
ECL-3211
Microprocessor Development System

User's Guide

Order Number: MAN-0801-02

PREFACE

This manual describes the features and commands of
Emulogic's ECL-3211 microprocessor development system. It
explains how you can apply this sophisticated system to
develop, test, and modify software and hardware for your
target microprocessor system.

The manual has been written for the experienced designer,
as well as for the newcomer to the field of microprocessor
development.

RELATED MANUALS

Besides the ECL-3211 User's Guide, there are several other
manuals you may wish to reference for additional information
related to ECL-3211 operation. Initially, you may find the
following most useful:

Chip Supplements to the ECL-3211 User's Guide

Each supplement provides microprocessor specific information
the user will need for emulating his/her target.

ECL-3211 Microprocessor Development System Installation Guide

This manual explains how to install the complete ECL-3211
system. Configurations for board installation and cabling
are included, as well as a section on diagnostics. The
software section of the manual contains information about
formatting and initializing diskettes, and how to boot the
operating system. Also described are frequently used
commands. This manual describes installation procedures for
modified systems as well (e.g., ECL-3211-AMR and
ECL-3211-AMS) •

Emulogic Relocatable Macro Cross Assembler

This guide contains reference material and procedures for
developing source programs to be assembled by the Emulogic
relocatable macro cross assembler. This manual also discusses
the Emulogic linker, which is invoked to link object files
into an executable program file.

iii

Chip Supplements to the Cross Assembler Manual

Each supplement provides chip-specific information for
invoking the Emulogic relocatable macro cross assembler and
linker to produce programs that can be run on the user's
target microprocessor.

Emulogic PROM Burner Utility Program User Guide

This manual explains the features of the PROM burner utility
program and details the procedures for its use.

Introduction to RT-ll (DEC No. AA5281B-TC)

This manual provides you with an overview of Digital
Equipment Corporation's RT-ll operating system - its
features and commands.

PDP-II Keypad Editor User's Guide (DEC No. AAH853A-TC)

The commands and functions of the keypad editor are delineated
in this guide for creating and modifying disk files.

VT100 User Guide (DEC No. EK-VTI00-UG-002)

You can interface with the ECL-3211 via the VT100 video
display terminal. This manual explains its features and
operation.

* * *
Additional manuals providing extensive, in-depth support for
DEC system software are listed in Appendix B. These manuals
should be viewed as library reference material for advanced
system hardware and software topics.

ORGANIZATION OF THE MANUAL

The ECL-3211 User's Guide is organized as follows:

Chapter 1 Introduction

An overview of the ECL-3211 system that briefly describes the
basic features of the system and the advantages of using it
to develop your microprocessor system.

iv

Chapter 2 System Description

A detailed breakdown of the ECL-3211 system into its
hardware and software components.

Chapter 3 General Operating Procedures

An explanation of how you begin using the RT-11 and ECL-3211
systems, and also how you use keyboard functions and modes,
read and modify the ECL-3211 screen display, and enter
commands.

Chapter 4 Memory Management

A description of ECL-3211 system memory and its relationship
to memory in your target system. Also an explanation of how
you can map logical addresses to different physical
addresses, access memory, mOve or relocate a memory segment
to a different memory area, save memory in a disk file,
load a disk file into memory, display and alter memory contents,
or disassemble memory.

Chapter 5 Controlling and Monitoring Emulation

A discussion of ECL-3211 emulation management. It explains
how to set up and use the system's 8 breakpoints to develop
simple-to-complex controls to test and monitor program
emulation on your target, without sacrificing full-speed
operation. This chapter tells you how you can use
switches, counters, external inputs, trace, and phantom
jumps and calls to enhance testing and control. Also
discussed are setting logical entities, stepping through
program execution, and using symbolic debugging.

Chapter 6 Creation and Use of Command Files

A discussion of creation and use of command files for
streamlining repetitive ECL-3211 tasks. Command files can
be used to start up emulation, set parameters for serial
emulations or run a series of test cycles. Specific
ECL -3211 command file characteristics and options
are discussed, including the use of Emulogic FasKeys to
access command file commands and to execute user-designated
command files.

Chapter 7 Command Dictionary

A comprehensive description of each ECL-3211 emulation
system command, including format, function, and examples.
The commands are arranged in alphabetical order for easy
reference.

v

Chapter 8 Command Summary

A quick run-through of all the ECL-3211 emulation system
commands, categorizing them according to related function.

Appendix A ECL-3211 Error Messages

A listing and brief explanation of the error messages you
may encounter while running the ECL-3211 emulation system.

Appendix B DEC System Software Manuals

The library of DEC system software manuals relating to
operation of the ECL-3211.
Appendix C Emulogic Chip Emulation Programs

A table listing the chips supported by Emulogic and the
corresponding ECL-3211 emulation programs.

Appendix D FasKey Menu Summary

A display of all the available FasKey keypad configurations
for fast entry of ECL-3211 commands.

READING THE MANUAL

This manual is designed for both new and experienced users.
If you are a new user, we suggest you read Chapters 1
through 6 to familiarize yourself with ECL-3211 concepts and
facilities. You may wish to refer to the "Command Summary"
(Chapter 8) and "Command Dictionary" (Chapter 7) as you read
these chapters, as well as the Chip Supplement to the
ECL-3211 User's Guide for your target chip.

The experienced user may wish to use the "Command Dictionary"
and the "Appendix D - FasKey Menu Summary" as reference tools
when using the ECL-3211 system.

Once you are familiar with the ECL-3211 system, the ECL-3211
Reference Card, providing brief descriptions of the commands,
can be used as a quick reference to ECL-3211 command syntax.

vi

l,;UNTt;NT::S

Preface •• iii

CHAPTER 1 INTRODUCTION •••••••••••••••••••••••••••••••••••••• 1-1

The User Interface ••••••••••••••••••••••••••••••••••• 1-1
Software Development ••••••••••••••••••• •••• 1-1
Memory Management •••••••••••••••••••••••••••••••••••• 1-2
Full-Speed Emulation ••••••••••••••••••••••••••••••••• 1-2

CHAPTER 2 SYSTEM DESCRIPTION •••••••••••••••••••••••••••••••• 2-1

General Hardware Configuration ••••••••••••••••••••••• 2-1
Display and Keyboard ••••••••••••••••••••••••• 2-1
Electronics Module ••••••••••••••••••••••••••• 2-2
Disk Storage Devices ••••••••••••••••••••••••• 2-2

Hardware Options ••••••••••••••••••••••••••••••••••••• 2-3
Emulation Support Package •••••••••••••••••••• 2-3
High-speed Memory •••••••••••••••••••••••••••• 2-4
EMUNET Multi-User System ••••••••••••••••••••• 2-4

Hardware SuDlDlary ••••••••••••••••••••••••••••••••••••• 2-4
General Software Configuration ••••••••••••••••••••••• 2-4

Cross Assemblers and Linkers ••••••••••••••••• 2-5
Emulation Software ••••••••••••••••••••••••••• 2-5

Software Options ••••••••••••••••••••••••••••••••••••• 2-6
Prom Burner Utility •••••••••••••••••••••••••• 2-6
High-Level Compilers ••••••••••••••••••••••••• 2-6
Communication Software ••••••••••••••••••••••• 2-6
Utility Software ••••••••••••••••••••••••••••• 2-7

Software Summary ••••••••••••••••••••••••••••••••••••• 2-7

CHAPTER 3 GENERAL OPERATING PROCEDURES •••••••••••••••• .3-1

Bringing up the System ••••••••••••••••••••••••••••••• 3-1
Running the Emulation System ••••••••••••••••••••••••• 3-2
Selecting Start-up Command and Data Files •••••••••••• 3-3

Command File Options ••••••••••••••••••••••••• 3-3
Data File Options •••••••••••••••••••••••••••• 3-3
Examples to Illustrate the Options ••••••••••• 3-4

Emulation System Screen Displays •••••••••••••••••••• 3-5
Modes of Operation ••••••••••••••••••••••••••••••••••• 3-13

Alter Mode ••••••••••••••••••••••••••••••••••• 3-13
Command
Emulate
Mapping

Mode ••••••••••••••••••••••••••••••••• 3-13
Mode ••••••••••••••••••••••••••••••••• 3-14
Mode ••••••••••

Step Mode •••••••••••••••••••••
••••• 3-14
• •••• 3-14

Special Key Functions •••••••••••••••••••••••••••••••• 3-15
Use of the FASKEY Capabilities ••••••••••••••••••••••• 3-16

FASKEY 1 Menu •••••••••••••••••••••••••••••••• 3-17
FASKEY 2 Menu •••••••••••••••••••••••••••••••• 3-18
Programmable FASKEYS................. • •••• 3-19
Command File Pause Keys •••••••••••••••••••••• 3-19

vii

CHAPTER 4 MEMORY MANAGEMENT .. 4-1

Introduction ... 4-2
ECL-3211 Memory Characteristics •••••••••••••••••••••• 4-3

External Memory •••••••••••••••••••••••••••••• 4-3
ECL-3211 Memory •••••••••••••••••••••••••••••• 4-3
Memory Speed .. 4-4

Memory }ia.pping .. 4-4
Ma.p Commands .. 4-6

General Map Commands ••••••••••••••••••••••••• 4-6
Internal Map Commands •••••••••••••••••••••••• 4-8
High-Speed Memory Map Commands ••••••••••••••• 4-9

Saving Emulation Parameters •••••••••••••••••••••••••• 4-12
ECL-3211 Map Display Facilities •••••••••••••••••••••• 4-12
Viewing the Contents of Memory ••••••••••••••••••••••• 4-13
Altering the Contents of Memory •••••••••••••••••••••• 4-15
Viewing the Contents of Memory in ASCII •••••••••••••• 4-16
Disassembling the Contents of Memory ••••••••••••••••• 4-17
Saving Data Memory ••••••••••••••••••••••••••••••••••• 4-19
Loading Disk Files into Memory ••••••••••••••••••••••• 4-20
Relocating Mapped Memory ••••••••••••••••••••••••••••• 4-20
Moving Memory Segments ••••••••••••••••••••••••••••••• 4-21

CHAPTER 5 CONTROLLING AND MONITORING EMULATION •••••••••••••• 5-1

Introduction ••• 5-1
Breakpoints •• 5-2

Breakpoint Structure ••••••••••••••••••••••••• 5-2
Setting Actions and Conditions ••••••••••••••• 5-4
Controlling Program Flow ••••••••••••••••••••• 5-8

Halt Action •••••••••••••••••••••••••• 5-8
Pause Action ••••••••••••••••••••••••• 5-9
Phantom Action ••••••••••••••••••••••• 5-9
Command File Action •••••••••••••••••• 5-10

Setting and Clearing Switches •••••••••••••••• 5-10
Controlling Counters ••••••••••••••••••••••••• 5-11
Controlling the Trace Buffers •••••••••••••••• 5-11
Breakpoint Conditions •••••••••••••••••••••••• 5-11
System Conditions •••••••••••••••••••••••••••• 5-12
Target Conditions •••••••••••••••••••••••••••• 5-12
Bit-Test Conditions •••••••••••••••••••••••••• 5-13
Word-Test Conditions ••••••••••••••••••••••••• 5-13
Turning Breakpoints On and Off ••••••••••••••• 5-13
Breakpoint Relationships............... .5-14

Logical •••••••••••••••••••••••••••••• 5-14
Priority ••••••••••••••••••••••••••••• 5-16
Direct Control ••••••••••••••••••••••• 5-17

iix

System Signals ••••••••••••••••••••••••••••••••••••.•• 5-18
Switches/Triggers •.•••••••••••••••••••••••••• 5-18
Counters ••••••••••••••••••••••••••••••••••••• 5-19

Range of Counter •••••••••••••••••.••• 5-20
Counter Modes ••••••••••••••••••••••.• 5-20
Using Counters with Breakpoints •••••• S-21

External Inputs ••••••••••.••••••.••••••.••••• 5-22
Phantom Programs •••••••••••••••••••••••••••••.••••••• 5-22

Phantom Jumps •••••••••••••••••••••••••••••••• 5-22
Phantom Calls ••••••••••••••••••••••••••••.••• 5-23
Conditional Phantom Jumps and Calls -

a Warning •••••••••••••••••.•• 5-23
The Trace Buffer •.•••••••••••••••.•.••••••••••.•••••• 5-24
Setting the Clock Source and Frequency ••••••••••••••• 5-26
Setting Logical Entities •••••••••.••••••••••••••••••• 5-27
Starting Emulation ••••••••••••••••••••••••••••••••••• 5-27
Stepping Through a Program •••••••••••.••••••••••••••• 5-28
Using the Symbolic Debugger •••••••••••••••••••••••••• 5-28

CHAPTER 6 CREATION AND USE OF COMMAND FILES ••••••••••••••••• 6-1

Introduction ••• 6-1
Creating Command Files ••••••••••••••••••••••••••••••• 6-3

Creating a Command File under RT-11 •••••••••• 6-3
To Run a Stored RT-11 Command File ••••••••••• 6-4

Creating ECL-3211 Command Files •••••••••••••••••••••• 6-4
Creating an ECL-3211 Command File
Under RT-ll Edit ••••••••••••••••••••••••••••• 6-5
Creating an ECL-3211 Command File
Using the ECL-3211 LOG Command ••••••••••••••• 6-S
Running a Stored ECL-3211 Command File ••••••• 6-6

ECL-3211 Command File Characteristics and Options •••• 6-8
Pauses

The Command File Pause (CF/P)
Command •••••••••••••••••••••••••••••• 6-8
To Interrupt Execution of a
Command File ••••••••••••••••••••••••• 6-8
To Pause during Emulation •••••••••••• 6-9
Command File Error Display ••••••••••• 6-9
Use of Control Keys During a
Command File Pause ••••••••••••••••••• 6-9

Command File Comment Lines ••••••••••••••••••• 6-9
Prompting For Command Line Input ••••••••••••• 6-10
Use of the ESC Key •••••••.•.•.••.•••••••..••• 6-10
Use of the Keyboard Bell by a Command File ••• 6-10
Changing the Command File Extension Default •• 6-11
Viewing the Contents of a Command File ••••••• 6-11
Terminating Command File Execution ••••••••••• 6-11
Calling a Command File as a
Breakpoint Action •••••••••••••••••••••••••••• 6-12

Glossary of ECL-3211 Command File Mnemonics •••••••••• 6-14
Programmable FASKEY Access to Command Files •••••••••• 6-16
Command Files Used to Run Diagnostics -
An Example using Control and Command Files •••••••••• 6-17

CHAPTER 7 ECL-3211 MDS COMMAND DICTIONARY •••.••.•.•.•..••••. 7-1

Command Usage •• 7-1
Command Syntax Conventions 7-1
ECL-3211 Commands (in alphabetical order) •••••••••••• 7-4

CHAPTER 8 CO~D SUID1ARY ••••• 10 ••••••••••••••••••••••••••••• 8-1

Memory Management Commands ••••••••••••••••••••••••••• 8-1
Emulation Management Commands ••••••••••••••.••••••••• 8-S
Screen Management Commands ••••••.•.••.••••••••....•.• 8-8
Command File Management Commands ••••••••••••••••••••• 8-9
Miscellaneous Commands ••••.••••....•••••••.•••..•.••• 8-12

APPENDIX A ECL-3211 EMULATION SYSTEM ERROR MESSAGES ••••••••• A-l

APPENDIX B DEC SYSTEM SOFTWARE MANUALS •••••••..•..••••.••.•• B-l

APPENDIX C EMULOGIC MICROPROCESSOR EMULATION SOFTWARE ••••••• C-l

APPENDIX D FASKEY MENU SUMMARY •••••••.•.••••.•••••.•.•.••••• D-l

APPENDIX E LIST OF FIGURES •••••••••••••••••••.•••••••••••••• E-l

APPENDIX F LIST OF TABLES ••.•••••••••••••••••••••••••••••••• F-l

x

CHAPTER 1

INTRODUCTION

The ECL-3211 microprocessor develop.ent system provides
easy-to-use, and yet, sophisticated facilities for software
development, and for full-speed, in-ciruit emulation of
microprocessor-based applications.

As a universal development system, the ECL-3211 is capable
of emulating a variety of microprocessors. Its
software-driven design enables you to change development
support from one microprocessor to another by loading
software for the new chip and plugging in an Emulation
Support Package pod for that microprocessor family. No
hardware, other than the pod, need be changed to support
different microprocessors.

The system is built around Digital Equipment Corporation
(DEC) hardware and software. It utilizes PDP-based, 16-bit
processors, and standard DEC terminals and peripherals.
DEC's RT-ll operating system and utilities provide support
for your program development.

THE USER INTERFACE

Your interface with the ECL-3211 is via the system's video
display terminal. When the system is processing in the RT-ll
keyboard monitor, the terminal keyboard accepts any RT-ll
command. If you are running ECL-3211 emulation software, you
can enter ECL-3211 commands, data, and cursor directives.

When you load emulation software, the terminal changes its
display to a split-screen format to monitor your target
system and the program you execute during emulation. You can
modify memory contents and register values directly on the
screen via ALTER mode. (The system has several operation
modes that determine which functions you may perform.)

SOFTWARE DEVELOPMENT

You can develop your software on the system's PDP-II
computer by using the file management and text editing
features of the DEC RT-ll operating system. Emulogic
provides a relocatable macro cross assembler for each
supported microprocessor. PASCAL and C compilers are also
available for some microprocessors.

Emulogic's PROM Burner Utility allows you to convert
debugged object code to a variety of formats compatible with
various PROM programmers.

1-1

,

MEMORY MANAGEMENT

The ECL-3211 map facility enables you to use ECL-321l memory
and Emulogic high-speed memory in conjunction with the
memory in your target system. The high-speed memory is
.available to ensure emulation at the full-rated speed of
your target chip.

Memory contents can be altered directly at the keyboard,
relocated to a new logical address range, stored on disk, or
reloaded from disk.

The ROM simulation feature allows you to restrict access to
a segment of memory to read-only operations during
emulation. When you are not emulating, you can still modify
the memory contents at the keyboard.

The Disassemble Memory facility is also available to enable
the user to disassemble memory contents.

FULL-SPEED EMULATION

To emulate your target system, you connect the ECL-3211
system with a chip-specific Emulation Support Package pod
directly to the target board in place of the target
microprocessor. The ECL-3211 effectively becomes the target
microprocessor. By using Emulogic high-speed memory, you can
emulate at the full-rated speed of the target chip. Various
facilities are available to monitor and control emulation
without degrading target performance.

Program flow can be controlled by setting one to eight
78-channel breakpoints. Each breakpoint may be defined as a
logical function: it performs a specified set of actions
when the logical state of the system equals the logical
state described by the breakpoint's logical conditions. Each
condition can be set to 1 (asserted - true), 0 (disasserted
- false), or X (don't care). All breakpoints are transparent
to the target system. They do not steal any time, space, or
interrupts from the target.

Breakpoints may be used independently, or they may be
concatenated, using logical switches, to increase the number
of possible trap conditions. The trap conditions you can
define are literally endless.

The "phantom" breakpoint feature adds even more versatility
to your development tools. This feature allows you to jump
to coded instructions, or patches, that you have inserted in
memory without changing any in-line code. If need be, you
can access up to eight patches, one per breakpoint.

The 511-record trace buffer stores address, data, port,
status and control line information. The trace functions as

1-2

a logical state analyzer, monitoring the status of the
target chip, as well as the status of eight internal inputs
(located on the pod). By using breakpoints to turn the trace
on and off, you can perform pre- and post-triggering to
capture only relevant data.

Two trigger outputs on the pod can be used to trigger or
synchronize external instruments such as oscilloscopes,

. or stand-alone timing analyzers.

Program measurement is provided by two 31-bit counters that
may be used as timers, cycle counters, instruction counters,
or breakpoint-tripped counters. Since these function at
full speed, no correction factors are needed.

Memory images, trace records, externally generated serial
data, and command sequences can be stored in disk files for
analysis or for later emulations.

Symbolic debugging allows the user to substitute symbols for
hex values in commands.

Use of the Emulogic FasKey facility allows coded keystroke rapid
entry of ECL-3211 commands and keystroke access to user-designated
command files.

All of these features are explained in detail in the following
chapters.

1-3

i

. r----.

CHAPTER 2

SYSTEM CONFIGURATION AND FUNCTION

The Emulogic ECL-3211 Microprocessor Development System (MDS)
consists of several hardware and software components. The modular
packaging of these components permits you to customize a system
that fits a particular set of requirements. The ECL-3211 HOS is
based on the popular Digital Equipment Corporation (DEC) LSI-ll
family of microprocessors. Emulogic provides hardware and software
packaged for a variety of LSI-II system configurations. This chapter
describes the types and functions of the ECL-3211 HOS modules.

GENERAL HARDWARE CONFIGURATION

Typically, an ECL-3211 HOS station consists of:

• An ASCII-type video display and keyboard unit

• An electronics module

• A magnetic disk data storage device

The features of these items, as supplied by Emulogic, Inc. are
described in the following sections.

DISPLAY AND KEYBOARD

The display module consists of a molded cabinet housing an 80-
character by 24-line video display screen. At the rear of the
cabinet are a power switch, fuse, and board-edge connections for
the keyboard and electronics modules. The keyboard consists of a
sloped, detached molded case on which are mounted two keypads.
The large central keypad contains mostly the alphabetic, numeric
and special character keys. There are also terminal and screen
cursor control keys in this keypad. The layout of keys in the central
keypad is similar to the common typewriter key arrangement. A small
keypad is located on the right of the keyboard. The keys in this
keypad have been programmed to perform special ECL-3211 IFasKey"
functions which enable quick entry of ECL-3211 commands. Operation
and maintenance for the display and keyboard modules are described
in the terminal operator's guide packed with' your system. Appendix 0
at the back of this manual displays the special keypad configurations
for the IFasKey" command entry mode •

2-1

ELECTRONICS MODULE

The electronics module is housed in a compact rectangular cabinet.
The front panel is plain and contains no controls or indicators.
At the back of the cabinet are a power switch, a fuse, and an access
door to the circuit boards containing the major system electronics.
The boards are held in place and connected electrically by the Q-BUS
(LSI-ll bus) "backplane" asseDlbly which faces the rear door.

The boards are grouped on the backplane by function. As viewed from
the rear of the cabinet, these groups occupy upper left, central left,
upper right, and lower full-w1dth areas. The board groups represent,
respectively:

• DEC LSI-II family general-purpose computer circuitry
(4-5 boards, upper left)

• EMUNET DMA and DATACOM circuitry (optional, 2 boards,
central left)

• EMULOGIC hiah-speed meDlory (HSM) (optional, 1-4 boards,
upper right)

• EMULOGIC Map and Control circuitry (2 boards, lower
fu1l-w1d th) •

The half-width boards (called dual-size) each occupy two backplane
connectors of a backplane slot. Full-width boards (quad-size) occupy
four connectors each. In a normal configuration, only the left side
connectors supply data and address bus lines; the right side connectors
supply direct-current power only.

Multi-pin connector sockets
edges of SoDle boards accept
disk or accessory modules.
permits necessary cables to

DISK STORAGE DEVICBS

on the outward (nearest the cabinet door)
connecting cables to other boards and to
An adjustable opening at the door bottoDl
extend beneath the door when it is closed.

One or more magnetic disk storage devices can be connected to the DEC
controller board in the electronics Dlodule.
The devices available are flexible diskette (floppy disk) drives or
hard-platter cartridge disk drives or both.
The device types offer a wide range of cost,data storage quantity,
access speed, and Dledia portability options.

The diskette drive offered by Emulogic, Inc. is a 2-unit model.
The Dlolded front panel has a wide horizontal recess in which the two
access doors are Dlounted side-by-side. Each latching door opens to
accept a standard 8-inch diskette. When a diskette has been inserted
and the door closed, the loaded unit is ready for access. On the back
of the cabinet are a power switch and a 40-wire ribbon cable to join
the drive to the DEC controller board in the electronics module.

2-2

The hard-platter cartridge drive offered by Emulogic, Inc.' has a
molded front panel containing a long horizontal slot-like recess
concealing the air intake. A smaller horizontal recess above the
intake contains two pushbuttons (yellow) and two status lights
(white, red). A large latching access door on the top of the cabinet
opens into a spindle well to receive the disk cartridge. A cartridge
must be inserted, the access door closed, and the "LOAD" button
pressed to ready the drive for access. On the back of the cabinet
are a power circuit-breaker and multi-pin sockets to connect the data
and control cable from the disk controller in the electronics module.

Instructions and maintenance information for the particular disk drive
or drives on your system are contained in the operator's guides pro­
vided with those modules.

HARDWARE OPTIONS

Your ECL-3211 MDS station may have one or more Emulogic, Inc.
hardware options to expand the capabilities of the system. A modular
Emulation Support Package (ESP) pod can be added to permit real-time,
full-function microprocessor emulation. High-speed memory boards can
be added in 16 k-byte increments to allow full-speed emulation using
large development programs. The EMUNET multi-user hardware lets up
to 15 ECL-3211 MDS stations use the disk resources of a PDP-II or VAX
11/7XX or compatible host computer.

EMULATION SUPPORT PACKAGE

The EMULOGIC Emulation Support Package (ESP) is a custom micro­
processor emulation kit. It includes a microprocessor-specific pod
with connecting cables and a copy of appropriate driving software.
The ESP pod is the emulation hardware interface required to link the
basic ECL-3211 MDS station to a target system. The pod consists of a
molded case containing the microprocessor (chip) emulator, chip sup­
port, and signal sensor circuitry. Along one outer edge is a row of
BNC-type connectors; two for trigger output signals and eight for
input sense signals. From one end of the pod extends a short twisted­
pair ribbon cable, terminated with a DIP plug, to be inserted in the
microprocessor socket of the target circuitry. From the opposite end
of the pod extend a pair of long 4o-wire twisted-pair cables to be
inserted in sockets of the EMULOGIC Map and Control boards in the
electronics module. The ESP pod allows continuous reading of the
microprocessor status as well as some target conditions. ESPs are
available for many commercially available microprocessors.

2-3

HIGH-SPEED MEMORY

EHDLOGIC high-speed memory (HSK) modules are dual-size boards loaded
with 16 or 32 k-byte blocks of random access memory (RAM). HSK boards
are mounted in the electronics module of the ECL-3211 MDS and are
"mapped" via the .ystem's mapping facility. The high-speed read and
write access cycles of these memory modules perait full-speed emulation
of any available microprocessor. In addition, one or more boards of HSK
can be designated as read-only memory (ROK) to simulate running the
development program from an in-target fixed program store. When creating
and testing large microprocessor development programs, particularly in 16-
and 32-bit applications, HSK modules allow fast and realistic emulation
conditions.

EKUNET MULTI -USER SYSTEM

Eaulogic's EKUNET system hardware permits several ECL-3211 MDS stations
to share disk resources on a "host" computer system. The system hardware
consists of a pair of dual-size boards and cabling to join the boards to
each other and to link the stations (satellites) and host. (Emulogic, Inc.
supplies the host-resident EMUNET hardware and software packages for
RSX and VAX/VMS operating systems as well as some configurations of
PDP-II computer systems.) When an ECL-3211 MDS station is used as a
multi-user satellite, its local disk storage requirements can be reduced
or eliminated. Thus, for sites where multiple ECL-3211 MDS stations are
used, the EKUNET multi-user system provides an added measure of resource ~.
efficiency and data manageability.

