting data. 
Assuming that the individual Job Ticket Records 
follow the format illustrated in Figure 25, the prob­
lem is to prepare a program that will produce two 
outputs: 

1. A punched card summary record for each de­
partment, showing the: 

Department Number 
Number of Men 
Accumulated Regular Hours 
Accuumulated Overtime Hours 
Total HOurs 

2. A printed report providing, by department and 
man number, this information for each man: 

Department Number 
Man Number 
Name 
Job 
Regular Hours 
Overtime Hours 

Figure 26 shows a representative punched card sum­
mary record, while Figure 27 shows the desired 
printed report. 

In an actual application, it is quite possible that 
the input data (the Job Ticket Record) and the de­
sired outputs (the Job Ticket Summary and the De­
partment Man Hour Report) would not already be 
defined. The problem might be as informally stated 
as, "we need to know what our people are dOing and 
how long it takes to do it." 

In these circumstances, the problem would also en­
tail determining what input data is needed, how to 
collect it, and how to record it for computer input. 
It would also be necessary to determine (more pre­
cisely than the quoted problem states) what output 
is desired and what form and organization it should 
follow. 

Here, these preliminary decisions have been made. 
It remains for the programmer to document the 
process to be performed by the data processor, de­
tail the procedure the program must follow (via a 
flow chart), and prepare the source program. 

PLOTTING THE SOLUTION 

In the sample problem, documenting the process in­
volves little more than translating the problem 
statement into a diagram. The input is already 
defined; the purpose of the program has been stated; 
and the desired outputs have been described. 
Graphically the process chart appears as shown in 
Figure 28. 

A more realistic application might involve several 
inputs and outputs via several media. Additionally, 
multiple "runs" or processes by the data processor 

~~D ~~go _______________________________________________________________ IN_T_R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M 

41 



From 
Figure 30 

4 

Set SW3107 
To B 

From 
Figure 30 5 

Yes 

, 

ZZ's to 
Last-Dept. 

Read in 
Job-File Record 

To Figure 31 

Yes 

No 

No 

Open All Files 

Initialize 
Page Count 

Write Report 
Headings 

First Page 

Does Dept. 
of Job Ticket = 

Last Dept? 

Figure 29. Job Ticket Summary Flow Chart 

Yes 

6 

To 
Figure 30 

To 
Figure 31 

~~D ~~~ _________________________________________________________________ I_N_TR_O_D_U_C_T_IO_N __ T_O_G_E_C_O __ M 

45 



W 
\0 

GENERAL. ELECTRIC 
GENERAL COMPILER SENTENCE FORM 

COMPUTER DEPARTMENT, PHOENIX, ARIZONA 

PROGRAM 

SAMPLE DECISION TABLE 
I DATE 

PROGRAMMER ICOMPUTER I PAGE 

SEQUENCE 
NUMBER 

'T'j.!·I'I· 7 81'110111 12\ 13 rU r~5 1~1~1811912DI2112212ll24125 26127128129\30 \ 31132\33134135 36\37\38\39\",014110143\44145 46\ 47 IU[49js1J±:S'\S5 56:57158159160161162163164[65 

,5 Ip,ROC IF,nnll IF: ,n.I.V,I,S LOlli 

1 0 OPE,N I N PUT MA S TER-FI.IE. 
~ 

1 5 GET-IRF.ef IRD. RE,AD l\i AS TER- F I L.E R.EC.ORD I F END F I L E h 0 TO R.N.n-

2 0 I F ,F IEMALE G,O T o G,ET-R EC,C IRD 

,2 5 I H'Y. P,H' IR. T.H'.NP,H'.- ,R.1 _ V,R._,H'M,P.T Iov, H'. n. P.R, F, Iv..-,F,,~ --'- , 
, 

30 T,AB.L IE EX AM,PL E. 3 ,C OND I T I ON S 2 ACTIONS 5 ROWS. 

35 LRV F.T Elo E XPER, lEN CE, TIT,IE T r: ,0 '1'0 

40 6 E.O 2 PROG.RA.l\I !MER 1 .1 ~ PE~O UT 

45 7 E,O 3, PROGRA,l\I IMER ,OR ANA 11 YS T 2 " 
5,0 18 ,G,R ,3 .A. N,A, T .,V,~ ,'T ~ " 

,5,5 9, ,G,R 4 ,A,NAT.V,S ,'I ,O,R ,S,R .A,N.A 1T.y.s'1' 4 " , 
6 0 10 G,R 4 S R ,AN,A,1 lY,s T 5 " 

~~ 

6 5 GO T o G,ET~R EC,C RD. 

70 l'1'v p,F, h"O,TT'f .WR.. T ,'T',R ,n,"Ii Ip,AR..'T',MF..N.'T' ,]'i IAM,F" .'T'. I.'T'.T ,F. ILF.V,E,I RYP"Ii IRT.H'.Nf"'H' .O,N. 

7 ,5 I'I:O,T,A II (,I,) - ,T,O,1 A,I (I) ,+ 1 

80 GO T 10 G E T""RECO RD. 
~ 

85 END,~ IRU,N ,CLOS,E MAS T ER-F I L,E 
,9,0 IWR,T.'T IF. ,'T'.o'T,AI ( l' ,T,o'TA, T ( 2 ) TOTAL(3) TOTAL ( 4.) T ,( TAL(5) ,O,N 

9 5 STOP "END ,RUN" 
,1,1,1.1.1. 7 .1'\10\11 12\ 13\14\15 "I,,! ,,119I,~ ,,1,,1 ,,1,,1, 5 2612712112913o~31132!31114135 "I "\ "I" I .. I "I ,,1 .. 1 .. 1 " 461471uI4~to'5J-5"l3 sJss 5J5715.159160161 16263164lu 
CA U(lOIU) 

Figure 24. Sample TABSOl Table in GECOM 

+++. H 71 1"1 "I "In! +-Ioa HID 

IRTTN 

IT,Y,P,EWR T.'1' ti'.R. 

TY P E,W,R I T,E,R 

.. 1,,1 .. 1 .. 1,,·1,,1,,1,,1,.1,,1,,1,,1 "1,,1,, 



B 

Close 
Files 

From 
Figure 29 

Add 
Acc-Reg-Hrs to 
Acc-OT-Hrs for 

Total-Hours 

Punch Summary 
Card 

Set SW 3150 
ToA 

From 
Figure 29 

6 

Figure 31. Job Ticket Summary Flow Chart (continued) 

From 
Figure 29 

2 

Set SW 3085 
ToB 

J ob-Ticket-Dept 
-Last-Dept 

and WS Dept. 

Set Man-Count, 
Acc-Reg-Hrs, 
Acc-OT-Hrs=O 

Add 1 to 
Man-Count 

To 
Figure 30 

~~D ~~go ______________________________________________________________ �~N~T~RO~D~U~C~T~IO~N~TO~G~E~CO~M 
47 



Primary 
Row 

Secondary 
Rows 

< I' 

c 

" 

I A A A A T 
F N N N N H 

D D D D E 
1 2 3 k N 1 2 3 m 

AGE EQ AGE 

26 26 

2 

3 

4 

5 

6 

7 

n 

~,--------------~v~--------------~~ ~,--------------~v~--------------~/ 

Conditions Actions 

Figure 23. Decision Table Format 

rn~ D ~~ @ ________________________________________________________ IN_T_R_O_DU_C_T_IO_N __ TO_G_EC_O_M 

37 



GENERAL. ELECTRIC GENERAL COMPILER DATA DIVISION FORM 

COllPUTER DEP~RUENT. PHOENIX, AIUZOH • 

.JOB TICKET SUMMARY (JTS) _______ _ 
PROGRAIUIER G. E. CODER 

4...JL JLD I-I'Lfi'I-'T-I"-----"D'.L...cVL'..L '-",-, SJL"'.o,-"'!..c ,N~+-+~~ _~ 

~_~~ ,5. Y,I ~I f;, L~ J'J gNco ,,'_ 

_--..i ,O~l~ ° ,lC T ~,P T, FI,~E&~ 

,4_..Ql_5 ~ SJL,M,lM~,R_.lYr:'--"-Fl-jL.J; 

--~ ~-

-'--++1-+--~+++1-+-' - ~ 

~~++-+-+ 

4020 R _~lI.¥~AR,Y'~~jD ~~---'-------.L -L-I_ -"-------L-~ L----L~+t'P'_t_1-~++H_+~~t--++-'--"H~'--L---'-----~,---, J __ j 

~ ,4 021 F LAS T ...... ,PJE~Pl.:r!---.J I 

f-"--±,o~2 ,2""-t+~F'-t--tIM.c=A~,N~-~c"Q_U~,L.., _ 

~~2,2 
.10,2j 

~4G.c2 ,5 

f-,F ~C~,~R~lli::-,l!Jl,L 

F ~,-,o,'L-,l!,RJl, 

X T_Q~T-,---A,L_"""'lB,It.SI I l 

F D DMH,- a,E P,O,RT • , 4,1, ° ° 
,1,1,0,5 +,~R'T_+R~P_lo'~,- ,1'J ,T, L E'L'-­

,4110 .. .1- __ "_ 

,4 1 15 

4 1 2 U ,L 

1, ,1~51 I F 
1 1 :J 0 .R 

1 ~-1_~,3 ~ +L 
,4,1,4_0 

,4~ ,5 

F.A G,B,r-.C,OD..l~'TJ 

C,O L ,T,lJ'-,-J:. __ ,E ,S. 

~ 0 .It InE T A! L 

4155 F DEPT 

~,l,6,0 ,F M,~,N,-,NcB,R, 

-t~~ cJ f!~~F_ ~.I 
40,0,0 INPUT FI LE,S. ~ 

_~...JL F D JOB - F I L E • 

4 ::; 1 0 ,R }~~_ ~ ~lLC IK~-,J'_----,---

~J 5 F M ~,N ~,N~+~.l 

,4.,:;,~0 X D,E,P,T 

1-----"'4 .... 5'-'-"2 .... 5'+-+_....E lf~.Ml~...J.-----L __ L-_~ _LJ --"--

~--

P 

WB 

I L.l.---I----L-

P 

1-' 

L 
II I 

X~X B ( 5 ) 

~9~L~,.L ~,,_, 

JLL!LLY.J1,_ Jl..{ ,4 __ ) , 

99,9 9,V ~ ,JLL51 

9 ( 7 ~LY"!l,_B.Ll,g L 

f1LI!~~Al,l];-lPlA_R1T,_Mj~1:L'r, ;M,AN H 0 U R E, 

EPORT" 

