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INTRODUCTION 

This text is intended as a complete primer on ALGOL 60 

programming. It refers specifically to Version 4 of the DECSystem 10 

implementation. However, it avoids idiosyncracies as far as possible, 

and so should be useful in learning the language on other machines. 

The few features in the DEC ALGOL manual which are not mentioned 

here should not be needed until the student is sufficiently advanced to be 

using this text for reference only. 

Exercises at the end of each chapter illustrate the concepts 

introduced therein, and full solutions are given. 

I should like to thank Mrs. K. Martin and Mrs. M. Wallis for 

their patient and careful typing. 

D. Woodhouse, 

February, 1975. 
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Q-iAI>TFR 1 

HIm -LEVEL LANClJAGES 

1.1 Compilers and Autocodes 

In the early days of electronic computers (1940s and 1950s), pro

gramming was done in tedious and error-prone machine language. The obvious 

drawbacks of this approach, together with a widening vista of problems to 

be programmed for these machines, led to a new concept. This was the 

designing of a high-level language, together with a compiler to translate 

programmes in this language into machine language. The first high-level 

languages were called autocodes, one of the principal ones being Mercury 

Autocode, which has persisted in use to this day on some British machines. 

However, this is a language with a number of idiosyncrasies [1], and in the 

early 1950's, the IBM company, one of the leaders in the computer field, 

started designing a new language, which they called FORTRAN. This language 

was implemented on the IBM 704, and became operational in 1957; FOR~~ II 

became available in 1958, and FORTRAN IV in 1962. Certain peculiarities of 

FORTRAN, (such as 6-character identifiers; the first character of output 

being treated as a control character; etc.) stem from the particular hard

ware characteristics of the IBM 704. 

FORTRAN, especially as initially produced, had a number of serious 

faults. One was the omission of any logical operators, or logical test; 

this defect was made good in FORTRAN IV. Another is the highly linear 

character of the code. The meaning of this latter will become clear later. 

An international committee therefore assembled to produce a specification 

of an algorithmic language, as opposed to a formula translator. The first 

version was produced in 1958, and the definitive revision in 1960 [2]. 

Hence the name of the language: 'ALGOL 60'. (Whenever the word 'ALGOL' is 

used in this text, reference to ALGOL 60 is intended.) 

1.2 ALGOL 60 

ALGOL has two main uses: 

1. to communicate algorithms between people; 

and 2. to describe algorithmic processes to a computer for execution. 

It has gained such popularity in the former role. that more pro-



2 

grammes have been published in ALGOL 60 than in any other computer language. 

In role 2, it found itself in direct competition with FORTRAN, which 

a) had two years start (as FORTRAN II); 

b) was the brainchild of the influential IBM company; 

and c) had a complete, detailed system for input and output (10). 

The definition of ALGOL 60, in consistently adhering to a concept 

of machine independence, defined no input or output procedures at all. 

Consequently, each computer company had to design its own 10 system. This 

completely destroyed programme portability. By the time some consistent 

and overall attempt was made at standardization, FORTRAN IV was on the scene 

with logical facilities, and ALGOL 60 was even further behind. However, 

apart from some clumsiness and forced verbosity in specifying output formats, 

ALGOL is pleasant and satisfying to use. 

Minor updating of the language took place in 1962 and 1964. In 

1968 there appeared ALGOL 68, which although based on ALGOL 60 is an entire

ly different language, with more ramifications than PL/l. It is not at 

present a serious competitor with ALGOL 60: in 1966, many more ALGOL 60 

programmes were written than ALGOL 68 ones in 1974. 
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OiAPTER 2 

LAJIliUAGE STROCWRE OF ALGOL 60 

2.1 Language Levels 

The ALGOL report recognized three levels of language. The refer

ence language is the definitive form; the publication language allows ex

tensions of the reference language for ease of printing and reading (for 

example. exponents may be superscribed, subscripts subscribed, etc.); 

the hardware language for any computer will usually be a restriction of the 

reference language to the character set available on that machine. 

2.2 The Characters of the Language 

Basic or reference ALGOL, as defined in the report, and as used 

in most published programmes contains 116 symbols, namely: 

1. Upper and lower case letters, and decimal digits (62). 

2. ~ and false (2). 

3. Delimiters: i.e. symbols which are not operands. 

(a) Operators: (i) + x / t .:. 

(11) > > - < < -; -
(iii) V A - ;) ., 

(iv) goto if then !.!!!. for do 

(b) Separators: :- u step until while --
comment 10 

(c) Brackets: ' , ( ) besin end 

(d) Declarators: ~ Boolean integer !!!l array 

procedure switch label string 

~ 

(6) 

(6) 

(5) 

(6) 

(11) 

( 8) 

(10) 

~ and false correspond to the FORTRAN logical values .TRUE. 

and .FALSE., respectively. In FORTRAN, these are 'compound symbols' con

taining 6 and 7 characters respectively. In ALGOL, they are rasarded as 

two sinsle character. or symbols. To indicate this, they are u8ually 

printed in heavy type, or underlined. A similar observation applies to 

goto, begin, end. ~, etc •• 
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Since most punching machines contain less than 116 symbols, any 

given hardware representation of the language will usually have a slightly 

different character set. The DECSystem 10 set is as follows: 

1. 36 alphanumeric characters, that is uppercase letters and digits. 

(Lower case letters are allowed if they are available on the line 

printer. Both cases will be used in examples in this manual.) 

2. TRUE and FALSE or 'TRUE' and 'FALSE'. An obvious economy on the 

basic character set is to write out all the multi-letter characters 

a. the corresponding string of letters. This introduces a difficulty 

which we may exemplify from FORTRAN. In FORTRAN, an identifier may 

be any alphanumeric string of length ~ 6, beginning with a letter. 

But 'DO' satisfies this. Therefore, 'DO' can be an identifier (i.e. 

a variable-name). But then, how does one (or, more importantly, the 

compiler) distinguish between its use as an identifier, and al a 

control element in the 'DO' statement? The answer 18 by the context. 

Conlider, for example, 

DO 17 I • 2,K 

If DO here were an identifier, it would be on the left hand side of 

and aesignment statement. Thus, on recognizing '0','0', the compiler 

considers two pOllibi1ities, namely a DO statement or an assignment 

Itatement. Suppose that, for sheer perversity, you had an integer 

variable 00171. ~en, since the compiler ignores spaces, the two 

interpretations would be possible up to 'DO 17 I • 2'. But as soon 

as the next character was read in, it would be clear that a DO state

ment was intended, and it would be so interpreted. (Of course, it 

may be that you ~ntended' 'D017I • 2*K', and mispunched, for *; but 

in that caee the resulting confusion serves you right: When I say 

that uses of special words as identifiers can be recognized by context, 

this is the case in a correct programme.) 

To return to ALGOL. Since it was designed under the assumption that, 

for example, ~ would be a lingle symbol, allOWing the string TRUE 

to be used al both the logical value and an arbitrary variable nama, 

would cause confulion. PDP-10 ALGOL therefore offers two alternative 

.olutions: 

i) you have free choice of variable names provided all delimiter 

words are written in quotation marks, for exampl., ~ al 

'TRUE': 

11) delimiter word. are written without quotation mark. and the.e 

word. are re.erved. i.e. may not be u.ed a. identifier.. They 
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them. 
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ii) is the default option; i) may be selected by recompiling the 

standard compiler and using a special switch option. 

3. (a) i) + - * / t DIV. 

t denotes exponentiation; * denotes multiplication. 

/ denotes division, which produces a real result. For 

example, 7/3 - 1·333 .... 3 

DIV can only take integer operands. and has the same 

effect as integer division in FORTRAN. namely truncation 

(towards zero). For example 

7 DIV 3 .. 2 

-7 DIV 3 a -2 

and. in general, 

-«-n) DIV (-m» - (-n) DIV m - n DIV (-m) 2 -(n DIV m). 

(A bug: sometimes. when m is a positive power of 2 and n 

is negative. n DIV m is evaluated to -«-n) DIV m) - 1. 

rather than -«-n) DIV m).) 

The PDPlO compiler also provides REM: 7 REM 3 G 1. 

In general, n REM man - (n DIV m)*m. 80 that 

-(-n) REM m n REM(-m) m n REM m ~ -«-n) REM (-m». 

ii) > >- = < <- t. The ~ sign is reserved for indicat

ing the relationship of equality: 'y - 3' asserts that Y 

has the value 3; it does not change the value of Y to 3 

or anything else. 

iii) OR AND EQV IMP NOT: all reserved words. 

iv) GOTO or 'GOTO'; etc. (similar comments apply here as 

for TRUE and FALSE). 

(b) As in the reference language except for the following. The 

single symbol ':-' becomes':' followed by 'm'; 'u' becomes 

, '; comment becomes COMMENT (or 'COMMENT', as above) or '!'; 
, , 

10 becomes '@' or '&'. 

The last-named corresponds to the 'E' in FORTRAN real constants 

and indicates the decimal exponent. For example. 

1'7&-3 a '0017; 252@15 - 252*1015 . 

(c) , and ' both become " 
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(d) The dec1arators are treated like the other multi-letter symbols. 

2.3 The Words of the Language 

2.3.1. Variable names or identifiers are alphanumeric strings of length 

~ 64, beginning with a letter. As compared to normal algebraic form, in 

which single-letter identifiers are used almost exclusively, this multi

character facility permits the use of variable names with mnemonic signifi

cance, such as RATIO, TOLERANCE, ABC123 , etc.. Care should be taken not to 

select names which are too long, since it will be tedious to have to write 

the whole of a long name on several occasions; or too cryptic or frivolous 

(such as FRED or JACK), as their mnemonic association will soon be for

gotten; or too similar (such as MARK and MASK) as confusion can easily 

occur. Sometimes the mnemonic is best indicated by two words, but spaces 

are not allowed in variable names. To overcome this, the legibility symbol 

'.' is allowed between letters, and is ignored. For example (unlike COBOL) 

COUNT.DOWN - COUNTDOWN. 

Avoid single letter identifiers, especially the letter O(Oh). Distinguish 

carefully between O(Oh) and O(zero), and between I and 1. 

Unlike in FORTRAN, all identifiers must have their ~ declared 

to be Boolean, integer, real, loog real or string; thus: 

integer X, Y, ZING; real LOOP, DISC; long real T 

(The space must be present in long real.) The declarations must appear at 

the beginning of the programme (or block: see Chapter 8) before any 

executable statements. 

This seems a chore, but has the advantage that a misprinted 

identifier is likely to show itself as a compiler error ('undeclared 

identifier') unless it somehow makes sense - for example, by being the same 

as another, declared, identifier. 

2.3.2. Numeric constants are as in FORTRAN: integer, real or long real. 

An integer constant or variable I must have a value in the range 

_2 35 < I < 235 - 1. A real constant or variable X must be such that X - 0 

or 1·4&-39 ~ Ixi ~ 1·7&38, and has a significance of about 8~ decimal digits. 

If 0 <Ix\< 1'4&-39, then X is replaced by zero. It may be written in fixed 

or floating point form. In floating point form, if no decimal part precedes 

the & or @, a value of 1 is assumed. (Thus, &3 z @3 = 1000.) Long real 

constants are formed by writing a real constant in floating point form, but 
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replacing the & or @ by && or @@. Long real constants and variables are 

held to a precision of 17 decimal digits and the same range is available as 

for reals (except that if 0 < Ixl < 3&&-30, then X is represented to single 

precision, only). 

2.3.3. Octal constants consist of the symbol % followed by up to 12 

significant digits, which are considered to be right justified. For ex

ample, %37 denotes decimal 31. Octal constants may be used only in Boolean 

expressions. The words TRUE and FALSE are called Boolean constants, and 

are equivalent to the octal constants %777777777777 and %000000000000 

respectively. 

2.3.4. Up to five ASCII symbols (see Appendix 4) may be packed, right-

justified, to give an integer-type constant. An ASCII constant comprises 

the symbol $, some character c, up to 5 ASCII symbols other than c, then 

another c. For example, $ A (in which c = the space character), or 

$.STOP. (in which c = .). These two constants have the octal values 

000000 000101 and 000235 223720 

respectively, since the ASCII values are packed thus 

o 0000000 0000000 0000000 0000000 1000001 

and 

o 0000000 1010011 1010100 1001111 1010000 

2.3.5. String constants are strings of symbols enclosed within quotation 

marks, thus: "LAMB CHOPS". For uniqueness of interpretation, the semi

colon and quotation mark may not appear alone in a string constant. The 

string LAMB;CHOPS must be written as "LAMB; ;CHOPS" with the semi-colon 

duplicated; quotation marks must be similarly duplicated if they are re

quired in a string constant. This has an intriguing effect if a desired 

string begins and ends with quotation marks. It is represented as a string 

constant thus: 

" " " IS ANYONE HOME? " " " 

Brackets are used to enclose special string output control 

characters (see Chapter 5) and so they too must be duplicated if a single 

occurrence is required in a string constant: 

" ALPHA [ [NUM]] " 

The handling of string variables is described in Chapter 10. 
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2.4 The Phrases of the Languages 

2.4.1. Arithmetic expressions are similar to FORTRAN. except that mixed 

mode (integer. real. long real) is permitted. and there is no complex arith

metic. For those unfamiliar with FORTRAN. it may be observed that an ALGOL 

expression looks like a normal mixed arithmetic and algebraic expression. 

using the arithmetic operators listed above and identifiers which may con

tain several characters. For example, 

ALPHA+B*(13·2 - DtE) 

INDEX + 15·1 * FRN 

The latter is interpreted by the compiler as 

INDEX + (15·1 * FRN) 

and not 

(INDEX + 15 ·1) * FRN. 

This is formalized into a precedence or hierarchy of operators, which is 

first: 

second: 

third: 

t 

/ * D1V 

+ - (binary and unary). 

If this hierarchy does not determine the order of evaluation of adjacent 

operators. a left-to-right order is adopted. For example. in 

A * (B - C + D) t E 

the hierarchy specifies that the exponentiation be carried out before the 

product; within the parentheses, however, the operators have the same 

precedence, and are therefore evaluated from left to right. thereby inter

preting B-C+D as (B-C)+D and not B-(C+D). Similarly, ptqtr means (ptq)tr 

(i.e. pt(q*r» and not pt(qtr). 

Parentheses (but not brackets) may be used to emphasize or over

rule the precedence rules. 

2.4.2. Boolean expressions involve Boolean identifiers. constants, and 

operators, octal constants and arithmetic conditions. This means that all 

the first three classes of operators ( 3(a), p. 3) may occur in a Boolean 

expression; for example 

X*yt2 > 1-5 AND NOT B IMP FALSE. 

The hierarchy is: arithmetic operators (in the order listed above) 



relational operators 

NOT 

AND 

OR 

IMP 

EQV. 

The above expression therefore denotes 

«(X*yf2) ~ (I - 5» AND (NOT B» IMP FALSE. 

Again, parentheses may be used for emphasis of amendment. 
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The effect of the Boolean operators is to implement the elementary 

logical operations which may be defined in the usual truth table form, thus: 

A 

F 

F 

T 

T 

B 

F 

T 

F 

T 

A AND B 

F 

F 

F 

T 

A OR B 

F 

T 

T 

T 

A IMP B 

T 

T 

F 

T 

A EQV B 

T 

F 

F 

T 

These operators may be used to operate on the bits of the word. 

The above table holds with 0 replacing F and 1 replacing T, and the opera

tions are performed bit by bit. Thus, if A and B have been aSSigned Boolean 

values in the normal way such that A - false and B - true, then, in the 

store, A holds 36 zeros, and B holds 36 ones. A AND B is then formed bit by 

bit by ANDing the two first bits, then the two second bits, and so on. The 

result is 00 ... 0, namely false as expected. 

If, however, A has the bit pattern 0 ... 0 

18 bits 

1 •.• 1 ,whi 1e B 

18 bits 

is 1 ... 1 

18 bits 

o ... 0 ,then A and B each have the Boolean value true, but 

18 bi ts 

A and B - 0 .•• a m false. Again, not A a B - true, so both A and not A 

36 bits 

have the value true. Thus, to obtain the desired results from Boolean ex

pressions, which contain any Boolean variables other than those consisting 

of all l's or all a's, always consider the effect bit by bit. 

To test a particular bit in A, we may write A and tn where n is 

the octal number with a 1 in the bit position to be tested, and zeros else

where. The value of this expression is true if and only if that bit is a 1. 
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In A and Band C 

where A, B,and C are Boolean variables, the expression is known to be false 

as soon as one of A, Band C is found to be false. The PDPlO ALGOL compiler 

does not take advantage of this, however, since it works on a bit by bit 

basis, rather than inspecting the whole of one variable at a time. Effect

ively, therefore, A, Band C are each evaluated in full, even if A is false. 

2.5 Exercises 

1. Which of the following are valid PDPlO ALGOL identifiers? 

2. 