HARDWARE SUMMARY

The display and keyboard, electronics, and disk drive modules form the
core of the EMULOGIC ECL-3211 Microprocessor Development System. With
appropriate software, this basic system can be used to develop control
software for most of the currently available microprocessors. Addition
of an emulation support package (ESP) and emulation software allows you
to test the control program in real-time with your target hardware.
Bmulogic's high-speed memory (HSK) permits full-speed emulation of large
and very large programs with the ECL-3211 MDS. For Emulogic, Inc. system
users with several ECL-3211 MDS stations, cost savings in disk resources
and time savings in data file management may. be realized through the
EMUNET multi-user hardware and software options.

GENERAL SOFTWARE CONFIGURATION

There are several modules of the ECL-3211 MDS system software, each of
which provides specific control and support capability. There are the
Eaulogic Macro Cross Assemblers and Linkers that provide mnemonic coding
capability -- identical to the language provided by the microprocessors' ,~

2-4

original manufacturers -- for microprocessor system development. There
are ECL-3211 MOS microprocessor emulation programs which -- with an
appropriate ESP -- allow full speed emulation and run-time monitoring
as well as interactive testing and debugging utilities. Modular format
offers ease of installation and maintenance, cost effectiveness, and
conservation of system resources. The following sections briefly des­
cribe typical EMULOGIC software modules installed in an ECL-3211 MDS.

CROSS ASSEMBLERS AND LINKERS

The purpose of the EMULOGIC Macro Cross Assembler and Linker packages
is to allow you to create microprocessor system development programs

•

•

•

Using the mnemonic assembler. language originally designed for
the microprocessor

Taking advantage of the power and built-in features of the DEC
MACRO-II language and assembler

Assembling and linking numerous sub-programs (sections) into
a single 1oadab1e module.

Familiar mnemonics, combined with macro-level syntax, speeds develop­
ment time and reduces the frequency of coding errors. The assembly
and linking processes produce fully-resolved LDA-format code which can
be loaded and executed in the ECL-3211 MOS. Thus, the EMULOGIC Macro
Cross Assembler and Linker package carries the control programs for
microprocessor system development from the design phase to "live"
emulation readiness. The Cross Assemblers and Linkers run within the
DEC RT-ll operating system environment or under RSX and VMS using RT-ll
euaulators.

EMULATION SOFTWARE

The most visible of Emu1ogic, Inc.'s software modules, the ECL-3211
MOS emulation software is responsible for control of all emulation
related functions. This software processes all set-up commands prior
to running an actual emulation. It handles all ECL-3211 MDS commands,
including those entered interactively and those contained within
"command files." Emulation software manages the mapping facility,
interpretation of signals and data passing to and from the ESP pod, and
control of emulation breakpoints. You can request memory disassembly
and instruction traces through the emulation software. Finally, the
emulation software provides the means for pre- and post-emulation file
management. Like the Cross Assemblers and Linkers, the emulation soft­
ware is designed to run within the DEC RT-l! operating system environ­
ment. The remaining chapters of this manual are primarily devoted to
instructing you in the capabilities and use of the ECL-3211 MDS and the

!' emulation software.

2-5

SOFTWARE OPTIONS

There are software options that allow program development in high-level
languages (C and Pascal), conversion of memory image files to PROM
or EPROM formats, and inter-system data communication. These software
kits permit additional tailoring of your system to meet particular
systea configurationS or production needs. The available EMULOGIC
software options for the ECL-3211 MDS are described briefly in the
following sections.

PROM BURNER UTILITY

The Prom Burner utility program offered by Emulogic, Inc. converts
completed microprocessor memory image files to suitable formats
for ROM chip encoding. After completing the assembly and linking
of a program (usually after successful emulation, as well), the Prom
Burner utility prepares the LDA-format code for one of the many avail­
able ROM, PROM, or EPROM devices. This EMULOGIC Boftware utility
produces a "ROM map," accepts parameters to define the characteristics
of the device of choice, and -- finally -- generates a load-ready image
for burning into the ROM device. The program thus prepared can be fed
to any commercially available PROM encoding devices over the RS-232
port of the ECL-3211 MDS. Details of this utility and its use are pro­
vided in the Emulogic PROM Burner Utility User's Guide.

HIGH-LEVEL COMPILERS

Emulogic, Inc. offers the C and Pascal programming language compilers
by Whitesmith, Ltd. for system development of selected microprocessors.
Using the power of thse high-level languages, you can produce LDA-format
load modules for emulation or ROM encoding. Particularly when system
development time rather than compactness of code is of higher priority,
the efficiency and convenience of high-level language could offer
productivity gains. Your EMULOGIC product represesentative can advise you
if there are C and Pascal cross compilers available for the microprocessor
model you have chosen for your target system.

COMMUNICATION SOFTWARE

Emulogic, Inc.'s EMUNET software package resides in a host computer
and includes a control program to manage high-speed serial data trans­
fers between the host's disks and the multl-user hardware network.
The primary function of this program is to process disk access requests
(for storage or retrieval) transmitted by the ECL-3211 MDS stations
(satellites). Processing includes keeping track of each request,
translating virtual file requests to actual data file designations,

2-6

and passing requests and data between the EMUNET and the disk control
mechanism of the host. The EMUNET hardware and software make it pos­
sible for all ECL-3211 MOS satellites on the network to use host disk
space, transparently accessing their files through the concept of

- "virtual" data volumes. The EMUNET Multi-User system is described in
detail in the Emulogic EMUNET Multi-User System Guide.

UTILITY SOFTWARE

A number of EMULOGIC utility programs are available to simplify micro­
processor system development act-ivities. In this category are the FXC
file transmit-and-receive, TERM terminal emulator, and BINHEX data
converter utilities. Using FXC software, you can send data to or
receive data from practically any computer system that handles ASCII
data. The TERM program allows an ECL-3211 HOS station connected to a
host computer to act as a normal terminal of that host (that is, the
MOS can support log-on, log-off, and all general system functions and
services available under the host computer). BINHEX is a program which
converts ASCII data to binary or LDA-format or LDA to ASCII. These
utilities offer the means to pass microprocessor development programs in
either LDA- or ASCII-format between computers, including the ECL-3211
MOS. In addition, you can use an ECL-3211 HOS station as the terminal
of a larger host computer.

SOFTWARE SUMMARY

Much of the power of the ECL-3211 HOS is derived from EMULOGIC soft­
ware packages. The principle packages, Macro Cross Assemblers and
Linkers and the emulation software, support development of micro­
processor memory image files as well as comprehensive real-time
emulation and monitoring. The PROM Burner software converts programs
from LDA-format to ROM-ready code. For selected microprocessors,
Emulogic, Inc. offers C and Pascal cross compilers to make programming
even more convenient. EMUNET software drives the multi-user
system capability, providing cost savings and enhanced data management
for sites with mUltiple ECL-3211 HOS stations. The FXC, TERM, and
BINHEX utilities make possible conversion or transmission of programs
and data between systems. You can select the main and optional EMULOGIC
software packages that will properly support _the application of your HOS
stations.

2-7

CHAPTER 3

GENERAL OPERATING PROCEDURES

This chapter discusses the procedures for bringing up your
ECL-3211 in the DEC RT-Il operating system and running the
ECL-3211 emulation software.

The emulation system has its own unique screen display and
modes of operation. These are described , along with the
special keyboard functions you may use while running the
emulation system.

BRINGING UP THE SYSTEM

The ECL-3211 emulation system is started by powering up the
hardware and then bootstrapping the RT-Il operating system.
Power up the hardware in this order:

(I) Video terminal

(2) Data storage device

(3) Electronics module

NOTE: If you plug all three of these into a power
strip, you need only turn on the power strip.

Next, install the RT-II system diskette in unit 0 (the lefthand
door), if using the RX02 double density floppy diskette drive.
If using the RL02 hard disk drive, mount the RT-II system disk.
Once the disk or diskette is mounted, the ECL-3211 system will
automaticall~ bootstrap the RT-II operating system.

NOTE: If for some reason the system does not bring up the
RT-II system, press the BREAK key and type 173000G
after the @ prompt displayed on the video screen.

When the software is up and running, it displays:

RT-llSJ VOS.OO

System configuration information may appear with this system
message, depending upon the contents of the indirect command file
STARTS. COM which is automatically invoked when RT-II is
bootstrapped. For example your terminal might display

3-1

RT-llSJ V05.00

.SET TT: NOQUIET

.SET TT: SCOPE

.SET EDIT KED

.ASS LS LP

.SET LP: CSR-176500

• SET LP: VECTOR-300

• SET KMON INn

.ASS DYO: HLP:

which shows the various system configuration parameters set
up by STARTS.COK.

Note the command ".ASS DYO: HLP:". You must assign the physical
device which contains file LOXXOO.HLP, the Emulogic Help file.

The • prompt indicates that the interactive keyboard monitor is
now functioning. Any keyboard monitor command may be entered in
response to this prompt. Refer to RT-II documentation for
further information about the RT-II system features and
facilities.

RUNNING THE EMULATION SYSTEM

To start up the ECL-32II emulation system from the keyboard
monitor, enter:

where:

RUN LOXXOO.SAV(cr>

LOXXOO is the chip emulation program name (maximum 6
characters)

(cr> is a carriage return

For example,

RUN LOOIOO.SAV(cr>

executes the emulation program for the 8048 microprocessor.

NOTE: If you are operating with RT-II Version 5
software, you may omit the .RUN portion of
the command and simply enter the Emulogic
program name followed by a carriage return.

All L-series emulation program files with the

3-2

.SAV extension are
operating system.
with L-nwnbers for
may rename them if

designed to run on the'RT-11
Emulogic has named these files
our own filing purposes. You
you wish.

Refer to Appendix C for a list of available
microprocessor-specific emulatioQ programs.

SELECTING START-UP COMMAND AND DATA FILES

The next step in bringing up the system occurs with the screen
display of the ECL-3211 prompt:

(* or COMMAND FILE)(,~ or DATA FILE)<cr>

Your response to this prompt establishes ECL-3211 start-up
c~nditions. Your options are as follows:

If you respond with a <cr>:

If you respond to the prompt by entering a carriage
return, the ECL-3211 software will run using both'
default start-up command and data files.

If you respond with the <cr> to the above prompt, and
you have not established a default start-up command
file (LOXXOO.COM), the ECL-3211 will bring up an unfilled
emulation display screen and will display the message
"COMMAND FILE NOT FOUND - LOXXOO.COM". The system is
ready for you to initiate start-up from the command
line.

COMMAND FILE OPTIONS:

You have a choice of two responses for command file, if
you have not answered with a <cr>:

If you enter a named command file, the system will
use the commands in the named command file for
start-up. (Refer to Figure 3.1.)

If you enter an "." for command file option,
the system takes the command file status (including the
active command file name, command file stack information,
and default command file extension) from the appropriate
data file and invokes this status at start-up. (In other
words, you start where you left off.)

DATA FILE OPTIONS:

You have a choice of two responses for data file, if
you have not answered the prompt with a <cr>:

3-3

If you enter a comma followed by a named data file
(,FILE.DAT) , the system loads the named data file
emulation parameters and data for start-up. (Refer to
Figure 3. 1.)

If you enter ",*" for data file option, the system
creates a blank data file - LOXXOO.DAT. You start up
with a clean slate.

FIGURE 3.1 INITIAL START-UP PROMPT SCREEN

Some examples to illustrate the options:

Example 1 - To start up with a clean slate:

,*<cr>

Example 2 - To start up with emulation parameters where you
left off:

*<cr>

3-4 •

Example 3 - To start with named files:

TEST1.COM,VARY2.DAT<cr>

Example 4 - To start with default files LOXXOO.COM and LOXXOO.DAT:

<cr>

Emulation System Screen Display

Following response to the start-up prompt, the emulation system
screen display appears. The program is initially in the COMMAND
mode, as indicated in the lower right-hand corner of the screen.
The cursor appears on the command input line, labeled "C:" in the
lower left-hand corner of the screen. You may now enter any
ECL-3211 command. Refer to Chapter 7 - The Command Dictionary
for a complete description of each command and its syntax.

The ECL-3211 emulation system screen display lists the current
status of the target microprocessor in six specific areas on the
screen, as indicated in TABLE 3.1 on the following page. All areas
except the register area and the central scroll area have the same
format regardless of the target chip. The formatting of the register
area (in the upper left-hand section of the screen) and the central
scroll area (in the center portion of the screen) varies in design
according to the characteristics of the specific target chip.

3-5

TABLE 3.1 EMULATION SCREEN DISPLAY OF CHIP STATUS

SCREEN AREA

Registers
(top left)

Memory Map
(top center)

Trace Status
(upper right)

Breakpoints
(far upper right)

Central Area
(center)

Command Input and Mode

Lower Left:

C:

S:

E:

Lower Right:

TYPE:

FREQ:

FasK:

HODE:

3-6

INFORMATION DISPLAYED

Contents of general and
working registers and status
of flags

Memory range and type of
memory currently mapped

Trace ON or OFF and
identification of breakpoints
controlling trace

Status of system's eight
breakpoints: ON/OFF/UNDEF
(undefined)/address/LOGICAL

User selected displays -
contents of memory, trace buffer,
breakpoint parameters, settings
for switches and counters

User command input. When cursor
is positioned here, any legal
ECL-3211 command may be entered.

System status and error messages

System messages

Name of microprocessor

Optional clock frequency

Current FasKey operation

Current system operating mode

Initially, unless prefilled by a start-up command file and data
file, the emulation screen display shows all values as zero,
blank or undefined. For example, Figure 3.2 illustrates the
screen display for the Z80 microprocessor as it first appears.
However, by issuing various ECL-3211 commands, you can modify
these values.

FIGURE 3.2 INITIAL SCREEN FORMAT FOR A Z80 CHIP
(No parameters have been set)

3-7

In Figure 3.3, a Z80 user has requested a display of memory
beginning at address 800. The system is in command mode.

FIGURE 3.3 Screen Display of Z80 Memory Range

3-8

In Figure 3.4 below, a Z80 user is setting the parameters for
breakpoint 2. Note that the switches and registers have been set,
high-speed memory is mapped, traces have been set, and six break­
points have been defined and are turned on.

FIGURE 3.4 Screen Display of Breakpoint Setting (Z80 Chip)

3-9

In Figure 3.5 below, a Z80 user has requested a display of the
instruction trace buffer.

FIGURE 3.5 Trace Buffer Display (Z80 chip)

3-10

Figure 3.6 demonstrates a screen display of user-set switches
and counters for an 8-bit Z80 microprocessor. The user is setting
the values for switches 1, 2, and 4.

FIGURE 3.6 Setting Switches
(8-bit Chip)

3-11

The screen display of memory range demonstrated in Figure 3.7
displays memory contents as four hex characters, since the target
microprocessor (68000) is a 16-bit chip.

FIGURE 3.7 Screen Display of Memory Range for
16-Bit 68000 Microprocessor

3-12

MODES OF OPERATION

The ECL-3211 emulation system always runs in one of six possible
operating modes. The current mode is always displayed in the
lower right-hand corner of the screen (MODE:). TABLE 3.2
summarizes the six emulation system modes. Each mode is
discussed in the text which follows the table summary.

TABLE 3.2 EMULATION SYSTEM MODES OF OPERATION

MODE

ALTER

COMMAND

EMULATE

MAPPING

STEP

HELP

ALTER MODE

ENABLES

Modification of screen values via the keyboard

User command input

Execution of target chip program

Management of mapped memory (logical relocation
of segments of memory)

Stepping through target chip program, instruction
by instruction or breakpoint by breakpoint

Provides access to the ECL-3211 HELP file for user
assistance in command syntax and operation of the
ECL-3211 system.

The system is placed in ALTER mode by depressing either the PFI or
the PF2 key. While the system is operating in the ALTER mode,
the user can modify values directly from the keyboard on either
the Memory or Breakpoint screen displays or in the register
information area.

The system accepts any changes you have made when you exit ALTER
mode and return to COMMAND mode. To exit ALTER mode, press the RETURN
key. The system returns to COMMAND mode and places the cursor on the
command line.

To move through the Memory and Breakpoint displays, use the arrow
keys. The memory display can be scrolled backward or forward using
the arrow keys; the breakpoint display does not scroll.

COMMAND MODE

ECL-3211 system commands may be entered on the command input line
(C:) whenever the system is processing in COMMAND mode. COMMAND
mode is the processing default mode to which the system returns

3-13

when operations in an alternate mode have completed.

NOTE: ENTERING A CARRIAGE RETURN WHILE THE
SYSTEM IS PROCESSING IN A MODE OTHER
THAN STEP MODE RETURNS THE SYSTEM TO
THE COMMAND MODE. THE SYSTEM AUTOMA­
TICALLY RETURNS TO COMMAND MODE UPON
COMPLETION OF AN EMULATION RUN.

While in COMMAND mode, any command may be entered using the
"FasKey" functions of the COMMAND mode. These functions allow
for quick input of commands using Emu10gic's specifically pro­
grammed "FasKeys" on the keypad at the right-hand side of the
keyboard. For a more detailed discussion of the available
FasKey capabilities, see the topic USE OF THE "FASKEY" CAPABILI­
TIES at the end of this chapter. (APPENDIX D - FASKEY MENU SUMMARY,
at the back of this manual, provides illustrated menus and submenus
for use of the FasKey Keypad.)

EMULATE MODE

The system enters EMULATE mode when you enter the EMULATE command.
The system begins executing the development software code in the
ESP microprocessor.

To exit from EMULATE mode and return to command mode, press the
RETURN key. The system will also end emulation and return to
COMMAND mode when a breakpoint HALT action is tripped.

MAPPING MODE

Whenever you enter a MAP command, the ECL-3211 enters MAPPING
mode. MAP mode enables you to map (logically relocate) Emu10gic
high-speed memory or DEC internal memory into various segments of
logical address space in the target microprocessor.

STEP HODE

The STEP command places the ECL-3211 system in STEP mode. During
STEP mode, the target chip program "steps" through program
execution one instruction at a time. Depending on how you enter
the STEP mode, the ECL-3211 will either step through
the program one instruction cycle at a time or until a breakpoint
with a pause, halt, or command file action is encountered (and will
then halt emulation and update the screen display).

Each time you press the RETURN key, the system executes the next step
(instruction or breakpoint). To exit from STEP mode, enter any other
ECL-3211 command.

3-14

HELP MODE

The HELP command places the ECL-3211 system in the HELP mode. HELP mode
gives the user access to the system help file for assistance in ECL-3211
command syntax and operation of the system. The help file (LOXXOO.HLP)
must reside on the pseudo device, "HLP:". To assign this pseudo device,
you use the RT-11 ASSIGN command. For example, enter ASSIGN SY: HLP:
if the help file resides on your booted device or, enter ASSIGN DY1: HLP:
if the help file resides on floppy drive 1, etc.

Entering the HELP command directly from the command line will bring up
the ECL-3211 help file. The HELP command is described in detail in Chapter
7 - The Command Dictionary. The specially programmed comma (,) FasKey on
the separate keypad on the right-hand side of your keyboard may also be
used to access the help file. (See Use of FasKey Techniques later in
this chapter). To exit HELP mode, press the RETURN key.

SPECIAL KEY FUNCTIONS
=====================

Several keys on the terminal keyboard can perform special
functions, such as modifying the current mode or moving the
cursor on the screen display. Table 3.3 lists and describes each
of the special key functions. As indicated by this table the
cursor can jump from character to character, from parameter
field to parameter field or from one screen display area to
another.

TABLE 3.3 SPECIAL KEY FUNCTIONS

KEY FUNCTION DESCRIPTION

<cr> (RETURN)

Character Jumps

t (up arrow)

t (DOWN ARROW)

Returns ECL-3211 to COMMAND mode
from any mode (except STEP mode)

When in STEP mode, <cr> executes
next step.

Moves cursor up on the Memory,
Map, Trace, and Breakpoint displays.
When at the top of the register field,
LOOPS TO BOTTOM OF THE REGISTER FIELD.
mOVES UP ONE LINE IN help FILE DISPLAY.
cAN BE USED TO SCROLL BACK IN THE
mEt10RY AND tRACE DISPLAYS.

mOVES CURSOR DOWN ON THE mEMORY,
mAP, tRACE, AND bREAKPOINT DISPLAYS.
wHEN AT THE BOTTOM OF THE REGISTER
FIELD, LOOPS TO TOP OF REGISTER FIELD.
mOVES DOWN ONE LINE IN THE help FILE
DISPLAY. cAN BE USED TO SCROLL FORWARD
IN THE MEMORY, TRACE, AND DISASSEMBLY
DISPLAYS.

3-15

TABLE 3.3 SPECIAL KEY FUNCTIONS (cont.)

KEY FUNCTION

~ (right arrow)

~ (left arrow)

DESCRIPTION

Moves cursor right on alterable displays.

Moves cursor left on alterable displays.

Parameter Field and Area Jumps

PF1 (up-area jump)

PF2 (down-area jump)

USE OF FASKEY TECHNIQUES

Moves cursor up from command line to
central scroll area to register display, then
back to command line. Scrolls forward one
page in the HELP file.

Moves cusor from register field to
central area, down to command line,
then back to the register field again.
Scrolls back one page in the HELP file
display.

The separate keypad on the right-hand side of your keyboard has
been programmed to perform special Emulogic "FasKey" functions
when the ECL-3211 is in command mode. The FasKey functions allow
you to enter commands through a single or few keystrokes. Keys 0-9,
minus ,comma, period, and ENTER on the small keypad have programmed
special functions depending upon the particular FasKey menu,
FasKey 1 or FasKey 2, in which you are operating.

The minus (-) key allows you to move back and forth between the
two FasKey menus. The comma key gets you the applicable HELP file
for the FasKey operation you have selected.

To display the FasKey menue in the central area, press the comma (,)
key on the small keypad. The menu label "FasKey I" will appear in
the lower right hand corner of the display screen on the FasK line.
The menu showing the FasKey 1 keystroke functions appears in the central
area of the display. To view the FasKey 2 menu and select a FasKey 2 func­
tion, press the minus key on the keypad.The system presents the FasKey 2 menu
in the central area and "FasKey 2" on the FasK line.

Figure 3.8 demonstrates the menu for use of keys in the FasKey 1 command
mode. Refer to Appendix D of this manual for a complete display of all
the available FasKey keypad configurations.

3-16

o
CLEAR *

FIGURE 3.8 THE FASKEY 1
COMMAND MENU

Submenus are provided for the following FasKey command keys (shown with
asterisks in the above display) on the FasKey 1 configuration of the
keypad:

o - CLEAR
2 - SET
3 - MEM (Memory commands)
5 - CF/LOG (Command File commands)
6 - DIS (Disassemble Memory commands)
8 - BR (Breakpoint commands)
9 - TR (Trace commands)

The submenus provide you with subset arguments of the basic commands
and with additional FasKey capabilities related to the specific
commands.

3-17

Figure 3.9 displays the basic FasKey 2 command menu. The FasKey 2 menu is
accessed by pressing the minus key on the FasKey 1 menu.

FIGURE 3.9 THE FASKEY 2 MENU

There are no submenus which branch from the FasKey 2 menu.

3-18

Programmable FasKeys

A feature of the command file FasKey software allows you to program
FasKeys 0-9 to call user-created command files so that you may have
your most frequently used command files "at your fingertips". You
may assign FasKeys 0-9 for each default command file extension.

Directions for use of this capability have been provided in Chapter 6,
CREATION AND USE OF COMMAND FILES.

Command File Pause Keys

Four keys on the keypad have special functions when, and only when the
ECL-3211 is in command file pause state (whether the pause has been
user-commanded or system-induced due to an error in command file
processing). The four CF/P keys are the minus, comma, ENTER and period
keys. The minus key causes the command file to "backspace" and reexecute
the last command. The comma key calls up HELP information in the central
scroll area to direct the user in the actions of the CF/P keys. The
period key causes the command file to resume processing. The ENTER
key ends the particular command file being paused, closing the file and
removing it from the command file stack.

Refer to Chapter 6 CREATION AND USE OF COMMAND FILES for a complete
discussion of the command file pause.

3-19

CHAPTER 4

MEMORY MANAGEMENT

Introduction:

Through its memory mapping facility, the Emulogic ECL-3211
microprocessor development system reserves memory for two
functions: microprocessor software development and microprocessor
emulation. This chapter discusses emulation memory management.
Emulation memory consists of low and high speed memory modules which
can supplement or supplant any memory in your target system.

Emulation memory can be "mapped" in the ECL-3211 MDS with byte
resolution (in 8-bit emulators) or word resolution (in 16-bit
emulators). Memory mapping allows your target memory to be brought
"inside" the ECL-3211 system for easy access and control. This can be
done to provide emulation memory when none may exist in the current
target system. MDS emulation memory can also save the cost and time
involved in burning ROM or PROM in-target memory. Mapped memory not
only provides additional memory for emulation, but it also ensures
that the microprocessor can operate at full speed during emulation,
allowing emulation to be transparent to the target.

An additional capability allows ECL-3211 high-speed memory to simulate
ROM to mimic the target environment during software development. The
ability to simulate ROM also enables you to proceed with software
development and microprocessor emulation in the absence of physical target
memory.

During emulation, the contents of any RAM or simulated ROM
location can be dynamically modified by entering new memory
values via two available change memory commands, the SET command
and ALTER mode •

The ECL-3211 Microprocessor Development System not only provides
a wide range of mapping options, it also offers many mapping and
memory status displays. Upon command, the ECL-3211 will display
screens showing current map assignments and the current contents
of memory.

Any of the commands discussed in this chapter may be entered using
the FasKey capability of the command mode. We suggest that you first
familiarize yourself with the command syntax as demonstrated in this
chapter. Refer to Appendix D at the back of this manual for the specific
FasKey keypad configurations which apply to memory management.

4-1

ECL-3211 memory management also allows you to halt emulation
and to write current emulation parameters to a data file, so that
emulation can be resumed at a later time using the currently set
parameters for the processor registers, map settings, breakpoint
definitions, and clock frequencies.

For increased data memory capacity or to save data memory for
subsequent emulation sessions, memory images in either your target
or the ECL-3211 can be stored on disk and later reloaded, as
necessary.

The memory management capabilities of the ECL-3211 also make it
possible for you to relocate portions of memory to a
different region of logical address space. Relocation can be
directed to address either DEC internal memory or Emu10gic's
high-speed memory by changing the logical address range
specified by the current map.

All of these memory management capabilities will be dis­
cussed in this chapter in sequence as follows:

o ECL-3211 MDS Memory Characteristics
- DEC Internal Memory
- Emu10gic High-Speed Memory

o Memory Mapping - Internal and High-speed
- The Commands
- The Displays

o Saving Emulation Parameters

o Viewing the Contents of Memory

o Altering the contents of Memory

o Viewing the Contents of Memory in ASCII

o Disassembling the Contents of Memory

o Saving Data Memory

o Loading Disk Files into Memory

o Relocating Uapped Memory

4-2

ECL-3211 MEMORY CHARACTERISTICS

There are two memory sources available while using the
ECL-3211 system :

- External memory

- ECL-3211 memory.

External Memory

External memory is located in the target system. The
characteristics of this memory, such as type (absolute RAM
or ROM) and rate of access are dependent on the configuration
of the particular target.