BJ,4~2L __ ~"oP A,G,E"-, 

!3 Z Z Z,9 

~-

B( 7) "D,EP T MA,K, ,N~lJ M,B,EIL ~ 

X (,5.1 , ,B,(,6,), 

~~~ 

X (5)

X,X B B

-t-t-+-'f-1~J..~_+-t-~f-1A~'(~l~)~
~~,U~'O+-f-"-F--rfJ~O,B,-,C 0 D,E ~"~,~ '- -+++~~+-t-+p~t- ++--"_+-tX..1.'X,-,---,IlJ.2,)~ ,--"­

~~-'-~~l-j-----l-_j _~ 4 5 35 F,EG ,H,R,s,

f-',4_~'LO l' O,T,-,H,R,S, 1--1 _...L----'---- __ ~~l_____'___ __ J

f--"~O~O }\',O R K,LN,G __ ,S,T,9..cR,4~GJl S jE-I-9 ,T_I I~~ ,~_j -l- __ ,_'-

5 0 0 5 ___ ;If M,ft_LN_C:_l~QJIJ'LI~~++-,--~~---I----------._~-'------' _1

5 0 1 0 _ F Ace,..... R E ~_J!_I~~

f-'_..J5.,QJ..,Q, f--"F A~ C J::. --.Q T - H R S ~

r-'2.,O,2.Jl, ~F :r-,O,'I,A,b::--.JIb§~,,~

~~5_ _ ,F PA G EC' CO U.J'LT-l-_

5 030 LA S T ~~~.L~_--'-.l ..---1--"-.1

5 03 5 F DE P,T

1-'- f---
~-,-

-'

9L~V -,---9L-lB~~'-)L-_~~~~~~~~---.l----l_ --'--__

,~, -~~,~

++9,,-,,-,9=9~--+-JJ~' ~ ,~,,-,-,~~~~~, ,_,~

c!l,W.J.,L9~~~~_~~, ~~~'~~_~

9 ,!LJ9 J!., V...L9 ~l------i..- L---"-- ~j _'---- L~ _'- --'- __ ~----'- ~ l~ ',_--'---

9 7 ,V, 9, ~~,~ ~~~~_'--'~,

-t--tI.9.~",-",-"9,,9-,-,,,9~_~L~ -'--"-~"~'~~L'~~

Figure 32. Job Ticket Summary Data Division

INTRODUCTION TO GECOM

49

WEEKLY-PAYROLL REPORT PAGE 28

12-01-61

ORG PAY JOB REGULAR OVERTIME GROSS
CODE NUMBER EMPLOYEE NAME SEX CLASS f-iOURS HOURS EARNINGS

5484 0671 J JONES WILE B01 40.0 10.0 $ 123.44
0983 A JOHNSON MtlLE A10 37.5 184.01
1201 B SMITH FE:MALE C50 40.0 8.0 148.02
1452 SCHROEDER MtlLE DA2 32.0 84.66
2352 C BROWN MtlLE 011 40.0 .4 105.19

5484 COUNT OF EMPLOYEES 05 189.5 18.4 645.32

5485 0108 R EDWARDS WILE 080 40.0 100.01
0112 P SMYTHE FE:MALE B 11 35.2 115.55

Co) 1389 A ANDREWS FE:MALE B01 40.0 8.0 72.06
U1 1545 R MICHELSON MtlLE A10 40.0 12.0 123.11

1547 J BERG MALE SOl 33.2 182.78
1999 A McMILLAN FEMALE C09 40.0 2.2 78.23
2103 J GWYNN MtlLE B01 40.0 1.8 101. 11

5485 COUNT OF EMPLOYEES 07 273.4 24.0 842.85

5480 COUNl OF EMPLOYEES 12 422.9 42.4 1,388.16

5400 COUNT OF EMPLOYEES 33 1]02.1 108.0 4,125.29

5501 0133 C STEVENSEN WILE E22 40.0 138.06
0134 L ELLISON MtlLE A09 40.0 149.55
0222 H MURPHY FEMALE C53 40.0 99.99
2102 J OZER MALE B01 40.0 123.02
2359 A AMBERCROMBIE MtlLE B 11 40.0 154.84

Figure 22. Report Writer Sample Report

The I~O~CONTROL sentence is used only if non­
standard label-checking rerun information and/or
multifile magnetic tapes are required.

The FILE~CONTROL sentence is used when the
source program requires the identification and/or
assignment of input/output files or hardware units.
If the source program does not process input/output
data, the FILE~CONTROL sentence can be omitted.

The COMPUTATION~MODE sentence is used when
it is desired to perform computations on data in
floating point format using floating point arithmetic.

For the Job Ticket Summary problem, the Environ­
ment Division would be prepared as shown in Figure
33.

The General Compiler Sentence Form is used; head­
ing information, such as program and programmer
identification are discretionary. Actual line entries
must adhere to the rules detailed in the GE-225
GECOM Language Specifications. Some of these
rules art' illelit iOiled ill the line entry explanatlOns
that follow.

2000 ENVIRONMENT DIVISION.

The division heading is always the first entry for
the division. The heading should begin in column
8 (recommended) or may be indented any number
of spaces to the right. The heading must be
followed by a period and no other information
should follow on that line.

2005 and 2010 OBJECT~ COMPUTER

If this sentence is used, the sentence name should
be started in column 8 and followed by a period.
The sentence can start on the same line as the
sentence name. In Figure 33, the compiler
interprets the sentence to mean that the object
program is to be performed on a GE-225 system
with a 8192 word memory (2 MODULES) and the
object program is to be input via card reader.
To accomplish this, the General Compiler must
produce the object program on punched cards via
the card punch. Note that the sentence was too
long to be completed on one line and was carried
over to line 2010 and indented for clarity.

2015 FILE~CONTROL.

Like other sentence names, this one begins in
column 8 as recommended. The first sentence is
begun immediately after the name (with a blank
between) and terminated with a period. All sub­
sequent sentences must begin on a new line. The
2015 sentence in Figure 33 assigns the JOB ~
FILE (input) to the card reader buffer. The
General Compiler interprets this to mean that
data input through the card reader is to be
treated as job file data.

2020 SELECT SUMMARY~FILE. ...

This sentence assigns the SUMMARY~ FILE to
the card punch for output.

2025 SELECT DMH~REPORT.

This sentence assigns the DMH REPORT to the
high-speed printer for output. The DMH REPORT
is considered as an output file and is therefore
assigned to a peripheral like all files in the
FILE~CONTROL Section.

PROCEDURE DIVISION PREPARATION

Once the programmer has flow charted the procedure
to be followed and has defined all input and output
data, it becomes relatively easy to state the process­
ing steps to be followed in producing the desired
output.

The programmer, having' developed a working knowl­
edge of GECOM language elements (verbs, names,
constants, expressions, etc.) and their effects upnn
the object program, is prepared to document the
procedure. Figure 34 illustrates the completed Gen­
eral Compiler Sentence Form for the Procedure
Division of the Job Ticket Summary Problem. By
relating the individual procedure statements and
their explanations below to the flow charts in Figures
29 through 31, the overall procedure is more readily
understood.

3000 PROCEDURE DIVISION.

Invariably the first entry" for this division (and
others) is the division name. It must be entered
starting (preferably) in column 8 and terminated
with a period.

3001 GO ...

This opening sentence immediately and uncon­
ditionally transfers operation to the sentence
identified by the sentence name, S3055.

3005 WPH SECTION.

This statement indicates that all procedure state­
ments that follow are to be considered part of the
WPH (Write Printer Heading) section until an
END SECTION is encountered.

3010 through 3045

These statements comprise the WPH section which
functions to advance the high-speed printer paper
to the top of the page (3015), count pages (3020),
space paper to the first print position (3025),
print out the report title as defined by the literal
entry at 4110 of the Data Division (3030), space
paper to the next print line (3035), print out the
column titles defined at 4135 through 4145 (3040),

~~D ~~~ ___ I_NT_R_O_D_U_C_T_IO_N __ T_O_G_E_C_O_M

51

EXTENSIONS TO GECOM

GECOMjREPORT WRITER

The GECOM/Report Writer requires the same com­
piling configuration as Basic GECOM, and is an
extension of the basic compiler. Report writing
programs can readily be described in the Basic
GECOM language, but the Report Writer facilitates
report preparation by enabling the user to describe
reports concisely on a layout form which can be
inserted into the GECOM Data Division. It also
provides such features as automatic page and line
control, facilitates programming, and provides better
documentations of report writing programs.

Report specifications are written within the frame­
work of a GECOM source program, and, in straight­
forward situations, are contained entirely within the
Data and Environment Divisions. A knowledge of file
and report formats and which record fields are the
file sequence keys is all that is needed beyond a
knowledge of GECOM to prepare procedure state­
ments for most business reports. The user need
only define the unique features of his job outside of
the normal file processing procedure. The Report
Writer tailors the basic framework to the program­
iller's needs and produces an object program for
execution. The primary advantages to be gained by
this method of description are minimized program­
ming and debugging effort and readily-understandable
program documentation.

With proper preparation of the source program, the
Report Writer with GECOM will generate an object
program which:

1. Prints report headings once at the beginning of
the report.
2. Prints report footings once at the end of the
report.
3. Maintains page control by line count and skips
to a new page as specified.
4. Maintains line spacing on the page.
5. Prints page headings at the top of each report
page.
6. Prints page footings at the bottom of each re­
port page.
7. Numbers pages.
8. Issues detail lines according to the presence
or absence of control conditions.
9. Accumulates detail field values to one or more
levels of total.

10. Counts detail field conditions and detail lines
to one or more levels of total.
11. Detects control breaks at one or more levels
to control tabulation, issue control totals, and
issue control headings.
12. Edits data fields for reporting by zero sup­
pression, character insertion, fixing or floating
dollar Signs, and fixing or floating arithmetic
signs.
13. Assigns and calculates values for report
fields.
14. Reads a single file on one or more reels.
15. Reads successive files on multifile reels.
16. Performs normal file opening and closing
functions.
17. Creates final totals and terminates reports at
end of input.
18. Prepares a report(s) file for deferred print­
ing.

Report descriptions are contained in the Report Sec­
tion of the GECOM Data Division, under the head­
ing REPORT SECTION, immediately following the
File Section. All entries in this section must con­
form to the format of the Report Description Form,
Figure 21, which is used in place of the standard
GECOM Data Division form. Not shown are the sup­
porting entries required in the Working Storage Sec­
tion of the Data Division. Figure 21 illustrates a
typical report as laid out in the Report Section of
the Data Division, while Figure 22 shows the result­
ing printed report after processing of the object
program containing the report description.

GECOMjTABSOl

The GECOM/TABSOL extension requires the same
compiling configuration as BaSic GECOM and allows
source programs to be described in tabular form.
Although the same programs could be described in
the basic GECOM procedural sentences, certain
benefits are provided by the T ABSOL extension.

TABSOL, which stands for Tabular Systems Oriented
Language, is basically a structuring technique used
to systematically describe the step by step decision
logic in the process of solving a problem. The basic
advantage of the TABSOL language is that it is easily
learned and understood and can be applied to many
analytical Situations.

~~D ~~~ __ �~N_T~RO~D_U_C_T_IO_N __ TO __ G_E_CO __ M

33

GENERAL. ELECTRIC
COMPUTER OfP~RT"EHT, PHOENIX, ARIZONA

GENERAL COMPILER SENTENCE FORM

F" JOB TICKET SUMMARY (JTS)
IDATE JUL. 17 i PROGR"'~MER

G. E. CODER ICOIIPUTER GE-225 .1PAGE

I SEOUENCE

r;r~Fr.ff , ,1:1"1" ":";"1" j";'~"I'"I"I""*H~f""!"''':''i"I''!''I''i''I''h''""r''F +'+'1>01+':"1+' ",,1++>';"[++ 66i 0I16~r 69 17{172 I 7J! 141 7!i 16i 771;~'r~9T;D
,3 0,0 0 IEoR,o,c DoU,R D ,V,I S,I ,0

3 0 0 1 GO TO S 3 o 5 5

3 0 0 5 W,PH SECT ION. ~~, '-"---~~~

~Jl ,0 R Rr.

I
3 U 1 " 1),V· ',K .D, ,He ,R ',OR T .. T,O. ,T.O Ip o.F.P 'K I
30 2 0 ADD 1 TO PAGE~ COUNT.

3 0 2 5 DVA N C E, D M,H~ R E P O.R T 4 L.J N E,S.

3 o 3 0 WR I T E RPT~TITL E. I
I ,3 ,0 3 5 ,nv IN"" nM,&_l\ ',O,R-L~,L .S ,~ 1-'--'

3 0 4 0 WRI T E COL~T.ITL ES
~-~~

I
I

," 0 DV. 1'1&.lL _J2-M, l!r,!l~ !'LQJ1.T 2, _lcLli ~~,~ ,-~ ,-- - ~--- ~----
l __ --'---_ _+______"__ - --.,~

,::I 0,5 ,0 END PH S E "'1' ON,

o 3 ,0 ,;:j_~ l?_3_-"~ 5 5, • OPEN A),_L, XL fblC,S_L' L

,
:1 0 (j 0 Mo F. n ·.np ,r.F • n T 'T

---~-~- - . --
:l 9 (i J PE,H,F o.R 11 W PI! S E C T I 0 N .--- ,~~--~- __ --------'--- L--l

.~-~) M()V E 1, 1.' III L t"i L JJ t; P'l _ L
-~--

L _,.-J_ -.,- "--- c _ ,-.

i' ,U c!..P _ b jJ .U]I <lJo):i- EA,D ,J P,.B.~ ,r',I LE, ,H,E,GLQ,R 12.-,- 1Y' IE IN,D 1".1 ,L ,G,O TO B,3 1 H 0 ..
---~-~ cU-. DiE,P T OF JOB '>,T I eKE T EQ TAL S LA S T DE P T GO TO S 3 1 2 5 I
,

--~

i
_,L-""'~ S ,,,,3,0 B __ ~ " J ~_TP~ ,S,3,0,9 0 '"--'---------I. -'---~ ~~"

3 0 9 0 S 3 0 9 0 A LTE~ S W3 08 5 ,T 0 PR 0 C E ED TO S21 o 0 •

3 0 9 5 GO TO S 3 I I 5

3 1 0 0 S 3 I o 0 T OTA L-·> II RS ~ A,C C R E G~ ,Il RS + A C C-~ 0 T~HRS

,3 I o 5 WR IT E SUMMARY- CAli D •

3 I o 7 S W3 1 o 7 GO TO S 3 1 1 0

3 1 1 0 S 3 1 1 0 A L T~~~L-~L~~~ ~O PROCE ED TO S 3 15 5 •

3 1 1 5 S 3 1 1 5 • ,M oy E DEPT OF JOBc- TICK ET TO LAS T D.E P T D EP T OF WS,.

I
3 12.0

~
MAN,~ COUNT - AC C~lI E G~> HRS ~ ACC~OT~II S ~ 0

3 1 2 5 S 3 1 2 5 ADD 1 TO M:A N--COUNT.

3 1 3 0 ADD R E G,~ H R S TO A.CC~lIEG H S •

3 1 3 5 A Du OT~ HKt:':i 1 U A c,c~u T ~Jift;;

3,14 0 F LINE~COUNT, E,Q,UALS 5 1 IGO TO .S.3 17

3 1 4 5 S3 1 4 5 W RI T.E DE T A I L RECORD.

,3 1 50 S,W3,:t, 5,0~ ~9 S,3,l,55

,3 1 5 5 S 3 I 5 5. ,lIe OVE S,PA,CES TO D,E P T OF WS

I L3,1.6 0 ALT Ell, S W 3 1,5 0 TO PROCEED TO S 30 7 5

r-'3 ,n ,5 1110, .T ,R ,3 ,0 ,7 ,5

r' lU2...Q S3 1 ,7 o • Pi.ERFOR.M: WP,H .L.E.,fiCTION.

3 1 75 GO TO S 3 1 4 5 •

I 3 1 8 0 S 3 1 8 o • A I..T~L"S,"':ld1l, 7 TO PROCE D TO S ,3 1 8 2 •
.~

3 1 8 1 GO TO S3100.

~~3J.~ S .3 1 8 2 ,C,L OSE J 0 B~LFII ;LJ~...Ll..J- S U M.MA R Y F I L E •

3 1 8 5 STOP RUN 11 J T S 11

,

,I,' ,I.!,I· , .I·!"I" 11113114115 "I ,,! .. I "I ,~"I"I "1,,1,, 16127[2sI2913ojllln!nIHIJ5 l6117! 3Ill91 ~Ol 411 ~ll HI •• ! jl HI 01 I' I H I~o I sllulnl HilI 56 jIll 18119160 I~, I 6216J I ~~ 165 uI6116sI6917(j171lnl71IHI751761771781791,0
"

Figure 34. Job Ticket Summary Procedure Division

INTRODUCTION TO GECOM

53

No. A B Not-A Not-B AANDB AORB

1. True True False False True True
2. True False False True False True
3. False True True False False True
4. False False True True False False

Figure 17. Logical Expression Truth Table

No. A B C D

1 Al Bl C1 Dl
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5

Figure 18. Simple Two-Dimensional Table

Lists and tables of data can be stored within a data
processing system for program reference also, per­
mitting the programmer to instruct the program to
perform "table look-up" operations. Such tables
are stored in series within the system instead of in
the grid-like manner illustrated above. The same
table in the data processor might appear as a list,
shown in Figure 19.

Even though the table data is stored as a long list,
the programmer can still readily specify the re':'
quired table data in essentially the same manner as
a clerk would in instructing another clerk how to
use the table first shown. The clerk would specify
the table name, then the horizontal row and vertical
column headings: TABLE 1, row 3, column C. The
GECOM programmer does the same thing in a simi­
lar shorthand:

TABLE"-1 (3, 3)
meaning TABLE"'I, row 3, column 3.

Lists, tables, and matrices can all be represented
in GECOM source programs and are referred to
generically as arrays. A list is a one-dimensional
array; a table, two-dimensional.

A three-dimensional array can be depicted graphi­
cally as a series of two-dimensional planes; as

shown in Figure 20. Three-dimensional arrays could
also be represented in storage as a series of sequen­