(1) NAME 

(iv) INDEX2 

(vii) 2THIRDS 

(11) NEXT • VALUE 

(v) INDEX. 2 

(viii) DIV 

Which of the following are valid PDPIO ALGOL 

(1) A + -B (ii) A + (-B) 

(iv) xt(ytz) (v) A and !l£! A 

(vii) NUM • $.A. (viii) A DIV B 

(x) A-B + 1·3&-5 

(iii) NEXT-VALUE 

(vi) TWOTHIRDS 

expression.? 

(111) A+(-B) 

(vi) A • B 
(ix) ADIVB 
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STATEMENTS: ruE SENI'EK:ES OF 1HE lA'JGJAGE 

3.1 Assignment Statements 

An assignment statement has the form 

identifier := expression 

and the result is to evaluate the expression and assign this value as the 

(new) value of the identifier. For example, 

X := Y + Z-MARK 

P := Q OR RANDS 

11 

The types of the identifier and expression must 'match' in that either each 

is of string type; or each is of Boolean type; or each has type integer, 

real or long real. If the types of the two entities are different, a type 

conversion takes place. If I is integral and X real, the assignment 

I :- X 

results in I being assigned a value obtained by rounding X to the nearest 

integer. 

Multiple assignments are allowed 

I : .. J : .. K :- 7 

provided all the identifiers have the same type. 

Assignment statements take very little time, and you should be 

aware of the possibility of reducing the number of operations involved, 

even at the expense of increasing the number of statements. For example, 

Xl :~ (-B + SQRT(Bt2 - 4*A*C»!{2*A); 

X2 :c (-B - SQRT(Bt2 - 4*A*C»!(2*A); 

should be replaced by 

Y := SQRT(Bt2 - 4*A*C); 

X2 : .. 2*A; 

Xl :a (-B+Y)/X2 ; X2 :- (-B-Y)!X2 ; 

which involves only one more identifier. (SQRT is a function which obtains 

the positive square root of the expression which follows it in parentheses: 

see Chapter 4.) 
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The operation counts are: 

:= + * / t SQRT 

A 2 1 5 6 2 2 2 

B 4 1 4 3 2 1 1 

in which the operations are listed in the order of increasing time required 

for their execution. (Assignment and taking the square root are not norm

ally referred to as operations.) 

3.2 Control Statements 

Labels in ALGOL are identifiers, formed under the same rules as 

otheridentif iers (so numeric labels are not allowed). Any statemen t may 

be labelled using a colon, thus 

LAB3 : COMP: = X - Z * 2; 

An unconditional jump is achieved by a goto statement, thus: 

goto LAB3; 

Do not label every statement: the programme becomes illegible. 

Only label those to which control may be transferred from out of the written 

sequence. Aim, in fact, to use as few labels as possible. You will find 

this easier when you have learned about for and while statements (Chapter 7). 

Since the location of ALGOL statements on punched cards or tele

type lines is not specified, some device is needed to indicate the end of a 

statement. This is the semicolon. Thus: 

integer j,push ; boolean rep real x,y,zoom 

labl: j:~ push:= 5 ; rep:~ ~; 

x:= yt2 - push*zoom ; 

goto labl 

end 

is a valid (albeit useless and, indeed, unending) ALGOL programme. 

Note that (i) an ALGOL programme must begin with 'begin', followed 

immediately by the type declarations, if any, and then 

any other statements, and finish with 'end'. There is 
0ro-

no STOP statement. 
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(ii) begin and end are like brackets: Cf a vector (xl ,x2 ,x3) : 

the entities within the brackets are separated by commas, 

but xl need not be preceded nor x3 followed by a comma. 

Analogously, we need no ';' after begin or before end. 

3.3 Conditional Statements 

3.3.1. A conditional statement has the form 

if b. e. then S 1 else S 2 ; 

(where b.e. denotes a boolean expression, and SI, S2 denote statements). 

For example, 

if X<Y then I :- 27 else Z:- xt 2 + yt 2; 

The FORTRAN 'logical IF' also exists, namely 

if b.e. then SI; 

In FORTRAN this is quite straightforward: 

IF(b.e.) S1 

but the more general form requiring alternate execution of SI or S2 has to 

be implemented in the clumsy form: 

IF(b.e.) GOTO 1 

S2 

GOTO 2 

1 S1 

2 

Compare this with the ALGOL conditional statement above. This is the 

import of the earlier claim that FORTRAN is more 'linear' than ALGOL. While 

ALGOL provides a direct implementation of the flow diagram: 

Yes No 

S2 



FORTRAN converts it to: 

N 

Yes 

Sl 

S2 

The ALGOL form is easier to comprehend, since there are fewer labels and 

jumps. 

S1 cannot itself be a conditional statement, as ambiguity then 

arises; for in 

if b.e.1 then 

it is not clear to which if 

Is it 

if b.e.1 then 

or 

if b.e .1 then 

In the first case we have 

b.e.l 

F 

F 

T 

T 

while in the second 

b.e.l 

F 

F 

T 

T 

b.e.2 

F 

T 

F 

T 

b.e.2 

F 

T 

F 

T 

if 

(.!!. 

(if 

b.e.2 then S1 else 

then the else belongs. 

b.e.2 then S1) else 

b.e.2 then S1 else 

statements executed 

S2; S3 

S2; S3 

53 

S1; S3 

statements executed 

S3 

S3 

S2; 53 

Sl; S3 

52 

52 

52) ? 

14 
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(where S3 is the statement following the conditional statement). Compari

son of the right hand columns of these two tables shows that the two inter

pretations are distinct. Clearly there is no ambiguity when the parentheses 

are inserted, and this is what is done, except that begin ••• end are used. 

and not ( ); thus we have 

if b.e.1 then begin if b.e.2 then S1 end else S2; 

and 

if b.e.1 then begin.!!. b.e.2 then Sl else S2 end; 

Evaluation is from left to right, and no more than necessary is 

carried out. For example, if D < 0·2, then 

if X <c ~ then D :c D*X else D:= D/X 

will never give arithmetic overflow through division by zero, since if X a ~ 

then only the first arm of the conditional is executed. 

3.3.2. Conditional expressions may be defined analogously to conditional 

statements, replacing SI, S2 by expressions El, E2. For example, 

D:a if X <= ~ then D*X else D/X 

is an assignment statement in which the expression to the right of the 

assignment sign is a conditional expression. Conditional expressions, like 

conditional statements, may be arbitrarily complex, but use parentheses 

rather than begin, end to indicate groupings, for example: 

X: = if ALPHA < BETA then (.!!. GAMMA > ~ then 17' 5) 

else yt2 + Zt2 ; 

However, you should not abuse this facility by constructing expressions 

which are too complicated, or the programme 1's difficult to read. For 

example, 

K::a !!. X = 9 then (!!. Y .. 7 then 2 else 1) else 3; 

is legal but horrible, and should be replaced by 

L:= if Y = 7 then 2 else 1; 

K:= if X 9 then LeIse 3; 

or by 

if X; 9 then K:= 3 

else K:m if Y = 7 then 2 else 1; 

The 'else' must be present in a conditional expression, or no value 
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would result for assignment to the identifier on the left when the condition 

fails. ALGOL has no 'arithmetic IF'. 

3.4 Compound Statements 

Any statement or statements may be grouped for consideration as a 

single entity by preceding it (them) by begin, and follOWing it (them) by 

end. The resulting grouping is a single compound statement. For example, 

the statements Sl and/or S2 in the conditional statement above may be com

pound, thus: 

if b.e.l then begin H:= K; JAMES:= E*E - 5*T; 

goto LAB4 

end 

else H: = -H; 

Formally, 

y :- X; 

is a simple statement, while 

begin Y := X cnd; 

is a compound statement. A block is a compound statement which contains 

one or more declarations. 

3.5 Dummy Statement 

The ALGOL dummy statement (cf. FORTRAN's 'CONTINUE') is just the 

empty string. As in FORTRAN it is used to locate a label. It is only 

needed immediately before an 'end'. For example, 

JAB := 7; 

13: 

end 

(For and While Statements are described in Chapter 7.) 

3. 6 Programme Layout 

The freedom of format allows statements to be packed line after 

line into an illegible mass, or to be spaced out in such a way as to indicate 
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the flow of the programme. The latter is aided by aligning each end under 

its corresponding begin and each else under its corresponding then, unless 

the entities are small enough to go on one line. Thus 

if Y - 5 then goto lab3 else Y :- -Y; 

but 

if Y - 5 then Z :- X +2 - AlB + 3*FIRST-LAST 

else X := EPSILON - A25 + 16'3&14; 

and 

if Y - 5 then begin X :." 6; goto L end; 

but if Y - 5 then begin X :- 6; b :- 42 - 8; 

z :- COMP-MARKSUM; 

go to LINE27 

end 

The begin, end groupings may be nested, and should, within reason, 

be successively indented, thus 

end 

begin 

end 

end 

Otherwise, each first statement on a line should be aligned with 

the adjacent first statements, and ~ot too many statements should be packed 

on each line. 

3.7 Comments 

It is useful to be able to include statements explaining, to the 
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human reader of the programme listing, the meaning of variables and the 

function of groups of statements. This sort of explanation may be inserted 

by use of the reserved word comment (or the symbol '!', but this is not 

standard ALGOL). The three possib~eways of inserting explanations or 

comments are: 

(i) 

(ii) 

(iii) 

... , 

... , 
canment ••• ; 

'-.-' 

begin canment ~; 

..• end ~; ... 

In each case the brace indicates the comment string. In (i) and 

(ii) this string should contain no semicolon; in (iii) it may contain only 

letters, digits and spaces, and no reserved words. 

Comments should be used freely and fully to enable programmes to 

be understood by others (and by yourself at some future date). They should 

indicate the aim, method and symbolism of a programme. 

1.8 Exercises 

1. Write an ALGOL programme to find the greatest common divisor of two 

integers. 

2. Obtain the sum of the cubes of the first 100 positive integers. 

3. Integrate 1/(1 + x2 ) with respect to x over the range x = 0 to x ~ I, 

(a) by the trapezium method. and (b) by Simpson's rule; using 20 

strips in each case, and comparing the results. 



rnAP1ER 4 

STANDARD RJN::TlOOS 

4.1 Standard Functions 

A number of functions are provided in the ALGOL library, and may 

be used whenever the value they provide is required. 

ENTIER(X) is defined if X is real or long r~al, an~ then has the 

largest integer value not greater than X. For example, if X = 3·7 and 

Y = -5·2, then 

I := 5 + ENTIER(X); J:= 3*ENTIER(Y) 

has the effect of setting I equal to 8 and J to -18. 

The other arithmetic functions are as follows. 

ABS(X) = { X 
-x if X < 9 

X may be real, long real or integer, and ABS(X) has the same type as X. 
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ABS should usually be used when testing real and long real vari

ables. It is quite possible for variables of these types to differ from 

the theoretical value by some units in the eighth (or seventeenth) sig

nificant figure, due to roundoff error. (The difference may be much more, 

if the process is unstable.) Therefore, to test whether A is zero, use not 

if A = 0 then 

but 

if ABS(A) < EPS then 

where EPS is a small positive number chosen appropriately for the process 

in hand. 

SIGN (X) takes the same range of argument types as ABS but always 

produces an integer result, thus 

1 

SIGN(X) = {. 0 
-1 

if X > 9 

if x .. 41 

if X < 41 

SIN, COS, ARCTAN, SQRT, EXP, LN, TAN, ARCSIN, ARCCOS, SINH, COSH, 

and TANH each have a single real argument, and produce the obvious result, 

of real type. 
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LSIN. LCOS. LARCTAN. LSQRT. LEXP and LLN each take one long real 

argument and produce a long real result. 

IMIN. lMAX. RMlN. RMAX. LMIN and LMAX each take up to 10 arguments. 

of the type indicated by the initial letter in each case. The result is of 

the same type and is the maximum or minimum value of the arguments. For 

example. 

Y :- IMAX(I.J.K) + SQRT(COS(Xt2 - A*B»; 

is a valid assignment statement. Other library facilities will be described 

later. They are called procedures (see Chapter 9). 

The library procedure names are not reserved words. but it is 

sensible to treat them as such unless the user is re-defining a procedure to 

do the same task. For example. if he is defining a procedure to calculate 

sin x. it would be sensible to use the name SIN. but not otherwise. 

4.2 Exercises 

1. Use the Newton-Raphson iteration (xn+ 1 ~ (xn + A!Xn)!2. n = 0.1.2 •..• ) 

to obtain the square root of a number A. with an error at most EPS. 

2. Calculate the area of a planar triangle, given the co-ordinates of its 

vertices. 

3. Obtain the polar co-ordinates of the sum of two complex numbers 

specified in polar form. and the cartesian form of the product of two 

complex numbers which are specified in cartesian form. 
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rnAPTFR. 5 

INPlJf MTD OOTPlIT 

5.1 Peripheral Management 

S.l.l. Device Allocation 

A user programme may handle up to 16 peripheral devices simultan

eously. These are known to the programme by the logical number (0-15) of 

the channel on which the device operates. A peripheral device is allocated 

to the programme by a call to one of the library procedures INPUT and OUPUT. 

So, for example to allocate the card reader for input on channelS, the 

following statement is used: 

INPUT(5, "CDR"); 

The choice of channel number is completely under the control of the pro

grammer, provided that only one device is allocated to anyone channel at a 

time. Subsequent to the above call to INPUT, any reference to channelS 

refers to input from the card reader. 

INPUT(IO, "DSK"); 

allocates the disc for input (from the disc to the programme); output to 

the disc must take place on a different channel; for example: 

OUTPUT (11 , ''DSK''); 

The only exception to this rule is the teletype if the programmer is on-line. 

Thus, either 

INPUT(2, "TTY") 

or 

OUTPUT (2, "TTY") 

~'i 11 allocate the teletype for input and output. 

INPUT and OUTPUT may have 2, 3 or 4 arguments, as follows 

{INPUT } 
(chan, str, mode, buff). 

OUTPUT 

If there are n arguments, they are assumed to be the first n of these 4 

(n = 2 or 3) . 

. han is the channel number as already described; 0 < chan < 15 • 

• lr is a string constant or variable whose value is one of the following 

lth the significance indicated: 



OSK disc !.PT line printer 

OTA OECtape PTR paper tape reader 

MTA magnetic tape PTP paper tape punch 

CDR card reader PLT plotter 

COP card punch TTY teletype 

If s is a string variable (see Chapter 10). then subsequent to 

the assignment 

s:= "CDR"; 

INPtIT(5. "CDR") and INPUT(5. s) are identical in effect. 

mode indicates the form of the data to be transferred along the channel. 

Some possible values are: 
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$ ASCII code. 7-bit bytes. packed left-justified. 5 characters per 

word. This would be the normal mode. representing readable text. 

8 Image mode. This is deviae dependent and uses 36-bit bytes. 

The buffer is filled with data exactly as supplied by the device. 

11 Image binary mode. used for the storage of binary data on a disc. 

Again. 36-bit bytes are used. 

If this parameter is absent. ASCII mode is assumed. 

buff specifies the number of buffers to be allocated for the device. The 

default is two. unless str = "TTY" when four are allocated. two for each of 

input and output. 

The procedure RELEASE is used to release a device from a channel. 

Thus 

RELEASE (5) 

release~ channel 5 and leaves it free for re-allocation. If an attempt is 

made to allocate a device to a channel which is already in use. an automatic 

RELEASE is performed and the new device allocated. 

5.1.2. Channel Selection 

Only one of the currently allocated channels may be open for input 

and one for output at anyone time. A channel is opened (selected) as 

follows: 

SELECTINPUT(chanl); SELECTOUTPUT(chan2) 

Following these calls. all subsequent input is taken from the device on 
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channel chanl and output sent to the device on channel chan2, until another 

channel or channels are selected. Such a change may be made at any time. 

An implicit or explicit RELEASE automatically deselects the channel, if 

necessary. 

If input is called for when no input channel is selected or 

allocated (or both), then the teletype is allocated and selected by default; 

and similarly for output. 

5.1.3. File Specification. 

Disc and OECtape require the specification of a file as the source 

or destination of the data. This is achieved by 

OPENFILE(chan, str); 

where chan is the channel number and str is or contains a file name, for 

'(ample 

OPENFILE(7, "EXAMPL.FOR") 

When this file is finished with, it should be closed by the call 

CLOSEFILE (7) ; 

An implicit or explicit RELEASE performs a CLOSEFILE if necessary. 

The end of the programme releases the devices on all channels. 

5.1.4. Summary 

To perform input one must: 

i) allocate the desired device to a channel, e.g. INPUT(5, "OSK".); 

ii) select the channel, e.g. SELECTINPUT(S) ; 

iii) open a file (on a file deVice), e.g. OPENFILE(5, "EX.OAT"); 

and later one should 

iv) close the file, e.g. CLOSEFILE(S) ; 

and v) release the channel, e.g. RELEASE(5). 

