< e .“\4;,4 P

GECOM

@E-225 |
INTRODUCTION
10

GENERAL ELEcTn

COMPUTER DEPARTMENT{

Ble= 229
ITNOTRODUCTION
GECOM

GENERAL @B ELECTRIC

TTTTTTTTTTTTTTTTTT
OOOOOOOOOOOOOOO

ERRATA SHEET GE-225 INTRODUCTION TO GECOM

In the interests of increased efficiency and capability,
several improvements have been made to the GECOM
system since the publication of the GE-225 Introduction
to GECOM manual (CPB 230).

Major changes are mentioned briefly below. More
detailed descriptions of these and minor changes are
available in the two revised publications:

GE-225 GECOM Language Specifications
GE-225 GECOM Operations Manual

ADDITIONAL FEATURES
Compilation

The current configuration of the GECOM system per-
mits program compilation on GE-225 systems having
four, five, or sixmagnetic tape handlers with commen-
surate reduction in compilation time.

Relocatable Sections

The GECOM system user can now more readily parti-
tion a program into Segments and canthereby compile
and test each segment separately. Use of this feature
requires an appropriate control routine, which can be
a modified version of that used for the main program
segment. Segments can be compiled so that they can
be relocated inmemory when all segments are rejoined
into a single program.

Common-Storage

The COMMON ~ STORAGE Section of the Data Division
has been fully refined to provide for the description of
data tobe stored in memory locations thatare reserved
for shared usage by two or more program segments.

Nested Segments

Provision is made to allow program segmentsor sec-
tions to contain PERFORM sentences which execute
other sections.

“N’’ Controller Compilation

Compilation can be performed using magnetic tape
handlers with one to six magnetic tape controllers, as
specified by the GECOM user.

Sequence Check

At the user’s option, source program card sequence
numbers can be checked.

OCT 1962

Control Transfers

At the user’s option, control transfers based on the
type of current record of an input file (determined by
automatic Control Key tests) are provided. These
transfers are made using statements similar to the fol-
lowing:

1. GO...... DEPENDING ON RECORD
OF file “name.

2. If record~ name GO.....

SOURCE PROGRAM DECK SEQUENCE

To facilitate many of the above changes andto provide
for future improvements and extensions, the organi-
zation of the source program deck has been changed
slightly. The Data Division must precede the Pro-
cedure Division and the END PROGRAM statement
(previously at the end of the Data Division) must now be
the last statement in the Procedure Division.

Source programs which were previously compiled can
be recompiled (if desired) by inserting the Data Divi-
sion cards, less the END PROGRAM statement, before
the Procedure Division and appending a new END PRO-
GRAM statement to the Procedure Division.

EDITED LIST

Minor changes have been made to the format of the
Edited List. For example, the interchanging of Data
and Procedure Divisions described above is reflected
in the Edited List.

Also, the Edited List now provides a count of 1) the
GE-225 words that comprise the required subroutines
and suppliedprogram segments, 2) the words generated
for the main program, and 3) the total of these two
groups of words.

FUTURE CAPABILITY

Currently under field testis an extension of the GECOM
system which enables the compiler to produce object
programs utilizing the 16K memory.

GES

BONTENTS

PREFACE . . . ix
About Programming ix

About This Manual ix
ACKNOWLEDGEMENT o o xi
INTRODUCTION 1
What is GECOM? . . . 1
Advantages of GECOM 2

The Information Processing System 3
General Programming Concepts 3
GECOM PROGRAMMING LANGUAGE 11
General . .. 11

COBOL . .. 11

THE BASIC GECOM SYSTEM 13
General 13
GECOM System Components 13
GECOM Language Elements 25
EXTENSIONS TO GECOM. e, 33
GECOM/Report Writer 33
GECOM/TABSOL 33
COBOL-61/GECOM 38
APPLICATION OF BASIC GECOM 41
General 41
Defining the Problem 41
Plotting the Solution 41
Preparing the Source Program 48
Producing the Object Program 57
APPENDICES 71
Appendix 1. The General Compiler Vocabulary 71
Appendix 2. Summary Guide for GECOM Form Preparation. 77
Appendix 3. Source Program Order for Compilation 91
Appendix 4. Glossary 93

APPENDIX 4.

A list of important terms (most of which are used
frequently in the body of this manual and many of
which are encountered frequently in other GECOM
literature) have been included in this glossary.
Most definitions are deliberately brief and are not
intended to be comprehensive; many of the terms
have additional meanings. For more detailed and
more exhaustive listings, the reader is referred to
any of several excellent glossaries of information
processing terminology.

ADDRESS A specific location In storage or mem-
ory. Actual addresses are numeric. Addresses
used in GECOM are symbolic, that is; represented
by names.

ARITHMETIC EXPRESSION - A sequence of data
names, numeric literals, and/or mathematical
functions connected by mathematical symbols.

BCD - Binary Coded Decimal; a system for repre-
senting any character of the character set of the
computer by a group of binary digits,

BEGINNING FILE LABEL - A group of records
(blocks) which identifies a file in a multifile
magnetic tape. It is block 0, the first block of
each file,

BINARY NUMERIC - A digit or group of characters
or symbols representing the total units using the
base two: a number expressed in binary digits
or bits, 0 and 1.

BLOCK - A group of records read from or written
on magnetic tape as a single physical tape record.

BLOCK SIZE - The number of words in a block.

BUFFER - Storage locations used to compensate for
differences in rate of data flow when transmitting
data from one device to another,

CHARACTER - One of a set of basic symbols used
to express data. Includes decimal digits 0 through
9, the letters A through Z, punctuation, and
special symbols,

CONDITIONAL EXPRESSION - An expression that
can be either true or false.

GLOSSARY

CONDITIONAL NAME - A name assigned to a pos-
sible value of a numeric or alphanumeric field
or element. A conditional name must be de-
scribed in the Data Division.

CONSTANT - A value used in a program without
alteration. Constants are either literal, figura-
tive, or numeric in GECOM,

DATA IMAGE - The characteristics of a data field:
that is, length, content, sign, and character type
for each position, The data image is used within
the Data Division to define data input and output,

DATA NAME - A programmer-assigned word nam-
ing a file, record, field, constant, or other data,
Data names are composed of letters, numerals,
and hyphens, not exceeding 12 characters, and
may be names of records, groups, fields, arrays,
elements, sections, or true-false variables.

ELEMENT - A subdivision of a field. For example,
a date field could contain a DAY element; a
MONTH element and a YEAR element.

FIELD - A unit of data within a record.
may not be a part of a group.

It may or

FIGURATIVE CONSTANT - A special name repre-
senting specific values [ZERO(S), ZEROES, SPAC-
ES, ONE(S), through NINE(S)]. May be used
in procedure sentences to imply strings of char-
acters,

FILE - A set of records

FIXED-POINT - A number which includes a decimal
point, either between digits or following them
(1.23, 123., or 123.0)

FLOATING-POINT - A number expressed as a
whole number, a decimal fraction, and a power
of ten, (1.287*10-2)

GENERATED FIELD - A field (of data) which is
generated as a result of calculations and is not
input to the program.

INSTRUCTION - A group of symbols causing the
data processor to perform some operation.

INTEGER (as used in this manual) - A number of
5 digits or less not containing a decimal point.

INTRODUCTION TO GECOM

Ble=225

93

ILLUSTRATIONS

W 0 N O O b W N =

W W W W W W W NN NMDNDNDDNDDNDN
o 0 A AN~ dvoNoardNRNSBosIaarnreEs

Data Processing Elements 4
Source Program Processing with Assembly Programs 8
Programming Sequence and Task Assignment 14
Identification Division Layout 15
Environment Division Layout 16
Data Division and Related Input 18
Procedure Division Layout 19
The GECOM Data Division Form 20
The GECOM Sentence Form 21
The Compilation Process 22
General Compiler Program Organization 23
GECOM Inputs and Outputs 24
GECOM Characters and Corresponding Codes 26
GECOM Verbs 27
GECOM Arithmetic Operations and Functions 30
GECOM Relationai Expressions 30
Logical Expression Truth Table 31
Simple Two-Dimensional Table 31
A Twe-Dimensional Tablein Storage 31
Graphic Representation of a Three-Dimensional Array 32
The Report Section of the GECOM Data Division 34
Report Writer Sample Report, 35
Division Table Format 37
Sample TABSOL Table inGECOM 39
Job Ticket Record Sample 42
Job Ticket Summary Sample 42
Department Man Hour Report 43
Process Chart for Job Summary Ticket 44
Job Ticket Summary Flow Chart | 45
Job Ticket Summary Flow Chart Il 46
Job Ticket Summary Flow Chart 11l 47
Job Ticket Summary Data Division 49
Job Ticket Summary Environment Division 52
Job Ticket Summary Procedure Division 53
Job Ticket Summary identification Division 56
Source Program Deck Organization 57

APPENDIX 3. SOURCE PROGRAM ORDER FOR COMPILATION

I IDENTIFICATION DIVISION
PROGRAM~ID.
NEXT~PROGRAM
AUTHOR.
DATE~COMPILED.
INSTALLATION.
SECURITY.

REMARKS.

IL ENVIRONMENT DIVISION.
OBJECT~COMPUTER.
I~O~CONTROL.
FILE~CONTROL.
COMPUTATION~MODE.

III. PROCEDURE DIVISION.
Closed sections and decision tables delimited
by BEGIN-END
Master program

IV. DATA DIVISION.
ARRAY SECTION.
TRUE~FALSE SECTION.
INTEGER SECTION.
FILE SECTION.
OUTPUT FILES.
INPUT FILES.
WORKING~ STORAGE SECTION.
COMMON~-STORAGE SECTION.
CONSTANT SECTION.
END PROGRAM.

* The section heading card is mandatory; further entries under it are optional.

Mandatory
Mandatory
Optional
Optional
Optional
Optional
Optional
Optional

Mandatory (whether or not any sentences follow)

Optional
Optional
Optional
Optional

Mandatory

Placement mandatory if sections are used.

Mandatory

Mandatory
Optional
Optional
Optional
Mandatory*
Mandatory*
Mandatory*
Mandatory*
Optional
Optional
Mandatory*

INTRODUCTION TO GECOM

91

SOFTWARE MANUALS
GENERAL ELECTRIC reserves the right to make

alterations, advances, or modifications to the ex-
isting program for reasons of increased efficiency.

vii

68

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)
11

Inserts a comma in corresponding field
positions. Automatically suppressed by
floating dollar signs, zero suppression,
asterisk filling.

If position occupied by Z in numeric Z
field becomes zZero, zero is suppressed

and position prints blank.

If position occupied by * becomes zero, *
* is printed.

If position occupied by $ in numeric $3
field becomes zero, move $ into it.

END PROGRAM. The final entry of the data division must
be END PROGRAM starting in column 8 and
terminating with a period.

11

PREFACE

ABOUT PROGRAMMING

The programming of information processing systems
has traditionally been a costly and time-consuming
part of automatic data processing. In the past, many
applications that otherwise would readily lend them-
selves to data processing techniques were avoided
because of programming costs. Efforts to improve
programming techniques have been directed toward
producing faster, more economical, and more accu-
rate programs by placing more of the burden on the
data processing equipment.

Various combinations of symbolic coding systems
(with one-to-one correlation between machine code
and symbolic code)., macro-instruction coding sys-
tems (with a many-to-one correlation between
machine code and macro-code), libraries of stand-
ardized subroutines, and other innovations were
developed to accelerate programming, Despite these
improvements, programmers still prepared pro-
grams in terms dictated primarily by the computer;
programming languages remained essentially
machine-oriented languages.

Today, compiler programs provide the programmer
with additional leverage. Program coding can be
done in a language more suited to the problem in-
stead of in the purely machine-oriented data proces-
sor language,

The GE-225 GECOM system, an advanced and effec-
tive automatic coding method, provides the next
logical step in programming evolution, GECOM is a
step toward fulfillment of the much-needed total sys-
tems concept--a concept that deems an information
processing system to be an integration of application,
programming, and information processor or com-
puter,

The GECOM system is further characterized by its
applicability to all classes of information processing
problems, its ability to grow, and its inherent pro-
visions for use by future General Electric general-
purpose computers., GECOM permits coding in the
problem languages of business, science, and indus-
try. GECOM can be adapted to future extensions of
existing problem languages as the requirement
arises, without obsoleting programs prepared to
present specifications,

ABOUT THIS MANUAL

This manual is presented as a general information
manual about the GE-225 GECOM system and is
organized to fill the needs of many people having
different levels of familiarity with automatic infor-
mation processing.

For readers with no previous experience in data
processing or computer programming, it is sug-
gested that the entire GE manual be covered.
Persons having such previous experience, but who
are unfamiliar with the GE-225 Information Process-
ing System, are referred to other General Electric
publications, listed below,

Readers already familiar with the fundamentals of
programming can begin directly with the section,
GECOM Programming Language, with no loss in
continuity.

Following the section on GECOM programming lan-
guage is discussion of the Basic GECOM System,
All elements are discussed briefly with the intent
of providing overall familiarity with all aspects of
GECOM,

The next section treats the two major extensions to
GECOM, (TABSOL and the Report Writer), which are
first mentioned in the GECOM programming language
section, but are more effectively discussed after an
understanding of GECOM is achieved.

The reader should not assume that reading this
manual will make him a master GECOM program-
mer. The most effective use of GECOM depends
upon training and application. More detailed infor-
mation concerning the various aspects of the GECOM
system can be found in the following General Electric
publications:
GECOM GE-225 Language Specifications
GE-225 General Compiler Operations
Manual, CD225H1
TABSOL GE-225 TABSOL Manual, CPB 147
GE-225 Introduction to TABSOL, CPB
147 A
GAP GE-225 Programming Reference Man-
ual, CPB 126

INTRODUCTION TO GECOM

Ble=229

L8

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

Position contains an alphabetic
character, A-Z, or a blank.

Position contains an integer 0-9.

Position contains a numeral 0-9 with
an ll-row overpunch when negative and

no overpunch when positive.

Position contains a numeral 0-9 with

a 12-row overpunch when the field is
positive and an 11 -row overpunch when
the field is negative.

Indicates an assumed decimal point.

Neither the V or the decimal point
occupy an actual field position.

Indicates number following E is a

power of ten to which the number
preceding the E must be raised. E

does not occupy field position.

11

ACKNOWLEDGEMENT

‘“This publication is based in part on the COBOL
System developed in 1959 by a committee com-
posed of government users and computer manu-
facturers. The organizations participating in the
original development were:

Air Materiel Command, United States Air Force

Bureau of Standards, Department of Commerce

David Taylor Model Basin, Bureau of Ships,
U. S. Navy

Electronic Data Processing Division, Minncapolis-
Honeywell Regulator Company

Burroughs Corporation

International Business Machine Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

Univac Division of Sperry Rand Corporation

In addition to the organizations listed above, the
following other organizations participated in the work
of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Corporation

General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation

Standard Oil Company (N. J.)
United States Steel Corporation

This COBOL-61 manual is the result of contri-
butions made by all of the above-mentioned organi-
zations, No warranty, expressed or implied, is

made by any contributor or by the committee as to
the accuracy and functioning of the programming
system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee,
in connection therewith,

It is reasonable to assume that a number of im-
provements and additions will be made to COBOL,
Every effort will be made to insure that the improve-
ments and corrections will be made in an orderly
fashion, with due recognition of existing users’
investments in programming, However, this pro-
tection can be positively assured only by individual
implementors,

Procedures have been established for the main-
tenance of COBOL. Inquiries concerning the pro-
cedures and methods for proposing changes should
be directed to the Executive Committee of the Con-
ference on Data Systems Languages.

L N Y

Any organization interested in reproducing the
COBOL report and initial specifications in whole
or in part, using ideas taken from this report or
utilizing this report as the basis for an instruction
manual or any other purpose is free to do so. How-
ever, all such organizations are requested to repro-
duce this section as part of the introduction to the
document. Those using a short passage, as ina
book review, are requested to mention ‘“COBOL’’
in acknowledgment of the source but need not quote
the entire section.”’

INTRODUCTION TO GECOM

G8

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

L Literal; no name used. All other columns

and el ements.

are

§§§ Not used for

N

& B or other

OTHER OUTPUT RECORD ENTRIES

complet

output

charact

T 11
ed as for fields
entries.
er forces lower

levels with numeric data description
(9) to be in standard binary form
unless 1 ower 1l evel Format indicates
non-standard binary data. A bl ank
in column 43 forces BCD data output.

N .
& Forces unpacked data to be 1eft

L (L)
R right
filled.

just

(R)

ified

and
justified

zZero
and

filled or

blank

INTRODUCTION

WHAT IS GECOM?

The GE-225 GECOM system is an advanced and
highly effective method for preparing sets of direc-
tions for the GE-225 Information Processing System.
As a system, it consists of three elements: Lan-
guage, Compiler, and Computer, These three terms
are further explained below.

THE LANGUAGE

A language is, in general, a means of communication.
In the visual formi, it usually consists of a set ot
symbols (such as our alphabet), which can be ar-
ranged into meaningful groups (words). Properly
arranged aggregates of these groups or words can
communicate ideas, action, commands, and ques-
tions,

The direction of an automatic information proces-
sing system in the performance of a given operation
requires communication between man and machine.
Just as communication between two men requires a
language intelligible to both, communication between
man and machine requires a common language. This
common language can be machine-oriented (that is,
related closely to the basic means by which the com-
puter accepts and presents information, and requir-
ing tedious translation by man of his directions into
machine-acceptable form), or the language can be
problem-oriented (enabling man to express direc-
tions in a form more convenient to the application
and placing the burden of the translation on the com-
puter), or it can lie somewhere between these ex-
tremes. Machine-oriented and problem-oriented
languages are discussed further in the section,
‘“General Programming Concepts’’,

The GECOM language is a problem-oriented language
designed to handle scientific problems as well as
general business information processing. The pri-
mary basis for the language structure is COBOL, the
COmmon Business-Oriented Language for program-
ming digital computers, COBOL is further discussed
in the section, ‘“GECOM Programming Language’’.

In addition to the capabilities derived from COBOL,
GECOM language incorporates many of the features
of ALGOL, (an ALGOrithmic Language for stating
mathematical computations), such as capabilities to
evaluate complex equations, Boolean expressions,

and mathematical functions, These computations
may be performed in either fixed or floatimg-point
arithmetic.

Further versatility is provided by the incorporation
of TABSOL and the Report Writer into the language.
TABSOL, for TABular Systems-Oriented Language,
is a system for expressing decision logic in a simple
tabular form, The Report Writer facilitates report
preparation and improves documentation. TABSOL
and the Report Writer are discussed in the section;
cExtensions to GECOM’’,

GECOM language is not limited to the language
capabilities and the extensions mentioned above.
General Compiler versatility permits inclusion of
GAP, the basic symbolic language (machine-oriented
to a degree) of the GE-225 Information Processing
System. GAP, for General Assembly Program, is a
straightforward symbolic assembly system for the
GE-225.

THE GENERAL COMPILER

If communication with the computer is to occur in
problem-oriented language, some means must be
provided to translate that language within the com-
puter into machine-oriented form, A set of
directions for a computer, regardless of the language
in which it is prepared, is called a program or,
sometimes, a routine. A program, manually pre-
pared, is generally termed a source program, A
source program which has been translated into a
machine-oriented program is an object program.
One means of translating a source program into an
object program is to use a specially-prepared pro-
gram (called a compiler) which, within the computer,
operates upon the source program as if it were data
and transforms it into an object program,

The General Compiler (from which the GECOM sys-
tem derives its name) is a unique program specifi-
cally designed to reduce sharply the traditionally
high programming costs associated with the com-
puter applications. GECOM is a highly versatile and
dynamic ‘‘program generator’’; versatile because it
accepts source programs written in a variety of lan-
guages; dynamic because both the range of languages
and the computer types to which it is applicable can

INTRODUCTION TO GECOM

Ble=229

€8

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

FL Field literal. Any legal data name. Used for named fields with fixed
values. Rules that apply to fields also apply to field literals.
Actual value of literal is enclosed in quotation marks in columns
55 through 80.

OUTPUT RECORD ENTRIES:

R Output record-Name in columns 11 through 22; may be qualified by
entry of a qualifier in columns 24 through 35. If record name is
unique, It need not be qualified.

P Forces all levels within record to be
U packed (P) or unpacked (U) except
binary numerics.
*G *group name in columns 11 t hrough 22. May be qualified. If 2

qualifiers are needed,first goes in columns 24 through 35, second in
~ next line columns 24 through 35 and a tilde in column 7.

P Forces lower 1l evels to be
U packed or unpacked.

THE INFORMATION PROCESSING SYSTEM

Although the effective use of the GECOM system does

ot require a detailed knowledge of machine-language
programming or data processing systems, some such
knowledge is desirable, and perhaps is essential if a
valid evaluation of the system is to be made.

Data processing needs have resulted in the develop-
ment of a great variety of computers. While the
physical form and the specific logic flow differ
widely, general functions and information flow are
similar,

The modern computer or information processor
consists of five elements as illustrated in Figure 1:
Input, Output, Storage, Arithmetic-Logic, and Con-
trol. Communication with the computer is possible
only through the input and output elements.

The term, input element, is a functional concept, not
the name of a unit of equipment. Only through the
input element can data enter the processing system.
A system may have one or more of several input
media: punched cards, punched paper tape, magneti-
cally-encoded tape, or specially-printed documents.
Not all computers have available all input media,

The output element makes it possible for the system
to perform a useful function; without an output in-
telligible to the user, a data processor is useless.
Output can take one or more of these forms: punched
cards, paper tape, magnetic tape, printing, or any of
several special-purpose, machine-controlled forms,
such as magnetic-ink encoded (MICR) documents.

Input data must be presented to the system in such a
way that the system can manipulate and store it in-
ternally. For this reason, data is fed into the system
in a form that can be readily converted to the inter-
nal electronic language of the system (machine
language). Similarly, output data is reconverted to
an externally-usable form after processing.

The storage element is functionally subdivided into
two general types of storage. One, characterized by
limited capacity, high speed, and relatively high cost,
is referred to as main storage, memory, core stor-
age, core memory, or simply ‘‘core’’. The latter
three terms are popular because tiny magnetic cores
are the storage medium in many data processors.
The other general type of storage, characterized by
high capacity, lower speed, and lower cost, is called
auxiliary storage. Auxiliary storage may take al-
most any form, with punched cards and magnetic
tape, discs, and drums being the most common.

The arithmetic-logic element contains the circuits
that perform the manipulations of data required by

the task or application. It adds, subtracts, multi-
plies, divides, shifts and rearranges data, and makes
decisions, according to the purpose of the program,
Capabilities vary widely between different types of
computers.

The control element decodes and interprets the
stored instructions in proper sequence to achieve the
purpose of the program.

In a given compter, it can be difficult to recognize
physically the separate storage, control, and
arithmetic-logic elements. Functionally, they are
separate and distinct elements in all data processing
systems and should be so considered. The input and
output elements are more readily recognized; more
often than not they are packaged as separate units,
such as card readers, paper tape readers, document
handlers, magnetic tape handlers, card punches, pa-
per tape punches, and printers.

GENERAL PROGRAMMING CONCEPTS

Programuiing is essentially the framing ot a set ot
directions for a computer. A set of such directions
prepared for, and to be communicated to, a computer
to guide and control it for a particular processing
task is a program.,

A subroutine, on the other hand, is a set of directions
that is generally incomplete (by itself) in the sense
that it usually is only part of a program, Programs
frequently contain subroutines for directing the per-
formance of discrete portions of an overall data
processing application.

Programs and subroutines, in turn, consist of in-
structions, which are basic and are the smallest
meaningful part of a program. Thus, instructions
are the basic tools of the programmer from which
he frames the set of directions a computer isto
follow.,

The phrase ‘‘to direct a computer’’ indicates com-
munication, and communication implies language. In
practice, a programmer may use several languages
in preparing programs, depending upon the computer,
Digital computers are constructed and organized so
that they can accept coded representations of letters
and numbers, and interpret them as directions to be
followed in processing data. Programming lan-
guages generally fall into one of three categories,
depending on how closely related they are to the
computer requirements for accepting information,
These three categories are: machine language,
symbolic language, and automatic coding language.

MACHINE LANGUAGE PROGRAMMING
Perhaps the most important characteristics of mod-

ern information processors is the stored-program
concept. In the information processor, instructions

INTRODUCTION TO GECOM

ble=229

18

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

F Indicates a field 6f an' input recor
Field name is entered in columns 11
P Assumes

U unless
entry (
1 Assumes

If the
factor

2 Assumes
numeric
see not

S The preceding

this en

d.
throu

field

gh 22,
is packed or unpacked,

it conflicts with a higher level

group,
one -w
data i

record, or file).

ord binary numeric data

i

s not integer, a scaling,

must be supplied in the data
image columns.

two-word non-standard binary

data.

If data is not integer,,

e above.

image is to be used for:

try. Cannot be used if preceding

image has a 1

NW 11

rep
of

or 2 in column 37.

any input groups or fields are,

eated
times

consecutively, the number
repeated is entered here,.

are held in the storage element along with the data
to be processed. This not only permits step-by-
step data manipulation--it enables the machine to
manipulate its own instructions as if they were
data, Thus, it is possible for a program to modify
_itself (if prepared with this intention) and selec-
tively repeat desired portions,

All information processing systems have a reper-
toire of permissible instructions; these vary in
number and scope from one machine type to another
and between manufacturers. For any given system,
however, instructions can be grouped by general
function:

Arithmetic
Decision
Input/Output
Control

Ll

Arithmetic instructions, as the name implies, enable
the data processor to perform arithmetic such as
addition, subtraction;, multiplication, and division,

Decision instructions enable the system to compare
certain data with some standard (other data, per-
haps, or the status of some data processor element)
and select alternate courses of action.

Input and output instructions permit the reading in
and writing out of data via peripheral input/output
units,

Miscellaneous control instructions vary most widely
between machines and depend largely upon machine
design. In general, simpler machines require more
control instructions to accomplish a given function
or process than do more complex machines,

Even in the most complex machine, individual in-
structions are very simple operations and a number
of them must be used in the proper order to perform
a given function,

For many reasons, most modern information proces-
sors are designed to operate internally in some form
of the binary (two-digit) number system, or a binary-
based system, rather than the conventional decimal
(ten-digit) system. Certain computer elements are
bi-stable devices (that is: conducting or noncon-
ducting, on or off, open or closed) with the two
possible conditions expressed as ‘0’ and ‘‘1’7,
corresponding to ‘‘off’’ and ‘‘on’’, respectively. The
‘0’ and ““1’’ represent the two digits of the binary
number system and are commonly called bits, for
binary digits, By grouping computer elements and
assigning values to them according to their posi-
tion in the group, all numbers may be expressed
in binary numbers; for example:

9 = 1001 18 = 10010 523 = 1000001011
wherein the 1-bits, by virtue of their position, have
values corresponding to the powers of two (1, 2,
4, 8, 16, 32, 64, 128, 256, 512, etc. from right to
left). The O-bits, of course, as in the deeimal sys-
tem, denote zero value and establish position, Thus,
the first 1-bit following the equal sign in the exam-
ple, 9=1001, has a weight of eight (the third power of
two), and the rightmost 1-bit has the weight of one
(the zero power of two).

A somewhat similar system permits the represen-
tation of alphabetic and special symbols in coded
binary form, In fact, the system described so
briefly here is only one example of many binary
numbering schemes in use and is used primarily
to show the concept and illustrate the complexity
of programming in a pure machine language, It
is rarely necessary to program most modern com-
puters directly in binary or machine language form,

As a final example of machine language program-
ming, a simple routine or program for a hypothet-
ical binary computer is used. Assume that two
numbers are in the main storage of the computer
at locations arbitrarily called 1000 and 1001. It
is desired that the two numbers be added and the
result be placed in another storage location, 1002.
The binary coding for this program might appear
as follows:

(1) 00000000001111101000

(3) 00011000001111101010

The internal computer circuits would interpret such
a program thusly:

(1) Load the contents of storage location 1000
into the arithmetic unit.

(2) Add the contents of storage location 1001
to the contents of the arithmetic unit.

