

(

(

(

(

3. Retrieval with access termination:

<.----RECORD .. m
ACCOMP (COMMAN.D)---->

.<----ACCOMP (RESPONSE)

The accessed process may set a timer following sending ACCOMP
and if neither a disconnect or another ,message is received
within the time �i�n�t�~�r�v�a�l� it may �d�i�s�c�o�n�n�e�c�~� the link.

Figure 5-2 (Cont.). File Retrieval Sequence

5.2.2 Sequential File Storage/Append - In the store case, data is
sent to the accessed system. Following the initialization of the data
stream the accessing system sends a Control (PUT) Message to tell the
accessed process what to �d�o�~� The control message is followed by file
records using the data message. These messages will be accepted by
the accessed system and will continue until the accessing system sends
an Access Complete Command. This procedure will cause a corresponding
Access Complete Response to be returned following successful file
closure, or a Status Message to occur if an error is incurred in
closing the file. In either case,the access is concluded and another
access may start or the link may be disconnected.

To specify sequential file storage, the accessing process specifies
sequential file access in the Control Message together with PUT. To
specify sequential file append, the operations are the same except in
the Control Message where "position to EOF" is also specified. As
with sequential file retrieval, sequential file storage implies the
use of only one data stream. If optional status messages are desired,
the ACCOPT field of the access message must be used .to request them.

If an error occurs during tecord transfer, the accessed system will
return a Status Message. This must always be replied to with a
Continue Message sent as an interrupt message (because of possible
pipelining). In addition, if it is desired to terminate the access,
an Access Complete Message should be sent.

Accessing Process Accessed Process

1. Store with no errors:

CONTROL (PUT)------>
RECORD 1· ---....;-->

[<---""--STATUSl
NOTE

Transfer continues •
until access
complete or error

RECORD n ------>
[< ... �-�-�-�-�~�S�T�A�T�U�S�]�

ACCOMP (COMMAND) ------>
<-""----ACCOMP (RESPONSE)

Figure 5-3. Sequential File Storage

49

NOTE

The Status Messages (in square brackets)
are optional depending on whether they
are asked for in the ACCEPT field of the
Access Message. They are not used to
indicate an er~or· condition. An error
will be contained in a Status Message
without brackets (see Step 2).

2. Error during transfer:

(a) Purge the new file and terminate

RECORD n

ACCOMP (PURGE)
CONTINUE (ABORT)

.------)
(------STATUS
------)
------) (INTERRUPT)

NOTE

The accessed system will di~card records
until ACCOMP (PURGE) is received.

Purge incomplete file (------ACCOMP (RESPONSE)

.. or

(b) close the new file and terminate

ACCOMP (COMMAND) ...,--~--)

CONTINUE (ABORT) ------) (INTERRUPT)

NOTE

The accessed system discards records ~ntil
ACCOMP (COMMAND) is received.

close incomplete file (------ACCOMP (RESPONSE)

or

(c) retry - the accessed system still has the record which
caused the error in its buffer.

CONTINUE (Try again)------)INTERRUPT
RECORD n+l ------)

or

(d) skip the record and continue

CONTINUE (SKIP)------)INTERRUPT
RECORD n+l ------)

Figure 5-3 (Cont.). Sequential File Storage

50

(

(

(

(

(

(

(

(

3.

NOTE

On an error, the accessed process does
not issue any more receives after
sending the Status Message and before
receiving the Continue Message, which
tells it what to do. If the accessing
process responds to the error by sending
an interrupt continue message and the
retry is successful, the accessed
process will post a receive and carryon
with the data transfer.

If the retry fails, another status
message is sent. A Continue Message
with skip always posts a receive and
tries to carryon having skipped the
record which caused the original error.
Continue messages must be sent in
interrupt mode as there may be data in
the pipeline.

If the accessing system wants
storage operation before it
incomplete file on the accessed
follows:

to stop a
is complete
system, the

sequential
and purge

sequence is

Accessing Process Accessed Process

RECORD n--------------->

ACCOMP (PURGE) ------->

purge incomplete file<----ACCOMP (RESPONSE)
on accessed system

file
the

as

To save an incomplete file on the accessed system, the
6perations ~re as in Step 1.

