
6500 CHIP FAMILY SUPPLEMENT

TO THE

CROSS ASSEMBLER MANUAL

CAS-2006-00

TABLE OF CONTENTS

INTRODUCTION. •• S-l

6500 PERMANENT SYMBOL TABLE ••••••••••••••••••• S-l

CALLING THE 6500 CROSS ASSEMBLER •••••••••••••• S-9

TERMINATING THE 6500 CROSS ASSEMBLER •••••••••• S-9

SAMPLE 6500 ASSEMBLY LISTINGS ••••••••••••••••• S-9

LIST OF TABLES

S-l. 6500 INSTRUCTION SET SUMMARy ••••••••••••• S-2

iii

~--. ----~ ---

INTRODUCTION

This guide is a supplement to the Emulogic Relocatable Macro
Cross Assembler Manual, providing specific assembler
information for writing software programs to run on the 6500
microprocessor series. This supplement applies to the
following chips:

* 6502
* 6503
* 6504

* 6505
* 6506
* 6507

* 6512
* 6513
* 6515

This supplement includes:

* a summary of the 6500 instruction set,

* procedures for running the 6500 cross
assembler, and

* sample 6500 cross assembler output listings

6500 PERMANENT SYMBOL TABLE

The following is a summary of the mnemonics for the
operation (op) codes included in the 6500 series instruction
set. They are stored in the Permanent Symbol Table and are
automatically recognized by the Emulogic relocatable macro
cross assembler. References to, and operations with the
registers within the microprocessor are legal. For a
detailed description of the 6500 op codes, refer to the
Synertek SY6500/MCS6500 Microcomputer Family Programming
Manual.

Instruction operands are represented herein as follows:

Operand

ii

aa
aaaa
x
Y
A

Meaning

Immediate operand (byte)
8-bit relative branch address
8-bit address variable (zero page)
16-bit absolute address
X index register
Y index register
Accumulator

Programming Notes:

(1) Address references in zero page must be predefined.

(2) The use of complex forward references should be avoided
as they may result in phase errors.

S-l

MNEMONIC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

AND

AND

AND

AND

AND

AND

AND

AND

ASL

ASL

ASL

TABLE S-I. 6500 INSTRUCTION SET SUMMARY

OPERANDS

If if

aa

aaaa

aa,x

aaaa,x

aaaa,y

(aa,x)

(aa),y

If if

aa

aaaa

aa,x

aaaa,x

aaaa,y

(aa,x)

(aa),y

A

aa

aaaa

DESCRIPTION

Add immediate to accumulator
with carry

Add memory to accumulator
with carry

Add memory to accumulator
with carry

Add memory indexed to accumu
lator with carry

Add memory indexed to accumu
lator with carry

Add memory indexed to accumu
lator with carry

Add memory indexed indirect
to accumulator with carry

Add memory indirect indexed
to accumulator with carry

AND immediate with accumulator

AND memory with accumulator

AND memory with accumulator

AND memory indexed with
accumulator

AND memory indexed with
accumulator

AND memory indexed with
accumulator

AND memory indexed indirect
with accumulator

AND memory indirect indexed
with accumulator

Shift left accumulator one bit

Shift left memory one bit

Shift left memory one bit

S-2

EXAMPLE

ADC !!20

ADC 3F

ADC OFFF

ADC 3,X

ADC TAG,X

ADC 245,Y

ADC (4,X)

ADC (7), Y

AND fl125.

AND 10

AND 258.

AND 5A,X

AND 300.,X

AND TAG,Y

AND (OFE,X)

AND (25.),Y

ASL A

ASL 254.

ASL TAG

MNEMONIC

ASL

ASL

BCC

BCS

BEQ

BIT

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CMP

CMP

CMP

CMP

Table S-1. 6500 Instruction Set Summary (contd)

OPERANDS

aa,x

aaaa,x

aa

aaaa

flii

aa

aaaa

aa,x

aaaa,x

DESCRIPTION

Shift left memory indexed one
bit

Shift left memory indexed one
bit

Branch on carry clear

Branch on carry set

Branch on result zero

Test bits in memory with
accumulator

Test bits in memory with
accumulator

Branch on result minus

Branch on result not zero

Branch on result plus

Force break

Branch on overflow clear

Branch on overflow set

Clear carry flag

Clear decimal load

Clear interrupt disable bit

Clear overflow flag

Compare immediate to accumu
lator

Compare memory to accumulator

Compare memory to accumulator

Compare memory indexed to
accumulator

Compare memory indexed to
accumulator

S-3

EXAMPLE

ASL OA4,X

ASL 1452,X

BCC 12

BCS TAG

BEQ 34.

BIT OFF

BIT 257.

BMI OA

BNE 123.

BPL TAG 1

BRK

BVC 24

BVS OAB

CLC

CLD

CLI

CLV

CMP f1250.

CMP 86

CMP 257.

CMP 4,X

CMP OFFFF,X

MNEMONIC

CMF

CMF

CMF

CPX

CPX

CPX

Cpy

Cpy

Cpy

DEC

DEC

DEC

DEC

DEX

DEY

EOR

EOR

EOR

EOR

EOR

EOR

Table S-l. 6500 Instruction Set Summary (contd)

OPERANDS

aaaa,y

(aa,x)

(aa),y

!fii

aa

aaaa

llii

aa

aaaa

aa

aaaa

aa,x

aaaa,x

!fii

aa

aaaa

aa,x

aaaa,x

aaaa,y

DESCRIPTION

Compare memory indexed to
accumulator

Compare memory indexed
indirect to accumulator

Compare memory indirect
indexed to accumulator

Compare immediate and index X

Compare memory and index X

Compare memory and index X

Compare immediate and index Y

Compare memory and index Y

Compare memory and index Y

Decrement memory by one

Decrement memory by one

Decrement memory indexed by
one

Decrement memory indexed by
one

Decrement index X by one

Decrement index Y by one

Exclusive OR immediate with
accumulator

Exclusive OR memory with
accumulator

Exclusive OR memory with
accumulator

Exclusive OR memory indexed
with accumulator

Exclusive OR memory indexed
with accumulator

Exclusive OR memory indexed
with accumulator

S-4

EXAMPLE

CMF TAG,Y

CMF (255.,X)