ECL-3211 Memory

ECL-3211 memory is internal to the Emulogic microprocessor
development system. There are two types of memory available
for mapping in the ECL-3211:

o DEC internal memory

o Emulogic high-speed memory.

DEC internal memory has from 8K to 64K bytes of available RAM
memory (depending upon your system's configuration).
Internal memory cannot be designated as ROM and may not be able to
support microprocessor emulation at high clock rates.

Emulogic, Inc. provides 2K bytes of high-speed memory (HSM) as a stan­
dard feature of all ECL-3211 Map boards. This memory, the system's MAP 0,
is sometimes all the high-speed emulation memory required. MAP 0 cannot
be designated as ROM.

Additional Emulogic high-speed memory modules are available in 16k and
32k byte increments. This memory, in addition to supporting
high-speed emulation of large development programs, can optionally be
designated as ROM memory. As simulated ROM, the memory segment is
identified as "read only" by the microprocessor. However, for development
purposes, the you can alter the contents of memory through the ALTER mode
and SET command, whieh will be discussed in the "Commands" section of
this chapter.

Please Note:

A very important characteristic of ECL-3211 memory mapping is
that:

THE SYSTEM ASSUMES ANY MEMORY REFERENCE THAT IS NOT
IN A "MAPPED" SEGMENT IS A REQUEST FOR AN ABSOLUTE
ADDRESS IN EXTERNAL (TARGET) MEMORY.

4-3

Memory Speed:

The three types of emulation memory available to your target
microprocessor using ECL-3211 - internal, high-speed and
target - may operate at different speeds. Consequently,
full-speed emulation of the target system can be affected by the
type of memory accessed.

Internal DEC memory is typically slower than external target
memory, limiting real-time execution to 1-2 MHz. While this
may be quite adequate for some applications and processors,
many targets require faster cycle rates. You can supplement
target size and also ensure full-speed emulation by using
Emulogic high-speed emulation memory. Either internal or
high-speed memory can be used with external memory, as long
as the clock frequency is set to accomodate the slowest memory
device.

NOTE: for the rema~n~ng discussion of memory in this
manual, we will refer to DEC memory as "internal
memory" (or INT memory) and Emulogic high-speed
emulation memory as "high-speed memory" (or HSM).

MEMORY MAPPING

Memory mapping allows your target memory (program and data)
to be brought "inside" Emulogic ECL-3211 memory. This may be
done to provide emulation memory when none may exist on the
target board or when target memory is ROM or PROM and it is
desirable to test changes and to avoid costly and time-consuming
burning of ROMS and PROMS. Mapping also provides a convenient
way to evaluate a variety of memory organization stratagems.

Mapping facilities enable you to map either internal memory
or high-speed memory.

The segment to which memory is mapped may be as small as one
byte (for 8-bit emulators) or one word (for 16-bit emu­
lators), or as large as the entire logical address space of
the microprocessor (providing that sufficient memory space
has been installed in the ECL-3211). You must keep in
mind, however, that when mapping a particular segment (map
board) of memory, that if only one byte of the segment is
mapped, the rest of memory in that particular segment
becomes unavailable for mapping. Mapping a particular range
allows access to the mapped area. Segments can quickly be
re-mapped to redefine memory.

On start-up, one HS memory map, MAP 0, is defined across the
logical range of 0-7FF as RAM type memory. (See Figure 4-1.)
All other HS map segments installed must be defined by range
and type as either RAM or simulated ROM.

4-4

FIGURE 4.1 HIGH-SPEED MAPPING AT START-UP

Initially~ all HS map segments are defined by default as
RAM. HS map segments~ other than MAP O~ may be redefined as
ROM to simulate target ROM. The capability to simulate ROM
enables you to experiment with various memory configurations
while designing target software and hardware. It also allows
you to proceed with software development and microprocessor
emulation in the absence of a physical target chip.

4-5

~-1AP COHMANDS

ECL-3211's map commands are divided into three categories:
general, internal, and high-speed map commands.

On initiation, memory is defined as High-speed HAP O. HAP 0
is the 2K of high-speed RAM memory available on the ECL-3211 map
board. To turn on and map internal memory and to access any
additional high-speed memory boards, you enter the
appropraite map commands as described below.

All map commands are shown with required input capitalized. The
entire command may be entered or, to save time, the abbreviated
capitalized portion of the command may be entered. The symbol
<cr> indicates that you must enter a carriage return
immediately following the command.

General Hap Commands

Entering HAP mode will display (in the central scroll area)
definitions of current available memory(ies). To enter
HAP HODE,enter:

HAp<cr>

To clear all current map declarations,enter:

HAp CLear<cr>

To turn on all curent map declarations,enter:

HAp ON<cr>

To turn off all map declarations so that mapping is now
external (all addresses refer to absolute addresses in the
target memory), enter:

MAp OFF<cr>

Figure 4.2 shows you a screen with all mapping cleared.

4-6

FIGURE 4.2 MAP CLEAR COMMAND

4-7

Internal Map Commands

To turn on DEC INT memory mapping, enter:

MAp INT<cr>

MAp INT allows changes to be made to the range and offset of
the internal memory map. The heading INT MAPPING is
displayed in the center of the ECL-3211 display screen at
the top of the screen. Please note that all emulation
memory is initially defined as HS (high-speed) at start-up.

Please note that the range of available internal memory will
depend on your DEC system's configuration. A system with
the minimal 8K can only be mapped in the address range O-lFFF;
whereas a system with expanded DEC memory of 64K bytes can be
mapped in the address range of O-FFFF. (Be very careful to map
internal memory within the boundary of your particular system
since the ECL-3211 does not "size" internal memory. Attempting
to map beyond the available range for internal memory mapping
could interfere with DEC memory allocated for system functions.)

Once the MAp INT command is recognized by the system, subsequent
map commands are assumed to refer to internal memory until a map
high-speed command is given to alter the mapping status. The sys­
tem cannot map to internal and high-speed memory simultaneously.

To map a particular address range starting at a physical
address offset in internal memorY,enter:

MAp AAAA-BBBB=OFFSET<cr>

Where AAAA-BBBB represents the particular address range and
OFFSET represents the physical starting address in internal
memory.

Please Note:
The OFFSET address is not an absolute address in DEC memory,
but starts at 0 and ranges upward to 8 or 64K depending on
the system you have purchased. It is defined relative to the
start of that portion of DEC memory that is available for emulation.

Figure 4.3 displays a screen response to the HAP INT command of a
system with 8K of available DEC internal memory.

4-8

FIGURE 4.3 THE MAP INTERNAL COMMAND

High-Speed Memory Map Commands

Initially, only high-speed memory MAP 0 (built into the
basic ECL-3211 system) is mapped and active on start-up.
Any additional high-speed map boards must be turned on (by
command) and mapped by you. Map numbers are assigned
by the system for as many as 4 additional high-speed memory
boards displaying maps 0 through 4 on the map display.

To evoke high-speed mapping,enter:

MAp HS<cr>

The heading HS MAPPING will now appear in the ECL-3211 dis­
play in the center at the top of the screen. The available
HS memory maps are displayed ready to be mapped. If high­
speed memory was mapped previously, the previous high-speed
map parameters will display.

4-9

Once the MAp HS command is recognized by the system, subse­
quent map commands are relative to high-speed status.

Individual high-speed maps may now be turned on.

To turn individual HS memory maps on, a memory mapping
declaration must be entered:

MAp AAA-BBB=N (type)

where AAA-BBB is the range of memory to be mapped on map N
and (type) is the optional input of memory type RAM or ROM.
If type of memory is not designated, the system will default
to RAM.

For example, to turn on address range 0-7FF in HS memory map
1 and to type the mapped range as simulated ROM, you would
enter:

MAp 0-7FF=1 ROM

(Remember the exception of HS HAP 0, which cannot be declared ROM).

WARNING: Results are unpredictable if you assign the same address to
more than one active map.

To clear a specific HS map, enter:

MAp N CLear<cr)

where N represents the number of the high-speed map being
cleared. The map numbers appear in the ECL-3211 map display
in the central scroll area under the heading "OFFSET/fl".
Clearing a map declaration turns it off and removes its
beginning and ending addresses from the "FROM" and "TO"
portions of the map display. Any HS map declaration that is
cleared defaults to RAM if it had been previously declared
ROM.

To turn OFF a specific HS map (but retain its definition
for resetting the map to ON), enter:

MAp N OFF<cr)

where N represents the number of the tIS [!lap being rtea~tivated.

To turn ON a specific HS map, enter:

MAp N ON<cr)

where N is the number of the specific HS map being activated.

4-10

The definition of the map, previous to being turned OFF, will
be reactivated; however the map declaration may be redefined to
create new parameters.

To Type High-Speed Memory:

High-speed map segments may be declared RAM or ROM jn a
command independent of setting the mapped memory range,
Either before or after the range is declared, enter:

MAp N ROM(or RAM)<cr>

where N equals the number of the HS map segment. (Please
remember that MAP 0 cannot be declared ROM.)

This command can be used to change the type of memory of
a mapped segment of HS memory.

Figure 4.4 demonstrates a command to map addresses 8000-FFFF
of high-speed map 3 as ROM. (68000 microprocessor)

FIGURE 4.4 ~PING HIGH-SPEED MEMORY AS SIMULATED ROM (68000 chip)

4-11

SAVING EMULATION PARAMETERS

You can save current emulation parameters (map settings as
well as the contents of registers, counters, and breakpoint
definitions) for a future emulation.

Emulation parameters may be saved via two methods. "SAVE
FILENAM" will save parameters without exiting. "EXIT/S"
or "EXIT/S FILENAM" will save current parameters and also
exit from ECL-3211 screen handler, back to RT-11 monitor.
These parameters can be re-established at start-up time by
specifying the name of the "saved" data file.

To save current map settings, enter:

EXIT/S FILE.EXT<cr>

The "s" option saves the emulation parameters in a data file
(shown above as FILE.EXT). If no data file is specified, the
data will be stored in a default data file, LOXXOO.DAT. If
the filename is specified, but no extension is given, the
ECL-3211 system will append a default extension ".DAT" to the
file name when writing the file to disk.

ECL-3211 MAP DISPLAY FACILITIES

You can display the characteristics of all available memory
maps by entering the command:

MAp<cr>

Refer to figure 4.5 for a display of the map command.

The map display shows:

FROM

TO

OFFSET/II

the starting logical address of the
particular mapped segment

the ending logical address of the
mapped segment

for internal memory -- the starting
physical address of the particular
mapped segment

for high-speed memory -- the HS
segment map number (the number of
the HS map board)

4-12

SIZE

STAT

ACC

TYPE

the physical memory allocation in bytes
(For DEC internal memorYt the display
will show 8K/64K. The system will not
provide an exact size of available
internal memory. You must be aware of
the available internal DEC memory in your
particular system.)

the activity status (on/off) of the maps

type of access (RAM or ROM)

INT (internal) or HS (high-speed) memory

FIGURE 4.5 DISPLAYING MAP PARAMETERS

VIEWING THE CONTENTS OF MEMORY

To view the contents of memorYt use the MEM command. The
contents of memory are displayed in the central scroll area t
beginning at the address location input with the MEM command.

4-13

For 8-bit processors, 128 bytes of memory are displayed; for
16-bit processors, 128 words. (If you enter an odd 16-byte/word
memory argument, the system will default to the last even
16-byte/word memory location.)

When memory is displayed, the arrow keys can be used to scroll
the display. Pressing the UP-ARROW key scrolls backward 1 line;
pressing the DOWN-ARROW key scrolls forward 1 line.

8048 Users Please Note:
When emulating the 8048 family of microprocessors
(the 8048, 8035, 8039, 8049 and 8749 devices), a different
set of memory commands applies for displaying and setting
memory. Refer to the Emulogic 8048 User's Guide Supplement
for complete instructions.

To view a particular location in memory, enter:

MEM AAAA<cr>

where AAAA is the starting address for the memory area you
want to display. In the central scroll area, 128 bytes/words
of memory will be displayed beginning at the specified address.

In Figure 4.6 below, memory is displayed beginning at address 800.

FIGURE 4.6 MEMORY DISPLAY - The MEM Command

4-14

ALTERING THE CONTENTS OF MEMORY

ALTER mode allows you to make changes directly to
memory contents, either RAM or simulated ROM, without using
commands.

With memory displayed in the central scroll area, depressing
the PF1 key once will position the cursor at the first
byte/word in memory. Use the ARROW KEYS to move the cursor
about the display to the location at which you want to make
changes. Type the desired changes directly. Pressing the
carriage return updates memory with the input changes, brings
the system back to command mode and moves the cursor to the
bottom of the screen to the command line (C:).

All memory displays are updated on the screen after a halt or
pause in emulation.

To Alter the Contents of Memory Using the SET Comand:

You can also use the SET command to alter the contents of
one or more locations of memory.

Suppose you want to change the contents of address 500 to
the value C3 (hex), enter:

SEt ME~1 500=C3<cr)

Location 500 will now contain the value C3. However,
suppose that you also want to change the contents of the
contiguous locations 501 and 502 to "12" and "34",
respectively. Instead of entering three separate commands,
you can change the contents of contiguous addresses 500
through 502 by entering:

SEt MEM 500=C3,12,34<cr)

If you want to change the contents of an entire block of
memory to the same value of "FF", for example, you can enter
the SEt command showing a range of memory:

SEt MEM 300-380=FF<cr)

4-15

TO VIEW THE CONTENTS OF MEMORY IN ASCII:

The /A switch (ASCII switch), used with the MEM command, displays
the contents of 64 hex bytes/words of memory and their ASCII
equivalents. The beginning address for display should be given,
using the command format:

MEM/A AAAA<cr>

Please note:
If you enter an odd 16-byte/word memory argument,
the system defaults to the last even 16-byte/word
boundary.

Figure 4.7 below demonstrates a MEM/A display beginning at address 220.

FIGURE 4.7 DISPLAYING MEMORY IN ASCII AND HEX

4-16

TO VIEW MEMORY CONTENTS IN QUICK FOID1AT

The quick switch (Q) can be used with the MEM command to display
the contents of up to three memory ranges. Each specified range
can be one or more bytes/words. To request a quick format display
of memory, enter a command in the format:

ME/Q aaaa-bbbb(,cccc-dddd,eeee-ffff)

For example, any of the following are legal quick format requests:

ME/Q 1234
ME/Q 10-20,3346,100-500
ME/Q 567,890,ABCD

If the range or ranges you specify will display more memory data
than can fit within the central area, the system will automatically
scroll the display records. Use the NO SCROLL key to stop and
start the data display.

The Q switch can be used in conjunction with the ASCII display
described previously. Either the A or Q switch can be placed first
in the command.

DISASSEMBLING THE CONTENTS OF MEMORY

The DISASSEMBLE MEMORY feature enables you to disassemble the
contents of memory. When you enter:

DIs AAAA

the ECL-3211 disassembles and then displays the next 8
instructions in memory, beginning at the given address AAAA.
You can move through the displayed disassembled memory using
the keyboard movement arrow keys.

The example in figure 4.8 shows disassembled memory starting
at the address 400.

If you define the DIS memory range as AAAA-BBBB,by entering:

DIs AAAA-BBBB

and range AAAA-BBBB is more than 8 instructions, the DIS dis­
play will scroll through the memory range. The NO SCROLL key
may be used to stop the scroll action so that a selected por­
tion of the range can be viewed. Pressing the NO SCROLL key
again resumes scrolling.

The starting memory address AAAA must be an instruction
boundary, or the memory disassembly command is meaningless.

4-17

FIGURE 4.8 Disassembling Memory

You can also send disassembled memory to a printer or write
it to a file.

To Print Disassembled Memory:

To print disassembled instructions, starting at address AAA
and ending at address BBB, enter:

DIs PRint AAA-BBB<cr>

4-18

To Write Disassembled Memory to a File:

To write disassembled instructions, for an address range,
to a file on a given disk device, enter:

DIs WRite DEV:FILE.EXT AAA-BBB<cr>

where AAA-BBB is the address range.

Please note: The ALTER mode cannot be used with a DIS memory
display.

SAVING DATA MEMORY

Data from any memory location can be stored in a file on a
floppy diskette or hard disk, depending on your system
configuration. The WRite command writes out the contents of
memory in DEC LDA format at the specified address. The current
map settings are in effect. Depending on the region of
memory that you specify and the current map, you can store
data that is currently in external, internal or high-speed
memory.

To Store Contents of Memory

The contents of memory can be written directly to a storage
file.

Enter the following:

WRite FILE.EXT AAA-BBB<cr>

For example, to write the records for address 800-BFF to the
file XGA.LDA you would enter:

WR XGA.LDA 800-BFF<cr>

These records would be retrieved from internal, high-speed or
external memory depending upon the current map configuration.

To Write a Program Residing in Non-contiguous Segments to Disk

You can also write a program that resides in non-contiguous
segments of memory to a disk file using the WRite command.

For example,

WRite YDF.LDA 500-7FF,2000-21FF<cr>

writes a non-contiguous program into file YDF.LDA • You can
enter up to 60 characters on the command line.

4-19

LOADING DISK FILES INTO MEMORY

Disk files that have been written in LDA format using the
WRite command and files containing previously assembled and
linked programs can be loaded into memory with the LOad
command. These files already contain the absolute address at
which the file contents (hexadecimal data) must be placed.
Reloading these images into memory is subject to the current
map.

For example, to reload disk file XGA.LDA, which contains the
memory segment written to disk in the previous example,
enter:

LOad XGA.LDA<cr>

Regardless of the current map specifications, the file
contents will be loaded into the same logical addresses at
which they were located prior to being transferred to disk,
for example, 800 through BFF in external memory.

If the map has been changed during the interim, the file
contents will be loaded into addresses 800 through BFF in
external, internal or high-speed memory depending on the
mapping configuration at the time of the load.

RELOCATING MAPPED MEMORY

You can relocate internal memory or high-speed memory to a
different region of logical address space by changing the
logical address range specified in the current map.

For example, suppose that internal memory is mapped

OOOO-FFF=OOOO RAM

If the target system references a subroutine in logical
addresses 100-3FF, it actually accesses internal memory
locations 100-3FF.

You can relocate this subroutine to logical addresses
800-AFF without changing its physical location in internal
memory by redefining the map as, for example,

0700-16FF=0000 RAM

The program is stored in internal memory 100-3FF, but now
the target must send address requests in the range 800-AFF
to read it.

4-20

This same procedure can be applied to relocate high-speed
memory. Suppose data is stored in high-speed memory segment
0, which is mapped into logical addresses 000-7FF:

000-7FF=0 RAM

You can relocate this segment to another region of logical
address space by redefining the map. For example to map
this segment of memory into addresses 500 through CFF,
enter:

MAp SOO-CFF=O<cr)

MOVING MEHORY SEGMENTS

The HOVE command allows you to physically move blocks of data
to a new stated address.

To move a block of data, enter:

MOve AAAA-BBBB CCCC<cr)

where AAAA-BBBB is the address range (inclusive) of the data to
be moved and CCCC is the starting address for the desired new
location.

For example:

High-speed memory is mapped for the range 100-7FF, and
you wish to move external memory segment 30-4F to
high-speed memory beginning at address 100, you would
enter the following:

MOVE 30-4F 100<cr)

4-21

CHAPTER 5

CONTROLLING AND MONITORING EMULATION

Introduction:

Once you have developed software to run on your target
system, you can load the program into emulation memory and
execute it in a real-time environment. Because the ECL-3211
ESP emulates the target microprocessor, you can test and control
signals on the ESP and also manipulate software execution.

Eight breakpoints enable you to control program flow, system
signals, and the system trace. They are easy to use, and yet
more versatile and sophisticated than most emulator breakpoints.
Each breakpoint consists of actions and conditions. When setting
a breakpoint, you specify various conditions that must be met
before the breakpoint will trip, and actions that will result
from the breakpoint trip.

The ECL-3211 has two counters, four switches, and eight external
inputs. These control breakpoints and external circuits, count
events, measure time intervals, and monitor external system
levels.

The "phantom" breakpoint feature enables the ECL-3211 to
inject a patch of coded instructions into the executing
program as a result of a breakpoint trip. The purpose of a
phantom is to introduce changes to your program during
emulation without actually modifying the original program
code.

Other facilities discussed in this chapter include:

o The ECL-3211 trace, which enables you to store and
then retrieve status information about the system
and external inputs at important moments during
emulation.

o The step feature for "stepping" through program
execution on the ESP system.

o The clock and frequency control, which enables you
to emulate at either the speed of the target clock
or ECL-3211 clock.

Refer to the Command Dictionary (Chapter 7) for alphabetized,
complete descriptions of the commands discussed in this chapter.
Any of the commands may be entered using the FasKey capability
of the command mode. We suggest that you first familiarize
yourself with the command syntax as demonstrated in this chapter
and in the Command Dictionary. Refer to Appendix D at the back of
this manual for specific FasKey keypad entry menus.

5-1

BREAKPOINTS

The ECL-3211 provides eight sophisticated breakpoints for
trapping faults and monitoring program flow. Each breakpoint
can:

o Monitor ESP processor emulation at full speed,

o Respond to any combination of the ESP processor's
address, data, and control lines,

o Respond to any combination of ECL-3211 internal
timers, switches, and counters,

o Respond to any combination of eight external
inputs (on pod), thereby functioning as an
internal logic analyzer

o Control program flow by halting, pausing, or
injecting phantom machine code

o Control any combination of ECL-3211 internal timers,
switches, and counters (and thereby other breakpoints)

o Control two external trigger outputs (on pod) to scopes,
logic analyzers, or other user hardware

o Control storage of program and processor information in
the ECL-3211 trace buffer

o Execute a user-created command file

Initially when you bring up the emulation system, all eight
breakpoints are turned off. You can set and activate one or
more breakpoints. They may be used independently, or may be
linked by logical relationships, switches, or breakpoint
priority to perform even more complex decisions.

For all their power, the breakpoints are easy to understand
and use. The key is to first understand the structure of the
breakpoint and the relationship of one breakpoint to another.

Breakpoint Structure

A breakpoint has two major components, an action table and a
condition table. The action table contains actions to be
performed when the conditions, which correspond to various
target and microprocessor signals, are met. You may display, add,
or remove entries in these tables with the BREAK command.

5-2

For example, to display the action and condition tables
for breakpoint 3 in the central scroll area, type

BR 3<cr>

Figure 5.1 illustrates sample action and condition tables for
breakpoint 3.

FIGURE 5.1 DISPLAYING A SPECIFIC BREAKPOINT'S PARAMETERS

5-3

During emulation, the ECL-3211 monitors all the signals
relating to breakpoint decisions, and compares them to the
contents of the condition tables for all eight breakpoints.
If the signals match all of the conditions in a breakpoint's
condition table, the ECL-3211 performs all the actions
specified in that breakpoint's action table.

(The number of conditions that may be specified is extensive.
For example, for the 8048, the ECL-3211 monitors 51 processor
signals and 14 ECL-3211 system signals -- a total of 65
signals. Within a breakpoint, each of these signals can be
specified independently. There are 3.6 x 10A 19 unique combi­
nations that can be formed from 65 binary signals. However,
since each condition may be specified in the breakpoint as 1
or 0, there are 10A 31 unique combinations of conditions
that may be specified to trip the breakpoint.)

Setting Actions and Conditions

Breakpoint actions and conditions are set with the BReak
command. The format for setting a breakpoint is

BReak N ACTIONS/CONDITIONS

The letter N represents the breakpoint number 0-7. The slash
(/) separates actions from conditions in the command.

For example:

BR 2 CF/PC=102(cr)

Breakpoint 2 is set to execute a user-created command file
when the first byte or word of an instruction is fetched from
address 102.

Actions are added to a breakpoint's action table by entering
the appropriate action codes separated by commas or spaces.
For example, entering

BReak 0 HL,ST(cr)

adds the HALT and SET TRACE actions to the action table for
breakpoint O.

You can delete an action from the table by specifying the
action code with the) prefix. For example,

BREAK 0 >ST(cr>

deletes the ST (SET TRACE) action from the action table
for breakpoint O.

5-4

To set breakpoint conditions, enter a slash (I) mark
after the last action followed by your string of condition codes.
Separate the conditions with the appropriate separator charactor as
shown in Table 5.1. Each time you specify a breakpoint, the system
modifies that breakpoint's actions and condition tables.
Displaying a given breakpoint will present the actions and
conditions of the current tables. The "greater than" (») character
is used only to delete a condition previously specified for a breakpoint.

TABLE 5.1 BREAKPOINT CONDITION SEPARATORS

CHARACTER CONDITION STATE

, or + Set to logical 1

Set to logical 0

) Null

BREAKPOINT RESPONSE

Respond when condition is
true (logical 1). These
separators are optional for
before the first condition in
a condition string.

Respond if false (logical 0).
Prefix is invalid for condi­
tions accepting word or mask
arguments.

Deletes condition from table.

Initially, there are no actions in the action table, and
each condition is designated in the display by "X"

Consider the following command that sets breakpoint 1 for
8048 emulation.

BR 1 HL,STSWl,ENCOl/pC=102,TO,RD

This command sets a breakpoint to execute three actions if the
three conditions are met. If the instruction at address 102 is
fetched and the TO flag and the RD line are active (1)
simultaneously, then the breakpoint halts emulation, sets logical
switch 1 to "1", and enables counter 1. Note that the plus (+)
mark would have the same effect as the commas separating the
conditions in the example above.

If you want to set conditions without also specifying any actions,
you simply precede the string of conditions with the slash (I).

For example:

BR l/COI

This command sets the COl condition to logical 1 (that is,
counter 1 expired) for breakpoint 1.

5-5

NOTE: Our directions for stating a condition assume the
condition to be active, asserted, true and elec­
trically HIGH when the setting for the condition is
logically 1. There are processor specific exceptions
because of variations in hardware design. Please
refer to your microprocessor supplement to this manual
for verification.

Breakpoint Actions
==================

When a breakpoint is tripped, all of the actions in its
action table are executed. The results are valid as of the
beginning of the next processor machine cycle.

There are five types of actions a breakpoint can perform:

o Control program flow

o Control a switch

o Control a counter

o Control the trace buffer

o Execute a command file

The breakpoint actions are listed below in Table 5.2

TABLE 5.2 BREAKPOINT ACTIONS

Action
Mnemonic Explanation
==

CF

HL

PA

Command File: The CF argument, as a break­
point action, halts emulation switching
system control to the default breakpoint command
file (BRn.COM where "n" is the number of the
breakpoint). For information concerning
creation of breakpoint command files, see
Chapter 6 - Creation and Use of Command Files.

Halt: Stop emulation, update the screen display
and go to command mode.

Pause: Stop emulation, update the screen display
and resume emulation.

5-6

TABLE 5.2 BREAKPOINT ACTIONS

Action
Mnemonic Explanation
=======:===~==========

STSW1

STSW2

STSW3

STSW4

CLSW1

CLSW2

CLSW3

CLSW4

CPSW1

CPSW2

CPSW3

CPSW4

ENC01

ENC02

DIC01

Set switch 1: Set logical switch 1 (and thus set
trigger 1).

Set switch 2: Set logical switch 2 (and thus set
trigger 2).

Set switch 3: Set logical switch 3.

Set switch 4: Set logical switch 4.

Clear switch 1: Clear logical switch 1 and thus
reset trigger 1.