Figure 5-3 (Cont.). Sequential File Storage

5.l.3 Record Retrieval - Record retrieval is similar to sequential
file ietrieval except that a control message (with a record key for
random retrieval) must be sent by the accessing process for each
record accessed. Record retrieval is specified by the accessing
process setting sequential record access, Keyed access or Record File
Address access in the Control Message. Block mode transfer is similar
to record retrieval and is specified by setting Virtual Block Number
access."

For keyed or Record File Address access, the sequence is as follows:

CONTROL (get record with Key n)---->
<----[STATUS,] RECORD n

CONTROL (get record with Key m)---->
<----[STATUS,] RECORD m

51

For sequential record access, the state operation is as follows:

CONTROL (get sequential)--------->
<----[STATUS,] RECORD k

CONTROL (get sequential)-------->
<----[STATUS,] RECORD k+l

Once the location of a particular record in a file is found using
random access, the user frequently wants to get subsequent records
sequentially. This can be done by switching the access mode from
keyed or Record File Address to sequential in the Control Message and
issuing a GET. (WithRMS systems, the user is free to switch access
modes according to the RMS rules.)

CONTROL (get record with Key r)---->
<----[STATUS,]RECORD r

CONTROL (get sequential) -------->
<----[STATUS,]RECORD r+l

Once a particular record in a file is found, it is possible to
transfer the remainder of. the file in sequential file access mode.

CONTROL (get record with key t)---->
<----[STATUS,]RECORD t

CONTROL (sequential file access, get)----->
<----[STATUS,]RECORD t+l
<----[STATUS,]RECORD t+2, t+3,

..• to end-of-file

Error handling for sequential record retrieval is similar to error
handling for sequential file retrieval. When an EOF is reached while
accessing a file sequentially, the accessed process sends the Status
Message "end-of-file-detected." This prevents automatic file closure
and control is retained by the accessing process.

Error handling for random record retrieval is similar to that for
sequential file retrieval. However, the continue (skip) recovery
option which is valid for sequential retrieval is not valid for random
retrieval. When a control request specifies a nonexistent record
while doing random record retrieval, the accessed process will return
an appropriate error message (e.g., record number out of range or
record not found).

5.2.4 Record Store - This is similar to sequential file store in
messages exchanged. For relative files, the data messages must
include the relative record number field specifying the number of the
record (RECNUM). For direct files where the user is supplying his own
hash code (RB$HSH set in the Rap field of a Control Message), RECNUM
contains the hash code. For indexed files, RECNUM is null. For
sequential files, records are written starting at the current position
wi thin the file.

52

(

(

(

(

(

(

(

The access message specifies whether to open an existing file or
create and open a new file. PUT access must have been specified in
the Control Message. For record storage, the accessing process may
specify sequential record access, or keyed access. Optionally, VBN
access may also be used.

The sequence of records to be stored may be preceded by a Control
(PUT) Message if it is necessary to change record options or access
mode from the current value. Optionally, each record to be stored may
be preceded by a Control (PUT) Message. This procedure is inefficient
since it doubles the number of DAP messages transmitted. When storing
a record, if the Data Message is preceded by a Control Message that
contains a record number in the key field and the Data Message also
contains a record number in the RECNUMField, then the record number
in the RECNUM Field will be used.

When an accessed RMS system must return Record File Addresses to the
accessing RMS system (bit 1 of ACCOPT in the Access Message set), the
sequence for record storage with return of status is as follows:

RECORD n -------->

<-------- STATUS

RECORD n+l ------>

<-------- STATUS

Errors are handled as indicated in Section 5.2.2 except for the use of
continue skip.

5.2.5 Append to Existing File - The append operation is identical to
sequential store and applies only to sequential files. The records
are placed at the logical end of the file by the accessed syste~:

RECORD 1-------->

RECORD 2-------->

If it is necessary to return Record File Addresses, the sequence is
the same as that described for Record Store (see Section 5.2.4).