CMF (6F),Y

CPX fl77

CPX 45

CPX 284

CPY 112

CPY 7F

CPY OFFA

DEC 80

DEC TAG

DEC 7F,X

DEC 3FA,X

DEX

DEY

EOR 119

EOR OF7

EOR 100

EOR 25,X

EOR TAG,X

EOR 200,Y

MNEMONIC

EOR

EOR

INC

INC

INC

INC

INX

INY

JMP

JMP

JSR

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDA

LDX

LDX

LDX

Table S-l. 6500 Instruction Set Summary (contd)

OPERANDS

(aa,x)

(aa),y

aa

aaaa

aa,x

aaaa,x

aaaa

(aaaa)

aaaa

#ii

aa

aaaa

aa,x

aaaa,x

aaaa,y

(aa,x)

(aa),y

#ii

aa

aaaa

DESCRIPTION

Exclusive OR memory indexed
indirect with accumulator

Exclusive OR memory indirect
indexed with accumulator

Increment memory by one

Increment memory by one

Increment memory indexed by one

Increment memory indexed by one

Increment index X by one

Increment index Y by one

Jump to new location

Jump to new location indirect

Jump to new location saving
return address

Load accumulator with immediate

Load accumulator with memory

Load accumulator with memory

Load accumulator with memory
indexed

Load accumulator with memory
indexed

Load accumulator with memory
indexed

Load accumulator with memory
indexed indirect

Load accumulator with memory
indirect indexed

Load index X with immediate data

Load index X with memory

Load index X with memory

S-5

EXAMPLE

EOR (5,X)

EOR (OFF), Y

INC 88

INC 986

INC 35,X

INC 458,X

INX

INY

JMP 6

JMP (TAG)

JSR 101

LDA #55

LDA 99

LDA 105

LDA OFF,X

LDA TAG,X

LDA 3FF,Y

LDA (ODD,X)

LDA (55),Y

LDX #123.

LDX 255.

LDX 100

MNEMONIC

LDX

LDX

LDY

LDY

LDY

LDY

LDY

LSR

LSR

LSR

LSR

LSR

NOP

ORA

ORA

ORA

ORA

ORA

ORA

ORA

ORA

PHA

Table S-1. 6500 Instruction Set Summary (contd)

OPERANDS

aa,y

aaaa,y

Ifii

aa

aaaa

aa,x

aaaa,x

A

aa

aaaa

aa,x

aaaa,x

Ifii

aa

aaaa

aa,x

aaaa,x

aaaa,y

(aa,x)

(aa),y

DESCRIPTION

Load index X with memory indexed

Load index X with memory indexed

Load index Y with immediate data

Load index Y with memory

Load index Y with memory

Load index Y with memory indexed

Load index Y with memory indexed

Shift right accumulator one bit

Shift right memory one bit

Shift right memory one bit

Shift right memory indexed one
bit

Shift right memory indexed one
bit

No operation

OR immediate with accumulator

OR memory with accumulator

OR memory with accumulator

OR memory indexed with accu
mulator

OR memory indexed with accu
mulator

OR memory indexed with accu
mulator

OR memory indexed indirect with
accumulator

OR memory indirect indexed with
accumulator

Push accumulator on stack

S-6

EXAMPLE

LDX OAB,Y

LDX 105,Y

LDY #34

LDY OFA

LDY 555

LDY 2,X

LDY 4F5,X

LSR A

LSR 55

LSR 375

LSR 41,X

LSR TAG,X

NOP

ORA 11154.

ORA OF1

ORA TAG 1

ORA 56,X

ORA 678,X

ORA 34,Y

ORA (45,X)

ORA (77),Y

PHA

MNEMONIC

PHP

PLA

PLP

ROL

ROL

ROL

ROL

ROL

ROR

ROR

ROR

ROR

ROR

RTI

RTS

SBC

SBC

SBC

SBC

SBC

SBC

SBC

Table S-l. 6500 Instruction Set Summary (contd)

OPERANDS

A

aa

aaaa

aatx

aaaatx

A

aa

aaaa

aatx

aaaatx

//ii

aa

aaaa

aatx

aaaatx

aaaaty

(aatx)

DESCRIPTION

Push processor status on stack

Pull accumulator from stack

Pull processor status from stack

Rotate left accumulator one bit

Rotate left memory one bit

Rotate left memory one bit

Rotate left memory indexed one bit

Rotate left memory indexed one bit

Rotate right accumulator one bit

Rotate right memory one bit

Rotate right memory one bit

Rotate right memory indexed one bit

Rotate right memory indexed one bit

Return from interrupt

Return from subroutine

Subtract immediate from accumulator
with borrow

Subtract memory from accumulator
with borrow

Subtract memory from accumulator
with borrow

Subtract memory indexed from
accumulator with borrow

Subtract memory indexed from
accumulator with borrow

Subtract memory indexed from
accumulator with borrow

Subtract memory indexed indirect
from accumulator with borrow

S-7

EXAMPLE

PHP

PLA

PLP

ROL A

ROL 23

ROL OFFF

ROL 34 tX

ROL TAGtX

ROR A

ROR 63

ROR 1627

ROR 3 tX

ROR OCA4 tX

RTI

RTS

SBC flOFF

SBC 65.

SBC 250

SBC OEDtX

SBC 1000tX

SBC 8219 tY

SBC (88 t X)

MNEMONIC

SBC

SEC

SED

SEI

STA

STA

STA

STA

STA

STA

STA

STX

STX

STX

STY

STY

STY

TAX

TAY

TSX

TXA

TXS

TYA

Table S-l. 6500 Instruction Set Summary (contd)

OPERANDS

(aa), y

aa

aaaa

aa,x

aaaa,x

aaaa,y

(aa,x)

(aa),y

aa

aaaa

aa,y

aa

aaaa

aa,x

DESCRIPTION

Subtract memory indirect indexed
from accumulator with borrow

Set carry flag

Set decimal mode

Set interrupt disable status

Store accumulator in memory

Store accumulator in memory

Store accumulator in memory indexed

Store accumulator in memory indexed

Store accumulator in memory indexed

Store accumulator in memory indexed
indirect

Store accumulator in memory
indirect indexed

Store index X in memory

Store index X in memory

Store index X in memory indexed

Store index Y in memory

Store index Y in memory

Store index Y in memory indexed

Transfer accumulator to index X

Transfer accumulator to index Y

Transfer stack pointer to index X

Transfer index X to accumulator

Transfer index X to stack pointer

Transfer index Y to accumulator

S-8

EXAMPLE

SBC (ODC),Y

SEC

SED

SEI

STA 2

STA 258.