(3) Store the new contents of the arithmetic
unit in storage location 1002,

Obviously, pure binary programming is slow and
tedious, partly because of the difficulty in keeping
track of long strings of bits. One innovation that
alleviates this difficulty is the use of an inter-
mediate numbering system between the pure binary
and the more familiar decimal system.

If the binary numbers in the example above are
grouped into three’s, as illustrated below, and
repetitively assigned the values of the first three

INTRODUCTION TO GECOM

He= 223

6L

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION

DATA DIVISION.
ARRAY SECTION.

TRUE~FALSE SECTION.
INTEGER SECTION.
FILE SECTION.

Starts in column 8 en

)
Optional sections
column 8 and end

Identifies characterist
files of the
with a

object pro
period. Mandator
output file
with period.

OUTPUT FILES. Introduces
and ends

INPUT FILES. Introduces input file de

and ends with
WORKING~STORAGE SECTION.
Starts in
SECTION.

SECTION.

a period.
Introduces w

column 8 and

COMMON~STORAGE

CONSTANT Optional sec

Start in col
Name follows in
characters or less.

FD File description.

ds with

as regq
with a
ics of

gram. S
y secti
descrip

scripti

orking

ends wi

tions a

umn 8 a
columns

period. No othe
uired
period.
dat a in input an
tarts in column
on .
tions. Starts in

ons . Starts 1in

storage

th a period.

s required by

nd end
11 through 22,

r

by program.

d
8

(¢

12

11

entries.
Start in

out put

and ends

olumn 8

column 8

descriptions.
Mandatory.

progr am.

with period.

Descriptions of constants are also accepted by as-
sembly programs., Constants, such as the English
word TAX or decimal numbers like 365 are accepted
by the assembly program and converted automatical-
ly into their machine language equivalents. A legend
generally accompanies each description of a constant
in the source program to indicate what kind of con-
stant is being described. The legend ALF could be
used, for example, to indicate alphabetic constants
and DEC for decimal constants,

An assembly program produces the machinc language
versions of constants and instructions in the object
program in such a way that they can be loaded into
memory at a later time. Generally, a list is also
provided, displaying the symbolic descriptions side-
by-side with the output produced in the assembly
process for each, The list, called an assembly
listing, provides an important documentation of the
program. It often contains, also, such aids to pro-
gram checkout as indications of errors in descrip-
tions and lists of symbolic addresses.

The legends, such as ALF and DEC, that are ac-
cepted by the assembly program, but do not stand
for actual machine operations, are called pseudo-
codes, or pseudo-operations, It is common for an
assembly program to provide many of these for the
programmer to use. Each extends the ability of the
assembly program to prepare or document pro-
grams,

The symbolic descriptions of instructions, together

assembly program, constitute what is called an as-
sembly language, or a symbolic language. Although
there are numerous exceptions, there is generally
one output in machine language for each input in
assembly language. For this reason, assembling is
often considered to be a one-to-one process.

Symbolic language programming using assembly pro-
grams, while considerably simpler and faster than
machine language programming, is still highly
machine-oriented in that the programmer must have
a thorough knowledge of machine-language program-
ming, It is common for source programs written
for assembly program processing to result in object
programs that are as fast and compact as are
equivalent programs prepared directly in machine
language., Thus, because symbolic language pro-
grams are as efficient as machine language pro-
grams, symbolic language programming has almost
entirely supplanted the machine language as the
basic programming media,

Figure 2 illustrates object program preparation,
using an assembly process. First, the programmer
prepares the source program in symbolic form, using
simple mnemonic codes for the desired machine
operations and storage of program constants, Sec-
ond, the source program is converted to a form

suitable for machine entry. The most common
representations are hole patterns in punched cards
or paper tape or bit patterns on magnetic tape.
Usually the programmer prepares his instruetions-on
forms from which a keypunch operator can punch the
cards or paper tape for direct entry to the com-
puter or, alternately, for conversion to magnetic tape
and the input to the computer.

Next, the assembly program is stored in the com-
puter memory and the source program is input to
the computer. The computer, under assembly pro-
gram control, produces the output -- an object pro-
gram ready for processing.

At any time after assembiy, the object program, now
in machine language form, is input to the computer
along with data to be processed. The resultant
output -- processed data in the form of punched
cards, paper or magnetic tape, or printed reports --
is now ready for use external to the computer,

The assembly system available with the GE-225, as
previously mentioned, is known as GAP, for General
Assembly Program. For further details, refer to
the ‘“GE-225 Programming Reference Manual,”’

AUTOMATIC CODING LANGUAGE PROGRAMMING

As pointed out above, the assembly program per-
mits an already-skilled programmer to prepare pro-
grams with a minimum of errors by eliminating
many of the details of program ‘‘housekeeping,’’ It
also provides a more readable version of machine
language, thus reducing the need for extensive anno-
tation of machine coding. However, it does not
eliminate the need for computer and machine lan-

guage knowledge.

The compiler program permits the programmer to
take another large step away from machine-oriented
programming and toward problem-oriented language
programming, Compiler programs place even more
of the burden of object program preparation on the
computer by permitting the programmer to state the
desired operations in sentence form or in equation
form, depending upon the application and the com-
piler program,

Compilers have several advantages over assembly
programs. The language of the compiler is easier
for the programmer to learn and easier for him to
use, as it is more closely related to his problem.,
The programmer using a compiler usually does not
need as intimate a knowledge of the inner workings
of the computer as does the assembly programmer.
Programming is faster; the time required to obtain
a finished, working program is greatly reduced be-
cause there is less chance for the programmer to
make a mistake and because most normal errors are
detected by the compiler,

INTRODUCTION TO GECOM

Ble- 229

APPENDIX 2. SUMMARY GUIDE FOR GECOM FORM PREPARATION

The following pages briefly summarize the basic
rules to be followed in preparing GECOM source
programs on the General Compiler Sentence and
Data Division Forms, A copy of this appendix is
used to provide novice programmers with a con-
venient guide and a ready reference while becoming
familiar with GECOM.,

INTRODUCTION TO GECOM

77

Advanced compilers are not limited to accepting
simply symbolic instructions, but can accept state-
ments approximating ordinary English sentences or
mathematical equations. Most of these compilers
are highty restrictive in the vocabulary and syntax
permissible and in the equipment that can be used.

The GECOM system is the first to utilize a General

Compiler program to permit both English-language
and algebraic programming and, at the same time,
to embody provisions for structured decision tables
and automatic report writing, Additionally, the Gen-
eral Compiler has built-in provision to expand its
language capability to encompass other source lan-
guages yet to be constructed.

Many of the advantages of compiler programs, par-
ticularly those associated with the General Compiler
are pointed out in the section, ‘‘Advantages of
GECOM’”, Because the balance of this manual is
devoted to describing the GECOM system, it would
be redundant to further discuss compilers in general,

However, by virtue of the changing requirements
placed upon the programmer who may be engaged

in GECOM programming, some consideration should
be given to his job title.

The average data processing application invelves
two broad phases. One phase, defining the problem
and determining the general method of solution, is
generally called systems analysis. The other phase,
involving the actual preparation of the program for
computer entry, is variously called coding or pro-
gramming, although in the strict sense coding is only
a subordinate part of programming. In some instal-
lations, the two phases are performed by separate
individuals; in others, both are performed by one
person,

The programmer or systems analyst who is thor-
oughly trained in GECOM principles can communi-
cate more readily with the computer through the
General Compiler and, simultaneously, view the
overall application in proper perspective, For this
reason, the title, systems programmer, is suggested
and used in the balance of this manual to describe
the GECOM-trained programmer,

INTRODUCTION TO GECOM

WORKING (~STORAGE) - A mandatory Data Divi-
sion section name,

WRITE - To display a limited amount of information
on the console typewriter,

-To release a record or group to an output
file.

ZERO(S) - A figurative constant used in procedure
sentences.

ZEROES - SAME as ZERO(S)

INTRODUCTION TO GECOM

75

GECOM PROGRAMMING LANGUAGE

GENERAL

All compiler programs accept source programs pre-
pared in specialized language and produce an object
program ready for computer processing. Unlike
most compilers, GECOM is not restricted to an un-
duly limited acceptable language. The General
Compiler language 1is actually based on several
languages.

The GECOM language evolved primarily from two
recent major data processing languages, the
business-oriented COBOL and the algorithm-oriented
ALGOL. Both languages were developed for solving
widely different problems, although from the view-
point of compiler development they have similar
characteristics. These similarities made it possible
to provide in one complete and compact package a
variety of proven programming techniques. COBOL,
which satisfies the needs of the broadest spectrum of
data processing applications, provided a basic vocab-
ulary (words and symbols), a basic set of rules of
grammer oOr syntax, and punctuation for clarity.
ALGOL, to accommodate the demands of scientific
applications, contributes Boolean expressions,
floating-point arithmetic, and the ability to express
equations concisely.

Many computer applications require neither the ex-
tensive file processing facilitated by COBOL, nor
the profound mathematics that ALGOL provides, but
do involve massive numbers of sequential decisions.
To cope effectively with these decisions, General
Electric devised structure tables for expressing the
relationship of decision parameters., These decision
structure tables, and the language in which they are
expressed, have been termed TABSOL.

TABSOL has been incorporated into the language ac-
cepted by the General Compiler and can be used in
combination with the COBOL and ALGOL-like capa-
bilities of GECOM.,

In addition to file processing, mathematical applica-
tions, and complex decision series, much program-
ming effort is and has been devoted to applications
involving report generation, The Report Writer
format and language, fully compatible with the Gen-
eral Compiler, gives a fully documented method for
preparing reports with minimum programming and

debugging effort, The Report Writer is an extension
of GECOM and derives much of its advantage from
the GECOM system.

Both TABSOL and the Report Writer are discussed
in the section, ‘*Extensions to GECOM’’,

GECOM language is not compartmentalized into the
component languages discussed above. In a given
source program, it is possible to use COBOL state-
ments containing ALGOL-like algebraic notations;
TABSOL decision structure tables can be inter-
spersed with procedure statements; and the Report
Writer can be used for report generation. The
source program can be prepared using one or all
facets of the GECOM language. In addition, if the
application so requires, GAP coding sequences can
be inserted at will,

coBoOL

Because the GECOM language is based primarily on
COBOL, some discussion of COBOL and the history
of its development is warranted.

In 1959, a meeting was called in the Pentagon by the
Department of Defense to consider the desirability
and feasibility of establishing a common language for
the adaptation of computers to data processing. Rep-
resentatives from both users and manufacturers were
present. The consensus was that the project was
definitely both desirable and feasible. As a result,
this Conference on Data Systems Languages
(CODASYL) established three committees, Short
Range, Intermediate Range, and Long Range, to
work in four general areas:

Data Description
Procedural Statements
Application Survey
Usage and Experience

In September, 1959, the Short Range Committee
submitted a preliminary framework upon which an
effective common business language could be built.
After acceptance by the Executive Committee of
CODASYL, the report was published in April, 1960,
by the Government Printing Office as ‘“COBOL-A

INTRODUCTION TO GECOM

Ble=229

11

LABEL

LESS

LINE COUNT

LINES

A mathematical function
Cal-

LN - Natural logarithm.
that may be used in arithmetic expressions.
culated in floating-point arithmetic,

LOCK - To prevent a tape from being read or
written by program control,

LOG - Common Logarithm, A mathematical func-
tion that may be used in arithmetic expressions.
Calculated in floating point arithmetic,

LS - LESS than., Used in relational expressions,

MAGNETIC - Part of descriptive name, Magnetic
Tape Handler,

MASS - Part of descriptive name, Mass Random Ac-
cess Data storage.

MEMORY - Main storage, core storage.

MODE - A system of data presentation or proces-
sing within the information processing system.

MODULE(S) - Refers to core memory size; one
module is 4096 words of storage.

MOVE - To transfer a constant, element, field
group, record, or array to a constant, element,
etc. of the same size,

MULTIPLE

MULTIPLY - To multiply two quantities and store
the result in the last-named field or the specified

field.
NEGATIVE

NEQ - Not equal to.
sions.

Used in relational expres-

NEXT~PROGRAM - An optional Identification Divi-
sion sentence name,

NGR - Not Greater Than, Used in relational expres-
sions,

NINE(S) - A figurative constant used in procedure
sentences.

NLS - Not Less Than,
sions.

Used in relational expres-

NO

NOT - May be used in relational expressions. In
logical expressions, it is an exclusive negative,

NOTE - To permit the programmer to write explan-
atory material in the source program for
inclusion in the Edited List, but excluded from
the compilation,

OBJECT~COMPUTER - An optional Environment
Division sentence name.

OBJECT~PROGRAM - See Glossary

OF

OMITTED

ON

ONE(S) - A figurative constant used in procedure

sentences,
OPEN - To initiate the processing of input and out-

put files. Checks or writes labels and does other
input-output functions.

OPTIONAL

OR - A logical operator

OUTPUT - A mandatory Data Division section name.

PAGE

PAPER - Pertaining to High-Speed Printer forms.

PERFORM - To cause the specified section to be
executed. Control automatically reverts to sen-
tence following the PERFORM.,

PLUG(S) - Refers to connectors on the controller
selector to which input-output unit controllers are
attached.

POSITION

POSITIVE

PRINTER(S) - Pertaining to High-Speed Printer.

PROCEDURE - A GECOM Division name.

PROCEED

PROGRAM - A complete sequence of data process-
ing instructions, May refer to an object program

or a source program,

PROGRAM~ID - A mandatory Identification Divi-
sion sentence name,

INTRODUCTION TO GECOM

ble=223

73

THE BASIC GECOM SYSTEM

GENERAL

For clarity and simplicity, only the Basic GECOM
system is described in this section. Brief descrip-
tions of extensions to Basic GECOM are provided
in the section, ‘‘Extension to GECOM’’, These ex-
tensions, for the most part, expand the capabilities
of GECOM to encompass recent language develop-
ments.

Implementing a data processing application on a
computer involves a broad procedure that has heen
outlined as follows:

1. Define the problem

2. Determine the procedure to be followed in
solving the problem

3. Prepare the computer program, including test-
ing

4, Run the program on the computer with appro-
priate input data,

If the programmer has at his disposal the auto-
matic coding system of GECOM, the above pro-
cedure becomes:

1. Define the problem

2, Determine the procedure to be followed in
solving the problem

3. Prepare the source program in problem-
oriented language

4. Compile the object program from the source
program, using the General Compiler

5. Machine-test (debug) the object program

6. Run the object program on the GE-225 with
appropriate input data,

At first glance, automatic coding seemingly com-
plicates the task of data processing. However, as
shown in Figure 3, the burden on the programmer
is no greater, and often is appreciably less. For ex-
ample, the step from item 2 to item 3, above, is
greatly facilitated by the GECOM-provided ability to

express procedural steps in English language state-
ments, Additionally, each statement the programmer
writes is several times more powerful than the
machine-language or symbolic instructions that he
would otherwise use. Also, he is materially assisted
in the machine-test or check-out phase, item 35,
by the assistance provided by the General Compiler
in the form of detailed print-outs of error conditions
and of the complete compilation process. The print-
outs are as easy to read as the programmer-
prepared procedure statements of the source pro-
gram.

This section is devoted primarily to discussion of
item 3, source program preparation, using the
GECOM system. Incidental references will be made
to the other areas, such as the compilation process,
as required.

Assuming that a well-defined data processing prob-
lem has been assigned to a systems programmer, he
determines the detailed procedures for problem
solution and generally prepares a flow chart describ-
ing those procedures. Flow charts can be broad or
detailed, depending upon the problem and the pro-
grammer, Invariably, they are sufficiently detailed
to serve as a guide for programming the problem
solution, The section, ‘‘Application of Basic
GECOM.,”’ illustrates typical flow charts.

GECOM SYSTEM COMPONENTS

With these preliminaries out of the way, the pro-
grammer is ready to prepare the source program.
What does the GECOM system provide him to assist
in this task?

First, it provides him the necessary language that
eliminates tedious machine-language or symbolic
coding. Language is discussed in the following sec-
tion, ‘‘GECOM Language Elements’’,

Second, it provides him with a standard source pro-
gram organization, which corresponds to the format
followed by the compilation output. GECOM source
programs are partitioned into four divisions, in-
tended for separate and independent preparation,
This facilitates changes; if the procedure must be
modified, it can be done with minimal effect upon
data parameters; if data changes occur, the data
parameters can be changed without affecting the

INTRODUCTION TO GECOM

(ble=225

13

APPENDIX 1. THE GENERAL COMPILER VOCABULARY

Words and terms that appear in the following list
must be considered to be part of the General Com-
piler vocabulary and must not be used by the systems
programmer in forming data or procedure names,
nor may they be used in any manner in a source
program other than as provided by the GECOM
Language Specifications,

Where warranted, many of the terms have been de-
fined or explained. Terms not so explained were
deemed to be self-evident in meaning. In addition,
the body of the manual contains many examples that
illustrate the use of most of the vocabulary terms,

ABS - Absolute value, or magnitude, of a number,
regardless of sign.

ACCESS - Part of descriptive name Mass Random
Access Data Storage.

ADD - To add two quantities and store the sum in
either the last-named field or the specified field.

ADVANCE - To vertically skip or slew the printer
paper,

AFTER
ALL

ALTER - To modify a sequence of operations speci-
fied in one or more GO sentences.

AND - A logical operator,
ARE

ARRAY - A multi-valued field that may be refer-
enced by name and subscript, An array may be
one, two, or three dimensional and may have cor-
responding number of subscripts. An array must
be defined in the Array Section of the Data Divi-
sion,

ASSIGN - To direct the placement of a file or pro-
gram to an input-output media,

ASSIGNMENT - To evaluate an arithmetic expres-
sion and assign the result to a field. To equate
data names,

ATAN - Are tangent. A mathematical function that
may be used within arithmetic expressions. Cal-
culated in floating point arithmetic.

AUTHOR - An optional Identification Division sen-
tence name,

BEGIN - Entrance point to a source program sec-
tion.

BEGINNING

BGN~FIL~LABL - A tape record preceding each
file of a multi-file tape.

BGN~TAP~LABL - The first record on any tape
except in multi-file tape.

BINARY - Pertaining to the binary number system,
as opposed to decimal or binary coded decimal,

BLOCK - See Glossary

BUFFER - A device which stores data temporarily
during transfer operations.

BY

CARD

CLOSE - To terminate processing of input or output
reels and files with optional rewind and/or lock.

COMMON (~STORAGE) - An optional Data Division
Section name.

COMPUTATION ~ MODE - An optional Environment
Division sentence name,

CONSTANT - An optional Data Division section

name,
CONTAINS

CONTROL - Interpretation and execution of oper-
ations,

CONTROL~KEY - The field or fields by which a
record is identified.

COPY - To duplicate from another area.

INTRODUCTION TO GECOM

ble=225

71

procedure, In addition, standardization of divisions,
sections, procedure statements, and other program
elements facilitates communication between pro-
grammers and permits program debugging in the
same language in which the program was written,

The four divisions of a GECOM source program are:
1. The Identification Division
2. The Environment Division
3. The Data Division
4. The Procedure Division

The Identification Division, Figure 4, provides the
programmer with the means for labelling and des-
cribing the source program in English-language
form. In addition to the program name, author (pro-
grammer) and date compiled, this division caninclude
other pertinent information, such as next-program-
in-sequence, security classification, location, and
explanatory comments as needed., During compila-
tion, this data becomes the label for the object
program and is automatically reproduced on output
listings, such as the Edited List.

Programmer use of the Identification Division is
flexible. The only portion required by the General
Compiler is the division name and the PROGRAM ID
sentence; all other sentences are at the program-
mer’s option,

Preparation of the Identification Division isdiscussed
further in the section, Application of Basic GECOM.

The Environment Division, Figure 5, provides a link
between the source program and the data processing
equipment, It defines the computer system configu-
ration and its relationship to the source and object
program, The General Compiler depends upon the

PROGRAM
|

Environment Division to provide information which
associates input and output equipment with the data
names for each file to be used in processing. The
information in the Environment Division is specified
by the systems programmer in English language
clauses.

In preparing the Environment Division, the program-
mer enters the information in a predetermined way,
This format is sectionalized under four sentence
headings as described below:

1. The OBJECT~COMPUTER sentence, the first
entry, is used to describe the computer on which
the object program is to be run,

2, The I~O~CONTROL (input/output control)
sentence, the second entry, specifies nonstandard
error and tape label checking procedures. In
addition, programming control is facilitated by
permitting the specification of program rerun
points, memory dump assignments, and identifi-
cation of multifile magnetic tape reels.

3. The third sentence, FILE CONTROL, identi-
fies input/output files and provides for their
assignment to specific input/output units.

4., The COMPUTATION~MODE sentence assigns
the internal mode of calculation. Sentence use is
optional; it is used only when it is desired that
computation occur in the floating-point mode,
either programmed or in the optional Auxiliary
Arithmetic Unit,

The accompanying example illustrates typical entries
describing the environment for a representative pro-
gram, Entry 10 describes the data processing
system for which the object program is intended:
a GE-225 system with two memory modules (8192
words of core storage), one card reader, one card

GENERAL REQUISITIONS (8)

PROGRAMMER G. E. CODER

SEQUENCE
NUMBER

1{1|3|4Is

7 B‘?'lol\l IZIIJIN‘IS lbf"'ldl19’20{21—[22’2424

llinﬁ;l

25 16‘27{23‘ 29130J31| 32’ 33|34l35 36[37|33 l 39[40
I

’6
RS |

IDENITIFIJICATION,

DIVIISION,, ., .,)., | s

11L11|0

PROGIRAM~IID, . REQr~ RUN~8. |

T T S S TR T S |

r v 420} JAUTHIOR,,, }JG.., E..,

CODE|R.,, ., . | - N .

. .. ,30] PDATE~COMPILED., MAY 10, ,196,2.4 , |
b, A0 INSTIALLAJITION,., GE, CJOMP, DEPT PJHOEN IX |
L 50 ISE CUIRITY UNCLASS IJFIED o 5 . . L R
., 6,0 IREMAIRKS,.] USE, DATA |FM REQ, CARIDS,, . .

Figure 4. Identification Division Layout

INTRODUCTION TO GECOM

01100
01101
01102
01103
01104
01105
01106
01107

01461

GECOM LISTING OF JTS

GE CODER

01100
0000262
0000010
2500200
2500400
2000001
0000000
0000000
0000000

01461
000150k

o114k
00572
00252
00252
00254
00255
00256
00257
00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272
00273
00274
00275

OBJECT LISTING
INPUT-OUTPUT CODING (Partial Listing)

02S

o2u

TV2
IXy
ZER
200
201
202
L03
704
705
706
707
708
209
210
Z11
212
217
Z18
Z19
220
724
725

END OF GECOM LISTING

(CONT.)
Loc 1100
ALF 02s
ocT 10
RCD 128
RCD 256
EXT 1

ocT 0

ocT 0

ocT 0

ORG BIN
LDA 02W-5

BSS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LOCATION ASSIGNMENTS FOR GECOM COMMON CONSTANTS (Partial Listing)
(ASSEMBLED IN FRONT OF PROCEDURE CODING)

0

378
170
ZER
172
l7§
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

PAGE O11

JuL 17

Figure 46. Edited List

INTRODUCTION TO GECOM

69

5. Elements., In a few cases, for convenience,
fields are further subdivided into ‘‘elements.’’
For example, a part numbering system could be
so organized that portions of the part number had
added significance. For example: 18253702, NPN
Transistor; 18 meaning electrical, 2 meaning a
component (not a subassembly), 53 meaning tubes
and solid-state devices, and 702 to identify the
particular item.

The relationship between these various data levels
are readily shown:

FILE
RECORD
GROUP 1
GROUP 2
FIELD
FIELD
ELEMENT
ELEMENT
FIELD
GROUP 3
GROUP 4

As mentioned earlier, all data to be used or created
by the object program must be defined. A typical
Data Division for GECOM is shown in Figure 6,
giving representative examples of data definitions.
The Data Division for a representative problem is
presented and explained in the section, ‘“Application
of Basic GECOM’’, The relationship between Data
Division and input data is also shown in Figure 6,

The Procedure Division, Figure 7, indicates the
steps that the programmer wishes the object pro-
gram to accomplish, These steps are expressed in
English words, symbols, and sentences that have
meaning to the General Compiler. Although the
steps described in the Procedure Division closely
parallel those of the eventual object program, it is
misleading to consider the Procedure Division alone
to be the source program. The source program is
not complete without Data, Environment, and Identi-
fication Divisions.

Sentences in the Procedure Division invariably con-
tain verbs to denote the desired action, names (of
data, constants, etc.) or operands to show what is to
be acted upon, and various modifiers for clarity.
Sentences can be grouped into sections to facilitate
reference and permit the performance of a series of
sentences out of the normal sequence.

Procedure statements or sentences can be simple:
ADD 0.5, RATE OF PAY~FILE.

This will create coding in the object program to
add the constant 0.5 to whatever value (of the RATE
from the PAY~FILE) had been read into the com-
puter, Or statements can be highly complex, involv-
ing several clauses and modifiers, such as:

IF PART~NUMBER OF MSTR~INVNTRY IS
LESS THAN PART~NUMBER OF TRANSAC-
TIONS GO TO WRITE~MASTER, IF EQUAL GO
TO UPDAT~MASTER, IF GREATER GO
TO NEW~RECORD.

This statement would result in object program cod-
ing to cause the following:

1. The part number of the master inventory
record (previously read in) would be compared
with the part number of the current transaction
record.

2. If the part number of the master inventory
record is:

a. the lesser of the two, program control is
transferred to a routine called WRITE~MAS-
TER, which causes the master inventory record
to be written out as part of a master file,

b. equal to the transaction part number, pro-
gram control is transferred to a routine called
UPDAT~MASTER, which modifies the master
inventory record in some manner,

c. the greater of the two, program control
transfers to a routine called NEW~RECORD,
which causes a new record to be added to the
master file,

Procedure Division sentences are performed in the
sequence in which they appear, unless that sequence
is modified by a ‘“GO’’ or a ‘““PERFORM’’ statement
as explained in the next section of this chapter,
““GECOM Language Elements’’,

Typical Procedure Division statements are illus-
trated in Figure 13. Note that sentences can be
named (for reference to them by other sentences)
or unnamed. Lines 20, 30 and 70 have been named
SENT~1, SENT~2, and SENT~-3, although more
descriptive names can be assigned at the program-
mer’s discretion, More detailed information for
preparing a source program Procedure Division is
covered in the section, ‘‘Application of Basic
GECOM”’,

In addition to LANGUAGE and ORGANIZATION, the
third item that the GECOM system provides for the
programmer is a set of forms to facilitate source
program preparation and documentation. Two basic
forms are provided, the General Compiler Data Divi-
sion Form, number CA-14, and the General Com-
piler Sentence Form, number CA-13.