The procedure for output is similar. 
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5.2 Numeric Input and Output 

5.2.1. READ(A.B ••••• K); is used to input numeric data on the channel 

currently selected for input. READ may have up to ten arguments. of type 

integer, real. long real. Boolean (or string). The data may be written in 

any sensible form. No spaces or newline characters should be used within 

items of data. but should be reserved as separators and terminators. Term

inate the data with one of these characters, and not just the end of the 

file. 

Autnmatic data conversion takes place, a number for assignment to 

a Boolean variable being read as an integer. Thus. zero gives the value 

false, while any non-zero value gives true. 

For a string variable. a " is sought. and the subsequent text up 

to. but not including. the next" is read. If this" is immediately 

followed by another quotation mark, a single occurrence of " is stored and 

reading continues; otherwise it ceases and the stri.ng stored as the value 

of the variable. For example, 

string S ; 

read (S) 

together with the data input 

"THE SHIP IS CALLED " "ALNWICK CASTLE" " " 

assigns as the value of the string variable S the string 

THE SHIP IS CALLED "ALNWICK CASTLE" 

5.2.2. PRINT(id. intpt. decpt); is used to output numeric data on the 

channel currently selected for output. id is the name of the variable whose 

value is to be printed; it may be of type integer. real. long real 'or 

Boolean. intpt and decpt, if present. are non-negative integers. with the 

following interpretation. 

i) intpt > 0, decpt ~ 0 indicates fixed point printing with intpt places 

before the decimal point (usually: see below) and decpt places after 

it. The sign ('-' or a blank) is allocated a single space. 

Examples: 

If X = 356·37 thpn 



PRINT(X,S,3) produces uu~356.370 

(where ~denotes the space symbol). 

PRINT(X,3,l) produces 

(with rounding, not truncation). 

U 356.4 

PRINT(X,1,5) produces w 356.37000 

(All 3 digits before the point are output, even though intpt = 1. 
, 

2S 

This is the exceptional circumstance producing more th~~ intpt digits 

before the decimal point.) 

PRINT(X,3,0) produces w 356 

(Note suppression of the decimal point.) 

If X = -231.785 then 

PRINT(X,3,2) produces 

If X = -231.775, then 

- 231. 78 

PRINT(X,3,2) produces 

(~ote '5' is always rounded down.) 

- 231. 77 

PRINT(X,5,2) produces 

PRINT(X,l,3) produces 

LJU - 231.77 

- 231.775 

Thus, intpt + decpt + 2 symbols are (usually) produced, unless 

decpt = 0, when intpt + 1 symbols are produced. decpt = 0 is the 

normal value for integer and Boolean variables. 

ii) intpt = 0, decpt > 0 indicates floating point printing, with decpt + 1 

significant digits output. decpt + 7 or 8 symbols are produced (usually: 

see below), depending on whether one & (integer or real) or two &s 

(long real) are produced. Two digit spaces and a sign space are allowed 

for the exponent. 

Examples: 

If real X = 356.37, then 

PRINT(X,O,3) produces 

PRINT(X,O,5) produces 

-30 If real X = 10 ,then 

PRINT(X,O,2) produces 

If real X = 2.732, then 

PRINT(X,O,3) produces 

~ 3.564& u'-' 2 

L..J 3.56370& '-' L.J 2 

LJ 1.00&-30 

LJ2.732 

(Note the suppression of the whole exponent part because the value of 

the exponent is zero.) 



Integers are treated the same way as reals. 

If long real X = -0.0025, then 

PRINT(X,0,2) produces -2.50&& L..I -3 

iii) Abbr~viations are treated as follows. 

If X is real, PRINT(X,m) means PRINT(X,O,m); 

PRINT(X) or PRI~T(X,O,O) means PRINT(X,O,7). 

If L is long real, PRINT(L,m) means PRINT(L,O,m); 
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PRINT(L) or PRINT(L,O,O) means PRINT(L,O,15). 

If 1 is integer or Boolean, 

PRINT(I,m) means PRINT(I,m,O); 

PRINT(r) or PRINT(I,O,O.) means PRINT(I,ll,O). 

5.3 Output Control 

SPACE(n); TAB(n); PAGE(n); NEWLINE (n) ; 

where n is an integer expression, cause n spaces, tabs. pages or newlines, 

respectively, to be output. SPACE(I) may be abbreviated to SPACE, etc .. 

Always plan you~ use of output statements so as to produce an 

intelligible layout of the results. 

5.4 Text Output 

5.4.1. This is effected by a call to the procedure WRITE which takes a 

single string argument. 

Thus, 

WRlTE("RESULTS ARE:"); 

produces the output 

RESULTS ARE: 

as does the sequence 

S:= "RESULTS ARE:" 
WRITE(S) ; 

Often one wishes to Output a number of lines of text, and it is 

inconvenient to keep closing the WRITE parenthesis, insert NEWLINE(n), 

return to a WRITE, and so on. An example of this could be: 

SPACE(l5); WRITE("RESULTS") ; 

("COEFFICIENTS"); SPACE(S); 

NEWLINE (2) ; SPACE; WRITE 

WRITE("VALUE"); NEWLINE; 

Control characters are provided which may be included in the WRITE 



27 

string argument, enclosed in brackets (cf. §2.3.5). These are 

P new page equivalent to PAGE (1) 

C or N : new line II II NEWLINE(I) 

T tab II " TAB (1) 

S space II II SPACE(l) 

B breakoutput II " BREAKOUTPUT 

Using these, the following achieves an identical layout to the 

above: 

WRITE("[15S)RESULTS[2NS)COEFFICIENTS[5S)VALUE[N)") ; 

Recall that an actual occurrence of a bracket must be duplicated, 

so. for example, to obtain the following output 

X[I)-

one DI.lst write 

WRITE("X[[I)]-") 

or its equivalent; while to obtain 

"X[I)" 

requires 

WRITE("""X[[I))"""); 

5.4.2. Teletype Handling 

When the user is on-line and the teletype is being used for both 

input and output (either explicitly or by default) then care must be taken 

over the interleaving of input and output statements. Output for a device 

is put by the computer in the small area of reserved storage space known as 

the output buffer for that device. This output is normally sent to the 

device only when the buffer is full. If at some stage of the programme you 

want all the output to date to appear, regardless of the current buffer 

state, you use the statement BREAKOUTPUT. For example: 

or. more briefly, 

WRITE (''HEADING[N) "); 

BREAKOUTPUT; 

READ(X,Y,Z); 

WRITE("HEADING[NB)"); 

READ(X,Y,Z); 

This ensures that the word 'HEADING' is displayed and the teletype moves to 

the next line to accept the values of X, Y, Z. Otherwise, the programme 
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could be waiting for you to input X, Y and Z, with you unaware of this since 

the word 'HEADING' is still in the buffer, and hence not yet seen by you. 

You would therefore believe that execution had not yet reached this point: 

each of the user and the programme would be waiting for the other. 

The use of breakoutput is unnecessary when the input and output 

media are different. 

5.5 Byte Handling 

A byte is a number of bits, typically 6, 7, 8 or 9. In PDP10 

ALGOL, facilities exist for handling bytes of any size from 1 to 36 bits. 

The ASCII code (Appendix 4) represents characters by 7-bit bytes. The 

statement 

insymbol(J); 

where J is an integer identifier, causes the next byte (ASCII character) to 

be read from the currently selected input channel, and its value assigned 

to J. Similarly 

outsymbol(n); 

where n is an integer expression, causes the value of n to be output as a 

byte (ASCII character). Since ASCII constants are held in integral form, 

they may appear as arguments in outsymbol. For example, 

outsymbol($.*.) 

produces an asterisk on the current output chaDlle1. 

Examples 

1. integer i; i:- $.A. ; print(i) ; 

gives '65' on the output stream 

2. integer i; i:- $.ABC. ; outsymbol(i) ; 

produces 'c' as output. 

3. integer i; i:- $.ABC. outsymbol (i DIV 2t14) 

outsymbol(i DIV 2t7) ; outsymbol (i) ; 

produces 'ABC' as output. 

nextsymbol(J); acts like insymbol(J); but does not advance the 

byte pointer. skipsymbol; simply advances the pointer. 

These procedures are most useful for scanning input streams and 

assigning input values to string variables as a result of this (see Chapter 

10). 
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5.6 End of File 

The Boolean procedure IOCHAN may be used to check whether the end

of-file has been encountered on any peripheral device. Its argument is the 

number of the channel on which the device is allocated, and bit 29 is set if 

and only if the end-of-file is encountered. The Boolean expression 

IOCHAN(chan) and %100 

is therefore true if and only if the end-of-file has been reached on channel 

number chan. 

To read all the bytes in a file on channel 3 into a string S, we 

could write: 

L:- 0; 

LAB: if not IOCHAN(3) and %100 then 

begin L:" L+1; insymbo1 (S. [L]); goto LAB end; 

(See Chapter 10 for a description of strings and bytes.) 

The 'obvious' Test 

if not (IOCHAN(3) and %100) then ••• 

does not work (cf. section 2.4.2), as this Boolean expression has l's in 

every bit position (except the 29th) for all possible values of IOCHAN(3). 

Thus, it is always true, the end of the file is overrun, and the run-time 

error indication 

'ATTEMPT TO READ OR WRITE OVER END-OF-FILE' 

is given. Check the two expressions for all possible bit combinations to 

see exactly what is happening. 

statement (section 7.2.3): 

The best form of the test uses the while 

for L:- 1, L+l while not IOCHAN(3) and %100 do insymbol(S.[L]); 

5.7 Validation of Data 

In its final form, a programme should have a data-checking 

procedure or section. The form of input data is specified in the programme 

documentation, but errors will occur in the preparation of data. At the 

least, these may cause the breakdown of a production run; alternatively 

spurious results may be produced, or some serious breakdown of the system 

caused. The programme itself should therefore check that the data is in 

the form and of the type it expects and can handle. 
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5.8 Conclusion 

Input and output in PDPlO ALGOL requires more programme text than 

in FORTRAN - there is no economization to parallel the FORMAT statement with 

its full capabilities. However. one advantage of ALGOL output is the 

ability to vary the format dynamicallY (i.e. as a result of values calcu

lated during programme execution). for example by means of the 'integer 

expression' in SPACE (integer expression). etc •• 

5.9 Exercises 

Add input and output instructions to the solutions to the exer

cises of Chapters 3 and 4. where indicated by the comments in those programmes. 
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ARRAYS 

6.1 Arrays 

To represent and handle vectors, matrices, etc., we may use an 

array. This is the means by which ALGOL implements the concept of sub

scripting a variable. Because the writing of small numbers and symbols, 

below the level of the others, is inconvenient for computer input or output. 

array subscripts are enclosed in brackets and separated by commas. So. for 

example, the vector elements x 1 .x2 and x3 may be represented by the ALGOL 

variables X[l], X[2] and X[3]; while the matrix element aij may become 

A[I,J]. X. A are array names. An array name is an identifier of the usual 

form, and each array element may be selected by specifying the appropriate 

subscripts. Subscripts may be arbitrarily complicated expressions. These 

are rounded to integer values to select an array element. For example, 

HEAD[J. Kt2-3. Z-SIN(X)] 

is an element of the three-dimensional array HEAD. 

Array elements may be of any type, provided that all elements of 

anyone array are of the same type. They must be declared along with the 

simple variables. 

integer array HAND[-3:10); 

declares a one-dimensional array HAND, with integer elements. and with 

subscripts -3. -2 •.•• ,10. This means that 14 successive store locations are 

reserved, and are named HAND[-3), HAND[-2) •••• ,HAND[10). Subsequent to this 

declaration. HAND[J) may be used anywhere that an integer variable is per

mitted. J is not checked to see whether -3 < J < 10. and chaos can ensue if 

it is outside these bounds. 

The directive CHECKON I, placed in the programme as a statement. 

causes all subsequent array bounds to be checked. to the end of the programme, 

or until a directive CHECKOFF 1 is encountered. With the check facility on. 

an out-of-bounds subscript causes the programme to cease execution with the 

error indication ILL HEM REF (illegal memory reference). Use of this 

facility causes the programme to run more slowly, so it should normally be 

reserved for debugging runs. 

In general, an array declaration is of the form 
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type array ARRNAME[t 1 :u1 , 12 :u2 ,···, tn:Uu]. 

This declares an n-dimensional array, whose i th subscript may take the values 

t i , 1i + l, ••• ,ui for i - l,2, ••. ,n. The 1i are the lower bounds and the ui 

the upper bounds on the subscripts. They must satisfy 1i ~ ui for all i; 

there is no restriction on the size of n. If the type is omitted, it is 

assumed to be real. 

Obvious abbreviations are permitted in array declarations. For 

example 

array finger, toe [-7:1, 1:5], BOOK[l:lO, 1:10, 1:10] 

declares 3 real arrays: two two-dimensional ones, finger and toe, each 9 x 5, 

and BOOK of 3 dimensions, 10 x 10 x 10. 

Division by an array element should be avoided, by first making an 

assignment to a simple variable. Use 

in place of 

6.2 Library Procedures 

Z:- A[I] ; 

Y:- X/Z ; 

Y:- X/A[I]. 

Three integer procedures, DIM, LB and UB are available for use 

with arrays. 

DIM(ARR) 

LB(ARR,N) } 

UB(ARR,N) 

6.3 Exercises 

is the number of dimensions of array ARR; 

is the {lower} bound of the Nth subscript of 
upper 

array ARR. 

1. The ancient Greeks approximated 1:2 by the sequence {Pn/qn}' where 

PI - ql - 1, and 

n - 1,2, ••• 

(that is, the continued fraction expansion). Print out the first 20 values 

of Pn,qn and Pn/qn' and compare them with the first 20 approximations 

obtained by using the Newton-Raphson method (Exercise 4.2.1) with Xl - 1. 

2. Input data in the form 

integer 1 integer 2 real number 
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is to be interpreted as indicating that some quantity of a certain 

product (integerl) has been sold at a particular location (intege~2) 

and the real number gives the value of the sale. The terminal input 

record contains a single zero. Calculate the total value of sales by 

product for each point of sale. 
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GIAPTER 7 

FOR AND WHILE STATa.1EN1S 

7.1 Repetition 

The ALGOL code for producing the output for Exercise 6.3.2 is very 

clumsy (page 74). 

(i) The statements 

SPACE(3);write(val[i,loe); 

are repeated successively, the only difference between each occurrence being 

the value of i(- 1,2,3). 

(ii) The segment of programme from again: to the end is repeated success

ively for varying values of loco This necessitates an initialization 

(loe:-1;), an incrementation (loc:- loc + 1), and a test (if loe ••• ). 

Such repetitive situations oecur so frequently, especially in 

contexts in which arrays are useful, that special statements exist to im

plement them. These are the for and while statements, which are the ALGOL 

equivalent of the FORTRAN DO-loop. They are used to perform a (possibly 

compound) statement repeatedly, either a specified number of times or until 

a specified condition is satisfied. 

7.2 Forms of the Statements 

7.2.1 Form 1. 

for id :- a.e.l step a.e.2 until a.e. 3 --- do s; 

where id is an identifier - the control variable - a.e.i is an arithmetic 

expression, i - 1,2,3, and s is a statement. The effect of this is as 

follows: 

id :- a.e.l 

Ll: if (a.e.3 - id) * a.e.2 < 0 then goto L2; 

L2: 

s . , 
id :- id + a.e.2 

goto Ll 

Since the test is made before execution, it may be that s is never 
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executed. Since id is updated before testing then id ; a.e.3 when the for 

loop has been completed in the normal manner. 

for 1:- 1 step 2 until 9 do S; 

l'xecutes the statement s for I - 1,3,5,7,9, unless this is affected by 

assignment of values to I within s. If s is 

begin J := 7*1 ; I :- 10 end 

then comparison with the above expansion of the for statement shows that s 

will be executed only once. Not only id but also any a.e.i may be changed 

by s, but great caution should be exercised. 

real R,S ; integer I ; array A[l:lO] 

for A[J] :- 2 step Rt2 until SIN(s)*lO do ••• ; 

If 'step a.e.2' is omitted, 'step l' is assumed. 

7.2.2 Form 2. 

for id := a.e.l, a.e.2, ... , a.e.n do s; 

This is equivalent to 

id :- a.e.l 

s 

id :- a.e.2 

s 

id :- a.e.n 

s 

and so 5 is executed exactly n times. This is useful when we wish to have s 

executed for a few unrelated values. 