STA OBA,X

STA TAG,X

STA 56,Y

STA (65,X)

STA (52),Y

STX OFF

STX TAGl

STX 79,Y

STY 45

STY 376

STY 123.,X

TAX

TAY

TSX

TXA

TXS

TYA

CALLING THE 6500 CROSS ASSEMBLER

To call the 6500 cross assembler from the system device,
enter the following command in response to the RT-ll
keyboard monitor prompt:

.RUN X6500 CR

When the cross assembler responds with an asterisk (*), it
is ready to accept command string input and to perform
an assembly.

TERMINATING THE 6500 CROSS ASSEMBLER

If you have typed

.RUN X6500 CR

and received the asterisk prompt but have not yet entered
the command string, you can terminate 6500 cross assembler
control and return to the keyboard monitor by typing

If you have completed command string input and started an
assembly, you can halt the assembly process at any time by
typing

This returns control to the RT-ll keyboard monitor, and a
system monitor prompt (.) will appear on the terminal screen.

SAMPLE 6500 ASSEMBLY LISTINGS

The remainder of this supplement consists of sample output
listings from the 6500 cross assembler.

S-9

.MIN. X6500 VltOI 16-MAY-S2 PAGE 1

0010 .RADIX 16
2 0000 • ASECT
3
4 DIRECT ASSIGNHENT OF LABELS
5
6 0032 PC=32
7 003B SEIH=3B
B ECIS DE1=OEC18
9 EAS4 PACK=OEAS4

10 EB9E PHXY=OEB9E
11 EBAe PLXY=OEBAC
12 F2E1 COlO=OF2El
13 F321 COl1=OF321
14 F361 COL2=OF361
15 F3A1 COL3=OF3Al
16 F3E1 COL4=OF3El
17 AB08 T2L=OA808
18 oooe MOTON=OC
19 OooE HOTOFF=OE
20 MOO ORB=OAOOO
21 MOl DRA=OMOI
22 A002 DDRB=OAOO2
23 AOO3 DDRA=OAOO3
24 AOO4 TlL=OAOO4
25 MOS TlCH=OAOO5
26 AOO7 TlH=OAOO7
27 MOB ACR=OAOOB
29 Aooe PCR=OAOOC
29 MOD IFR=OAQOD
30 0190 .=190
31 0190 00 SAVA: • BYTE
~'1
j .. 0191 00 EGFU .BYTE
33 0192 00 CRFU .BYTE
34 0193 00 PBPTR: • BYTE
35 0194 00 PBUF: • BYTE
36 0200 .=200
37
38 ENTRY & INITIALIZATION
"Yq
>J,

40 0200 08 PRINT! PHP iSAVE PROCESSOR STATUS
41 0201 78 SEI iDISABLE INTERRUPT DURING PRINT
42 0202 A9 00 LOA 1000
43 0204 8D 04 AO STA T1l
44 0207 A9 OC LOA IMOTON
45 0209 SO OC A() STA PCR ;START MOTOR
46 020C 2C 00 AO PRl: BIT DRB ;TEST LIMIT SWITCHES
47 020F 50 53 BVC RMAR
49 0211 30 F9 BMI PRI
49
50 LEFT TO RIGHT PRINT
51
52 0213 20 CF 02 LHAR: JSR DEBDEL iDEBOUNCE DELAY
53 0216 AO 00 LDY to
54 0218 2C 00 AO uu: rm ORB
55 0218 10 FB BPL LMl ,WAIT TO CLEAR MARGIN
56 0210 A9 01 LDA t1
57 n1F SO 05 A() STA TlCH iSTART DOT RIMER(200)

,MAIN, X6500 Vl,Ol 16-MAY-82 PAGE 1-1

58 0222 F9 94 01 lim LDA PBUF,Y ,LOAD WITH CHARACTER
59 0225 29 3F AND .3F
60 0227 AA TAX
61 0228 A9 20 LDA .20
"l 022A 99 94 01 STA PBUF,Y ,REPLACE WITH BLANK 0 ..

63 022D SD El F2 LOA COLO,X
64 0230 20 A6 02 JSR OUT DOT ;OUTPUT COLUMN 0
65 0233 BD 21 F3 LDA COLli X
66 0236 20 A6 02 JSR OUT DOT ,OUTPUT COLUMN 1
67 0239 BD 61 F3 LDA CoL2,X
68 023C 20 A6 02 .JSR OUT DDT ,OUTPUT COLUMN 2
69 023F BD Al F3 LDA COl3,X
70 0242 20 A6 02 JSR OUT DDT ,OUTPUT COLUMN 3
71 0245 Bfl El F3 LDA COL4,X
72 0248 20 A6 02 JSR OUT DOT ioUTPUT COLUMN 4
73 0248 A9 00 LDA to iINSERT 1 SPACE BETWEEN CHARACTERS
74 024D 20 A6 02 JSR OUT DOT
75 0250 C8 INY
76 0251 CO 48 CPY ·t72 , ,END OF LINE?
77 0253 90 CD BCC LH2 ,IF NOT, GET MORE CHARACTERS
78
79 EXIT ROUTINE
80
81 0255 A9 FF PRXIT: LDA tOFF
82 0257 8n 08 A8 STA T2L
83 025A 20 18 EC JSR DEl
84 025D A9 OE LDA tMOTOFF
85 025F 8D OC AO STA PCR iMOTOR OFF
86 0262 28 PLP iRESTORE PF:oCESSOR STATUS
87 0263 60 RTS
88
89 RIGHT TO LEFT PRINT
90
91 0264 20 CF 02 RMAR: JSR DEBDEL
92 0267 AO 47 LDY .71. iRIGHT BUFFER LIMIT
93 0269 2C 00 AO RI11! BIT DRB
94 026C 50 FB BVC RHl
95 026E A9 01 LDA t1
96 0270 aD 05 AO STA TlCH
97 0273 B9 94 01 RM2: LOA pBUF,V
98 0276 29 3F AND t3F
99 0278 AA TAX