Both forms are designed to make it easy to translate
the programmer-prepared source program informa-
tion into a machine-readable form, such as punched
cards or paper tape. Each horizontal line of either
form provides for up to 80 units of information,
corresponding to 80 punched card columns,

INTRODUCTION TO GECOM

Ble=225

17

GECOM LISTING OF JTS PAGE 009
GE CODER JuL 17

0OBJECT LISTING (CONT.)
01265 1001370 DLD 02A
01266 0721143 SPB FXP 1
01267 0101376 ADD 05A
01270 0023025 OCT 0023025
01271 0721143 SPB FXpP 1
01272 0300025 STA 021
01273 1301370 DST 02A

3135 ADD OT_HRS TO ACC_OT_HRS. 0290
01274 1001372 DLD 03A
01275 1101400 DAD 06A
01276 1301372 DST 03A

314C IF LINE COUNT EQUALS E1 50 TO S2170, 01300
01277 0001405 LDA PC6
01300 0201454 SUB 0J5
01301 2514002 BZE Al
01302 2601313

3145 S3145. WRITE DETAIL RECORD. 0310
01303 0722036 Al5 SPB 01W02 1

3150 SW3150. GO TO S3155. 0320
01304 2601305 Al2 BRU A13

3155 S3155. MOVE SPACES TO DEPT OF WS. 0330
01305 0001460 Al3 LDA 0A6
01306 0301404 STA 02J

3160 ALTER SW3150 TO PROCEED TO S3075. 0340
01307 0001214 LDA AO3
01310 0001307 LDA o]
01311 2701304 STO Al2

3165 GO TO S3075. 0350
01312 2601214 BRU AO03

3170 $3170. PERFORM WPH SECTION. 0360
01313 0721145 AL SPB AO 2 1

3175 GO TO S3145, 0370
01314 2601303 BRU AI15

3180 $3180. ALTER SW3107 TO PROCEED TO S3182. 0380

Figure 44. Edited List

INTRODUCTION TO GECOM

67

61

PROGRAM B -

DATE

PROGRANAER 'COMPUTER PAGE
e

N e e e e P e e A e B e B B B D D P
. 1 210} JPROCIEDURIE, DIV ISION., , , ., , . L L ‘ R . . e . 1 n T S S S !
20l sENT~g . | OPEN, INPUT TRANS~FI|lL MSTR~FILL 1IN, ovurpulr, MSTR~FILLOUT HSP~REPT
v 30 ISENTI~2,, READ, TRANS~FIL, . . - e M - N R N .
L. .40 .. JREAD}] MSTR~FI L~JIN, IF END] GO TO FINJAL~STOP A N L N T L

L L. .50 ., , JIF TIRANS AC~CODIE. EQUALS 1} GO TO SHIIPMENT , E‘QllﬂA LS 2 GO Tjo . L L
091 - . JRECEIPT,, EQUALS, 6 ,3 GO} TO ,CHANGE}, EQUALS, 4] GO, T0O DEIJETE,, L L

, 2. .60 .. sTor FIL~MAINTY,, . . . , ., U T R - ; ey N S S T S VU
e 70 SENT|~3 . |[PERFORM DEID~COMP SEC|ITION, US.I NG| DED, OF TRJANS~FIL GIIVING, s A
N L e JTOTAL~DED..} . . e R . S N o N
L n L - Loy Lo R S R S SR L I . - N ISR
1 T NS VT 1 1 a1 L it A - L L i I e, i L T— —— L L -t | Al
o L T ISR S B I S R R T R - 1 . TR I e
PR - A . RSSO VY P SR S . Coy Coe oy R O R
M - R T S R IR NS SR SO) L [L . . T S TR G PR

Figure 7. Procedure Division Layout

3050

(W)
o
\Sal
un

3065

3070

3075

3080

3085

GECOM

0B J

01175
01176
01177
01200
01201
01202

LISTING OF JTS

GE CODER

JuL 17

ECT LISTING (CONT.)

0001450 LDA 0J3
0721142 SPB ADV 1
0000006 ocT 0000006
0001450 LDA 0J3
0101405 ADD PC6
0301405 STA PC6

END WPH SECTION.

01203

S3055.

(@}
R

20

“

1
i

c O
NN R
o

V)

01207
01210

01211

01212
01213

$3075.

01214
01215
01216
01217

01220
01221
01222
01223
01224
01225
01226
01227

2601203 AQ2:/@ BRU AQ2:/@

OPEN ALL FILES.

0721646 AO | SPB oou
0721737 SPR Ol
U/ Zi%00 SPB 22U
MOVE O TO PAGE_COUNT.
0001452 LDA 0Jh
0301363 STA 00A
PERFORM WPH SECTION.
0721145 SPB AO2
MOVE #ZZ# TO LAST DEPT.
0001457 LDA OAS
0301403 STA o1J

READ JOB FILE RECORD IF END FILE GO TO $3180.

0001315 AO3 LDA AQL
0001214 LDA w1
2701571 STO 027
0721511 SPB 02w

IF DEPT OF JOB_TICKET EQUALS

0001403 LDA 01J
2000314 EXT EXB
0300654 STA XYZ
0001402 LDA 00J
2000314 EXT EXB
0200654 SUB XYZ
2514002 BZE A0S
2601262

SW3085, GO TO S3090.

01230

3090 $3090.

2601231 A06 BRU AOQ7

1

LAST DEPT GO TO S3125.

ALTER SW3085 TO PROCEED TO S3100.

PAGE 007

0110

0120

0130

0140

0170

0180

0190

be=229

Figure 42. Edited List

INTRODUCTION TO GECOM

65

1e

GENERAL @D ELECTRIC
COMPUTER DEPARTHMENT, PHOENIX, ARIZONA GENERAL COMPILER SENTENCE FORM

PROGRAM DATE
PROGRANMER !cowursa - PAGE
SEQUENCE
NUKBER
Ik ' .= I S DR O y ' - ol
1h2]3 4ls l s 7 |9 lmin |z[|;|u i]s |6'17|n le 20‘21122 ZSIUES 26{17} 10'”130 1 31’ 32, 33‘34l35 36 37(331391m 41 uiu 44|45 § 46| 47 48149 | 50| 51152 Sl‘s.[ss 5154 sﬂswao 61 Iulszlu[ss u'w enlsv’m‘ 71171173 74175 76177]73 79‘30
I \ [7] Rl | [rompe gl il Loy
TR S L TR L L BT T R S S SR — . s T L L L . 1 L R T .
U S B L A IR I PR R N S TS I L L . . - - P L N . —
A I 1 1 1 1 " . 1 i 1 L 1 I 1 I { I\ N i I 1 i 4 —_— i I 1 . i A [1 i 1 " A i
T T N VS S S R R B R T TR RN — PR L . . R TR PR R T
J 1 1 1 I L L i] 1 i L L L i L 1 1 A 1 T 1 1 1 1 1 n i I L 1 1 L L L L L 1 I 1 1 n 1l 1 1 " | n 1 Ao o A I L I I 1
1 1 I L i) 1 A I 1 I L i L 1 1 1 1 il 1 A1 B B 1 1 1 i 1 1 I 1 L 1 A 1 . | A i I i L I] i 1 L A 1 I FR— I
R [T I R S S R S R T S B S T R B N TR L — PR S S S SRR S | . P O T
i L ! R PR L P " L - o s - L . T ST B R R " —e
R SR N) BT R SO S U S B! P S S N . P R ! T T U N SR S R R L T
PR " " P P S e PR . TR R U R L P " TR S B R L I S T
1] J .) 1 1 L i 1 1 L 1 VR S S| S 1 1 1 L 1 i S L JE—T - L i L L L 1 i I " I 1 1 I} 1 1 L T TR I TR -t 1 " A
1 1 1 1 | 1 1 1 R T - - | 1 L L L] L) L 1 1 1 1 a1 1 A I i " L " i 1 " L 1 1 il A0 I I A T L. 1 i
L 1 I 1 1 1 ! 1 1 1 1 1 1 I] 1 - T 1 1 L 1 1 L 1 L FE— N Lo L . 1 1 L L . L I L L. L L 1 L 1 1 L 1 L i L L 1 1
1 1 1 1 1 1 1 A i il I I L 1 i1 1 1 1 I T I 1 1 i " i 1 i Il i L " . ST I S 4 S " i i i 1 i L L I 1 I 1 . L
TR L1 1 1 1 i 1 1 1 I e I I 1 1 L L i L " 1 1 1 1 1 L i i i 1 1 i 1 s A 1 1 + 1 1 A 1 1 1 L L 1 . i 1 L S . L 1 I
TR Lo RN S S S S S SR | TR T R S S R S PP B RS SN S S ! TR . L L N . . T
B R S Lo U TR SR VY S S S G W Coto e PR S S SR SN R S S L ' L IS o T PR ST S B S S S T S S S S S SO SO S
i n T i — A 1 1 L TR F— . il T LI R TR S Nt 1 L 1 L L 1 L L | L L 1 1 I " A4 L L L n hed ST — 1 1 L L 1 L A L n 1 1 1 L L i
1 I — a4] Lot 1 I L L L 1 1 1 1 1 1 L 1 JE—T - o R T i I 1 1 1 1 1 L L L - 1 1 1 1 1| 1 1 L 1 I 1 L 1 " 1 L L L L i
] 1 1 1 1 1 L 1 1 1 1 1 I X L " 1 i 1 1 L L] 1 L I I A A 1 1 T JE— 1 1 i 1 i L 1 . Y 1 I 1 1L I 1 . 1 i I i i i i L i " 1
TR S TR P o L1 B S S Y SO S R | PRI S S S R SR P B RS L U S T S TR S T T PR PR R T DU RO R T
BT R B N TR - TR S B R N R N | I TR R Y SO S A S | P T S S R W N PSR T R S SR SR MR R T - PR Y S R S S R —
1 [2T3[4’ st 7 sl v| IOIH lz[lz E;ILS 14 17[131 wl zo(“|ﬁl23|“| 25 zs!nlzsl 29130131 32! 33]:*‘ l!s 35‘37{33‘39 | 10‘ ul 42’ 43 44‘.5 Mlulsoiano [sli szl;] SALS sol 57—| 58|59 so[ul “l"l“l“ “l 67163[69—{ 70 7172[7;‘ 74[75176[77174 79|80

CA 13 (10/61)

Figure 9. The GECOM Sentence Form

GECOM LISTING OF JTS PAGE 004

| GE CODER JuL 17

REFERENCE TABLES

PROCEDURE NAME TO GAP SYMBOL

(GAP PROCEDURE NAME)

AOT S3055

AO3 S3075

AO7 S3090

AO08 S$3100

A1l S3110

A09 S3115

AO5 S3125

A15 S3145

A13 S3155

AlL S3170

AOL s3180

A16 53182

AO6 SW3085
A1O0 SW3107
A12 SW3150
AO2 WPH

NAMES OF SUB-ROUTINES REQUIRED

{(GAP SECTION NAME)
ADV
FLX
FXP
RCS
RLC
TYP
ZAM
ZBN
ZCB
ZED
ZNB
ZNN
207
ZSC
ZSG
ZUA

GAP SYMBOLIC TO OCTAL LOCATION
(GAP OCTAL GAP OCTAL GAP OCTAL GAP OCTAL GAP OCTAL GAP OCTAL)

00A 01363 00J 01402 00S 01110 OOTCP 01713 OOTXT 01712 00U 01646
00V 01714 00WO0 01664 O0OOWE 01675 00W 01664 00X 01406 00Y 01406
00200 02040 O1A 01366 01J 01403 01S 01120 O1TCP 02006 O1TXT 02005
01U 01737 01V 02007 O1WO0 02032 O1WO1 02034 01W0O2 02036 OIWE 01772
01w 01755 01X 01406 01200 02076 01201 02120 01202 02133 02A 01370

Figure 40. Edited List

@E 225 INTRODUCTION TO GECOM
a

63

The Data Division Form, Figure 8, is used exclu-
sively for describing data to be used in the object
program, Headings are provided to guide the proper
placement of data, These are discussed in the later
section, Data Division Preparation,

The Sentence Form, Figure 9, is used for the
preparation of data for the Identification, Environ-
ment, and Procedure Divisions. Headings, which
would add little, are omitted. Rules for Sentence
Form preparation are few and simple,

Where applicable, such rules are discussed in the
section, ‘‘Application of Basic GECOM,’’ along with
the preparation of the four divisions of the source
program, The fourth major tool provided by the
GECOM system, is the General Compiler itself.
Examination shows considerable similarity between
the General Compiler program and a complex bus-
iness data processing object program.

1. The General Compiler operates upon input:
the source-language program,

2. Compiler processing consists of repetitive
runs of a set of instructions: the General Com-
piler,

3. It produces an output: the object program.

4, It produces reports: the Edited List and error
messages.

Figure 10 illustrates, in broad terms, the relation-
ships between the programmer-produced source pro-
grams, the General Compiler, the computer, and the
output object program.,

Up to this point, the General Compiler has been
discussed as if it were a single program, and it
can still be considered as such, Conversely, it can
also be considered to be a series of sequential pro-
grams as illustrated in Figure 11, Note that there
are five major groupings: Transformer, Reformer,
Assembler, Editor, and Subroutines.

The transformer phase translates the source pro-
gram into an intermediate internal language suitable
for processing, prints out Identification and Environ-
ment Divisions as required, groups and organizes
Procedure and Data Division material for further
processing while checking for validity and consis-
tency, prints error messages, screens out unessen-
tial optional words, and initiates the preparation of
the object program,

The reformer phase is essentially executive in that it
calls forth from the generator library (also a part of
the Compiler) those routines required to produce the
object program,

~
> 1. Transformer Phase
J
2. Reformer Phase
-
> 3. Generator Phase
-
4. Assembler Phase
5. Editor Phase
<
6. Object Program
Subroutine Library

‘/\J.J

Figure 11. General Compiler Program Organization

The assembler phase translates from the inter-
mediate language, assembles the coding into machine
language, and produces the completed object pro-
gram either in punched cards or on magnetic tape.

The editor phase provides the documentation of the
program in the form of the Edited List. This
includes a print-out of the entire original source
program, a merged list showing the generated sym-
bolic coding and the machine-language coding, and
cross-reference tables. Additionally, it lists, from
the master list of subroutines below, those required
to complete the object program. Examples of the
Edited List are included in the section, ‘“Application
of Basic GECOM.”’

The subroutine library is a collection of previously-
prepared subroutines common to most object pro-
grams that may be required to complete the object
program. While these could be produced during
compilations, to reduce compilation time and avoid
repetitive processing during compiling, the General
Compiler shows (on the Edited List) all such sub-
routines which will be needed when the object
program is run. A special program loading routine
will place into memory the object program and the

INTRODUCTION TO GECOM

(ble=229

23

3145
3150
3155
3160
3165
3170
3175
3180
3181
3182
3185

4oo0

(SEQ

Loos
Loto
Lo15
Lo20
Lo21
Lo22
Lo23
Lo2k

Lnor
0245

4100
4105
4110
4115
4120
4125
4130
4135
L1ko
4145
4150
4155
k160
L4165
4170
4175
4180
4500
4505
4510
L4515
4520
4525
4530
4535

GECOM LISTING OF JTS

GE CODER
RCE LISTING (CONT.)
S3145. WRITE DETAIL RECORD.
SW3150. GO TO S3155.
$3155. MOVE SPACES TO DEPT OF WS.
ALTER SW3150 TO PROCEED TO S3075.
GO TO S3075.
$3170. PERFORM WPH SECTION.
GO TO S3145,
$3180. ALTER SW3107 TO PROCEED TO S$S3182.
GO TO S3100.
$3182. CLOSE JOB_FILE, SUMMARY FILE.

STOP RUN #

DATA DIVISION.

GAP T DATA NAME

FILE SECTION
OUTPUT FILES.

000FD
000 R

Bl B B

OO0TFD
000 R

001

rxo mr

002

MMM M M T o

INPUT
002FD
000 R

00J F

O5A F

SUMMARY FILE.
SUMMARY CARD
LAST DEPT
MAN_COUNT
ACC_REG_HRS
ACC_OT_HRS
TOTAL HRS
DMH_REPORT.
RPT_TITLE

PAGE_COUNT
COL_TITLES

DETAIL
DEPT WS
MAN_NBR
NAME
JOB_CODE
REG_HRS

0T HRS
FILES.

JOB FILE.
JOB TICKET
MAN NBR
DEPT

NAME

JOB CODE
REG_HRS

F

RPT B J E MS LS DATA IMAGE)

PAGE 002

JUuL 17

0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410

XX B(5)

999 B(29)

9(6)Vv9 B(4)

9999v9 B(5)
(12

9(7)v9 B(12)

BBB #DEPARTMENT MAN HOUR R
EPORT#

B(L42) #PAGE#

B 2279

B(7) #DEPT MAN NUMBER NAME

#
B(18) #JOB REG-HRS OT-HRS#

B(7) XX BBB
X(5) B(6)
A(21)B

XX BB

77Z.9 BBB
2.9

X(5)

XX BB
A(21)
XX B(7)
999Vv9

Figure 38. Edited List

INTRODUCTION TO GECOM

61

required subroutines which the operator has pre-
viously extracted from the library of subroutines
provided, At the user’s option, required subroutines
can be appended to the object program automatically
or manually during compilations.

GECOM LANGUAGE ELEMENTS

Because the GECOM system was developed with
COBOL in mind as the basic programming language,
the GECOM language elements most closely resem-
ble those of the COBOL language. Also, because the
intent is to provide English-language programming,
GECOM elements parallel those of English.

GECOM has a basic vocabulary consisting of words
and symbols; it has rules of grammar or syntax;
and it has punctuation symbols for clarity. In each
case, there is greater simplicity than in English:
the vocabulary is small: the rules of grammar are
simiple, yet precise; the use of punctuation is lim-
ited. These are true because the demands placed
upon the user are kept simple and unambiguous,
The source programming language is required to
state facts and give instructions clearly and specifi-
cally; it is a language of command, not narration,
and thus consists primarily of verbs and nouns.
These can be formed into simple and complex sen-
tences usually intelligible without special training,
although sentences acceptable to the General Com-
piler cannot be written without familiarity with the
grammar,

Words and symbols are the tools of the GECOM
programmer and are composed of individual letters,
numbers, and special characters. The basic charac-
ter set of GECOM and equivalent GE-225 character
codes are illustrated in the accompanying table,
Figure 13, Special character sets are available for
the printer.

Many of the basic characters, in addition to being
used in words, have special meanings for GECOM;
these will be discussed where appropriate,

Words, in GECOM, are divided
groups - names and verbs,

into two major

VERBS

As in English, verbs denote action; unlike English,
GECOM verbs are never taken in the passive voice,
the narrative or declarative sense, or in any tense
other than the present tense, Each verb that the
programmer uses in the source program (except the
verb NOTE) will have some effect in the object
program,

Most verbs will be reflected directly in the machine-
language coding of the compiled object program,;
others do not appear in the object program, but do
act with the compiler to construct the object pro-
gram,

Certain words that, in English, are not verbs are
considered as such by the General Compiler, The
most commonly-used and most useful of these is the
word, IF, which is used in expressing conditions,
relationships, and comparisons. For example, in
the expressions:

IF NOT END OF FILE,GOTO
OR
IF A EQUALS B, GO TO............

IF causes a comparison between the actual condi-
tion and the stated END OF FILE condition or, in
the second cxample, causes a comparison between A
and B. Such near-verbs will be discussed as if they
were verbs,

The GECOM verbs and examples of how each might
be used are listed in Figure 14,

NAMES

Most words in the GECOM source program will be
names, The programmer is preparing a program for
handling data, but is not concerned with the actual
data itself; he is more concerned with preparing data
manipulation procedures, but once they are written
they are only of as much importance as the data they
manipulate, For these reasons, and to take advan-
tage of the leverage that GECOM provides, the
programmer will refer to data and previously written
procedures by name whenever possible,

Names can be readily grouped by type and fall within
these groups:

1, Data Names

2. Procedure Names

3. Conditional Names

4, Constants

DATA NAMES

Data names represent data to be used in an object
program, and are programmer-assigned, not to spe-
cific data, but to kinds of data. For example, in a
file processing application, data names would be
assigned to all input and output files, such as:

MASTER~FILE
TRANSACTIONS
PRINT~FILE
etc.

and, within a file, records would bear data names,
such as:

STOCK~RCD
PAY~RCD
INV~RCD~1
ete.

INTRODUCTION TO GECOM

Ble= 223

25

The Object Listing includes an ¢‘Input/Output
Coding’’ print-out showing all input/output file
tables, control coding, and service routines,
A complete listing of this subsection for the
sample problem requires 439 line entries, Part
of the Input/Output Coding list is shown in
Figure 46.

The final print-out of the Object Listing and the
Edited List is ‘“‘Location Assignments for GECOM
Common Constants,”” Figure 46, This print-out
contains the memory locations for object program
constants and the compiler-assigned symbols for
the constants, For the sample problem, the com-
plete constant listing contains 138 entries.

INTRODUCTION TO GECOM

59

ble=225

VERB

EXAMPLE
S

ADD

ADVANCE

ALTER

=(Assignment)

CLOSE

DIVIDE

ENTER

EXCHANGE

GO

IF

MOVE

MULTIPLY

NOTE

OPEN

PERFORM

READ

STOP

SUBTRACT

VARY

WRITE

ADD TOTL~RECVD TO ON~HAND~QTY

ADVANCE PAY~REGISTER 20 LINES
(to slew or skip printer paper)

ALTER SENT~25 TO PROCEED TO SENT~33.
(to change a previously established sequence of operations.)

QTY~ON~HAND = OLD~QTY + NO~RECVD
(to assign an evaluated arithmetic expression to a specified field)

CLOSE PAYROL~FILE
(to terminate processing of a file)

DIVIDE NUMBER INTO TOTAL GIVING AVERAGE

ENTER GAP AT ROUTINE~3
(to permit insertion of General Assembly Program coding in a GECOM source

program.)

EXCHANGE OLD~TAX, NEW~TAX
(to transpose the contents of two fields)

GO TO SENT~10
(to depart from the normal sequence of operations)

IF LINE~COUNT EQ 58 GO TO ADVANCE~PAGE.
(to test a condition and transfer tc another operation if condition is satisfied)

MOVE TOTAL TO SAVE~AREA
(to transfer data to another location)

MULTIPLY 0. 18 BY PAY GIVING TAX

NOTE THIS SENTENCE IS USED FOR CLARITY.
(to permit insertion of explanatory text not intended for compilation)

OPEN ALL INPUT FILES
(to initiate file processing)

PERFORM FICA~COMP SECTION

(to cause execution of a routine in the desired sequence and then return to
the sentence following the PERFORM statement.)

READ TIME~CARD RECORD
(to make input file records available to the program)

STOP
(to halt processing of the object program permanently or temporarily.)

SUBTRACT RECEIPTS OF TRANSAC~FILE FROM ON~ORDER~QTY OF
ORDER~FILE GIVING ADJ~ORDER~QTY, IF SIZE ERROR GO TO ZERO~RTN.

VARY CHK~AMT FROM 1 BY 1 UNTIL CHK~AMT GR 5
(to initiate and control the repeated execution of the sentence it precedes.)

WRITE RECORD~1 OF FILE~6
(to permit output of data)

Figure 14. GECOM Verbs

INTRODUCTION TO GECOM

27

3185 STOP RUN “‘JTS”’

This statement is used to generate object program
coding for halting processing. In the form used
here, the results will be

1. Program halts
2, END is printed by the console typewriter,

3. The literal ‘‘JTS’’ is printed by the console
typewriter,

IDENTIFICATION DIVISION PREPARATION

This division enables the programmer to label the
source program and provide program identification
in the output Edited List.

The Identification Division is prepared on the Gen-
eral Compiler Sentence Form, as illustrated in Fig-
ure 35,

Entries for the Job Ticket Summary problem are ex-
plained:

1000 IDENTIFICATION DIVISION,

This mandatory heading indicates that entries fol-
lowing are for program identification only. The
name should begin in column 8 and be followed by
a period,

1005 PROGRAM~ID, JTS.

This entry is mandatory; the name, PROGRAM ~
ID, should appear beginning in column 8 and fol-
lowed by a period. The actual program name,
JTS, can consist of up to nine typewriter charac-
ters followed by a blank, a comma, or a period
and can be indented any number of spaces. This
name will appear as part of the heading of each
page of the Edited List,

1010 AUTHOR, GE CODER

This entry is optional. If used, the sentence name
should start in column 8 and be followed by a
period. The sentence can be indented as desired,
contain up to 30 BCD characters, and ended with
a period. If provided, the author’s name appears
on each page of the Edited List.

1015 DATE COMPILED, JUL, 17

This entry is optional, It can contain up to 30
characters followed by a period. If provided,
the compilation date appears on each page of the
Edited List,

1020 INSTALLATION, . . .
1025 REMARKS,
These two sentences, as well as a NEXT~
PROGRAM and a SECURITY sentence, are op-
tional. If used, they can contain any information
that the programmer wants to appear in the Edited
List,

The Identification Division has no effect upon the
compilation of the object program, other than that
of appearing in the Edited List as described.

PRODUCING THE OBJECT PROGRAM

Upon completion of the GECOM forms for the source
program, the data forms are transcribed to standard
punched cards to form the source program deck and
organized as shown in Figure 36.

Data Division

Procedure
Division

Environment
Division

Identification
Division /
e

Figure 36. Source Program Deck Organization

A special GECOM call deck is placed before the
source program deck and the cards are ready for
input to the GE-225 via the card reader,

The minimum GE-225 system configuration for com-
piling the source program is:

GE-225 Central Processor (with 8192 words of
core storage)

Console Typewriter

Card Reader

Card Punch

High-Speed Printer

Magnetic Tape Controller

Four Magnetic Tape Handlers

Five Magnetic Tape Handlers (optional)

Six Magnetic Tape Handlers (optional)

The GECOM Master Tape is mounted on the first
magnetic tape handler on the system and includes a
library of subroutines that might be required to com-
plete the compiled object program. The source

INTRODUCTION TO GECOM

Be=225

57

In preparing the source program, the programmer
may have difficulty in keeping track of codes that
of themselves have no meaning, To provide a refer-
ence term, he can assign names to them, thusly:

HOURLY =0
WEEKLY =1
MONTHLY = 2

Once names are assigned, they can be used in pro-
cedure statements within the source program. Such
names as those described above are called condi-

tional names for convenience. In actuality, they are

special data names, and are formed subject to the
same limitations,

CONSTANTS

Data names are generally assigned by the systems
programmer to kinds of data, rather than to specific
values, because the actual value of the data named
is generally a variable (from record to record, for
example) or possibly an unknown to be computed by
the object program.

Occasionally (even frequently), the programmer will
need to place various kinds of specific data in the
program - data which remain the same throughout
the program. Such constants are designated as
literal constants, numeric constants, and figurative

constants,

Literal constants are those the programmer intends
to use in the program exactly as written. They may
be any combination of up to 30 (or 83, depending
upon where used) letters, numbers, and symbois of
the GECOM character set, To distinguish them from
other names, they must be enclosed in quotation
marks:

MOVE “FILE~NAME’’ TO COLUMN~HD.

Literals can be used in output fields to generate
headings. They cannot be used in arithmetic calcu-
lations,

Numeric constants are comprised of the numerals 0
through 9, plus or minus sign, the letter E for
floating-point, and a decimal point. They can be
used in three forms of arithmetic calculations:
fixed-point, integer, and floating-point.

Fixed-point numerics can contain up to 11 digits,
excluding plus or minus sign, and a decimal, Typical
fixed-point numerics are:

+2.308 -853.001
0.03 9.11

Integers must not exceed 5 digits:

2308 85300
3 911

For floating-point computations, numerics can be
written with mantissas of up to nine digits (one of
which must be the left of the decimal) and an expo-
nent between +75 and -75. The largest and smallest
floating-point numbers that can be represented are,
respectively:
9.99999999E+75 and 0.00000001E-75

If any numeric constant is enclosed in quotation
marks, it loses its numeric value and becomes a
literal constant.

The constants, 0 through 9 and space (or blank)
have been defined within the General Compiler and
assigned names. This permits the programmer to
use the names within his source program without
defining them. These pre-named constants are
called figurative constants and are:

0 ZERO or ZEROES
SPACES

1 ONE(S)

2 TWO(S)

3 THREE(S)

4 FOUR(S)

5 FIVE(S)

6 SIX(ES)

7 SEVEN(S)

8 EIGHT(S)

9 NINE(S)

Figurative constants may be used in the singular to
denote the constant itself or in the plural to imply a
string of constants,

EXPRESSIONS

The programmer combines words and symbols into
procedure statements to direct computer operations.
To facilitate the formulation of such statements
showing the relationships and combinations of data
names, conditional names, and constants, he has the
assistance of arithmetic, relational, and logical ex-
pressions.

An arithmetic expression is a sequence of data
names, numeric constants, and/or mathematical
functions that are combined with symbols which
represent arithmetic operations.

Operations and functions available to the programmer
and their proper GECOM form are shown in Figure
15. They are listed in priority order, from highest
to lowest, All of the listed functions are readily
available as part of the GE- 225 standard subroutine
library and need not be generated during source
program compilation or manually by the program-
mer. Previously-prepared subroutines materially
reduce compilation time and programmer effort.

The natural priority of the table can be overridden

by parentheses. Parentheses cause the evaluation to
be performed from within the innermost set of

INTRODUCTION TO GECOM

Ble=22%

3110 S3110, ALTER. . . .

This statement sets SW3150 to proceed to S3155
the next time it is processed. SW3150 handles
the group suppression of printing of DEPT~ NO,
When a new department is detected at 3080, it is
necessary to print that department number from
working storage, but immediately after, blanksare
moved to that working storage field (part of the
Detail Record) and the MOVE of blanks must be
bypassed until the next new department is en-
countered,

3115 S3115. MOVE. . . .

This statement places the contents of the memory
location assigned to hold the job ticket department
number to the memory locations assigned to hold
the last department number and the working
storage department number, The LAST~DEPT
is for comparison with the department of the cur-
rent Job Ticket to determine a change of depart-
ment at 3080, while the department of working
storage is to provide the department number for
the first printing of a detail record for a new
department, and blanks afterward.