Clear switch 2: Clear logical switch 2 and thus
reset trigger 2.

Clear switch 3: Clear logical switch 3.

Clear switch 4: Clear logical switch 4.

Complement switch 1: complement logical switch 1
and thus complement trigger 1.

Complement switch 2: complement logical switch 2
and thus complement trigger 2.

Complement switch 3: complement logical switch 3.

Complement switch 4: complement logical switch 4.

Enable counter 1. Counter one is enabled for
decrementing by cycles, instructions or ESP
processor ticks.

Enable counter 2. Counter two is enabled for
decrementing by cycles, instructions or ESP
processor ticks.

Diasable counter 1.

5-7

TABLE 5.2 BREAKPOINT ACTIONS

Action
Mnemonic Explanation
==

DIC02

DECOI

DEC02

ST

RT

PH=AAA

Diasable counter 2.

Decrement counter 1.

Decrement counter 2.

Set the Trace.

Reset the Trace.

Jump to phantom program or call phantom program.
(For information on the type of phantoms supported
by your microprocessor, refer to the appropriate,
specific User's Guide supplement and to your
processor specific HELP file provided in your
emulation ECL-32ll software.)

Controlling Program Flow

You can set a breakpoint to alter program flow by including
a HALT, PAUSE, PHANTOM or COMMAND FILE action in its action table.
These actions are discussed in the following paragraphs.

HALT Action:

The HALT action (HL) causes emulation to stop. The emulator
retrieves all the information needed to update the display,
including the internal registers and status of the ESP
processor. The ECL-32ll returns to the COMMAND mode. You can then
enter any user command.

Meanwhile, the processor is left in an idling state. The
ECL-3211 utilizes a branch-on-self instruction to prevent the
pin values of the ESP processor from being affected by the HALT.
If you enter the EMULATE command, the ECL-3211 restores
the contents of the processor's internal registers, and
the processor begins executing your program. If you
have changed the values of the registers using ALTER
mode or the SET command, the new values are loaded into the
processor before the new emulation run begins.

5-8

PAUSE Action:

The PAUSE action (PA) is the same as HALT, except that the
ECL-3211 temporarily stops emulation, updates the display
screen, and then automatically restarts the emulation at the
next instruction in the executing program. PAUSE allows you
to view the updated register and status information (including
the central scroll area). However, you will not have the
opportunity to change register values before emulation con­
tinues.

The halt (HL), pause (PA), and command file (CF) actions create
actual breaks in the processor's program flow.

PHANTOM Action:

A PHANTOM action can be one of two types: either a jump or a
call. Whether your emulation software will support a phantom
jump or a phantom call depends upon the particular processor
you are emulating. Emulogic software adjusts for the capabilities
of each processor. Refer to your processor specific Users' Guide
Supplement to determine which action, jump or call, is supported by
your processor.

A phantom jump causes the ESP processor to fetch its next
instruction from the address specified in the breakpoint. It
is exactly the same as inserting an absolute jump instruction
into the program.

A phantom call is the logical equivalent of a subroutine
call inserted at the next instruction after the breakpoint
is tripped.

NOTE: The phantom call is NOT functional with
every processor. Some processors do not have "calls",
and others respond according to conditions peculiar
to those. Refer to the appropriate User's Guide
supplement for information about using calls
with your emulation microprocessor.

When the breakpoint is tripped, the system saves the
return address, and the ECL-3211 injects a jump or call
instruction to the address you have specified. The processor
then executes the machine code you have stored at the
specified address. Just as with any subroutine call, a
phantom subroutine must end with a return instruction to
continue executing the original program. A phantom "jump"
program must be terminated with an absolute jump rather than
a return.

5-9

Suppose that you write a program patch into memory starting
at logical address 750. To set breakpoint 5 to execute a
phantom jump or call to this location when PC=FF, you enter:

BR 5 PH=750/PC=FF<cr>

Refer to "Phantom Programs" later in this chapter for a
detailed explanation of use of phantoms.

COMMAND FILE Action

A breakpoint command may be used to execute a command file when a
specific condition or set of conditions is encountered, thus per­
forming a series of ECL-3211 commands. For example, the
breakpoint command:

BR 2 CF/ADDR=102<cr>

instructs the system to excute the default breakpoint command
file BR2.COM when the processor fetches the instruction at address
102.

Any legal ECL-3211 command may be used in an ECL-3211 breakpoint
command file, thus giving you great flexibility for
manipulating memory and system parameters in response to the
occurence of a user defined condition. The breakpoint command
file may even call another command file. See Chapter 6 for
complete information concerning the creation and use of
breakpoint command files.

Setting and Clearing Switches

Each breakpoint can set, clear, or complement any or all of
the four software switches provided in the ECL-3211. These
switches may be interrogated. after the emulation run, or
used as input conditions to control other breakpoints.

Two of the switches, 0 and 1, are connected to the pod as
trigger outputs. These switches can be used in conjunction
with breakpoints to trigger scopes, logic state analyzers,
logic timing analyzers, and target circuitry. Refer to
"System Signals" later in this chapter for more detailed
information about switches.

5-10

Controlling Counters

Each breakpoint can control either or both of the counters
in the ECL-3211. There are three actions that control the
counters: DECOn, ENCOn and DICOn, where n refers to counter 1
or 2.

The DECO action decrements the specified counter by one each
time the breakpoint is tripped.

The ENCO and DECO actions enable or disable, respectively, the
specified counter respectively. These actions are taken only
if the specified counter is in Interval Timer mode, Cycle Counter
mode, or Instruction mode. Otherwise, these actions are ignored.
When the breakpoint is tripped, the counter is enabled or
disabled as of the beginning of the next machine cycle.

For more detailed information on counters, refer to the
SYSTEM SIGNALS section later in this chapter.

Controlling the Trace Buffer

A breakpoint can also enable the trace buffer to begin
storing machine states, starting with the next state. For
example, entering

BReak 2 ST<cr>

places the trace enable action in breakpoint 2's action
table. When this breakpoint is activated, the trace buffer
begins storing the status of various microprocessor and target
signals. The trace will be active until it is disabled or
emulation is stopped.

Once emulation halts, you can display the contents of the
trace buffer by typing

TRace<cr>

The trace contains information about the previous 511 machine
cycles. It is particularly useful for studying program
instructions and signal status preceding a fault in the
executing program. Refer to the section "The Trace Buffer"
in this chapter for more information about using the trace.

Breakpoint Conditions

As already mentioned, all of the conditions for a breakpoint
must be met (that is, logical AND functional) before the
breakpoint trips and executes the actions in its action
table. The conditions correspond to ESP pod microprocessor
and target system signals. Each of these signals are sampled

5-11

at the target processor's address valid time or data valid time
(depending on the processor's timing) and then compared to
the conditions at the end of the machine cycle.

System Conditions

System conditions refer to ECL-3211 system signals and can
always be included in the breakpoint condition table, regardless
of the particular microprocessor being emulated. They allow
breakpoints to be controlled by switches, counters, and
external inputs. These signals may, in turn, be controlled
by breakpoints, thereby enabling breakpoints to control each
other or even themselves. System conditions are bit-test
conditions as shown in Table 5.3.

TABLE 5.3 SYSTEM CONDITIONS

CONDITION

EXTERNAL INPUTS (0-7)

SWITCHES (1-4)

COUNTERS (1-2)

DESCRIPTION

Allow you to trip breakpoints
based on the state of any signals
applied to the external input
lines.

Provide control either prior
to execution (by setting
switches via keyboard commands)
or during execution (by setting
switches with breakpoints).

Allow breakpoints to respond
to time limits, cycle counts,
instruction counts, or
breakpoint event counts.

Each of these signals is discussed in the text which follows.

Target Conditions

Target conditions are processor specific. (For example, the
address word may be 8, 12, 16, or 32 bits wide. A processor may
or may not have ports. Status and control lines may also vary
among processors.) Refer to the appropriate processor supplement
to this guide for a list of the breakpoint conditions you can set.

5-12

Some microprocessor conditions are bit-test conditions, and others
are word-test conditions.

Bit-Test Conditions

Bit-test conditions are entered in the condition table as 0
or 1. If the table entry is 1, the breakpoint is tripped
when the corresponding signal is 1 and all other conditions
in the breakpoint table are met. If the table entry is 0,
the breakpoint will be tripped when the signal is 0 and all
other conditions are met. Any bit-test conditions which are not
specified for a given breakpoint will appear as "X" on the
breakpoint display. These are inactive and have no bearing on the
breakpoint condition test.

On startup, all breakpoint conditions are inactive and appear as Xs
in the display. This allows you to enter new conditions without
having to keep track of which conditions are already set. If a
breakpoint containing only X's in its condition table is turned on,
it trips on every cycle (subject to priority rules), since its
"conditions" are always met.

Word-Test Conditions

A word-test condition has two forms: word match or bit
mask.

The word match tests for identity between the signals and the
specified word. For example, for an eight-bit data bus, the
eight signal lines are treated as two hexadecimal digits, and
are compared to the two bytes of the condition specification.
If they are equal, the breakpoint will be tripped (if all other
conditions are also met).

The bit mask form allows the inclusion of X's in the test.
The signals are then treated as eight separate bits to be
tested individually against the corresponding bits in the
specified mask. This form can be used to cause a word-test
condition to be asserted over a range of data or addresses.
For example, if you want to trip a breakpoint on every
instruction below FF, you can set the PC (program counter)
condition to PC=MOOOOOOOOXXXXXXXX (for a 16-bit address).

Turning Breakpoints On and Off

Initially when you bring up the emulation system, all of
the breakpoints are disabled. When you set actions and or
conditions for a breakpoint, it is at the same time auto­
matically activated.

5-13

You can clear and disable one or more breakpoints by
entering the BReak command with the CLear option:

BReak N CLear<cr)

For example:

BR 0-7 CL<cr)

clears all eight breakpoints of their current definitions.

You can temporarily turn off one or more active breakpoints
by including the OFF option, instead of CLear.

BR 2 OFF<cr)

turns off breakpoint 2.

To turn the breakpoint back on, later, simply enter

BR 2 ON<cr)

Breakpoint Relationships

Each breakpoint is defined separately and may be
perform independent test and control functions.
breakpoints may also be used in conjunction with
to execute more complex functions.

used to
However,
one another

Breakpoints may be linked to each other in three ways, by:

- logical relationships

priority

- direct control

Logical Relationships

Each breakpoint responds to the logical AND of all its
conditions. If two breakpoints contain the same actions but
different conditions, the action will occur if the
conditions for either breakpoint are met. This represents
the logical OR function. If an action must take place on the
result of a complex logical expression, then one breakpoint
is needed for each OR function in the expression. To use the
breakpoints efficiently, the expression must be reduced to
the form containing the least number of OR functions. The
required form is referred to as the MINTERM or "sum-of-products"
form of the expression.

5-14

In formal notation, the minterm form is described as:

F= ABC+DEF+GHJ

Where + is the OR function. The AND function is represented
by adjacent variables (that is, AB is A AND B).

F represents the fact that the actions will be taken, and the
other variables in the expression represent conditions in the
breakpoints' condition tables. In the above expression, three
breakpoints would be needed.

For example, suppose you want to halt (HL) emulation if
either a read operation (RD) from location 400 or a write (WR)
to location 500 occurs. This could be represented in formal
notation as:

Let A=(PC=400)
B=(RD)
C=(PC=500)
D=(WR)

and F=(HL)

Then F=AB+CD

The final expression contains two terms, thereby requ1r1ng
two breakpoints,for example: BR 0=HLjPC=400+RD and
BR 1=HLjPC=500+WR.

If the condition expression is not in minterm form, then it
must be rewritten so the terms may be allocated to the
required breakpoints. For example, the expression AB(CD+EF),
would have to be factored using the rules of Boolean algebra
to give ABCD+ABEF, which can then be entered into two
breakpoint tables as F=ABCD and F=ABEF.

5-15

Priority

Functions that cannot be implemented directly within a
breakpoint or by the logical OR function between breakpoints,
can be implemented by taking advantage of breakpoint
priority.

WHEN THE CONDITIONS FOR TWO SEPARATE BREAKPOINTS
ARE SIMULTANEOUSLY MET, ONLY THE LOWER-NUMBERED
BREAKPOINT IS TRIPPED.

For example, breakpoint 0 has priority over breakpoint 1.

Using Breakpoint Priority for Condition False:

You can use a breakpoint with no actions in its table to
prevent another breakpoint from tripping until a desired
situation occurs. The most important use of this technique
is to create the equivalent of a "_" prefix (that is, respond
if false) on a word match condition. This cannot be done
directly, because there is no provision for it in the
breakpoint table. However, this prefix can be simulated with
two breakpoints.

For example, set up breakpoint 0 with the word match or mask
condition, but no actions. Then, set up breakpoint 1 with
all its conditions set to X, and with the action that is to
be taken when the word match or mask condition in breakpoint
o fails.

When the word match or mask condition is met, the conditions
for both breakpoints are met. Because breakpoint 0 has
priority, it is tripped, and breakpoint 1 is not. Since
breakpoint 0 has no actions in its table, nothing happens.

When the condition for breakpoint 0 fails, then only the
conditions for breakpoint 1 will be met. Breakpoint l's
action will then occur. In this case, breakpoint 0 inhibits
breakpoint 1 until its condition fails. Breakpoint 1 waits
for that failure, and then trips when it occurs.

To illustrate this technique, let's restrict program flow to
a region in memory. Suppose we want to halt emulation if the
target processor tries to access memory above hex FF. To do this,
set breakpoint 0 for no actions, and set the address lines
bit mask to ADDR=MOOOOOOOOXXXXXXXX (we are assuming a 16-bit
address).

BR O/ADDR=MOOOOOOOOXXXXXXXX

5-16

Also set breakpoint 1 for a halt action (HL) with
no conditions.

BR I=HL

For addresses below hex FF, breakpoint 0 will trip on every
instruction and do nothing. Breakpoint 1, which would
normally trip on every cycle, is prevented from tripping by
priority. For an address above hex FF, breakpoint 0 fails to
trip, thereby allowing breakpoint 1 to halt emulation, as
desired.

Direct Control

The third way to link breakpoints is through explicit
control using software switches and counters, which allow
breakpoints to control each other or themselves. Switches
can be set, cleared, or complemented by breakpoints, and may
also serve as input conditions to breakpoints. For example,
if breakpoint 0 sets a switch that is a condition for
breakpoint 1, breakpoint 0 may explicitly enable breakpoint
1.

Suppose you want to trip a breakpoint at a point in a
subroutine where a fault occurs, but only when the
subroutine is called from a particular location in the main
program. You can set breakpoint 0 to trip at the calling
instruction and to set switch 1 to logical 1 prior to
calling the subroutine. Breakpoint 1 can be set to trip when
both the fault occurs and switch 1 happens to be set to
logical 1. In this situation, breakpoint 0 is activated only
when the subroutine is called from a specific location in
memory, and is used to explicitly control activation of
breakpoint 1. Breakpoint 1 will not trip if the subroutine
is called from some other location.

A switch can also control the breakpoint that sets it. To
trip a breakpoint on only the first occurrence of an event,
you might set a switch from the keyboard (using the SWitch
command) before starting emulation, and also set a
breakpoint to trip when the event occurs and the switch is
set. If you define this breakpoint to also reset switch n
when it trips (with the CLSWn action), then the breakpoint will
trip the first time the event occurs and will inhibit itself
for all future occurrences of the event.

By using a counter, you can perform liN and only Nil
sequences. This can be done by setting a breakpoint with the
DECOn action (decrement counter n) in its action table. Each

5-17

time the breakpoint trips, it will decrement the specified
counter. The breakpoint will trip as long as the counter has
not yet reached zero. The breakpoint is thus enabling itself
for a specific number of times. (Refer to "Counters" later in
this chapter.)

Further uses of explicit control are limited only by your
imagination. With four switches and two 31-bit counters, and
eight breakpoints that may be coupled, there are many
complex control structures that may be set up to accomplish
sophisticated fault isolation.

SYSTEM SIGNALS

In addition to the signals generated by the ESP processor and the
target system, there are several signals generated by the
ECL-3211 which may be used to control breakpoints, measure
program and hardware parameters, and control external circuitry.
The system signals are listed in Table 5.4.

Switches/Triggers

The ECL-3211 has four software switches that can be used to
control breakpoints and two external triggers. These
switches are flip-flops on the ECL-3211 control board that
may be set to a 1 or 0 state, or complemented, from the
keyboard or as the result of a breakpoint action.

TABLE 5.4 SYSTEM SIGNALS

SIGNAL

Switches/Triggers

Counter/Timers

External Inputs

FUNCTION

Control breakpoints and
external circuits

Count events, control breakpoints,
and measure intervals in time,
cycles, or instructions

Monitor external system levels
that are not otherwise provided
for, and use these levels to
control breakpoints

The switches are numbered 1-4, and each responds to a
command or breakpoint according to its number. For example,
to set switch 1 to 1 via the keyboard, enter the SWitch command:

SW 1=1<cr>

5-18

The switch 1 flip-flop will set at a 1 state. To clear
this switch, type

SW l=O<cr)

and the switch will set at the 0 state.

You can complement switch n during emulation by including
the CPSWn action (n=1,2,3, or 4) in the breakpoint action table.

Switches 1 and 2 are switch/triggers connected to
TRIGGER 1 and TRIGGER 2 outputs, respectively, on the pod
assembly. These switches may be used to trigger an external
logic state analyzer, oscilloscope, or target circuitry.

For example, to observe the exact timing of an interrupt
line during a fault condition, a breakpoint may be set to
respond when the fault occurs. If the breakpoint contains
the set switch 1 (STSW1) action and TRIGGER 1 is connected to
a logic analyzer, you can obtain a center triggered record
with 5 nS resolution to determine whether the interrupt
signal is being presented to the ESP processor at the right
time in its cycle.

Another use for the trigger might be to fire a pulse
generator to initiate a signal in the target system.

When they are not being used as external triggers, switches
1 and 2 may be used in exactly the same way as the other two
switches.

Switches 3 and 4 are not brought out to the external system;
they are used only as software switches to control breakpoints
or to record simple events under breakpoint control.

The switches actually change state at the time when the
breakpoint actions are taken -- after the data strobe time of
the ESP processor, and before the start of the next processor
machine cycle.

Counters

There are two 31-bit counters in the ECL-3211, which may be
used in any of several ways to measure and control the
program under test. These counters operate in one of four
operating modes:

o Real-time interval measurement
o Target processor cycle count
o Target processor instruction count
o Breakpoint-controlled event count

5-19

Each of these counters may be set and read from the
keyboard, tested for termination in breakpoints, or
controlled by breakpoints, depending on the operating mode.

The numerical value and operating mode of a counter may only
be set from the keyboard, using the COunt command.

Range of Counter

The count value may range from 0 to 2,147,483,647 «2A 31)-1).

Counter Modes

An active counter that has been set to real-time interval
mode (IN) is decremented once per clock cycle. The clock
source can be either the ECL-3211 clock or the external
clock. You can select the clock source (and its frequency in
the case of the ECL-3211 clock) by entering the FREQ=
command. (Refer to "Setting the Clock Source and
Frequency".) To set counter 1 to real-time interval mode
with an initial value of 999, enter

CO 1=999 IN<cr>

Setting a counter to cycle count mode (CC), automatically
decrements the counter once per machine cycle. If, instead,
you set the counter to instruction count mode (IS), the
counter automatically decrements once per instruction.

A counter set to IN, CC, or IS mode can be turned on or off
via breakpoint control using the ENCOn (enable counter n) and
DICOn (disable counter n) actions. Then, the breakpoints
effectively define the portion of the program to be measured
by the counter.

The DECOn action (decrement counter n) has no effect on a
counter in any of these modes.

However, the DECO breakpoint action does have an effect on a
counter set to breakpoint-controlled event count mode. The
counter is decremented whenever a breakpoint trips with the
DECO action in its action table. In this mode, though, the
counter will not respond to ENCO and DICO breakpoint actions.
To set a counter to "breakpoint" mode, enter the COUNT command
with a count value, but without a mode type. For example,

CO 2=25<cr>

sets counter 2 to a value of 25 in breakpoint mode.

5-20

If you include the RI option with the COUNT command when
setting the count value and mode, the counter will re-initialize
whenever emulation is interrupted.

CO 2=25 RI<cr>

Counter 2 will be re-initialize to its original value, 25, whenever
you reenter emulation.

Using Counters With Breakpoints

A breakpoint can test for a counter's terminal count, but
not its actual value. The condition signal for a counter
becomes 1 when the counter passes through zero. A breakpoint
can test the condition bit for 1 or 0 (or, of course, X).

A breakpoint that lists a count condition as 1 will trip
when the counter expires. A breakpoint that tests the
condition bit for 0 will trip on every cycle (if all its
other conditions are met) until the counter expires. Thus a
counter can be used to inhibit a breakpoint until it
finishes its count, or enable the breakpoint while it is
counting.

External Inputs

The ECL-3211 provides eight external inputs, numbered 0-7,
that are connected to BNC connectors on the pod assembly.
These inputs may be driven by TTL levels from the target
system circuitry. You can set a breakpoint to respond to any
of these input lines. If the trace is on, the state of
each input is recorded in the buffer.

These eight external inputs provide the same full-speed
testing and control functions that are available for the
address, data, and control lines on the ESP processor, but
allow you to decide which additional signals should be
included in the testing procedure. Through judicious selec­
tion of the signals applied to these inputs, the ECL-3211
can be used for many tests that would otherwise require the
use of external test equipment (e.g., a logic state analyzer).

5-21

PHANTOM PROGRAMS

The following section explains the concepts behind
phantom programs. (For information on phantom command syntax,
refer to the section "Breakpoint Actions" earlier in this
chapter and to Chapter 7 - The Command Dictionary.)

The provision for phantom programs in the ECL-3211
simplifies the modification and testing of target system
software. A phantom program may be effectively inserted into
the test program in response to a breakpoint without modifying
the original machine code sequence.

A phantom program is a machine code segment located in some
specific position in memory (usually in a patch code area reserved
for the purpose). The phantom program is executed when a breakpoint
is tripped that contains the phantom's address in its action table.
The transfer of control to the phantom code segment is accomplished
by the ECL-3211 at full speed.

The ECL-3211 performs a transparent jump or call by
synthesizing the machine code required and force-feeding it
to the processor. Thus, no instructions are actually inserted
into the target program code. Because the jump or call is transparent,
it takes up no space in the memory, and does not need to
be located in RAM. This feature makes it possible to insert
modified code segments of arbitrary length into an existing
machine code program in ROM or in space-limited RAM. The
modifications may then be fully tested at full speed before
burning a new ROM or permanently committing RAM space.

The phantom program itself may be generated in assembly
language using the assembler and loaded into memory as a
unit, or it may be generated at the keyboard via ALTER mode.

There are two types of phantom program segment: the phantom
jump and the phantom call. Each has its special requirements
and uses.

Phantom Jump

The phantom jump code segment is a simple program patch. It
is entered by a synthesized jump instruction in response to
a breakpoint. Instructions in the segment are simply
performed in sequence. No registers or addresses are saved.
The phantom jump code segment must provide the means of
returning the processor to the main program.

5-22

Phantom Call

The phantom call code segment is a true subroutine, called
by the ESP processor exactly the same way as any other sub­
routine call. This type of phantom code may only be used
if the processor has a CALL instruction in its instruction
set (refer to the appropriate User's Guide supplement). If
not, the ECL-3211 will support only a phantom jump.

Like any other subroutine, the phantom call will cause the
return address to be saved. This is done by the processor,
according to its own architecture, and is not affected by
the ECL-3211 in any way. The ECL-3211 does not know what the
return address is; only the ESP processor knows. Therefore,
the processor must recall the return address exactly the
same way as it does for any other subroutine in the program.

Using the phantom call does not give the ESP processor an
extra level of subroutine call. If the program uses
subroutines elsewhere, then you must take all the steps
necessary to ensure that the subroutine stack does not
overflow when a phantom subroutine is added. As with any
other subroutine, the phantom call code segment must end
with a proper return instruction, and any stack manipulations
and register saving or other housekeeping must be taken care of.

Conditional Phantom Jumps and Calls - A Warning

It is important to remember what is being done by the program
software and what is being done by the ECL-3211. Since a
phantom code segment is entered in response to a breakpoint,
and a breakpoint is tripped on a set of conditions (which could be
quite complex), it is possible to create a phantom code segment
that appears to give the ESP processor some magical qualities.

If a breakpoint is set up to respond to a complex situation,
and a phantom segment is then used to take care of that
situation, the resulting combination of phantom software and
breakpoint control may perform the task much faster than the
processor could do by itself. A working program might
result that will delude the programmer into thinking that
the job is done. However, the processor must still be
programmed to duplicate the work done by the breakpoint. In
some cases, that work might take a significant amount of
time and memory, as well as programming effort, since the
ECL-3211 is using a high-speed, dedicated processor to
evaluate the breakpoint conditions in real time.

To avoid this problem, you must strongly resist the
temptation to use the power of the breakpoints to substitute
for programming. The best and simplest solution is to
restrict the condition code in a phantom breakpoint to an
address, and force the ESP processor to make all the other
decisions.

5-23

THE TRACE BUFFER

The ECL-3211 provides users with a full-speed trace
capability. The trace feature may be turned on and off under
breakpoint control to monitor relevant information during
specific moments of emulation.

The trace buffer consists of 512 records, each of which can
store up to 72 bits of information. (The number of bits
actually used depends on the particular processor being
emulated). One record represents one machine cycle. Each
address, data, and control line on the ESP and each of
the eight ECL-3211 external input lines (providing a logic
state analyzer function) is sampled at full speed when it
becomes valid for inclusion in the trace buffer. The address
bus contents, for example are latched using the "address
ready" signal of the ESP processor itself. The data bus
contents are disassembled for display, so that software
information may be gathered in terms of assembly language
mnemonics.

Use of the trace buffer does not carry any penalty in
execution speed. The processor clock may be set at its
maximum specified rate, and the timing of the test program
may be determined. No correction factors must be added.

Because the trace buffer may be turned on or off as a
breakpoint action, the trace information may be qualified by
any combination of conditions that may be specified in a
breakpoint. (No time penalty is incurred when controlling the
buffer with breakpoints.)

When the trace is turned on, the trace buffer begins storing
information in buffer location 511. Each new record will
occupy logical location 511; the previous records will move
down one location to make room. When the buffer is full,
each record that is added to the buffer thereafter displaces
the record at buffer location O. The displaced record is
lost. When the trace is turned off, the buffer retains the
most-recently stored 511 records. You can examine the
contents of the trace buffer in COMMAND mode by typing the
command

TRrace<cr>

The eight most recently stored records will appear in the
central scroll area. The remainder of the trace buffer may
be viewed by using the up- and down-arrow keys to scroll
through the buffer. Figure 5.2 displays the contents of a
sample trace.

5-24

You can specify a record number at which the system should
start displaying the trace. For example,

TR 495<cr>

displays the trace, starting at record 495.

You may also specify a range of records for the system to
display. For example,

TR 480-511<cr>

The contents of the entire trace buffer may be printed by
using the TRace PRint command. A portion of the trace buffer
may be selectively printed by specifying a range of
locations. You can also store the trace buffer contents on
floppy disk by using TRace WRite FILE. EXT command.