100 0279 A9 20 LDA .20
101 0279 99 94 01 STA PBUF,V
102 027E liD E1 F3 LDA COL4,X
103 0281 20 A6 02 JSR oUTDOT
104 0284 BD Al F3 LDA COL3,X
105 0287 20 A6 02 JSR OUT DOT
106 028A BD 61 F3 LDA COl2,X
107 029£1 20 A6 02 .JSR OUTDOT
109 0290 BD 21 F3 LOA COLl IX
109 0293 20 A6 02 JSR OUTDOT
110 0296 BD E1 F2 LDA COLO,X
111 0299 20 A6 02 JSR OUTDOT
112 029C A9 00 LDA .0
113 029E 20 A6 02 JSR OUTDOT
114 02Al SS DEY

.MAIN. X6500 Vl.01 16-MAY-82 PAGE 1-2

115 02A2 10 CF BPL RM2
116 02A4 30 AF BIH PRXIT
117
11a HERE TO OUTPUT 1 COLUMN OF DOTS
119
120 02A6 49 FF OUTDOT: EOR JOFF iINVERT FOR OUTPUT
121 02Aa 2C OD AO ODt: BIT IFR
122 02A8 50 FB BVC ODI iWAIT FOR INTER-DOT TIMEOUT
123 02AD aD 01 AO STA DRA iOUTPUT [lOTS
124 0280 A9 05 LDA 15
125 02B2 aD 07 AO STA TlH iLOAD INTER-DOT TIME
126 02B5 A9 a6 LDA la6
127 02137 aD 04 AD 5TA TlL
12a 02BA A9 FF LDA 10FF
129 02BC 2C OD AO OD2: BIT IFR
130 02BF 50 FB BVC OD2 iWAIT FOR DOT TIMEOUT
131 02C1 SD 01 AO 5TA DRA iOFF
132 02C4 A9 01 LDA 11
133 02C6 aD 07 AO 5TA TlH
134 02C9 A9 DO LDA to DO
135 02CB aD 04 AO 5TA TlL
136 02CE 60 RT5
137
138 DELAY ROUTINE
139
140 02CF A9 10 DEBDEL! LDA 110 iDEBOUNCE DELAY
141 02D1 an oa A8 5TA T2L
142 02D4 A9 27 LDA 127
143 02D6 4C 18 EC JMP DEI
144
145 INITIALIZATION ROUTINE
146
147 02D9 A9 47 DRr: LDA 171.
148 02DB A9 20 LDA 120
149 02DD 9D 94 01 DRU: 5TA PBUF,X iCLEAR BUFFER
150 02EO CA DEX
151 02£1 10 FA BPL DRIl
152 02E3 A9 00 LDA 10
153 02E5 8D 93 01 5TA PBPTR
154 02E8 8D 92 01 5TA CRFL
155 02EB aD 91 01 5TA EllFL
156 02EE 8E 01 AO 5TX DRA
157 02F1 8E 03 AD STX DDRA
158 02F4 A9 40 LDA 140
159 02F6 8D 013 AD 5TA ACR HI FREE RUN
160 02F9 60 RT5
161
162 DRIVER ROUTINE
163
164 02FA 90 DD DRIVER: BCC DRI iCHECK FOR INITIALIZATION
165 02FC 68 PLA iGET CHARACTER TO BE PRINTED
166 02FD 20 9E EB JSR PHXY
167 0300 8D 90 01 5TA 5AVA
168 0303 29 7F AND 17F
169 0305 C9 OD CMP 10[1 iCARRIAGE RETURN?
170 0307 DO OE BNE DR1
171 0309 OE 92 01 ASL CRFL ;YES

.HAIN. X6500 Vl.0l 16-HAY-82 PAGE 1-3

172 030C '90 03 BCC CRl iFLAG SET?
173 030E 20 7A 03 JSR PLINE iYES,PRINT LINE
174 0311 38 CR1: SEC iSET CARRY FLAG
175 0312 6E 92 01 ROR CRFL iSET CARRIAGE RETURN FLAG
176 0315 DO 36 SHE DRXIT
177 0317 C9 3D DR!: CHP .3D JIS THERE AN ' = '?
178 0319 DO 1A BHE DR3
179 0318 OE 92 01 ASL CRFL iYES
180 031E 90 OE BCC DR2
181 0320 20 00 02 JSR PRINT iPRINT LINE
182 0323 A9 00 LDA .0
183 0325 8D 93 01 STA PBPTR iZERO BUFFER POINTER
184 0328 38 SEC
185 0329 6E 91 01 ROR EGFL iSET EGUAL FLAG
186 032C DO IF BNE DRXIT
187 032E OE 91 01 DR2: ASL EGFL iCRFL NOT SET, TEST EaFL
188 0331 90 35 BCC STUFF iPUT ' = ' IN BUFFER IF FIRST
189 0333 BO 18 BCS DRXIT iIGNORE IF SECOND
190 0335 C5 3B DR3: CHP SEHI iSEHICOLON'?
191 0337 DO 1B SNE DRS
192 0339 OE 92 01 ASL CRFL iYES
193 033C AE 93 01 LDX PBF'TR
194 033F EO OC CPX t12. iSTART OF LINE?
195 0341 FO 25 aEQ STUFF
196 0343 A2 IE DR4: LDX '30. iNO
197 0345 EC 93 01 CPX F'BPTR iTAB TO COLUMN 30
198 0348 90 03 BCC DRXIT
199 034A 8E 93 01 STX PBPTR
200 0340 20 AC EB DRXIT: JSR PLXY
201 0350 AD 90 01 LDA SAVA
202 0353 60 RTS
203 0354 OE 92 01 DR5: ASL CRFL iNOT CARRIAGE RETURN,EGUAL OR SEMICOLON
204 0357 90 OF BCC STUFF ,LOAD
205 0359 A2 OC LDX t12.
206 035B EC 93 01 CPX F'BPTR ,CHECK FOR BEYOND COLUMN 12
207 035E 90 05 BCC DR6
208 0360 8E 93 01 STX PBPTR iTAB TO COLUMN 12
209 0363 BO 03 BCS STUFF ,LOAD
210 0365 20 7A 03 DR6: JSR PLINE ,PRINT LINE
211 0368 AD 90 01 STUFF: LDA SAVA ,GET CHARACTER
212 036B AE 93 01 LDX PBPTR iGET BUFFER POINTER
213 036E EO 48 CPX t72. iCHECI(FOR FULL
214 0370 BO DB BCS DRXIT
215 0372 9D 94 01 STA PBUF,X ,NO,PUT CHARACTER IN BUFFER
216 0375 EE 93 01 INC PBPTR ,INCREMENT FOR ANOTHER
217 0378 DO D3 SNE DRXIT
218 037A 20 00 02 PLINE: JSR PRINT
219 037D A2 00 LDX .0
220 037F A5 33 LDA PCtl iPC UPPER
221 0381 20 8F 03 JSR CONVT
222 0384 A5 32 LDA PC ,PC LOWER
223 0386 20 8F 03 JSR CONVT
224 0389 A9 OC LDA 112.
225 038B 8E 93 01 STX PBPTR iSET COLUMN POINTER
226 038E 60 RTS
227
228 HEX TO ASCII CONVERSION AND LOAD