tial lists (one for each plane) like that described for
the example above.

Array s are assigned identifying names by the pro­
grammer. To identify array values, subscripts are
used to specify rows, columns, and planes.

One-dimensional list = A (I)
Two-dimensional table = A(1,J)
Three-dimensional table = A(1,J,K)

Subscripts can be written as arithmetic expressions,
if need be, containing other subscripted arrays, and
nested to up to ten deep in anyone procedure state­
ment.

LIST (A+C)
RATE (A-B*C, L(1,J),X)

In the second example A-B*C is the i-subscript,
L(1,J) is the j-subscript, and X is the k-subscript
for a matrix called RATE. Parentheses are always
used to enclose subscripts which must immediately
follow the array name.

Figure 19. A Two-Dimensional Table in Storage

~~D ~~~ __ IN_T_R_O_D_UC_T_IO_N __ TO __ G_E_CO __ M

31

3110 S3110. ALTER. ...

This statement sets SW3150 to proceed to S3155
the next time it is processed. SW3150 handles
the group suppression of printing of DEPT~ NO.
When a new department is detected at 3OSO, it is
necessary to print that department number from
working storage, but immediately after, blanks are
moved to that working storage field (part of the
Detail Record) and the MOVE of blanks must be
bypassed until the next new department is en­
countered.

3115 S3115. MOVE.

This statement places the contents of the memory
location assigned to hold the job ticket department
number to the memory locations assigned to hold
the last department number and the working
storage department number. The LAST~ DEPT
is for comparison with the department of the cur­
rent Job Ticket to determine a change of depart­
ment at 3080, while the department of working
storage is to plovide llie Uepal'llllent number for
the hrst pnntmg ot a detaIl record for a new
department, and blanks afterward.

3120 MAN~COUNT=

This is an assignment statement that sets to zero
the memory locations reserved for the named
field.

3125 S3125. ADD.

The man count memory location is increased by
one.

3130 ADD.

The two named fields are added and the result
replaces the previous value of ACC ~ REG ~ HRS.

3135 ADD ..•.

The two named fields are added and the result
replaces the previous value of ACC- OT~HRS.

3140 IF ...

The contents of the LINE~COUNT memory loca­
tion are compared with the constant, 51. If they
are equal, control transfers to procedure state­
ment S3170; if they are not equal, the next state­
ment in sequence is taken (3145). LINE~
COUNT = 51 indicates that the last line of a
printer page has been printed and a new page
(and new headings) must be started.

3145 S3145. WRITE ..••

The DETAIL RECORD, defined in Data Division
statements 4150 through 4180, which includes

DEPT, MAN~NBR, NAME, JOB~CODE, REG"­
HRS, and OT"-HRS fields, is printed as a line
by the high-speed printer.

3150 SW3150. GO TO. • . .

This is another program switch similar to SW3085
and SW3107. It governs whether the detail record
print line contains an actual department number
or blanks.

3155 S3155. MOVE.

This statement replaces the contents of the work­
ing storage DEPT field with blanks.

3160 ALTER. ..•

This statement changes the object of the GO state­
ment at SW3150 from S3155 to S3075 to bypass
S3155 and 3160 until a new department is read.

3165 GO TO

This statement unconditionally transfers control
to S3145.

3170 S3170. PERFORM

Like statement 3065, this sentence transfers con­
trol to the WPH SECTION beginning at 3005.
Upon completion of this section, control automa­
tically reverts to the next statement in sequence,
3175. This is used to head up a new page after the
capacity of the preceding page has been filled by
a department's records.

3175 GO TO

This statement unconditionally transfers control
to S3145.

3180 S3180. ALTER. ..•

This statement changes the object of the GO state­
ment at SW 3107 from S3110 to S3182, so that
CLOSE will occur after the final summary card
is punched.

3181 GO TO ••

This statement unconditionally transfers control
to S3100 to compute the final summary card TOTAL
--- HRS.

3182 S3182. CLOSE. ...

This statement terminates processings of the
JOB---- FILE and the SUMMARY ---- FILE. The card
counts for the card reader and the card punch
are printed out on the console typewriter.

~~D ~~~ ___ IN_T_R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M

55

In preparing the source program, the programmer
may have difficulty in keeping track of codes that
of themselves have no meaning. To provide a refer­
ence term, he can assign names to them, thusly:

HOURLY = 0
WEEKLY = 1

MONTHLY = 2

Once names are assigned, they can be used in pro­
cedure statements within the source program. Such
names as those described above are called condi­
tional names for convenience. In actuality, they are
special data names, and are formed subject to the
same limitations.

CONSTANTS

Data names are generally assigned by the systems
programmer to kinds of data, rather than to specific
values, because the actual value of the data named
is generally a variable (from record to record, for
example) or possibly an unknown to be computed by
the object program.

Occasionally (even frequently), the programmer will
need to place va rious kinds of specific data in the
program - data which remain the same throughout
the program. Such constants are designated as
literal constants, numeric constants, and figurative
constants.

Literal constants are those the programmer intends
to use in the program exactly as written. They may
be any combination of up to 30 (or 83, depending
upon where used) letters, numbers, and symbols of
the GECOM character set. To uistinguish them from
other names, they must be enclosed in quotation
marks:

MOVE "FILE~NAME" TO COLUMN~HD.

Literals can be used in output fields to generate
headings. They cannot be used in arithmetic calcu­
lations.

Numeric constants are comprised of the numerals 0
through 9, plus or minus sign, the letter E for
floating-point, and a decimal point. They can be
used in three forms of arithmetic calculations:
fixed-point, integer, and floating-point.

Fixed-point numerics can contain up to 11 digits,
excluding plus or minus sign, and a decimal. Typical
fixed-point numerics are:

+2.308
0.03

-853.001
9.11

Integers must not exceed 5 digits:

2308
3

85300
911

For floating-point computations, numerics can be
written with mantissas of up to nine digits (one of
which must be the left of the decimal) and an expo­
nent between +75 and -75. The largest and smallest
floating-point numbers that can be represented are,
respectively:

9.99999999E+75 and 0.00000001E-75

If any numeric constant is enclosed in quotation
marks, it loses its numeric value and becomes a
literal constant.

The constants, 0 through 9 and space (or blank)
have been defined within the General Compiler and
assigned names. This permits the programmer to
use the names within his source program without
defining them. These pre-named constants are
called figurative constants and are:

o ZERO or ZEROES
SPACES

1 ONE(S)
2 TWO(S)
3 THREE(S)
4 FOUR(S)
5 FIVE(S)
6 SIX(ES)
7 SEVEN(S)
8 EIGHT(S)
9 NINE(S)

Figurative constants may be used in the singular to
denote the constant itself or in the plural to imply a
string of constants.

EXPRESSIONS

The programmer combines words and symbols into
procedure statements to direct computer operations.
To facilitate the formulation of such statements
showing the relationships and combinations of data
names, conditional names, and constants, he has the
assistance of arithmetic, relational, and logical ex­
pressions.

An arithmetic expression is a sequence of data
names, numeric constants, and/or mathematical
functions that are combined with symbols which
represent arithmetic operations.

Operations and functions available to the programmer
and their proper GECOM form are shown in Figure
15. They are listed in priority order, from highest
to lowest. All of the listed functions are readily
available as part of the GE- 225 standard subroutine
library and need not be generated during source
program compilation or manually by the program­
mer. Previously-prepared subroutines materially
reduce compilation time and programmer effort.

The natural priority of the table can be overridden
by parentheses. Parentheses cause the evaluation to
be performed from within the innermost set of

~~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

29

3185 STOP RUN "JTS"

This statement is used to generate object program
coding for halting processing. In the form used
here, the results will be

1. Program halts

2. END is printed by the console typewriter.

3. The literal "JTS" is printed by the console
typewriter.

IDENTIFICATION DIVISION PREPARATION

This division enables the programmer to label the
source program and provide program identification
in the output Edited List.

The Identification Division is prepared on the Gen­
eral Compiler Sentence Form, as illustrated in Fig­
ure 35.

Entries for the Job Ticket SUlllmary problem are ex­
plained:

1000 IDENTIFICATION DIVISION.

This mandatory heading indicates that entries fol­
lowing are for program identification only. The
name should begin in column 8 and be followed by
a period.

1005 PROGRAM-- ID. JTS.

This entry is mandatory; the name, PROGRAM ~
ID, should appear beginning in column 8 and fol­
lowed by a period. The actual program name,
JTS, can consist of up to nine typewriter charac­
ters followed by a blank, a comma, or a period
and can be indented any number of spaces. This
name will appear as part of the heading of each
page of the Edited List.

1010 AUTHOR. GE CODER

This entry is optional. If used, the sentence name
should start in column 8 and be followed by a
period. The sentence can be indented as desired,
contain up to 30 BCD characters, and ended with
a period. If provided, the author's name appears
on each page of the Edited List.

1015 DATE COMPILED. JUL. 17

This entry is optional. It can contain up to 30
characters followed by a period. If provided,
the compilation date appears on each page of the
Edited List.

1020 INST ALLA TION.
1025 REMARKS .•••

These two sentences, as well as a NEXT-­
PROGRAM and a SECURITY sentence, are op­
tiooal. H ttSed, they can contain any infOrmatIOn
that the programmer wants to appear in the Edited
List.

The Identification Division has no effect upon the
compilation of the object program, other than that
of appearing in the Edited List as described.

PRODUCING THE OBJECT PROGRAM

Upon completion of the GECOM forms for the source
program, the data forms are transcribed to standard
punched cards to form the source program deck and
organized as shown in Figure 36.

'04,
l>­

~rz,
oli,.

.o~
~-.,;

rz,v

~ ... "

rz,"
f1>-~

~rz,
,,0-

G~

Figure 36. Source Program Deck Organization

A special GECOM call deck is placed before the
source program deck and the cards are ready for
input to the GE-225 via the card reader.

The minimum GE-225 system configuration for com­
piling the source program is:

GE-225 Central Processor (with 8192 words of
core storage)
Console Typewriter
Card Reader
Card Punch
High-Speed Printer
Magnetic Tape Controller
Four Magnetic Tape Handlers
Five Magnetic Tape Handlers (optional)
Six Magnetic Tape Handlers (optional)

The GECOM Master Tape is mounted on the first
magnetic tape handler on the system and includes a
library of subroutines that might be required to com­
plete the compiled object program. The source

~~D ~~go __ I_NT_R_O_D_U_C_T_IO_N_T_O __ G_EC_O __ M

57

VERB

ADD

ADVANCE

ALTER

~(Assignment)

CLOSE

DIVIDE

ENTER

EXCHANGE

GO

IF

MOVE

MULTIPLY

NOTE

OPEN

PERFORM

READ

STOP

SUBTRACT

VARY

WRITE

EXAMPLE

ADD TOTL~RECVD TO ON~HAND~QTY

ADVANCE PAY~REGISTER 20 LINES
(to slew or skip printer paper)

ALTER SENT~25 TO PROCEED TO SENT ,33,
(to change a previously established sequence of operations,)

QTY~ON~HAND = OLD~QTY + NO~RECVD
(to assign an evaluated arithmetic expression to a specified field)

CLOSE PAYROL~FILE
(to terminate processing of a file)

DIVIDE NUMBER INTO TOTAL GIVING AVERAGE

ENTER GAP AT ROUTINE~3
(to permit insertion of General Assembly Program coding in a GECOM source
program,)

EXCHANGE OLD~TAX, NEW~TAX
(to transpose the contents of lWO fields)

GO TO SENT~10
(to depart from the normal sequence of operations)

IF LINE-COUNT EQ 58 GO TO ADVANCE~PAGE.
(to test a condition and transfer to another operation if condition is satisfied)

MOVE TOTAL TO SAVE~AREA
(to transfer data to another location)

MULTIPLY 0, 18 BY PAY GIVING TAX

NOTE THIS SENTENCE IS USED FOR CLARITY.
(to permit insertion of explanatory text not intended for compilation)

OPEN ALL INPUT FILES
(to initiate file processing)

PERFORM FICA-COMP SECTION
(to cause execution of a routine in the desired sequence and then return to
the sentence following the PERFORM statement.)

READ TIME-CARD RECORD
(to make input file records available to the program)

STOP
(to halt processing of the object program permanently or temporarily.)

SUBTRACT RECEIPTS OF TRANSAC~FILE FROM ON-ORDER-QTY OF
ORDER-FILE GIVING ADJ-ORDER-QTY, IF SIZE ERROR GO TO ZERO-RTN.

VARY CHK-AMT FROM 1 BY 1 UNTIL CHK~AMT GR 5
(to initiate and control the repeated execution of the sentence it precedes.)

WRITE RECORD-l OF FILE-6
(to permit output of data)

Figure 14. GECOM Verbs

~~D ~~~ __ I_N_TR_O_D_U_C_T_IO_N __ TO __ G_EC_O __ M

27

The Object Listing includes an "Input/Output
Coding" print-out showing all input/output file
tables, control coding, and service routines.
A complete listing of this subsection for the
sample problem requires 439 line entries. Part
of the Input/Output Coding list is shown in
Figure 46.

The final print-out of the Object Listing and the
Edited List is "Location Assignments for GECOM
Common Constants," Figure 46. This print-out
contains the memory locations for object program
constants and the compiler-assigned symbols for
the constants. For the sample problem, the COln­

plete constant listing contains 138 entries.

@~ 0 ~~ ~ _______________________________ I_N_T_RO_DU,;..C,;..T_IO,;..N_T..;.,O..,;G_E_C.:..-OM

59

required subroutines which the operator has pre­
viously extracted from the library of subroutines
provided. At the user's option, required subroutines
can be appended to the object program automatically
or manually during compilations.

GECOM LANGUAGE ELEMENTS

Because the GECOM system was developed with
COBOL in mind as the basic programming language,
the GECOM language elements most closely resem­
ble those of the COBOL language. Also, because the
illlellt is to provide English-language programming,
GECOM elements parallel those of English.

GECOM has a basic vocabulary consisting of words
and symbols; it has rules of grammar or syntax;
and it has punctuation symbols for clarity. In each
case, there is greater simplicity than in English:
the vocabulary is small; the rules of grammar are
simple, yet precise; the use of punctuation is lim­
ited. These are true because the demands placed
upon the user arc kept simple ami ullaltl!Ji~uous.

The source programming language IS reqUlred to
state facts and give instructions clearly and specifi­