3120 MAN~COUNT=, . . .

This is an assignment statement that sets to zero
the memory locations reserved for the named
field.

3125 S3125. ADD. . ..

The man count memory location is increased by
one.

3130 ADD. . . .

The two named fields are added and the result
replaces the previous value of ACC~REG~HRS,

3135 ADD. . . .

The two named fields are added and the result
replaces the previous value of ACC~OT~HRS,

3140 IF. . . .

The contents of the LINE~COUNT memory loca-
tion are compared with the constant, 51. If they
are equal; control transfers to procedure state-
ment S3170; if they are not equal, the next state-
ment in sequence is taken (3145). LINE ~
COUNT = 51 indicates that the last line of a
printer page has been printed and a new page
(and new headings) must be started.

3145 S3145. WRITE. . . .

The DETAIL RECORD, defined in Data Division
statements 4150 through 4180, which includes

DEPT, MAN~NBR, NAME, JOB~CODE, REG ~
HRS, and OT~HRS fields, is printed as a line
by the high-speed printer.

3150 SW3150. GO TO. . . .

This is another program switch similar to SW3085
and SW3107. It governs whether the detail record
print line contains an actual department number
or blanks.

3155 S3155. MOVE, . . .

This statement replaces the contents of the work-
ing storage DEPT field with blanks.

3160 ALTER. . . .

This statement changes the object of the GO state-
ment at SW3150 from S3155 to S3075 to bypass
S3155 and 3160 until a new department is read.

3165 GO TO, . . .

This statement unconditionally transfers control
to S3145.

3170 S3170. PERFORM. . . .

Like statement 3065, this sentence transfers con-
trol to the WPH SECTION beginning at 3005.
Upon completion of this section, control automa-
tically reverts to the next statement in sequence,
3175, This is used to head up a new page after the
capacity of the preceding page has been filled by
a department’s records,

3175 GO TO. . . .

This statement unconditionally transfers control
to S3145.

3180 S3180. ALTER. . . .

This statement changes the object of the GO state-
ment at SW 3107 from S3110 to S3182, so that
CLOSE will occur after the final summary card
is punched.

3181 GO TO, . . .

This statement unconditionally transfers control
to S3100 to compute thefinal summary card TOTAL
~HRS.

3182 S3182, CLOSE. . . .

This statement terminates processings of the
JOB~FILE and the SUMMARY~FILE. The card
counts for the card reader and the card punch
are printed out on the console typewriter,

INTRODUCTION TO GECOM

G

Figure 17. Logical Expression Truth Table

No, A B C D
“
1 A1 B, C1 D,

2 A2 B, C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5

Figure 18. Simple Two-Dimensional Table

Lists and tables of data can be stored within a data
processing system for program reference also, per-
mitting the programmer to instruct the program to
perform ‘‘table look-up’’ operations. Such tables
are stored in series within the system instead of in
the grid-like manner illustrated above., The same
table in the data processor might appear as a list,
shown in Figure 19,

Even though the table data is stored as a long list,
the programmer can still readily specify the re-
quired table data in essentially the same manner as
a clerk would in instructing another clerk how to
use the table first shown. The clerk would specify
the table name, then the horizontal row and vertical
column headings: TABLE 1, row 3, column C, The
GECOM programmer does the same thing in a simi-
lar shorthand:

TABLE~1 (3, 3)
meaning TABLE~1, row 3, column 3,

Lists, tables, and matrices can all be represented
in GECOM source programs and are referred to
generically as arrays. A list is a one-dimensional
array; a table, two-dimensional.

A three-dimensional array can be depicted graphi-
cally as a series of two-dimensional planes; as

shown in Figure 20, Three-dimensional arrays could
also be represented in storage as a series of sequen-
tial lists (one for each plane) like that described for
the example above.

Arrays are assigned identifying names by the pro-
grammer., To identify array values, subscripts are
used to specify rows, columns, and planes.

One-dimensional list = A(I)
Two-dimensional table = A(L,J)
Three-dimensional table = A(IJ,K)

Subscripts can be written as arithmetic expressions,
if need be, containing other subscripted arrays, and
nested to up to ten deep in any one procedure state-
ment,

LIST (A+C)
RATE (A-B*C, L(I,J),X)

In the second example A-B*C is the i-subscript,
L(I,J) is the j-subscript, and X is the k-subscript
for a matrix called RATE, Parentheses are always
used to enclose subscripts which must immediately
follow the array name.

1A1B1C1D12A2B2C2D2 3

3 A, B, C, D

3

3 Dg 4 44 By Cp Dy 5 Ay By Cy Dy

Figure 19. A Two-Dimensional Table in Storage

INTRODUCTION TO GECOM

ble=228

31

GENERAL @ ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

GENERAL COMPILER SENTENCE FORM

PROGRAM DATE
JOB TICKET SUMMARY (JTS) JUL. 17
I e CODER [eoxrvter G o225 "
Nonsen
L T) e B e e B e e D i e
310,00 R.O.C S IONl,. . | . . N " " .
L 3,001 .Jco Tlo, 83,055, R - . . .
., 3005} WPH |SECT|ION., . -
L 3.01.0) IBEGIN.. . L L .
L 3,015 .. JADVAINCE DMH~REPORT .T.0. TOJP OF PAGE . . A . N
. .3020 ADD |1 TO PAGE~JCOUNT. _ | L , .
. 3025 . JADVAINCE DMH~REIPORT 4 LIN[ES. | .) R .
3030 WRIT|E RPT~TI1TL|E. . l
3.0.35 ADVlAWMMBL}_mS - . .
L. 3040 WRI T|E .COL~ TITLIES, . L N . R .
; B3.045 ADVAINCE DMH REPORT 2 LINES
. 3050 lExp. lwepn |sEcTION IR R e e
I 3055 Ez,os 5. O|PEN ALL FI|LES. . . N .
L. B3060 MOV.E} .0, 1.0, PAGE| COIUNT . - ek e .
[3065 PERFIORM WPH SE|ICTION, S . !
3070 MOVE| "77" TO LIAST- DEPT. . _A__ “
L. 807583 07)5., RJEAD J OB~ FI|LE RECORD, JIF, END, FI L GO, 1O, $31180,0, , o} o LA;;&LM‘
3080 IF, DEPT OF JOB|~TICKET EQUALS, LAST ~|DEPT GO, TO| $3125 . N .
3,085] |sws.o0lss,., |GO TO, S$3,09[0,., , , . e . e ey
, 3090)|s30 9., AJLTER SW308]|5, T0O PROCEIED TO S31.0J0. i . R
3095 GO, Tlo. 831,15 . e L L
31,00 Isa 1.0, TlOTAL~HRS =] ACC-~REG~ HRS + ACC~O|T~HRS . L)))
31,05 . JWRIT|E SUMMARY~CARD,. R R . R o
L 3,107 |§w3,107. GO, T O S311f0. L . . e
. 3110)s311o,. A|JLTER Sw315/0 TO PROCE|ED TO 83155, . .)
3115)Is311]5. MOVE DEPT OfF J‘O‘B‘NTI.CK'ET‘ TO LAS TI:D,E,PT,‘ DEP|T, OF WS, .) N X
L3,12.0 .. . IMAN~ICOUNT, = AC|C~REG~HRS | ACC~OT~HIRS = 0,. . P P . . P
3125|Is312]5 . AIDD 1, TO MAN~COUNT. e N . . - . .
21,320 ADD |REG~ HRS, TOl A r‘.C~REG~.H*_R<S~
3135 ADD |OT~HRS TO JACC~OT~HRSJ. . N . . R .~
L 3,140 .. pF LI NE~COUNT JEQUALS, 51, JGO T.0 $3.17J0... . - L . .
3145 Js3 1405, WIRITE DETAI|L RECORD,. R . e .
_3,150f |sw31]50,. Jcgo To 8315|5 . . L e . -
3155 |s315|5. MOVE SPACES| TO DEPT O|F WS . . P 1 .
. 3,16.0 ... |JALTEIR Sw315,0, T|O, PROCEED, |TO 830,75, . . . R - -
L 31.6.5 .. lco. Tlo. s3075.0.)L T . .
. 3170 }s317}0.. PJERFORM WPH SECTION,., P T L
3.1.7.5 .. JGOo TjO S.3,1.45. R L . s L L . L . L P
. 3180]|s318}0., AJLTER SW310|7 TO PROCEED TO S318J2. R T) R
3.1.81 GO, T|O $83100,. A , = . L . P . L N . T
. 3182} Is3.18)2 CLlOSE, JOB~FI|LE, SUMMAR|Y FILE. | L . X L e o
, 3,185 . .S TOP} RUN, " JTS"J,, . Ly L L L L L . L N N
RN ST RS SR S — : L . ;
L DL LD el o[l L oful [l bl sl o el o sl [l [] ol [l oo s sl s o o] ol e o] o

eA 1 dossny

Figure 34. Job Ticket Summary Procedure Division

E 22 INTRODUCTION TO GECOM
O

53

EXTENSIONS TO GECOM

GECOM/REPORT WRITER

The GECOM/Report Writer requires the same com-
piling configuration as Basic GECOM, and is an
extension of the basic compiler. Report writing
programs can readily be described in the Basic
GECOM language, but the Report Writer facilitates
report preparation by enabling the user to describe
reports concisely on a layout form which can be
inserted into the GECOM Data Division. It also
provides such features as automatic page and line
control, facilitates programming, and provides better
documentations of report writing programs,

Report specifications are written within the frame-
work of a GECOM source program, and, in straight-
forward situations, are contained entirely within the
Data and Environment Divisions. A knowledge of file
and report formats and which record fields are the
file sequence keys is all that is needed beyond a
knowledge of GECOM to prepare procedure state-
ments for most business reports., The user need
only define the unique features of his job outside of
the normal file processing procedure. The Report
Writer tailors the basic framework to the program-
mer’s needs and produces an object program for
execution, The primary advantages to be gained by
this method of description are minimized program-
ming and debugging effort and readily-understandable
program documentation,

With proper preparation of the source program, the
Report Writer with GECOM will generate an object
program which:

1. Prints report headings once at the beginning of
the report.

2. Prints report footings once at the end of the
report,

3. Maintains page control by line count and skips
to a new page as specified,

4, Maintains line spacing on the page.

5. Prints page headings at the top of each report
page.

6. Prints page footings at the bottom of each re-
port page.

7. Numbers pages.

8. Issues detail lines according to the presence
or absence of control conditions.

9. Accumulates detail field values to one or more
levels of total.

10. Counts detail field conditions and detail lines
to one or more levels of total.

11. Detects control breaks at one or more levels
to control tabulation, issue control totals, and
issue control headings.

12. Edits data fields for reporting by zero sup-
pression, character insertion, fixing or floating
dollar signs, and fixing or floating arithmetic
signs.

13. Assigns and calculates values for report
fields.

14. Reads a single file on one or more reels,

15. Reads successive files on multifile reels.

16. Performs normal file opening and closing
functions.

17. Creates final totals and terminates reports at
end of input,

18, Prepares a report(s) file for deferred print-
ing.

Report descriptions are contained in the Report Sec-
tion of the GECOM Data Division, under the head-
ing REPORT SECTION, immediately following the
File Section. All entries in this section must con-
form to the format of the Report Description Form,
Figure 21, which is used in place of the standard
GECOM Data Division form. Not shown are the sup-
porting entries required in the Working Storage Sec-
tion of the Data Division. Figure 21 illustrates a
typical report as laid out in the Report Section of
the Data Division, while Figure 22 shows the result-
ing printed report after processing of the object
program containing the report description,

GECOM/TABSOL

The GECOM/TABSOL extension requires the same
compiling configuration as Basic GECOM and allows
source programs to be described in tabular form.
Although the same programs could be described in
the basic GECOM procedural sentences, certain
benefits are provided by the TABSOL extension,

TABSOL, which stands for Tabular Systems Oriented
Language, is basically a structuring technique used
to systematically describe the step by step decision
logic in the process of solving a problem. The basic
advantage of the TABSOL language is that it is easily
learned and understood and can be applied to many
analytical situations,

INTRODUCTION TO GECOM

Ble=225

33

The I~O~CONTROL sentence is used only if non-
standard label-checking rerun information and/or
multifile magnetic tapes are required.

The FILE~CONTROL sentence is used when the
source program requires the identification and/or
assignment of input/output files or hardware units,
If the source program does not process input/output
data, the FILE~CONTROL sentence can be omitted,

The COMPUTATION~MODE sentence is used when
it is desired to perform computations on data in
floating point format using floating point arithmetic,

For the Job Ticket Summary problem, the Environ-
ment Division would be prepared as shown in Figure
33.

The General Compiler Sentence Form is used; head-
ing information, such as program and programmer
identification are discretionary, Actual line entries
must adhere to the rules detailed in the GE-225
GECOM Language Specifications. Some of these
rules are mentioned in the line entrv explanations
that follow,

2000 ENVIRONMENT DIVISION,

The division heading is always the first entry for
the division, The heading should begin in column
8 (recommended) or may be indented any number
of spaces to the right, The heading must be
followed by a period and no other information
should follow on that line,
2005 and 2010 OBJECT~ COMPUTER.

If this sentence is used, the sentence name should
be started in column 8 and followed by a period.
The sentence can start on the same line as the
sentence name, In Figure 33, the compiler
interprets the sentence to mean that the object
program is to be performed on a GE-225 system
with a 8192 word memory (2 MODULES) and the
object program is to be input via card reader.
To accomplish this, the General Compiler must
produce the object program on punched cards via
the card punch. Note that the sentence was too
long to be completed on one line and was carried
over to line 2010 and indented for clarity.

2015 FILE~CONTROL.

Like other sentence names, this one begins in
column 8 as recommended. The first sentence is
begun immediately after the name (with a blank
between) and terminated with a period. All sub-
sequeit sentences must begin on a new line. The
2015 sentence in Figure 33 assigns the JOB ~
FILE (input) to the card reader buffer, The
General Compiler interprets this to mean that
data input through the card reader is to be
treated as job file data,

2020 SELECT SUMMARY~FILE, . ..

This sentence assigns the SUMMARY~FILE to
the card punch for output.

2025 SELECT DMH~REPORT. . . .

This sentence assigns the DMH REPORT to the
high-speed printer for output. The DMH REPORT
is considered as an output file and is therefore
assigned to a peripheral like all files in the
FILE~CONTROL Section.

PROCEDURE DIVISION PREPARATION

Once the programmer has flow charted the procedure
to be followed and has defined all input and output
data, it becomes relatively easy to statethe process-
ing steps to be followed in producing the desired
output,

The programmer, having developed a working knowl-
edge of GECOM language elements (verbs, names,
constants, expressions, ete,) and their effects upon
the object program, is prepared to document the
procedure. Figure 34 illustrates the completed Gen-
eral Compiler Sentence Form for the Procedure
Division of the Job Ticket Summary Problem. By
relating the individual procedure statements and
their explanations below to the flow charts in Figures
29 through 31, the overall procedure is more readily
understood.

3000 PROCEDURE DIVISION,

Invariably the first entry for this division {(and
others) is the division name. It must be entered
starting (preferably) in column 8 and terminated
with a period.

3001 GO. . .

This opening sentence immediately and uncon-
ditionally transfers operation to the sentence
identified by the sentence name, S3055.

3005 WPH SECTION,

This statement indicates that all procedure state-
ments that follow are to be considered part of the
WPH (Write Printer Heading) section until an
END SECTION is encountered,

3010 through 3045

These statements comprise the WPH section which
functions to advance the high-speed printer paper
to the top of the page (3015), count pages (3020),
space paper to the first print position (3025),
print out the report title as defined by the literal
entry at 4110 of the Data Division (3030), space
paper to the next print line (3035), print out the
column titles defined at 4135 through 4145 (3040),

INTRODUCTION TO GECOM

ble=223

51

GE

WEEKLY-PAYROLL REPORT PAGE 28

12-01-61
ORG PAY JOB REGULAR OVERTIME GROSS
CODE NUMBER EMPLOYEE NAME SEX CLASS HOURS HOURS EARNINGS
S48L 0671 J JONES MALE BO1 Lo.o 10.0 $ 123.44
0983 A JOHNSON MALE A10 37.5 184.01
1201 B SMITH FEMALE €50 L4o.o 8.0 148.02
1452 SCHROEDER MALE DA2 32.0 84.66
2352 C BROWN MALE D11 Lko.o Wb 105.19
5484 COUNT OF EMPLOYEES 05 189.5 18.4 645.32
5485 0108 R EDWARDS MALE D80 L4o.o 100.01
0112 P SMYTHE FEMALE B11 35.2 115.55
1389 A ANDREWS FEMALE BO1 Lo.o 8.0 72.06
1545 R MICHELSON MALE A10 Lo.0o 12.0 123.11
1547 J BERG MALE SO1 38.2 182.78
1999 A McMILLAN FEMALE Co9 L4o.o 2.2 78.23
2103 J GWYNN MALE BO1 Lko.o 1.8 101.11
5485 COUNT OF EMPLOYEES 07 273.4 24.0 842.85
5480 COUN1 OF EMPLOYEES 12 422.9 L2.4 1,388.16
5400 COUNT OF EMPLOYEES 33 1302.1 108.0 4,125.29
55Q1 0133 C STEVENSEN MALE E22 L4o.0 138.06
0134 L ELLISON MALE A09 Lo.o 149.55
0222 H MURPHY FEMALE €53 Lo.o 99.99
2102 J QZER MALE BO1 Lo.o 123.02
2359 A AMBERCROMBIE MALE B11 Lo.0 154,84

Figure 22, Report Writer Sample Report

GENERAL 0 ELECTRIC GENERAL COMPILER DATA DIVISION FORM
COMPUTER DEPARTMENT, PHOENIX, ARIZONA
FROSRA OB TICKET SUMMARY (JTS) **TE JUL. 17
PROGRAMMER G. E. CODER |couruv:u PAGE 1 oF
S:::E::f é DATA NAME QUALIFIER g REPEAT| é t l:S;EI.'E;ES DATA IKAGE
N D 2 R e
| 4000] DAITIA DIVISION.. . L - P S S S S S
4005| |FI|JE SECTION., | T . R]
4010| OUT[PUT, FILES. . . - R . . o
4015| |[FD| [SUMMARY~FILEL| . . ., . - . b i L .
4020 R| [SUMMARY~ CARD|. .) . L . ; i
4021 F| |LAST~DEPT, L L L XX, B(5) . . -
4022 F| |[MAN~,COUNT, , o o . . . 1999, B(29), .
4023 F| |JACC~REG~HRS, e . . : o6y Ve B(4). ...]
4024 F| JACC~OT~ HRS DU Aot bl o lfe9esve B(SY |
4025 | F| [TOTAL~HRS, . o . J19(7) Ve, B(12)]
4100| |[FD| [DMH~REPORT.)
4105 | R [RPT~TI TLE . L P . o
L4110 L e [R R . T .| |BBB "DEPARTMENT MAN HOUR R
| . 41151 | - S E T . . EPORT" . | .
4 1,20 WL, . L T . B(.42) MNP AGE"
4125 F| PAGE~COUNT B ZZ7Z9
4130 Rl |COL~ TITLES, R - B I U R S
: 4135 Ly P . y 1 B(7). "DEPT MAN NUMBER NAME|]
41400 . L 1] I 1. AT I ;
4145 L — FEE R S B S . . B(18). "JOB REG~HRS. OT~ RS
4,150 REDETAT Lo b b e s . e e
4155 JF IDEPT | w8, . . B(7) XX BBB R . .
4160 F| IMAN~NBR, , . - » x50, B.(.6) . e .
4,165 F| INAME, , | L . . . P A A (,21)B . e .
4,170 F| |[J.OB~,CODE, | , , e L XX, BB, . ..o
4,175/ | F{ REG~HRS, ., .|| Ly S .{lzzz.9 BBB ,
41 80 F[oOT~HRS | . . , N 2Z.9 | . . e .
4500]| 1 NP[UT FILES. ., L BT 1 S S S S R S S S
4505| |[FD| JOB~FILE., - T L N J I S S S S R S R
4510 R| [JOB~TICKET, , TSR B) . 0 1 T . S S S RO RN
4515 F| IMAN~NBR, , | e - X(5), . ., . e
4.5.2.0 Fl| [IDEPT, . .\ . .. L L . XX BB
4525 F| [INAME, , , T) L L 2y .
4530 F| [OB~CODE , , | . , . L L X B(7) R -
4535 F EG~HRS. « 1 . e - - . 999V.9, | L
45,40 F| [0OT~HRS, , e . L . 99V.9 B(S3.4), . . .,
5000| WORKING~STORAGE| [SECTION., . . L R R
5.0.0.5 F| IMAN~ COUNT, e . . 999, ., 0
5010 F| JACC~REG~ HRS, . . . 1 . 9.(.6) V9, .
, 5,015 F| [ACcC~OT~HRS, | L. . . 1. L lles99o ve . . R .
5,020 F| TOTAL~HRS, | | P T R T 1. B B TR 9.(. 7). V.9 1 . o A , L
5,025 F| PAGE~ COUNT e . . . 9909090 .
50380 F [LAST~DEPT X e . .)) S .
5035 F| pEPT .)) X . .
8 Y 30 e 2 0 . e e e) G B B D B T
CA 4 (V/82)

Figure 32. Job Ticket Summary Data Division

E 22 INTRODUCTION TO GECOM
O

49

I A A A T ; ; ; ;
F N N N N H
D D D E
1 2 3 k N 1 2 3 m
Primary
Row < AGE EQ AGE
| ——
r 26 26
2
3
4
Secondary 4 5
Rows
6
7
n
\.
v/ < \— " /
Conditions Actions

Figure 23. Decision Table Format

@E 225 INTRODUCTION TO GECOM
(]

37

From
Figure 29

Add
Acc~-Reg-Hrs to
Acc-OT-Hrs for

Total-Hours

'

Punch Summary

Card
From
/ Figure 29
/
7 SW 3107
/
Bf A

Close Set SW 3150 Set SW 3085
Files To A To B

'

Job-Ticket-Dept
—> Last-Dept
and WS Dept.

'

Set Man-Count,
Acc-Reg-Hrs,

From Acc-OT-Hrs=0
Figure 29

©

Add 1to
Man-Count

Figure 30

Figure 31. Job Ticket Summary Flow Chart (continued)
@E 22 5 INTRODUCTION TO GECOM
O

47

6€

GENERAL @ ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

GENERAL COMPILER SENTENCE FORM

rroem SAMPLE DECISION TABLE n
PROGRANMER —ICOAPUTER PAGE
VUuBER
|=2\3|ll 5]5 3|9'|0|” |2]TJ|T‘ 15 |6|"||3|]7|20‘1|H13—Pﬂ15 26 27|7‘|79‘10[3\|31’33|3‘I’5 36'[]7l13l371l0ill{:42 ‘3l4‘ll$ 16I‘7"3‘l9%Sﬂ_i;:zgis}iiit55 56{57‘ 53159;0}“]&21:3 6‘]65 55]767—1'63!69-!;‘7!]7:'73|74i75{76l77lll |7VI30
... sl lprodEDU . e
caoll .. lorEN 1 NPUT MAS|TER~FILE. T . b L o L
... 15| |GET~|RECORD,.. .READ. MAST.ER~FILF RECORD IF| END FILE |G.O T.O END~RUN.. . o
.20 |L.F _FIEMALE Go TlOo. GET~RECORD., | ..
by 25 .+ |EXPEIRIENCE= | = Y R~A~EMP.IJOY. ED. .+. PR.EIV~-EXP L
... 30l |lraBllE ExlamPLE., .3, cloNnp.1TIONS, |2 AcTiONS |5 ROwS . j
....3.5%5_1 XP NcEl . JTITLE A I
L 40 6 EQ 2 |. |PROGRAMMER — 11 fyPE~ouT] . - I
L 45 7. . EQ .3 |. .| PROGRAMMER OR ANAlLYsST [[2 L g
L., 50 8. .. GR 3 , LANALYS. .) 1 . 3 L L
coossl e Lo GR 4] JANALYS T OR SR.ANAlLYST. [4 .
_ 60 1.0, __GR 41 Isr aNazlvsT » 5 i e
. ..6511.. lco 1lo GET~RECARD., |.. o . L
.. 10| |rypEbouT|.. WRIT.E DHPARTMENT., NJAME TITL.E |LEVEL EXPERIENCE ,ON |TY.PEWRLT.ER.. ...
15 ToTAlL (1), .= .ToTAL (L) .+ - T
. 8oll .. . lco 1lo GET~RECORD..| L e e
... 85| |END~RUN.] CLOSE MAS|TER~FILE. | - T
.. 90 IwriT|E TOTAL (1) TOTAL(2). |TOTAL(3) T|OTAL (4.) TOTAL (,5) ,ON |TY.PEWRLTER..
.95 _Istor| "END RUN"|. . . N T T .
sl Telo b ol selfal s bl] s ofoal el s dr [s o so] s s oo s] |] o sl el o oLl el s o o o] o] L an Lo] o] s |

CA 13 (10/61)

Figure 24. Sample TABSOL Table in GECOM

Open All Files

T

Initialize
Page Count
From
Figure 30
Write Report
Headings
. To
First Page ?
1r & Figure 30
ZZ's to
Last-Dept.
From
From (7Y -
Figure 30 _/ ‘
Read in
Job-File Record
Last Record?
Does Dept. .
Set SW3107 of Job Ticket = o>
To B Last Dept?
To
B/ Figure 31
SW 3085 °
\ J

To Figure 31

Figure 29. Job Ticket Summary Flow Chart

@E 225 INTRODUCTION TO GECOM
(-]

45

APPLICATION OF BASIC GECOM

GENERAL

To more closely relate the use of the GECOM system
to actual applications, the following pages carry a
sample problem through the programming process.
Although not all of the capabilities of Basic GECOM
are exercised, enough material is presented to pro-
vide perspective and insight into the scope of
GECOM.

First, the problem is presented and the objective
is defined,

Second, the procedure to be followed is outlined,
the required inputs and desired outputs are identi-
fied, and a flow chart is prepared.

Third, the source program is produced. Each of the
four divisions of the GECOM source program are
illustrated and discussed where appropriate. The
compilations and debugging of the object program,
performed on the GE-225, are not covered in detail,
Procedures for compilation are fully discussed in
the GE-225 GECOM Operations Manual, CD 225H1.

Finally, the outputs of the compilation process, the
Edited List and the object program, are presented
and discussed.

DEFINING THE PROBLEM

The sample problem selected involves a typical man-
ufacturing plant that uses job ticket records for each
employee to produce time and job accounting data.
Assuming that the individual Job Ticket Records
follow the format illustrated in Figure 25, the prob-
lem is to prepare a program that will produce two
outputs:

1. A punched card summary record for each de-
partment, showing the:

Department Number

Number of Men

Accumulated Regular Hours
Accuumulated Overtime Hours
Total Hours

2. A printed report providing, by department and
man number, this information for each man:

Department Number
Man Number

Name

Job

Regular Hours
Overtime Hours

Figure 26 shows a representative punched card sum-
mary record, while Figure 27 shows the desired
printed report.

In an actual application, it is quite possible that
the input data (the Job Ticket Record) and the de-
sired outputs (the Job Ticket Summary and the De-
partment Man Hour Report) would not already be
defined. The problem might be as informally stated
as, ‘““we need to know what our people are doing and
how long it takes to do it.”’

In these circumstances, the problem would also en-
tail determining what input data is needed, how to
collect it, and how to record it for computer input.
It would also be necessary to determine (more pre-
cisely than the quoted problem states) what output
is desired and what form and organization it should
follow.