7.2.3 Form 3. 

Often we do not know exactly how many iterations of s we need, but 

know some condition which is to be satisfied. This is catered for by 

for id:~ a.e. while b.e. do s ; 

which is equivalent to 

L1: id :- a.e. 

if NOT b.e. then goto L2 

s goto Ll 

L2: 



In this case, s must change b.e., and will probably change a.e. 

also. For example: 

E :- 1 ; I :- 1 ; 

for J :- 3*1 while E > 1&-4 do 

begin I : .. Jt2 

A [ II : .. (J 

E :- 1/1 

end, 
--J 

would set A[9I - A[729] - A[656l] - , • 

Forms 1, 2 and 3 may be combined, for example: 
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for 1:- 1 step 2 until 9, 13, 2l,Xt2 while Z > 2, J*J do s 

Here s is performed for I - 1,3,5,7,9,13 and 21; then repeatedly for 

I - X+2 until Z ~ 2; and then for I - J*J(provided I is not changed in s). 

7.2.4 Form 4. 

while b.e. do s 

For example, 

T :- (1 + X)/2 ; E :- 1&5 

while E > 1&-5 do begin s: - T ; 

end ; 

T :- (s + X/s)/2 

E :- ABS(s - XIs) 

finds the square root, T, of X, to within 10-5 (cf. the solution to Exercise 

4.2.1) • 

7.2.5 Forms 3 and 4 are useful in reducing the number of labels used. Such 

a reduction should be the aim of every programmer, since the more transfers 

of control a programme contains, the harder it is to follow. There are times, 

of course, when a very intricate ~iece of programming is needed to avoid the 

use of a label. Your aim, therefore, should not necessarily be to use no 

labels, but to use as few as possible. Always think, before inserting a 

label, '~o I really need it, or would a while statement or conditional state

ment do the job better?". 
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7.3 Nesting 

The statement s is called the range of the for statement. This 

may be any statement. including a conditional one. One may transfer control 

out of the range of a for statement, but not in. as this bypasses the 

initialization procedure. For statements may be nested: 

for 

for i:" 1 until IMAX do 

for j := 1 until JMAX do s ; 

The output for Exercise 6.3.2 may be produced thus: 

loc:- I until 5 do 

begin write(loc, 4) ; 

end 

for prod:- 1 until 

begin space(3): 

newline 

3 do 

write(val[prod, Icc]) end 

A for statement is not classed as an unconditional statement, and 

so may appear after then in an if-then conditional, but not an if-then-else 

condi tional. 

7.4 Exercises 

1. Re-write the general solution to Exercise 3.8.2, using a while state

ment (cf. Exercises 5.9). 

2. Calculate the number of possible captures for either side in a given 

position in the game of draughts (checkers). Input must specify 

which side, and the state of the board. 

3. Two judges place ten candidates in order in a beauty contest. Find 

Kendall's Rank Correlation Coefficient, which measures the degree of 

agreement, and depends on the number of agreements and disagreements 

between the judges over the ordering of the 45 pairs to be found 

among ten candidates. It is defined as 

(number of agreements - number of disagreements)/45. 

4. Test a given number for primality. 
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CHAPTER 8 

BLOCKS AND BLOCK STRUeruRE 

8.1 Blocks 

Definition: A block is a compound statement with at least one type declara

tion after begin; for example, 

begin integer i; i:- 7 end 

Blocks may be thought of as the paragraphs of the language; FORTRAN has no 

corresponding construct. 

All ALGOL programmes are blocks, and so far, all programmes used 

have comprised a siugle block. However, blocks may be nested, thus: 

begin integer i; ••• 

begin real x 

end 

end 

What is the point of doing this? Wby not declare everything at 

the beginning of the programme? 

8.1.1 The compiler arranges that, when a new block is encountered, space 

is allocated for the variables declared at the head of that block. The 

allocation takes place at block entry, rather than at compile time: this 

system is referred to as dynamic storage allocation. The space so allocated 

is relinquished at the end of the block. The ~ of a variable is that 

part of the programme within which it 1s defined and accessible. Thus the 

scope of x (above) is the inner block, while the scope of i is the whole 

programme, including the inner block. A variable is local to the block in 

which it is declared, and global to any inner blocks. 

Now, if blocks were simply successively nested, some point would 

be within the scope of all the variables, and storage space for all variables 

would be necessary at that one time. 



begin integer i 

begin real x 

begin real Z, t 

begin Boolean f ] 
end 

end 

end 

end 

However, if some blocks are distinct from others, we have the 

following sort of situation: 

begin integer i 

begin real x 

begin real z, t 

end 

end ; 

* 

end 

begin Boolean b 

end 

integer j 
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Here, the storage allocated for x, z and t has been vacated by * , and so 

can be re-used for band j. This economization of storage removes the need 

for an EQUIVALENCE feature. Obviously, a real x could be declared at * 
without confusion with the previous one. More than this can be said, how

ever. Consider the following: 
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begin integer i, j, k ; 

i :- 7 ; j :=- i*i 

begin integer i, n 

i :a 4 n :- i*i 

end 

k :=- i*i 

end 

The result of this is that n - 16, while j - k - 49. The reason 

is that the i declared in the inner block takes precedence over the i of 

the outer block in, and only in, the inner block. However, it does not 

represent the same storage space, nor does it destroy the previous i. This 

becomes available for use again as soon as the inner i is released (that is, 

at the end of the inner block). 

Thus, a local variable takes precedence over a global variable of 

the same name. The scope of a variable is that block in which it is 

declared, excluding any internal blocks which have a declared variable of 

the same name. 

Greatest efficiency of storage space and of the time taken to 

access variables is achieved by declaring identifiers in the innermost block 

in which they are required. 

Any block must be entered at the beginning, or the storage alloca

tion mechanism is by-passed. 

8.1. 2 The second use of the block structure is that it allows several 

programmers to divide the work of coding a large problem between them. 

Intercommunication between the blocks can then be via the identifiers 

declared at the beginning of the whole programme. 

8.1.3 The third, and possibly the main, use of the block structure is 

that it enables the implementation of dynamic arrays. These are arrays in 

which the bounds are declared in terms of variables, not constants; for 

example 

integer array HAND [l:N, I:J). 
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The variables used to denote bounds must be declared, and have a value 

assigned in a block outside that containing the array declaration, and not 

simply prior to the array declaration in the same block. This is to allow 

storage allocation, and the establishment of the mechanism for accessing 

the array. 

In any block, all the declarations occur at the beginning, in any 

order, followed by the executable statements. 

8.2 Stack 

The storage structure used for ALGOL variables is a stack, push

down list, or last-in-first-out store. This is an ordered list of items 

such that items may only be added or removed at one end. Thus, any new 

element obscures earlier ones. These become accessible once more when the 

new element is removed. There is a pointer to the current position of the 

end of the stack, and this is incremented or decremented as items are added 

or removed. 

When a block is entered, the variables declared therein are added 

to the stack, being removed on exit from the block. Clearly, some inter

connections must be provided to permit access to global variables located 

further down the stack. However, if two variables of the same name are on 

the stack simultaneously, the more recent takes precedence, thereby 

implementing the 'scope' concept described above. 

8.3 Exercises 

1. Calculate (i) 

(ii) 

to t terms (t ~ 1); 

correct to p decimal places (p ~ 8). 

In each case print the sum, and in case (ii) print the number K of 

terms used. 

2. Merge two sets of numbers, stored in order of increasing magnitude 

in two arrays, into a single, ordered set in a third array. The 

first two items of data are the numbers of elements in the two arrays. 
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rnAPTER 9 

PROCEDURES 

9.1 Introduction 

The FORTRAN concept of subprogramme is paralleled by the ALGOL 

procedure. No specific distinction is drawn to parallel the 'function sub

programme'/'subroutine subprogramme' distinction of FORTRAN but the manner 

of declaration (i.e. definition) and calling (i.e. use) of a procedure is 

slightly different in an analogous fashion to FORTRAN. 

9.1.1 The purpose of procedures is economization: 

(i) If some computation is required at a number of places in a programme, 

it saves programmer time and machine storage space if a specimen 

calculation can be written out once only and referred to as necessary -

just as you refer to the library procedures (SQRT, COS, etc.) as 

necessary. 

(ii) If another person has written some code to perform a particular 

operation, it saves programmer time to be able to use this in one's 

own programme. 

9.2 Formal Structure 

9.2.1 We must distinguish carefully between the definition of a procedure 

and what it is to do, and the ~ of that procedure. A programme which uses 

procedures is structured thus: 

declarations of identifiers and procedures 

rest of programme including use of procedures as required 

end 

Note that just like identifiers, procedures need only be declared 

at the head of the block within which they are required. 

9.2.2 A procedure is defined by means of a procedure declaration, which 

comprises a procedure heading and a procedure body. 

The procedure heading contains 

(1) the word 'procedure' and possibly some information about it; 
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(ii) the name of the procedure; 

(iii) the formal parameters or dummy arguments of the procedure, if any 

(the words 'parameter' and 'argument' will be used interchangeably); 

(iv) information about the formal parameters. 

(ii) and (iii) are formed according to the usual rules for identifiers. 

The procedure body is a single statement, which may be simple, 

compound. or a block. For example: 

procedure hypotenuse; 

~ a ,. SQRT(bt2 + ct2) ~ 

this is the type declaration. this corresponds to 'MAX' in 

like 'integer' in ~nteger MAX' 'integer MAX'. 

This declaration causes a sequence of machine instructions to 

appear in the programme but does not (even at run time) cause any processing 

to take place. This only occurs when the procedure is called. which takes 

place when the procedure name appears in the body of the programme. Thus, 

if, following the above declaration, the sequence 

b :- 3 ; 

hypotenuse 

y : .. 2*a ; 

c :- 7.9 ; 

appears in the body of the programme, the effect of the statement 'hypotenuse' 

is to assign to the variable a the value of l(b2 + c2), where the a,b,c 

referred to are understood to be those whose scope includes the declaration 

of the procedure 'hypotenuse'. 

9.2.3 Parameters. It is clear that, without arguments, such a procedure 

is of only limited value. since to set z :- SQRT(xt2 + yt2) it would be 

necessary first to set b :- x, c :- y, and afterwards to write z :a a. We 

could therefore amend the definition of procedure hypotenuse to: 

procedure hypotenuse(a,b,c) 

a :~ SQRT(bt2 + ct2) ; 

which involves formal parameters a, band c. When this procedure is called, 

these must be replaced by actual parameters. The calling example given above 

would then be 



b :- 3 ; c ::a 7.9 

hypotenuse(a,b,c) 

y :- z*a ; 
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with the same result as before. 

names as the formal parameters.) 

we simply write 

(Here the actual parameters have the same 

Now, if we wish to set z:= SQRT(xt2 + yt2), 

hypotenuse (z,x,y) 

with no auxiliary assignments. 

9.2.4 Specifiers 

If a procedure has parameters (arguments), the definition of ALGOL 

provides for the optional specification of these parameters. For most com

pilers, this specification is essential. Thus, for example, the hypotenuse 

procedure should be declared thus: 

procedure hypotenuse(a,b,c) 

real a,b,c; 

a := SQRT(bt2 + ct2) 

if a,b,c are always to be replaced by real variables. 

A more realistic example is: 

procedure pivot(A,M,K,Z) 

comment this procedure determines the element of largest absolute 

value in columns and rows K to M inclusive of the M x M matrix A, 

and sets this in Z; 

integer M,K; real Z ; array A 

begin real Y; integer I,J; 

end 

Z :- ABS(A[K,K» ; 

for 1:- K until M do 

for J:~ K until M do 

begin Y :- ABS(A[ I,J) 

if Y > Z then Z:- Y 

end 

(Note the assignment of ABS(A[I,J) to Y so as to save time by not recom

puting the value of this expression.) 

The possible specifiers are label, switch, or 



integer 

real 

long real 

Boolean 

string 

45 

{ ;::dur.l 
array :I 

The order of specification of formal parameters is immaterial. No 

bounds are necessary in specifying arrays. 

The purpose of specifiers is to permit the compilation of efficient 

code. For example, ptq is compiled as p*p* ..• *p if q is integral, and .... ~ , 
q times 

eqlogp otherwise. If at compile time, q's type is unknown, inefficient CodL 

will result. 

Specification allows some errors relating to arrays to be recog

nized at compile time. However, since the compiler is told only that an 

identifier refers to an array, and is not told anything about the dimensions 

of the array, errors involving dimensions are only picked up at run time. 

For example, if X is specified as a real identifier, the occurrence of X[J] 

would cause an error indication at compile time; however, if A is a two

dimensional array, and is therefore specified as an array, the occurrence of 

A[J] would provoke an error response only at run time, as the number of 

dimensions is unspecified in the procedure. 

Although specifications look like declarations, they differ in 

that no provision for allocating storage space is made as a result of the 

compiler's encountering them. 

9.2.5 Label parameters 

The specifier label exists so that labels can be procedure para

meters to furnish the possibility of returning from the procedure to 

different parts of the main programme. (There would be no point in having 

a label in the procedure body itself as a parameter.) A label parameter 

must be specified as such. Furthermore, special precautions must be taken 

to enable the compiler to recognize a label as such when it appears as an 

actual parameter in a call of the procedure. Consider the following 

structure: 
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begin real x ; 

erocedure fancy (a,R.) 

real a label R. • , 
begin Boolean b ; 

if b then goto R. else 

end 

iabl: 

fancy (x, R.abl) 

R.ab: 

end 

When the call of fancy occurs, with actual parameters x and R.abl, 

x has been declared, but R.abl, of course, has not. However, the prior 

occurrence of R.abl: has shown R.abl to be a label, and the compiler will 

therefore recognize it as such in the procedure call. 

If, however, the call were 

fancy (x,R.ab) 

then R.ab has been neither declared nor used. This would result in a compiler 

error with message UNDECLARED IDENTIFIER. This may be overcome by making a 

forward declaration of R.ab in a block containing both the procedure call ard 

the use of the label. In this case, the only such block is the whole 

programme. The first line should therefore be amended to 

begin real x; forward lab; 

If the destination of the premature exit from the procedure is always 
the same location (lab:) in the main programme, then lab need not be a 
parameter, and no forward declaration is needed at all. 
9.2.6 Procedure parameters 

Pinally, procedures may appear as parameters of other procedures, 

and so must be specifiable. For example, 

erocedure sum(X,M,N ,F) 

procedure F ; real X integer M,N 

begin integer I ; 

X :=- 0 

for I :- M until N do 

X :- X + F(I) 



N 
is an implementation of E F(i). The procedure call 

iaM 

sum(Z, I, 20, SQRT) 

has the effect of setting Z .. 
20 
Elf. 

i"l 

9.3 Functions, or Typed Procedures 
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In many situations in which the procedure concept is useful, we 

are most interested in one particular value which results from the call of 

the procedure; for example the pivot, or the sum, in the above examples. 

It is most likely that immediately after the call 

pivot(ARR, LIM, I, PIV) 

we shall have a statement involving the newly calculated value PIV. In this 

circumstance, it is possible to economize even more by using a function 

procedure or typed procedure. Thus, 

real procedure pivot(A, M, K) 

integer M,K; array A ; 

begin real X, Y ; integer I, J 

X :- ABS(A[K,K) ; 

end 

for 1:= K until M do for J:- K until M do 

begin Y :- ABS(A[I,J) 

end ; 

pivot :- X 

if Y > X then X:- Y 

Note that the variable 'pivot', which is the procedure name, is 

assigned a value within the procedure body. This procedure is used (called) 

by writing its name, and actual parameters, wherever its value is desired, 

anywhere that a variable may be used; for example 

AXE := Z+3 - PIVOT(ARR, LIM, I) ; 

Notes 

i) The call of a typeless procedure is a statement in its own right. 

ii) The call of a function procedure represents a variable. 

iii) In each case, the call brings the procedure body into action, with 

actual parameters replacing formal ones. 
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iv) Whether typed or typeless, the values of the actual parameters of a 

procedure are available for use after its call, with new values if 

these are assigned in the procedure body. 

v) Referring to the above examples, pivot(A,M,K,Z) (typeless) is "how 

to get the pivot", while pivot(A,M,K) (typed) is "the actual value 

of the pivot". 

9.4 Identifiers in procedures 

Each identifier appearing in the body of the procedure declara

tion must be in one of the following categories: 

(i) A local variable, declared at the start of the body; 

(ii) a formal parameter, specified in the procedure heading; 

(iii) a global variable, whose scope includes the procedure 

declaration. 

Identifiers in category (i) will also be in this same category at 

each call of the procedure. 

Identifiers in category (ii) will be replaced at any call by 

actual parameters, which must be variables whose scope includes that call. 

Identifiers in category (iii) will be the same at a call as at 

the declaration, even if there are more local variables of the same name 

whose scope includes the call. For example, in 

begin real a, p 

2rocedure test(x) real x 

begin x := at2 

print (x) newline 

end 

a := 5 ; 

test (p) 

begin real a ; 

a :- 8 ; 

test (p) ; 

end 

end 

each call of test uses the identifier a declared in the first line; even 

the second call does not use the a which is local to the inner block. 



Output from the programme is therefore 

2.S000000&U u I 

2.S000000&u ... I 
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Note that the second line of this programme involves an identifier x which 

has not been declared. This is only correct because it is a formal para

meter of a procedure. 