cally; it is a language of command, not narration,
and thus consists primarily of verbs and nouns.
These can be formed into simple and complex sen­
tences usually intelligible without special training,
although sentences acceptable to the General Com­
piler cannot be written without familiarity with the
grammar.

Words and symbols are the tools of the GECOM
programmer and are composed of individual letters,
numbers, and special characters. The basil: charac­
ter set of GECOM and equivalent GE-225 character
codes are illustrated in the accompanying table,
Figure 13. Special character sets are available for
the printer.

Many of the basic characters, in addition to being
used in words, have special meanings for GECOM;
these will be discussed where appropriate.

Words, in GECOM, are divided into two major
groups - names and verbs.

VERBS

As in English, verbs denote action; unlike English,
GECOM verbs are never taken in the passive VOice,
the narrative or declarative sense, or in any tense
other than the present tense. Each verb that the
programmer uses in the source program (except the
verb NOTE) will have some effect in the object
program.

Most verbs will be reflected directly in the machine­
language coding of the compiled obj ect program;
others do not appear in the object program, but do
act with the compiler to construct the object pro­
gram.

25

Certain words that, in English, are not verbs are
considered as such by the General Compiler. The
most commonly-used and most useful of these is the
word, IF, which is used in expressing conditions,
relationships, and comparisons. For example, in
the expressions:

IF NOT END OF FILE, GO TO
on

IF A EQUALS B, GO TO ..

IF causes a comparison between the actual condi­
tion and the stated END OF FILE condition or, in
the second example, causes a comparison between A
and B. Such near-verbs will be discussed as if they
were verbs.

The GECOM verbs and examples of how each might
be used are listed in Figure 14.

NAMES

Most words in the GECOM source program will be
names. The programmer is preparing' a program for
hallllLilli!, dati., but is not concerned with the actual
data itself; he is more concerned with preparing data
manipulation procedures, but once they are written
they are only of as much importance as the data they
manipUlate. For these reasons, and to take advan­
tage of the leverage that GECOM provides, the
programmer will refer to data and previously written
procedures by name whenever possible.

Names can be readily grouped by type and fall within
these groups:

1. Data Name s
2. Procedure Names
3. Conditional Names
4. Constants

DATA NAMES

Data names represent data to be used in an obj ect
program, and are programmer-assigned, not to spe­
cific data, but to kinds of data. For example, in a
file processing application, data names would be
assigned to all input and output files, such as:

MASTER~ FILE
TRANSAC TIONS
PRINT~FILE

etc.

and, within a file, records would bear data names,
such as:

STOCK~RCD
PAY~RCD

INV""-'RCD~1

etc.

INTRODUCTION TO GECOM

SOU

3145
3150
3155
3160
3165
3170
3175
3180
3181
3182
3185

4000

(SEQ

4005
4010
4015
4020
4021
4022
4023
4024
4025
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4500
4505
4510
4515
4520
4525
4530
4535

GECOM LISTING OF JTS PAGE 002

GE CODER JUL 17

R C E L 1ST I N G (CON T.)

S3145. WRITE DETAIL RECORD. 0310
SW3150. GO TOS3155. 0320
S3155. MOVE SPACES TO DEPT OF WS. 0330

ALTER SW3150 TO PROCEED TO S3075. 0340
GO TO S3075. 0350

S3170. PERFORM WPH SECTION. 0360
GO TO S3145. 0370

S3180. ALTER SW3107 TO PROCEED TO S3182. 0380
GO TO S3100. 0390

S3182. CLOSE JOB FILE, SUMMARY FILE. 0400
STOP RUN 7JTS#. 0410

DATA DIVISION.

GAP T DATA NAME QUALIFIER F RPT B J E MS LS DATA IMAGE)

FILE SECTION
OUTPUT FILES.
OOOFD SUMMARY FILE.
000 R SUMMARV-CARD

F LAST DEPT
F MAN COUNT
F ACC-REG HRS
F ACC-OT HRS
F TOTAL HRS

001FD DMH REPORT.
000 R RPT-TITLE

L

L
F PAGE COUNT

001 R COL TITLES
L

L
002 R DETAIL

F DEPT WS
F MAN NBR
F NAME
F JOB CODE
F REG-HRS
F OT HRS

INPUT FlIES.
002FD JOB FILE.
000 R JOB-TICKET

F MAN-NBR
OOJ F DEPT

F NAME
F JOB CODE

05A F REG-HRS

P

P

P

P

Figure 38. Edited List

xx B(5)
999B(29)
9(6)V9 B(4)
9999V9 B(5)
9(?)V9 B(12)

BBB #DEPARTMENT MAN HOUR R
EPORT#
B(42) #PAGE#
B ZZZ9

B(7) #DEPT MAN NUMBER NAME

B(18) #JOB REG-HRS OT-HRS#

B(n xx BBB
X(5) B(6)
A(21) B
XX BB
ZZZ.9 BBB
ZZ.9

X(5)
XX BB
A(21)
xx B(?)
999V9

@~ 0 ~~~ ____________________________ I_NT_R_O_D_UC_T_IO_N_T_O_G_E_CO_M

61

The Data Division Form, Figure 8, is used exclu­
sively for describing data to be used in the object
program. Headings are provided to guide the proper
placement of data. These are discussed in the later
section, Data Division Preparation.

The Sentence Form, Figure 9, is used for the
preparation of data for the Identification, Environ­
ment, and Procedure Divisions. Headings, which
would add little, are omitted. Rules for Sentence
Form preparation are few and simple.

Where applicable, such rules are discussed in the
section, "Application of Basic G ECOM," along with
the preparation of the four divisions of the source
program. The fourth major tool provided by the
GECOM system, is the General Compiler itself.
Examination shows considerable similarity between
the General Compiler program and a complex bus­
iness data processing object program.

1. The General Compiler operates upon input:
the source-language program.

2. Compiler processing consists of repetitive
runs of a set of instructions: the General Com­
piler.

3. It produces an output: the object program.

4. It produces reports: the Edited List and error
messages.

Figure 10 illustrates, in broad terms, the relation­
ships between the programmer-produced source pro­
grams, the General Compiler, the computer, and the
output object program.

Up to this point, the General Compiler has been
discussed as if it were a single program, and it
can still be considered as such. Conversely, it can
also be considered to be a series of sequential pro­
grams as illustrated in Figure 11. Note that there
are five major groupings: Transformer, Reformer,
Assembler, Editor, and Subroutines.

The transformer phase translates the source pro­
gram into an intermediate internal language suitable
for processing, prints out Identification and Environ­
ment Divisions as required, groups and organizes
Procedure and Data Division material for further
processing while checking for validity and consis­
tency, prints error messages, screens out unessen­
tial optional words, and initiates the preparation of
the object program.

The reformer phase is essentially executive in that it
calls forth from the generator library (also a part of
the Compiler) those routines required to produce the
object program.

1. Transformer Phase

2. Reformer Phase

3. Generator Phase

4. Assembler Phase

5. Editor Phase

6. Object Program
Subroutine Library

Figure 11. General Compiler Program Organization

The assembler phase translates from the inter­
mediate language, assembles the coding into machine
language, and produces the completed object pro­
gram either in punched cards or on magnetic tape.

The editor phase provides the documentation of the
program in the form of the Edited List. This
includes a print-out of the entire original source
program, a merged list showing the generated sym­
bolic coding and the machine-language coding, and
cross- reference tables. Additionally, it lists, from
the master list of subroutines belOW, those required
to complete the object program. Examples of the
Edited List are included in the section, "Application
of Basic GECOM."

The subroutine library is a collection of previously­
prepared subroutines common to most object pro­
grams that may be required to complete the object
program. While these could be produced during
compilations, to reduce compilation time and avoid
repetitive processing during compiling, the General
Compiler shows (on the Edited List) all such sub­
routines which will be needed when the object
program is run. A special program loading routine
will place into memory the object program and the

~~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ T_O_G_E_C_O_M

23

GECOM LISTING OF JTS

GE CODER

REF E R E N C E TAB L E S

PROCEDURE NAME TO GAP SYMBOL

(GAP PROCEDURE NAME)

A01 S3055
A03 S3075
A07 S3090
A08 S3100
All S3110
A09 S3115
A05 S3125
A15 S3145
A13 S3155
Ale. S3170
A04 S3180
A16 S3182
A06 SW3085
A10 SW3107
A12 SW 3150
A02 WPH

NAMES OF SUB-ROUTINES REQUIRED

(GAP SECTION NAME)

ADV
FLX
FXP
RCS
RLC
TYP
ZAM
ZBN
ZCB
ZED
ZNB
ZNN
ZOT
ZSC
ZSG
ZUA

GAP SYMBOLIC TO OCTAL LOCATION

(GAP OCTAL GAP OCTAL GAP

OOA 01363 OOJ 01402 OOS
OOV 01714 OOWOO 01664 OOWE

OOZOO 02040 01A 01366 01J
01U 01737 01V 02007 01WOO
01W 01755 01X 01406 01Z00

OCTAL GAP OCTAL

01110 OOTCP 01713
01675 OOW 01664
01403 01S 01120
02032 01W01 02034
02076 01 ZO 1 02120

Figure 40. Edited List

PAGE 004

JUL 17

GAP OCTAL GAP OC TAL)

OOTXT 01712 OOU 01646
OOX 01406 OOY 01406

o ncp 02006 01TXT 02005
01W02 02036 01WE 01772
01Z02 02133 02A 01370

~~D ~~go ___ I_N_TR_O_D_U_C_Tl_O_N_T_O_G_EC_O __ M

63

N

GENERAL. ELECTRIC
COMPUTER DEPARTMENT, PHOENIX, ARIZONA

PROGRAM

PROGRAMMER

SEQUENCE
NUMBE~

~I"I'I'I' 7 "1'\101" 12]13]1T'

,

,

I , I

~~

I I I I

I I,I,\,I,!. 7 "1,11Oi" 12113\14!15

"1171"1 "1 10 i"I"I"I"I"

,

,

,

LJ--L-

,,117! "I "I ,0[111;,1"1,,1,,

GENERAL COMPILER SENTENCE FORM

"1 17 1"1"1,°1"1"1++ 'i'±"i"H"i"i"I+'

I"" =j I,",""mM

+~H49I'~-5IE 5J-]~5 ~;;fs"-f>~~Tj62l~ +7!'+1701~l"171174H 1·1 '~~f~80!

---L~_~

I ----'---~~
, I

~~
,

, ,

, , I~

-
I ~

I I I

, , --"---------l-~...--...-__ ~L-.-._~~ ,

-'---

,

~ L----'---------. _~_ ~ -----'--_-l..~_~

.L.--l-~~ ~---~- ----+----'--------~ I ~

I I I I ~~
,

,--'- ~---1---L-~_ ~~ ____ L--.l ___ ---+_ --.L-__ J_----L-----L---t-.-_J ~_..L.__L_j _ _1_------L-- I

,

'--'- , , , ~~~~ --'-- , , I I

, I I I I I , I

, ~, I ~-' ~.-~~--'--- ---"--'-'----"---'-- I

26127l28! 29\ 3~131l32133l]4j35 "ill! ,,1,,1401 "I "1,,1,, I" 46j47!~aj4915o i Sit 521511155 "1,,1,, 159160 I., 1621631 .. 1" "!,,1,,1 .. 1701,,1,,1,,1,,1,,1,,177[,,1,,1,,

Figure 9. The GECOM Sentence Form

GECOM LISTING OF JTS

GE CODER

o B J E C T LIS TIN G (C 0 N T.

01175
01176
01177
01200
01201
01202

0001450
0721142
0000006
0001450
0101405
030140S

3050 END WPH SECTION.

LOA
SPB
OCT
LOA
ADD
STA

OJ3
AOV
0000006
OJ3
pc6
PCb

01203 2601203 A02 BR U .{\..o

3055 S3055. OPEN ALL FILES.

3u60

3065

3070

0120 1+
01205
01206

0721646
0721737
u/:-'1'I61

AOl SPB
SPB
SF' a

MOVE 0 TO PAGE COUNT.

01207 0001452
01 210 0301 363

LOA
STA

PERFORM WPH SECTION.

01211 0721145 SPB

MOVE ZZ TO LAST JEPT.

01212 0001457
01 21 3 030 1 Lea 3

LOA
STA

OOU
U1U

2U

OJ4
OOA

A02

OA5
01J

3075 S3075. READ JOB FILE RECORD IF END FILE GO TO S3180.

01214
01215
01216
01217

0001315
0001214
2701571
0721511

A03 LOA
LOA
STO
SPB

A04
,', - 1
02T
02W

J UL 17

3080 IF DEPT OF JOB TICKET EQUALS LAST DEPT GO TO S3125.

01220
01221
01222
01223
01224
01225
01226
01227

0001403
2000314
0300654
0001402
2000314
0200654
2514002
2601262

3085 SW3085, GO TO S3090.

012302601231 A06

LOA
EXT
STA
LOA
EXT
SUB
BZE

01J
EXB
XYZ
OOJ
EXB
XYZ
A05

BRU A07

3090 S3090. ALTER SW3085 TO PROCEED TO S3100.

Figure 42. Edited list

PAGE 007

0110

0120

0130

0140

0150

0160

0170

0180

0190

@~ 0 ~~~ ______________________________ IN_T_R_O_D_UC_T_IO_N_TO_G_E_CO_M

65

PROGRAM I DATE
PROGRAMMER ICOMPUTER PAGE

SEQUENCE
NUMBER

'\'\'\'\ 'I' 7 81'\ 10 111 12 11]1 14 115 16l17IUI19120121122I23jz4j25 26\27]2111 29 \]0 \31132/331 U]l5 36[37!38139140141142_143144]45. 46\4714814'150151\52 [354155 56!sr]S8!S9l'16H-3!64!U 66[67[68169170] 71 172 ! 731741751711 71<!181"180

1 0 PROC EDUR E D I ~ I S I 0.1'1

20 S.E N T ~1 OPEN IN P,U T TRANS ~F I L ,M,S T R ~ F I L ~IN OUTPUT MS TR ~,F,I L -,O,U,T ,H,SP ~,R,E,P,T

30 SE,~T ~2 R,EA D TRAl'i S-~FIL

40 READ ,MS TR ~ F I L~ IN, I F END GO TO FIN AL~STOP

50 U' ,T R.A N S AC ~ COD E, EQUALS 1 GO TO S H I PME NT. E Q,U ALS 2 G,O TO

,5,1 R,E,C,E, T ,p T EiQ UA LS 3 GO TO CH,ANGE E,Q U A L S 4 GO ;r'O D,E L E T,E,

60 , STOP F I L~,MAI NT
10 ,7,0 SEN ,T ~ 3, PER FOR M, DE D~COMP SE C TION US I NG DED OF TR AN S,~ F I L G I ~ING

TOTAL~DED. ,

, , , , , , , , , , , , , I I , ,
, ,

, , , ,

---L-......l.- _-...1_ I , I , , , ,

~ , , I , , , , , , , , , ,

-, , , , , , I __ J_-L _L I , , , I , , l.---l.-_-'--_ .l....-.....L--1- , ,
,-~

Figure 7. Procedure Division Layout

GECOM LIST! NG OF JTS PAGE 009

GE CODER J UL 17

o B J E C T L r S TIN G (C o N T.

01265 1001370 OLD 02A
01266 0721143 SPB FXP
01267 0101376 ADO 05A
01270 0023025 OCT 0023025
01271 0721143 SPB FXP
01272 0300025 STA 021
01273 1301370 DST 02A

31 35 ADD OT HRS TO ACC OT HRS. 0290 -
01274 1001372 OLD 03A
01275 1101400 DAD 06A
01276 1301372 DST 03A

3140 IF L H!E COUNT EQIJ.LI.LS 51 GO TO S3 1 70. 0300

01277 0001405 LOA PC6
01300 0201454 SUB OJ5
01301 2514002 BZE A14
01302 2601313

3145 S3145. WRITE DETAIL RECORD. 0310

01303 0722036 A15 SPB 01W02

3150 SW3150. GO TO S3155. 0320

01304 2601305 A12 BRU A13

3155 S3155. MOVE SPACES TO DE PT OF WS. 0330

01305 0001460 A13 LOA OA6
01306 0301404 STA 02J

3160 AL TER SW3150 TO PROCEED TO S3075. 0340

01307 0001214 LOA A03
01310 0001307 LOA ~'- 1
01311 2701304 STO A12

3165 GO TO S3075. 0350

01312 2601214 BRU A03

3170 S3170. PERF ORM WPH SECTI ON. 0360

01313 0721145 A14 SPB A02

3175 GO TO S3145. 0370

01314 2601303 BRU A15

3180 S3180. ALTER SW3107 TO PROCEED TO S3182. 0380

Figure 44. Edited List

@~D~~~
INTRODUCTION TO GECOM

67

5. Elements. In a few cases, for convenience,
fields are further subdivided into "elements."
For example, a part numbering system could be
so organized that portions of the part number had
added significance. For example: 18253702, NPN
Transistor; 18 m~ electrical, 2 meaning a
component (not a subassembly), 53 meaning tubes
and solid-state devices, and 702 to identify the
particular item.

The relationship between these various data levels
are readily shown:

FILE
RECORD

GROUP 1
GROUP 2

FIELD
FIELD

ELEMENT
ELEMENT

FIELD
GROUP 3
GROUP 4

As mentioned earlier, all data to be used or created
by the obj ect program must be defined. A typical
Data Division for GECOM is shown in Figure 6;
giving representative examples of data definitions.
The Data Division for a representative problem is
presented and explained in the section, "Application
of Basic GECOM". The relationship between Data
Division and input data is also shown in Figure 6.

The Procedure Division, Figure 7, indicates the
steps that the programmer wishes the object pro­
gram to accomplish. These steps are expressed in
English words, symbols, and sentences that have
meaning to the General Compiler. Although the
steps described in the Procedure Division closely
parallel those of the eventual object program, it is
misleading to consider the Procedure Division alone
to be the source program. The source program is
not complete without Data, Environment, and Identi­
fication Divisions.

Sentences in the Procedure Division invariably con­
tain verbs to denote the desired action, names (of