.MAIN. X6500 V1.01 16-HAY-82 PAGE 1-4

229 038F 48 CONVT: PHA
230 0390 4A LSR A
231 0391 4A LSR A
232 0392 4A LSR A
233 0393 4A LSR A
234 0394 20 9A 03 JSR CON V
235 0397 68 PLA
236 0398 29 OF AND 10F
237 039A 18 CONV: CLC iCLEAR CARRY FLAG
238 039B 69 30 ADC 130
239 039D C9 3A CHP 13A
240 039F 90 02 BCC CONV1
241 03A1 69 06 ADC 16
242 03A3 9D 94 01 CONV1: STA PBUF,X
243 03A6 E8 INX
244 03A7 60 RTS
245 0001 .END

·HAIN. X6500 VI.0I 16-KAY-82 PAGE 1-5
SYKBOL TABLE

ACR = MOB DDRB = M02 DR4 0343 OUT DOT 02A6 PRI 020C COLO = f2E1 DEBDEl 02CF DRS 0354 PACK = EAB4 R~AR 0264 COll = F321 DEI = EC18 DR6 0365 PBPTR 0193 Rlfl 0269 COL2 = F361 DRA = MOl EGFl 0191 PBUF 0194 RH2 0273 COL3 = F3Al DRB = MOO IFR = MOD PC = 0032 SliVA 0190 COl4 = F3EI DR! 02D9 UiAR 0213 PCR = MOC SEKI = 003B CotN 039A DRIVER 02FA Llf1 0218 PHXY = EB9E STUFF 0368 CONVT 038F DRI1 02DD Llf2 0222 PLINE 037A T1CH = MOS CONVI 03A3 DRXIT 034D KOTOFF= OOOE PLXY = EBAC T1H = M07 CRFL 0192 DR1 0317 MOTON = OOOC PRINT 0200 T1l = A004 CR1 0311 DR2 032E ODI 02A8 PRXIT 0255 T2L = A808 DDRA = A003 DR3 0335 OD2 02BC

• ADS. 03A8 00
0000 01

ERRORS DETECTED: 0

VIRTUAl HElfORY USED: 2BB WORDS (2 PAGES)
DYNAMIC KEMORY AVAILABLE FOR 74 PAGES
,OY1:TST65=DY1:TST65

ADDENDUM TO: 6500 CHIP FAMILY SUPPLEMENT TO THE
CROSS ASSEMBLER MANUAL

OCTOBER 14, 1983

The ability to reference the low and/or high byte of a word has been
added to the instruction set of the EMULOGIC 6500 cross assembler. This added
capability has been provided for all 8-bit immediate data instructions. A
coding example is provided in the following table.

~~EMONIC/OPERAND

~C

~C

AND

AND

C~

C~

CPX

CPX

CPY

CPY

EOR

EOR

LDA

LDA

LDX

LDX

LDY

LDY

OM

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

#nn(H)

#nn(L)

DESCRIPTION EXAMPLE

Add with carry the low order byte of ~C #TAG(L)
the immedaite data to the accumulator

Add with carry the high order byte of ~C #TAG(H)
the immediate data to the accumulator

Logical AND the low order byte of the AND #TAG(L)
immediate data and the accumulator

Logical AND the high order byte of the AND #TAG(H)
immediate data and the accumulator

Compare the low order byte of the C~ #TAG(L)
immediate data with the accumulator

Compare the high order byte of the CMP #TAG(H)
immediate data with the accumulator

Compare the low order byte of the CPX #TAG(L)
immediate data with Index X

Compare the high order byte of the CPX #TAG(H)
immediate data with Index X

Compare the low order byte of the CPY #TAG(L)
immediate data with Index Y

Compare the high order byte of the ~PY #TAG(H)
immediate data with Index Y

Exclusive OR the low order byte of EOR #TAG(L)
the immedaite data and the
accumulator

Exclusive OR the high order byte of EOR #TAG(H)
the immediate data and the
accumulator

Load the accumulator with the low LDA #TAG(L)
order byte of the immediate data

Load the accumulator with the high LDA #TAG(H)
order byte of the immediate data

Load Index X with the low order LDX #TAG(L)
byte of the immediate data

Load Index X with the high order LDX #TAG(H)
byte of the immediate data

Load Index Y with the low order LDY #TAG(L)
byte of the immediate data

Load Index Y with the high order LDY #TAG(H)
byte of the immediate data

Logical OR the low order byte of the OM #TAG(L)
immediate data with the accumulator

A-I

MNEMONIC/OPERAND DESCRIPTION EXAMPLE

ORA !lnn(R) Logical OR the high order byte of the ORA /FTAG(R)
immediate data with the accumulator

SBC fFnn(L) Subtract the low order byte of the SBC IITAG(L)
immediate data from the accumulator

with borrow
SBC Ilnn(R) Subtract the high order byte of the SBC IITAG(R)

immediate data from the accumulator
with borrow.