Figure 5.2 Sample Trace

5-25

SETTING THE CLOCK SOURCE AND FREQUENCY

Emulation speed is controlled by either the target
(external) clock or the ECL-3211 internal frequency
synthesizer. The frequency of the external clock varies
according to your processor. The ECL-3211 clock has a
default value, which can be modified.

Initially, the clock source is the ECL-3211 clock. The
ECL-3211 clock is set to a default value that is appropriate
for your processor. This value may vary among processors.

You can use the FREQ command to select the target clock as
the clock source, or to change the frequency of the ECL-3211
clock. For example,

FR EXT<cr>

sets the clock source to the target's clock.

FR 2000<cr>

sets the clock source to the ECL-3211 clock and changes the
frequency to 2000 KHz (2 MHz).

If you include the IND option when setting the ECL-3211
clock frequency, the ECL-3211 will not only drive the ESP
processor, but also peripheral devices in the target system.
For example:

FReq=2000 IND<cr>

The ECL-3211 clock will drive both the pod and external
peripherals at 2000 KHz. (This feature is not available for all
processors; please refer to the specific processor supplement to
this manual to determine if the IND option is available for
your specific processor.)

Whenever you enter the FREQ command, the emulation system
suspends processor access for 30 seconds while the emulation
frequency is adjusted, and then performs a hardware reset.
During the 30 second wait period, any command which requires
running the emulator (such as EMULATE, SET, MEM, SET MEM,
LOAD, WRITE, DIS) will be deferred until the time-out period has
expired. A message will appear on the screen indicating that the
system is waiting. When the command is executed, the message
"RESET PERFORMED" will appear on the S: line to remind you that a
hardware reset (the equivalent of the ECL-3211 RESET command) has
been performed.

5-26

SETTING LOGICAL ENTITIES

The screen display shows the current value for each logical
entity (registers and flags) associated with the target
processor. To set or change these hex values, you can enter
ALTER mode. In the ALTER mode, move the cursor to the appro­
priate bit and type in the new value. You may also use the
SET command to establish or change the value for each logical
entity. For example, to set the program counter (PC) to 8FF,
you can enter:

SET PC=8FF(cr)

Available logical entities are processor-dependent; their code
designations vary by vendor and microprocessor. Refer to the
appropriate User's Guide supplement for the logical entities that
can be specified for your development microprocessor.

STARTING EMULATION

Before you can execute a program on your target system, you
must first load your program into emulation memory. You may
also want to activate some of the emulation facilities (e.g.,
breakpoints, trace) and set target or ECL-3211 values.

You can simplify this setup procedure by creating an
indirect command file with the KED keypad text editor, and
then writing the appropriate ECL-3211 commands into the
file. Each time you wish to start emulation under the same
conditions, you need only call the indirect command file.

Consider the following sample indirect command file called
PLOGl.COM, which contains these commands:

LOAD PLOG.DAT
MAP INT
MAP IFOO-IFFF=OOOO
BR 0 ST,PA/PC=2000
BR 1 PA/+RD-WR,PC=2001
FREQ=1000
SET PC=lFOO,A=5,B=9,SP=2300
MEH 2000
EMU
END

Once you are operating in the ECL-3211 emulation system, you
can set up and start emulation by entering

CF PLOGl.COM(cr)

5-27

This file will load your program, relocate internal
memory, activate breakpoints 0 and 1, set the ECL-3211 clock
frequency, set the program counter and ESP processor
registers, display a memory segment, and start emulation at
the current program counter.

For more detailed information on the creation and use of
command files, refer to Chapter 6 of this manual. Refer to
Chapter 3 for more information on start-up options.

STEPPING THROUGH A PROGRAM

The ECL-3211 also enables you to "step" through your
program. When the system is in step mode, the program
executes a step, stops emulation, and updates the screen
display. When you enter a carriage return, the ECL-3211
executes the next step.

The STEP command places the system in STEP mode. If you
enter the command:

STEP<cr)

the system steps one instruction cycle, halts emulation,
updates the display screen, and then awaits your carriage
return to execute the next step (the next instruction cycle).

When you enter the STEP command:

STEP B<cr)

the system steps to the next breakpoint that executes a
HALT or PAUSE action, halts emulation, and updates the screen.
Entering a carriage return causes emulation to continue until
the next breakpoint that executes a halt or pause.

USING THE SYMBOLIC DEBUGGER

The Emu10gic symbolic debugger enables you to enter
symbolic arguments in place of hex values in ECL-3211
commands.

A symbolic argument may be entered in any of these three
formats:

AAAAAA

AAAAAA+BBBBB

AAAAAA-BBBBB

where AAAAAA is a legal RADIX50 name, and BBBBB is a hexa­
decimal number.

5-28

For example, you might use symbolic arguments as in the
following commands:

SET PC="ACE",A="QUEEN+4"<cr>

BR 7="JACK"<cr>

The ECL-3211 searches the internal symbol table and any
external symbol table files that have been opened for the
number associated with the specified symbol. The number in
the table is then combined with BBBBB to obtain the result,
which is returned as a hex number.

Figure 5.3 illustrates use of the symbol "KING" to set
a simple breakpoint. Because the value for KING is 450 (hex),
breakpoint 3 will trip at address 450 and will halt emulation.

The internal symbol table contains the sixteen most recently
created symbols. The SYmbol command enables you to add, delete,
or modify internal symbol table information, or to load the
internal symbol table from an external file.

Figure 5.3 Symbolic Debugging

5-29

You can reference a maximum of four external symbol table
files. These files are written in symbol table format
(STB), and can be obtained as optional output from the
Emulogic linker (ELINKx).

To add SOFT to the internal symbol table with a value of
250, and change the value of LIFT to 99, enter

SY SOFT=250,LIFT=99<cr)

To reference symbols contained in an external file named
COORD.STB, type

SY COORD.STB<cr)

If you want to delete SOFT and LIFT from the internal symbol
table, type this command:

SY CL SOFT,LIFT<cr)

To clear the entire internal symbol table, enter:

SY CL<cr)

You may find it convenient to use an indirect command file
to maintain a list of frequently used symbols.

5-30

CHAPTER 6

CREATION AND USE OF COMMAND FILES

The ECL-3211 provides the capability to create, store and
execute command files. A command file is a user-created file
containing a series of commands. The system performs the
commands in sequence without keyboard intervention. By using
command files, you can streamline recurrent tasks, saving
input time and eliminating errors. Command files can be
used for such tasks as to:

set startup emulation parameters

run emulation

write traced instructions following a breakpoint
to a file or printer

write memory images to disk or a printer

perform one or more ECL-3211 commands as a breakpoint
action when a given breakpoint condition has been
encountered

Compare two files and display their differences,
write the differences to file, or print.

Creative use of command file capabilities depends on the
ingenuity of the user. There are two types of command files
which may be used with the ECL-3211 development system: the
DEC RT-11 operating system command file and the Emulogic
ECL-3211 command file.

In this chapter, we have provided instructions for:

- Creating command files

• in RT-11 edit

• from the ECL-3211 command line
using the LOG command

- Use of ECL-3211 command files

6-1

- Use of RT-ll command files

• in conjunction with ECL-3211 command
files

• in conjunction with IND control files
and ECL-3211 command files

- Programmable "FasKey" access to Command Files

At the end of the chapter, we have included a glossary of
command file mnemonics and have provided some sample command files.

6-2

CREATING COMMAND FILES
======================

Both RT-ll and ECL-32ll command files can be created using RT-ll
edit facilities. ECL-32ll command files can also be created while
operating in ECL-32ll command mode by using the ECL-32ll LOG com­
mand.

Both ECL-32ll and RT-ll command files may be modified only by
using RT-ll edit facilities.

CREATING A COMMAND FILE UNDER RT-ll

The command file name is limited to six characters. Assign
the three character command file extension you will be using in
ECL-32ll. The ECL-32ll default command file extension for calling
a previously created command file is ".COM". (This default, assumed
in ECL-32ll only, may be changed via user invoked options.)

Use RT-ll syntax and commands in RT-ll edit when constructing an
RT-ll command file (a command file designed to run in RT-ll).
For more complete information concerning creation and utilization
of RT-ll command files, refer to the appropriate RT-ll USER'S GUIDE.

Use ECL-32ll syntax and commands for the command file text when
designing an ECL-32ll command file in RT-ll edit. Any ECL-32l1
command may be used in an ECL-3211 command file; however, the last
command must be "END".

A Sample RT-ll Command File

To demonstrate RT-ll command file syntax, we have created a
sample RT-ll command file below. We have called the command file
CYCLEl.COM. The command file directives entered for the sample
command file CYCLEl.COM are as follows:

(Input of a carriage return is assumed after each command.)

RUN LOOSOO.SAV
TESTl.COM
RUN LOOSOO.SAV
TEST2.COM
DIFF/BINARY/OUTPUT:COMPl TESTl.DAT,TEST2.DAT

Two ECL-32l1 start-up command files, TESTl.COM and
TEST2.COM, are passed by CYCLEl.COM to the Emulogic start-up
program (LOOSOO.SAV in this example) to be executed in ECL-32l1.
The two files are previously established ECL-32l1 command files
which can be accessed by the RT-ll system. After execution of
the second command file, the data files (created by commands within
TESTl.COM and TEST2.COM) are compared by thr SRCCOM RT-ll utility.

6-3

TO RUN A STORED RT-11 COMMAND FILE

To run a previously created RT-11 command filet enter

@FILE.EXT

following the RT-11 command mode promt "."

For example t to run the previously created command file
CYCLE1.COM t you would enter:

@CYCLE1.COM

CREATING ECL-3211 COMMAND FILES

ECL-3211 command files can be created in two ways:

By using RT-11 EDIT to create the command file

By using the ECL-3211 LOG command while operating
within the ECL-3211 development system software.

A Sample ECL-3211 Command File

To demonstrate ECL-3211 command file syntax t we have created a
sample ECL-3211 command file below. We have called the command file
TESTl. COM. The ECL-3211 command file commands entered for "TESTl. COM"
are as follows:

(Assume that a carriage return has been entered after each command
entry.)

Command
=======
!FILENAME: TEST1.COM
SET PC=123 t SP=7 t IX=45 t IY=34
MAP HS
MAP 500-AFF=1
BR 0 STjPC=123
BR 1 CF/SW4

CF VARY1.COM
BR 2 HL/PC=2ED
EM
TRACE WRITE TRACE1.TRA 400-511

SAVE TEST1.DAT

EXIT
END

6-4

Procedure
=========

Display "FILENAME: TESTl. COM"
Set chip specific registers
l~p high-speed memory
Define High-speed map 1 as addresses 500-AFF
Define breakpoint 0 to set trace when PC=123
Define breakpoint 1 to execute command file

when switch 4 is on.
Execute command file VARY1.COM
Define breakpoint 2 to halt when PC=2ED
Run emulation
Write trace records 400-511 to named filet

TRACE1. TRA
Save current emulation status and write

data to named filet TEST1.DAT
Exit from ECL-3211 and return to RT-11
Close command file

(Please note that in our sample an EXIT command precedes the
ECL-3211 command file END command. We have ended the command file
in this manner because we want the command file to exit from
ECL-3211 after execution to return to a "parent" RT-ll command
file - CYCLEl.COM, to continue our example.)

Creating an ECL-3211 Command File Under RT-ll Edit

An ECL-3211 command file can be created using RT-ll edit facilities
in exactly the same manner as you would to create an RT-ll command file.
The only difference in procedures is that you will enter ECL-3211
commands for your command file text and, most important, YOU MUST
REMEMBER TO ENTER THE COMMAND "END" AS YOUR LAST COMMAND ENTRY.

Creating an ECL-3211 Command File Using the LOG Command

To log plus execute:

The ECL-3211 LOG command has been designed to log or keep track of
all subsequent commands entered from the keyboard at the command line
of the ECL-3211 until "LOG END" is entered • All commands entered
while the system is in LOG mode are executed by the system and written
to a user-designated file (FILE.EXT). When you end the logging session,
you enter "LOG END" from the ECL-3211 command line which enters an END
command to the log file you have created and closes the file. You have now
conveniently created a file which can be accessed as a command file.

To log without execution:

An additional LOG command, LOGiC FILE. EXT , allows you to create a
command file using the log capability WITHOUT EXECUTING THE ENTERED
COMMANDS. This can be a definite advantage as an onboard mini editing
feature for creating command files, for you will most likely want to
make some additions or changes in a command stream without executing the
entire stream.

The command files you have created using the LOG command may be
accessed and executed in the same ways as any other ECL-3211 command
file.

Any legal ECL-3211 commands may be used while in the LOG mode,
except cursor movement commands.

As with ECL-3211 command files created under RT-ll, you may edit
the log-created command files using the LOG command only under RT-ll edit.

This "onboard" ability to build a command file can be used
creatively in many ways, such as inserting command text as
needed, for expanding emulation capabilities. It can also be
used to test alternatives for command file command flow, or
to experiment with new emulation parameters.

6-5

Sample Use of the LOG Command to Establish ECL-3211 Command Files

Example 1: To create a command file called VARY1.COM without
executing the command session, enter:

LOG/C VARY!. COM

enter the desired ECL-3211 commands, each followed by a carriage
return, then terminate the LOG session and store the newly created
command file by entering:

LOG END

Example 2: To run a command session and LOG the session to a
file called VARY1.COM, enter the command:

LOG VARY1.COM.

enter the desired ECL-3211 commands, then terminate the LOG
session and store the newly created command file by entering:

LOG END

TO RUN A STORED ECL-3211 COMMAND FILE

An ECL-3211 command file may be executed in a number of ways:

- It may be called from the command line by a "CF" command
while operating in ECL-3211 command mode.

- It may be called by another ECL-3211 command file

- It may be called as an action of a breakpoint

- It may be passed as a startup command file (see Chapter 3,
Bringing Up the System).

Let's take a look at the sample command file TEST1.COM again:

!FILENAME: TESTl.COM
SET PC=123,SP=7,IX=45,IY=34
MAP HS
aAP 500-AFF=1
BR 0 ST/PC=123
BR 1 CF/SW4
CF VARY 1. COM
BR 2 HL/PC=2ED
EM
TRACE WRITE TRACE1.TRA 475-511
SAVE TESTl.DAT
EXIT
END

6-6

To execute our sample command file while in the ECL-3211 command mode,
you would simply enter the following from the ECL-3211 command line:

CF TESTl.COM

In our sample command file, the nested command file VARYl.COM is
opened and executed. The parent command file TESTl.COM is placed on
the command file stack when the nested command file is opened so
that processing may return to TESTl.COM when the END command is
executed by VARYl.COM.

ECL-3211 command files can be nested to a depth of five.
If an attempt is made to nest beyond this level, an error message is
is given and the command stack is cleared.

If a CF command is the last command before the parent command
file's END command, the parent command file will not be loaded onto
the stack and the CF command will in effect act as a link or bridge
to the requested command file.

A command file can call itself as the last command in the file,
and thus create a command loop.

Needless to say, command files may be called by command files. A
breakpoint command file may call another command file. The only
warning to bear in mind is that the command files may not be nested
to a depth greater than five. (Please note also that the CF/T command
which allows you to display a command file in the central scroll area
during a pause will add the command file from which you are currently
operating to the command file stack.)

6-7

ECL-3211 COMMAND FILE CHARACTERISTICS AND OPTIONS

PAUSES

The CF/P Command - Command File Pause

A pause in command file execution can be user-initiated by
including the command "CF/P", command file pause, in the command
file text. While a pause is operative, commands may be inserted
from the command line by the user. This can be a useful tool when
you wish to test variables at a given moment in a command stream.
When the command to pause is being executed, "CF/P" and the name of
the command file will display on the E: Line of the screen display.

To insert a pause in the command file execution when building the
command file text, type:

CF/P

To resume execution of the command file, type the following from
the ECL-3211 command line:

CF/R

"CF/R" will resume execution of the command file.

To Interrupt Execution of a Command File:

Execution of a command file may also be interrupted directly from
the keyboard at any time during the processing of the command file.
To stop execution of a command file, enter CTRL C twice (simultaneously
depress the "Control" and "c" keys two times).

The message "CF/P" and the name of the interrupted command file will
appear on the E: Line of the screen display.

To resume execution of the command file, enter:

CF/R

To clear the command file and the comm13.nd file stack completely,
enter:

CF/C

6-8

To Pause During an EMULATE Command from a Command File:

If the ECL-3211 is processing an EMULATE command from a command
file, any keyboard interrupt, such as entering a carriage
return, will halt emulation. At this time the command file
will enter a command file pause (CF/P) state. The message
"CF/P" and the name of the command file will appear on the E:
line of the screen display.

Command File Error Display

A pause in the execution of a command file will occur and be
signaled to the user when an error in command file execution has
occurred.

Any legal ECL-3211 commands (except cursor movement commands)
are allowed in emulation command files. If an illegal
command is encountered, the system pauses during the run of the
command file and "CF/P" and the name of the command file are
displayed on the E: line of the screen display. The illegal
command is not executed.

To resume processing, enter CF/R (command file resume). ECL-3211
system control will move to the next command following the illegal
command.

Use Control Keys During a Command File Pause

Four keys in the contol keys keypad (the keypad on the right side
of the keyboard) have been programmed to have special capabilities
when the ECL-3211 is in command file pause (CF/P is displayed on the
E: Line). The cause of the pause is irrelevant, whether it be operator
induced or system-induced due to an error.

During any command file pause, the , • ,and ENTER keys
on the keypad on the right side of the keyboard have the following special
capabilities:

ENTER

Use of the minus key causes the command file to "backspace"
to the last performed command in the command file and to
re-execute that command.

Use of the comma key gives you a help file defining the
special functions of the CF/P control keys.

Depression of the period key serves as a CF/R command and
resumes command file processing.

Use of the ENTER key ends execution of the current
command file.

Command File Comment Lines

A comment line may be inserted in an ECL-3211 command file by

6-9

using an exclamation mark (!) as the first character of the
intended comment line. Each line of the comment must be
preceded by an exclamation mark, as in the example:

!THIS IS A COMMAND FILE COMMENT LINE
!A COMMAND FILE COMMENT LINE CANNOT EXCEED 60 CHARACTERS

The comment 1ine(s) will be displayed on the S: Line of the
ECL-3211 screen display when the command file executes.

Prompting for Command Line Input

A command line can be set to wait for keyboard input by including
an @ as the last character of the command line. The user can also
create an accompanying comment line to appear below the fill-in
line to prompt for specific input. Two steps are needed to create
the prompt and fill-in message:

First, using a comment line command (!), enter the desired
text for the prompt followed by a carriage return.

Next, enter the command line text:

COMMAND @<cr>

where CO~~D is the desired ECL-3211 command and @ precedes
the position for fill-in.

For example, to prompt a user to execute a SET MEM command, you could
enter the following two commands in the command file stream:

!ENTER "ADDRESS=VALUE"
SET MEM @

The comment line will appear on the S: Line of the screen display.

It is not necessary to input a comment line, you may enter the prompted
command line only, if you wish. However, if you wish to accompany a
prompted command line with a comment, you must remember to enter the
comment line command first in your command file string.

Use of the ESC key:

One of the benefits of using the prompted command is that the user can
modify and also circumvent command file input as necessary. By pressing
the ESC key (upper left-hand corner of the keyboard) as a response to
the @ of the prompted command line, the command is bypassed and the
command file proceeds to its next command.

Use of the Keyboard Bell by a Command File

To sound the keyboard bell during a particular moment in command
file execution, insert a "control G" on a comment line, i.e.,
type an exclamation point then press the CTRL and G keys simultaneously.

6-10

For example, if you want the keyboard bell to ring following
the comment lines given in the previous example, you would enter:

!THIS IS A COMMAND FILE COMMENT LINE
!A COMMAND FILE COMMENT LINE CANNOT EXCEED 60 CHARACTERS
!<ctrl)G

Changing the Command File Extension Default

The user has the available option to assign any desired three
character command file extension default in lieu of the ECL-3211
system assumed command file extension of "COM".

The user-assigned command file extension will now apply to any
command file command (CF command) or LOG command, if no extension
has been designated.

To assign a new default command file extension, enter:

CF/D XXX

where XXX is the new default command file extension.

To View the Contents of a Command File while in ECL-3211

You may display the text of a designated command file in the
central scroll area while operating in ECL-3211 by using the CF/T
command. (Any ASCII file can be displayed using this command.)
If the file has more than eight command lines (or records,if not
a command file) the file will scroll through the display area.
The NO SCROLL key may be used to control scrolling.

The CF/T command uses one command file nesting level since the
command file from which you are operating is placed on the stack
while the ECL-3211 is executing the CF/T command.

To display a command file, enter the following:

CF/T FILE. EXT

To Terminate Command File Execution

The CF/C command is used to terminate execution of all command
files; i.e., the command file being executed is terminated and the
command stack is cleared. The message CLEAR COMMAND FILE STATUS
will appear on the S: Line of the ECL-3211 screen display.

6-11

To terminate execution of all command files, enter:

CF/C

from the ECL-3211 command line.

To terminate execution of an individual paused command file:

When the ECL-3211 is in the CF/P (command file pause) state, you
can terminate the currently executing command file without affecting
any command files present on the command file stack. To terminate a
paused command file and remove it from the command file stack, press
the ENTER key on the keypad on the right-hand side of your keyboard.

Calling a Command File as a Breakpoint Action

A user-created command file may be called to be executed as
a breakpoint action when a given breakpoint condition or set of
conditions is encountered.

In the previous command file example in which the command file
TEST1.COM was created, Breakpoint 1 called a command file
as a breakpoint action when the condition SW4 (switch 4 on)
was encountered. The breakpoint command was as follows:

BReak 0 CF/SW4

Notice that the specific command file to be called was not named
in the breakpoint command. The command file name is assumed by
the system when calling the command file from the breakpoint.

Breakpoint command files follow a strict naming rule which must
be adhered to when building the breakpoint command file. When
creating the name for a breakpoint command file, you must follow
the format:

BRn.COM

where n is the number of the breakpoint (0- 7) and .COM is
the command file extension. (If you have changed the command
file extension default, use the new default extension when
naming the breakpoint command file. Thus, you may maintain several
command files for each breakpoint simply by changing the 3-character
extension.)

When executing the CF breakpoint action command, the ECL-3211
will automatically look for the command file with the corresponding
breakpoint number. If you have not properly identified the
breakpoint command file, and you hit the breakpoint coming out of
emulation, an error message will appear on the S: Line to inform you
that the breakpoint command file was not located.

6-12

Create the breakpoint command file as you would any other ECL-3211
command file, using either an RT-11 edit function or the ECL-3211 LOG
command.

To continue our previous example, the breakpoint command
file BR1.COM might contain the following types of commands:

!SWITCH 4 IS ON, BREAKPOINT TRIGGERED
CF/P
CO 1=10 RI
END

The message concerning switch 4 would appear on the S: line
of the display. Then the command file would obey the next command and
pause. At this point, a user could enter keyboard commands or could
simply continue with the execution of the two remaining breakpoint
commands by entering CF/R from the command line or by depressing the
period (.) key on the FasKey keypad.

6-13

===

GLOSSARY OF ECL-3211 COMMAND FILE MNEMONICS
===

For diagrams of the command file FasKey menus for quick entry of
ECL-3211 command file commands, refer to APPENDIX D at the end of
this manual.

The following mnemonics are specifically designed for use as
commands within and with ECL-3211 command files:

Mnemonic Translation
(manual entry)

CF FILE. EXT

CF/P

CF/R

CF/T

CF/C

CF/D

CF/D COM

!<cntrDG

Execute a Command File
FILE. EXT

Command File Pause

Command File Resume Execution

Command File Type

Command File Clear

Command File Default

Reset Command File
Default to COM

Command File Comment Line

Ring Keyboard Bell

FasKey Input
(menu: key)

FasKey 1: 5
CF/LOG:

FasKey 1: 5
CF/LOG: 3

FasKey 1: 5
CF/LOG: 1

FasKey 1: 5
CF/LOG: 0

FasKey 1: 5
CF/LOG: 2

FasKeY 1: 5
CF/LOG: 9

The commands listed above may be used within a command file or
directly from the keyboard.

Each of the CF/ commands are described below.

CF FILE.EXT FasKeY 1: 5
CF/LOG:

The CF command when accompanied by the name and extension of a
command file, executes the named command file. This command may
be used directly from the ECL-3211 command line to execute a
command file. It may be used as a command within a "parent"
command file.

6-14

CF/P manual entry only

The CF/P command is inserted to cause a pause in the execution
of the command file. During a command file pause, ECL-3211 keyboard
commands may be entered allowing you to try new parameters,
change memory values, create a separate command file through use
of the log command, i.e., you may perform any legal ECL-3211 command.
The interrupted command file will not resume until CF/R is entered
from the keyboard.

While the command file is in a pause state, the statement CF/P
FILE. EXT will display on the E:line of the ECL-3211 screen
display (where FILE. EXT is the name of the command file in pause
state). FasK: CF/P ,HL will display in the lower right-hand corner
of the screen display.

During a command file pause, The minus, comma, ENTER and period keys
on the keypad on the right-hand side of the keyboard have special
command file pause functions. The hyphen key backspaces the command
file to the last executed command and re-executes that command. The
comma calls up a CF/P help file to instruct you in the use of the
CF/P keypad keys. The ENTER key ends the paused command file (but
does not clear the command file stack). The period keys issues
a CF/R (resume command file) command.

CF/R FasKeY 1: 5
CF/LOG: 3

The CF/R command is used to resume execution of a command file
that has been in a pause state when any of four actions have
caused the execution pause:

A CF/P has been executed from a running command
file.

A keyboard interrupt (such as a carriage return) has
been entered while emulation was in progress.

An error has been encountered by the system while
executing a command file and the command file has
paused and displayed CF/P.

Execution of the command file has been interrupted by
entry of a double <CTRL>C •

CF/T FILE.EXT FasKeY 1: 5
CF/LOG: 1

To display the text of a designated command file in the ECL-3211
central scroll area, enter:

CF/T FILE. EXT

6-15

Use the NO SCROLL key to control scrolling in displayed files
with more than eight command lines.

CFjC FasKey 1: 5
CFjLOG: 0

Terminates execution of all command files and clears the command
file stack. The message CLEAR COMMAND FILE STATUS will appear on the
S: line of the screen display.

CFjD FasKeY 1: 5
CFjLOG: 2

Is used to change the system default for command file extension.
The ECL-3211 system-provided default for command file extensions is
"COM". If you wish to alter this extension, enter:

CFjD YYY

where YYY is the new extension to which the system will default.

The user-assigned command file extension will now apply to any
command file command (CF command) or LOG command, if no extension
has been designated.

To return to a default extension of COM, you may use the FasKey 1
menu; enter FasKey 5 (CFjLOG) followed by Faskey 9 (CFjD COM).

Programmable "FasKey" Access to Command Files

Emulogic has provided special "FasKey" logic so that you may program
special fasKeys in the keypad to access frequently used command files.
Using the keys 0-9 of the keypad on the right-hand side of the keyboard,
ten command files may be accessed by FasKey action for each command
file extension you have assigned to command file names. The FasKey
command file table will access the command files with the extension
currently declared as the default. (See the CFjD command.)

A FasKey text file FKTXT.EXT must be created for each default command
file extension. List the keys (0-9) and their corresponding command
files, either by name or by providing a brief statement of purpose.
One such file, FKTXT.COM has been provided as a sample.