data, constants, etc.) or operands to show what is to
be acted upon, and various modifiers for clarity.
Sentences can be grouped into sections to facilitate
reference and permit the performance of a series of
sentences out of the normal sequence.

Procedure statements or sentences can be simple:

ADD 0.5, RATE OF PAY '"'-FILE.

This will create coding in the object program to
add the constant 0.5 to whatever value (of the RATE
from the PAY'"'-FILE) had been read into the com­
puter. Or statements can be highly complex, involv­
ing several clauses and modifiers, such as:

IF PART----NUMBER OF MSTR----INVNTRY IS
LESS THAN PART,,-,NUMBER OF TRANSAC­
TIONS GO TO WRITE"-'MASTER, IF EQUAL GO
TO UPDAT",MASTER, IF GREATER GO
TO NEW----RECORD.

This statement would result in object program cod­
ing to cause the following:

1. The part number of the master inventory
record (previously read in) would be compared
with the part number of the current transaction
record.

2. If the part number of the master inventory
record is:

a. the lesser of the two, program control is
transferred to a routine called WRITE----MAS­
TER, which causes the master inventory record
to be written out as part of a master file,

b. equal to the transaction part number, pro­
gram control is transferred to a routine called
UPDAT"'MASTER, which modifies the master
inventory record in some manner,

c. the greater of the two, program control
transfers to a routine called NEW----RECORD,
which causes a new record to be added to the
master file.

Procedure Division sentences are performed in the
sequence in which they appear, unless that sequence
is modified by a "GO" or a "PERFORM" statement
as exnlained in the next section of this chanter.
"GECOM Language Elements". - ,

Typical Procedure Division statements are illus­
trated in Figure 13. Note that sentences can be
named (for reference to them by other sentences)
or unnamed. Lines 20, 30 and 70 have been named
SENT----1, SENT'"'-2, and SENT'"'-3, although more
descriptive names can be assigned at the program­
mer's discretion. More detailed information for
preparing a source program Procedure Division is
covered in the section, " Application of Basic
GECOM".

In addition to LANGUAGE and ORGANIZATION, the
third item that the GECOM system provides for the
programmer is a set of forms to facilitate source
program preparation and documentation. Two basic
forms are provided, the General Compiler Data Divi­
sion Form, number CA-14, and the General Com­
piler Sentence Form, number CA-13.

Both forms are designed to make it easy to translate
the programmer-prepared source program informa­
tion into a machine- readable form, such as punched
cards or paper tape. Each horizontal line of either
form provides for up to 80 units of information,
corresponding to 80 punched card columns.

~~D ~~go __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

17

GECOM LIsn NG OF JTS

GL CODER JUL 17

o B J E C T LIS TIN G (CONT.)
INPUT-OUTPUT COD I N G (p art i a 1 Listing)

01100 LOC 1100
01100 0000262 02S ALF 02S
01101 0000010 OCT 10
01102 2500200 RCD 128
01103 2500400 RCD 256
01104 2000001 EXT 1
01105 0000000 OCT 0
01106 0000000 OCT 0
01107 0000000 OCT 0

01461 ORG BIN
01461 0001504 02U LOA 02W-5

LOCATION ASSIGNMENTS FOR GECOM COMMON CONSTANTS (Partial Listing)
(ASSEMBLED IN FRONT OF PROCEDURE CODING)

01144
00572
00252
00252
00254
00255
00256
00257
00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272
00273
00274
00275

TV2
IXY
ZER
ZOO
ZOl
Z02
Z03
Z04
Z05
Z06
Z07
z08
Z09
Z10
Z 11
Z 12
Z17
Z18
Z19
Z20
z24
Z25

END OF GECOM LISTING

BSS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
378
170
ZER
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

Figure 46. Edited list

PAGE 011

@~D ~~~ ____________________________;,..IN;.;,.T;.;,.RO:.;D:..;U:..;C.,;.TI;,.:.O __ N __ T.,;.O...:G_E.,;.CO.:....M

69

procedure. In addition, standardization of divisions,
sections, procedure statements, and other program
elements facilitates communication between pro­
grammers and permits program debugging in the
same language in which the program was written.

The four divisions of a GECOM source program are:

1. The Identification Division

2. The Environment Division

3. The Data Division

4. The Procedure Division

The Identification Division, Figure 4, provides the
programmer with the means for labelling and des­
cribing the source program in English-language
form. In addition to the program name, author (pro­
grammer) and date compiled, this division can include
other pertinent information, such as next-program­
in-sequence, security classification, location, and
explanatory comments as needed. During compila­
tion, this data becomes the label for the object
program and is automatically reproduced on output
listings, such as the Edited List.

Programmer use of the Identification Division is
flexible. The only portion required by the General
Compiler is the division name and the PROGRAM ID
sentence; all other sentences are at the program­
mer's option.

Preparation of the Identification Division is discussed
further in the section, Application of Basic GECOM.

The Environment Division, Figure 5, provides a link
between the source program and the data processing
equipment. It defines the computer system configu­
ration and its relationship to the source and object
program. The General Compiler depends upon the

PROGRAM

GENERAL REQUISITIONS (8)
I PROGRAMMER G. E CO ER D

SEQUENCE
NUMBER

Environment Division to provide information which
associates input and output equipment with the data
names for each file to be used in processing. The
information in the Environment Division is speCified
by the systems programmer in English language
clauses.

In preparing the Environment Division, the program­
mer enters the information in a predetermined way.
This format is sectionalized under four sentence
headings as described below:

1. The OBJECT,.....COMPUTER sentence, the first
entry, is used to describe the computer on which
the object program is to be run.

2. The I,.....O~CONTROL (input/output control)
sentence, the second entry, specifies nonstandard
error and tape label checking procedures. In
addition, programming control is facilitated by
permitting the speCification of program rerun
points, memory dump aSSignments, and identifi­
cation of multifile magnetic tape reels.

3. The third sentence, FILE CONTROL, identi­
fies input/output files and provides for their
assignment to speCific input/output units.

4. The COMPUTATION",MODE sentence assigns
the internal mode of calculation. Sentence use is
optional; it is used only when it is desired that
computation occur in the floating-point mode,
either programmed or in the optional Auxiliary
Arithmetic Unit.

The accompanying example illustrates typical entries
describing the environment for a representative pro­
gram. Entry I 0 describes the data proceSSing
system for which the object program is intended:
a GE-225 system with two memory modules (8192
words of core storage), one card reader, one card

'1'1'1'1 'I' 7 8191101'1 12113114115 "117118/,,/'./21 /22/"/ " /" 26/27/'~ '~'.l'~ '~"I"I'5 3'1 37 [,,1"1"1,,1,,/"/
1 I DE N T I F,I CATION DIV I S ION

10 PROG RAM~ I D • R EQ~ R"l N ~ 8 •

20 AU TH OR G E CODE R

30 DATE ~C O,N PILED. MA~ 1 0 • 1 9 6 2 •

I 4 0 INST A LLA TION. GE C OMP DEPT P IHO EN IX
I
! 5,0 Is.E , en IR, T,'r,Y ,TT ,N ,r. ,T, ,A ,!,! .'l ,T 1li',T E P-L.....!--'----l_
I

RE,MA F,M R E,Q CAR Ins I 6 0 RKS USE D AT A
I

Figure 4. Identification Division Layout

~~D ~~go __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

15

APPENDIX 1. THE GENERAL COMPILER VOCABULARY

Words and terms that appear in the following list
must be considered to be part of the General Com­
piler vocabulary and must not be used by the systems
programmer in forming data or procedure names,
nor may they be used in any manner in a source
program other than as provided by the GECOM
Language Specifications.

Where warranted, many of the terms have been de­
fined or explained. Terms not so explained were
deemed to be self-evident in meaning. In addition,
the body of the manual contains many examples that
illut;trate the ut;e uf IllUt;t uf the vOl:abulary terms.

ABS - Absolute value, or magnitude, of a number,
regardless of sign.

ACCESS - Part of descriptive name Mass Random
Access Data Storage.

ADD - To add two quantities and store the sum in
either the last-named field or the specified field.

ADVANCE - Tn vertically skip or slew the printer
paper.

AFTER

ALL

ALTER - To modify a sequence of operations speci­
fied in one or more GO sentences.

AND - A logical operator.

ARE

ARRAY - A multi-valued field that may be refer­
enced by name and subscript. An array may be
one, two, or three dimensional and may have cor­
responding number of subscripts. An array must
be defined in the Array Section of the Data Divi­
sion.

ASSIGN - To direct the placement of a file or pro­
gram to an input-output media.

ASSIGNMENT - To evaluate an arithmetic expres­
sion and assign the result to a field. To equate
data names.

AT AN - Are tangent. A mathematical function that
may be used within arithmetic expressions. Cal­
culated in floating point arithmetic.

AUTHOR - An optional Identification Division sen­
tence name.

BEGIN - Entrance point to a source program sec­
tion.

BEGINNING

BGN ~ FIL'"'- LABL - A tape record preceding each
file of a multi-file tape.

BGN~TAP---..LABL - The first record on any tape
except in multi-file tape.

BINARY - Pertaining to the binary number system,
as opposed to decimal or binary coded decimal.

BLOCK - See Glossary

BUFFER - A device which stores data temporarily
during transfer operations.

BY

CARD

CLOSE - To terminate processing of input or output
reels and files with optional rewind and/or lock.

COMMON ("- STORAGE) - An optional Data Division
Section name.

COMPUTATION ---.. MODE - An optional Environment
Division sentence name.

CONSTANT - An optional Data Division section
name.

CONTAINS

CONTROL - Interpretation and execution of oper­
ations.

CONTROL KEY - The field or fields by which a
record is identified.

COpy - To duplicate from another area.

UB~D ~~go ___ I_NT_R_O_D_U_C_T_IO_N __ T_O_G_E_C_O_M

71

THE BASIC GECOM SYSTEM

GENERAL

For clarity and simplicity, only the Basic GECOM
sy stem is described in this section. Brief descrip­
tions of extensions to Basic GECOM are provided
in the section, "Extension to GECOM". These ex­
tensions, for the most part, expand the capabilities
of GECOM to encompass recent language develop­
ments.

Implementing a data processing application on a
computer involves a broad procedure that has been
outlined as follows:

1. Define the problem

2. Determine the procedure to be followed in
solving the problem

3. Prepare the computer program, including test­
ing

4. Run the program on the computer with appro­
priate input data.

If the programmer has at his disposal the auto­
matic coding system of GECOM, the above pro­
cedure becomes:

1. Define the problem

2. Determine the procedure to be followed in
solving the problem

3. Prepare the source program in problem­
oriented language

4. Compile the object program from the source
program, using the General Compiler

5. Machine-test (debug) the object program

6. Run the object program on the GE-225 with
appropriate input data.

At first glance, automatic coding seemingly com­
plicates the task of data processing. However, as
shown in Figure 3, the burden on the programmer
is no greater, and often is appreciably less. For ex­
ample, the step from item 2 to item 3, above, is
greatly facilitated by the GECOM-provided ability to

express procedural steps in English language state­
ments. Additionally, each statement the programmer
writes is several times more powerful than the
machine-language or symbolic instructions that he
would otherwise use. Also, he is materially assisted
in the machine-test or check-out phase, item 5,
by the assistance provided by the General Compiler
in the form of detailed print-outs of error conditions
and of the complete compilation process. The print­
outs are as easy to read as the programmer­
prepared procedure statements of the source pro­
gram.

This section is devoted primarily to discussion of
item 3, source program preparation, using the
GECOM system. Incidental references will be made
to the other areas, such as the compilation process,
as required.

Assuming that a well-defined data processing prob­
lem has been assigned to a systems programmer, he
determines the detailed procedures for problem
solution and generally prepares a flow chart describ­
ing those procedures. Flow charts can be broad or
detailed, depending upon the problem and the pro­
grammer. Invariably, they are sufficiently detailed
to serve as a guide for programming the problem
solution. The section, " Application of Basic
GECOM." illustrates typical flow charts.

GECOM SYSTEM COMPONENTS

With these preliminaries out of the way, the pro­
grammer is ready to prepare the source program.
What does the GECOM system provide him to assist
in this task?

First, it provides him the necessary language that
eliminates tediOUS machine-language or symbolic
coding. Language is discussed in the following sec­
tion, "GECOM Language Elements".

Second, it provides him with a standard source pro­
gram organization, which corresponds to the format
followed by the compilation output. GECOM source
programs are partitioned into four divisions, in­
tended for separate and independent preparation.
This facilitates changes; if the procedure must be
modified, it can be done with minimal effect upon
data parameters; if data changes occur, the data
parameters can be changed without affecting the

@~ 0 ~~ ~ _______________________________ I_N_T_RO_D:...U:...C:...T_IO:...N_TO.=--G_E_CO..:-M

13

LABEL

LESS

LINE COUNT

LINES

LN - Natural lugarithm. A mathematical function
that may be used in arithmetic expressions. Cal­
culated in fluating- puint arithmetic.

LOCK - To prevent a tape from being read or
written by program control.

LOG - Common Logarithm. A mathematical func­
tion that may be used in arithmetic expressions.
Calculated in floating point arithmetic.

LS - LESS than. Used in relational expressions.

MAGNETIC - Part of descriptive name, Magnetic

NO

NOT - May be used in relational expressions. In
logical expressions, it is an exclusive negative.

NOTE - To PBnnit the prDgrammer to write exphttt~
atory material in the source program for
inclusion in the Edited List, but excluded from
the compilation.

OBJECT~COMPUTER - An optional Environment
Division sentence name.

OBJECT~-PROGRAM - See Glossary

OF

OMITTED

ON

Tape Handler. ONE(S) - A figurative constant usee! in procedure

l\IASS - Part uf desl:riptive name, Mass Random Al:­
cess Data storage.

MEMORY - Main storage, core storage.

MODE - A system of data presentation or proces­
sing within the information processing system.

MODULE(S) - Refers to core memory size; one
module is 4096 words of storage.

MOVE - To transfer a constant, element, field
group, record, or array to a constant, element,
etc. of the same size.