9.5 Calling Mechanisms for Actual Parameters 

9.5.1 Call by name. The ALGOL report specifies that the method of passing 

actual parameters to a procedure should be such that the procedure call has 

exactly the same effect as a copy of the procedure body. within which each 

occurrence of each formal parameter has been simply replaced by the corres

ponding actual parameter as it stands. This is referred to as call by name 

and has the consequence that wherever a formal parameter appears in the 

procedure body, the corresponding actual parameter is re-evaluated as if it 

appeared in the procedure body at that point. For example, 

begin real r, s. t. y 

real Erocedure max(a.b) real a.b 

begin real x 

x :- if a >- b then a else b 

max :- x 

end 

y :- max(r*r, s*t - r*r) 

end 

The call of max is carried out as if. firstly. each occurrence of 

a were replaced by r*r, and each occurrence of b by s*t - r*r. and secondly. 

the procedure body were executed. This involves evaluating s*t - r*r twice 

over. and r*r a further twice. which is clearly an inefficient proceeding. 

However, in 



integer i. k; array arr[l:100); real z; 

procedure examp1e(x.yp); 

real x. y; integer n; 

begin real a, b' , 
i ~- l' , a ~- x; 

i:a 2' , b :- x; 

end 

examp1e(arr[i).z.k); 

end 

The call of example is equivalent to 

begin real a, b; 

i ~- 1; a :- ard i) ; 

i :- 2 . , b :- arr[ i); 

end 
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and so a is set equal to arr[l). while b becomes arr[2], and this is 

presumably the desired effect. Thus. the concept of replacement can be 

valuable. Note that the identifier i is global. 

The reason for the term 'call by name' is as follows. An 

identifier x specifies a particular memory location. namely the one which is 

allocated to this identifier when it is declared. At any particular time, 

this memory location holds a particular value which is a constant. Thus 'x' 

may be thought of as the name of the variable, and the contents of the memory 

location designated by x at any time is the current value of that variable. 

In the above method of calling an actual parameter. therefore, 

the procedure is informed of the name of the variable. and the value used at 

any place in the execution of the procedure body is the value then current. 

9.5.2. Call by value. This rather sophisticated method of passing parameters 

can be wasteful. As exemplified above, if the actual parameter is a 

complicated expression which does not vary throughout the execution of the 

procedure body, its re-evaluation at each occurrence of the corresponding 

formal parameter is a waste of time. ALGOL therefore provides the 

capability of calling an actual parameter by value. This is done as follows: 



procedure examp1e(x,y,n); 

value x, n; integer n; real x, y; 

begin 
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namely by a value declaration, which is the first type declaration in the 

specification part of the procedure heading. Any variables not specified as 

being called by value are called by name. Following the above declaration, 

the call 

examp1e(SQRT(zt2 + 112), A+B*C, INDEX[I]); 

would be dealt with as follows. SQRT(Zt2 + 112) would be evaluated, the 

value stored in a temporary location, and the address of this location made 

available to the procedure for reference and use wherever the name of the 

formal parameter x appears in the procedure body. A similar comment 

applies to INDEX[I] and n. The other parameter, y, however, would effectively 

be replaced by 'A+B*C' at each occurrence. (In practice, code would be 

generated to evaluate 'A+B*C' and this short 'sub-procedure' called wherever 

y appears). 

Thus, in practice, whether an actual parameter is called by 

value or by name, the occurrences of the corresponding formal parameter are 

replaced by reference to an address. At that location will be found: in the 

case of a call by value, the value to use; in the case of a call by name, 

either the value to use (if the actual parameter is a single, unsubscripted 

identifier) ££ a reference to the rules for computing the value to use. 

9.5.3. The following diagrams illustrate the two methods of passing parameters 

to procedures. 

The declaration of a procedure EG(X) causes the compilation of 

code for the procedure: 

z :- Xt2; 

X := A*B; 

EG(X) 

* 
This location is reserved for some 

reference to the actual parameter to be 

used to replace X. 

Lines such as these are coded to pick up 

the address of the current replacement for 

X from location * above. 



The current value of any identifier Y declared in the main 

programme is held in some location loc(Y), known to the main programme and 

reserved for that identifier. 

Ca 11 by name: 
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The code compiled for a call, EG(Y)i, to this procedure involves 

storing the address, loc(Y), in location *, followed by a transfer of control 

to the first statement of the procedure. 

Main 

prograll1llle 

procedure 

Call by value: 

Main 

programme 

procedure EG(X)i 

value Xi 

EG(Y)i 

loc (Y) Y 

Procedure 

proc EG(X) 

Workspace Procedure 

loc*(Y) 

loc*(Y) Y 
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In this case, the code compiled for a call, EG(Y);, to this 

procedure involves obtaining a temporary storage location, 10c*(Y), storing the 

value of Y therein, and storing the address 10c*(Y} in location *, before 

transferring control to the procedure. (The extension to the case in which Y 

is an expression and not a single identifier is straightforward.) 

One result of calling by value is that the actual parameter has the 

same value after the execution of the procedure call as it did before. 

Therefore one would not call by value an argument used to transfer the results 

of the procedure back to the programme (an output value). 

A good working rule is: 

Call by value all input arguments except i} those which are also output 

arguments, and ii) arrays (not array elements). 

The latter exception is because temporary storage is set up for 

the whole array, and all its values transferred. This is time- and space

consuming. 

Note that the same effect as call by value is obtained by 

assigning the value of a parameter to a local varaible immediately on call, 

and then working with that: 

procedure example(x,y,n); 

value x; integer n; real x, y; 

begin real z; z: - y; 

} If y is not used in here, we have 

effectively 'called it by value'. 

9.5.4. Call by reference. FORTRAN usually uses neither of these methods of 

calling, but 'call by reference' or 'call by simple name'. This entails the 

evaluation of each actual parameter down to a machine address, which, if 

possible, is not a temporary location set up for the purpose. When this 

device was originally suggested ([3]) it was only envisaged that it should be 

used when the actual argument was a single variable name. Therefore a choice 

must be made of the technique to adopt to deal with an actual parameter which 

is an expression. The choice is that this is treated as a call by value. 

Thus, in calling by reference an expression, the expression is 

evaluated and the address of its value handed to the procedure: that is, call 

by value; 

in calling by reference a single simple variable, the address of the 

variable is handed over: that is, call by name; 

in calling by reference a single subscripted variable, the address of 
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the particular array element is handed over: which is neither call by name 

nor call by value. 

For example, if ALGOL also allowed a 'call by reference' (as BCPL 

does) we could have ([4]): 

begin integer i; array A[1:3]; 

procedure report(x,y,z); 

value x; ref y; name z; real x, y, z; 

comment ref refers to the hypothetical call by reference, and name to 

the default call by name; 

end 

begin i :- 3; A[l] :- 5; 

print(x); print(y); print(z) 

end· --' 
i :- 1; A[l] :- 2; A[3] : .. 4; 

report (A[i], A[i], A[i» 

This will print 2, 5, 4 (as real numbers). 

x: x is called by value. When report is called, i .. 1, A[i] a A[l] - 2, 

and so this is the value printed since x is unchanged within the 

procedure. 

y: y is called by reference, and so what is handed to the procedure is the 

address of the actual parameter replacing y, namely A[l] (A[i] where 

i = 1). But within the procedure a new assignment is made to the 

global variable A[l], and this therefore changes y to the new value (5). 

z: z is called by name, and so it is re-evaluated at each point in the 

procedure at which reference to it occurs. In particular, in the print 

statement, reference to z provokes the obtaining of A[i] once more. 

But, by now, i - 3, and so it is the current value of A[3], namely 4, which 

is output. 

In general, in a call to a procedure EG(ARR[I]), if the parameter 

is called by 

value, then no change of elements in the main programme occurs; 

reference, then the one element ARR[I] , where I is the value of 

the subscript on call, may be changed; 

name, any number (~O) of elements of ARR may be changed. 

These sorts of changes in the main programme as a result of the 

execution of a procedure are called side-effects of the procedure. Their 

existence necessitates the careful specification of the order of evaluation. 

For example, since the expressions X+F(N) and F(N)+X are each evaluated from 

left to right, the assignments 



Y .z X+F(N); and Y :- F(N)+X; 

may produce different values of Y. 

9.6. Recursion and Iteration 

55 

9.6.1 Recursion refers to (i) the call of a procedure using that procedure 

(implicit recursion), or (ii) a procedure body making use of itself (explicit 

recursion). 

9.6.2(i) In the expression SQRT(X), X may be any arithmetic expression; 

in particular one involving SQRT, such as 

At2 + SQRT(B) , so we have 

SQRT(At2 + SQRT(B». 

Basically, there is no problem here. The compiler needs the 

mechanism to 'unpick' arbitrarily complicated arithmetic expressions not 

involving function calls, so as to produce a string of machine instructions, 

ending with a call to the square root function, so it is not difficult to 

include the facility for 'unpicking' function calls as well. 

However, once this sort of nesting of function calls is permitted, 

it should be allowed to a reasonable depth. Furthermore, it is usually 

permitted for the programmer to write his own functions of the same name as 

the standard ones, to replace those, so any such implicit recursion must be 

available to all functions or none. 

The difficulties this caused, led some earlier implementations of 

FORTRAN (and ALGOL) to forbid this implicit recursion, although it is now 

available in both languages on the PDP-10. A stack is used in its implementatiol 

(see section 8.2). 

9.6.3(ii) Explicit recursion is not available in FORTRAN, but is available in 

ALGOL. This refers to the situation in which a procedure body calls itself, 

or, in which procedure A calls procedure B which calls procedure C which calls 

which calls A. 

The problem here is in saving the information as the control 

passes to the subroutine. At least the current value of the programme 

counter must be saved. Many subroutine calls save this at the beginning of 

the subroutine, and the recursive calling of the subroutine would overwrite 

this information. Furthermore, if such recursive calls are allowed, it is 

generally impossible to tell at compile time how deep the recursion will go. 

Again, therefore, the stack is called into play, and the return values of the 

programme counter placed successively on the top of the stack, and the value 

of the pointer to the stack adjusted accordingly. 

For example (this is the standard example); 
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real procedure factorial(n); 

value n; integer n; 

if n = 1 then factorial :- 1 

else factorial :- n * factorial(n-l); 

The call 'factorial(6);' invokes also the calls factorial(S), and 

so on, and finally the build-up of the answer. This is a top-down system, in 

which the quantity we wish to compute is successively broken down into its 

components. 

9.6.4. Iteration, on the other hand, is essentially a bottom-up operation, 

starting from nothing and building up the result step by step; for example. 

real procedure factorial(n); 

value n; integer n; 

begin integer i, j; i .- 1; 

for j :a 1 until n do i :- i*j; 

factorial ::- i 

9.6.5. The main uses of recursion are in handling tree-structured data. 

Here one can write a procedure to deal with a node, which calls itself when 

there are other nodes depending from that one. and is 'earthed' otherwise. 

The factorial function is not of this from. and is much better treated 

Herat ively. In fact. recursion has so far found little application in 

ALGOL and related languages: it is much more vital in list-processing 

languages. There are few strictly numerical applications for which recursion 

can be used. and fewer still for which it is efficient. For most scientific 

and business problems. there is no reason to use recursion instead of iteration 

when both are feasible. In fact, almost any computation which can be defined 

recursively can also be defined iteratively. If, however, a function is 

doubly recursive. it cannot usually be expressed iteratively. 

Example: polynomial evaluation. 

n n-i 
f(x) - E aix 

i-O 

(1) Recursion 

real Erocedure poly (a.x,n); 

value x. n; integer n; array a; real x; 

if n - a then poly :- a[O] 

else poly :- x*poly(a.x.n-l)+a{n]; 

(ii) Iteration: synthetic division 

The obvious way to evaluate f(x) without recursion is 



fx :- 0; 
for i :- 0 until n do fx ;- fx + a[n-i) * x t i; 

This is clearly inefficient, since x t i is recalculated each time. It 

is more efficient to save x t i, and calculate x t (i+1) as x * x t i. 

However, this may be implemented even more efficiently by involving the 

coefficients in the same scheme, thus: 

real procedure poly{a,x,n); 

value x, n; integer n; array a; real x; 

begin real y; integer i; 

end 

y : .. a[O); 

for i :- 1 un t 11 n do y :- y * x + a [ i) ; 

poly:=- y 
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For all practical purposes this is the best way. (There is a 

way which is theoretically more efficient, but only if (i) one is performing 

a lot of calculations for fixed a i and different x's; and (ii) one ignores 

the increased roundoff error involved in this other method, due to the 

greatly increased computation involved.) 

Example: Ackerman's function 

A(O, n) .. n + 1, n ~ 0; 

A(m, 0) - A(m-1, 1) , m ~ 1; 

A(m, n) ,.. A(m-1, A(m, n-1» , m, n ~ 1. 

(Although this is doubly recursive, it can be expressed iteratively, ) 

The recursive facility of ALGOL permits a direct implementation 

of the recursive definition, thus: 

integer procedure ACKER(M,N); 

value M, N; integer M, N; 

if M - 0 then ACKER ~- N + 1 

else if N - 0 then ACKER ~- ACKER(M-1, 1) 

else ACKER :- ACKER(M-1, ACKER(M, N-1»; 

However, the depth of recursion uses a very large amount of computer time. 

Recursion can be simulated by defining a one-dimensional array to 

implement the stack 'by hand' rather than leaving it to the compiler. 

9.7. Forward and External Declarations 

A lot of information is contained in a computer programme, and the 

compiler attempts to make best use of it all so as to produce a good machine 

code translation, In order to achieve this, some compilers scan the 

programme a number of times (multi-pass compilers) to assimilate the 
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information in context. The PDP-IO ALGOL compiler, however, is a one-pass 

compiler, aiming for speed of translation through only scanning the programme 

once, possibly at the expense of some lack of efficiency in the resulting 

translation. 

Since all variables and procedures must be declared before being 

used, the one-pass compiler knows how to treat identifiers when they are 

encountered. The one exception to this occurs in the case of procedures which 

call each other. e.g. 

begin procedure P(X, Y); 

begin 

end 

Q(Z); 

end; 

procedure Q(X); 

begin 

P (R, S) 

Here a mention of Q is encountered before its declaration. (Note 

that this mention is in the declaration of P, not a call of P : Q is of course 

declared before it is executed in a call of P.) Furthermore, the situation 

is as bad if the procedure declarations are re-ordered (then P precedes its 

declaration). To allow the PDP-IO ALGOL compiler to cope with this situation, 

a FORWARD declaration of Q must be made (cf. section 9.2.4). preceding the 

first mention of Q. thus: 

begin forward procedure Q(X); 

procedure P(X, Y); 

procedure Q(X); 

end 

This informs the compiler that the appearance of Q before its 

declaration is not an error. The forward declaration and actual declaration 
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must be in the same blocks. 

A similar situation arises if a procedure and the programme are 

compiled separately, as in this case no declaration of that identifier appears 

in the programme. 

write 

external 

In the place where this declaration would have been we 

< type if any > procedure < procedure name > (c arguments » 

9.8. FORTRAN Interface 

It is anticipated that it will be possible to incorporate FORTRAN 

subroutines into ALGOL programmes, but this facility is not working at present 

(comments in [6] notwithstanding). 

9.9. Exercises 1. Calculate Ackerman's function without depending on the 

compiler for recursion (by using iteration or implementing the stack by hand : 

see [5]). 

2. Solve a polynomial equation by the Newton-Raphson method. 



CHAPTER 10 

STRING VARIABLES 

10.1 Byte Strings 

A string variable points to a byte string. The declaration 

string S· , 
allocates two adjacent store locations for S (just like a long real 

declaration). Subsequent to this declaration, the assignment 

S:- NEWSTRING(100,7); 

creates a string of 100 7-bit bytes, each initialized to zero, and sets S 

to point to this string. The string is stored right-justified in successive 

words, with at least one byte per word (so no byte may contain more than 36 

bits: c.f. §5.5), but without splitting bytes across words. Thus, a 

string of 20-bit bytes is stored with 1 byte per word; 10-bit bytes are 

stored 3 per word; and so on. The number of bytes in a string is limited 

only by the availability of storage. 

The effect of the assignment 

T :"" S; 

is to copy the byte string pointed to by S, and then set up in T a pointer 

to this new string. More discriminating replication of byte strings may 

be obtained by means of the procedure COPY. 

T :- COPY(S, m, n); 

generates a new string identical to the string which forms the mth, (m+l)th, 
th ..• , n bytes of S, and assigns it to T. 

COPY(S, n) denotes COPY(S, 1, n), while 

COPY(S) denotes COPY(S, 1, n) where n is the number of bytes in S. 

If L is an integral expression, S.[L] denotes the integral 
th value of the L byte of the string S. 