To access a command file using the FasKey capability, the command file
must be named using the following format:

FKEYn.EXT

where n is the number, 0-9, of the FasKey being coded to access the
command file and EXT is the default command file extension currently
recognized by the system.

6-16

To set up a command file for FasKey access, you may create the command
file in RT-11 edit, by using the ECL-3211 LOG or LOGIC command or by re­
naming an existing command file using the FasKey command file naming con­
vention.

To create the FasKey command file using the ECL-3211 LOGIC command use
the following format:

LOGIC FKEY(n).EXT<cr>

Next, enter the desired command file commands (each followed by a
carriage return).

When all the desired commands have been entered, end the newly
created FasKey command file with:

LOG END<cr>

For example, to create a FasKey command file to be accessed by the
"3" FasKey, you would enter commands such as the following:

LOGIC FKEY3.COM<cr>
SET MEM 5FF=47<cr>
SW 1=1<cr>
SET PC=104<cr>
CF TESTl. COM<cr>
LOG END<cr>

By accessing the FasKey 1 menu, selecting item 5 (CF/LOG),next selecting
the ENTER key and then keypad key 3, the command file FKEY3.COM will be
executed.

To display the user-created FKTXT.EXT menu of current FasKey acces­
sible command files for the current default command file extension
when in FasKey 1, depress the following keypad keys:

5 (CF ILOG)

ENTER (Keyboard=CF)

Command Files Used to Run Diagnostics:

The following file "IND.68" comes from our own Emulogic test library
and is an example of a control file designed to be executed by the
Indirect Control Processor (IND) under RT-11, Version 5. This parti­
cular control file was designed to run testing of an Emulogic ESP-68000
pod when the ECL-3211 system is working with from one to four additional
Emulogic high speed memory boards. (We have provided program directives
for the portion of the diagnostic testing for up to and including two
high-speed memory boards.)

This type of operation can be adapted to run in non-IND environments
on RT-11 Version 5 or RT-11 Version 4.

6-17

CONTROL FILE "IND68.COM"

• START: .ENABLE QUIET
COP SORT68.COM TSl.DIF
DEL/NOQ *.DIF

.25: .ASK DTACK IS TARGET DTACK (PI-10) GROUNDED
• IFF DTACK • GOTO 25
.ASK LOOP HALT AT END OF TEST

.50: .ASKN MEM HOW MANY 32K H. S. MEMORY BOARDS PRESENT
.IF MEM = 0 .GOTO 100
.IF MEM = 1 .GOTO 200
.IF MEM = 2 .GOTO 300
.IF MEM = 3 .GOTO 400
.IF MEM = 4 .GOTO 500
.IF MEM) 4 .GOTO 50

.100: L01200 SORTO.EXO,EXO.DAT
DIFF/BINARY/OUTPUT:SORTO SORT68.MEM,SORTO.DAT
DIFF/BINARY/OUTPUT:SORTD SORT68.MEM,SORTD.DAT
RUN TRPREP TIG068.DAT
DIFF/OUTPUT:TIG068 TIG068.MEM,TRTEMP.TMP
RUN TRPREP PHANTOM.DAT
DIFF/OUTPUT:PHANTM PHANTM.MEM,TRTEMP.TMP
• GOSUB TEST
.IF <FILERR) EQ 1 .GOTO ERROR
.IFF LOOP • GOTO 100

.DONE: TYPE DONE.MSG
• STOP

• ERROR: TYPE ERROR.MSG
• STOP

.200: L01200 SORTO.EXl,EXl.DAT
DIFF/BINARY/OUTPUT:SORTO SORT68.MEM,SORTO.DAT
DIFF /BINARY/OUTPUT: SORT1 SORT68'.MEM, SORTl.DAT
DIFF/BINARY/OUTPUT:SORTD SORT68.MEM,SORTD.DAT
DIFF/BINARY/OUTPUT:HSSHFL HSSHFL.MEM,HSSHFL.DAT
DIFF/BINARY/OUTPUT:HSADRT HSADRT.MEM,HSDART.DAT
DIFF/BINARY/OUTPUT:ROM1 68DAT1.DAT,ROMl.DAT
DIFF/BINARY/OUTPUT:SAVE EX3.DAT,SAVE.DAT
RUN TRPREP TIG068.DAT
DIFF/OUTPUT:TIG068 TIG068.MEM,TRTEMP.TMP
RUN TRPREP PHANTM.DAT
DIFF/OUTPUT:PHANTM PHANTM.MEM,TRTEMP.TMP
.GOSUB TEST
.IFF LOOP • GOTO 200
• GOTO DONE

.300: ••••••••••••••••••••••• ETC •

• TEST: .TESTFILE SORTO.DIFF
.IF <FILERR) EQ 1
.TESTFILE SORTl.DIFF
.IF <FILERR) EQ 1
.TESTFILE SORT2.DIFF
.IF <FILERR) EQ 1
.TESTFILE SORT3.DIFF

6-18

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.IF (FILERR) EQ 1

.TESTFILE SORT4.DIFF

.IF (FILERR) EQ 1

.TESTFILE SORTD.DIFF

.IF (FILERR) EQ 1

.TESTFILE BLKMAP.DIFF

.IF (FILERR) EQ 1

.TESTFILE HSSMEM.DIFF

.IF (FILERR) EQ 1

.TESTFILE HSSHFL.DIFF

.IF (FILERR) EQ 1

.TESTFILE HSDART.DIFF

.IF (FILERR) EQ 1

.TESTFILE TIG068.DIFF

.IF (FILERR) EQ 1

.TESTFILE PHANTM.DIFF

.IF (FILERR) EQ 1

.TESTFILE WAIT.DIFF

.IF (FILERR) EQ 1
• RETURN

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

.GOTO ERROR

ERROR HALT

END OF TEST
NO ERRORS

COMMAND FILE "ERROR.MSG"

COMMAND FILE "DONE.MSG"

6-19

COMMAND FILE "SORTO.EXO"

!FILENAME: SORTO.EXO

CLEAR
FREQ=7500
CF/D EXO
DTACK TARGET
WAIT OFF
SET DO=0,Dl=0,D2=0,D3=0,D4=0,D5=0,D6=0,D7=0
SET AO=0,Al=0,A2=0,A3=0,A4=0,A5=0,A6=0,PC=0
BR 0-7 CLEAR
SET A2=200,Dl=80,US=100,SS=100,SR=0
BR 1 PA,DECOl/PC=4
BR 3 HL/COI
CF COl.EXO
CL 0-300
LOAD BUBB68.LDA
LOAD 68DATl.DAT
SW
!RUNNING "SORT" IN MAP °
EM °
!DISPLAY AND SAVE SORTED DATA
MEM 200
SAVE EXO.DAT
WRITE SORTO.DAT 200-2FF
CF SORTD.EXO
END

NOTE: l)The changed default command file
extension, "EXO".

2)Two ECL-3211 command files are executed from this
command file: "COl.EXO" and "SORTD.EXO". Command file
"COl.EXO" is a nested command file and causes the parent
command file "SORTO.COM" to be placed on the command
stack. When running command file SORTD.EXO, "SORTO.EXO"
is not nested, since command file SORTD.EXO is the last
command before the END command. Using an execute command
file as the last command in a command file command stream
chains the command file from which you are exiting to the
next command file.

6-20

!FILENM1E: SORTD.EXO
CLEAR
FREQ=1500

COMMAND FILE "SORTD.EXO"

SET DO=0,D1=0,D2=0,D3=0,D4=0,D5=0,D6=0,D7=0
SET AO=0,A1=0,A2=0,A3=0,A4=0,A5=0,A6=O
SET A2=200,D1=SO,US=100,SS=100,SR=0
BR 4 CL
BR 5 HL/C01
CF COl.EXO
MAP INT
CLEAR 0-300
LOAD 6SDATl. DAT
LOAD BUBB6S.LDA
!RUNNING "SORT" IN DEC INT.
SW
EM °
!DISPLAY AND SAVE SORTED DATA

MEM 200
WRITE SORTD.DAT 200-2FF
CF TIGO.EXO
END

COMMAND FILE "TIGO.EXO"

!FILENAME: TIGO.EXO

CL
SET DO=0,D1=0,D2=0,D3=0,D4=O,D5=0,D6=0,D7=0
SET AO=0,A1=0,A2=0,A3=0,A4=0,A5=0,A6=0,US=0
BR 0-7 CLEAR
MAP HS
FREQ=7000
SET SR=2700,SS=24A
CLEAR 0-200
LOAD TXTST.LDA
SET MEM 0=4EFS,20
BR ° HL/ADDR=S4
BR 3 ST
TR CLEAR
!EXECUTING "TIGO"
EM °
EM °
TRACE WRITE TIG06S.DAT 426-511
CF PHANTM.EXO
END

6-21

COMMAND FILE "PHANTOM.EXO"

!FILENAME: PHANTM.EXO

CL
MAP HS
SET DO=O,Dl=0,D2=0,D3=0,D4=0,D5=O,D6=O,D7=0
SET AO=O,Al=O,A2=0,A3=0,A4=O,A5=0,A6=0,US=O
BR 0-7 CLEAR
MAP lOOO-17FF=0 RAM
CLEAR 1000-10FE
LOAD ADDQ.LDA
SET MEM 1040=4E71,4E71,4E71,4EF8,1008
BR 6 HL/ADDR=lOlE
BR 4 JMP
BR 4 PH=1040/PC=1006
TR CLEAR
SET SR=2700,SS=1070
!EXECUTING PHANTOM JUMP
EM 1000
SET MEM 1046=5D97,4E75
BR ° CLSW1/PC=1000
BR 1 STSW1/DATA=OCOO,ADDR=106C
BR 4 CALL
!EXECUTING PHANTOM CALL
EM
TR WRITE PHANTM.DAT 444-511
CF HSSHFL
END

NOTE: the command file HSSHFL is called with the assumed
default extension, ".EXO" established in command file
"SORTO.EXO"

6-22

!FILENAME: HSSHFL.EXO

CL
FR=7000
MAP 0-7FF=1
CL ~O-FE

COMMAND FILE "HSSHFL.EXO"

SET DO=0,Dl=O,D2=0,D3=0,D4=0,D5=0,D6=0,D7=0
SET AO=FO,A2=0,A3=0,A4=0,A5=0,A6=0,US=0
SET Al=7FE
SET PC=O,SS=O,SR=O
BR 0-7 CLEAR
BR 0 PA,ST,DECOl/ADDR=38
BR 1 PA,ST,DECOl/ADDR=6A
BR 6 CF/ADDR=AO
BR 7 HL/COI
LOAD HSSHFL.LDA
CF COl.EXO
!EXECUTING "HSSHFL"
CL 700-7FE
MEM 700
EM a
CF HSADRT
END

NOTE: Breakpoint 6 contains a command file as a
breakpoint action. The name of the command
file is BR6.EXO, assumed by the ECL-3211
breakpoint command file naming convention, since
the command file extension default has been
previously changed by command file "SORTO.EXO"
to EXO.

COMMAND FILE "BR6.EXO"

!FILENAME: BR6.EXO

!HIGH SPEED MEMORY ERROR HALT!
WRITE HSSMEM.DIF 0-2E
END

6-23

!FILENAME: HSADRT.EXO

BR 0-7 CLEAR
CL

COMMAND FILE "HSADRT.EXO"

SET AD=FO,PC=O,SS=O,SR=O
SET DO=O,D1=O,D2=O,D3=O,D4=O,D5=O,D6=O,D7=0
SET A2=O,A3=O,A4=O,A5=O,A6=O,US=0
SET A1=7FE
BR 0 ST,PA/ADDR=34
BR 1 DEC01,PA/ADDR=62
BR 2 PA/ADDR=7C
BR 3 pAl ADDR=C4
BR 6 CF/ADDR=DO
BR 7 HL/C01
LOAD HSADRT.LDA
CF COl.EXO
!EXECUTING "HSADRT"
CL 700-7FE
MEM 700
EM 0
EXIT
END

!FILENAME:C01.EXO

CO 1=4
CO 2=2
END

COMMAND FILE "COl. EXO"

6-24

CHAPTER 7

ECL-3211 MDS COMMAND DICTIONARY

The Emulogic ECL-3211 Microprocessor Development System (MDS) is
directed through a unique command language. You will use this language
to map memory, load emulation programs and data, set breakpoints, and
perform all other necessary functions related to the emulation process.
This chapter describes the format and syntax of the commands and how the
commands are used to carry out emulation procedures. Techniques of
using the commands are the subject of other chapters of this guide.

COMMAND USAGE
ECL-3211 MDS commands can be used in two ways. You can enter commands
directly as keyboard entries or indirectly as statements in command
files. Either way, the command formats and syntax are identical.

Direct commands are commonly used for setting up the emulation
environment, controlling the system display or adjusting emulation
parameters. You make direct command entries by typing a command on
the MDS display command line in the lower left corner of the screen.

Indirect commands perform similar functions, but they are executed
automatically from within command files. These indirect command files
are useful for performing repetitive or routine tasks and for set-up
sequences. You can create command files using a text editor, or you
can use the ECL-3211 LOG command to perform the file creation. De­
tails of command file creation and use are provided in Chapter 6 -
Creation and Use of Command Files.

COMMAND SYNTAX CONVENTIONS

In this chapter, commands are shown in the general format:

COMMAND(/option) argument 1(,argument 2, ••• ,argument n)

This structure is to be interpreted as follows:

COMMAND the legal command abbreviation is used in all syntax
examples. The full form of the command is shown in the
section heading and is used in text to avoid any possible
confusion. The portion of the command which is optional
input is shown in lower case. Either the full form or the
abbreviated form is acceptable in a command line.

7-1

()

{ }

. . .

I (slash)

UPPER CASE

lower case

(parentheses) parentheses are used to show optional
elements of the command format. You can include or ignore
these elements, depending on the function you want the
command to perform. The parentheses merely signal an optional
input choice; do not include them in your entries.

(curly braces) curly braces are used to show a choice of
options, keywords, or arguments available. Enter one and
only one of these elements. If braces are enclosed in
parentheses ({ }), anyone of the choices will satisfy
the option. The curly braces merely indicate that a choice
can be made between mutually exclusive options; do not
include them in your entries.

NOTE: The notation {+I-} means "plus or minus" and
indicates that you should use one of these logical operators
as a separator character in the argument list.

elipsis -- three spaced dots -- indicates that multiple
arguments are allowed for the command. You may enter
arguments up to the allowed number. Use a comma (,) to
separate each argument from the one preceding. Do not
include the dots; they merely show you that more arguments
can follow the first.

the slash mark indicates that the next character or
character string represents a command switch. In some
commands, several switches may be used together. When
you use more than one switch in a command, place a slash
(I) immediately before each switch code.

UPPER CASE or capital letters are used to show the
mandatory input portions of command words, switches and
argument words as they appear in a correct command entry.
Enter these elements exactly as shown when you use them
in that command.

lower case, or small letters, is used to show optional
input, generic switches, and arguments for which you must
substitute appropriate words, codes, or numeric values.
You should refer to the description of these elements
for the command you want to enter to determine the correct
format of the substitution.
For example, you might replace the term "addr" with the
hexadecimal address value, lA6F, to complete a MEM command.

Example: HEm addr
ME lA6F

In this command dictionary, each command is accompanied by a description
of the switches, options, and arguments allowed. In addition, the function
of each allowable combination of the command syntax elements is provided.

7-2

Be sure to enter the command elements as shown in this dictionary, including
spaces and commas where indicated.

Conclude every command by pressing the RETURN key to enter the command.
For simplicity, these RETURNs are not shown in the format examples.

Any of the commands discussed in this chapter may be entered using
the FasKey capability of the command mode. We suggest that you first
familiarize yourself with the command syntax as demonstrated in this
chapter. Refer to Appendix D at the back of this manual for the specific
FasKey keypad configurations.

7-3

HElp

Functions:

ECL-3211 COMMANDS
=================

Abbreviation: HE HELP
HE

The HELP command presents general and specific displays on the ECL-3211
MDS screen designed to assist the user in the use of ECL-3211 commands.

Format:

HE({command word,special keyword})

Command Words:

BReak EXIT MOve REset
CLear FReq SAve TYpe
CF HElp SEt WRite
COunt LOad STep RUn (an RT-ll command)
DIs LOG SWitch
DUmp MAp SYmbol
EMulate MEm TRace

Special Keywords:

ABort BA (Breakpoint
ALter BC (Breakpoint
ERrors BE (Breakpoint
CHip BM (Breakpoint

Display the Primary HELP File

Action)
Conditions)
Externals)
Masks)

BT (Breakpoint Triggers)
FAskey (keypad FasKey

operation)
FKeys (keypad special

command file option)

To enter the Help mode and get general information on using this
utility, enter:

HE

This command presents the general help mode display which shows all the
system commands and special keywords. From this display, you can gain
access to detailed information on any of the commands or keywords listed.
To do this, simply type the command or keyword code for which you want
information.

To exit from the help mode back to the ECL-3211 MDS command mode, press
the RETURN key.

7-5

HE

Display Information on a Specific Item

To look up information regarding one of the commands or special
keywords without first entering the general help mode display, enter:

HE {command word or special keyword}

For example: HE BR will present a display of breakpoint information.
HE AB will present a display of information on how to
abort a command.

To return to command mode, press the RETURN key.

PLEASE NOTE:

The help file (LOXXOO.HLP) must reside on the pseudo device, "HLP:".
To assign the help file to the pseudo device, use the RT-ll ASSIGN
command. For example, enter:

ASSIGN SY: HLP:

or enter:

ASSIGN DYl: HLP:

7-6

if the help file resides on your
booted device.

if the help file resides on floppy
drive 1

BREAK Abbreviation: BR

Functions:

The BREAK command displays, sets, clears, enables, disables, or modifies
anyone or more of the 8 ECL-32ll MDS breakpoints.

Format:

BR N(N-N) ({=addr} {action l ••• ,action n/condition l ••• ,condition n})

Where N equals breakpoint number 0-7. A range of breakpoint numbers may
be provided instead of a single breakpoint number.

For example:

BR 2 HL/PC=143+COl

BR 3=lA6F

Keywords, options, and expressions:

OFF

ON

CLear

addr

the OFF option indicates that a specified breakpoint or
range of breakpoints is to be disabled.

the ON option indicates that a specified breakpoint or
range of breakpoints is to be enabled.

the CLEAR option indicates that a breakpoint or range of
breakpoints is to be cleared of all actions and conditions.

an address (addr) is a unique location in system memory
designated by a hexadecimal value representing an
ECL-32ll mapped logical address.

Breakpoint Actions:

CF CLSW4 CPSW4 DIC02 PA STSWI
CLSWI CPSWI DECOI ENCOI PH=addr STSW2
CLSW2 CPSW2 DEC02 ENC02 RT STSW3
CLSW3 CPSW3 DICOI HL ST STSW4

One or more breakpoint actions may be specified, each separated by a
comma from the preceding one.

7-7

BREAK
BR

BREAK
BR

Breakpoint Action Mnemonics are translated as follows:

Action
Mnemonic Explanation
==

CF

HL

PA

STSWI

STSW2

STSW3

STSW4

CLSWI

CLSW2

CLSW3

CLSW4

CPSWI

CPSW2

CPSW3

CPSW4

Command File: The CF argument, as a break­
point action, halts emulation switching
system control to the default breakpoint command
file (BRN.COM where N is the number of the
breakpoint). For information concerning
creation of breakpoint command files, see
Chapter 6 - Creation and Use of Command Files.

Halt: Stop emulation, update the screen display
and go to command mode.

Pause: Stop emulation, update the screen display
and resume emulation.

Set switch 1: Set logical switch 1 (and thus set
trigger 1).

Set switch 2: Set logical switch 2 (and thus set
trigger 2).

Set switch 3: Set logical switch 3.

Set switch 4: Set logical switch 4.

Clear switch 1: Reset logical switch 1 and thus
reset trigger 1.

Clear switch 2: Reset logical switch 2 and thus
reset trigger 2.

Clear switch 3: Reset logical switch 3.

Clear switch 4: Reset logical switch 4.

Complement switch 1: complement logical switch 1
and thus complement trigger 1.

Complement switch 2: complement logical switch 2
and thus complement trigger 2.

Complement switch 3: complement logical switch 3.

Complement switch 4: complement logical switch 4.

7-8

Action
Hnemonic Explanation
==

ENC01

ENC02

DIC01

DIC02

DEC01

DEC02

ST

RT

PH=AAA

Enable counter 1. Counter one is enabled for
decrementing by cycles, instructions or target
chip ticks.

Enable counter 2. Counter two is enabled for
decrementing by cycles, instructions or target
chip ticks.

Diasable counter 1.

Diasable counter 2.

Decrement counter 1.

Decrement counter 2.

Set the Trace.

Reset the Trace.

Jump to phantom program or call phantom program.
(For information on types of phantoms supported
by your microprocessor, refer to the appropriate,
specific Chip Supplement to the USERS' GUIDE and
to your chip specific HELP file provided in your
ECL-3211 software.)

Breakpoint Conditions:

A variety of system, microprocessor, and target conditions can be
specified depending on the model of microprocessor.

Refer to the HELP Utility or to the appropriate supplement to the
ECL-3211 User's Guide.

Display Breakpoint Settings

To display the setings of a breakpoint, enter:

BR N

where N equals the number of the breakpoint (0-7)

7-9

BREAK
BR

BREAK
BR

The system presents a display showing all actions and conditions in
effect for the specified breakpoint.

To Turn Breakpoints On and Off

To activate or deactivate one or more breakpoints, enter:

BR N ON
OFF

For example: BR 5-7 ON
BR 0 OFF

The system turns on or off the breakpoint or range of breakpoints
specified. The new breakpoint status is shown in the breakpoint area
in the upper right of the display.

Clear Breakpoint Settings

To clear the settings (actions and conditions) of a breakpoint or
range of breakpoints, enter:

BReak N CLear

For example: BR 1-5 CL

The system removes all actions and conditions from the breakpoint or
range of breakpoints specified. The new breakpoint status will now
be shown in the breakpoint area of the display as undefined ("UNDEF").

Set Breakpoint on Address

To set a breakpoint to halt emulation at a predetermined address,
enter:

BR N=addr

For example: BR 3=23FF

The system sets a breakpoint which is activated when the specified
address is placed on the address bus for any reason. The implicit
action of this breakpoint is a halt. The appropriate address word
length is determined by the addressing scheme of the emulated micro­
processor. The break-on-address breakpoint is the simplest form of
address trap.

Set Breakpoint on Instruction Fetch

To set a breakpoint to halt emulation when an instruction is fetched
from a particular address, use the syntax:

BR N/PC=addr

7-10

For example, the command BR 3/PC=23FF will set the breakpoint
condition ADDR=23FF and INS (first opcode fetch) = 1.

Set Breakpoint Actions and Conditions

To set a breakpoint that will execute any of the actions listed
previously for one or more conditions allowed by the microprocessor,
enter:

BReak N action 1(••• ,action n)/(-)condition 1(••• {+I-}condition n)

The system sets a breakpoint which executes the specified actions if all
of the conditions occur during emulation. Emulation will halt or pause
only if the HL or PA actions are specified. Note that actions are always
entered first, that each additional action is preceded by a comma, and
that a slash mark (/) separates the conditions from the actions.

The plus (+) and minus (-) signs are logical operator/separators
indicating AND and NOT, respectively for the condition statements.
The minus operator cannot precede a multi-bit condition operator
such as an address, a port, or data. Plus is the default for the
first condition argument.

Remove Actions or Conditions

To remove actions or conditions from an existing breakpoint, enter:

BR N)action 1(•••)action n)/)condition 1(•••)condition n)

The "greater than" (» symbol before the action or condition indicates
that the parameter is to be deleted from the breakpoint specifications.
One or more actions, one or more conditions, or any combination may be
specified.

Examples: BR 2)PA)CF/PC=456
BR 1)/TC=32

Add Actions or Conditions

To add actions or conditions to an existing breakpoint, enter:

BR N action 1(••• ,action n)/condition 1(••• {+I-}condition n)

The system adds the specified actions or conditions to the current
breakpoint tables. This use of the BREAK command allows you to modify

BREAK
BR

the entries in the action and condition tables. For example, if the
program counter (PC) were previously set to activate breakpoint 5 at 2372,
the command "BR 5/PC=2567" resets the condition of breakpoint 5 to trip
when the PC has a value of 2567. One or more actions, conditions, or any
combination may be specified.

7-11

CLEAR
CL

CLEAR Abbreviation: CL

Function:

The CLEAR command, used without arguments, clears the central area of
the display on the ECL-3211 MDS screen. Used with a range argument,
the command causes the system to clear (set to zero values) the
specified range of addresses in memory. If the system is in a memory
display when you enter a clear memory command, the system updates the
current display.

Format:

CL address1-address2

An address is designated as a hexadecimal value, whose
maximum depends on the microprocessor being emulated.

7-12

CF
command file

CF (Command File) Abbreviation: CF

Functions:

The CF command displays, clears, initiates, and directs execution of
ECL-3211 MDS command files. A command file may be invoked from the
command line of the system display, as an action in a breakpoint, or
through a command in a command file (command files may be nested to a
depth of 5 and may call themselves). When a CF command is the last
command in a command file, no nesting occurs; the first command file
simply exits into the next.

When used to invoke a command file from a breakpoint, the CF command
does not use a filespec. Instead, the system invokes the command file
whose name is that of the current breakpoint (that is, BRO through BR7)
and whose extension matches the current default. Thus, if a command
file is invoked from breakpoint 4 and you have not altered the default
extension, the system will attempt to locate a command file named
"BR4.COM".

Format:

CF(/switch) (file.ext)

Switches and Arguments:

/D ext

/p

/R

the D switch sets the default command file specifi­
cation extension to the 3-character alphanumeric code
you specify as "ext".

If you do not specify an extension, command files
created with the LOG command will have the ECL-3211
system default ".COM" filespec extension. When a
command file is called, the system searches for a
file with the current default extension unless you
explicitly provide some other extension with the CF
command filespec.

the P switch can be used only in indirect commands; it
causes a pause in the execution of command file
statements. The system shows the condition "CF/P" on
the execution line of the system display. You can now
enter keyboard commands on the command line. You can
create a pause in command file execution at any time
from the keyboard by entering <CTRL/C) twice.

The R switch causes the system to resume execution of a
paused command file.

7-13

CF
command f He

(switches, continued)

Ic

IT FILE. EXT

The C switch causes a termination of command file
execution and clearing of tbe ECL-3211 MDS
command file stack. The system presents the message
"CLEAR COMMAND FILE STATUS" on the status line of
the display.

The T switch causes the system to ~ (list) the
contents of a command file in the central scroll area
of the system display. If more than 8 command state­
ment lines are contained in the file, the system will
scroll them through this area. Use the NO SCROLL key
to stop and examine the display.

7-14

COUNT

Function:

Abbreviation: CO

COUNT
CO

The COUNT command can be used to set the 2 ECL-3211 MDS counters.
The count value is specified as a decimal number and is decremented by
1 on each signal from the count source. Three selectable sources
cause regular automatic decrementing of the counter. The default
counter source allows breakpoint actions to decrement a given counter,
specifically.
Format:

CO N=value ({source}) (RI)

Options and Arguments:

N

value

source

one of the 2 ECL-3211 MDS decrementing counters is
designated by a numeral "1" or "2".

a decimal number ranging from 0 to 2A 31-1 (2,147,483,647)
representing the initial count value.

a 2-character code (shown elsewhere as "SS") represents
the event or source of the count increment:

CC selects machine (microprocessor) cycles.
IN selects target (external) clock pulses.
IS selects program instruction executions.