MULTIPLE

MULTIPLY - To multiply two quantities and store
the result in the last-named field or the specified
field.

NEGATIVE

NEQ - Not equal to.
sions.

Used in relational expres-

NEXT~PROGRAM - An optional Identification Divi­
sion sentence name.

NGR - Not Greater Than. Used in relational expres­
sions.

NINE (S) - A figurative constant used in procedure
sentences.

NLS - Not Less Than. Used in relational expres­
sions.

sentences.

OPEN - Tu initiate the processing of input and out­
put files. Checks or writes labels and does other
input-output functions.

OPTIONAL

OR - A logical operator

OUTPUT - A mandatory Data Division section name.

PAGE

PAPER - Pertaining to High-Speed Printer forms.

PERFORM - To cause the specified section to be
executed. Control automatically reverts to sen­
tence following the PERFORM.

PLUG(S) - Refers to connectors on the controller
selector to which input-output unit controllers are
attached.

POSITION

POSITIVE

PRINTER(S) - Pertaining to High-Speed Printer.

PROCEDURE - A GECOM Division name.

PROCEED

PROGRAM - A complete sequence of data process­
ing instructions. May refer to an object program
or a source program.

PROGRAM~ID - A mandatory Identification Divi­
sion sentence name.

~~D ~~~ ___ I_N_TR_O_D_U_C_T_IO_N __ T_O_G_E_C_O_M

73

GECOM PROGRAMMING LANGUAGE

GENERAL

All compiler programs accept source progTams pre­
pared in specialized lang'uage and produce an object
program ready for computer processing. Unlike
most compilers, GECOM is not restricted to an un­
duly limited acceptable lang'uage. The General
Compiler language is actually based on several
languaf~es.

The G EC OM language evol vee! primarily from two
recent major data processing lang'uages, the
businE'ss-"riclltl'(i COBOl ami thF> :llE'.oritillll-oripntPri
ALGOL. Both languages were developed for solving
widely different problems, although from the view­
point of compiler development they have similar
characteristics. These similarities made it possible
to provide in one complete and compact package a
variety of proven programming techniques. COBOL,
which satisfies the needs of the broadest spectrum of
data processing applications, provided a basic vocab­
ulary (words and symbols), a basic set of rules of
grammer or syntax, and punctuation for clarity.
ALGOL, to accommodate the demands of scientific
applications, comnoutes Boolean expressium:i,
floating- point arithmf'tic, and the ability to express
equations concisely.

Many computer applications require neither the ex­
tensive file proceSSing facilitated by COBOL, nor
the profound mathematics that ALGOL provides, but
do involve massive numbers of sequential decisions.
To cope effectively with these decisions, General
Electric devised structure tables for expressing the
relationship of decision parameters. These decision
structure tables, and the language in which they are
expressed, have been termed TABSOL.

TABSOL has been incorporated into the language ac­
cepted by the General Compiler and can be used in
combination with the COBOL and ALGOL-like capa­
bilities of GECOM.

In addition to file processing, mathematical applica­
tions, and complex decision series, much program­
ming effort is and has been devoted to applications
involving report generation. The Report Writer
format and language, fully compatible with the Gen­
eral Compiler, gives a fully documented method for
preparing reports with minimum programming and

debugging effort. The Report Writer is an extension
of GECOM and derives much of its advantage from
the GECOM system,

Both TABSOL and the Report Writer are discussed
in the section, ., Extensions to G ECOM".

GECOM language is not compartmentalized into the
component languages discussed above. In a given
source program, it is possible to use COBOL state­
ments c,!nLlining ALGOL-like algebraic notations:
l'ABS(JL cieclslOn structure tables can be lllter­
spersee! with procedure statements: and the Report
Writer can be used for report generation. The
source program can be prepared USing one or all
facets of the GECOM language, In addition, if the
application so requires, GAP coding sequences can
be inserted at will.

COBOL

Because the G ECOM language is based primarily on
COBOL, some discussion of COBOL and the history
of its development is warranted.

In 1959, a meeting was called in the Pentagon by the
Department of Defense to consider the desirability
and feasibility of establishing a common language for
the adaptation of computers to data proceSSing. Rep­
resentatives from both users and manufacturers were
present. The consensus was that the project was
definitely both desirable and feasible. As a result,
this Conference on Data Systems Languages
(C ODASY L) established three committees, Short
Range, Intermediate Range, and Long Range, to
work in four general areas:

Data Description
Procedural Statements
Application Survey
Usage and Experience

In September, 1959, the Short Range Committee
submitted a preliminary framework upon which an
effective common business language could be built.
After acceptance by the Executive Committee of
CODASYL, the report was published in April, 1960,
by the Government Printing Office as . 'COBOL-A

@~ D ~~ ~ ___________ ~ _____________________ i_N_T_RO_DU_C_T_i_O_N_T_O_G_E_C_O_M

11

WORKING ("-STORAGE) - A mandatory Data Divi­
sion section name.

WRITE - To display a limited amount of information
on the console typewriter.

-To release a record or group to an output
file.

ZERO(S) - A figurative constant used in procedure
sentences.

ZEROES - SAME as ZERO(S)

~~D ~~go __ ~IN~T~R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M

75

Advanced compilers are not limited to accepting
simply symbolic instructions, but can accept state­
ments approximating ordinary English sentences or
mathematical equations. Most of these compilers
arenighly restrictive in the vocabulary and syntax
permissible and in the equipment that can be used.
The GECOM system is the first to utilize a General
Compiler program to permit both English-language
and algebraic programming and, at the same time,
to embody provisions for structured decision tables
and automatic report writing. Additionally, the Gen­
eral Compiler has built-in provision to expand its
language capability to encompass other source lan­
guages yet to be constructed.

Many of the advantages of compiler programs, par­
ticularly those associated with the General Compiler
are pointed out in the section, "Advantages of
GECOM". Because the balance of this manual is
devoted to describing the GECOM system, it would
be redundant to further discuss compilers in g'eneral.

Hrn.\'('V('l', by virtue nf the ch~ln~'ing rcquircn1C'nts
placed upon the programmer who may be engaged

in GECOM programming, some consideration should
be given to his job title.

Tl,e average data processing application in\ftJhfeg
two broad phases. One phase, defining the problem
and determining the general method of solution, is
generally called systems analysis. The other phase,
involving the actual preparation of the program for
computer entry, is variously called coding or pro­
gramming, although in the strict sense coding is only
a subordinate part of programming. In some instal­
lations, the two phases are performed by separate
individuals; in others, both are performed by one
person.

The programmer or systems analyst who is thor­
oughly trained in GECOM principles can communi­
cate more readily with the computer through the
General Compiler and, simultaneously, view the
overall application in proper perspective. For this
reason, the title, systems prop;rammer, is suggested
~ll1cl usee! in the balance of this lllanual tv dc;;cribc
the GECOM-trained programmer.

UB~D ~~go ___ '_N_TR_O_D_U_C_T_'O_N __ T_O_G_E_C_O_M

9

APPENDIX 2. SUMMAR)' GUIDE fOR GEC-eM -FORM PREPARATWN-

The following pages briefly summarize the basic
rules to be followed in preparing GECOM source
programs on the General Compiler Sentence and
Data Division Forms. A copy of this appendix is
used to provide novice programmers with a con­
venient guide and a ready reference while becoming
familiar with GECOM.

~~D ~~~ ___ IN_T_R_O_D_UC_T_IO_N __ T_O_G_E_C_O_M

77

Descriptions of constants are also accepted by as­
sembly programs. Constants, such as the English
word TAX or decimal numbers like 365 are accepted
by tilil aSSBmbly 1}T4gram ami CDnverted atitematieal·
ly into their machine language equivalents. A legend
generally accompanies each description of a constant
in the source program to indicate what kind' of con­
stant is being described. The legend ALF could be
used, for example, to indicate alphabetic constants
and DEC for decimal constants.

An assembly program produces the machine language
versions of constants and instructions in the object
program in such a way that they can be loaded into
memory at a later time. Generally, a list is also
provided, displaying the symbolic descriptions side­
by-side with the output produced in the assembly
procf'ss for each. The list, C:J.lled J.n J.ssembly
listing, provides an important c!oeumentation of the
program. It often contJ.ins, also, such aids to pro­
gram checkout J.S indications of errors in clpserip­
tiull~ ami list!:; of sy mb()lic: addresses.

The If'gf'nds, such as ALF and DEC, thJ.t J.re J.C:­
cepted by the assembly program, but do not stand
for actual machine operations, are called pseudo­
codes, or pseudo-operations. It is common for an
assembly program to provide many of these for the
programmer to use. Each extends the ability of the
assembly program to prepare or document pro­
grams.

The symbolic descriptions of instructions, together
with the pseudo-operations that are accepted by an
assembly program, constitute what is called an as­
sembly language, or a symbolic language. Although
there are numerous exceptions, there is generally
one output in machine language for each input in
assembly language. For this reason, assembling is
often considered to be a one-to-one process.

SymbOlic language programming using assembly pro­
grams, while considerably simpler and faster than
machine language programming, is still highly
machine-oriented in that the programmer must have
a thorough knowledge of machine-language program­
ming. It is common for source programs written
for assembly program processing to result in object
programs that are as fast and compact as are
equivalent programs prepared directly in machine
language. Thus, because symbolic language pro­
grams are as efficient as machine language pro­
grams, symbolic language programming has almost
entirely supplanted the machine language as the
basic programming media.

Figure 2 illustrates object program preparation,
using an assembly process. First, the programmer
prepares the source program in symbolic form, using
simple mnemonic codes for the desired machine
operations and storage of program constants. Sec­
ond, the source program is converted to a form

suitable for machine entry. The most common
representations are hole patterns in punched cards
or paper tape or bit patterns on magnetic tape.
Usually the programmer prepares his instructions on
forms from which a keypunch operator can punch the
cards or paper tape for direct entry to the com­
puter or, alternately, for conversion to magnetic tape
and the input to the computer.

Next, the assembly program is stored in the com­
puter memory and the source program is input to
the computer. The computer, under assembly pro­
gram control, produces the output -- an object pro­
gram ready for proceSSing.

At any time after assembly, the object program, now
in machine language form, is input to the computer
along with data to be processed. The resultant
output -- processed data in the form of punched
eJ.rds, pJ.per or magnetic tJ.pe, or printt'd rt'jl()rts -­
is nnw ready fnr use external to the computer.

The assembly system available with the GE-225, as
previously mentioned, is known as GAP, for GenerJ.I
Assembly Program. For further details, refer to
the "GE-225 Programming Reference Manual."

AUTOMATIC CODING LANGUAGE PROGRAMMING

As pointed out above, the assembly program per­
mits an already-skilled programmer to prepare pro­
grams with a minimum of errors by eliminating
many of the details of program "housekeeping." It
also provides a more readable version of machine
language, thus reducing the need for extensive anno­
tation of machine coding. However, it does not
eliminate the need for computer and machine lan­
guage knowledge.

The compiler program permits the programmer to
take another large step away from machine-oriented
programming and toward problem-oriented language
programming. Compiler programs place even more
of the burden of obj ect program preparation on the
computer by permitting the programmer to state the
desired operations in sentence form or in equation
form, depending upon the application and the com­
piler program.

Compilers have several advantages over assembly
programs. The language of the compiler is easier
for the programmer to learn and easier for him to
use, as it is more closely related to his problem.
The programmer using a compiler usually does not
need as intimate a knowledge of the inner workings
of the computer as does the assembly programmer.
Programming is faster; the time required to obtain
a finished, working program is greatly reduced be­
cause there is less chance for the programmer to
make a mistake and because most normal errors are
detected by the compiler.

~~D ~~~ ___ '_N_T_RO __ DU_C_T_'_O_N_T_O_G_E_C_O __ M

7

"'" ID

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION

1 11

DATA DIVISION. Starts in column 8, ends with per od No other entrieS.

A RRA Y SEC T I ON. }

TRUE~FALSE SECTION. Optional sections as required by

a period.
program. Start in

INTEGER SECTION. column 8 and end with

FILE SECTION. Identifies characteristics of data in nput and output

files of the object program. Starts in column 8 and ends
with a period. Mandatory sect 011.

OU T PUT F I L E S. In t rod u c e sou t put f i 1 e des c r p t ion sSt art sin col u mn 8

and ends Wilh per od.

INPUT FILES. Introduces nput le descr pt OilS. Starts in column 8

and ends wi h a period
WO R KIN G ~ S TOR AGE SEC T ION. I n t rod u c e s w 0 r kin g S tor age des c rip t ion s

Starts in column 8

COMMON~STORAGE SECTION.}
CONSTANT SECTION. Optional

Start in
FD File description. Name follows

characters or less.

and end s wit h a period

sections as required

column 8 and end wit h
i n columns 1 1 through

Mand at 0 ry

by program.

period.
22 1 2

are held in the storage element along with the data
to be processed. This not only permits step-by­
step data manipulation -- it enables the machine to
manipulate its own instructions as if they were
data. Thus, it is possible for a program to modify

---itself (if prepared with tills ifiteHtioo:} and sel-ee­
tively repeat desired portions.

All information processing systems have a reper­
toire of permissible instructions; these vary in
number and scope from one machine type to another
and between manufacturers. For any given system,