5.2.6 Deleting a File - The delete operation does not cause any file
data to be transferred, but does manipulate file structures. Deleting
a file does not require an Attributes Message in the setup sequence.

The message sequence for the delete operation is as follows:

[ATTRIBUTES---------->]

ACCESS (ERASE)----->

<-----ACCOMP (RESPONSE)
or

<-----STATUS

53

5.2.7 Command/Batch Execution Files - The Data Access Protocol
includes commands for the transfer and submission of files to a batch
processing facility or command interpreter. The
"submit.,.-as-comma.nd-file" request in the Access Message requests that a
store operation be done on the data that follows in a temporary file
and that this file be submitted to a batch-type facility upon access
completion (closing of the file). The .. file will be deleted following
execution by the batch facility. DAP does nothing with regard to any
feedback from the batch facility and does not guarantee that the file
actually executes in the batch monitor. The file is transferred using
sequential £ile storage.

The "execute-as-command~file" requests that the specified file be only
submitted to the batch facility. No data follows this command (the
specified file having been previously established on the accessed
system). The file is not deleted following execution by the batch
facility, so that the sequence "store, and execute command file" will
transfer a file, submit it and retain the file for later use. The
sequence for "submit-as"'command-file" is identical to "store", while
the "execute command file" is identical to ERASE.

NOTE

Since errors are not returned to the
originating node automatically, a test
for errors might be included in indirect
command files. Upon error or
completion, a suitable message can be
returned to the originating node.

5.3 Closing a File· and Terminating Data Streams

The ACCOMPEnd of Stream (EOS) command is used to terminate a data
stream. When the accessing process wishes to terminate a data stream,
it may do so by sending it the appropriate STREAMID number to
terminate. This is particulary useful when multiple data streams are
employed. This will not close the file even if it terminates the last
active data stream.

An ACCOMP (COMMAND) is used to close the file and terminate the
access, which includes closing out all remaining active data streams.

5~4 Terminating a Logical Link

The logical link is terminated by issuing a disconnect request.
During the setup of the link, this may be done by the accessed process
if optional timers indicate delay by the accessing process in
supplying the required information. Once setup is complete, the
accesslng process controls the rate of access of the file.
Disconnection at this point will usually follow access completion.
The accessing process may disconnect at any time~ however, different
systems may handle file closing and disposition differently if
disconnection occurs during transfers.

54

(

{,

(

(

(

(

(

(

(

The accessing process is not required to disconnect and reconnect
following each access. However, if a new access is to be started, it
must be initiated in a timely manner. If a timer is being used
between setup messages, it should also be set by the accessed process
following an Access Complete Message. Disconnection will normally
occur only at the end of a group of transfers.

5.5 File Security and Protection

DAP attempts to provide approximately the same degree of file security
and protection over the network as is available locally. To do this,
a DAP user must be a registered user of each system holding files he
wishes to access. Embedded in the connect message sent by the
accessing process is sufficient information for the user to be logged
onto the system whose files he wishes to access. User access is first
verified (not necessarily actually logged-on) and then file access is
allowed to proceed under the normal rules for file aCcess applicable
to a local user.

If the user wants to change the account under which he is running at
the remote node, he must disconnect the logical link and reconnect
specifying the new account in the connect.

55

ISAM

JFN

Key

Key field

Key of
reference

Octets

Object Type

RFA

RMS

URD

VBN

APPENDIX A

GLOSSARY

Indexed Sequential Access Method. This access method
is a combination of random and sequential access.
Random access is used to locate a sequence of records
and then access is switched to sequential to read the
remaining records in the series.

Job File Number. The JFN is the job's global handle on
a file.

A data item used to locate a record in a random access
file system.

For direct and indexed files, the position of the key
within the record.

The particular key field of the record for which the
key applies.

Octets in this document are bytes of 8 bits, with bit 0
the rightmost (low-order, least-significant) bit and
bit 7 the leftmost (high-order, most-significant) bit.
Fields and bytes of other lengths are numbered
similarly.