If you do not enter a source code, the value of the counter can be
controlled exclusively through the "counter" breakpoint actions
(in particular, DECOn (decrement counter». Under the conditions of
this default, a specified counter is decremented with each execution
of a DECO breakpoint action.

RI The Re-Initialize option restores the starting
value of the counter.

7-15

DIS
disassemble

DIS

Function:

Abbreviation: DI

The DIS (disassemble) command causes the system to convert hexadecimal
data in memory to source-code format for examination. The resulting
information can be displayed on the ECL-3211 screen, written to a
file for later study, or printed on the system printer. When a
starting address (addr) is provided, the disassembly begins at the
specified address and continues for the next 8 instructions. If a
range of addresses is provided, the disassembly includes all memory
from the starting to ending address, inclusive.

Formats:

DIs {addr}{range}
DIs PRint range
DIs WRite filespec range

Arguments and Options:

addr

range

PRint

WRite

filespec

an address is a hexadecimal value indicating the
starting point in memory of the disassembly. The
system displays 8 sequential disassembled instruc­
tions beginning at the specified address. You can
use the down arrow key to scroll forward to higher
addresses.

a range of memory data can be specified by a beginning
and ending address in the format:

addr-addr

If the range includes more than 8 instructions, the
system automatically scrolls the instructions through
the central area of the display. Use the NO SCROLL
key to stop the scrolling and examine the display.

The PRINT option, abbreviated to PR, indicates that
the specified range is to be printed on the system
printer. This option requires an address range
argument.

The WRITE option indicates that the specified range
is to be written to the named RT-11 file. This option
requires "filespec" and "range" arguments.

an RT-11 file specification is required to indicate
the destination file of a DIS command with the WRITE
option.

7-16

Display Disassembled Memory

To produce a display of disassembled memory, enter the command:

DIs {addr}{range}

For example, DI 3000-3100

DIS
disassemble

This command causes the system to show the specified memory in
source-code format in the central area of the display. When an address
argument is used, use the down arrow key to scroll past the first 8
instructions. If a range argument is used, use the NO SCROLL key to stop
and examine the display.

Write Disassembled Records to a File

To write a block of disassembled memory to a file, enter:

DIs WRite filespec range

For example, DI WR MFILE.MEM 2000-2100

This command causes the system to disassemble the specified range of
memory and send the resulting information to a named file. The file
specification may be any legal RT-ll filename and extension.

Print Disassembled Records

To print a block of disassembled memory on the system printer, enter:

DIs PRint range

Example: DI PR 800-AFF

This command causes the system to disassemble the specified range of
memory and to print the resulting information on a default printing
device.

7-17

DUMP
DU

DUMP Abbreviation: DU

Function:

This command causes the system to dump the specified range of
memory to the system printer. The DUMP command operates through the
ECL-3211 mapping facility, so the address specifications refer to
logical addresses. To abort a listing from the DUMP command, press
<CTRL/C) twice.

Format:

DUmp range

Example: DU 800-AFF

Arguments:

range a range is specified a starting and ending address of
the memory to be dumped, represented in the format:

addr-addr

Addresses are hexadecimal values.

7-18

EMULATE

Format:

Option:

Abbreviation: EM

EM (addr)

EMULATE
EM

addr the address option is a hexadecimal value representing
an ECL-3211 MDS mapped logical address. This address is
the location of the first emulation instruction to be
executed.

Function:

This command starts the ECL-3211 MDS emulation routines. Instructions
are fetched from the emulation test program mapped in memory and exe­
cuted by the ESP processor. Signal tests and breakpoints are handled
according to your pre-set directions entered during emulation set-up.
If the optional address is not supplied, the EM command causes emulation
to use the current value of the program counter (PC) as the starting
instruction address.

7-19

EXIT

EXIT Abbreviation: EXIT

Function:

This command terminates the ECL-3211 monitor process and display and
returns you to the primary operating system control, RT-ll monitor.
The SAVE option (S) allow you to save the current emulation environ­
ment in a binary data file. The "save" file can then be used to
set up the ECL-3211 MDS when it is started through the RUN command.
Once you have issued the EXIT command, no other ECL-3211 commands
are valid.

Format:

EXIT({/S}{S/filespec})

Options and Arguments:

/s

filespec

When the S option is specified, the system saves
the emulation environment in a disk file. The de­
fault "save" file is named LOxxOO.DATj xx represents
a 2-digit code for the microprocessor type.

You may use a standard RT-ll file specification to
indicate a "save" file other than the default.

7-20

FREQ

Function:

Abbreviation: FR

FREQ
FR

frequency

This command sets the emulation frequency and specifies the clock signal
source. The "type" options allow you to use the ECL-3211 MDS for ESP only
or for ESP and target clock signals.

Format:

FR {frequency}{EXT} (type)

Options and Arguments:

frequency

type

Frequency is designated by a decimal value representing
in thousands of hertz (KHz) the frequency of the emula­
tion clock.

2 types of clock signals can be generated by the ECL-3211
MDS:

INT (Internal) The clock synthesizer of the
ECL-3211 MDS provides a signal of the
specified frequency to the Emulogic ESP
pod only. All other target devices must
use the target clock. The internal (INT)
setting is the default clock source type.

IND (Internal Driver) The clock synthesizer
provides a signal of the specified
frequency to the Emulogic ESP pod and
to your target devices. This capability
is not supported by all microprocessors;
consult the microprocessor vendor's hardware
specifications and the Emulogic chip supple­
ment.

EXT The EXT option shuts off the ECL-3211 MDS
clock synthesizer signal to the ESP pod:
the emulation microprocessor runs on a
signal from the target clock.

7-21

LOAD
LO

LOAD Abbreviation: LO

Function:

This command loads an assembled and linked program file in blocked
absolute load module format from disk to memory, according to
pre-determined mapping directions. This step makes the program code
available for emulation.

Format:

filespec

LOad filespec

a file specification designates a binary RT-ll
LDA-format absolute load module as the file to be
loaded.

7-22

LOG Abbreviation: LOG

Function:

This command opens the specified log file and writes subsequent keyboard
commands into the designated log file. You can use the C switch to cancel
immediate execution, thus creating a command file which can be executed on
command. The END argument is used to mark the end of the logging function.

Formats:

LOGUC) filespec
LOG END

Switches, Options, and Arguments:

Ic

filespec

END

The C switch cancels immediate execution of commands
as they are entered in "log" mode. By using this switch,
you can create a command file which will not be executed
until called by a direct or indirect CF command.

The file specification designates an RT-ll format file
as the output log file. You can use any 3-character exten­
sion; if no extension is specified, the system assigns the
current default.

the END argument designates the end of the log mode
process. The "LOG END" command must conclude every log
mode activity.

7-23

LOG

MAP
MA

MAP Abbreviation: MA

Functions:

The MAP command can initiate several map-related functions,
depending on your selection of options and arguments. The Emu10gic
ECL-3211 MDS mapping facility allows you to locate emulation program
modules, data files, and other related memory resources in suitably
efficient areas of memory. The utility then automatically manages
retrieval and storage of all emulation-associated memory requests.

Formats:

MAp n (option)
MAp range=n (option)
MAp range=offset (option)

Keywords, Options, and Arguments:

n

range

offset

option

The n option is a decimal value from 0 to 4
representing a high-speed map module of the ECL-3211
MDS. Map 0 is always the 2-ki1obyte module on the MAP
board.

The range argument consists of a starting and ending
memory address in the format:

addr-addr

The offset parameter is a hexadecimal value
representing a physical range starting address in
internal (DEC) memory. Each address is a hexadecimal
value. In the case of internal memory, the range is
added to an offset address to provide an effective
address range.

You can select a variety of setting and control
options for the MAP command:

ON this option turns on the specified
ECL-3211 MDS mapping function.
If no map is specified, all previous­
ly declared maps are enabled.

OFF this option turns off the specified
ECL-3211 MDS mapping function. If no
map is specified, all previously
declared maps are disabled.

CL the CLEAR option deletes the current
declarations of the specified map.
If no map is specified, all map
declarations are deleted.

7-24

(Map Options, continued)

RAM this option sets the specified map to
act as random access memory (RAM); this
is the default condition.

MAP
MA

ROM this option sets the specified map to act
as read-only memory (ROM) during emulation.
Map 0 and internal (DEC) memory cannot be
declared as ROM.

INT this option accesses DEC system memory
(internal) and allows you to modify the
configuration of this memory area.
Either 8 or 64 kilobytes of memory is
available, depending on the system
configuration.

HS this option selects presentation of maps
in the Emulogic high-speed memory
modules. These modules include the 2
kilobytes on the MAP board plus any
additional high-speed memory boards
installed in the system. Each board is
represented by a map number.

Display All Map Information

To review all current settings of ECL-3211 MDS maps, enter:

MAp

The system enters map mode and presents all map conditions at the top
of the display. If you have more than 8 maps, use the up and down arrow
keys to view all the map entries. You can make changes to map types
(RAM, ROM), range, and status, or you can clear all settings by using
additional MAP commands.

Display and Access Internal Mapping

To review or modify current settings of DEC (internal) mapped memory,
enter:

MAp INT

The system enters internal map mode and presents the internal map

7-25

MAP
MA

conditions at the top of the display. You can make changes to the
range, offset, and status, or you can clear all settings using
additional MAP commands.

Display and Access High-Speed Mapping

To review or modify current settings of the Emulogic high-speed
mapped memory, enter:

MAp HS

The system enters high-speed map mode and presents the high-speed map
conditions at the top of the display.

You can make changes to map type (RAM, ROM), range, and status, or
you can clear all settings using additional map commands.

Change Map Status

To change the status (ON, OFF) of one or more maps, you can enter the
MAP command with appropriate options. This command affects all
internal, or high-speed maps, depending upon which map mode you have
previously selected.

Change Status of All Maps

To switch all maps on or off, enter:

MAp ON
OFF

This command turns all current map declarations to ON or OFF, as
specified. The status will be updated in the "Status" column of the
map display.

Change Status of a Specified Map

To switch the status of an individual high-speed memory map
on or off, in high-speed map mode enter:

MAp n ON
OFF

where n is the number (0-4) of the particular high-speed map.

This command turns the current map declarations to ON or OFF, as
specified. Since only the Emulogic high-speed (HS) memory can
have more than one map (one map per high-speed board), this command
applies only to HS maps.

7-26

Clear Map Settings

~P

MA

To delete the current settings of one or more maps, you can enter
the MAP command with the CLEAR option. This command affects all
maps, internal or high-speed, depending upon which map mode was
previously set.

Clear All Maps

To clear all current map conditions, from map mode enter:

MAp CLear

This command deletes all map declarations, switches status of all maps
to OFF, and resets map types to RAM. Map ranges are set to undefined
(000-000).

Clear a Specific Map

To delete the current map declarations of an individual high-speed (HS)
map, in high-speed map mode enter:

~p n CLear

where n is the particular number or numbers (n-n) of high speed map(s)
you are clearing.

This command deletes the current declarations of the specified map,
switches it off, and resets the map type to the default, RAM.
Because only Emulogic high-speed memory can have more than one map, this
command applies only to HS maps.

Set Map Range

To set the range (block of addresses) represented by a map, you can use
the MAP command with a range argument. The range specification must be
a form compatible with the internal or high-speed memory area being
established.

Set Range for Internal Memory

To set a range of memory for the internal (DEC) map, in internal map
mode enter:

~p range=offset

Example: MA OOO-SFF=OOO

7-27

(Set Range for Internal Memory, continued)

The system establishes the specified block in the internal map to
begin at the given offset address. You must ensure that the range and
offset you provide in this command do not, together, exceed the
maximum address of available internal memory.

Set Range for High-Speed Memory

To set a range of memory for one of the high-speed memory maps, in
high-speed memory mode enter:

MAp range=n (RAM)
(ROM)

Example: MA lOO-5FF=1 ROM

The system establishes the range in the specified map. You can use
the ROM or RAM options to change the memory type of the range being
mapped. Remember that ranges in high-speed map 0 are RAM only.

7-28

MEM Abbreviation: ME

Functions:

The MEM command causes the system to present the contents of memory
on the central area of the display. The memory display is generated
through the mapping facility, so you specify logical addresses or
ranges. Memory data presented through the MEM command can be modified
through the Alter mode.

Format:

MEm(/switch) (addr) (addr 1
(range) (range 1

,addr n)
,range n)

Switches and Arguments:

/A

/Q

NOTE:

addr

range

The A switch causes the system to present the memory
display in hexadecimal and ASCII equivalents.

The Q switch provides a quick presentation of the
memory range specified in the command.

The Q and A switches can be used together, in either
order, to provide hexadecimal and ASCII presentation
in quick format.

An address is a hexadecimal value representing a starting
location in memory to be displayed.

The range is designated as a starting and ending address
in the format:

addr-addr

Recall Most Recent Memory Display

To recall the most recent memory display, enter:

HEm

The system presents the contents of 128 bytes (8-bit microprocessors) or
128 words (16-bit microprocessors) of memory most recently called with a
MEM command in hexadecimal notation. If no previous MEM command has been
issued, the system shows 128 bytes or words, beginning at address 000.
You can use the up and down arrow keys to scroll through the displayed
records.

7-29

MEM
ME

MEM
ME

Display Specified Memory

To view the contents of memory starting at a specified address, enter:

MEm addr

The system presents a display of 128 bytes (8-bit processors) or 128
words (16-bit processors) of memory data starting at the specified
address or the last even 16-byte or -word memory address (an
address whose low order digit is 0). Use the up and down arrow keys
to scroll through the displayed records.

Display Specified Memory with ASCII

To view the contents of memory starting at a specified memory address
in hexadecimal and ASCII representation, enter:

MEm/ A(/Q) addr

The system presents 4 pairs of data-record lines. In each pair, the
upper line is hexadecimal notation and the lower line, ASCII. 64
bytes of data is represented for 8-bit machines and 64 words for
16 bit microprocessors, starting at the specified or last lower even
16-byte or word boundary. The display is updated by each pause or halt
in emulation. You can use the Alter mode and SET command to modify
values which will, in turn, change the ASCII equivalent. The
optional Q switch produces a memory display in quick format (see
"Display Memory in Quick Format").

Display Memory in Quick Format

To view the contents of memory at a specific address or range of
addresses, enter:

MEm/Q(/A) addr 1
range 1

,addr n
,range n

The system presents the data records from the specified address or
range in hexadecimal representation. Any combination of 3 ranges,
addresses, or ranges and addresses can be specified in one command.
You should note, however, that if the ranges or addresses exceed the
8 records available in the display's central area, the system scrolls
all records through to the last. Since the Q switch defeats the use
of up and down arrow keys, you must ensure that ranges specified can
be viewed without scrolling. The optional A switch produces a quick
memory display with ASCII equivalents of each byte or word displayed.
You can change data displayed with the MEM/Q command with the SET
command.

7-30

MOVE Abbreviation: MO

Function:

This command causes the system to move the block of memory designated by
the range to a new location starting at the address specified in the
command. Because the MOVE command makes use of the ECL-3211 mapping
facility, all addresses refer to logical memory locations. However, the
data in the specified range is physically re-written. If the area
specified by "addr" (that is, the new location) is not large enough to
hold the entire block, the system moves as much of the block as available
space will allow.

Format:

MOve {range}{addr}

Arguments:

range

addr

The range represents a block of memory addresses between
a starting and ending address, inclusive, in the format:

addr-addr

Addresses are hexadecimal values representing locations
(logical) in mapped memory.

7-31

MOVE
MO

RESET
RE

RESET Abbreviation: RE

Function:

The system resets the ECL-3211 electronics modules. This resetting
function affects logic on the Emulogic Map and Control boards and in
the ESP pod. Be aware, however, that this command does not
provide a reset signal for your target hardware.

Format:

REset

7-32

SAVE Abbreviation: SA

Function:

The system saves the emulation status data in the designated save file.

Format:

Options:

filespec

SAve (filespec)

A legal RT-ll file specification represents the file in
which the current ECL-3211 MDS emulation environment is
to be stored. The default file extension is ".DAT".

7-33

SAVE
SA

SET
SE

SET Abreviation: SE

Function:

The SET command is used to set values in memory or to set values
for the target chip's logical entities (registers, program counters,
etc.)

Refer to your chip-specific Emulogic supplement to the User's
Guide for the proper use of chip mnemonics for this command.

Format:

SEt ({chip mnemonic option}{MEM address=value{value1,value2, •••• }})

Options:

~M

Chip Mnemonic

The MEM option allows the user to set a specific
value for a given address or optionally successive
addresses.

For example, SET MEM 400=123,124,125 sets the con­
tents of memory at three contiguous addresses begin­
ning at address 400 at the values 123, 124, and 125.

Sets the hexadecimal value for one of the target's
logical entities (registers, program counters, etc.)
Mnemonics vary according to the chip being emulated.

For example, SET PC=44,SP=3 •

7-34

STEP Abbreviation: ST

Function:

The system intializes the step counter at It commences step mode
emulation t executes one instruction t and pauses. Press the RETURN
key (a "null" command) to advance to the next step. You cannot use
the STEP command to execute instructions within phantom programs or
interrupts.

Format:

Options:

B

STep (B)

The B option specifies that steps are from breakpoint
to breakpoint. The system proceeds with emulation
until the conditions are met of a breakpoint con­
taining a HALT, PAUSE, or CF (command file) action.

Any command other than RETURN terminates the step mode emulation and
places the system in command mode.

If you include the B option in this command, the system executes
program instructions without pausing until the conditions of a
breakpoint containing a HALT, PAUSE, or CF are met.

7-35

STEP
ST

SWITCH
SW

SWITCH Abbreviation: SW

Functions:

The SWITCH command allows display or manual setting of the 4 ECL-3211
MDS sense switches.

Format:

SWitch n=condition(,n=condition •••)

For example, SW 1=0,2=1,3=0,4=1

Arguments:

n

condition

The 4 ECL-3211 switches are designated as one-digit
numerals: 1, 2, 3, and 4.

The logical conditions, "on" and "off", are represen­
ted by the binary values 1 and 0, respectively.

Display Current Switch Settings

To view the settings of the switches, enter the command:

SWitch

The system presents a display of the current switch and counter
conditions.

Set Switch Conditions

To set the value of a switch, enter the command:

SW n=condition(,n=condition ••••)

Example: SW 1=0,4=1

The system sets the logical condition specified on one of the four
system switches. Since switches 1 and 2 provide output signals to
the ESP pod triggers (TRIG-I, TRIG-2) respectively, you can use the
SWITCH command to pulse the trigger lines.

7-36

SYMBOL Abbreviation: SY

Functions:

The SYMBOL command can be used to set and clear symbols from the
ECL-3211 MDS internal symbol table or to open program symbol table
files that have been linked with the Emulogic Linker. Symbols can
be used with offset hexadecimal values and logical operators; the
format "symbol+7" or "symbol-2B" can be used as addresses or other
numeric values.

Format:

SYmbol (CLear) (symbol l(,symbol 2, ••• ,symbol n»
(symbol=value) (filespec)

Options and Arguments:

CLear

symbol

value

The CLEAR option indicates that one or more symbols
are to be deleted from the internal (ECL-3211 MDS)
symbol table. When not accompanied by symbol
arguments, the CLEAR option clears all internal
symbols and closes any open symbol files.

A symbol represents a named variable. Once such a
symbol is established, the symbol name can be
referenced in any command where a hexadecimal value
is normally acceptable. A symbol name must be en­
closed in double quotation marks (as: "symbol") when
making a substitution.

a hexadecimal value is assigned to a symbol created
through the SYMBOL command.

Add a Symbol to the Internal Table

To add a symbol or change the value of an existing symbol in the
internal t~ble, enter:

SY symbol=value

Example: SY FISH=OF1F

The system adds the named symbol with the value specified or changes
the value of the existing symbol. You may now substitute the symbol
name, in double quotation marks (" "), in your program as a reference
to the given value.

7-37

SYMBOL
SY

SYMBOL
SY

Open a Symbol Table File

If you have symbol table files created through the Emulogic Linker
and want to use those symbols in ELC-3211 MDS commands, enter:

SYmbol filespec

The system opens the specified file and makes the table available for
command symbol references. You may keep up to 4 symbol table files
open simultaneously.

Clear Internal Tables

To delete symbols from the internal ECL-3211 MDS symbol table, enter:

SYmbol CLear (symbol 1(••• ,symbol n))

Example: SY CL FISH,KING,QUEEN,JACK,ACE

The system clears one or more symbols, as specified, from the internal
table. If no symbol names are given, the system clears all symbols
in the internal table and closes any open symbol table files.

7-38

TRACE Abbreviation: TR

Functions:

The TRACE command controls your use of and access to the ECL-3211 MDS
trace buffer. This buffer holds the last 512 cycles executed by the
emulation microprocessor. Records in the trace buffer can be viewed
on the system display, written to a file, or printed on a hardcopy
device.

Formats:

TRace {record}{range}
TRace CLear
TRace WRite filespec (range)
TRace PRint (range)

Options and Arguments:

record

range

CL

WR

filespec

PR

The ECL-3211 MDS maintains records of cycles executed
by the microprocessor in the trace buffer. The buffer
holds 512 records, designated by decimal values from a
to 511. (Record = 0-511.)

a range of records is designated by a starting and
ending record number in the format:

record-record

The CLEAR option causes the system to delete all
records from the trace buffer.

The WRITE option causes the system to write the
entire trace buffer or a range of records to a named
RT-l1 file.

An RT-11 file specification indicates the output
destination of a TRACE command with the WRITE option.

The PRINT option causes the system to print the entire
trace buffer or a range of records on the system
printing device.

Display the contents of the Trace Buffer

To view the current contents of the trace buffer, enter:

TRace

The system presents a display of records 504 to 511 (the last 8) in
the trace buffer in the central area of the system display. You can
use the up and down arrow keys to scroll backward or forward through
the trace record display.

7-39

TRACE
TR

TRACE
TR

Display Selected Trace Records

To view selected records from the trace buffer, enter:

TR {record}{range}

The system presents the selected records in the central area of the
system display. If you specify a single record, the system shows 8
records beginning with the record specified. If you specify a range
of records, the system scrolls the records beginning at the start-of­
range. Use the NO SCROLL key to halt the scrolling and examine re­
cords.

Clear the Trace Buffer

To clear all records from the trace buffer, enter:

TR CL

This command deletes all current instructions from the trace buffer.

Write Trace Records to a System File

To copy the entire trace buffer or a range of trace records into an
RT-ll file, enter:

TR WR filespec (range)

The system copies the specified records into the file designated by
"filespec". If no range is given, the system writes out all of the
records in the trace buffer.

Print Trace Records

To print the entire trace buffer or a range of trace records, enter:

TR PR (range)

The system prints the specified records on the system printing device.
If no range is given, the system prints all 512 records from the
buffer.

7-40

TYPE Abbreviation: TY

Function:

This command sets the ECL-3211 MDS for operation with the specified
microprocessor type.

Format:

TY device type

Argument:

device type a device type specifies the model of microprocessor
used for system development. The Emulogic ECL-3211
MDS recognizes most popular microprocessor types by
their generic numeric codes. For example, the Intel
8048 is device type "8048"

7-41

TYPE
TY

WRITE
WR

WRITE Abbreviation: WR

Function:

This command writes the specified block or blocks of data to the named
file in LDA format. This file can later be reloaded using the ECL-3211
MDS LOAD command. Since the WRITE command uses the mapping facility,
you need specify only logical addresses in range arguments.

Format:

Arguments:

filespec

range

WR filespec range 1(••• ,range n)

The RT-11 file specification designates an output
file to receive the data indicated in the command.

A range of memory addresses to be written out by the
command is represented by a starting and ending
address in the format:

addr-addr

The address is a hexadecimal value whose maximum
depends on the microprocessor being emulated.
One or more ranges (separated by commas) may be
provided in one command.

7-42

CHAPTER 8

COMMAND SUMMARY

This chapter may be used as a quick reference to the basic
commands that are available in the ECL-3211 microprocessor develop­
ment system. We have summarized the commands, categorizing them
into four functional areas:

o Memory Management

o Emulation Management

o Screen Management

o Command File Management

Those few commands that do not fall under these four functional
areas are listed under "Miscellaneous Commands".

NOTE: Some ECL-3211 commands are capable of performing
more than one function. This chapter gives only a
cursory definition of the commands. For a full
scope of each command's capabilities, refer to
Chapter 7 "Command Dictionary".

In the command tables that follow, the capitalized portion of the
command mnemonic is required input. The lower case portion of
the mnemonic is optional input. After typing a command on the
command line of the display, press the RETURN key «cr»).

Any of the commands listed in the tables may be entered using the
FasKey capability of the command mode. Refer to Appendix D at the
back of this manual for specific FasKey keypad configurations.

TABLE 8.1 below lists the ECL-3211 commands used to manipulate
ECL-3211 and target memory.

TABLE 8.1
MEMORY MANAGEMENT COMMANDS

COMMAND

CLear

FUNCTION

Clears a specified range of memory,
either a specific address range or a
named map. (See also Screen
Management.)

8-1

TABLE 8.1 (cont.)
MEMORY MANAGEMENT COMMANDS

COMMAND

DIs

DUmp

LOad

MAp

FUNCTION

Memory contents are disassembled as
instructions, starting at given address

DIs AAAA or DIs AAAA-BBBB
DIs PRint YYYY-ZZZZ prints disassembled

contents of memory (as
instructions) in given address
range.

DIs WRite FILE. EXT YYYY-ZZZZ
Disassembled memory from
address YYYY-ZZZZ (HEX)
inclusive is written to file
FILE. EXT

Dumps the specified portions of
memory (in HEX) to the system
printer.
Use the following command format:
DUmp AAAA-BBBB

Loads LDA-formatted files into
memory from disk.

LOad FILE. EXT

Assigns a range of logical addresses
to a corresponding range of
physical addresses in ECL-3211 internal
memory or high-speed memory.

There are twelve available map functions:

MAp displays map assignments

MAp INT maps internal DEC memory

MAp HS maps high speed memory

MAp AAAA-BBBB=OFFSET
maps internal memory for
the given address range
beginning at the given
OFFSET location into
internal memory

MAp AAAA-BBBB=N (RAM or ROM)

8-2

maps high speed map N for the
given address range (as either
RAM or simulated ROM - HS Map a
cannot be declared as ROM)

TABLE 8.1 (cont.)
MEMORY MANAGEMENT COMMANDS

COMMAND

MEm

FUNCTION

MAp ON or MAp OFF
Turns on or off all maps

MAp CLear Clears all map definitions

~~p N ON Turns on high speed map N

MAp N OFF Turns off high speed map N

MAp N CLear Clears high speed map N

MAp N RAM or ROM Declares map N to
be RAM or simulated ROM
(RS Map 0 and DEC Internal
memory cannot be declared
as ROM)

Displays memory contents in the
central scroll area of the
screen display.