We may compare strings. 

string R, S, T; 

For example. if 

R := "ABCD"; S:" "ABCDE"; T:- "ABCE", 

then R < S < T. 

10.2 String Arra:z:s 

We may have string arrays, for example 

string arra:z: T[ 1 : M]; 

and then T[K]. [L] 
th is the L byte of string T[K]. 
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10.3 Other Library Procedures 

Sttings may be joined by means of the string procedure CONCAT. 

which takes two string parameters. Thus. 

R :- "ABC"; S:- "DEF"; T:- "GHI"; 

U :- CONCAT(R. S); V:- CONCAT(T. U); 

makes U point to a string "ABCDEF". and V to a string "GHIABCDEF". 

I := LENGTH(S) sets I equal to the number of bytes in the string 

possessed (i.e. pointed to) by S. 

DELETE(S) deletes the byte string possessed by S. if this is 

dynamically created (that is. produced by COpy or NEWSTRING). 

10.4 Input and Output (c.f. §§5.2.1. 5.4 and 5.5) 

'In-' and 'outsymbo1'. etc. and 'write' are oriented towards 

ASCII. 7-bit. bytes. Thus. on input 

insymbo1(J); 

reads the next ASCII character and attempts to store its 7-bit ASCII value 

right-justified in J. In particular. if J is S.[L), and S has N-bit bytes. 

where N ~ 7, then the ASCII value is stored as the low-order 7 of the N bits 
th which hold the L byte of S. If. on the other hand. N < 7. then the right-

most N bits of the ASCII value are stored in that byte position. 

Similarly, on output, 

outsymbo1(J); 

picks out the rightmost 7 bits of J, and outputs the corresponding ASCII 

character. If J is a byte with less than 7 bits, this will fail. and no 

output will be produced. 

The action of write is similar. 

write(S) ; 

has exactly the same effect as 

If S is string of M bytes. 

for I:- 1 until M do outsymbo1(S.[I); 
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If more than 7 bits of a byte are required, this may be obtained 

in numeric form by using 'print' and in character form by division and the use 

of outsymbo1. The latter method is illustrated in Example 3 of p.28. which 

is applicable in the string situation if the variable i is replaced by S.[L) 

for some L, and some string S whose bytes contain at least 21 bits. 

former. observe that after 

string S; S :- newstring(l, 30); 

S. [1) : - $ .ABC. ; 

write(S); gives C 

while print(S.[I) gives 1073475 

For the 

(which is the decimal integral value of the word which has the ASCII values 



of A, B, C in its rightmost 21 bits). 

10.5 Byte Manipulation 

Two library procedures GFIELD ('get field') and SFIELD ('set 

field') permit the manipulation of any field (contiguous sequence of bits) 

within any variable, thus: 

GFIELD(var, pos, len) 

SFIELD(var, pos, len, val) 

where pos, len and val are of type integer. 

var is the variable name; 

pos specifies the left hand end of the field. If var is integer, real or 

Boolean, then 0 ~ pos ~ 35 and pos + len < 36; while if var is of type 

long real or string, 0 ~ pos ~ 71 and pos + len < 72; 

len is the length of the field in bits; 

GFIELD is an integer procedure, so we may write, for example, 

IND :c GFIELD(A,~,7) 

while SFIELD is a typeless procedure and sets the specified field to the 

value val: 

SFIELD(B,lO,20,16) 

10.6 String Parameters 

Although the following structure should be correct: 

begin string t; 

end 

procedure ALPHA(s); string s; 

begin . • • end; 

t :s newstring(50,7); 

ALPHA(t) 

reference to any byte of s within the procedure body will sometimes (but not 

always) give an illegal memory reference or a byte subscript out of range. 

This may be overcome by introducing a string variable which is local to the 

procedure body, thus: 

begin string r; r:- newstring(50.7); 

s :- r 

end; 

if s is an output variable from the procedure; or 

begin string r; r:- newstring(50.7) 

r : = S; 
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end 

for an input variable. 

10.7 Exercises. 1. Write a programme to read two Roman numerals, convert 

them to Arabic form, and then print their sum in Roman form. 

2. Convert an ALGOL programme using only upper case 

letters to one using upper and lower case letters. 
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CHAPTER 11 

OWN VARIABLES AND SWITCHES 

11.1 Own Variables 

variables. 

In Chapter 8 were introduced the concepts of local and global 

The value of a local variable is normally lost on exit from the 

block in which it is defined. However. one would sometimes like to preserve 

the value of a variable after exit from a block for use on a subsequent re-entry 

to that block, while not wishing to use it outside the block. 

it need not be a global variable. 

In this case. 

This end may be achieved by means of the 

own declaration. as in 

begin own integer I' , own array A[l:M, I:N]; real z· • 

end· 
--I 

This has the effect of preserving the values of I and the elements of A on 

exit from the block. These cannot be referred to from outside the block. and 

may have the same names as other identifiers declared elsewhere. 

There is a snag : the variable I can only be assigned a value 

within its scope, that is, in the block. If this is done, surely the point of 

preserving the value is lost? PDP-lO ALGOL overcomes this by initializing all 

own variables to zero before programme execution. 

general way later. 

11.2. Dynamic Own Arrays 

We shall mention a more 

It is quite likely that the values of M and N, the subscript bounds 

in the array above, will be different on successive entries to the block. What 

does it mean to preserve the values of. say, a 3 x 5 array for assignment to a 

6 x 2 array? The assignment is made thus: 

if the pair [i, j] appears in both subscript ranges, then 

A[i, j] 
new 

if it appears in the new range but not the old, then 

A [ i . ] , J new :- 0; 

if it appears in the old but not the new, then the storage location for 

A[i, j]old is released. 
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11.3. Switches 

11.3.1. A switch is like a FORTRAN computed GOTO. A switch identifier 

follows the normal rules for construction of identifiers, and in use is 

followed by a subscript expression which refers to an element in a switch list. 

For example, 

switch SELECT :- LABl, LAB2, LAB3, LAB4; 

goto SELECT(2); 

transfers control to the statement labelled LAB2. The former of these two 

statements is a declaration and must appear with the other declarations at 

the head of the block, before any executable statement. 

If the value of the subscript expression is < 0 or > the number 

of entries in the switch list, then control passes to the next statement in 

sequence after the goto statement. 

11.3.2. Labels such as LAB1, and switches like SELECT[int. exp.) are 

examples of designational expressions. A switch list is a list of 

designational expressions, for example: 

switch TIME :- NEXT, FIRST, SELECT[l); 

Then, if I has the value 3, goto TIME[I); is equivalent to goto SELECT[l); 

which in turn is equivalent to goto LAB1; 

Since the switch identifier SELECT appears in the above 

declaration, this must follow the declaration of SELECT. If two switch 

identifiers each appear in the switch list of the other, a forward declaration 

must be used. 

forward switch TIME; 

switch SELECT :a LABl, LAB2, LAB3, TIME(2); 

switch TIME ~c NEXT, FIRST, SELECT[I); 

Designational expressions may be more complex in form; for example: 

goto .!!. b.e. then LABI else LAB2; 

With the power of the ALGOL conditional and compound statements 

available, switches are of limited use. 

11.4. Example. A switch may be used to initialize an own variable. To 

calculate the fibonacci sequence, 1, 1, 2, 3, 5 ••• we may write: 
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begin integer CHOICE, NEWVALj 

CHOICE : .. 1; 

FIBON : begin own integer FIB1, FIB2; integer TEMP; 

switch SELECT :- FIRST, NEXT; 

goto SELECT [CHOICE] ; 

FIRST FIB1 : .. FIB2 := 1; 

PRINT(FIB1.4) ; PRINT(FIB2,4); 

CHOICE :- 2; 

NEXT TEMP :'" FIB1 + FIB2; 

FIB1 := FIB2; 

NEWVAL :- FIB2 :- TEMP; 

PRINT(NEWVAL) 

end; 

if NEWVAL < &10 then goto FIBON 

end 

Notes (i) Whatever device is used to initialize ~ variables. it must 

include some global identifier. Here we use CHOICE. 

(ii) NEWVAL is introduced to make the current fibonacci term available 

globally. 

(iii) It is typical of the use of own variables that an iterative 

process is involved in which the output of one iteration gives the 

input for the next. 

(iv) If this were the whole programme the use of own and the switch 

would be unnecessary. It could be of use if the conditional statement 

'if NEWVAL ... ' were replaced by a significant amount of programme which used 

successive terms of the Fibonacci sequence. 

11.5. Exercises. 1. Write a random number generating procedure. using an 

own variable to hold the random number and provide the starting point for 

successive steps. 

2. Use a switch to control the calculation of one of 

the first 5 Legendre polynomials 

1 dn 

(p (x) - --
n n! 2n 

n .. O. 1. 2. 3. 4.) 
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CHAPTER 12 

RUNNING AND DEBUGGING 

12.1 Running ALGOL Programmes 

It is assumed that the reader is familiar with the DEC System-lO, 

and no attempt will be made here to summarize the command language or editing 

facilities. These are well set out in (7). 

12.2 Debugging ALGOL Programmes 

12.2.1. Following Dijkstra, we may observe that the best way to proceed here 

is to avoid the debugging stage by not writing errors into the programme in the 

first place. If you fail in this, you may use the DDT programme ([8) in the 

usual way. However, if you are working on-line, the simple expedient of 

inserting a number of statements ("snapshots") which cause output to occur to 

the teletype, can locate errors quickly and efficiently. 

When the programme is debugged, these output statements are no 

longer required. If desired, this effect may be obtained by using the 

following procedure. 

procedure snapshot (x, y, loc, key); 

value x, y, loc, key; real x; integer y, loc, key; 

.!!. key" 0 then begin output (15, "TTYtI); se1ectoutput(15); 

write(tI[N)LOC '"' tI); print(1oc); 

print (x); print(y); newline 

end; 

Then, on debugging runs, set key - 1, and when the programme is 

correct, change this one assignment to key: - O. Channel 15 should not be 

used elsewhere; x and y allow the output of real and integer values; loc 

locates the point reached in the programme. 

12.2.2. The array bound checking facility mentioned in section 6.1. is very 

useful when a programme contains a large number of array references. 

12.2.3. Compiler errors. Compilation errors are reported in reasonably 

intelligible form, together with the ordinal number of the line of the 

programme in which the error was noted. 

16 UNDECLARED IDENTIFIER 

For example, the message 

should cause you to look in line 16 (not statement 16) for a situation which 

would look to the compiler like an undeclared identifier. This could well be 

a misspelled identifier or reserved word. 

However, the compiler tries to force a trans.lation as far as 
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possible on the assumption that the programme is correct. Clearly it may 

do this by interpreting the logic differently from the way the programmer 

in tend ed it. The translation may finally break down some way past the point 

at which the 'actual error' occurred. For example, one programme failed to 

compile and gave the single error message 

72 DECLARATIONS MUST BE TERMINATED BY SEMICOLON. 

On inspection, one compiler error was found: namely the omission 

of an end in line 21! 

A complete list of compile-time error messages appears in 

Appendix 3. 

12.2.4. Run-time Errors. If a run-time error occurs, an error message is 

produced, detailing the type of error and its address (not line number). 

Such errors are either fatal or non-fatal. The latter sort may be trapped 

and control transferred to a label within the programme; thus after the 

statement 

TRAP (ERR, LAB); 

has been executed, any occurrence of error number ERR causes control to be 

transferred to the statement labelled LAB. ERR is an integer expression. 

The statement 

TRAP (ERR); 

turns off the trapping of error number ERR. 

The trap numbers are listed below. 

TRAP NO. 

18 

19 

32 

33 

34 

35 

37 

38 

39 

40 

41 

42 

43 

RUN-TIME ERROR 

FLOATING POINT OVERFLOW 

FIXED POINT OVERFLOW 

INPUT OR OUTPUT DEVICE UNAVAILABLE 

ILLEGAL MODE FOR INPUT OR OUTPUT DEVICE 

INPUT OR OUTPUT ON UNDEFINED CHANNEL 

ATTEMPT TO READ OR WRITE ON DIRECTORY DEVICE 

WITHOUT FILE OPEN 

FILE NOT AVAILABLE OR RENAME FAILURE 

ATTEMPT TO READ OR WRITE OVER END-OF-FILE 

ERROR CONDITION ON INPUT OR OUTPUT 

ILLEGAL CHARACTER IN NUMERIC DATA 

OVERFLOW IN NUMERIC DATA 

ERROR CONDITION ON CLOSING FILE 

ILLEGAL INPUT-oUTPUT OPERATION 
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TRAP NO. 

44 

48 

49 

50 

51 

52 

RUN-TIME ERROR 

1-0 CHANNEL NUMBER OUT OF RANGE 

SQRT ARGUMENT NEGATIVE 

LN ARGUMENT ZERO OR NEGATIVE 

EXP ARGUMENT TOO LARGE 

INVERSE MATHS FUNCTION ARGUMENT OUT OF RANGE 

TAN ARGUMENT TOO LARGE 

Common Sources of Error 
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1. If B is Boolean, B and not B may both be ~ (section 2.4.3). 

2. If Sand T are strings, setting S:-T and then changing T also 

changes S (section 10.1). 

3. If M and N are integers, MIN produces a real result (section 2.2; 

FORTRAN programmers take note). 

4. The semicolon is unnecessary, but not incorrect, before 'end'. 

It is incorrect before 'else'. 

5. Reserved words must be treated as such. 

6. No two arithmetic operators may appear in succession. 

particular, n DIV -3 and n REM -5 must be replaced by n DIV (-3) and 

n REM (-5) respectively. 

7. All exponentiation involving variables is compiled into 

In 

machine code floating point commands (even 3+5, for example). Thus, 

I := 3; J:~ 7; K:- 8; Z:- I + J * 10 + K; 

gives Z ~ 700,000,000, while 

Z :- 3 + 7 * 10 + 8; 

gives the correct result. 

8. Leave a space after the last data item in a file to prevent 

end-file errors. 
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Solutions to Exercises 

Exercises 2.5 

1. i), ii), iv), vi) are valid. viii) is valid if delimiter 

words are not reserved. 

2. ii), iii), iv), v), vi), vii), viii) and x) are all valid. 

Exercises 3.8 

1. begin integer m, n, larget8~ll, quot, rdr; 

2. 

comment to find the g.c.d. of integers m and n by the 

Euclidean Algorithm; 

LAB 

if m < n then begin large ." n; small 

else large :- m; small 

quot .= large DIV small; 

rdr :- large REM small; 

if rdr > • then begin large .. small; 

end; 

small : - rdr; 

goto LAB 

- m end 

:= n end; 

comment at this point, the value of small is the g.c.d.; 

end 

begin integer i, sum; 

sum :- 0; i :- 1; 

LAB sum .- sum + i t 3; 

i :- i + 1; 

if i < K 100 then goto LAB; 

comment at this point, sum has the required value; 

end 
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(A better implementation of this uses the for statement: see Exercise 7.4.1.) 
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Exercises 3.8 (cont'd) 

3. begin 

LABl 

LAB2 

real areal» area2 ) differ, fval, x ; integer n; 

x :- areal :- area2 :- 0; 

fval .- 1/ (1 +xt 2) ; areal :-

x x + 0.05; n '.- n + 1; 

if n < - 20 then goto LABl; 

areal. :>=(areal-1.5)*0.025; 

x := 0; n :- 0; 

fval ." 1 / (1 + x t 2)' , 

n ' .. 0; . 
areal + 2*fval; 

if n - 0 or n - 20 then area2 : .. area2 + fval 

else if (n DIV 2) * 2 II: n then area2. : '" area2+ 

2 * fval 

else area2 :- area2 + 4 * fval; 

x .- x + 0.05; n :- n + 1; 

.!l n < '" 20 then goto LAB2 

Comment because of round off error in real and long real 

variables, it is better to test whether n-20 than whether x-l; 

differ :- areal-area2 

end 

Exercises 4.2. 