Numeric value that may be used for process addressing
by DECnet processes instead of a process name. See the
NSP specification for further details. DAP server
processes are object type number 21 (octal).

Record File Address. The unique address of a record
within a file. This method of addressing can be used
explicitly with RMS.

Record Management Services. This file system will be
used on all major DIGITAL systems except where space is
limited (e.g., RT-ll). In addition to access modes
provided by previous file systems, RMS provides random
access for direct and indexed files and ISAM.

Unit Record Device.

Virtual Block Number. This number is in the range 1 to
n where n is the highest numbered block allocated to
the file.

56

(

(

(

"

(

(

(

(

(

(

APPENDIX B

RSX/IAS/RT DECNET IMPLEMENTATIONS

DECnet remote file access (and transfer) is implemented via three
distinct pieces of software: a File Access Listener (FAL), a set of
user callable subroutines (Network File Access Routines) called NFARS
and a Network File Transfer utility (NFT). A. brief description of
each is provided below.

B1.0 FAL

FAL is the mechanism which maps DAP protocol
file system. FAL accomplishes this by
requests from the user on the network side
equivalent requests to the local file and/or
B-1 is the FAL State Diagram.

messages to the local
accepting DAP file access

and mapping them into
operating system. Figure

FAL is a user level process, resident on every node whose file system
is to be accessed via the network. It is a passive elemefit in that it
s~rvices requests for rem~te access to the local file systems, it does
not generate activity by itself, and is idle (suspended) when no such
re~uests are in progress. Requesting processes are connected to~_PAL
through the network provided communication mechanism. The Data Access
Protocol (DAP) is used for exchanging commands and data between FAL
and the accessing process. A single FAL process can handle multiple
accesses and logical links simultaneously.

B2.0 NFARS

To simplify remote file access a set of FORTRAN callable subroutines,
NFAR's are provided. The routines build, send, and interpret DAP
me~sages for the user. The basic functions provided by the user
interface are reflected in the NFAR's to effect remote file access.
The NFAR's accomplish this functionality by communicating with the
cooperating remote task FAL over the network using DAP messages.

57

DELETE FILE
OR EXECUTE
COMMAND FILE
& RETURN
ACCDMP (RESPONSE)

OPEN FILE
& RETURN
ATTRIBUTES

REPEAT
OR ABORT
TRANSFER

Figure B-1. FAL State Diagram

58

WRITE
DATA
TO FILE

FOR CONTROL
I3ET, START
SENDING DATA
MESSAGES TO
USER PROCESS

(

(

(

\'

t'

(

(

(

(

(

l

B3.0 NFT

NFT is an internode file manipulation utility which allows a user to:

a) transfer files to a remote node~
b) retrieve files from a remote node~
c) delete a file at a remote node~
d) execute command files at a remote node~ and
e) submit command files to a remote node for execution there.

NFT calls the NFAR's directly, as user programs do, to perform the
requested operations. It maps commands entered by the user, into NFAR
calls which are interpreted by the FAL process on the remote node.
For example in a network with nodes A, B, and C, a user on node A
c~uld transfer files between: A and B, A and C, or Band C using NFT.

59

APPENDIX C

REVISION HISTORY

A number of significant changes have been ~ade to the Data A~cess
Protocol since its first release. The major differences between DAP
Version 4.1 are:

a. DAP Version 1.0 could not adequately support indexed and ISAM
file access;

b. The format of the operator field has been expanded;

c. The USERID message has been eliminated;

d. The status and error message have been combined;

e. The ACCESS COMPLETE Message has been added;

f. The CONFIGURATION Message has been added; and

(

(

g. The two types of DATA Messages employed in Version 1.0 have
been merged into one DATA Message in Version 4.1. t

While a definite incompatibility exists between Versions 1.0 and 4.1,
numerous steps have been taken to build a more flexible architecture.
DAP Version 4.1 is flexible enough to allow new file access functions
to be added to the protocol framework.

60

(

(!
/

!i

digital equipment corporation

Printed in U.S.A.