The following displays of memory
are available:

MEm AAAA (AAAA=beginning location)
displays memory beginning

MEm

at location AAAA in REX.
The optional switch "/A"
causes memory to be displayed
as ASCII format as well as in
hexadecimal format.

Last Mem display is redisplayed
or if no previous display,
defaults to 128 Byte/words
beginning at address O.

MEm/Q(/A) AAAA-BBBB(,CCCC-DDDD,EEEE-FFFF)
Quick display of memory in
given memory ranges (maximum of
three ranges.)

8-3

The optional switch "/A"
causes memory to be displayed
in ASCII as well as in
hexadecimal format.

TABLE 8.1 (cont.)
MEMORY MANAGEMENT COMMANDS

COMMAND

MOve

SEt

WRite

FUNCTION

The block of memory encompassed by the given
address range is moved to a new stated
address.

MOve 30-4F 100

where 30-4F is the address range being moved
and 100 is the starting address for the
desired new location.

Sets contents of specified memory
locations.

SEt MEM 0-32F=12
Sets the constant value 12 into
memory locations 0 to 32F.

SEt MEM 0=C3,58,00
Stores the hex values, C3,
58, and 00 in sequential
addresses beginning at
address O.

Stores contents of a range of memory into a
diskfile in LDA format.

WRite FILE.EXT AAAA-BBBB(,CCCC-DDDD,
EEEE-FFFF, ••••)

(See emulator LOad command to load file)

===

8-4

EMULATION MANAGEMENT

There are several basic commands that you use to control emulation
of your target system. These commands are listed below in TABLE
8.2 •

TABLE 8.2
EMULATION MANAGEMENT COMMANDS

COMMAND

BReak

FUNCTION

Defines a breakpoint and displays
its conditions and actions.

There are nine breakpoint functions:

BReak N displays setting for
breakpoint N, where N = 0-7

BReak N ON (OFF) Turns a given breakpoint
on or off

BReak N-N ON (OFF) Turns on or off
breakpoints N-N
ex: BR 1-4 ON

BReak N(-N) CLear
Clears a particular breakpoint
or, optionally, a range of
breakpoints

BReak N=AAAA (sets halt at address AAAA)

BReak N Al(,A2,A3,A4)/Cl(+C2,-C3+c4 •••)
sets actions and conditions
for breakpoint n

(See Chapter 4 for a complete
discussion of breakpoint syntax
including action and condition
mnemonics.)

BReak N)Al/)C2
remove action Al and remove
condition C2 from breakpoint
N parameters

BReak N A4,As
add breakpoint actions A4 and AS
to breakpoint N

BReak N/Cs,C6

8-5

add conditions CS and C6 to
breakpoint N

TABLE 8.2(cont.)
EMULATION MANAGEMENT COMMANDS

COMMAND

COunt

EMulate

Fhq

REset

SEt

FUNCTION

Sets numerical value and type of oper­
ation of one of the system's counters.

COunt N=DDDDDDDD (XX) (RI)

where N = counter number, 1 or 2
DDDDDDDD = decimal number from

o to 2,147,483,647 (2 A 31-1)
XX may equal one of the following

three count source mnemonics:
CC (counts machine cycles)
IN (counts target clock ticks)
IS (counts instructions)

RI resets the counter to initial value
at beginning of each emulation

$EMulate (XXXX) Starts emulation at
current program counter
address or, optionally at
user-specified address XXXX.

Selects emulator clock source and
frequency

There are two FReq functions:

Fhq DDDDD (TTT)
where DDDDD is a decimal number
optional TTT= INT for internal

clock synthesizer
IND for ECL-3211
clock source

Note: IND is not available on all
systems. Check your specific
chip supplement to the ECL-3211
User's Guide.

FReq EXT (external target clock source)

Performs hardware reset for ECL-3211
pod to initialize logic in pod chip.
(Does not perform a reset to the target
system.)

Sets hex value for one of the ESP pod's
logical entities (registers, program
counters, etc.) Entity codes are
specific to the emulated microprocessor.

8-6

TABLE 8.2 (cont.)
EMULATION MANAGEMENT COMMANDS

COMMAND

STep

STep B

SWitch

TRace

FUNCTION

Steps through emulation one instruction at
a time. Each press of the RETURN key
advances emulation through the next step.

Emulation begins and continues until a
breakpoint with a HALT, PAUSE, or COMMAND FILE
action is encountered. A carriage return
causes the system to progress to the next
halting breakpoint. Any command other than a
carriage return exits step mode.

Sets a system switch

There are two SWitch command functions:

SWitch switch and counters display is
shown in central scroll area

SWitch N=1 or 0
where N can be switch 1-4

Displays, prints or clears trace
buffer, or writes buffer contents to
a disk file.

The following TRace functions are
available:

TRace trace records 504-511 display
in scroll area

TRace AAA or (AAA-BBB)
first 8 trace records beginning
at record AAA (decimal) are
displayed in the central area
or, optionally, a range of records
beginning at record AAA and ending
with record BBB (decimal) are
displayed in the central area.

TRace CLear clears trace buffer

TRace WRite FILE. EXT (AAA-BBB)

8-7

Writes contents of trace buffer re­
cord (512 records) to designated file.
If optional range (AAA-BBB, decimal)
is given, only the specified records
are written.

TABLE 8.2 (cont.)
EMULATION MANAGEMENT COMMANDS

COMMAND

TRace (cont.)

TYpe

FUNCTION

TRace PRint (AAA-BBB)

Contents of trace buffer (512
records) are printed. If range
of record numbers is given (AAA-BBB,
decimal values), only the contents
of the trace buffer within the
record range will be printed.

TY=nnnn<cr)
Specifies the type of processor
being emulated. This command is
used when several devices in a micro­
processor family use the same
emulation software. Refer to the
supplement to this Users's Guide for
the processor you are emulating.
ex: TY=8049<cr)
This sets the device to an 8049 chip,
which is a member of the 8048 family.

==

SCREEN MANAGEMENT COMMANDS

You can display a variety of information relevant to target emulation
in the central scroll area of the screen display, using the commands
listed below in TABLE 8.3.

TABLE 8.3
SCREEN MANAGEMENT COMMANDS

COMMAND

BReak N

CLear

MEm

FUNCTION

Displays the breakpoint definition for
a given breakpoint N, where N may equal
0-7.

Clears the central scroll area.

Displays memory contents in the central
scroll area. The last memory display is
redisplayed or, if there was no previously
requested memory display, defaults to
displaying 128 byte/words beginning at
address O.

(See Memory Management Commands in TABLE
8.1 or refer to CHAPTER 4 "Memory Management"
for more detailed information on memory
display commands.)

TABLE 8.3 (cont.)
SCREEN MANAGEMENT COMMANDS

COMMAND

SWitch

TRace

DIs

CF/T

FUNCTION

Displays the state of logic switches,
counters and clock source in the central
scroll area.

Displays trace records 504-511 in the
central scroll area. (See TABLE 8.2 for a
complete listing of trace commands.)

Displays disassembled memory contents in the
central scroll area. (See TABLE 8.1 for a
complete list of DIS commands.)

This command types the contents of
a specified command file in the central
scroll area. If the file has more than
eight records, the file scrolls.

Use the following command format:

CF/T FILE. EXT

==

COMMAND FILE MANAGEMENT

The following commands listed in TABLE 8.4 below are used in the
creation and control of ECL-3211 command files. For more information
on use of command files in the ECL-3211 system, refer to the chapter
entitled CREATION AND USE OF COMMAND FILES in this manual.

TABLE 8.4
COMMAND FILE MANAGEMENT COMMANDS

COMMAND

CF

FUNCTION

Executes a command sequence contained
in the specified command file.

Use the following command format:

CF FILE.EXT

where FILE is the command file name and
.EXT is the command file extension.

8-9

TABLE 8.4 (cont.)
COMMAND FILE MANAGEMENT COMMANDS

COMMAND

CF/D

CF/P

CF/R

CF/C

CF/T

END

FUNCTION

Used to create a user-defined default
for the command file extension.
(System defined default is ".COM".)

CF/D XXX where XXX represents any
three character alphanumeric which is be
the new command file extension default.
This user-defined default will also
automatically apply to LOG created
command files •

Causes a command file pause; can be used
only within a command file.
Use the CF/R command to resume command
file execution.

Must be entered from the display command line
following a command file pause in order to
resume execution of the command file.

Terminates execution of all command files and
clears the command stack.

Types the contents of a named command file in
the central scroll area.

Use the following command format:

CF/T FILE. EXT

Functions as a command sequence terminator
in a command file.

8-10

TABLE 8.4 (cont.)
COMMAND FILE MANAGEMENT COMMANDS

COMMAND

LOG

LOG/C

!<CTRL/G)

FUNCTION

The LOG command allows you to keep track
of all commands entered from the keyboard
at the command line. All commands are
executed and written to the user designated
FILE(.COM). (See CF/D to change command file
extension.)

To end the LOG session, enter LOG END,
EXIT or EXIT/S at the keyboard. An END
command is written to the LOG file, the
LOG file is closed and now available
for execution as a command file.

The /C switch used with the LOG command
suppresses execution of all commands
entered from the command line. This command
is especially useful for creating an
ECL-3211 command file.

LOG/C FILE(.EXT) System default for .EXT
is .COM

To include comments in a LOG file or a
command file (the comment will display
during execution of the command file),
precede the comment with an ! (exclamation
mark). Each comment line may be 60
characters in length.

!xx
Where xxx ••• is the comment line.

This command will cause the keyboard bell
to ring as a signal. Enter a "!" followed
by a <CTRL/G) (depress the CONTROL and G keys
simultaneously.)

==::=

8-11

MISCELLANEOUS COMMANDS

The commands listed in TABLE 8.5 perform miscellaneous ECL-3211 functions.

TABLE 8.5
MISCELLANEOUS COMMANDS

COMMAND

EXIT

EXIT/S

SAve

HElp

SYmbol

FUNCTION

Returns the ECL-3211 system to the RT-11
keyboard monitor.

The S switch used with the EXIT command
performs an exit and saves the environment
(see SAVE command below). If no data file
is specified t the data is stored in a
default data file - LOxxOO.DAT (xx is an
Emulogic code specifying the processor
being used).

$Use the following command format:
EXIT/S (FILE. EXT)

The current status of the emulator (that
iS t emulation parameters) is saved in the
designated file. The default extension
is "DAT". The status of the emulator can be
saved at any point by the SAVE command.
This saved status may then be restored at
a subsequent emulation run time.

Use the following command format to store
the data into a non-default file
SAve filespec

Provides detailed information about the
ECL-3211 system commands and features.

This command is used for the creation
and handling of designated symbols
or symbol-table files. When using a
symbol t it must be enclosed in double
quotes " "
ex: MEH "TAG"
The following
available:

SY NAME=HHHH

8-12

SYMBOL functions are

The user-defined
symbol NAME is loaded
into the internal symbol
table and assigned the
hexadecimal number HHHH.
The symbol may now be
referred to as "NAME".

TABLE 8.5 (cont.)
MISCELLANEOUS COMMANDS

COMMAND

SYmbol (cont.)

FUNCTION

SYmbol FILE. EXT

SYmbol CLEAR

The symbol table file,
FILE. EXT is opened. With
any symbolic reference,
the system searches
through FILE. EXT. A limit
of four symbol table files
may be opened for access
simultaneously.

Clears the internal symbol
table and closes all open
symbol table files.

SYmbol CLEAR AAAA,BBBB
Delete symbols AAAA and BBBB
from the internal symbol
table.

===

8-13

APPENDICES

APPENDIX A

ECL-32II ERROR AND SYSTEM MESSAGES

This appendix lists messages you may encounter using the ECL-32II
Microprocessor Development System (MDS) emulation Roftware. Along
with the description of the message is a suggested action to
correct the condition. In the case of system messages, the system
function corresponding to the message statement is described.

In most cases, errors in command strings entered from the command
line of the display are flagged by ECL-32II in the following
manner:

The entire command entry appears on the status line of the
screen. The displayed string is underlined up to the point
where the error in syntax occurred.

To Correct the Error:

Re-enter the
references.
Guide, or an
entries.

command string using the correct syntax
Refer to the system HELP file, ECL-32II
appropriate supplement to ensure proper

and legal
Users'
command

===

ECL-32II ERROR MESSAGES
===

CHECKSUM ERROR-BLOCK NUMBER n

(Not currently used by ECL-32II run-time.)

COMMAND FILE NOT FOUND filespec

The file referenced either at start-up or by a CF command, is not present
on the disk.

COMMAND FILE NESTING TOO DEEP

The nesting limit has been overextended. (The nesting limit is 5.) The
command stack has been cleared.

DEVICE FULL - WRITE ABORTED

The disk did not have enough contiguous space to write a file from a trace
write or disassembly write command. The file has not been deleted. Squeeze
the disk or insert a blank disk into the device to which you are writing.

A-I

DEVICE FULL - WRITE ABORTED AND FILE DELETED filespec

The disk did not have enough contiguous space to receive a file from
a WRITE command. Squeeze the disk or insert a blank disk into the drive
to which you are writing.

ERROR CLOSING FILE filespec

An I/O error occurred while attempting to close a file on the disk. This
may be caused by a media fault or hard I/O error.

ERROR OPENING FILE filespec

The system was unable to open the requested file and returned to
the command level. Check that you have typed the correct file name
and mounted the volume on which the file is stored.

ERROR OPENING HELP FILE

The system was unable to open the help text file LOXXOO.HLP and returned
to command level. Use the RT-ll SHOW command to check that the logical
device, "HLP:", has been assigned a physical device name.

ERROR READING FILE filespec

An I/O error occurred while attempting to read a specified file from the
disk. This may be caused by a media fault or hard I/O device error.

HELP-NO SUCH KEYWORD

This HELP command error message indicates that the requested
keyword is not available for this emulator.

INVALID COMMAND

The command word was not recognized as a valid command for the
emulator.

NON-ASCII FILE filespec

An attempt was made to type a non-ASCII file via the CF/T command.
This is not a fatal error. The CF/T command types only ASCII formatted
files.

A-2

SYMBOL NOT FOUND

The symbol referred to in a symbolic reference was not found in the
internal symbol table or in the symbol file.

SYNC ERROR

The blocked absolute loader did not find a block header where one was
expected. This error may be caused by attempting to load a file not in
DEC LDA format or by a data transmission error.

SYNTAX ERROR

The word following HELP in the command string was meaningless. This error
is frequently typographical.

TOO MANY FILES

This message indicates that the symbol command has been used in an
attempt to open more than the four permitted symbol table files.

==

ECL-3211 SYSTEM MESSAGES:
==

BACKSPACE COMMAND FILE

The paused command file has been stepped backwards one or more
commands by pressing the minus (-) key on the FasKey keypad.

- BACKSPACE • RESUME E END

This message is displayed if you press the comma (,) key on the
FasKey keypad while a command file is paused. It denotes that the
minus key has the backspace function, the period (.) key has the
resume execution function, and the ENTER key will terminate
execution of the command file.

CLEAR REGISTER SCREEN DISPLAY

All register settings have been cleared via the CLEAR OPTIONS
submenu of the FasKey 1 menu.

DISASSEMBLY ABORTED

The system has received an instruction (two presses of <CTRL/C» to
abort the disassembly function in progress.

A-3

PAUSED COMMAND FILE TERMINATED

Execution of paused command file has ceased. This message usually
indicates a deliberate or accidental pressing of the ENTER key on
the FasKey keypad.

TRACE ABORTED

The system has received an instruction (two pressed of <CTRL/C» to
abort the trace function in progress.

A-4

APPENDIX B

DIGITAL EQUIPMENT CORPORATION

SYSTEM SOFTWARE MANUALS

The following manuals provide in-depth support for Digital
Equipment Corporation software and hardware that is used with the
ECL-3211 microprocessor development system.

RT-ll Documentation Directory

Introduction to RT-ll

RT-ll Installation and System Generation Guide

RT-ll Software Support Manual

System Message Manual

RT-ll Master Index

RT-ll Programer's Reference Manual

RT-ll System User's Guide

RT-ll System Release Notes

RT-ll Software Dispatch Review

PDP-II MACRO-II Language Reference Manual

B-1

APPENDIX C

EMULOGIC MICROPROCESSOR
EMULATION PROGRAMS

The following table lists the microprocessors supported by Emulogic
and the corresponding ECL-3211 emulation programs.

===

MICROPROCESSOR FAMILY EMULATION PROGRAM
===

8-BIT DEVICES:

NSC800 L01000.SAV

Z80 L00500.SAV

6502 L01500.SAV

6502S L01400.SAV

6809 L00700.SAV

8031 L00600.SAV

8048 L00100.SAV

8080 L00900.SAV

8085 L00800.SAV

8088 L01600.SAV

16-BIT DEVICES:

8086 L00200.SAV

68000 L01200.SAV

68010 L01700.SAV

80186 L01800.SAV

80188 L01900.SAV

Z8000 L01300. SAV

C-1

APPENDIX D

FASKEY MENU SUMMARY

The following diagrams display the "FasKey" keypad designations
for two FasKey menus, FasKey 1 and Faskey 2. Additionally, a
series of submenus may be accessed from FasKey 1 and are explained
in the displays which follow.

The FasKey 1 menu is accessed at ECL-3211 start-up by pressing the
comma key on the Emulogic FasKey keypad on the right-hand side of
the keyboard. "FasKey 1" will display on the FasK: line in the
lower right-hand corner of the screen display. To access the FasKey 2
menu, press the minus key on the keypad while in FasKey 1.

The asterisked keys in the following diagrams represent keys which will
access a FasKey submenu.

The menus and submenus display in the central scroll area. If you do
not wish to see the menus, once you are familiar with the FasKeys and
their functions, press the "0" key twice on the FasKey 1 keypad.

When you are in FasKey 2 or one of the FasKey 1 submenus, pressing the
minus key will always return you to the basic FasKey 1 menu shown
directly below:

FASKEY 1 MENU

GGGG
~I:lr:l~
~L!dL!J~
~~~~ 
~~L!J~ 

wwOO ENTER 

,--_C_LEA_O_R_*_~ [ E!) sn. 

D-1 



CLEAR OPTIONS 

FASKEY 1: THE "0" KEY 

The CLEAR FasKey menu allows you quick input of the MAP CLEAR, BReak­
point 0-7 CLEAR, TRACE CLEAR, HELP CLEAR (to access CLEAR help file), 
CLEAR REGISTERS AND CLEAR MEMORY commands. The "0" key also allows 
clearing of the central scroll area so that you may input using FasKey 
without displaying FasKey menus. 

FASKEY 1: 0 KEY 
CLEAR OPTIONS 

o 
CLEAR SCROLL 

D-2 



SET OPTIONS 

FASKEY 1: THE "2" KEY 

The SET FasKey menu allows you quick input of the SET REGISTERS, SET MEMORY, 
SET SWITCH, SET FREQUENCY, SET COUNTERS, and HELP for SET commands. 

FASKEY 1: 2 KEY 
SET OPTIONS 

D-3 



MEMORY OPTIONS 

FASKEY 1: THE "3" KEY 

The FasKey MEM menu allows you quick input of the following MEM commands: 
HELP ME (MEM command help file), MEM WRITE, MEM DUMP, MEM/QUICK/ASCII, 
MEM/ASCII, DISASSEMBLE, MEM/QUICK, SET MEM, MEM display, MEM CLEAR 
and MOVE (memory segment). 

FASKEY 1: 3 KEY 
MEMORY OPTIONS 

D-4 



CF/LOG OPTIONS 

FASKEY 1: THE "5" KEY 

The CF/LOG menu allows quick input of a variety of LOG and Command File 
commands: HELP LOG (the help file for the LOG command), CF/D COM (to return t 
the COM default command file extension, LOG, LOG/Create, LOG END, CF/LOG mini 
help file, CF/Type, CF/Default, CF/Resume, CF Clear, CF File.ext and "enter 
Keypad CF Mode". 

FASKEY 1: 5 KEY 
CF/LOG OPTIONS 

CF/LOG , 
HELPCF 

KEYPAD 
CFMODE 

* 
ENTER 

D-5 



COMMAND FILE OPTIONS - KEYPAD CF MODE 

FASKEY 1: LOGiC (5): KEYPAD CF MODE (ENTER) 

COMMAND FILE OPTIONS 
KEYPAD CF MODE 

(ENTER FROM CF I LOG) 

GGGG mmmA 
~LJJLJJLJ mmm LJJLJJLJJ mmm 
L4J~LJJ 

,.2. G 

D-6 

CF/T 
FKTXT , 

HELPCF 

CF/LOG 

ENTER 



DIS OPTIONS 

FASKEY 1: THE "6" KEY 

Input of the keys designated on this menu enables quick entry of the following 
DISASSEMBLE memory commands: DIS, HELP DI (the disassemble memory help file), 
DIS PRINT, and DIS WRITE. 

FASKEY 1: 6 KEY 
DIS OPTIONS 

D-7 



BREAKPOINT OPTIONS 

F ASKEY 1: THE "8" KEY 

The Breakpoint Menu, accessed by key 8 on the Faskey 1 menu, enables quick 
input of the following breakpoint commands: BR 0-7 OFF, BR 0-7 CLEAR, 
Breakpoint Help File, and the basic define breakpoint command BR which is 
accessed by keys 0-7. When selected, keys 0-7 bring up the BR # Options 
displayed on the next page. The prompt ENTER BREAKPOINT NUMBER --USE 
KEYPAD-- appears on the S: Line. 

FASKEY 1: 8 KEY 
BREAKPOINT OPTIONS 

D-8 



BR II OPTIONS 

FASKEY 1: BR # 0-7 KEYS 

Use of this FasKey menu level allows quick entry of the following ECL-3211 
breakpoint commands for the specific numbered breakpoint: Display actions» 
Display conditions (when / entered); set breakpoint parameters for the 
following commonly used settings -- PA/PC=» PA/ADDR=» Breakpoint (specific 
number being defined)= » HL/PC= » HL/ADDR= » display breakpoint help file» 
turn ON specific breakpoint» turn OFF specific breakpoint» display specific 
breakpoint parameters (key 3) and clear specified breakpoint. 

FASKEY 1: BR# 0-7 KEYS 
BR # OPTIONS 

D-9 



TRACE OPTIONS 

FASKEY 1: THE "9" KEY 

The trace options menu enables quick input of the following TRACE commands: 
TRACE, the Trace Help File, TRACE PRINT, TRACE WRITE, and TRACE CLEAR. 
The "3" key has been assigned to issue the DIS (disassemble memory) command. 

FASKEY 1: 9 KEY 
TRACE OPTIONS 

D-IO 



THE FASKEY 2 MENU 

This menu, accessed by pressing 
mode, enables quick entry of the 
SWitch, FREQ, COUNT, EXIT (takes 
segments), SYMbol, SAVE, EMUlate 
from the FasKey 2 command mode. 
minus key. 

the minus key while in the FasKey 1 command 
following commands: MAP memory, WRITE, DUMP, 
you back to RT-ll), MOVE (moves memory 
and STEP. There are no submenus accessed 
To return to FasKey 1 command mode, press the 

FASKEY 2 MENU 

D-ll 



CFjP OPTIONS 

WHENEVER A COMMAND FILE IS PAUSED 

Whenever the ECL-3211 is in a command file pause state (CFjP FILE. EXT 
is displayed in the lower left-hand corner of the screen), four keys 
on the keypad assume special capabilities. The hyphen key allows you 
to backspace to the last previous command in the command file stream 
and to execute that command. The comma key displays a help file for 
use of the special CFjP keys. The ENTER key ends the paused command 
file. The period key issues a CFjR command to resume command file 
execution. 

If the system is operating from a command file at the moment of CFjP, 
the remaining keys (0-9), will issue the CF FKEY level keypad commands, 
executing the corresponding numerically coded user-created FasKey 
command file. Otherwise, the keypad keys will issue the FasKey 1 
commands operative at the time of the CFjP. Look at the FasK: Line to 
determine the level at which the FasKey keypad is opertaing. 

CF/P OPTIONS 
(Whenever a command 

file is paused) 

BACK 
SPACE -1 LINE 

CF/P , 
HELP 

END 
PAUSED 

CF 

ENTER 

D-12 



Figure 
Number 

APPENDIX E 

LIST OF FIGURES 

Page 
Number 

3.1 Initial Start-up Prompt Screen •••••••••••••••••••••••••••••• 3-4 

3.2 Initial Screen Format for Z80 Chip ••••••••••••••••••••••••• 3-7 

3.3 Screen Display for Z80 Memory Range •••••••••••••••••••••••• 3-8 

3.4 Screen Display for Breakpoint Setting •••••••••••••••••••••• 3-9 

3.5 Trace Buffer Display (Z80 Chip) •••••••••••••••••••••••••••• 3-10 

3.6 Setting Switches (8-bit Chip) •••••••••••••••••••••••••••••• 3-11 

3.7 Screen Display of Memory Range for 16-bit 68000 Chip ••••••• 3-12 

3.8 FasKey 1 Command Menu •••••••••••••••••••••••••••••••••••••• 3-17 

3.9 FasKey 2 Command Menu •••••••••••••••••••••••••••••••••••••• 3-18 

4.1 High-Speed Mapping at Start-up ••••••••••••••••••••••••••••• 4-5 

4.2 Map Clear Command ••••••••••••••••••••••••••••••••••••••.••• 4-7 

4.3 The Map Internal Command ••••••••••••••••••••••••••••••••••• 4-9 

4.4 Mapping High-Speed Memory as Simulated ROM (68000 Chip) •••• 4-11 

4.5 Displaying Map Parameters •••••••••••••••••••••••••••••••••• 4-13 

4.6 Memory Display - The MEM Command ••••••••••••••••••••••••••• 4-14 

4.7 Displaying Memory in ASCII and HEX ••••••••••••••••••••••••• 4-16 

4.8 Disassembling Memory ••••••••••••••••••••••••••••••••••••••• 4-18 

5.1 Displaying a Specific Breakpoint's Parameters •••••••••••••• 5-3 

5.2 Sample Trace •••.•.•.•..••••......••.••....•...•......••.... 5-25 

5.3 Symbolic Debugging ••••••••••••••••••••••••••••••••••••••••• 5-29 

E-1 



APPENDIX F 

LIST OF TABLES 

Table 
Number 

3.1 Emulation Screen Display of Chip Status •••••••••••••••••••• 

3.2 Emulation System Modes of Operation •••••••••••••••••••••••• 

3.4 Special Key Functions •••••••••••••••••••••••••••••••••••.•• 

5.1 Breakpoint Condition Separators •••••••••••••••••••••••••••• 

5.2 Breakpoint Ai:. tions ••.•••..•••••.•••••.•••••••.•.•.•••••...• 

5.3 System Conditions ••••••••••.•••••••••••••••..•••••••••••••• 

5.4 System Signals .........•...••.........•....•....•..•...•... 

8.1 Memory Management Commands ••••••••••••••••••••••••••••••••• 

8.2 Emulation Management Commands •••••••••••••••••••••••••••••• 

8.3 Screen Management Commands ••••••••••••••••••••••••••••••••• 

8.4 Command File Management Commands ••••••••••••••••••••••••••• 

8.5 Miscellaneous Commands •••••••••••••••••••••••••••••••••..•• 

F-1 

Page 
Number 

3-6 

3-13 

3-15 

5-5 

5-6 

5-12 

5-18 

8-1 

8-5 

8-8 

8-9 

8-12 