1. begin real A, EPS, ROOT, NEXT; integer N; 

read {A, EPS); 

comment this obtains the desired values for A and EPS, for this 

run, as described in Chapter 5; 

ROOT '- 1; N :- 1; 

LAB NEXT:= (ROOT + A/ROOT) / 2; 

if ABS(ROOT - NEXT) > - EPS then 

begin ROOT :- NEXT; 

N :- N + 1; 

goto LAB 

end; 

comment here NEXT has the value of the square root of A to within 

EPS, and it has taken N iterations; 

ROOT := SQRT{A); EPS :a ABS{ROOT - NEXT); 

comment this compares the calculated value with the library value; 

end 

(See section 7.2.4 for a better implementation of this algorithm.) 
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Exercises 4.2. (cont'd) 

2. begin real Xl, X2, X3, Yl, Y2, Y3, SIDE1, SIDE2, SIDE3, SEMI, AREA; 

comment read in values for the X and Yeo-ordinates; 

end 

SIDEl :- SQRT«X2 - X3)t2 + (Y2 - Y3)t2); 

SIDE2 :- SQRT«Xl - X3)t2 + (Yl - Y3)t2); 

SIDE3 .- SQRT«XI - X2)t 2 + (Yl - Y2)t 2); 

SEMI := (SIDEI + SIDE2 + SIDE3) / 2; 

AREA :- SQRT(SEMI * (SEMI-SIDE1) * (SEMI - SIDE2) * 

(SEMI - SIDE3» 

3. begin real Rl, R2, THETA1, THETA2, R3, THETA3, R, THETA, 

Xl, X2, Yl, Y2, X3, Y3, X, Y; 

comment read in the given values of the data; 

X :s Rl * COS(THETA1) + R2 * COS(THETA2); 

Y ·m Rl * SIN(THETA1) + R2 * SIN(THETA2); 

R3 :- SQRT(Xt2 + yt2); 

THETA 3 :- ARCCOS(X/R3); 

comment end of first part; 

R :s SQRT(Xlt2 + Ylt2); X 

THETA ~a ARCCOS(Xl/R); Y 

:- SQRT(X2t2 + Y2t2); 

:- ARCCOS(X2/X); 

R :- R*X; THETA ~- THETA+Y; 

X3 :- R*COS(THETA); Y3 ~- R*SIN(THETA); 

comment storage space would be saved by using X3, Y3 as temporary 

variables as well as result variables, in place of X, Y. Note 

that none of the input data is overwritten; 

end 

Exercises 5.9 

3.8.1. begin integer m, n, large, small, quot, rdr; 

comment . . .. , 
output (1, "TTY"); output (7, "DSK"); 

selectoutput(l); 

WRITE("TYPE INTEGERS FOR PROCESSING. [NB]"); 

selectoutput(7); 

read(m,n); 

openfile(7, "RESEUC"); 

comment values of m and n are typed on the teletype, separated 

by spaces and terminated by a 'return' character; 

if m < n 



Exercises S.9 (cont'd) 

3.B.2. 

3.B.3. 

end 

write ("GCD OF"); print (m) ; write (" AND"); 

print (n); write (" IS"); print (small); 

newline 

begin integer i, sum, exp, lim; 

comment this is a generalization of the previous version: 

input (1, "CDR"); selectinput(l); 

output(2, "LPT"); selectoutput(2); 

read (exp ,lim) 

sum . - 0; i :.. 1. 

LAB sum:= sum + itexp; 

i :- i + 1; 

end 

if i < - lim then goto LAB; 

write ("SUM OF"); print(exp). 

write ("TH POWERS OF THE FIRST"); print(lim); 

write (" POSITIVE INTEGERS IS: "). print (sum) j 

newline 

output (5, "DSK"). selectoutput(5); 

openfile(5, "INTEG.RES"); 

wr ite (" [ 20S] INTEGRALS [NSS] TRAPEZIUM [llS] SIMPSON 

[BS]DIFFERENCE[N3S]"); 
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print (areal, 6); space(3)j 

print(differ, 6); newline 

print(area2, 6); space(3);, 

end 

4.2.1, 4.2.2, 4.2.3 may be handled similarly. 
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Exercises 6.3 

1. begin integer n; real ptemp, qtemp, xtemp; array p, q, rat, 

x[1:20]; 

first 

output (5, "LPT"); selectoutput(5); 

wri te (" [9S] P [15S] Q[ 13S ] RATIO [ l1S] NEWTON [N] ") ; 

n := 1; p[n] .~ q[n] :z rat[n] : .. x[n] : .. 1; 

space(3); print (p[n], 6); space(3); print (q[n], 6); 

space(3); print (rat[n], 6); space(3); print (x[nl. 6) 

newline; 

n :- n+1; 

if n > - 21 then goto last; 

ptemp :- p[n-1]; qtemp :- q[n-1]; xtemp :- x[n-ll 

p[n] :- ptemp + 2*qtemp; 

q[n] := ptemp + qtemp; 

comment by using the temporary variables, three array accesses 

are saved. Whenever the same array element is used more than 

once, it is worth introducing a temporary variable to reduce 

execution time. However, do not carry this to such an extent 

that the sense of the programme is hidden from the human reader; 

last 

end 

rat[n] :- p[n]/q[n]; 

x[n] :s (xtemp + 2/xtemp) / 2; 

goto first; 

2. begin integer prod, loc; real sale, tot; 

array va1[1:3,l:5]; 

comment each va1[i,j] is set to zero at declaration; 

read in 

input{l, "CDR"); selectinput{l); 

output(2,"LPT"); 

read (prod) ; 

se1ectoutput(2); 

if prod s • then goto results; 

read (loc, sale); 

val[prod, loc] :- va1[prod, loc] + sale; 

goto read in; 

results write("[20S]SALES ANALYSIS[NS]LOCATION[35] 

PRODUCTl[9S]PRODUCT2[9S]PRODUCT3[N]"); 

loc :-= 1; 

again write (loc, 4); SPACE(3); write (val [1, loc]); 

SPACE (3) ; write (val [2, loc]); SPACE(3) ; 
write(val[3~ loc]); NEWLINE; 



Exercises 6.3 (cont'd) 

loc : = loc + I; 

if 10c < = 5 then goto again 

end 

Exercises 7.4. 

1. begin integer i, sum, exp, lim; 

sum .'" 0; i :- 0; 

while i < lim do begin i .. = i + 1; sum 

end 

2. begin integer i, j, capt, r, s, k, m; 

integer array board[l: 8, 1 : 8]; 
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: = sum + itexp end 

comment this programme calculates the number of possible captures 

for white in a given checker position. -2, -1, 0, 1, 2 respectively 

represent black king, man, unoccupied, white man, king; 

for i .- 1 until 8 do begin r :- if (i div 2)*2 .. i . 
then 1 else 2· , 

for j := r step 2 until r+6 

do read(board[i.j]) 

end; 

comment piece locations are listed by ranks: i. e. board[i, j] 

refers to square on rank i and file j; 

capt := OJ 

for i:= 1 until 8 do for j :- I unt 11 8 do .!!. boardt i. 

> o then for k :- -1, I 

j] 

do for ---

end 

m := -1, 1 do 

begin r :. i + 2 * k; s :- j + 2 * m; 

end; 

if (r > 0 and r < 9 and s > 0 and s < 9 and board 

[i+k, j+m] < 0 and hoard(r, s] - 0 then capt : .. 

capt + 1 

'-'Tite ("NUMBER OF POSSIBLE CAPTURES FOR WHITE IS"); print(capt) 



Exercises 7.4 (cont'd) 

3. begin integer i, r, s, agree, disagree; real KRCC; 

integer array judge[1:2,l:10]; 

Boolean array comp[1:2]; 
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th comment judse[ i,j] is the position of the j candidate accordinl> 

to judge i; 

agree :- disagree :- 0; 

for r :- 1 until 9 do 

for s :- r + 1 until 10 do 

begin for i .- 1, 2 do comp[i] :=- judge [i, r] > .-
judge[i, s] ; 

.!f comp[ 1] eqv comp[2] then agree := agree 

end 

end; 

KRCC :a (agree - disagree) I 45; 

print (KRCC) 

else disagree :., 

disagree + 1 

4. begin integer num, lim, i; real x; 

comment tests if num is prime. num > E 2, or = 0 to terminate; 

first 

output (7, ttDSKtt ); selectoutput(7); openfile (7, ttPRES tt ); 

read(num); 

if num ~ 0 then begin print(num); 

if num - 2 or num - 3 then 

write (ttIS PRIME [N] tt) 

+ 1 

e1se.!f (num DIV 2)*2 - num then write(ttIS NOT PRIME [N]tt) 

else begin x :a num; lim :- SQRT(X); 

next; 

end· 
--I 

end 

for i:- 3 step 2 untU lim do 

.!f (num DIV i)*i • num then 

begin write(ttIS NOT PRIME [N] tt); 

goto next 

end; 

write ("IS PRIME [N] tt) ; 

goto first 

end 



Exercises 8.3 

1. begin real sum; integer n, t, sign; 

input (1, "TTY"); selectinput (1); 

read(t); 

comment the series is summed to t(~l) terms; 

sign :~ 1; sum :- 0; 

for n 1 until t do 

begin sum := sum + sign / nt4; 

sign :IC -sign 

end; 

write (liTHE SUM TO"); print (t); 

print(sum); newline; 

write("TERMS IS"); 

begin real sumnew; integer p, lim; 
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comment sum is obtained correct to p (~8) places. with a cutoff 

point of lim (~l) terms. The identifier p is not necessary : 

t could have been re-used; 

end 

sumnew ~s 1; sum :a 10; n := sign := 1; 

while abs(sum - sumnew) > .5*10t(-p) do 

begin n :m n+l; sign :- -sign; 

sum := sumnew; 

sumnew :- sumnew + sign/nt4 

end; 

write (liTHE SUM CORRECT TO"); print (p) ; 

write (" DECIMAL PLACES IS"); print (sumnew) ; 

write (". THIS TooK"); printCn); 

write (" TERMS. [N] "); 

if n = lim then begin write ("MAXIMUM NUMBER OF TERMS WAS 

USED. PENULTIMATE SUM WASil); 

print (sum); newline 

end 

end 
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Exercises 8.3 (cont'd) 

2. begin integer m, n, sum; 

input (5, "CDR") ; output(6, "LPT tI ); 

selectinput(5); selectoutput(6); 

read(m,n); sum : .. m + n; 

begin real x, y, z· , integer i, j I k· , 
array a[l m+l] , b[l : n+l], c[l : sum] ; 

comment it is a simple matter to select the appropriate a [ i] or 

b[j] at each step for inclusion in c. However, the a or h 

array must be tested at each step to determine whether it has <:11 

been used, and if so to transfer the remainder of the other array 

directly to c. This programme adopts an alternative method. 

The size of the largest element in a or b is determined and a 

number larger than this appended to both a and b. This ensures 

that the first m+n numbers put in c are the desired ones without 

further testing; 

end 

z := x:- 0; 

for i:- 1 until m do 

begin read(y); a[i]:- y; 

if y>x then x:- y 

for i :- 1 until n do 

begin read(y); b [i] := Yi 

if y>z then z :- y; 

end· 
--) 

a[m+1] :- b[n+l] :- if x>z then x+l else z+l; 

i := j :- 1; 

for k := 1 until sum do 

.!fa[i] < b[j] then begin c[k] :-a[i]; 

i :'" i+l 

end 

end 

else begin c[k] :- b[j]; 

j :- j+l 

end 



Exercises 9.9 

1. integer procedure acker(m,n); 

value m. n; integer m. n; 
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begin integer ptr, ack; integer array stack[l:200]; 

comment the array stack is the pushdown list, and the variable 

ptr is the stack pointer. The dimension of stack is arbitrary 

it could perh~ps be a parameter of the procedure; 

ptr :- 0; 

lab 

end 

!fm o then begin ack:= n+l; 

end 

if ptr + 0 then 

begin m :- stack[ptr]; 

end 

n :- ack; 

ptr : .. ptr-l; 

goto lab 

else if n - 0 then begin m:- m-l; 

n :- 1; 

goto lab 

end 

else begin index:- index+l; 

stack[index] :- m-l; 

n :- n-l; 

goto lab 

acker :-= ack 

2. begin integer n; 

read(n); 

begin real procedure funct(a.z.m); 

value z, m; integer m' , 
begin real y; integer 

y :- a[O]; 

real z; array a; 

for i:~ 1 until m do y :- y*z+a[i); 

funct :-= y 

end; 

real procedure deriv(a.z.m); 

value z. m; integer m' , real z· , array a; 
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Exercises 9.9 (cont'd) 

end· --, 

begin real y; integer i; 

y :- m*a [0]; 

for i :- 1 until m-l do y := y*z+{m-l)*a[i); 

deriv :- y 

end; 

array coeff[O:n]; 

read{eps); 

x :- 0; xold:- 10; 

real x, xold, eps; 

while abs{x-xold) > eps do 

begin xold :- x; 

end, --, 
print{x); 

x - x-funct{coeff, x, n) / deriv{coeff, 

x, n); 

comment this programme needs two improvements. 1. An upper 

limit on the number of iterations permitted. 2. The value deriv 

(coeff, x, n) should first be assigned to some identifier y and 

this checked for size before use as a quotient, to prevent overflow; 

end 

Exercises 10.7 

1. begin integer numl, num2, length; string t; 

integer arraI decval[67 : 88] ; 

Erocedure readroman{s, length); 

comment skips spaces to find a roman numeral delimited by spaces, 

reads numeral into s, and its number of characters into length; 

string s; integer length; 

begin integer char; string rj 

r :- newstring{100,7); 

insymbol{char); while char - 32 do ins'mbol{char); 

comment 32 is the decimal equivalent of the octal number 40, which 

is the ASCII code for the space character; 

for length :- 1, length + 1 while char #32 do 

begin r.[length] :- char; 

insymbol{char) 

end· 
--) 
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Exercises 10.7 (cont'd) 

length :- length - 1; 

s :- r 

end; 

procedure .romtodec(r, length, num); 

value length; string r; integer length, num; 

comment converts to arabic in num the roman numeral with length 

characters which is in r; 

begin integer k • 
) string s; 

num :=-

while 

end; 

O~ k :~ 1; s :- newstring(lOO,7); s := r' , 
k <- length do 

if k - length 

then begin num :- num+decval[s.[length]]: 

k :~ k+l 

end 

else.!!. decval[.s. [k+l]]>decval[ s. [k]] 

then begin num:- num+decval [s. [k+l]] 

-decval [ s • [k] ] ; 

k : .. k+2 

end 

else begin num:- num+decval[s.[k]l; 

k :- k+l 

end 

string procedure dectorom(num); 

value num; integer num; 

comment the value of this procedure is the roman numeral for num; 

begin string r; integer k, i; integer array tens[O:3]. 

fives[0:2]; 

r :- newstring(100,7); k:- 0; 

tens[3] :- $.M.; tens[2} :- $.C.; tens[l} :- $.X.; 

tens[O] :~ $.1.; 

fives[2] :- $.D.; fives[l] :- $.L.; 

while num>"lOOO do begin k :- k+l; 

fives[O] :- $.V.; 

r.[k] :- $.M.; 

num :- num-1000 



Exercises 10.7 (cont'd) 

for i :- 2. 1. 0 do 

if num>-9*10'i or 5*10ti>num and num>c4*10!i 

then begin k:- k+2; r.[k-l] :- tens [i]; 

if num>-9*10t i 

end 

then begin r.[k] :- tens[i+l); 

num :- num-9*10ti 

end 

el!!$ begin r.[k) :- fivE's[i]; 

num :- num-4*10ti 

end 

else begin if num>5*10ti 

then begin k :- k+l; 

r.[k] :- fives[i]; 

num :- num-5*10ti 
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while num>alOfi do begin k := k+1; 

r.[k]:.:tens[i]; 

num:-num-lOti 

end 

dectorom :- r 

end; 

decval[$.I.] :- 1; decval[$.V.) :- 5; decval[$.X.] :- 10; 

decval[$.L.] :- 50; decval[$.C.] :- 100; decval[$.D.] :- 500; 

decval[$.M.] :- 1000; 

t :- newstring(100.7) 

readroman(t. length); 

romtodec(t. length numl); 

write(t); print(numl); newline; 

readroman(t. length); 

romtodec(t. length. num2); 

write(t); print(num2); newline; 



Exercise 10.7 (cont'd) 

write(dectorom(numl+num2»; print(numl+num2); newline 

end 

(This programme translates MIM correctly, but translates 1999 into MCMXCIX.) 