however, instructions can be grouped by general
function:

1. Arithmetic
2. Decision
3. Input! Output
4. Control

Arithmetic instructions, as the name implies, enable
the data processor to perform a rithmetic such as
addition, subtraction, multiplication, and division.

Decision instructions enable the system to compare
certain data with some standard (other data, per­
haps, or the status of some data processor element)
and select alternate courses of action.

Input and output instructions permit the reading in
and writing out of data via peripheral input/output
units.

Miscellaneous control instructions vary most widely
between machines and depend largely upon machine
design. In general, simpler machines require more
control instructions to accomplish a given function
or process than do more complex machines.

Even in the most complex machine, individual in­
structions are very simple operations and a number
of them must be used in the proper order to perform
a given function.

For many reasons, most modern information proces­
sors are designed to operate internally in some form
of the binary (two-digit) number system, or a binary­
based system, rather than the conventional decimal
(ten-digit) system. Certain computer elements are
bi-stable devices (that is: conducting or noncon­
ducting, on or off, open or closed) with the two
possible conditions expressed as "0" and "1",
corresponding to "off" and "on", respectively. The
"0" and "1" represent the two digits of the binary
number system and are commonly called bits, for
binary digits. By grouping computer elements and
assigning values to them according to their posi­
tion in the group, all numbers may be expressed
in binary numbers; for example:

9 = 1001 18 = 10010 523 = 1000001011

wherein the I-bits, by virtue of their position, have
values corresponding to the powers of two (1, 2,
4, 8, 16, 32, 64, 128, 256, 512, etc. from right to
ieft}. 'l'he~, of -course, as in the decimal·~
tem, denote zero value and .establish position. Thus,
the first 1-bit following the equal sign in the exam­
ple, 9 = 1001, has a weight of eight (the third power of
two), and the rightmost I-bit has the weight of one
(the zero power of two).

A somewhat similar system permits the represen­
tation of alphabetic and special symbols in coded
binary form. In fact, the system described so
briefly here is only one example of many binary
numbering schemes in use and is used primarily
to show the concept and illustrate the complexity
of programming in a pure machine language. It
is rarely necessary to program most modern com­
puters directly in binary or machine language form.

As a final example of machine language program­
ming, a simple routine or program for a hypothet­
ical binary computer is used. Assume that two
numbers are in the main storage of the computer
at locations arbitrarily called 1000 and 1001. It
is desired that the two numbers be added and the
result be placed in another storage location, 1002.
The binary coding for this program might appear
as follows:

(1) 00000000001111101000
~) 00001000001111101001
(3) 00011000001111101010

The internal computer circuits would interpret such
a program thusly:

(1) Load the contents of storage location 1000
into the arithmetic unit.

(2) Add the contents of storage location 1001
to the contents of the arithmetic unit.

(3) Store the new contents of the arithmetic
unit in storage location 1002.

Obviously, pure binary programming is slow and
tedious, partly because of the difficulty in keeping
track of long strings of bits. One innovation that
alleviates this difficulty is the use of an inter­
mediate numbering system between the pure binary
and the more familiar decimal system.

If the binary numbers in the example above are
grouped into three's, as illustrated belOW, and
repetitively assigned the values of the first three

~~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ TO __ G_E_CO __ M

5

00

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

F I n d cat e s a fie 1 d o f an

Fie 1 d n a me i s entered i n

3 11

npu record.

col umn s 1 1 hrough 2 2 .

P

U

1

2

Assumes e 1 d i s packed o r unpa ck ed

un e s s confli c t s wit h a higher eve
en ry group, record, o r file).

Assumes one -wor d bin a ry numeric d a t a

I f the d a t a i s not nteger a scaling
factor m u s t be supp i e d i n the d a t a

im age col u mn s .

Assumes
n u me r ic
see not e

two-word
d a t a

above.

non-standard
data is not

binary
integ er,

S The preced ng image is to be used for

this entry Cannot be used f preceding

image has a lor 2 in column 37.

:~ If any nput groups or
repeated consecutively

ields are
the numb e r

of imes repeated is entered here ..

THE INFORMATION PROCESSING SYSTEM

Although the effective use of the GECOM system does
)t require a detailed knowledge of machine-language

programming or-mrta processing systlmIs, smrre such
knowledge is desirable, and perhaps is essential if a
valid evaluation of the system is to be made.

Data processing needs have resulted in the develop­
ment of a great variety of computers. While the
physical form and the specific logic flow differ
widely, general functions and information flow are
similar.

The modern computer or information processor
consists of five elements as illustrated in Figure 1:
Input, Output, Storage, Arithmetic-Logic, and Con­
trol. Communication with the computer is possible
only through the input and output elements.

The term, input clement, is a functional concept, not
tlle !lallie uf d u!lit uJ eljuijJlUe!lt. Only thruu~h the
input element can data enter the processing system.
A system may have one or more of several input
media: punched cards, punched paper tape, magneti­
cally-encoded tape, or specially-printed documents.
Not all computers have available all input media.

The output element makes it possible for the system
to perform a useful function; without an output in­
telligible to the user, a data processor is useless.
Output can take one or more of these forms: punched
eards, paper tape, magnetic tape, printing, or any of
several special-purpose, machine-controlled forms,
such as magnetic-ink encoded (MICR) documents.

Input data must be presented to the system in such a
way that the system can manipulate and store it in­
ternally. For this reason, data is fed into the system
in a form that can be readily converted to the inter­
nal electronic language of the system (machine
language). Similarly, output data is reconverted to
an externally-usable form after processing.

The storage element is functionally subdivided into
two general types of storage. One, characterized by
limited capacity, high speed, and relatively high cost,
is referred to as main storage, memory, core stor­
age, core memory, or simply "core". The latter
three terms are popular because tiny magnetic cores
are the storage medium in many data processors.
The other general type of storage, characterized by
high capacity, lower speed, and lower cost, is called
auxiliary storage. Auxiliary storage may take al­
most any form, with punched cards and magnetic
tape, discs, and drums being the most common.

The arithmetic-logic element contains the circuits
that perform the manipulations of data required by

the task or application. It adds, subtracts, multi­
plies, diVides, shifts and rearranges data, and makes
decisions, according to the purpose of the program.
Capabilities vary widely between different types of
computers.

The control element decodes and interprets the
stored instructions in proper sequence to achieve the
purpose of the program.

In a given compter, it can be difficult to recognize
physically the separate storage, control, and
arithmetic-logic elements. Functionally, they are
separate and distinct elements in all data processing
systems and should be so considered. The input and
output elements are more readily recognized; more
often than not they are packaged as separate units,
such as card readers, paper tape readers, document
handlers, magnetic tape handlers, card punches, pa­
per tape punches, and printers.

GENERAL PROGRAMMING CONCEPTS

Pl'ogranlllling i::; eSSentially tilt, fralllill~ uf a sd uf
directions for a computer. A set of such directions
prepared for, and to be communicated to, a computer
to guide and control it for a particular proceSSing
task is a program.

A subroutine, on the other hand, is a set of directions
that is generally incomplete (by itself) in the sense
that it usually is only part of a program. Programs
frequently contain subroutines for directing the per­
formance of discrete portions of an overall data
proceSSing application.

Programs and subroutines, in turn, consist of in­
structions, which are basic and are the smallest
meaningful part of a program. Thus, instructions
are the basic tools of the programmer from which
he frames the set of directions a computer is to
follow.

The phrase "to direct a computer" indicates com­
munication, and communication implies language. In
practice, a programmer may use several languages
in preparing programs, depending upon the computer.
Digital computers are constructed and organized so
that they can accept coded representations of letters
and numbers, and interpret them as directions to be
followed in processing data. Programming lan­
guages generally fall into one of three categories,
depending on how closely related they are to the
computer requirements for accepting information.
These three categories are: machine language,
symbolic language, and automatic coding language.

MACHINE LANGUAGE PROGRAMMING

Perhaps the most important characteristics of mod­
ern information processors is the stored-program
concept. In the information processor, instructions

@~ 0 ~~ ~ _______________________________ I_N_T_RO D_U_C_T..;.IO:.;N..;...;.T.:..O..,:G..:E..;.CO.:.;.;,;M

3

~

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)
5 11

FL Fie 1 d literal. Any 1 ega 1 d a t a na me. Used for n am e d fields wit h f i IX e d
values. Ru 1 e s t hat a p ply t 0 fields a 1 s 0 a pp 1 Y t 0 fie 1 d literals.

Actual value of literal i s enclosed in quotation mar k s i n co 1 umns

5 5 through 8 O.

OUTPUT RECORD ENTRIES:

R

*G

o u. t put r e cor d - N am e i n
entry of a qualifier

columlls 11 through 22; may be qualifi ed
in columns 24 through 35. If record namE;

by
i s

un que, It ne e d not be qua 1 fed.

P Forces

U packed

all
(P)

evels within record to be,
or unpacked (U) except

binary numer c s.

* grou p name in col umn s 11 t hrou gh 22 May be

qua 1 i fer s are nee d ed, fir s t go e sin col u mn s
n ext 1 n e col umn s 24 t h r 0 ugh 3 5 and a til de

qual if ied. If

24 through 35,
in column 7.

P Forces lower levels to be

U packed or unpacked

2

second i n

INTRODUCTION

WHAT IS GECOM?

The GE-225 GECOM system is an advanced and
highly effective method for preparing sets of direc­
tions for the GE-225 Information Processing System.
As a system, it consists of three elements: Lan­
guage, Compiler, and Computer. These three terms
are further explained below.

THE LANGUAGE

A language is, in general, a means of communication.
In the visual form, it usually consists of a set uf
symbols (such as our alphabet), which can be ar­
ranged into meaningful groups (words). Properly
arranged aggregates of these groups or words can
communicate ideas, action, commands, and ques­
tions.

The direction of an automatic information proces­
sing system in the performance of a given operation
requires communication between man and machine.
Just as communication between two men requires a
language intelligible to both, communication between
man and machine requires a common language. This
common language can be machine-oriented (that is,
related closely to the basic means by which the com­
puter accepts and presents information, and requir­
ing tedious translation by man of his directions into
machine-acceptable form), or the language can be
problem-oriented (enabling man to express direc­
tions in a form more convenient to the application
and placing the burden of the translation on the com­
puter), or it can lie somewhere between these ex­
tremes. Machine-oriented and problem-oriented
languages are discussed further in the section,
"General Programming Concepts".

The GECOM language is a problem-oriented language
designed to handle scientific problems as well as
general business information processing. The pri­
mary basis for the language structure is COBOL, the
COmmon Business-Qriented Language for program­
ming digital computers. COBOL is further discussed
in the section, "GECOM Programming Language".

In addition to the capabilities derived from COBOL,
GECOM language incorporates many of the features
of ALGOL, (an ALGOrithmic Language for stating
mathematical computations), such as capabilities to
evaluate complex equations, Boolean expressions,

and mathematical functions. These computations
may be performed in either fixed or floatill.g-point
arithmetic.

Further versatility is provided by the incorporation
of TABSOL and the Report Writer into the language.
TABSOL, for TABular Systems-Oriented Language,
is a system for expressiiig decision logic ilIa simple
tabular form. The Report Writer facilitates report
preparation and improves documentation. T ABSOL
and the Report Writer are discussed in the section,
"Extensions to GECOM".

GECOM language is not limited to the language
capabilities and the extensions mentioned above.
General Compiler versatility permits inclusion of
GAP, the basic symbolic language (machine-oriented
to a degree) of the GE-225 Information Processing
System. GAP, for General Assembly Program, is a
straightforward symbolic assembly system for the
GE-225.

THE GENERAL COMPILER

If communication with the computer is to occur in
problem-oriented language, some means must be
provided to translate that language within the com­
puter into machine-oriented form. A set of
directions for a computer, regardless of the language
in which it is prepared, is called a program or,
sometimes, a .:-outine. A program, manually pre­
pared, is generally termed a source program. A
source program which has been translated into a
machine-oriented program is an object program.
One means of translating a source program into an
object program is to use a specially-prepared pro­
gram (called a compiler) which, within the computer,
operates upon the source program as if it were data
and transforms it into an object program.

The General Compiler (from which the GECOM sys­
tem derives its name) is a unique program specifi­
cally designed to reduce sharply the traditionally
high programming costs associated with the com­
puter applications. GECOM is a highly versatile and
dynamic "program generator"; versatile because it
accepts source programs written in a variety of lan­
guages; dynamic because both the range of languages
and the computer types to which it is applicable can

~~D ~~go __ I_N_TR_O_D_U_C_T_IO_N __ TO __ G_EC_O __ M

1

00
U1

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

7 11,

L Li teral; no name used. All other columns are completed as for
and el ements.

e 1 d s