Here, these preliminary decisions have been made.
It remains for the programmer to document the
process to be performed by the data processor, de-
tail the procedure the program must follow (via a
flow chart), and prepare the source program,

PLOTTING THE SOLUTION

In the sample problem, documenting the process in-
volves little more than translating the problem
statement into a diagram, The input is already
defined; the purpose of the program has been stated;
and the desired outputs have been described.
Graphically the process chart appears as shown in
Figure 28,

A more realistic application might involve several
inputs and outputs via several media. Additionally,
multiple ‘‘runs’’ or processes by the data processor

INTRODUCTION TO GECOM

ble=223

41

DEPARTMENT MAN HOUR REPORT

PAGE 1

DEPT MAN NUMBER NAME JOB REG-HRS OT-HRS
20 10076 FIELY, CR 75 40.0 L. 2
18270 JOHNSON, HA 82 4o.0 6.4
28883 RANGEL, MM 17 L4o.0 8.6
30106 STRONG, AB 24 40.0 8.8
35596 HAYS, ER 33 Lo .0 2.0
Figure 27. Department Man Hour Report
Input Card Reader Job Ticket File
GE-225
Information .
Processor Processing Run Job Ticket Summary
System
r Job
Ticket
Card Punch Summary
File
Output ¢ High

Speed
Printer

Department Man Hour
Report

Figure 28. Process Chart for Job Ticket Summary

INTRODUCTION TO GECOM

43

DEPARTMENT MAN HOUR REPORT PAGE 1

DEPT MAN NUMBER NAME JOB REG-HRS OT-HRS

20 10076 FIELY, CR 75 L4o.o L.2
18270 JOHNSON, HA 82 Lo.o 6.4
28883 RANGEL, MM 17 Lo.o 8.6
30106 STRONG, AB 24 Lo.o 8.8
35596 HAYS, ER 33 Lo.o 2.0

Figure 27. Department Man Hour Report

Input Card Reader Job Ticket File

GE-225
p Information .
rocessor Processing Run Job Ticket Summary
System
Job
Ticket
Card Punch Summary
File
Output ¢

Department Man Hour
Report

Figure 28. Process Chart for Job Ticket Summary

@E 225 INTRODUCTION TO GECOM
(=]

43

APPLICATION OF BASIC GECOM

GENERAL

To more closely relate the use of the GECOM system
to actual applications, the following pages carry a
sample problem through the programming process,
Although not all of the capabilities of Basic GECOM
are exercised, enough material is presented to pro-
vide perspective and insight into the scope of
GECOM.

First, the problem is presented and the objective
is defined.

Second, the procedure to be followed is outlined,
the required inputs and desired outputs are identi-
fied, and a flow chart is prepared.

Third, the source program is produced. Each of the
four divisions of the GECOM source program are
illustrated and discussed where appropriate. The
compilations and debugging of the object program,
performed on the GE-225, are not covered in detail,
Procedures for compilation are fully discussed in
the GE-225 GECOM Operations Manual, CD 225H1,

Finally, the outputs of the compilation process, the
Edited List and the object program, are presented
and discussed,

DEFINING THE PROBLEM

The sample problem selected involves a typical man-
ufacturing plant that uses job ticket records for each
employee to produce time and job accounting data.
Assuming that the individual Job Ticket Records
follow the format illustrated in Figure 25, the prob-
lem is to prepare a program that will produce two
outputs:

1. A punched card summary record for each de-
partment, showing the:

Department Number

Number of Men

Accumulated Regular Hours
Accuumulated Overtime Hours
Total Hours

2. A printed report providing, by department and
man number, this information for each man:

Department Number
Man Number

Name

Job

Regular Hours
Overtime Hours

Figure 26 shows a representative punched card sum-
mary record, while Figure 27 shows the desired
printed report.

In an actual application, it is quite possible that
the input data (the Job Ticket Record) and the de-
sired outputs (the Job Ticket Summary and the De-
partment Man Hour Report) would not already be
defined. The problem might be as informally stated
as, ‘““we need to know what our people are doing and
how long it takes to do it.”’

In these circumstances, the problem would also en-
tail determining what input data is needed, how to
collect it, and how to record it for computer input.
It would also be necessary to determine (more pre-
cisely than the quoted problem states) what output
is desired and what form and organization it should
follow.

Here, these preliminary decisions have been made.
It remains for the programmer to document the
process to be performed by the data processor, de-
tail the procedure the program must follow (via a
flow chart), and prepare the source program,

PLOTTING THE SOLUTION

In the sample problem, documenting the process in-
volves little more than translating the problem
statement into a diagram, The input is already
defined; the purpose of the program has been stated;
and the desired outputs have been described.
Graphically the process chart appears as shown in
Figure 28,

A more realistic application might involve several
inputs and outputs via several media. Additionally,
multiple ‘‘runs’’ or processes by the data processor

INTRODUCTION TO GECOM

Ble=225

41

Open All Files

¢

Initialize
Page Count

From
Figure 30

Write Report
Headings

. To
First Page ?
r J Figure 30
ZZ's to
Last-Dept.
From 4
Figure 30 __/
Read in
Job-File Record
Last Record?
Does Dept.
Y 0}
Set SW3107 of Job Ticket = J——
To B Last Dept?
To
B/ Figure 31
__>®sw 3085 e
\ J

To Figure 31

Figure 29. Job Ticket Summary Flow Chart

@E 225 INTRODUCTION TO GECOM
O

45

6€

GENERAL@D ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

GENERAL COMPILER SENTENCE FORM

PROGRAM

SAMPLE DECISION TABLE "
PROGRANMNER COMPUTER PAGE
e
Lellle e Ll b felepe el e ol ol s el ol o T [o e o o o [e e e [o e o o T s e T n o [l a[e[T s e nra o] o[o oo
... 5| lproclEDURE DIvV.ISTON. A R
. a0ll.. . lorEM INPUT MASTER~FI.LE.. e | . . e .
... 15| lcGET~|RECORD.. READ. MASTER~FILF RECORD I.Fl END. FILE |G.O T.0 END~RUN.. N
.20]].. I FAEMALE Go T{O. GET~REC.ORD. N e
L0 25 v JEXPEIRIENCE= 6.1] - YR~EMP.IJOY.ED. .+. PR EJV~EXP n
30| ItaBllE Ex|aMPLE., 3. cloND 1TIONS, |2 ACTIONS. |5 ROWS
.. 35 Elo l[Exp Ncel . TIT,
.40 _%&_mg‘ PRO.GRA, ER.Q.—'E_. N H% Y PE~OUT] ,
CooaslL . EQ .3, | PROGRAMMER .orR _ANA|LYST, |l 2 N |
50l)L 8 . . GR .3 . |ANATLYS T e s " 1
Y1 I | R R B R) Y lanarys T oRrR SR.ANAlLYST |[4 " .
.. 60 10, _GR 41 |sr anNnatlysT . 5 ' ‘
. 6511, . lco Tlo GET~RECORD.. 1 ‘ o . .
.. 70| IrypEbouT].. WRITE D.HPART LEVEL EXPERILENCE .ON |TY.PEWRLT.ER.. .. .
15 AroralL (1), = TodAL (LY e) . - . . .
. 80ll.. . lco 1lo GET~RECORD., N L ,
... 85| [ExD~RUN.| cLOSE MAS|TER~FILE. | 0o Ve e
Y IwRLTIE TOTAL (1) TOTAL(2). JroTAL(3). TloTAL (4). TOTAL.(.5). ON |TY.PEWRLTER. . . .
.. 9511l.. Istor| "END RUN"|.,, . . . T T e
1 Il 314‘5I6 7 |l9llﬂ|l Iill!]]l]li 'IAI 171101 l9l 1421122‘ IllulZS 26 17110[2")0,!“31!33‘3‘135 l‘|l7!]lj3’llnl ‘llﬂlllll‘l‘; 1514714J11l§0=5!1| 511531:‘55 5“ 5715"59|6°|"|‘lellhll‘s 66\‘7\6'\6’|7§|71\71173‘7! 75l 76[2{7‘[79100

CA 13 (10/61)

Figure 24. Sample TABSOL Table in GECOM

From
Figure 29

Add
Acc-Reg-Hrs to
Acc-OT-Hrs for

Total-Hours

'

Punch Summary

Card
From
/ Figure 29
/
// SW 3107
/
B A

Close Set SW 3150 Set SW 3085
Files To A To B

t

Job-Ticket-Dept
— Last-Dept
and WS Dept.

'

Set Man-Count,
Acc-Reg-Hrs,

From Acc-OT-Hrs=0
Figure 29

O,

Add 1 to
Man-Count

To
Figure 30

Figure 31. Job Ticket Summary Flow Chart (continued)
@E 225 INTRODUCTION TO GECOM
O

47

Primary
Row

Secondary
Rows

Figure 23. Decision Table Format

I A A A T ;
F N N N N H
D D D D E
1 3 k N 1 3 m
< AGE EQ AGE
|= —
r 26 26
2
3
4
J 5
6
7
n
\\
- J J
TN N
Conditions Actions

INTRODUCTION TO GECOM

37

GENERAL @) ELECTRIC

COMPUTER DEPARTMENT, PHOENIX, ARIZONA

GENERAL COMPILER DATA DIVISION FORM

[#22%%4% JOB TICKET SUMMARY (JTS) **"f JUL. 17
PROGRAMMER G. E. CODER ICOIPU'EI PAGE oF

SEQUENCE i DATA NANE QUALIFIER i REPEAT] ; :;EI.YE:: DATA IMAGE

nUNBER : i i m s
Al \2]x lllslé 71890 ||I!?I!xl!l“SlHMNJL’JIOLl[II 23]24] 15116[17!1!117‘!0\!Xlﬂl)‘[lt 35[36[37]38 Xlllo A1fa2fa3faafas H|AVJAI lvl!n 51 SZ"SJ 54 ss]iblsl}j:}:']iIli“ll?]:]z‘kilo!;[llll]xhnlﬂ|72|71|7l’75‘7i]L7I;l 7980
| 4000} DA DIVISION . L - IR IR R

4005 |FIIUE SECTION., | [s . IR . .
| 4010] OUTIPUT, FILES,., , . - L . b IR
| . 4015) |FD| |SUMMARY~FILEL| .,, L . N L L o]

4020 R| |[SUMMARY~CARD|.| . ., . ., ., .., |I°l | . . T T

4021| | F| |LAST~DEPT, , e] LI BB L .
| 4022 F| IMAN~ COUNT, , , . L 1 1999, B(.2.9) . \ \ . .. e
| 4023 F] JACC~REG~HRS, PSR R RS S S W . J9(.6) V9 Bi(4) s [T S
. 4024)) F| JACC~OT~HRS, , || . . N] . 9.999V9 B(5)

4025 F| lTOoT.AL~HRS, | . e I I IS O O 9(7)V9, B(12) e

4100| [FD| [DMH~REPORT. || i

4,105 R| [RPT~,TI TLE , e Pl e o

4110 L L R - s BBB " DEPARTMENT MAN HOUR R

41150k L EPOR T" -

4120 L . L B(4.2). "PAGE", '
| 1.125 Fl PAGE~.COU.NT, } B. Z27Z7Z9.

L3130 R TS N SR . e e]
| . 4135 : B(7) "DEPT MAN NUMBER NAME]
4,140 L | [I A R R

4145 1L T bbb e b R B(.1,8). ".JOB. REG~HRS. 0T~ ILRS

4150 R| IDETAY Lo o o o o0 J b oo ooy R w1 e
4155 F DEPT LA R . B(7), XX BBB . I .
4160 | Fl IMAN~NBR, , , . e L B U S O > A O I : N O T C .
4165 F| INAME . P — _— ’ Hl - b o JA(2,1)B . ey]
4,170 F| JOB~CODE, ; , | . v L ~ XX, BB, . .
4.1,7.5 F| REG~HRS, K ., , . . 122z.9 BBB |, 6 |
4180 | Pl oT~HRS | . 1] 2209
4500 I N\PIUT FI LES., ., ., L - o R R R S SR S R S R
4505| |[FD| JOB~FILE. , T . R T O S PR S
4510 R SRR) -] i . . . L i R
4515 F L1 I I S LxGs) - P
45.2.0 F IS A . XX, BB, R T SR SR
4525 F| INAME , |, , | R L . Ay AG2) .
4530 F| | OB~CODE, , , , . R XX, B(.7) e -
| 4535 Fl REG~HRS: . 1 . L L L | 1. 999V.9,
4540 F| OT~HRS, , , | ; R i ‘,+Lv,94_9l&_.134(3,4) L e
5000| [WORKING~STORAGE| |SECTION., ., . N . L e .
5,0.0.5 F| IMAN~COUNT, , e . L 4 le09, s N
5,010 F| ACC~REG~HRS, . - .] . llec6) Ve, o, . . e
5.0,15 F| |ACC~OT~HRS, . | . L o999 ve | .
| 5,020]| F TOTAL~HRS, , ||,, ., ooy} S I 9. (.7). V.9, « . . N . R
5,025 F| |PAGE~ COUN,T e i . 9.9,9.90 . ., .
5030 LAST~DEPT, ., D . 7, - - X . , L
5035 Fl DEPT . -) o e
N 3 Y o 2 2 0 0 2) 2 0 D R R R B R D R R D R R D R R MR R R B R B R T

cAl4 (1/62)

Figure 32. Job Ticket Summary Data Division

INTRODUCTION TO GECOM

49

GE

WEEKLY-PAYROLL REPORT PAGE 28

12-01-61
ORG PAY JOB REGULAR OVERTIME GROSS
CODE NUMBER EMPLOYEE NAME SEX CLASS HOURS HOURS EARNINGS
5484 0671 J JONES MALE BO1 Ln.o 10.0 $ 123.44
0983 A JOHNSON MALE A10 37.5 184.01
1201 B SMITH FEMALE €50 Lo .o 8.0 148.02
1452 SCHROEDER MALE DA?2 32.0 84 .66
2352 C BROWN MALE D11 4a.0 b 105.19
5484 COUNT OF EMPLOYEES 05 189.5 18.4 645,32
5485 0108 R EDWARDS MALE D80 43,0 100.01
0112 P SMYTHE FEMALE B11 35.2 115.55
1389 A ANDREWS FEMALE BO1 40.0 8.0 72.06
1545 R MICHELSON MALE A10 4o .o 12.0 123.11
1547 J BERG MALE S01 33.2 182.78
1999 A McMILLAN FEMALE €09 43.0 2.2 78.23
2103 J GWYNN MALE BO1 4y.0 1.8 101.11
5485 COUNT OF EMPLOYEES 07 273.4 24.0 842.85
5480 COUN1 OF EMPLOYEES 12 L22.9 Lo, k4 1,388.16
5400 COUNT OF EMPLOYEES 33 1302.1 108.0 4,125.29
5501 0133 C STEVENSEN MALE E22 4o.0 138.06
0134 L ELLISON MALE A09 43.0 149.55
0222 H MURPHY FEMALE €53 4d.o 99.99
2102 J QZER MALE BO1 Lo.o 123.02
2359 A AMBERCROMBIE MALE B11 43.0 154 .84

Figure 22. Report Writer Sample Report

The I~O~CONTROL sentence is used only if non-
standard label-checking rerun information and/or
multifile magnetic tapes are required.

The FILE~CONTROL sentence is used when the
source program requires the identification and/or
assignment of input/output files or hardware units,
If the source program does not process input/output
data, the FILE~CONTROL sentence can be omitted.

The COMPUTATION~MODE sentence is used when
it is desired to perform computations on data in
floating point format using floating point arithmetic,

For the Job Ticket Summary problem, the Environ-
ment Division would be prepared as shown in Figure

33.

The General Compiler Sentence Form is used; head-
ing information, such as program and programmer
identification are discretionary, Actual line entries
must adhere to the rules detailed in the GE-225
GECOM Language Specifications. Some of these
rules are mentioned in the line entry explanations
that follow,

2000 ENVIRONMENT DIVISION,

The division heading is always the first entry for
the division. The heading should begin in column
8 (recommended) or may be indented any number
of spaces to the right., The heading must be
followed by a period and no other information
should follow on that line,

2005 and 2010 OBJECT~ COMPUTER.

If this sentence is used, the sentence name should
be started in column 8 and followed by a period.,
The sentence can start on the same line as the
sentence name. In Figure 33, the compiler
interprets the sentence to mean that the object
program is to be performed on a GE-225 system
with a 8192 word memory (2 MODULES) and the
object program is to be input via card reader,
To accomplish this, the General Compiler must
produce the object program on punched cards via
the card punch. Note that the sentence was too
long to be completed on one line and was carried
over to line 2010 and indented for clarity.

2015 FILE~CONTROL.

Like other sentence names, this one begins in
column 8 as recommended. The first sentence is
begun immediately after the name (with a blank
between) and terminated with a period. All sub-
sequent sentences must begin on a new line. The
2015 sentence in Figure 33 assigns the JOB ~
FILE (input) to the card reader buffer, The
General Compiler interprets this to mean that
data input through the card reader is to be
treated as job file data,

2020 SELECT SUMMARY~FILE, ., . .

This sentence assigns the SUMMARY~ FILE to
the card punch for output.

2025 SELECT DMH~REPORT. . . .

This sentence assigns the DMH REPORT to the
high-speed printer for output., The DMH REPORT
is considered as an output file and is therefore
assigned to a peripheral like all files in the
FILE~CONTROL Section,

PROCEDURE DIVISION PREPARATION

Once the programmer has flow charted the procedure
to be followed and has defined all input and output
data, it becomes relatively easy to statethe process-
ing steps to be followed in producing the desired
output,

The programmer, having developed a working knowl-
edge of GECOM language elements (verbs, names,
constants, expressions, etc,) and their effects upon
the object program, is prepared to document the
procedure, Figure 34 illustrates the completed Gen-
eral Compiler Sentence Form for the Procedure
Division of the Job Ticket Summary Problem. By
relating the individual procedure statements and
their explanations below to the flow charts in Figures
29 through 31, the overall procedure is more readily
understood,

3000 PROCEDURE DIVISION,

Invariably the first cntry for this division (and
others) is the division name., It must be entered
starting (preferably) in column 8 and terminated

with a period.
3001 GO,

This opening sentence immediately and uncon-
ditionally transfers operation to the sentence
identified by the sentence name, S3055.

3005 WPH SECTION,

This statement indicates that all procedure state-
ments that follow are to be considered part of the
WPH (Write Printer Heading) section until an
END SECTION is encountered.

3010 through 3045

These statements comprise the WPH section which
functions to advance the high-speed printer paper
to the top of the page (3015), count pages (3020),
space paper to the first print position (3025),
print out the report title as defined by the literal
entry at 4110 of the Data Division (3030), space
paper to the next print line (3035), print out the
column titles defined at 4135 through 4145 (3040),

INTRODUCTION TO GECOM

Ble=223

51

EXTENSIONS TO GECOM

GECOM/REPORT WRITER

The GECOM/Report Writer requires the same com-
piling configuration as Basic GECOM, and is an
extension of the basic compiler. Report writing
programs can readily be described in the Basic
GECOM language, but the Report Writer facilitates
report preparation by enabling the user to describe
reports concisely on a layout form which can be
inserted into the GECOM Data Division. It also
provides such features as automatic page and line
control, facilitates programming, and provides better
documentations of report writing programs,

Report specifications are written within the frame-
work of a GECOM source program, and, in straight-
forward situations, are contained entirely within the
Data and Environment Divisions. A knowledge of file
and report formats and which record fields are the
file sequence keys is all that is needed beyond a
knowledge of GECOM to prepare procedure state-
ments for most business reports. The user need
only define the unique features of his job outside of
the normal file processing procedure. The Report
Writer tailors the basic framework to the program-
mer’s needs and produces an object program for
execution, The primary advantages to be gained by
this method of description are minimized program-
ming and debugging effort and readily-understandable
program documentation,

With proper preparation of the source program, the
Report Writer with GECOM will generate an object
program which:

1. Prints report headings once at the beginning of
the report.

2. Prints report footings once at the end of the
report,

3. Maintains page control by line count and skips
to a new page as specified.

4, Maintains line spacing on the page.

5. Prints page headings at the top of each report
page.

6. Prints page footings at the bottom of each re-
port page.

7. Numbers pages.

8. Issues detail lines according to the presence
or absence of control conditions,

9. Accumulates detail field values to one or more
levels of total.

10. Counts detail field conditions and detail lines
to one or more levels of total.

11, Detects control breaks at one or more levels
to control tabulation, issue control totals, and
issue control headings.

12, Edits data fields for reporting by zero sup-
pression, character insertion, fixing or floating
dollar signs, and fixing or floating arithmetic
signs,

13. Assigns and calculates values for report
fields.

14, Reads a single file on one or more reels.

15, Reads successive files on multifile reels.

16. Performs normal file opening and closing
functions.

17. Creates final totals and terminates reports at
end of input.

18. Prepares a report(s) file for deferred print-
ing.

Report descriptions are contained in the Report Sec-
tion of the GECOM Data Division, under the head-
ing REPORT SECTION, immediately following the
File Section. All entries in this section must con-
form to the format of the Report Description Form,
Figure 21, which is used in place of the standard
GECOM Data Division form, Not shown are the sup-
porting entries required in the Working Storage Sec-
tion of the Data Division, Figure 21 illustrates a
typical report as laid out in the Report Section of
the Data Division, while Figure 22 shows the result-
ing printed report after processing of the object
program containing the report description,

GECOM/TABSOL

The GECOM/TABSOL extension requires the same
compiling configuration as Basic GECOM and allows
source programs to be described in tabular form,
Although the same programs could be described in
the basic GECOM procedural sentences, certain
benefits are provided by the TABSOL extension.

TABSOL, which stands for Tabular Systems Oriented
Language, is basically a structuring technique used
to systematically describe the step by step decision
logic in the process of solving a problem. The basic
advantage of the TABSOL language is that it is easily
learned and understood and can be applied to many
analytical situations,

INTRODUCTION TO GECOM

GRS

33

GENERAL @ ELECTRIC
Conruren pevsTaRr, PHOENX, ARIZONA GENERAL COMPILER SENTENCE FORM
JOB TICKET SUMMARY (JTS) _ “ JUL. 17
P G, E. CODER [e 225 -
e
D DLL PP r e E Dol oo oo o oo fe o o [o sl e s [sl o [Tl ool T [o o
. 3000)prOCIEDUR|E, DIvVIs.I0 . . , R
3,001 Jeo Tlo. s3.055,. . e X
. 3005 wen |sEcTlioN., . .| . - . ‘
3.01.0) |BEGI ‘ . . . ‘ . . . e ‘
Cs0asll. D.V.AIN.CE DM~ REPORT T.O .T.OJP OF, PAGE . . i e
3020 ADD |1 To PAGE~|cOUNT. . .)) .) ‘) ‘
3025 _lapvalNcE pDMH~RE[PORT 4 LINES.. .) L . -
3030 |wriT|E RPT.TITL|E.. o e ‘ e .
3035 ADVAINCE DMH~REPORT 3. L ‘
3040 WRI.TIE COL~TITL|ES . .
3045 apvalyce pmu- RElporRT 2 LinEs.. . . R . . . L
Lo 8050l leNb lweH |SECTION ‘ , ‘ o .
[s055[fs305]5. OfPEN ALL FllLks. | . . .) . .
! 3060 - JMOVEl 0. T.O0 PAGEl COUNT - - J
Ls0ss PERFJORM WPH SE|CTION. N)]
5070 MOVE| "4 10 _LJAst~DEpT.
LB o) fsseife,., RlEAD 4 0B~ FIJLE RECORD, I F END FILE GO TO s3J180,. . L
' 3080 ILF_DEPT OF JOBLTICKET EQuALS 1asT -|pEPT Go,_To|l s3125. . ,
|, 3085 sw3.ols5... JGO TO, s2.09)0,. . X .)) L
3090] lssosob.. alLtEr, swsoesls, To rrocEED 10, 831000,
3095 o, Tlo s31.15,. . e b))
L 31,00 jl_S_‘S_,I_,QOL,_,JT oTAL-HRS, =] Acc, REG~ HRs + acc~olt~mrs. |, . . |))
31,05 . IwRIT|E, SUMMARY~CARD. ‘ . . . ‘ . .
_sao07llswaafor. leo To ssziafo. . . . e
_3110|fss11f,. AlLTER sw3i5fo, TO PROCE[ED TO S315 L B] ‘
3115]|ss1afs. Move DEPT O]F JOB~TICK[ET TO LA‘;;t;)lEpT .. DEP|T OF, Ws.. .
c3uazol). Iman~fcounT - aclc~REG~HRS . Acc~oT-HRS =, 0. . . -) e
s125|fss12f5.. alpp 1, ToO MaAlN~CcOUNT. | ‘) ‘ - . ‘ - . .
. 31300t . . lapp |REG~HRS, TOl ACC~REG~HRS., .. ., R .
5,135 ADD_JOT~ HRS T O JACC~OT~HES]. . ‘ .) » .
. 3.140 F, . LJINE~.COUNT [EQUALS 51, |Go To .s317]o.. . .
3.145| 83145, WIRITE DETAIJL RECORD,. . . .) . .
3,150 [swsils0,. |co To ssisls. ., . e e : .
_3155||ss15]5. MovE spackEs| To DEPT OF ws. . ‘
[sa60l). . lavTelr swsaiso. 1o PrOCEED |ro ss075.. |. ‘ R e .
L3165 L Jgo,. T, S 30750, - PR [L L L L L " L L
3170)Js317J0. PJERFORM WP, SECTION,. L R A P . L
3a75f). leo rlo ss1as Vo b N ‘ -
C31.80] fs318lo., AluTER, swsiplr, To PROCEED, TO s31sla. .] L B)
3.1.81 co. rlo s3100., |, .., N I I . . L ‘ A
3482l ssisle ciose soB~rFi|uE, summarly riLE. . e e
csassll, . stopl RuN, ramse e o e e
L DLL Tl el el s sl d s s sl [oo Dl s el [] of el s o sl sl s o] e ool e el] o s

Figure 34. Job Ticket Summary Procedure Division

INTRODUCTION TO GECOM

53

Figure 17. Logical Expression Truth Table

B N e
L
(5 SR NGRY R S X g

()]

[s=Ratos B ve R o i ve
SNSRI O

QO 0O 0 a0
S N O
U O U bou
o’ w

Figure 18. Simple Two-Dimensional Table

Lists and tables of data can be stored within a data
processing system for program reference also, per-
mitting the programmer to instruct the program to
perform ‘‘table look-up’’ operations, Such tables
are stored in series within the system instead of in
the grid-like manner illustrated above., The same
table in the data processor might appear as a list,
shown in Figure 19.

Even though the table data is stored as a long list,
the programmer can still readily specify the re-
quired table data in essentially the same manner as
a clerk would in instructing another clerk how to
use the table first shown. The clerk would specify
the table name, then the horizontal row and vertical
column headings: TABLE 1, row 3, column C, The
GECOM programmer does the same thing in a simi-
lar shorthand:

TABLE~1 (3, 3)
meaning TABLE~1, row 3, column 3,

Lists, tables, and matrices can all be represented
in GECOM source programs and are referred to
generically as arrays. A list is a one-dimensional
array; a table, two-dimensional,

A three-dimensional array can be depicted graphi-
cally as a series of two-dimensional planes; as

shown in Figure 20, Three-dimensional arrays could
also be represented in storage as a series of sequen-
tial lists (one for each plane) like that described for
the example above,

Arrays are assigned identifying names by the pro-
grammer, To identify array values, subscripts are
used to specify rows, columns, and planes.

One-dimensional list = A(I)
Two-dimensional table = A(L,J)
Three-dimensional table = A(I,J,K)

Subscripts can be written as arithmetic expressions,
if need be, containing other subscripted arrays, and
nested to up to ten deep in any one procedure state-
ment,

LIST (A+C)
RATE (A-B*C, L(I,J),X)

In the second example A-B*C is the i-subscript,
L(IL,J) is the j-subscript, and X is the k-subscript
for a matrix called RATE. Parentheses are always
used to enclose subscripts which must immediately
follow the array name.