TAG = absolute reference, relocatable reference, or global reference

Additionally, the ability to force absolute and absolute indexed
addressing modes (for those intructions which it is legal) has been added
to the EMULOGIC 6500 cross assembler. The instructions for which this is
legal are described in the table below.

MNEMONIC/OPERAND

ADC OPER

ADC OPER,X

ADC OPER, Y

AND OPER

AND OPER,X

AND OPER,Y

ASL OPER

ASL OPER,X

BIT OPER

CMP OPER

CMP OPER,X

CMP OPER,Y

CPX OPER

CPY OPER

DEC OPER

DEC OPER,X

DESCRIPTION EXAMPLE

Add with carry memory to accumulator ADC TAG(A)

Add with carry memory to accumulator ADC TAG(A),X
indexed by X

Add with carry memory to accumulator ADC TAG(A),Y
indexed by Y

Logical AND memory with accumulator AND TAG(A)

Logical AND memory with accumulator AND TAG(A),X
indexed by X

Logical AND memory with accumulator AND TAG(A),Y
indexed by Y

Shift left one bit (memory or accumu- ASL TAG(A)
lator)

Shift left one bit (memory or accumu- ASL TAG(A),X
lator) indexed by X

Test bits in memory with accumulator BIT TAG(A)

Compare memory with accumulator CMP TAG(A)

Compare memory with accumulator CMP TAG(A),X
indexed by X

Compare memory with accumulator CMP TAG(A),Y
indexed by Y

Compare memory and index X CPX TAG (A)

Compare memory and index Y CPY TAG (A)

Decrement memory by one DEC TAG (A)

Decrement memory by one DEC TAG(A),X
indexed by X

A-2

M...~EHONIC/OPERAND

EaR OPER

EaR OPER,X

EaR OPER,Y

INC OPER

INC

JMP OPER

JSR OPER

LDA OPER

LDA OPER,X

LDA OPER,Y

LDX OPER

LDX OPER, Y

LDY OPER

LDY OPER,X

LSR OPER

LSR OPER,X

ORA OPER

ORA OPER,X

ORA OPER,Y

ROL OPER

ROL OPER,X

ROR OPER

ROR OPER,X

SBC OPER

SBC OPER,X

SBC OPER,Y

STA OPER

DESCRIPTION

Exclusive OR memory with accumulator

Exclusive OR memory with accumulator
indexed by X

Exclusive OR memory with accumulator
indexed by Y

Increment memory by one

Increment memory by one
indexed by X

Jump to new location

Jump to new location saving return
address

Load the accumulator with memory

Load the accumulator with memory
indexed by X

Load the accumulator with memory
indexed by Y

Load Index X with memory

Load Index X with memory
indexed by Y

Load Index Y with memory

Load Index Y with memory
indexed by X

Shift right one bit

Shift right one bit indexed
by X

Logical OR memory with accumulator

Logical OR memory with accumulator
indexed by X

Logical OR memory with accumulator
indexed by Y

Rotate one bit left

Rotate one bit left indexed
by X

Rotate one bit right

Rotate one bit right indexed
by X

Subtract memory from accumulator
with borrow

Subtract memory from accumulator
with borrow indexed by X

Subtract memory from accumulator
with borrow indexed by Y

Store accumulator in memory

A-3

EXAMPLE

EaR TAG(A)

EaR TAG(A),X

EaR TAG(A), Y

INC TAG(A)

INC TAG(A),X

JMP TAG (A)

JSR TAG (A)

LOA TAG(A)

LDA TAG(A), X

LOA TAG(A), Y

LOX TAG(A)

LDX TAG(A), Y

LDY TAG(A)

LDY TAG(A),X

LSR TAG (A)

LSR TAG(A) ,X

ORA TAG(A)

ORA TAG(A) ,X

ORA TAG(A), Y

ROL TAG(A)

ROL TAG(A) ,X

ROR TAG (A)

ROR TAG(A) ,X

SBC TAG (A)

SBC TAG(A),X

SBC TAG (A) , Y

STA TAG (A)

MNEMONIC/OPERAND DESCRIPTION EXAMPLE

STA OPER,X Store accumulator in memory STA TAG(A) ,X
indexed by X

STA OPER,Y Store accumulator in memory STA TAG(A),Y
indexed by Y

STX OPER Store index X in memory STX TAG(A)

STY OPER Store index Y in memory STY TAG (A)

TAG = absolute reference, relocatable reference, or global reference

In the preceding tables, TAG references may be one of three types.

ABSOLUTE REFERENCE:
When defining/accessing defined data, all references are resolved

at assembly time and are displayed in the assembly listing.

GLOBAL REFERENCE:
When defining/accessing global data, the list file outputs a zero

byte, followed by a "G". The linker will select from its symbol table the
global variable and resolve the low or high byte.

RELOCATABLE REFERENCE:
When defining/accesing relocatable data, the assembler list always

shows the low byte of the reference, followed by a " , " mark. However,
the entire relocation constant is transferred to the linker. The linker
(ELINK2.SAV) will locate the actual value and select the appropriate low
or high byte.

A-4

The ability to force zero page and zero page indexed addressing modes
has been implemented (for those instructions which it is legal). The instruc
tions are described in the table below.