OTHER OUTPUT RECORD ENTRIES ~ Not used for output entr es.

~ ~ B o r o the r c

levels wit h

(9) t 0 b e i n

unless ower
non - s tan da r d

i n column 4 3

haracter forces lower

n u mer i c d a tad esc r i,p t ion

s tan dar d bin a r y f o. r m

eve 1 For mat i n d i c. ate s
binary data A bl ank

forces BCD data ou,tpu

~ 0:: Forces unpacked data to bel e f
filled or

b 1 a n ~

L (L) justified and zero
R right (R) justified and

lIe d .

ACKNOWLEDGEMENT

"This publication is based in part on the COBOL
System developed in 1959 by a committee COlll­

posed of government users and computer manu­
facturers. The organizations participating in the
original development were:

Air Mat.eriel Command, United States Air Foree
Bureau of Standards, Department of Commerec
David Taylor Model Basin, Bureau of Ships,

U. S. Navy
Electronic Data Processing Division, Minneap()lis-

Honeywell Regulator Cumpanv
Burroughs Cl)rporation
International Business Machine Corpuration
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry Rand Corporation

In addition to the organizations listed above, the
following other organizations participated in the work
of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Coutrol Daia Corporaiion
DuPont Corporation
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Phil co Corporation
Standard Oil Company (N. J.)
United States Steel Corporation

This COBOL-61 manual is the result of contri­
butions made by all of the above-mentioned organi­
zations. No warranty, expressed or implied, is

made by any contributor or by the committee as to
the accuracy and functioning of the programming
system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee,
in C'onnection therewith.

It is reasonable to assume that a number of im­
provements and additions will be made to COBOL.
Every effort will be macle to insurc that the improve­
lllPnts and corrections will be made in an orderly
fashion, with elm' l'Pcognition of existing users'
invl'stml'nts 111 J)l'ogralllmll1g. However, this pro­
tection ean bp positively assured only by individual
impl Ie III len! LJ r s.

Procedures have been established for the main­
tenance of COBOL. Inquiries concerning the pro­
cedures and methods for proposing changes should
be directed to the Executive Committee of the Con­
ference on Data Systems Languages.

Any organization interested in reproducing the
COBOL report and initial specifications in whole
or in part, using ideas taken from this report or
utilizing this report as the basis for an instruction
manual or any other purpose is free to do so. How­
ever, all such organizations are requested to repro­
duce this section as part of the introduction to the
document. Those using a short passage, as in a
book reView, are requested to mention "COBOL"
in acknowledgment of the source but need not quote
the entire section."

~~D ~~go __ I_N_T_RO_D_U_C_T_IO_N __ T_O_G_E_C_OM_

xi

~

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

Position contains an
character, A-Z, or a

alphabeti c
bl an k.

Position contains an nteger 0-9.

Position conta ns a
an ll-row ov erpunch

numeral 0-9 wi th
when negative and

no overpunch when pos t ve.

Posit on contains a numeral 0-9 with

a 12-row overpunch when the field is
posit ve and an ll-row overpunch when
the field is negative.

ndicates an assumed decimal po nt

Neither
occupy

the V or
an actual

the decimal point
field position.

Indicates number following E is a

power of ten to
preceding the E

does not occupy

w hi c h
must
f e I d

the number
be raised.

posit on.

E

9 11,

A

9

R

I

v

E

PREFACE

ABOUT PROGRAMMING

The programming of information processing systems
has traditionally been a costly and time-consuming
part of automatic data processing. In the past, many
applications that otherwise would readily lend them­
selves to data processing techniques were avoided
because of programming costs. Efforts to improve
programming techniques have been directed toward
producing faster, more economical, and more accu­
rate programs by placing more of the burden on the
data proccssing equipmcnt.

Various combinations of symbolic coding systems
(with one-to-one correlation between machine code
and symbolic cOde). macro-instruction coding sys­
tems (with a many-to-one correlation between
machine code and macro-code), libraries of stand­
ardized subroutines, and other innovations were
developed to accelerate programming. Despite these
improvements, programmers still prepared pro­
grams in terms dictated primarily by the computer;
programming languages remained essentially
machine-oriented languages.

Today, compiler programs provide the programmer
with additional leverage. Program coding can be
done in a language more suited to the problem in­
stead of in the purely machine-oriented data proces­
sor language.

The GE-225 GECOM system, an advanced and effec­
tive automatic coding method, provides the next
logical step in programming evolution. GECOM is a
step toward fulfillment of the much-needed total sys­
tems concept--a concept that deems an information
processing system to be an integration of application,
programming, and information processor or com­
puter.

The GECOM system is further characterized by its
applicability to all classes of information processing
problems, its ability to grow, and its inherent pro­
visions for use by future General Electric general­
purpose computers. GECOM permits coding in the
problem languages of business, science, and indus­
try. GECOM can be adapted to future extensions of
existing problem languages as the requirement
arises, without obsoleting programs prepared to
present specifications.

ABOUT THIS MANUAL

This manual is presented as a general information
manual about the GE-225 GECOM system and is
organized to fill the needs of many people having
different levels of familiarity with automatic infor­
mation processing.

For readers with no previous experience in data
processing or computer programming, it is sug­
gested that the entire G E manual be covered.
Persons having such previous experience, but who
are unfamiliar with the GE-225 Information Process­
ing System, are referred to other General Electric
publications, listed below.

Readers already familiar with the fundamentals of
programming can begin directly with the section,
GECOM Programming Language, with no loss in
continuity.

Following the section on GECOM programming lan­
guage is discussion of the Basic GECOM System.
All elements are discussed briefly with the intent
of providing overall familiarity with all aspects of
GECOM.

The next section treats the two major extensions to
GECOM, (TABSOL and the Report Writer), which are
first mentioned in the GECOM programming language
section, but are more effectively discussed after an
understanding of GECOM is achieved.

The reader should not assume that reading this
manual will make him a master GECOM program­
mer. The most effective use of GECOM depends
upon training and application. More detailed infor­
mation concerning the various aspects of the GECOM
system can be found in the following General Electric
publications:

GECOM GE-225 Language Specifications
GE-2~25 General Compiler Operations
Manual, CD225H1

TABSOL GE-225 TABSOL Manual, CPB 147
GE-225 Introduction to TABSOL, CPB
147 A

GAP GE-225 Programming Reference Man­
ual, CPB 126

~~D ~~go __ IN_T_R_O_DU_C_T_IO_N __ T_O_G_E_C_O_M

ix

~

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

Inserts a comma i n correspond ng fie 1 d
positi ons. Aut oma cal 1 y suppressed by
floating dollar s g n s, z e r 0 suppression
asterisk filling.

I f P 0 sit ion 0 c cup i e d b Y Z inn urn e ric
field becomes zero, zero is suppressed

and positi on prints blank.

If P osi on oc cup ed by * becomes ze ro,

*

I f

f

i s p r n ted.

posit on occupied by $

el d becomes zero, move $
in numeric
into t.

Z

*

$ $

END PRO G RA M. The fin ale n try 0 f the d a tad i vis ion m u s

beE ND P ROG RA M s tar tin gin col u m n 8 and
term ina tin g wit hap e rio d .

11 11

SOFTWARE MANUALS

GENERAL ELECTRIC reserves the right to make
alterations, advances, or modifications to the ex­
isting program for reasons of increased efficiency.

vii

APPENDIX 3. SOURCE PROGRAM ORDER FOR COMPILATION

I. IDENTIFICATION DIVISION
PROGRAM""'ID.
NEXT"'" PROGRAM
AUTHOR.
DATE ""'COMPILED.
INSTALLATION.
SECURITY.
REMARKS.

II. ENVIRONMENT DIVISION.
OBJECT"'" COMPUTER.
T "-O"-CONTRO L.
FILE---CONTROL.
COMPUT ATION ---MODE.

III. PROCEDURE DIVISION.
Closed sections and decision tables delimited
by BEGIN -END
Master program

IV. DA T A DIVISION.
ARRAY SECTION.
TRUE~FALSE SECTION.
INTEGER SECTION.
FILE SECTION.
OUTPUT FILES.
INPUT FILES.
WORKING""'STORAGE SECTION.
COMMON"""'STORAGE SECTION.
CONSTANT SECTION.
END PROGRAM.

Mandatory
Mandatory
Optional
Optional
Optional
Optional
Optional
Optional

Mandatory (whether or not any sentences follow)
Optional
Optional
Optional
Optional

Mandatory

Placement mandatory if sections are used.
Mandatory

Mandatory
Optional
Optional
Optional
Mandatory*
Mandatory*
Mandatory*
Mandatory*
Optional
Optional
Mandatory*

* The section heading card is mandatory; further entries under it are optional.

~~D ~~~ __ IN_T_R_O_D_UC_T_IO_N __ TO __ G_EC_O __ M

91

1

2

Data Processing Elements

Source Program Processing with Assembly Programs

4

8

3 Programming Sequence and Task Assignment .. 14

4 Identification Division Layout 15

5 Environment Division Layout. 16

6 Data Division and Related Input . 18

7 Procedure Division Layout. 19

8 The GECOM Data Division Form . 20

9 The GECOM Sentence Form . 21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The Compilation Process .. 22

General Compiler Program Organization 23

GECOM Inputs and Outputs .. 24

GECOM Characters and Corresponding Codes . 26

GECOM Verbs 27

GECOM Arithmetic Operations and Functions . 30

GECOM Relational Expressions 30

Logical Expression Truth Table. 31

Simple Two-Dimensional Table 31

A TWG-Dimensional Table in Storage 31

Graphic Representation of a Three-Dimensional Array

The Report Section of the GECOM Data Division

Report Writer Sample Report

Division Table Format

32

34

24 Sample TABSOL Table in GECOM .

35

37

39

42 25

26

27

28

29

30

Job Ticket Record Sample

Job Ticket Summary Sample

Department Man Hour Report

Process Chart for Job Summary Ticket

Job Ticket Summary Flow Chart I

Job Ticket Summary Flow Chart II

42

43

44

45

46

31 Job Ticket Summary Flow Chart III 47

32 Job Ticket Summary Data Division

33 Job Ticket Summary Environment Division

34 Job Ticket Summary Procedure Division

35 Job Ticket Summary Identification Division

36 Source Program Deck Organization

v

49

52

53

56

57

APPENDIX 4. GLOSSARY

A list of important terms (most of which are used
frequently in the body of this manual and many of
which are encountered frequently in other GECOM
literature) have been included in this glossary.
Most definitions are deliberately brief and are not
intended to be comprehensive; many of the terms
have additional meanings. For more detailed and
more exhaustive listings, the reader is referred to
any of several excellent glossaries of information
processing terminology.

ADIlHF.SS - A sjw('ifi(' j()('ation in stO]"H"P 01' IlIPIlI­
ory. Aetual addresses are numeric. Addresses
used in G EC OM are symbolic, that is, represented
by names.

AHITHMETIC EXPRESSION - A sequence of data
names, numeric literals, and/or mathematical
functions connected by mathematical symbols.

BCD - Binary Coded Decimal; a system for repre­
senting any character of the character set of the
computer uy a group of binary digits.

BEGINNING FILE LABEL - A group of records
(blocks) which identifies a file in a multifile
magnetic tape. It is block 0, the first block of
each file.

BINARY NUMERIC - A digit or group of characters
or symbols representing the total units using the
base two: a number expressed in binary digits
or bits, 0 and 1.

BLOCK - A group of records read from or written
on magnetic tape as a single physical tape record.

BLOCK SIZE - The number of words in a block.

BUFFER - Storage locations used to compensate for
differences in rate of data flow when transmitting
data from one device to another.

CHARACTER - One of a set of basic symbols used
to express data. Includes decimal digits 0 through
9, the letters A through Z, punctuation, and
special symbols.

CONDITIONAL EXPRESSION - An expression that
can be either true or false.

CONDITIONAL NAME - A name assigned to a pos­
sible value of a numeric or alphanumeric field
or element. A conditional name must be de­
scribed in the Data Division.

CONSTANT - A value used in a program without
alteration. Constants are either literal, figura­
tive, or numeric in GECOM.

DATA IMAGE - The characteristics of a data field;
that is, length, content, Sign, and character type
for each position. The data image is used within
thl' Data Division to dPiin(' data input and output.

DATA NAME - A progTammer-assigned word nam­
ing a file, record, field, constant, or other data.
Data names are composed of letters, numerals,
and hyphens, not exceeding 12 characters, and
may be names of records, groups, fields, arrays,
elements, sections, or true-false variables.

ELEMENT - A subdivision of a field. For example,
a date field could contain a DAY element, a
MONTH element and a YEAR element.

FIELD - A unit of data within a record. It mayor
may not be a part of a group.

FIGURA TIVE CONSTANT - A special name repre­
senting specific values [ZERO(S), ZEROES, SPAC­
ES, ONE(S), through NINE (S)] . May be used
in procedure sentences to imply strings of char­
acters.

FILE - A set of records

FIXED-POINT - A number which includes a decimal
point, either between digits or following them
(1.23, 123., or 123.0)

FLOATING-POINT - A number expressed as a
whole number, a decimal fraction, and a power
of ten. (1.287*10-2)

GENERATED FIELD - A field (of data) which is
generated as a result of calculations and is not
input to the program.

INSTRUCTION - A group of symbols causing the
data processor to perform some operation.

INTEG ER (as used in this manual) - A number of
5 digits or less not containing a decimal point.

UB~D ~~~ __ I_N_T_RO_D_U_C_T_IO_N __ T_O_G_E_CO __ M

93

PREFACE , , . ix

About Programming .. ix
About This Manual .. ix

ACKNOWLEDGEMENT xi

INTRODUCTION . 1

What is GECOM? .. 1
Advantages of GECOM
The Information Processing System
General Programming Concepts.

2
3
3

GECOM PROGRAMMING LANGUAGE 11

General ... 11
COBOL , 11

THE BASIC GECOM SYSTEM . 13

General ... 13
GECOM System Components . 13
GECOM Language Elements .. 25

EXTENSIONS TO GECOM. 33

GECOM/Report Writer .. 33
GECOM/TABSOL 33
COBOL-61/GECOM .. 38

APPLICATION OF BASIC GECOM .. 41

General ... 41
Defining the Problem . 41
Plotting the Solution .. 41
Preparing the Source Program 48
Producing the Object Program 57

APPENDICES. .. 71

Appendix 1. The General Compiler Vocabulary 71
Appendix 2. Summary Guide for GECOM Form Preparation. 77
Appendix 3. Source Program Order for Compilation 91
Appendix 4. Glossary 93

iii

~~----~-~-------- ----

--- -~---------- ----