1A1B1C1D12A2B2C2D2 3

3 A, B, C, D

3

5 AL B. C. D

4 A, B, C, D 5 By Cg5 Dg

3 73 4 T4 T4 T4

Figure 19. A Two-Dimensional Table in Storage

INTRODUCTION TO GECOM

Ble=225

31

3110 S3110. ALTER. . ..

This statement sets SW3150 to proceed to S3155
the next time it is processed. SW3150 handles
the group suppression of printing of DEPT~NO,
When a new department is detected at 3080, it is
necessary to print that department number from
working storage, but immediately after, blanksare
moved to that working storage field (part of the
Detail Record) and the MOVE of blanks must be
bypassed until the next new department is en-
countered,

3115 S3115. MOVE. . . .

This statement places the contents of the memory
location assigned to hold the job ticket department
number to the memory locations assigned to hold
the last department number and the working
storage department number, The LAST~DEPT
is for comparison with the department of the cur-
rent Job Ticket to determine a change of depart-
ment at 3080, while the department of working
storage is to provide the department number for
the tirst printing ot a detail record for a new
department, and blanks afterward.

3120 MAN~COUNT=, . . .

This is an assignment statement that sets to zero
the memory locations reserved for the named
field.

3125 S3125. ADD. . . .

The man count memory location is increased by
one.

3130 ADD. . ..

The two named fields are added and the result
replaces the previous value of ACC~REG~HRS,

3135 ADD. . . .

The two named fields are added and the result
replaces the previous value of ACC~OT~HRS,

3140 IF, ., . .

The contents of the LINE~COUNT memory loca-
tion are compared with the constant, 51. If they
are equal, control transfers to procedure state-
ment S3170; if they are not equal, the next state-
ment in sequence is taken (3145). LINE~
COUNT = 51 indicates that the last line of a
printer page has been printed and a new page
(and new headings) must be started.

3145 S3145. WRITE, . . .

The DETAIL RECORD, defined in Data Division
statements 4150 through 4180, which includes

DEPT, MAN~NBR, NAME, JOB~CODE, REG~
HRS, and OT~HRS fields, is printed as a line
by the high-speed printer,

3150 SW3150. GO TO. . . .

This is another program switch similar to SW3085
and SW3107. It governs whether the detail record
print line contains an actual department number
or blanks,

3155 83155, MOVE, . . .

This statement replaces the contents of the work-
ing storage DEPT field with blanks,

3160 ALTER. . . .

This statement changes the object of the GO state-
ment at SW3150 from S3155 to S3075 to bypass
S3155 and 3160 until a new department is read.

3165 GO TO, . . .

This statement unconditionally transfers control
to S3145.

3170 S3170. PERFORM. . . .

Like statement 3065, this sentence transfers con-
trol to the WPH SECTION beginning at 3005.
Upon completion of this section, control automa-
tically reverts to the next statement in sequence,
3175. This is used to head up a new page after the
capacity of the preceding page has been filled by

a department’s records,

3175 GO TO. . . .

This statement unconditionally transfers control
to S3145.

3180 S3180. ALTER., . ..

This statement changes the object of the GO state-
ment at SW 3107 from S3110 to S3182, so that
CLOSE will occur after the final summary card
is punched.

3181 GO TO. . . .

This statement unconditionally transfers control
to S3100 to compute thefinal summary card TOTAL
~HRS.

3182 S3182, CLOSE. . . .

This statement terminates processings of the
JOB~FILE and the SUMMARY~FILE. The card
counts for the card reader and the card punch
are printed out on the console typewriter,

INTRODUCTION TO GECOM

GES

55

In preparing the source program, the programmer
may have difficulty in keeping track of codes that
of themselves have no meaning, To provide a refer-
ence term, he can assign names to them, thusly:

HOURLY =0
WEEKLY =1
MONTHLY = 2

Once names are assigned, they can be used in pro-
cedure statements within the source program, Such
names as those described above are called condi-
tional names for convenience. In actuality, they are
special data names, and are formed subject to the
same limitations,

CONSTANTS

Data names are generally assigned by the systems
programmer to kinds of data, rather than to specific
values, because the actual value of the data named
is generally a variable (from record to record, for
example) or possibly an unknown to be computed by
the object program,

Occasionally (even frequently), the programmer will
need to place various kinds of specific data in the
program - data which remain the same throughout
the program. Such constants are designated as
literal constants, numeric constants, and figurative

constants,

Literal constants are those the programmer intends
to use in the program exactly as written. They may
be any combination of up to 30 (or 83, depending
upon where used) letters, numbers, and symbols of
the GECOM character set, To distinguish themn from
other names, they must be enclosed in quotation
marks:

MOVE “FILE~NAME’’ TO COLUMN~HD.

Literals can be used in output fields to generate
headings, They cannot be used in arithmetic calcu-
lations.

Numeric constants are comprised of the numerals 0
through 9, plus or minus sign, the letter E for
floating-point, and a decimal point. They can be
used in three forms of arithmetic calculations:
fixed-point, integer, and floating-point.

Fixed-point numerics can contain up to 11 digits,
excluding plus or minus sign, and a decimal, Typical
fixed-point numerics are:

+2.308 -853.001
0.03 9.11

Integers must not exceed 5 digits:

2308 85300
3 911

For floating-point computations, numerics can be
written with mantissas of up to nine digits (one of
which must be the left of the decimal) and an expo-
nent between +75 and -75. The largest and smallest
floating-point numbers that can be represented are,
respectively:
9.99999999E+75 and 0,00000001E-75

If any numeric constant is enclosed in quotation
marks, it loses its numeric value and becomes a
literal constant,

The constants, 0 through 9 and space (or blank)
have been defined within the General Compiler and
assigned names, This permits the programmer to
use the names within his source program without
defining them, These pre-named constants are
called figurative constants and are:

0 ZERO or ZEROES
SPACES

1 ONE(S)

2 TWO(S)

3 THREE(S)

4 FOUR(S)

5 FIVE(S)

6 SIX(ES)

7 SEVEN(S)

8 EIGHT(S)

9 NINE(S)

Figurative constants may be used in the singular to
denote the constant itself or in the plural to imply a
string of constants.

EXPRESSIONS

The programmer combines words and symbols into
procedure statements to direct computer operations.
To facilitate the formulation of such statements
showing the relationships and combinations of data
names, conditional names, and constants, he has the
assistance of arithmetic, relational, and logical ex-
pressions.

An arithmetic expression is a sequence of data
names, numeric constants, and/or mathematical
functions that are combined with symbols which
represent arithmetic operations.

Operations and functions available to the programmer
and their proper GECOM form are shown in Figure
15. They are listed in priority order, from highest
to lowest, All of the listed functions are readily
available as part of the GE- 225 standard subroutine
library and need not be generated during source
program compilation or manually by the program-
mer. Previously-prepared subroutines materially
reduce compilation time and programmer effort.

The natural priority of the table can be overridden

by parentheses. Parentheses cause the evaluation to
be performed from within the innermost set of

INTRODUCTION TO GECOM

Ble=225

3185 STOP RUN “‘JTS”’

This statement is used to generate object program
coding for halting processing. In the form used
here, the results will be

1. Program halts
2, END is printed by the console typewriter,

3. The literal ‘“JTS’’ is printed by the console
typewriter,

IDENTIFICATION DIVISION PREPARATION

This division enables the programmer to label the
source program and provide program identification
in the output Edited List.

The Identification Division is prepared on the Gen-
eral Compiler Sentence Form, as illustrated in Fig-
ure 35,

Entries for the Job Ticket Summary problem are ex-
plained:

1000 IDENTIFICATION DIVISION,

This mandatory heading indicates that entries fol-
lowing are for program identification only. The
name should begin in column 8 and be followed by
a period,

1005 PROGRAM~ID, JTS.

This entry is mandatory; the name, PROGRAM ~
ID, should appear beginning in column 8 and fol-
lowed by a period. The actual program name,
JTS, can consist of up to nine typewriter charac-
ters followed by a blank, a comma, or a period
and can be indented any number of spaces., This
name will appear as part of the heading of each
page of the Edited List,

1010 AUTHOR, GE CODER

This entry is optional. If used, the sentence name
should start in column 8 and be followed by a
period, The sentence can be indented as desired,
contain up to 30 BCD characters, and ended with
a period. If provided, the author’s name appears
on each page of the Edited List.

1015 DATE COMPILED, JUL, 17

This entry is optional, It can contain up to 30
characters followed by a period. If provided,
the compilation date appears on each page of the
Edited List,

1020 INSTALLATION. . . .
1025 REMARKS.

These two sentences, as well as a NEXT~
PROGRAM and a SECURITY sentence, are op-
tienal. ¥ used, they can contain any information
that the programmer wants to appear in the Edited
List.

The Identification Division has no effect upon the
compilation of the object program, other than that
of appearing in the Edited List as described.

PRODUCING THE OBJECT PROGRAM

Upon completion of the GECOM forms for the source
program, the data forms are transcribed to standard
punched cards to form the source program deck and
organized as shown in Figure 36.

Data Division

Procedure
Division

Environment
Division

Identification
Division

)/

Figure 36. Source Program Deck Organization

A special GECOM call deck is placed before the
source program deck and the cards are ready for
input to the GE-225 via the card reader.

The minimum GE-225 system configuration for com-
piling the source program is:

GE-225 Central Processor (with 8192 words of
core storage)

Console Typewriter

Card Reader

Card Punch

High-Speed Printer

Magnetic Tape Controller

Four Magnetic Tape Handlers

Five Magnetic Tape Handlers (optional)

Six Magnetic Tape Handlers (optional)

The GECOM Master Tape is mounted on the first
magnetic tape handler on the system and includes a
library of subroutines that might be required to com-
plete the compiled object program, The source

INTRODUCTION TO GECOM

BE=225

57

VERB EXAMPLE
S

ADD ADD TOTL~RECVD TO ON~HAND~QTY
ADVANCE ADVANCE PAY~REGISTER 20 LINES
(to slew or skip printer paper)
ALTER ALTER SENT~25 TO PROCEED TO SENT~33.
(to change a previously established sequence of operations.)
=(Assignment) QTY~ON~HAND = OLD~QTY + NO~RECVD
(to assign an evaluated arithmetic expression to a specified field)
CLOSE CLOSE PAYROL~FILE
(to terminate processing of a file)
DIVIDE DIVIDE NUMBER INTO TOTAL GIVING AVERAGE
ENTER ENTER GAP AT ROUTINE~3

(to permit insertion of General Assembly Program coding in a GECOM source
program.)

EXCHANGE EXCHANGE OLD~TAX, NEW~TAX
(to transpose the contents oi two fields)
GO GO TO SENT~10
(to depart from the normal sequence of operations)
IF IF LINE~COUNT EQ 58 GO TO ADVANCE~PAGE.
(to test a condition and transfer to another operation if condition is satisfied)
MOVE MOVE TOTAL TO SAVE~AREA
(to transfer data to another location)
MULTIPLY MULTIPLY 0. 18 BY PAY GIVING TAX
NOTE NOTE THIS SENTENCE IS USED FOR CLARITY.

(to permit insertion of explanatory text not intended for compilation)

OPEN OPEN ALL INPUT FILES
(to initiate file processing)

PERFORM PERFORM FICA~COMP SECTION
(to cause execution of a routine in the desired sequence and then return to
the sentence following the PERFORM statement.)

READ READ TIME~CARD RECORD
(to make input file records available to the program)

STOP STOP
(to halt processing of the object program permanently or temporarily.)

SUBTRACT SUBTRACT RECEIPTS OF TRANSAC~FILE FROM ON~ORDER~QTY OF
ORDER~FILE GIVING ADJ~ORDER~QTY, IF SIZE ERROR GO TO ZERO~RTN.

VARY VARY CHK~AMT FROM 1 BY 1 UNTIL CHK~AMT GR 5
(to initiate and control the repeated execution of the sentence it precedes.)

WRITE WRITE RECORD~1 OF FILE~6
(to permit output of data)

Figure 14. GECOM Verbs

@E 22 5 INTRODUCTION TO GECOM
O

27

The Object Listing includes an ‘‘Input/Output
Coding’’ print-out showing all input/output file
tables, control coding, and service routines.
A complete listing of this subsection for the
sample problem requires 439 line entries. Part
of the Input/Output Coding list is shown in
Figure 46.

The final print-out of the Object Listing and the
Edited List is ‘‘Location Assignments for GECOM
Common Constants,’”’ Figure 46. This print-out
contains the memory locations for object program
constants and the compiler-assigned symbols for
the constants, For the samplie problem, the com-
plete constant listing contains 138 entries.

INTRODUCTION TO GECOM

59

required subroutines which the operator has pre-
viously extracted from the library of subroutines
provided. At the user’s option, required subroutines
can be appended to the object program automatically
or manually during compilations.

GECOM LANGUAGE ELEMENTS

Because the GECOM system was developed with
COBOL in mind as the basic programming language,
the GECOM language elements most closely resem-
ble those of the COBOL language. Also, because the
intent is to provide English-language programming,
GECOM elements parallel those of English,

GECOM has a basic vocabulary consisting of words
and symbols; it has rules of grammar or syntax;
and it has punctuation symbols for clarity. In each
case, there is greater simplicity than in English:
the vocabulary is small: the rules of grammar are
simple, yet precise: the use of punctuation is lim-
ited. These are true because the demands placed
upon the user are kept simple and unambiguous,
The source programming language is required to
state facts and give instructions clearly and specifi-
cally; it is a language of command, not narration,
and thus consists primarily of verbs and nouns.
These can be formed into simple and complex sen-
tences usually intelligible without special training,
although sentences acceptable to the General Com-
piler cannot be written without familiarity with the
grammar,

Words and symbols are the tools of the GECOM
programmer and are composed of individual letters,
numbers, and special characters. The basic charac-
ter set of GECOM and equivalent GE-225 character
codes are illustrated in the accompanying table,
Figure 13, Special character sets are available for
the printer.

Many of the basic characters, in addition to being
used in words, have special meanings for GECOM,;
these will be discussed where appropriate,

Words, in GECOM, are divided
groups - names and verbs,

into two major

VERBS

As in English, verbs denote action; unlike English,
GECOM verbs are never taken in the passive voice,
the narrative or declarative sense, or in any tense
other than the present tense, Each verb that the
programmer uses in the source program (except the
verb NOTE) will have some effect in the object
program,

Most verbs will be reflected directly in the machine-
language coding of the compiled object program;
others do not appear in the object program, but do
act with the compiler to construct the object pro-
gram,

Certain words that, in English, are not verbs are
considered as such by the General Compiler. The
most commonly-used and most useful of these is the
word, IF, which is used in expressing conditions,
relationships, and comparisons, For example, in
the expressions:

IF NOT END OF FILE,GOTO
OR
IF A EQUALS B, GO TO

IF causes a comparison between the actual condi-
tion and the stated END OF FILE condition or, in
the second example, causes a comparison between A
and B. Such near-verbs will be discussed as if they
were verbs,

The GECOM verbs and examples of how each might
be used are listed in Figure 14,

NAMES

Most words in the GECOM source program will be
names, The programmer is preparing a program for
handling datd, but is not concerned with the actual
data itself; he is more concerned with preparing data
manipulation procedures, but once they are written
they are only of as much importance as the data they
manipulate, For these reasons, and to take advan-
tage of the leverage that GECOM provides, the
programmer will refer to data and previously written
procedures by name whenever possible,

Names can be readily grouped by type and fall within
these groups:

Data Names
Procedure Names
Conditional Names
Constants

oo o

.

DATA NAMES

Data names represent data to be used in an object
program, and are programmer-assigned, not to spe-
cific data, but to kinds of data., For example, in a
file processing application, data names would be
assigned to all input and output files, such as:

MASTER~FILE
TRANSACTIONS
PRINT~FILE
etc.

and, within a file, records would bear data names,
such as:

STOCK~RCD
PAY~RCD
INV~RCD~1
etce.

INTRODUCTION TO GECOM

Ble=229

25

3145
3150
3155
3160
3165
3170
3175
3180
3181
3182
3185

4oo0

(SEQ

4005
4010
4015
4020
4021
4022
4023
4o 24
40 25
4100
4105
4110
4115
4120
4125
4130
4135
L1kLo
L1hs
L150
4155
4160
4165
4170
175
4180
4500
4505
4510
L4515
4520
5525
4530
4535

GECOM LISTING OF JTS

GE CODER
RCE LISTING (CONT.)
S3145. WRITE DETAIL RECORD.
SW3150. GO TO S3155.
S3155. MOVE SPACES TO DEPT OF WS.
ALTER SW3150 TO PROCEED TO S3075.
GO TO S3075.
S$3170. PERFORM WPH SECTION.
GO TO S3145.
$3180. ALTER SW3107 TO PROCEED TO $3182.
GO TO S3100.
S3182. CLOSE JOB FILE, SUMMARY FILE.
STOP RUN 7JTS#. -
DATA DIVISION.

GAP T DATA NAME

FILE SECTION
OUTPUT FILES.

000FD
000 R

MM

O01FD
000 R

—

001

r>o mr

002

MM M T M M o

INPUT
002FD
000 R

00J F

05A F

SUMMARY FILE.
SUMMARY CARD
LAST DEPT
MAN COUNT
ACC_REG_HRS
ACC™ OT HRS
TOTAL HRS
DMH_REPORT.
RPT_TITLE

PAGE_COUNT
COL_TITLES

DETAIL
DEPT WS
MAN_NBR

NAME

JOB_CODE
REG_HRS

0T HRS

FILES.

JOB FILE.

JOB TICKET
MAN™ NBR

DEPT

NAME

JOB_CODE
REG_HRS

F

RPT B J E MS LS DATA IMAGE)

PAGE 002

JuL 17

0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
ok1o

XX B(5)

999 B(29)

9(6)v9 B(4)

9999Vv9 B(5)
12

9(7)v9 B(12)

BBB #DEPARTMENT MAN HOUR R
EPORT#

B(L42) #PAGE#

B 727279

B(7) #DEPT MAN NUMBER NAME
#
B(18) #JOB REG-HRS OT-HRS#

B(7) XX BBB
X(5) B(6)
A(21)B

XX BB

277.9 BBB
77.9

X(5)

XX BB
A(21)
XX B(7)
999Vv9

Figure 38. Edited List

INTRODUCTION TO GECOM

61

The Data Division Form, Figure 8, is used exclu-
sively for describing data to be used in the object
program, Headings are provided to guide the proper
placement of data. These are discussed in the later
section, Data Division Preparation,

The Sentence Form, Figure 9, is used for the
preparation of data for the Identification, Environ-
ment, and Procedure Divisions, Headings, which
would add little, are omitted. Rules for Sentence
Form preparation are few and simple.

Where applicable, such rules are discussed in the
section, ‘‘Application of Basic GECOM,’’ along with
the preparation of the four divisions of the source
program, The fourth major tool provided by the
GECOM system, is the General Compiler itself.
Examination shows considerable similarity between
the General Compiler program and a complex bus-
iness data processing object program.

1. The General Compiler operates upon input:
the source-language program,

processing consists of repetitive

2. Compiler
the General Com-

runs of a set of instructions:
piler,

3. It produces an output: the object program,

4, It produces reports: the Edited List and error
messages.

Figure 10 illustrates, in broad terms, the relation-
ships between the programmer-produced source pro-
grams, the General Compiler, the computer, and the
output object program,

Up to this point, the General Compiler has been
discussed as if it were a single program, and it
can still be considered as such. Conversely, it can
also be considered to be a series of sequential pro-
grams as illustrated in Figure 11, Note that there
are five major groupings: Transformer, Reformer,
Assembler, Editor, and Subroutines.

The transformer phase translates the source pro-
gram into an intermediate internal language suitable
for processing, prints out Identification and Environ-
ment Divisions as required, groups and organizes
Procedure and Data Division material for further
processing while checking for validity and consis-
tency, prints error messages, screens out unessen-
tial optional words, and initiates the preparation of
the object program.

The reformer phase is essentially executive in that it
calls forth from the generator library (also a part of
the Compiler) those routines required to produce the
object program,

. Transformer Phase

2. Reformer Phase

> 3. Generator Phase

4. Assembler Phase
5. Editor Phase

6. Object Program
Subroutine Library

N

Figure 11. General Compiler Program Organization

The assembler phase translates from the inter-
mediate language, assembles the coding into machine
language, and produces the completed object pro-
gram either in punched cards or on magnetic tape.

The editor phase provides the documentation of the
program in the form of the Edited List., This
includes a print-out of the entire original source
program, a merged list showing the generated sym-
bolic coding and the machine-language coding, and
cross-reference tables. Additionally, it lists, from
the master list of subroutines below, those required
to complete the object program. Examples of the
Edited List are included in the section, ‘‘Application
of Basic GECOM.”’

The subroutine library is a collection of previously-
prepared subroutines common to most object pro-
grams that may be required to complete the object
program, While these could be produced during
compilations, to reduce compilation time and avoid
repetitive processing during compiling, the General
Compiler shows (on the Edited List) all such sub-
routines which will be needed when the object
program is run. A special program loading routine
will place into memory the object program and the

INTRODUCTION TO GECOM

Ble=225

23

GECOM LISTING OF JTS
GE CODER
REFERENTCE

TABLES

PROCEDURE NAME TO GAP SYMBOL

(GAP PROCEDURE NAME)
AO1 S3055
AO3 S3075
AO7 S3090
AO8 S3100
A1l S3110
A09 S3115
AO5 S3125
A15 S3145
A13 S3155
AlL S3170
AOL S3180
Al6 $3182
A06 SW3085
A10 SW3107
A12 SW3150
AO2 WPH

NAMES OF SUB-ROUTINES REQUIRED

(GAP SECTION NAME)
ADV
FLX
FXpP
RCS
RLC
TYP
ZAM
ZBN
ZCB
ZED
ZNB
ZNN
JA
ZSC
LSG
ZUA

GAP SYMBOLIC TO OCTAL LOCATION

(GAP OCTAL GAP OCTAL GAP
00A 01363 00J 01402 00s
00V 01714 00W0OO 01664 OOWE

00Z00 02040 0TA 01366 01J
01U 01737 01V 02007 O1WOO
01w 01755 01X 01406 01200

OCTAL GAP OCTAL GAP
01110 0OTCP
01675 oow
01403 01s
02032 01WO1

02076 01701

01713 OOTXT
01664 00X
01120 01T7CP
02034 01wW02
02120 01202

JuL 17

OCTAL GAP
01712 oou
01406 (00h 4
02006 O1TXT
02036 OIWE
02133 02A

PAGE 004

OCTAL)

01646
01406
02005
01772
01370

b= 225

Figure 40. Edited List

INTRODUCTION TO GECOM

63

1e

GENERAL @ ELECTRIC
COMPUTER DEPARTMENT, PHOENIX, ARIZONA GENERAL COMPlLER SENTENCE FORM

PROGRAM DATE
[PROGRANAER [conpurer PAGE
I
SEQUENCE
NUMBER
1 iz]‘;i 4l 5I6 7 “?l!n‘ll lzlu’llil lbl”llﬁ[w Zolu[z;l 2!124{25 26]717118‘19!30‘31‘32{ 333435 t”{”l”lT”Ij;[“ 45 45[17143 "IMHHT; 7—5_5175;]—;;5;[5011!—‘51‘11]54‘65 66{67}68{69[70] ”{ULHJ 74'751 nl 77173}79‘80
+
RN S S 1 i 1 1 1 1 L L 1 L L L 1 i L 1 1 1 1 L I L 1 4 n 1 . L I A L . L | i 1 i L ro— L I I " 1 i . L I L
T S 1 S IR TR T S S L T FE— L L n L L PR S — " -
1 1 I 1 L 11 1 1 1 L L 1 L 1 L 1 1 " 4 — - 4 L IR— I FE— 1 1 1 i I L L i L I . I i "
L I 4 1. A 1 1 L L 1] 1 | 1 1 1 1 L 1 I . I . I I L L L R i " L1 1 1 1 i i L n 1 A L A —_ B IS N S _l L) 1 n
Lo L1 1 L T S S N T R S TR R P Loy Lo - 1 SR RS R S S S S S M S L
T S S S Lo U T TS SR U SN WS R SR DU T S R | U BT S W N A ST i . i i SR TN R B W | — N S W W SO S
R L R B R U RO S S D S T T R S S S TS T MR B TR L L S T R R L " L S L
L L L il Ll i T i L L . L I n 1 L L i] " n L T 1 L 1 L 1 L i L n i . L i Il L i F— - In L i L n " L I L L
Lo) T) o A S S S A S S T B S B P S L L I L L TS W PSS T S S N S NS S R S W Rt
e L - R P R P R N L PR -l " — L L I I RS
1 ! 11 1 1 1 1 i i 1 1 i L i1 L L] Il i 1 L i I L L L S RO W S L L L 1 1 L — F— LN " L L I L L 1 A L L 4
[P H S L P PO T U N I STV SR SR SN S ST S S L " Lo " n FURTE SR S N | L " N
| S T I NS L N [N) S T WS SR N A RO N T IR R S Y R SO IO PN S S FOR B Loy I IS S S | PSS N R RS B R
1 L 1 L 1 L L 1 L 1 T IR R W L L 1 1 1 L L L T . e e S B Y J L " L L L T €L 't L L 1 1 1 " S — i . 1 e 1 L
Loy L Lo P S N VA S S S S I Lo P L L L P " I YT S S N S S S N L
1L L L I L 1 1 1 1 1 1 N L Il vl - J— 1 L i 1 A (R L i L 1 1 1 " I 1 i 1 i 4 R SR 't i 1 L | L L L L It L i
T S N IR T T S B R S R BT Y S Y N N S S PN Y O N S E T S| L N s T T S S SO R W S § U B T Y S S SO
i I L 1 L 1 i i 1 i L il L L 1 L 1 i L] 1 1 s I} e 1 I . L " 1 L L | L L 1 1 1 i 1 L L L 1 1 I L S — L 1 1 1 1 L 1 . I L . L i1 L L | B S T
. — i 1 1 1 4 1] L 1 T FR— 4 . 1 i 1 1 1 1 1 1 TR— i L FR— " 1 i 1L il L L 1 L i Lo 1 L L 1 n 1 1 1 { L 1 1 1 L 1 1 L 1 L F S B S Tt
i) 1 1 A i ! L i L Al 1 1 I\ I 1 1 i 11 1 L] 1 " L A - L A 1 1 [Y S 1 L L Ll L L A I L L L I I L I - i .) SR S T— i L . - ol
R I I . SIS T S TS S S G S S S T P S Y N SO S WO TR Lo TR S SRR W WS N) P S SV S S S T S 1 —
I N S T — il Y 4 | 1 } + 1 1 | . | L | I l 1 I A I } I | 4 i 1 L] } i I " 1 Il + 1 + B 't TR + ot n " 1 4 i I 4 n I 4 +
1 [z 3 AI 51697 a| V\ 1{n lzl Iillﬂls 15[171 n[19 Zulzl[zz 2Julzs 26!27\1312430}31{32!31 ul}s u' 371 33‘39 I 40' ”l“l” l“i“ “I”"J”l”%“i 52 lsx‘u}ss 55!57 salsq} 60[6'! azls:lulés 66l 57‘53\ oq|70|7l \nl 73‘ 74] 75‘ 76177L7Bl nlso

CA 13 (10/61)

Figure 9. The GECOM Sentence Form

GECOM LISTING OF JTS
GE CODER JUL
0OBJECT LISTING (CONT.)
01175 0001450 LDA 0J3
01176 0721142 SPB ADV 1
01177 0000006 ocT 0000006
01200 0001450 LDA 0J3
01201 0101405 ADD PCé6
01202 0301405 STA PCh
3050 END WPH SECTION.
01203 2601203 AQ2/? BRU AD2+/2
3055 S3055. OPEN ALL FILES.
01204 07216L6 YoR! SPB oou 1
01205 0721737 SPB 01U |
01206 0/21461] 5PB O2u 1
3060 MOVE O TO PAGE _COUNT.
01207 0001452 LDA 0Jk
01210 0301363 STA 00A
3065 PERFORM WPH SECTION,
01211 0721145 SPB AO?2 1
3070 MOVE ZZi TO LAST_DEPT.
01212 0001457 LDA 0AS5
01213 0301403 STA 01J
3075 S3075. READ JOB FILE RECORD IF END FILE GO TO $3180.
01214 0001315 AO3 LDA AOL
01215 0001214 LDA wo]
01216 2701571 sTO 027
01217 0721511 SPB 02w 1
3080 IF DEPT OF JOB_TICKET EQUALS LAST_DEPT GO TO S3125.
01220 0001403 LDA 01J
01221 2000314 EXT EXB
01222 0300654 STA XYZ
01223 0001402 LDA 00J
01224 2000314 EXT EXB
01225 0200654 SUB XYZ
01226 2514002 BZE A0S
01227 2601262
3085 SwW3085, GO TO S$S3090.
01230 2601231 AO6 BRU AO7
3090 $3090. ALTER SW3085 TO PROCEED TO S3100.