2. begin string s; integer x,y,depth; 

input (0, "dsk"); output (1, "dsk"); 

write("source file: [B]"); read(s); 

openfile(O, s); 

write("output file: [B]"); read(s); 

openfile(1, s); 

selectinput(O); selectoutput(l); 

while not iochan(O) and %100 do 

begin insymbol(x); 

if x>64 and x<9l then x :a x+32; 

comment the ASCII codes for the upper case letters are the decimal 

numbers 65-90, while those for the lower case letters are 97-122; 

outsymbol(x); 

comment letters within brackets will not be lowered; 

!!. x=$. [. then begin depth : a 1; 
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while not (XES.]. and depth - 0 do 

begin insymbol(x); 

outsymbol(x); 

if xcS.]. then depth :- depth-I; 

11 x-S.[. then depth :- depth+l 

end 

end; 

comment nor will ASCII constants; 

end 

end 

11 x-S.S. then begin insymbol(x); outsymbol(x); y :- x+l; 

while yDx do begin insymbol(y); 

outsymbol(y) 

end 

end 

(Apart from the underlining, and the two occurrences of the acronym 'ASCII' 

which have been printed in upper case, this programme is in the form of output 

from itself. It accepts the names of the input and output files from the 

teletype, in string form, that is, enclosed in quotation marks.) 
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Exercise 11.5 

1. begin real x; integer n; 

real procedure rand(a, b, starter); 

comment the first call to this procedure should have starter an odd 

integer <67,108,864. To obtain a sequence of random numbers, 

subsequent calls should have starter=O. 

distributed over the interval [a,b]; 

The numbers are rectangularly 

value a, b; real a, b; integer starter; 

begin ~ integer m; integer i; 

11 starterlO then m :- starter; 

for i := 125, 25 do m :- i*m rem 67108864; 

comment this avoids possible overflow on the PDPlO through multiplying 

by 3125 in one step; 

rand :a m/67l08864*(b-a)+a 

end; 

comment the next two statements indicate how to use this procedure; 

print(rand(O, 1, 234567»; 

end 

2. begin 

end 

for n :- 1 until 10 do print(rand(O, 1, 0» 

real procedure leg(x, which); 

value x, which; real x; integer which; 

begin real y; 

PO 

PI 

P2 

P3 

P4 

switch choose :- PO, PI, P2, P3, P4; 

goto choose[which]; 

y : .. 0; goto last; 

y :- 1; goto last; 

y :-. x; goto last; 

y := O*x*x-l) /2; goto last; 

y := (5*x*x-3)*x/2; goto last; 

y :- «35*x*x-30)*x*x+3)/8; 

last : proc := y 

end; 
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APPENDIX 1 

BACKUS NORMAL FORM 

The syntax of ALGOL is specified in metalinguistic formulae. 

The structure of these is called Backus Normal Form or Backus-Naur Form (BNF). 

< digit> :: = 011i213141516171819 
is one such formula which defines(::-) the syntactic entity 'digit' (indicated 

by pointed brackets) to be either 0 or 1 or 2 or ••• or 9 (the I denotes 

alternation). Similarly, we have 

< letter> ::3 alblcld~elflglhliljlklllmlnlolplqlrlsltlulvlwlx!YlzIAIBlclDI 

EIFIGIHiIIJ!KILIMINlolpIQIRlsITlulvlwlxlvlz 

In terms of these, the following formula. 

< identifier> ::m <letter>!<identifier><letter>!<identifier><digit> 

defines an identifier to be either a letter, ~ an identifier followed by a 

letter, or an identifier followed by a digit. (The juxtaposition of two 

entities on the right hand side of such a formula signifies concatenation of 

the sequences denoted.) This is a recursive definition which is 'earthed' 

by the first of the 3 alternatives. It corresponds to the verbal 

specification: '~n identifier is a string of letters and digits, beginning 

with a letter". (The upper limit of 64 on the length of the string is a 

machine-dependent factor, and not 'pure' ALGOL.) 

Starting in this way, the whole structure may be built up. 

For example, assuming the definitions of < unsigned number >, 

< variable> (which includes subscripted and unsubscripted variables), and 

< function designator> (i.e. a procedure call), the syntax of arithmetic 

expressions is as follows: 

< adding operator> ::= +1-
< multiplying operator> ::- xl/If 

< primary> ::z <unsigned number> I < variable> I < function 

designator> I « arithmetic expression> ) 

< factor> ::= < primary> I < factor> t < primary> 

< term> ::c < factor> 1 < term> < mUltiplying operator> < factor> 

< simple arith. expo > ::z < term> I < adding operator> < term> I 

< simple arith. exp.> < adding operator><term> 

< if clause> ::0 if < Boolean exp.> then 

< arithmetic expression> ::- < simple arith. exp.> 1 < if clause> 

< simple arith. exp.> else < arithmetic 

expression > 
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Even without the second alternative in the last line. this 

definition is recursive becuase of the occurrence of < arithmetic expression> 

in the third line. The implication of the fourth alternative in the third 

line (which is a sequence of 3 entities. namely a '('. an < arithmetic 

expression >. and a ')') is that the expression between a left parenthesis and 

the matching right parenthesis is evaluated by itself. and this value used in 

subsequent calculations. Also built in to this definition is the hierarchy 

( t ; x. /, f; +, - ) of arithmetic operators. 
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APPENDIX 2 

'ALGOL-Like' Languages 

Some languages are described as 'ALGOL-like'. The major 

characteristics of ALGOL which should be taken into account when making such 

a description are ([4]): 

(i) use of Backus-Naur Form(BNF) to describe syntax. with semantics in English; 

(ii) 

(iii) 

(iv) 

0) 

acceptance of a large amount of mathematical notation. and the 

elimination of compiler-directed restrictions; 

distinction between the imperative or assignment operator (:z) and the 

predicative or relational operator (-); 

use of specially distinguished English words for new symbols; 

page layout at the discretion of the programmer. 



APPENDIX 3 

ERROR MESSAGES 

O. PROBABLY SEMICOLON OMITTED 

1. UNDECLARED IDENTIFIER 

2. INCORRECT STATEMENT 

3. INCORRECT EXPRESSION 

4. PROBABLY OPERATOR OMITTED 

5. IDENTIFIER OR CONSTANT MISSING 

6. INCORRECT DESIGNATIONAL EXPRESSION 

7. INCORRECT OR UNPARENTHESIZED ASSIGNMENT 

8. SYMBOL NOT PERMITTED HERE 

9. AMBIGUOUS USE OF COLON 

10. SEMICOLON PROBABLY SUPERFLUOUS 

11. ONLY LETTER STRING ALLOWED 

12. THIS DELIMITER IS NOT PERMITTED BEFORE DO 

13. WHILE STATEMENT IS NOT ALLOWED BETWEEN THEN AND ELSE 

14. THEN MUST NOT BE FOLLOWED BY IF 

15. THEN STATEMENT NOT FOUND 

16. DECLARATIONS MUST BE TERMINATED BY SEMICOLON 

17. THIS IS NOT ALLOWED AFTER END 

18. CANNOT BE USED AS ARGUMENT 

19. ARGUMENT TOO LARGE 

20. PROBABLY END OMITTED 

21. COMPLEX ARITHMETIC NOT IMPLEMENTED 

22. DECLARATOR LONG MUST BE FOLLOWED BY REAL 

23. NOT PERMITTED AS SPECIFIER 

24. NOT PERMITTED AS SPECIFIER 

25. INCORRECT DECLARATION OR SPECIFICATION 

26. NO DECLARATION SHOULD FOLLOW PROCEDURE DECLARATION 

27. IMPROPER ARRAY DECLARATION OR SPECIFICATION 

28. DELIMITER MUST NOT BE DECLARED OR SPECIFIED 

29. PROBABLY LIST ELEMENT MISSING 

30. IMPROPER DECLARATION 

31. VALUE WAS ALREADY SPECIFIED 

32. IMPROPER TYPE OF FORMAL IN VALUELIST 

33. NON-FORMALS MUST NOT BE SPECIFIED 

34. BOUND PAIR NOT FOUND 

35. INCORRECT BOUND PAIR 

36. PROBABLY RIGHT BRACKET OMITTED 

89 
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37. TYPE DOES NOT MATCH FORWARD DECLARATION 

38. := MISSING IN SWITCH DECLARATION 

39. PROCEDURE NESTING TOO DEEP 

40. NOT SIMPLE IDENTIFIER IN FORMAL LIST 

41. FORMAL LIST NOT PROPERLY TERMINATED 

42. PROBABLY; MISSING IN PROCEDURE HEADING 

43. NOT ALL FORMALS HAVE BEEN SPECIFIED 

44. INCORRECT STRUCTURED FORMAL LIST 

45. UNTIL EXPRESSION NOT FOUND 

46. BYTE SELECTOR NOT PERMITTED AS CONTROLLED VARIABLE 

47. ASSIGNMENT DELIMITER NOT FOUND 

48. DELIMITER "DO" NOT FOUND 

49. ASSIGNMENT HAS NON-MATCHING TYPES 

50. PROBABLY DELIMITER OMITTED 

51. CANNOT BE USED AS UNARY OPERATOR 

52. CANNOT BE USED AS BINARY OPERATOR 

53. THEN EXPRESSION NOT FOUND 

54. CONDITIONAL EXPRESSION MUST HAVE ELSE PART 

55. CONDITIONAL EXPRESSION MUST BE PARENTHESIZED 

56. IMPROPER SEQUENCE OF DELIMITERS 

57. WRONG NUMBER OF DIMENSIONS 

58. TOO MANY PARAMETERS FOR STANDARD FUNCTION 

59. NON-TYPE PROCEDURE AS EXPRESSION 

60. MATCHING CLOSE PARENTHESIS NOT FOUND 

61. INCORRECT NUMBER OF ACTUAL PARAMETERS 

62. FORWARD HAS NO MATCHING DECLARATION IN SAME BLOCK 

63. FORWARD DECLARATION NOT ALLOWED FOR THIS TYPE 

64. FORWARD DECLARATION WAS REQUIRED 

65. ASSIGNMENT HAS NON-MATCHING TYPES 

66. STACK ADDRESS OVERFLOW 

67. NON-INTEGER OPERAND FOR DELIMITER REM OR DIV 

68. COMPLEX ARITHMETIC NOT IMPLEMENTED 

69. NON-ARITHMETIC OPERAND FOR ARITHMETIC OPERATOR 

70. NON-ARITHMETIC OPERAND FOR RELATIONAL OPERATOR 

71. NON-BOOLEAN OPERAND FOR BOOLEAN OPERATOR 

72. DELIMITER NOT REQUIRES BOOLEAN OPERAND 

73. UNARY + AND - REQUIRE ARITHMETIC OPERAND 

74. OVERFLOW WHILE COMBINING CONSTANTS 

75. OVERFLOW IN LONG REAL OPERATION ON CONSTANTS 

76. UNDEFINED RESULT FOR POWER OPERATION ON CONSTANTS 

77. PARAMETER FOR STANDARD FUNCTION MUST BE ARITHMETIC 



78. STANDARD FUNCTION "INT" REQUIRES BOOLEAN PARAMETER 

79. STANDARD FUNCTION "BOOL" REQUIRES ARITHMETIC PARAMETER 

80. PARAMETER MUST BE OF ARITHMETIC TYPE 

81. FOR STATEMENT NOT ALLOWED BETWEEN 'mEN AND ELSE 

82. SWITCH IDENTIFIER NOT ALLOWED HERE 

83. EXPRESSION TOO LONG 

84. IDENTIFIER DECLARED IN THIS BLOCK NOT PERMITTED 

85. INCORRECT FILE OR BLOCK STRUCTURE 

86. INCORRECT BLOCK STRUCTURE; TOO MANY ENDS 

87. PROCEDURE INCORRECTLY TERMINATED 

88. INCORRECT FILE STRUCTURE 

89 . EMPTY SOURC E FI LE 

90. INVALID CONSTANT 

91. IDENTIFIER EXCEEDS 64 CHARACTERS 

92. IMPROPER WORD DELIMITER 

93. CHARACTER NOT LEGAL IN ALGOL 

94. EXPONENT TOO SMALL 

95. EXPONENT TOO LARGE 

96. DECLARATION FOLLOWS STATEMENT 

97. IMPROPER USE OF PERIOD 

98. INTEGER CONSTANT CONVERTED TO TYPE REAL 

99. 

100. EXPECTED WAS AN EXPRESSION 

101. EXPECTED WAS A STATEMENT 

102. EXPECTED WAS A BOOLEAN EXPRESSION 

103. EXPECTED WAS A DESIGNATIONAL EXPRESSION 

104. EXPECTED WAS A LABEL IDENTIFIER 

105. EXPECTED WAS A LABEL IDENTIFIER 

106. IDENTIFIER MUST NOT BE DECLARED OR SPECIFIED TWICE 

107. BOUND PAIR EXPRESSION MUST BE ARITHMETIC 

108. IDENTIFIER USED TWICE IN FORMAL LIST 

109. STEP EXPRESSION MUST BE ARITHMETIC 

110. UNTIL EXPRESSION MUST BE ARITHMETIC 

111. INITIALIZING EXPRESSION MUST BE ARITHMETIC 

112. CANNOT BE USED AS CONTROLLED VARIABLE 

113. IMPROPER LEFT PART OF ASSIGNMENT 

114. EXPECTED WAS A STRING EXPRESSION 

115. EXPRESSION OF IMPROPER TYPE 

116. EXPRESSION OF IMPROPER TYPE 
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117. EXPECTED WAS AN ARRAY IDENTIFIER 

118. SUBSCRIPT MUST BE ARITHMETIC EXPRESSION 

119. EXPECTED WAS A SWITCH IDENTIFIER 

120. IMPROPER ACTUAL PARAMETER 

121. EXPECTED WAS A PROCEDURE IDENTIFIER 

122. SUBSCRIPT OF SWITCH DESIGNATOR MUST BE ARITHMETIC 

123. VARIABLE OF IMPROPER TYPE 

124. EXPECTED WAS A STRING VARIABLE 

125. PARAMETER IN STANDARD FUNCTION HAS INCORRECT TYPE 
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APPENDIX 4 

ASCII CHARACTER CODES 

The following table lists the octal values of the characters 

used. For example, N has the value 1168 - 10011102 IC 7810 

Character ASCII Character ASCII Character ASCII 
7-Bit 7-Bit 7-Bit 

Horizontal 011 072 Z 132 
Tab 073 133 
Line Feed 012 

< 074 \ 134 
Form Feed 014 075 135 
Carriage 015 

> 
Return 076 t 136 

? 077 +- 137 
Space 040 @ 100 140 

041 A 101 141 a 
" 042 B 102 b 142 
# 043 C 103 143 c 
$ 044 

D 104 d 144 
% 045 E 105 145 e 
& 046 

F 106 f 146 
047 

G 107 g 147 
( 050 H 110 h 150 
) 051 

I 111 i 151 

* 052 
J 112 j 152 

+ 053 
K 113 k 153 

054 L 114 1 154 
055 

M 115 155 m 
056 

N 116 156 n 
/ 057 

0 117 0 157 
0 060 P 120 p 160 
1 061 

Q 121 161 q 
2 062 

R 122 162 r 
3 063 

S 123 163 8 

4 064 T 124 t 164 
5 065 

U 125 165 u 
6 066 

V 126 166 v 
7 067 

W 127 167 w 
8 070 X 130 170 x 
9 071 

y 131 y 171 
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Character ASCII 
7-Bit 

z 172 

173 

174 

175 

176 

Delete 177 



INDEX 

(~1ere a topic occurs on successive pages of a chapter, only the first 
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Compiler, 67 
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COPY, 60 

COS, 19 

COSH, 19 

Debugging, 67 

Declarations, 31,42,46,57 

Declarator, 3 

DELETE, 61 

Del1mi ter, 3,4 

Designational expressions,65 

Devices, 21 

DIM, 32 

Di", 5 

Q.2., 3,34 

Dummy statement, 16 

Dynamic storage allocation, 38 

Else, 3,13,17 

End, 3,12,17 

End-of-file, 29 

ENTlER, 19 

Egv, 5,9 

EXP, 19 

Expressions, 8 

External, 57 
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statement. 16.34 
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Goto. 3.12 Not, 5,9 
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Image binary mode. 22 OPENFILE. 23 

Image mode. 22 Operator. 3 

IMAX. 20 hierarchy, 8,87 

IMIN. 20 precedence. 8 
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INPUT. 21 Or, 5,9 

INSYMBOL. 28.61 OUTPUT. 21 

Integer, 3.6,24.45 OUTSYMBOL, 28 

IOeHAN. 29 OWft variables, 3.64 
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LARCTAN. 20 
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LEXP. 20 

LINK. 61 

LINKR. 61 

LLN. 20 

LMAX. 20 

LMIN. 20 

LN. 19 

PAGE, 26 

Parameter, 43 

PRINT, 24 
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body, 42 

call. 42 
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heading, 42 

Programme layout, 16. 88 

Pushdown list, 41 

READ, 24 

Real, 3,6,24.45 
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Recursion. 55 

Reference, 53,86 

RELEASE, 22 

Rem, 5 

Reserved word, 4 

RMAX. 20 

RMIN. 20 

Scope, 38 

SELECTINPUT. 22 

SELECTOUTPUT, 22 

Separator, 3 

SFIELD, 61 

Side-ef fee t, 54 

SIGN, 19 

SIN, 19 

SINH, 19 

SKIPSYMBOL, 28 

SPACE, 26 

Spacing, 16,26, 88 

Speci fier, 44 

SQRT. 19 

Stack, 41,55 

Statement, 11 

Step, 3,34 

String. 3,6,24,26,45,60 

constant, 7 

variable, 28 

Subscript, 32 

Switch, 3,44,64 

Syntax, 86 

TAB, 26 

TAN, 19 

TANH. 19 

Teletype handling, 

Then, 3,13,17 

TRAP, 68 

True, 3,4,7,9,24 

Type, 6,11,31,47 

27 

UB. 32 

Until, 3,34 

Validation of data, 29 

Value, 3,50 

While, 3 

statement, 16,29,34 

WRITE, 26.61 
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