MNEMONIC/OPERAND

ADC ZPAGE

ADC ZPAGE,X

AND ZPAGE

AND ZPAGE,X

ASL ZPAGE

ASL ZPAGE,X

BIT ZPAGE

CMP ZPAGE

CMP ZPAGE,X

CPX ZPAGE

CPY ZPAGE

DEC ZPAGE

DEC ZPAGE,X

EOR ZPAGE

EOR ZPAGE,X

INC ZPAGE

INC ZPAGE,X

LDA ZPAGE

LDA ZPAGE,X

LDX ZPAGE

LDX ZPAGE,Y

LDY ZPAGE

LDY ZPAGE,X

LSR ZPAGE

LSR ZPAGE,X

DESCRIPTION EXAMPLE

Add with carry memory to accumulator ADC TAG(Z)

Add with carry memory to accumulator ADC TAG(Z),X
indexed by X

Logical AND memory with accumulator AND TAG(Z)

Logical AND memory with accumulator AND TAG(Z),X
indexed by X

Shift left one bit (memory or accumu- ASL TAG(Z)
lator)

Shift left one bit (memory or accumu- ASL TAG(Z),X
lator) indexed by X

Test bits in memory with accumulator BIT TAG(Z)

Compare memory with accumulator CMP TAG(Z)

Compare memory with accumulator CMP TAG(Z),X
indexed by X

Compare memory and index X CPX TAG(Z)

Compare memory and index Y CPY TAG(Z)

Decrement memory by one DEC TAG(Z)

Decrement memory by one indexed by X DEC TAG(Z),X

Exclusive OR memory with accumulator EOR TAG(Z)

Exclusive OR memory with accumulator EOR TAG(Z),X
indexed by X

Increment memory by one INC TAG(Z)

Increment memory by one indexed by X INC TAG(Z),X

Load the accumulator with memory LDA TAG(Z)

Load the accumulator with memory LDA TAG(Z),X
indexed by X

Load Index X with memory LDX TAG(Z)

Load Index X with memory LDX TAG(Z),Y
indexed by Y

Load Index Y with memory LDY TAG(Z)

Load Index Y with memory LDY TAG(Z),X
indexed by X

Shift right one bit LSR TAG(Z)

Shift right one bit with LSR TAG(Z),X
indexed by X

A-5

}L~EMONIC/OPER&~D DESCRIPTION EXAMPLE

ORA ZPAGE Logical OR memory with accumulator ORA TAG(Z)

ORA ZPAGE,X Logical OR memory with accumulator ORA TAG(Z) ,X
indexed by X

ROL ZPAGE Rotate one bit left ROL TAG(Z)

ROL ZPAGE,X Rotate one bit left indexed by X ROL TAG(Z),X

ROR ZPAGE Rotate one bit right ROR TAG(Z)

ROR ZPAGE,X Rotate one bit right indexed by X ROR TAG(Z) ,X

SBC ZPAGE Subtract memory from accumulator SBC TAG(Z)
with borrow

SBC ZPAGE,X Subtract memory from accumulator SBC TAG(Z),X
with borrow indexed by X

STA ZPAGE Store accumulator in memory STA TAG(Z)

STA ZPAGE,X Store accumulator in memory STA TAG(Z),X
indexed by X

STX ZPAGE Store index X in memory STX TAG(Z)

STX ZPAGE,Y Store index X in memory indexed by Y STX TAG(Z),Y

STY ZPAGE Store index Y in memory STY TAG(Z)

STY ZPAGE,X Store index Y in memory indexed by X STY TAG(Z),X
--
TAG = absolute reference, relocatable reference, or global reference

If TAG is absolute and greater than FF, an error will be indicated
at assembly time.

If TAG is relocatable or global and greater than FF, an error will
be indicated at link time.

The following lists additional information for programming with
the cross assembler.

1.) If address zero is referenced, the instruction will be assembled
with the extended addressing mode instead of the direct addressing mode.
To have the instruction assemble address zero as only a byte, you must
use the force zero page syntax.

2.) Addressing references in zero page must be predefined.

3.) The use of complex forward references should be avoided as they
may result in phase errors. However, when a complex forward reference is
made, it can be forced absolute, thereby avoiding phasing errors.

ex.) LDX TAG+3(A)

where TAG is a forward reference.

EMULOGIC, INC.
3 Technology Way
Norwood, MA 02062-3978
Tel: (617) 329-1031
Telex: 710-336-5908

EMULOGIC~

6502

User's Guide Supplement

Order Number: CSU-3006-01

6502 USER'S GUIDE SUPPLEMENT

This document supplements the ECL-3211 System User's Guide by providing
operational information specific to the emulation of 6502 and compatible
microprocessors. This document describes special set-up procedures, condi
tions, and limitations to be noted when emulating the 6502. It is assumed
here that the reader has read the User's Manual and is already familiar
with the details of the 6502. Ready access to the technical literature is
a plus.

This supplement covers five general areas.

1) Installation

2) Initialization

3) Abbreviations (p. 3)

4) Unique Features (p.7)

5) Electrical (DC) Characteristics (p.ll)

*** INSTALLATION **

System installation instructions "'ill be found in the User's Manual.

*** INITIALIZATION *,

Type on the keyboard "RUN L01500" to load the Emulation Software into the
ECL-3211. (The "RUN" command is discussed in the User's Guide.) Note that
a user can use the Operating System's RENAME function to give the file a
name the user would prefer. Additionally, a Command File can be created
which can invoke L01500.

There are no special initialization instructions for the 6502.

-

6502 USER'S GUIDE SUPPLEMENT PAGE 3

*** ABBREVIATIONS *~

SYSTEM DISPLAY

These are seen on the top half of the display when using the Emulation
Software. All of these registers and flags can be loaded with user pre
fered values with the SET Command or ALTER mode as described in the User
Manual or HELP file.

*** *** DESCRIPTION ***

PC Program Counter 16 bits/4 hex digits
X Index Register X 8 bits/2 hex digits
S Status Register 8 bits/2 hex digits

A Accumulator 8 bits/2 hex digits
Y Index Register Y 8 bits/2 hex digits
P Stack Pointer 8 bits/2 hex digits

N Negative Result (Sign) Status bit 7
\' Overflow Status bit 6

B Break Status bit 4
D Decimal Mode (BCD) Status bit 3
I Interrupt enable/disable Status bit 2
Z Zero Status bit 1
C Carry Status bit 0

6502 USER'S GUIDE SUPPLEMENT

TRACE DISPLAY Note: Low=O High=l Don't Care=X

"I" and "0" refer to ELECTRICAL,
NOT logical levels; though for
ECL-3211 functions logical and
electrical coincide.

These are seen when examining the Trace.