17

PAGE 007

0110

0120

0130

0140

0150

0160

0170

0180

0190

Figure 42. Edited List

INTRODUCTION TO GECOM

b= 225

65

61

PROGRAM

DATE
PROGRAMNER ‘cou?ursn PAGE
oueER
D PELEp b e el el P =l el pe Do sl e b o[l o o] el s o o ol T oo o e[t s o]l [l] o] e [oo
.21 110} JPROCIEDURI|E, DIV IS ION., . , . . ,, . e T R B S .
.20} lsExTl~1. | OPEN INPUT TRANS~FI|L MSTR~FILI 1IN, ouTPUT MSTR~FILIOUT HSP~REPT
v .30 JSENT}~2,, | READ, TRANS~FIL, ., . N B T R . . . R
. .40 .. . |]READ] MSTR~FI L~JIN, IF END| GO TO FINWAL~sTOP V. . . . b, ., ., o
L. .50 . . liFr, T|lRANS AC~COD|E EQUALS, 1| GO TO SHI|IPMENT , EQUALSs 2 6o Tlo ..
e .51 ..}, . IRECEIPT., EQUALS, 3 GO} TO CHANGE|], EQUALS, .4 GO T0O DELIETE, o
L. . .60 . . JsToP| FIL~MAI NT}., o o o 0 o b R R .
. 1ol isExT|~3. IPERFORM DED~COMP SEC|TION, US.I NG| DED, OF TRJANS~FIL GIVING - .
..l lTOoTAL~DED.} . . N R A e
i - 1 P ST S VO S T i ST T T S Y IS W SRS W R Y el el 1 el 1 g [
~ PR PN S e .
S (TS RS . s P B .
RS WA B RO | U W W SN UL U SR SR DA U SN SN S S [N T U U SN U S S —— F N S W T U S— y T S VR W S St) SR Y SN S N W N WA S NN SN TN TS S TN AN S SR S S

Figure 7. Procedure Division Layout

GECOM LISTING OF JTS

GE CODER

0OBJECT LISTING (CONT.)

PAGE 009

JuL 17

01265 1001370 DLD 024
01266 0721143 SPB FXP 1
01267 0101376 ADD O5A
01270 0023025 OCT 0023025
01271 0721143 SPB FXP 1
01272 0300025 STA 021
01273 1301370 DST 024

3135 ADD OT HRS TO ACC_OT HRS. 0290
01274 1001372 DLD 03A
01275 1101400 DAD 06A
01276 1301372 DST 03A

2140 IF LINE COUNT EQUALS 51 GO TO S2170. 0200
01277 0001405 LDA PC6
01300 0201454 SUB 0J5
01301 2514002 BZE AlL
01302 2601313

3145 S3145, WRITE DETAIL RECORD. 0310
01303 0722036 Al5 SPB 01W02 1

3150 SW3150. GO TO S3155. 0320
01304 2601305 Al2 BRU Al13

3155 $3155. MOVE SPACES TO DEPT OF WS. 0330
01305 0001460 A3 LDA 0A6
01306 0301404 STA 02

3160 ALTER SW3150 TO PROCEED TO S3075. 0340
01307 0001214 LDA AO3
01310 0001307 LDA *-1
01311 270130k STO Al2

3165 GO TO S3075. 0350
01312 2601214 BRU AO3

3170 $3170. PERFORM WPH SECTION. 0360
01313 0721145 Alh SPB A02 1

3175 GO TO S3145. 0370
01314 2601303 BRU A15

3180 $3180. ALTER SW3107 TO PROCEED TO S$3182. 0380

Figure 44. Edited List

INTRODUCTION TO GECOM

BE=223

67

5. Elements., In a few cases, for convenience,
fields are further subdivided into ‘‘elements,’’
For example, a part numbering system could be
so organized that portions of the part number had
added significance. For example: 18253702, NPN
Transistor; 18 meaning electrical, 2 meaning a
component (not a subassembly), 53 meaning tubes
and solid-state devices, and 702 to identify the
particular item,

The relationship between these various data levels
are readily shown:

FILE
RECORD
GROUP 1
GROUP 2
FIELD
FIELD
ELEMENT
ELEMENT
FIELD
GROUP 3
GROUP 4

As mentioned earlier, all data to be used or created
by the object program must be defined. A typical
Data Division for GECOM 1is shown in Figure 6,
giving representative examples of data definitions.
The Data Division for a representative problem is
presented and explained in the section, ‘“‘Application
of Basic GECOM’’, The relationship between Data
Division and input data is also shown in Figure 6.

The Procedure Division, Figure 7, indicates the
steps that the programmer wishes the object pro-
gram to accomplish, These steps are expressed in
English words, symbols, and sentences that have
meaning to the General Compiler. Although the
steps described in the Procedure Division closely
parallel those of the eventual object program, it is
misleading to consider the Procedure Division alone
to be the source program. The source program is
not complete without Data, Environment, and Identi-
fication Divisions,

Sentences in the Procedure Division invariably con-
tain verbs to denote the desired action, names (of
data, constants, etc.) or operands to show what is to
be acted upon, and various modifiers for clarity.
Sentences can be grouped into sections to facilitate
reference and permit the performance of a series of
sentences out of the normal sequence.

Procedure statements or sentences can be simple:
ADD 0.5, RATE OF PAY~FILE.

This will create coding in the object program to
add the constant 0,5 to whatever value (of the RATE
from the PAY~FILE) had been read into the com-
puter, Or statements can be highly complex, involv-
ing several clauses and modifiers, such as:

IF PART~NUMBER OF MSTR~INVNTRY IS
LESS THAN PART~NUMBER OF TRANSAC-
TIONS GO TO WRITE~MASTER, IF EQUAL GO
TO UPDAT~MASTER, IF GREATER GO
TO NEW~RECORD.

This statement would result in object program cod-
ing to cause the following:

1. The part number of the master inventory
record (previously read in) would be compared
with the part number of the current transaction
record,

2, If the part number of the master inventory
record is:

a. the lesser of the two, program control is
transferred to a routine called WRITE~MAS-
TER, which causes the master inventory record
to be written out as part of a master file,

b. equal to the transaction part number, pro-
gram control is transferred to a routine called
UPDAT~MASTER, which modifies the master
inventory record in some manner,

c. the greater of the two, program control
transfers to a routine called NEW~RECORD,
which causes a new record to be added to the
master file,

Procedure Division sentences are performed in the
sequence in which they appear, unless that sequence
is modified by a “GO’’ or a “PERFORM’’ statement
as explained in the next section of this chapter,
“‘GECOM Language Elements’’,

Typical Procedure Division statements are illus-
trated in Figure 13. Note that sentences can be
named (for reference to them by other sentences)
or unnamed. Lines 20, 30 and 70 have been named
SENT~1, SENT~2, and SENT~-3, although more
descriptive names can be assigned at the program-
mer’s discretion., More detailed information for
preparing a source program Procedure Division is
covered in the section, ‘‘Application of Basic
GECOM”’,

In addition to LANGUAGE and ORGANIZATION, the
third item that the GECOM system provides for the
programmer is a set of forms to facilitate source
program preparation and documentation. Two basic
forms are provided, the General Compiler Data Divi-
sion Form, number CA-14, and the General Com-
piler Sentence Form, number CA-13.

Both forms are designed to make it easy to translate
the programmer-prepared source program informa-
tion into a machine-readable form, such as punched
cards or paper tape, Each horizontal line of either
form provides for up to 80 units of information,
corresponding to 80 punched card columns,

INTRODUCTION TO GECOM

ble=223

17

GECOM LISTING OF JTS PAGE 011

GE CODER JuL 17

0OBJECT LISTING (CONT.)
INPUT-OUTPUT CODING (Partial Listing)

01100 Loc 1100
01100 0000262 02s ALF 02s
01101 0000010 ocT 10
01102 2500200 RCD 128
01103 2500400 RCD 256
01104 2000001 EXT 1
01105 0000000 ocT 0
01106 0000000 ocT 0
01107 0000000 ocT 0

01L61 ORG BIN
01461 0001504 o2u LDA O2w-5

LOCATION ASSIGNMENTS FOR GECOM COMMON CONSTANTS (Partial Listing)
(ASSEMBLED IN FRONT OF PROCEDURE CODING)

01144 TV2 BSS 0
00572 IXY EQU 378
00252 ZER EQU 170
00252 700 EQU ZER
00254 701 EQU 172
00255 702 EQU 173
00256 203 EQU 174
00257 Z0kL EQU 175
00260 705 EQU 176
00261 706 EQU 177
00262 707 EQU 178
00263 708 EQU 179
00264 709 EQU 180
00265 Z10 EQU 181
00266 Z11 EQU 182
00267 Z12 EQU 183
00270 717 EQU 184
00271 Z18 EQU 185
00272 Z19 EQU 186
00273 720 EQU 187
00274 72k EQU 188
00275 725 EQU 189

END OF GECOM LISTING

Figure 46. Edited List

@E 225 INTRODUCTION TO GECOM
]

69

procedure, In addition, standardization of divisions,
sections, procedure statements, and other program
elements facilitates communication between pro-
grammers and permits program debugging in the
same language in which the program was written,

The four divisions of a GECOM source program are:
1. The Identification Division
2. The Environment Division
3. The Data Division
4. The Procedure Division

The Identification Division, Figure 4, provides the
programmer with the means for labelling and des-
cribing the source program in English-language
form. In addition to the program name, author (pro-
grammer) and date compiled, this division caninclude
other pertinent information, such as next-program-
in-sequence, security classification, location, and
explanatory comments as needed. During compila-
tion, this data becomes the label for the object
program and is automatically reproduced on output
listings, such as the Edited List,

Programmer use of the Identification Division is
flexible. The only portion required by the General
Compiler is the division name and the PROGRAM ID
sentence; all other sentences are at the program-
mer’s option.

Preparation of the Identification Division isdiscussed
further in the section, Application of Basic GECOM.

The Environment Division, Figure 5, provides a link
between the source program and the data processing
equipment, It defines the computer system configu-
ration and its relationship to the source and object
program, The General Compiler depends upon the

PROGRAM

GENERAL REQUISITIONS (8)

Environment Division to provide information which
associates input and output equipment with the data
names for each file to be used in processing. The
information in the Environment Division is specified
by the systems programmer in English language
clauses.

In preparing the Environment Division, the program-
mer enters the information in a predetermined way.
This format is sectionalized under four sentence
headings as described below:

1. The OBJECT~COMPUTER sentence, the first
entry, is used to describe the computer on which
the object program is to be run,

2. The I~O~CONTROL (input/output control)
sentence, the second entry, specifies nonstandard
error and tape label checking procedures. In
addition, programming control is facilitated by
permitting the specification of program rerun
points, memory dump assignments, and identifi-
cation of multifile magnetic tape reels.

3. The third sentence, FILE CONTROL, identi-
fies input/output files and provides for their
assignment to specific input/output units.

4, The COMPUTATION~MODE sentence assigns
the internal mode of calculation. Sentence use is
optional; it is used only when it is desired that
computation occur in the floating-point mode,
either programmed or in the optional Auxiliary
Arithmetic Unit,

The accompanying example illustrates typical entries
describing the environment for a representative pro-
gram, Entry 10 describes the data processing
system for which the object program is intended:
a GE-225 system with two memory modules (8192
words of core storage), one card reader, one card

PROGRAMMER

G. E. CODER
ukan
l}:l:JtIs 6f7 8|9‘lo'11 12113 ll||5 “{”l“l”’20121‘2424“ 25 26[27|2!{29[30|3\|12]33 34|35 Jél 37!33'17]40|41i42]43]
o+ A} JIDEN|ITIFIJCATION DIVIISION,, . .} . . .
.. 10} IPROGIRAM~|ID,., REQ~ RUN~8. ., ., e
+ . .20} JAUTH|OR,, |G., E., CODEIR,.. N
... .30l IDATEl~.COMPILED,., MAY 10, 1962.}, .,,
L., 40l INSTIALLA|TION., GE, C/JOMP, DEPT, P|HOENIX, ,
+ v 50 ISE.CUJRIT.Y)., UNCLASSIVFIED o o .} 0
.., 60 REMAIRKS,.| USE, DATA |FM REQ, CARIDS., .. .,

Figure 4. ldentification Division Layout

INTRODUCTION TO GECOM

APPENDIX 1. THE GENERAL COMPILER VOCABULARY

Words and terms that appear in the following list
must be considered to be part of the General Com-
piler vocabulary and must not be used by the systems
programmer in forming data or procedure names,
nor may they be used in any manner in a source
program other than as provided by the GECOM
Language Specifications,

Where warranted, many of the terms have been de-
fined or explained, Terms not so explained were
deemed to be self-evident in meaning. In addition,
the body of the manual contains many examples that
illustrate the use of most of the vocabulary terms.

ABS - Absolute value, or magnitude, of a number,
regardless of sign.

ACCESS - Part of descriptive name Mass Random
Access Data Storage.

ADD - To add two quantities and store the sum in
either the last-named field or the specified field.

ADVANCE - To vertically skip or slew the printer
paper,

AFTER
ALL

ALTER - To modify a sequence of operations speci-
fied in one or more GO sentences.

AND - A logical operator,
ARE

ARRAY - A multi-valued field that may be refer-
enced by name and subscript. An array may be
one, two, or three dimensional and may have cor-
responding number of subscripts. An array must
be defined in the Array Section of the Data Divi-
sion,

ASSIGN - To direct the placement of a file or pro-
gram to an input-output media,

ASSIGNMENT - To evaluate an arithmetic expres-
sion and assign the result to a field. To equate
data names,

ATAN - Are tangent, A mathematical function that
may be used within arithmetic expressions. Cal-
culated in floating point arithmetic.

AUTHOR - An optional Identification Division sen-
tence name,

BEGIN - Entrance point to a source program sec-
tion.

BEGINNING

BGN~FIL~LABL - A tape record preceding each
file of a multi-file tape.

BGN~TAP~LABL - The first record on any tape
except in multi-file tape.

BINARY - Pertaining to the binary number system,
as opposed to decimal or binary coded decimal,

BLOCK - See Glossary

BUFFER stores data temporarily

- A device which
during tran: i

BY

CARD

CLOSE - To terminate processing of input or output
reels and files with optional rewind and/or lock,

COMMON (~STORAGE) - An optional Data Division
Section name.

COMPUTATION ~ MODE - An optional Environment
Division sentence name,

CONSTANT - An optional Data Division section

name,
CONTAINS

CONTROL - Interpretation and execution of oper-
ations.

CONTROL~KEY - The field or fields by which a
record is identified.

COPY - To duplicate from another area.

INTRODUCTION TO GECOM

b= 225

71

THE BASIC GECOM SYSTEM

GENERAL

For clarity and simplicity, only the Basic GECOM
system is described in this section. Brief descrip-
tions of extensions to Basic GECOM are provided
in the section, ‘‘Extension to GECOM’’, These ex-
tensions, for the most part, expand the capabilities
of GECOM to encompass recent language develop-
ments.

Implementing a data processing application on a
computer involves a broad procedure that has been
outlined as follows:

1. Define the problem

2. Determine the procedure to be followed in
solving the problem

3. Prepare the computer program, including test-
ing

4. Run the program on the computer with appro-
priate input data.

If the programmer has at his disposal the auto-
matic coding system of GECOM, the above pro-
cedure becomes:

1. Define the problem

2, Determine the procedure to be followed in
solving the problem

3. Prepare the source program in problem-
oriented language

4. Compile the object program from the source
program, using the General Compiler

5. Machine-test (debug) the object program

6. Run the object program on the GE-225 with
appropriate input data,

At first glance, automatic coding seemingly com-
plicates the task of data processing. However, as
shown in Figure 3, the burden on the programmer
is no greater, and often is appreciably less. For ex-
ample, the step from item 2 to item 3, above, is
greatly facilitated by the GECOM-provided ability to

express procedural steps in English language state-
ments, Additionally, each statement the programmer
writes is several times more powerful than the
machine-language or symbolic instructions that he
would otherwise use. Also, he is materially assisted
in the machine-test or check-out phase, item 35,
by the assistance provided by the General Compiler
in the form of detailed print-outs of error conditions
and of the complete compilation process. The print-
outs are as easy to read as the programmer-
prepared procedure statements of the source pro-
gram,

This section is devoted primarily to discussion of
item 3, source program preparation, using the
GECOM system. Incidental references will be made
to the other areas, such as the compilation process,
as required.

Assuming that a well-defined data processing prob-
lem has been assigned to a systems programmer, he
determines the detailed procedures for problem
solution and generally prepares a flow chart describ-
ing those procedures. Flow charts can be broad or
detailed, depending upon the problem and the pro-
grammer. Invariably, they are sufficiently detailed
to serve as a guide for programming the problem
solution, The section, ‘‘Application of Basic
GECOM,’’ illustrates typical flow charts,

GECOM SYSTEM COMPONENTS

With these preliminaries out of the way, the pro-
grammer is ready to prepare the source program,
What does the GECOM system provide him to assist
in this task ?

First, it provides him the necessary language that
eliminates tedious machine-language or symbolic
coding. Language is discussed in the following sec-
tion, ““‘GECOM Language Elements’’,

Second, it provides him with a standard source pro-
gram organization, which corresponds to the format
followed by the compilation output. GECOM source
programs are partitioned into four divisions, in-
tended for separate and independent preparation,
This facilitates changes; if the procedure must be
modified; it can be done with minimal effect upon
data parameters; if data changes occur, the data
parameters can be changed without affecting the

INTRODUCTION TO GECOM

ble=225

13

LABEL

LESS

LINE COUNT
 LINES

LN - Natural logarithm., A mathematical function
that may be used in arithmetic expressions. Cal-
culated in floating-point arithmetic,

LOCK - To prevent a tape from being read or
written by program control.

LOG - Common Logarithm, A mathematical func-
tion that may be used in arithmetic expressions.
Calculated in floating point arithmetic,

LS - LESS than. Used in relational expressions.

MAGNETIC - Part of descriptive name, Magnetic
Tape Handler,

MASS - Part of descriptive name, Mass Random Ac-
cess Data storage.

MEMORY - Main storage, core storage.

MODE - A system of data presentation or proces-
sing within the information processing system.

MODULE(S) - Refers to core memory size; one
module is 4096 words of storage,

MOVE - To transfer a constant, element, field
group, record, or array to a constant, element,
etc. of the same size.

MULTIPLE

MULTIPLY - To multiply two quantities and store
the result in the last-named field or the specified

field.

NEGATIVE

NEQ - Not equal to. Used in relational expres-

sions.

NEXT~PROGRAM - An optional Identification Divi-
sion sentence name,

NGR - Not Greater Than, Used in relational expres-
sions,

NINE(S) - A figurative constant used in procedure
sentences.

NLS - Not Less Than.
sions,

Used in relational expres-

NO

NOT - May be used in relational expressions. In
logical expressions, it is an exclusive negative.

NOTE - To permit the programmer to write explan=
atory material in the source program for
inclusion in the Edited List, but excluded from
the compilation,

OBJECT~COMPUTER - An optional Environment
Division sentence name,

OBJECT~PROGRAM - Scc Glossary
OF

OMITTED

ON

ONE(S) - A figurative constant used in procedure
sentences.,

OPEN - To initiate the processing of input and out-

put files. Checks or writes labels and does other
input-output functions.

OPTIONAL
OR - A logical operator

OUTPUT - A mandatory Data Division section name.
PAGE

PAPER - Pertaining to High-Speed Printer forms.
PERFORM - To cause the specified section to be

executed, Control automatically reverts to sen-
tence following the PERFORM,

PLUG(S) - Refers to connectors on the controller
selector to which input-output unit controllers are
attached.

POSITION

POSITIVE

PRINTER(S) - Pertaining to High-Speed Printer.

PROCEDURE - A GECOM Division name.

PROCEED

PROGRAM - A complete sequence of data process-
ing instructions., May refer to an object program

or a source program,

PROGRAM~ID - A mandatory Identification Divi-
sion sentence name,

INTRODUCTION TO GECOM

(ble=229

73

GECOM PROGRAMMING LANGUAGE

GENERAL

All compiler programs accept source programs pre-
pared in specialized language and produce an object
program ready for computer processing, Unlike
most compilers, GECOM is not restricted to an un-
duly limited acceptable language. The General
Compiler language 1is actually based on several
languages.

The GECOM language evolved primarily from two
recent major data processing languages, the
business-oriented COBOT and the algorithm-oriented
ALGOL. Both languages were developed for solving
widely different problems, although from the view-
point of compiler development they have similar
characteristics. These similarities made it possible
to provide in one complete and compact package a
variety of proven programming techniques. COBOL,
which satisfies the needs of the broadest spectrum of
data processing applications, provided a basic vocab-
ulary (words and symbols), a basic set of rules of
grammer or syntax, and punctuation for clarity.
ALGOL, to accommodate the demands of scientific
applications, contributes Boolean expressions,
floating-point arithmetic, and the ability to express
equations concisely.

Many computer applications require neither the ex-
tensive file processing facilitated by COBOL, nor
the profound mathematics that ALGOL provides, but
do involve massive numbers of sequential decisions.
To cope effectively with these decisions, General
Electric devised structure tables for expressing the
relationship of decision parameters, These decision
structure tables, and the language in which they are
expressed, have been termed TABSOL.

TABSOL has been incorporated into the language ac-
cepted by the General Compiler and can be used in
combination with the COBOL and ALGOL-like capa-
bilities of GECOM,

In addition to file processing, mathematical applica-
tions, and complex decision series, much program-
ming effort is and has been devoted to applications
involving report generation, The Report Writer
format and language, fully compatible with the Gen-
eral Compiler, gives a fully documented method for
preparing reports with minimum programming and

debugging effort, The Report Writer is an extension
of GECOM and derives much of its advantage from
the GECOM system,

Both TABSOL and the Report Writer are discussed
in the section, ‘‘Extensions to GECOM”’,

GECOM language is not compartmentalized into the
component languages discussed above. In a given
source program, it is possible to use COBOL state-
ments containing ALGOL-like algebraic notations:
TABSOL decision structure tables can be inter-
spersed with procedure statements; and the Report
Writer can be used for report generation. The
source program can be prepared using one or all
facets of the GECOM language. In addition, if the
application so requires, GAP coding sequences can
be inserted at will,

coBOL

Because the GECOM language is based primarily on
COBOL, some discussion of COBOL and the history
of its development is warranted.

In 1959, a meeting was called in the Pentagon by the
Department of Defense to consider the desirability
and feasibility of establishing a common language for
the adaptation of computers to data processing. Rep-
resentatives from both users and manufacturers were
present. The consensus was that the project was
definitely both desirable and feasible, As a result,
this Conference on Data Systems Languages
(CODASYL) established three committees, Short
Range, Intermediate Range, and Long Range, to
work in four general areas:

Data Description
Procedural Statements
Application Survey
Usage and Experience

In September, 1959, the Short Range Committee
submitted a preliminary framework upon which an
effective common business language could be built.
After acceptance by the Executive Committee of
CODASYL, the report was published in April, 1960,
by the Government Printing Office as *COBOL-A

INTRODUCTION TO GECOM

G

11

WORKING (~STORAGE) - A mandatory Data Divi-
sion section name,

WRITE - To display a limited amount of information
on the console typewriter,

-To release a record or group to an output
file.

ZERO(S) - A figurative constant used in procedure
Sentences.

ZEROES - SAME as ZERO(S)

INTRODUCTION TO GECOM

75

Advanced compilers are not limited to accepting
simply symbolic instructions, but can accept state-
ments approximating ordinary English sentences or
mathematical equations. Most of these compilers
are highly restrictive in the vocabulary and syntax
permissible and in the equipment that can be used,.
The GECOM system is the first to utilize a General

Compiler program to permit both English-language

and algebraic programming and, at the same time,
to embody provisions for structured decision tables
and automatic report writing, Additionally, the Gen-
eral Compiler has built-in provision to expand its
language capability to encompass other source lan-
guages yet to be constructed.,

Many of the advantages of compiler programs, par-
ticularly those associated with the General Compiler
are pointed out in the section, ‘‘Advantages of
GECOM”’, Because the balance of this manual is
devoted to describing the GECOM system, it would
be redundant to further discuss compilers in general,

However by virtue of the changing requirements
placed upon the programmer who may be engaged

in GECOM programming, some consideration should
be given to his job title,

The average data processing applieation invelves
two broad phases. One phase, defining the problem
and determining the general method of solution, is
generally called systems analysis. The other phase,
involving the actual preparation of the program for
computer entry, is variously called coding or pro-
gramming, although in the strict sense coding is only
a subordinate part of programming. In some instal-
lations, the two phases are performed by separate
individuals; in others, both are performed by one
person,

The programmer or systems analyst who is thor-
oughly trained in GECOM principles can communi-
cate more readily with the computer through the
General Compiler and, simultaneously, view the
overall application in proper perspective, For this
reason, the title, systems programmer, is suggested
and used in the balance of this manual to describe
the GECOM-trained programmer,

INTRODUCTION TO GECOM

APPENDIX 2. SUMMARY GUIDE FOR GECOM FORM PREPARATION

The following pages briefly summarize the basic
rules to be followed in preparing GECOM source
programs on the General Compiler Sentence and
Data Division Forms., A copy of this appendix is
used to provide novice programmers with a con-
venient guide and a ready reference while becoming
familiar with GECOM.,

INTRODUCTION TO GECOM

77

Descriptions of constants are also accepted by as-
sembly programs. Constants, such as the English
word TAX or decimal numbers like 365 are accepted
by the assembly program and converted automatieal-
ly into their machine language equivalents. A legend
generally accompanies each description of a constant
in the source program to indicate what kind of con-
stant is being described. The legend ALF could be
used, for example, to indicate alphabetic constants
and DEC for decimal constants,

An assembly program produces the machine language
versions of constants and instructions in the object
program in such a way that they can be loaded into
memory at a later time., Generally, a list is also
provided, displaying the symbolic descriptions side-
by-side with the output produced in the assembly
process for each, The list, called an assembly
listing, provides an important documentation of the
program, It often contains, also, such aids to pro-
gram checkout as indications of errors in descrip-
tions and lists of symbolic addresses,

The legends, such as ALF and DEC, that are ac-
cepted by the assembly program, but do not stand
for actual machine operations, are called pseudo-
codes, or pseudo-operations, It is common for an
assembly program to provide many of these for the
programmer to use. Each extends the ability of the
assembly program to prepare or document pro-
grams,

The symbolic descriptions of instructions, together
with the pseudo-operations that are accepted by an
assembly program, constitute what is called an as-
sembly language, or a symbolic language. Although
there are numerous exceptions, there is generally
one output in machine language for each input in
assembly language, For this reason, assembling is
often considered to be a one-to-one process.

Symbolic language programming using assembly pro-
grams, while considerably simpler and faster than
machine language programming, is still highly
machine-oriented in that the programmer must have
a thorough knowledge of machine-language program-
ming., It is common for source programs written
for assembly program processing to result in object
programs that are as fast and compact as are
equivalent programs prepared directly in machine
language. Thus, because symbolic language pro-
grams are as efficient as machine language pro-
grams, symbolic language programming has almost
entirely supplanted the machine language as the
basic programming media,

Figure 2 illustrates object program preparation,
using an assembly process. First, the programmer
prepares the source program in symbolic form, using
simple mnemonic codes for the desired machine
operations and storage of program constants, Sec-
ond, the source program is converted to a form

suitable for machine entry. The most common
representations are hole patterns in punched cards
or paper tape or bit patterns on magnetic tape.
Usually the programmer prepares his instructions on
forms from which a keypunch operator can punch the
cards or paper tape for direct entry to the com-
puter or, alternately, for conversion to magnetic tape
and the input to the computer,

Next, the assembly program is stored in the com-
puter memory and the source program is input to
the computer. The computer, under assembly pro-
gram control, produces the output -- an object pro-
gram ready for processing.

At any time after assembiy, the object program, now
in machine language form, is input to the computer
along with data to be processed. The resultant
output -- processed data in the form of punched
cards, paper or magnetic tape, or printed reports --
is now ready for use external to the computer,

The assembly system available with the GE-225, as
previously mentioned, is known as GAP, for General
Assembly Program. For further details, refer to
the ‘“GE-225 Programming Reference Manual,”’

AUTOMATIC CODING LANGUAGE PROGRAMMING

As pointed out above, the assembly program per-
mits an already-skilled programmer to prepare pro-
grams with a minimum of errors by eliminating
many of the details of program ‘‘housckeeping.”” It
also provides a more readable version of machine
language, thus reducing the need for extensive anno-
tation of machine coding. However, it does not
eliminate the need for computer and machine lan-
guage knowledge.

The compiler program permits the programmer to
take another large step away from machine-oriented
programming and toward problem-oriented language
programming, Compiler programs place even more
of the burden of object program preparation on the
computer by permitting the programmer to state the
desired operations in sentence form or in equation
form, depending upon the application and the com-
piler program,

Compilers have several advantages over assembly
programs. The language of the compiler is easier
for the programmer to learn and easier for him to
use, as it is more closely related to his problem.
The programmer using a compiler usually does not
need as intimate a knowledge of the inner workings
of the computer as does the assembly programmer,
Programming is faster; the time required to obtain
a finished, working program is greatly reduced be-
cause there is less chance for the programmer to
make a mistake and because most normal errors are
detected by the compiler,

INTRODUCTION TO GECOM

Ble=223

6L

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION

DATA DIVISION. Starts in column 8, ends with period. No other entries.

ARRAY SECTION.

TRUE~FALSE SECTION. Optional sections as required by program. Start in

INTEGER SECTION. column 8 and end with a period.

FILE SECTION. Identifies characteristics of data in input and output
files of the object program. Starts in column 8 and ends
with a period. Mandatory section.

OUTPUT FILES. Introduces output file descriptions. Starts in column 8
and ends with period.

INPUT FILES. Introduces input file descriptions. Starts in column 8

and ends with a period.

WORKING~STORAGE SECTION. Introduces working storage descriptions.

Starts in column 8 and ends with a period. Mandatory.
COMMON~STORAGE SECTION.
CONSTANT SECTION. Optional sections as required by progr am.

Start in column 8 and end with period.
FD File description. Name follows in columns 11 through 22, 12
characters or less.

are held in the storage element along with the data
to be processed. This not only permits step-by-
step data manipulation-- it enables the machine to
manipulate its own instructions as if they were
data, Thus, it is possible for a program to modify

—itself (if prepared with this intention) and selee-
tively repeat desired portions,

All information processing systems have a reper-
toire of permissible instructions; these vary in
number and scope from one machine type to another
and between manufacturers. For any given system,
however, instructions can be grouped by general
function:

1. Arithmetic
2. Decision

3. Input/Output
4, Control

Arithmetic instructions, as the name implies, enable
the data processor to perform arithmetic such as
addition, subtraction, multiplication, and division,

Decision instructions enable the system to compare
certain data with some standard (other data, per-
haps, or the status of some data processor element)
and select alternate courses of action.

Input and output instructions permit the reading in
and writing out of data via peripheral input/output
units,

Miscellaneous control instructions vary most widely
between machines and depend largely upon machine
design. In general, simpler machines require more
control instructions to accomplish a given function
or process than do more complex machines.

Even in the most complex machine, individual in-
structions are very simple operations and a number
of them must be used in the proper order to perform
a given function,

For many reasons, most modern information proces-
sors are designed to operate internally in some form
of the binary (two-digit) number system, or a binary-
based system, rather than the conventional decimal
(ten-digit) system. Certain computer elements are
bi-stable devices (that is: conducting or noncon-
ducting, on or off, open or closed) with the two
possible conditions expressed as ‘0"’ and ‘1’7,
corresponding to ‘‘off’’ and ‘‘on’’, respectively. The
“0’”” and ‘“1”’ represent the two digits of the binary
number system and are commonly called bits, for
binary digits., By grouping computer elements and
assigning values to them according to their posi-
tion in the group, all numbers may be expressed
in binary numbers; for example:

9 = 1001 18 = 10010 523 = 1000001011
wherein the 1-bits, by virtue of their position, have
values corresponding to the powers of two (1, 2,
4, 8, 16, 32, 64, 128, 256, 512, etc. from right to
left). The O=bits, of course, as in the decimal sys=
tem, denote zero value and establish position. Thus,
the first 1-bit following the equal sign in the exam-
ple, 9=1001, has a weight of eight (the third power of
two), and the rightmost 1-bit has the weight of one
(the zero power of two).

A somewhat similar system permits the represen-
tation of alphabetic and special symbols in coded
binary form, In fact, the system described so
briefly here is only one example of many binary
numbering schemes in use and is used primarily
to show the concept and illustrate the complexity
of programming in a pure machine language. It
is rarely neccessary to program most modern com-
puters directly in binary or machine language form.

As a final example of machine language program-
ming, a simple routine or program for a hypothet-
ical binary computer is used. Assume that two
numbers are in the main storage of the computer
at locations arbitrarily called 1000 and 1001. It
is desired that the two numbers be added and the
result be placed in another storage location, 1002.
The binary coding for this program might appear
as follows:

(1) 00000000001111101000
(2) 00001000001111101001
(3) 00011000001111101010

The internal computer circuits would interpret such
a program thusly:

(1) Load the contents of storage location 1000
into the arithmetic unit.

(2) Add the contents of storage location 1001
to the contents of the arithmetic unit.

(3) Store the new contents of the arithmetic
unit in storage location 1002,

Obviously, pure binary programming is slow and
tedious, partly because of the difficulty in keeping
track of long strings of bits. One innovation that
alleviates this difficulty is the use of an inter-
mediate numbering system between the pure binary
and the more familiar decimal system.

If the binary numbers in the example above are
grouped into three’s, as illustrated below, and
repetitively assigned the values of the first three

INTRODUCTION TO GECOM

He=223

18

SUMMARY GUIDE FOR DATA DIVISION FORM PRE PARATION (continued)

F Indicates

Field

name

a

field of

is

entered

an
in

input
columns 11
P Assumes
U unless it

1

A ssumes

record.

through 22.
field is packed or unpacked,
conflicts

(group,

with a higher level

record, or file).

numeric

entry

data.

scaling
data

one -word binary

data 1is
must be

If the
factor

not integer, a
supplied in the
image columns.

two-word
data. If

Assumes
numeric

non-standard binary
data is not integ er,

see note above.

The preceding image is to be used for
this entry. Cannot be used if precedinjg
image has a 1 or 2 in column 37.

\\\\\% If any input groups or fields are

the
entered here.

repeated
of times

consecutively, numbe r

repeated 1is

THE INFORMATION PROCESSING SYSTEM

Although the effective use of the GECOM system does

ot require a detailed knowledge of machine-language
programming or data processing systems, some such
knowledge is desirable, and perhaps is essential if a
valid evaluation of the system is to be made.

Data processing needs have resulted in the develop-
ment of a great variety of computers, While the
physical form and the specific logic flow differ
widely, general functions and information flow are
similar,

The modern computer or information processor
consists of five elements as illustrated in Figure 1:
Input, Output, Storage, Arithmetic-Logic, and Con-
trol. Communication with the computer is possible
only through the input and output elements,

The term, input clement, is a functional concept, not
the name ol a unit of equipment, Only through the
input element can data enter the processing system.
A system may have one or more of several input
media: punched cards, punched paper tape, magneti-
cally-encoded tape, or specially-printed documents.
Not all computers have available all input media,

The output element makes it possible for the system
to perform a useful function; without an output in-
telligible to the user, a data processor is useless.
Output can take one or more of these forms: punched

nnnnnnn

several special-purpose, machine-controlled forms,
such as magnetic-ink encoded (MICR) documents,

Input data must be presented to the system in such a
way that the system can manipulate and store it in-
ternally, For this reason, data is fed into the system
in a form that can be readily converted to the inter-
nal electronic language of the system (machine
language). Similarly, output data is reconverted to
an externally-usable form after processing.

The storage element is functionally subdivided into
two general types of storage. One, characterized by
limited capacity, high speed, and relatively high cost,
is referred to as main storage, memory, core stor-
age, core memory, or simply ‘‘core’’, The latter
three terms are popular because tiny magnetic cores
are the storage medium in many data processors.
The other general type of storage, characterized by
high capacity, lower speed, and lower cost, is called
auxiliary storage. Auxiliary storage may take al-
most any form, with punched cards and magnetic
tape, discs, and drums being the most common,

The arithmetic-logic element contains the circuits
that perform the manipulations of data required by

the task or application. It adds, subtracts, multi-
plies, divides, shifts and rearranges data, and makes
decisions, according to the purpose of the program,
Capabilities vary widely between different types of
computers.

The control element decodes and interprets the
stored instructions in proper sequence to achieve the
purpose of the program,

In a given compter, it can be difficult to recognize
physically the separate storage, control, and
arithmetic-logic elements. Functionally, they are
separate and distinct elements in all data processing
systems and should be so considered. The input and
output elements are more readily recognized; more
often than not they are packaged as separate units,
such as card readers, paper tape readers, document
handlers, magnetic tape handlers, card punches, pua-
per tape punches, and printers,

GENERAL PROGRAMMING CONCEPTS

Progranmmiing is essentially the frawing of o« sct of
directions for a computer. A set of such directions
prepared for, and to be communicated to, a computer
to guide and control it for a particular processing
task is a program,

A subroutine, on the other hand, is a set of directions
that is generally incomplete (by itself) in the sense
that it usually is only part of a program. Programs
frequently contain subroutines for directing the per-
formance of discrete portions of an overall data
processing application.

Programs and subroutines, in turn, consist of in-
structions, which are basic and are the smallest
meaningful part of a program. Thus, instructions
are the basic tools of the programmer from which
he frames the set of directions a computer isto
follow,

The phrase ‘‘to direct a computer’’ indicates com-
munication, and communication implies language, In
practice, a programmer may use sSeveral languages
in preparing programs, depending upon the computer,
Digital computers are constructed and organized so
that they can accept coded representations of letters
and numbers, and interpret them as directions to be
followed in processing data. Programming lan-
guages generally fall into one of three categories,
depending on how closely related they are to the
computer requirements for accepting information.
These three categories are: machine language,
symbolic language, and automatic coding language,

MACHINE LANGUAGE PROGRAMMING
Perhaps the most important characteristics of mod-

ern information processors is the stored-program
concept. In the information processor, instructions

INTRODUCTION TO GECOM

ble=223

€8

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

FL Field literal. Any legal data name.
values. Rules that apply to fields
Actual value of literal is enclosed

55 through 80.

OUTPUT RECORD ENTRIES:

R Output record-Name 1in
entry of a

unique, It

columns 11 th
qualifier in columns 24

need not be qualified.

P Forces
U packed
binary
columns 11 t hrough 2

are needed,first goes 1in
columns 24 through 35 and

*G *group name in
qualifiers
~ next line

P Forces
U packed

5 11
Used for named fields with fixed
also apply to field literals.

in quotation marks in columns

rough 22; may be
through 35. If

qualified by
record name 1is

all levels within record to be,
(P) or unpacked (U)
numerics.
2. May be

columns 24
a tilde 1in

except

qual if ied. If 2

through 35,
column 7.

second

levels to be
or unpacked.

lower

i

n

INTRODUCTION

WHAT IS GECOM?

The GE-225 GECOM system is an advanced and
highly effective method for preparing sets of direc-
tions for the GE-225 Information Processing System.
As a system, it consists of three elements: Lan-
guage, Compiler, and Computer, These three terms
are further explained below.

THE LANGUAGE

A language is, in general, a means of communication,
In the visual form, it usually consists of a set of
symbols (such as our alphabet), which can be ar-
ranged into meaningful groups (words). Properly
arranged aggregates of these groups or words can
communicate ideas, action, commands, and ques-
tions,

The direction of an automatic information proces-
sing system in the performance of a given operation
requires communication between man and machine.
Just as communication between two men requires a
language intelligible to both, communication between
man and machine requires a common language. This
common language can be machine-oriented (that is,
related closely to the basic means by which the com-
puter accepts and presents information, and requir-
ing tedious translation by man of his directions into
machine-acceptable form), or the language can be
problem-oriented (enabling man to express direc-
tions in a form more convenient to the application
and placing the burden of the translation on the com-
puter), or it can lie somewhere between these ex-
tremes. Machine-oriented and problem-oriented
languages are discussed further in the section,
“‘General Programming Concepts’’.

The GECOM language is a problem-oriented language
designed to handle scientific problems as well as
general business information processing, The pri-
mary basis for the language structure is COBOL, the
COmmon Business-Oriented Language for program-
ming digital computers, COBOL is further discussed
in the section, ‘‘GECOM Programming Language’’.

In addition to the capabilities derived from COBOL,
GECOM language incorporates many of the features
of ALGOL, (an ALGOrithmic Language for stating

mathematical computations), such as capabilities to
evaluate complex equations, Boolean expressions,

and mathematical functions, These computations
may be performed in either fixed or floatiag-point
arithmetic.

Further versatility is provided by the incorporation
of TABSOL and the Report Writer into the language,
TABSOL, for TABular Systems-Oriented Language,
is a system for expressing decision logic in a simple
tabular form. The Report Writer facilitates report
preparation and improves documentation. TABSOL
and the Report Writer are discussed in the section,
““Extensions to GECOM’’,

GECOM language is not limited to the language
capabilities and the extensions mentioned above.
General Compiler versatility permits inclusion of
GAP, the basic symbolic language (machine-oriented
to a degree) of the GE-225 Information Processing
System. GAP, for General Assembly Program, is a
straightforward symbolic assembly system for the
GE-225.

THE GENERAL COMPILER

If communication with the computer is to occur in
problem-oriented language, some means must be
provided to translate that language within the com-
puter into machine-oriented form. A set of
directions for a computer, regardless of the language
in which it is prepared, is called a program or,
sometimes, a routine. A program, manually pre-
pared, is generally termed a source program, A
source program which has been translated into a
machine-oriented program is an object program.
One means of translating a source program into an
object program is to use a specially-prepared pro-
gram (called a compiler) which, within the computer,
operates upon the source program as if it were data
and transforms it into an object program,

The General Compiler (from which the GECOM sys-
tem derives its name) is a unique program specifi-
cally designed to reduce sharply the traditionally
high programming costs associated with the com-
puter applications. GECOM is a highly versatile and
dynamic ‘‘program generator’’; versatile because it
accepts source programs written in a variety of lan-
guages; dynamic because both the range of languages
and the computer types to which it is applicable can

INTRODUCTION TO GECOM

Ble=- 225

G8

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

7 11
L Literal; no name used. All other columns are completed as for fields
and el ements.
N
OTHER OUTPUT RECORD ENTRIES §§§ Not used for output entries.

N

& B or other character forces 1lower
levels with numeric data description
(9) to be in standard binary form

unless 1l ower 1level Format indicates
non-standard binary data. A bl ank

in column 43 forces BCD data output.

§ Forces unpacked data to be 1eft

L (L) justified and zero filled or

R right (R) justified and blank
filled.

ACKNOWLEDGEMENT

‘“This publication is based in part on the COBOL
System developed in 1959 by a committee com-
posed of government users and computer manu-
facturers. The organizations participating in the
original development were:

Air Materiel Command, United States Air Force

Bureau of Standards, Department of Commerce

David Taylor Model Basin, Bureau of Ships,
U. S. Navy

Electronic Data Processing Division, Minneapolis-
Honeywell Regulator Conmpany

Burroughs Corporation

International Business Machine Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

Univac Division of Sperry Rand Corporation

In addition to the organizations listed above, the
following other organizations participated in the work
of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Corporation

General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation

Standard Oil Company (N, J.)
United States Steel Corporation

This COBOL-61 manual is the result of contri-
butions made by all of the above-mentioned organi-
zations. No warranty, expressed or implied, is

made by any contributor or by the committee as to
the accuracy and functioning of the programming
system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee,
in connection therewith,

It is reasonable to assume that a number of im-
provenients and additions will be made to COBOL,
Every effort will be made to insure that the improve-
ments and corrections will be made in an orderly
fashion, with due recognition of existing users’
investments 1n programming, However, this pro-
tection can be positively assured only by individual
implementors,

Procedures have been established for the main-
tenance of COBOL, Inquiries concerning the pro-
cedures and methods for proposing changes should
be directed to the Executive Committee of the Con-
ference on Data Systems Languages.

e s s e e e e o

Any organization interested in reproducing the
COBOL report and initial specifications in whole
or in part, using ideas taken from this report or
utilizing this report as the basis for an instruction
manual or any other purpose is free to do so. How-
ever, all such organizations are requested to repro-
duce this section as part of the introduction to the
document. Those using a short passage, as ina
book review, are requested to mention ‘‘COBOL”’
in acknowledgment of the source but need not quote
the entire section.”’

INTRODUCTION TO GECOM

L8

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

Position contains an alphabetic
character, A-Z, or a blank.

Position contains an integer 0-9.

Position contains a numeral 0-9 with
an ll-row overpunch when negative and

no overpunch when positive.

Pos ition contains a numeral 0-9 with
a 12-row overpunch when the field is
positive and an 11 -row overpunch when
the field is negative.

Indicates an assumed decimal point.

Neither the V or the decimal point
occupy an actual field position.

Indicates number following E is a

power of ten to which the number
preceding the E must be raised. E
does not occupy field position.

11,

PREFACE

ABOUT PROGRAMMING

The programming of information processing systems
has traditionally been a costly and time-consuming
part of automatic data processing. In the past, many
applications that otherwise would readily lend them-
selves to data processing techniques were avoided
because of programming costs. Efforts to improve
programming techniques have been directed toward
producing faster, more economical, and more accu-
rate programs by placing more of the burden on the
data processing equipment,

Various combinations of symbolic coding systems
(with one-to-one correlation between machine code
and symbolic code), macro-instruction coding sys-
tems (with a many-to-one correlation between
machine code and macro-code), libraries of stand-
ardized subroutines, and other innovations were
developed to accelerate programming, Despite these
improvements, programmers still prepared pro-
grams in terms dictated primarily by the computer;
programming languages remained essentially
machine-oriented languages.

Today, compiler programs provide the programmer
with additional leverage. Program coding can be
done in a language more suited to the problem in-
stead of in the purely machine-oriented data proces-
sor language,

The GE-225 GECOM system, an advanced and effec-
tive automatic coding method, provides the next
logical step in programming evolution, GECOM is a
step toward fulfillment of the much-needed total sys-
tems concept--a concept that deems an information
processing system to be an integration of application,
programming, and information processor or com-
puter,

The GECOM system is further characterized by its
applicability to all classes of information processing
problems, its ability to grow, and its inherent pro-
visions for use by future General Electric general-
purpose computers, GECOM permits coding in the
problem languages of business, science, and indus-
try, GECOM can be adapted to future extensions of
existing problem languages as the requirement
arises, without obsoleting programs prepared to
present specifications.

ABOUT THIS MANUAL

This manual is presented as a general information
manual about the GE-225 GECOM system and is
organized to fill the needs of many people having
different levels of familiarity with automatic infor-
mation processing.

For readers with no previous experience in data
processing or computer programming, it is sug-
gested that the entire GE manual be covered,
Persons having such previous experience, but who
are unfamiliar with the GE-225 Information Process-
ing System, are referred to other General Electric
publications, listed below.

Readers already familiar with the fundamentals of
programming can begin directly with the section,
GECOM Programming Language, with no loss in
continuity,

Following the section on GECOM programming lan-
guage is discussion of the Basic GECOM System.,
All elements are discussed briefly with the intent
of providing overall familiarity with all aspects of
GECOM.,

The next section treats the two major extensions to
GECOM, (TABSOL and the Report Writer), which are
first mentioned in the GECOM programming language
section, but are more effectively discussed after an
understanding of GECOM is achieved.

The reader should not assume that reading this
manual will make him a master GECOM program-
mer. The most effective use of GECOM depends
upon training and application, More detailed infor-
mation concerning the various aspects of the GECOM
system can be found in the following General Electric
publications:
GECOM GE-225 Language Specifications
GE-225 General Compiler Operations
Manual, CD225H1
TABSOL GE-225 TABSOL Manual, CPB 147
GE-225 Introduction to TABSOL, CPB
147 A
GAP GE-225 Programming Reference Man-
ual, CPB 126

INTRODUCTION TO GECOM

GES

68

SUMMARY GUIDE FOR DATA DIVISION FORM PREPARATION (continued)

In
po
fl1
as

If
fi

an

[N

serts a comma in correspond
sitions. Automatically supp
oating dollar signs, zero s
teri sk filling.

position occupied by Z in
eld becomes zero, zero is s
d position prints blank.

position occupied by * bec
is printed.

position occupied by $ in
eld becomes zero, move $ in

END PROGRAM. The final entry of

be END PROGRAM star
terminating with a

11

ing field
ressed by
uppression,

numeric Z
uppressed

omes zero, *

numeric $$

to it.

the data division must

ting in column 8 and
period.

11

SOFTWARE MANUALS
GENERAL ELECTRIC reserves the right to make

alterations, advances, or modifications to the ex-
isting program for reasons of increased efficiency.

vii

IL.

III.

IV.

APPENDIX 3. SOURCE PROGRAM ORDER FOR COMPILATION

IDENTIFICATION DIVISION
PROGRAM~ID.
NEXT~PROGRAM
AUTHOR.
DATE~COMPILED.
INSTALLATION.
SECURITY.

REMARKS.

ENVIRONMENT DIVISION.
OBJECT~COMPUTER.
I~0O~CONTROL.
FILE~CONTROL.
COMPUTATION~MODE.

PROCEDURE DIVISION.

Closed sections and decision tables delimited
by BEGIN-END

Master program

DATA DIVISION.

ARRAY SECTION.
TRUE~FALSE SECTION.
INTEGER SECTION.

FILE SECTION.

OUTPUT FILES.

INPUT FILES.
WORKING~STORAGE SECTION.
COMMON~STORAGE SECTION.
CONSTANT SECTION.

END PROGRAM.

* The section heading card is mandatory; further entries under it are optional.

Mandatory
Mandatory
Optional
Optional
Optional
Optional
Optional
Optional

Mandatory (whether or not any sentences follow)

Optional
Optional
Optional
Optional

Mandatory

Placement mandatory if sections are used.

Mandatory

Mandatory
Optional
Optional
Optional
Mandatory*
Mandatory*
Mandatory*
Mandatory*
Optional
Optional
Mandatory*

INTRODUCTION TO GECOM

91

ILLUSTRATIONS

W 0 N O O Hh W N =

W W W W W W W NDN NDNDDNDDNDNDNDMDNDNNN M- [S Y S
OGO b ON= SOV RONRSDEIGGTRELOES

Data Processing Elements 4
Source Program Processing with Assembly Programs 8
Programming Sequence and Task Assignment 14
Identification Division Layout 15
Environment Division Layout 16
Data Division and Related Input 18
Procedure Division Layout 19
The GECOM Data Division Form 20
The GECOM Sentence Form 21
The Compilation Process 22
General Compiler Program Organization 23
GECOM Inputs and Qutputs 24
GECOM Characters and Corresponding Codes 26
GECOM Verbs 27
GECOM Arithmetic Operations and Functions 30
GECOM Relationai Expressions 30
Logical Expression Truth Table 31
Simple Two-Dimensional Table 31
A Twe-Dimensional Table in Storage 31
Graphic Representation of a Three-Dimensional Array 32
The Report Section of the GECOM Data Division 34
Report Writer Sample Report 35
Division Table Format 37
Sample TABSOL Table in GECOM 39
Job Ticket Record Sample 42
Job Ticket Summary Sample 42
Department Man Hour Report 43
Process Chart for Job Summary Ticket 44
Job Ticket Summary Flow Chart! 45
Job Ticket Summary Flow Chart Il 46
Job Ticket Summary Flow Chart Ill 47
Job Ticket Summary Data Division 49
Job Ticket Summary Environment Division 52
Job Ticket Summary Procedure Division 53
Job Ticket Summary identification Division 56
Source Program Deck Organization 57

APPENDIX 4.

A list of important terms (most of which are used
frequently in the body of this manual and many of
which are encountered frequently in other GECOM
literature) have been included in this glossary.
Most definitions are deliberately brief and are not
intended to be comprehensive; many of the terms
have additional meanings, For more detailed and
more exhaustive listings, the reader is referred to
any of several excellent glossaries of information
processing terminology.

ADDRESS - A specific location in storage or mem-
ory. Actual addresses are numeric., Addresses
used in GECOM are symbolic, that is; represented
by names.

ARITHMETIC EXPRESSION - A sequence of data
names, numeric literals, and/or mathematical
tunctions connected by mathematical symbols.

BCD - Binary Coded Decimal; a system for repre-
senting any character of the character set of the
computer by a group of binary digits,

BEGINNING FILE LABEL - A group of records
(blocks) which identifies a file in a multifile
magnetic tape. It is block 0, the first block of
each file.

BINARY NUMERIC - A digit or group of characters
or symbols representing the total units using the
base two: a number expressed in binary digits
or bits, 0 and 1.

BLOCK - A group of records read from or written
on magnetic tape as a single physical tape record.,

BLOCK SIZE - The number of words in a block.

BUFFER - Storage locations used to compensate for
differences in rate of data flow when transmitting
data from one device to another.

CHARACTER - One of a set of basic symbols used
to express data. Includes decimal digits O through
9, the letters A through Z, punctuation, and
special symbols,

CONDITIONAL EXPRESSION - An expression that
can be either true or false.

GLOSSARY

CONDITIONAL NAME - A name assigned to a pos-
sible value of a numeric or alphanumeric field
or element, A conditional name must be de-
scribed in the Data Division,

CONSTANT - A value used in a program without
alteration, Constants are either literal, figura-
tive, or numeric in GECOM.

DATA IMAGE - The characteristics of a data field,
that is, length, content, sign, and character type
for cach position, The data image is used within
the Data Division to define data input and output,

DATA NAME - A programmer-assigned word nan-
ing a file, record, field, constant, or other data,
Data names are composed of letters, numerals,
and hyphens, not exceeding 12 characters, and
may be names of records, groups, fields, arrays,
elements, sections, or true-false variables.

ELEMENT - A subdivision of a field. For example,
a date field could contain a DAY element, a
MONTH element and a YEAR element,

FIELD - A unit of data within a record.
may not be a part of a group.

It may or

FIGURATIVE CONSTANT - A special name repre-
senting specific values [ZERO(S), ZEROES, SPAC-
ES, ONE(S), through NINE(S)]. May be used
in procedure sentences to imply strings of char-
acters.

FILE - A set of records

FIXED-POINT - A number which includes a decimal
point, either between digits or following them
(1.23, 123., or 123.0)

FLOATING-POINT - A number expressed as a
whole number, a decimal fraction, and a power
of ten, (1.287*10-2)

GENERATED FIELD - A field (of data) which is
generated as a result of calculations and is not
input to the program.

INSTRUCTION - A group of symbols causing the
data processor to perform some operation,

INTEGER (as used in this manual) - A number of
5 digits or less not containing a decimal point.

INTRODUCTION TO GECOM

BE=225

93

BONTENTS

PREFACE . . . ix
About Programming ix

About This Manual ix
ACKNOWLEDGEMENT xi
INTRODUCTION . .. 1
What is GECOM? 1
Advantages of GECOM 2

The Information Processing System 3
General Programming Concepts 3
GECOM PROGRAMMING LANGUAGE 11
General e 11

COBOL 11

THE BASIC GECOM SYSTEM 13
General 13
GECOM System Components 13
GECOM Language Elements 25
EXTENSIONS TO GECOM 33
GECOM/Report Writer 33
GECOM/TABSOL 33
COBOL-61/GECOM 38
APPLICATION OF BASIC GECOM 41
General ... 41
Defining the Problem 41
Plotting the Solution 41
Preparing the Source Program 48
Producing the Object Program 57
APPENDICES 71
Appendix 1. The General Compiler Vocabulary 71
Appendix 2. Summary Guide for GECOM Form Preparation. 77
Appendix 3. Source Program Order for Compilation 91
Appendix 4. Glossary 93

Progress Is Ouvr Most Important Product

NERAL &6 ELECTRIC

W

-

LITHO IN USA

b
-