*** *** DESCRIPTION ***

IQ Interrupt Request-L

NM Non-Maskable Interrupt-L

RS Reset-L

RY Ready

RD Read/Write-L

SO Set Overflow

PAGE 4

BA Bus Available; generated by the ECL-3211, a "0" indicates that
the Data Bus is Tristate.

SY Sync

6502 USER'S GUIDE SUPPLEMENT PAGE 5

BREAKPOINT DISPLAY Note: Low=O High=l Don't care=X

These are seen when examining or setting Breakpoints.

EO-E7

SW1

SW2

sw3
SW4

ROM

SYNC

COl
C02

ADDR
DATA
IRQ
NMI
RES
RDY

READ
SO
BA

PH=JMP

Pod External Input 0-7

Logical Switch 1
External Trigger 1
Logical Switch 2
External Trigger 2
Logical Switch 3
Logical Switch 4

ROM access; "1" means trigger on a read from
an address designated as ROM.

SYNC; A "1" indicates the fetch of the first byte of
an Op Code as a Breakpoint Condition.

"1" sele~ts Counter 1 expired
"1" selects Counter 2 expired

Program Counter; 16 bits
Data; 8 bits
Interrupt Request-L
Non-Maskable Interrupt-L
Reset-L
Ready

Read/Write-L
Set Overflow
Bus Available; a "a" selects as a Breakpoint condition

the Data Bus being Tristate.

The 6502 Pod performs Phantom Jumps
as a Breakpoint Action.

-- -- - ------------------------------------

;02 USER'S GUIDE SUPPLEMENT PAGE 7

*** UNIQUE FEATURES

L01500

The file name for the Emulation Software is L01500. It is accessed through
the Operating System hosted by the ECL-3211's CPU.

RESET

The ECL-3211's RESET command resets the 6502 Pod only, and does not reset
the Target. A Reset generated by the Target has effect during emulation
only.

NO TARGET

Not having the 6502 Pod deployed in a target will not affect the operation
of the Emulator in any way, assuming the user does not try to access
resources in the Target.

The maximum frequency of operation is 2 Megahertz for both Target and
ECL-3211 memory.

DEC INTERNAL

The 6502 Pod cannot operate using the bank of memory termed in the User's
Guide as DEC Internal.

6502 USER'S GUIDE SUPPLEMENT PAGE 8

PHANTOMS

The 6502 Pod performs Phantom Jumps. Naturally, prov1s10n must be made to
return to the original code path if that is desired by the user.

There are two important qualifications to their use:

1) The instruction immediately preceding the Phantom Jump must perform a
Prefetch. This means that a Phantom Jump cannot be inserted after a 2 or 3
byte intruction.

2) The address desired as a Breakpoint condition must be defined as an
address value (ADDR) rather than a Program Counter value (PC).

To illustrate, consider the following examples of defining Breakpoint 4 as
a Phantom Jump to address 5050:

Given this code segment-- ADDR

A500
A501
A502
A503

INSTR

DEX
LDX OFF

INX

DATA

CA
A2
FF
E8

a) Typing "BR 4 PH=5050/ADDR=A501" will be successful. The Phantom Jump is
being inserted by the Prefetch of a single byte instruction at a location
defined as ADDR rather than PC (Program Counter).

b) Typing "BR 4 PH=5050/PC=A501" will fail. The address where the Phantom
Jump is intended to be inserted is defined as PC, a Program Counter value.

c) Typing "BR 4 PH=5050/ ADDR=A503" will fail. The preceding instruction,
LDX, is a 2 byte instruction and does not Prefetch.

----------- ------ ------ ---------

i502 USER'S GUIDE SUPPLEMENT PAGE 9

TRACE DATA CAPTURE

If the Trace has been turned on, it takes a "snapshot" of conditions during
each ~~chine Cycle when the conditions are valid. For example, the Data
bus is sampled when it contains valid Data. Address information is sampled
when there is a valid Address on the bus. Control signals are sampled at
the same time as the Data unless they must be sampled at a different point
in the Machine Cycle. (The Trace is turned on by defining a Breakpoint
with conditions that will be met and an Action statement including Set
Trace, as described in the User's Guide and HELP file.)

Instructions are disassembled in the Trace as they appeared on the Data bus
when they were fetched.

Note that the External Inputs are not sampled simultaneously in a Machine
Cycle. External Inputs 0-3 are sampled during the valid address time of a
Machine Cycle and External Inputs 4-7 are sampled during valid data time.

BREAKPOINT ACTION

Defined Breakpoint conditions are tested and resolved prior to the end of
the Machine Cycle. Any Breakpoint Actions for a Breakpoint with conditions
that have been met in a Machine Cycle commence at the completion of that
Machine Cycle.

CLOCK

The Emulator provides two sources of Clock signals for the '6502 Pod, the
ECL-32ll and the Target circuit. Internal Clock has a guarantee of 100
Kilohertz resolution.

--- External

External Clock is the mode in which the Target Circuit provides the clock.
Since it is buffered in the Pod with TTL logic, the clock signal must be
TTL driven or equivalent. Do not clock the Pod with a Crystal/RC Network
circuit.

Type "FREQ EXT" to select this mode.

--- Internal

Internal Clock is the mode in which the 6502 Pod is clocked by
tor. The clocking signal taken from the Target is not used.
and ¢2 (pin 39) are still active.

the Emula
~l (pin 3)

Type "FREQ xxxx" to select the Internal Clock mode. "xxxx" is the value of
the frequency in units of Kilohertz. There is no need to specify "Inter
nal" at any point.

- ------~----------------------------

6502 USER'S GUIDE SUPPLEMENT PAGE 10

NOT EMULATING

When the ECL-3211 is not in Emulation mode, the signals from the 6502 Pod
to the Target have the following status:

AO-Al5
DO-D7
SYNC
SO
rJ2
¢l
¢O
IRQ-L
NMI-L
RES-L
RDY
R/W-L

Active
Tri-state
Active
Active
Active
Active
Active; ignored if Clock Internal selected
High; ignored by Pod
High; ignored by Pod
High; ignored by Pod
High; ignored by Pod
High; ignored by Pod

6502 USER'S GUIDE SUPPLEMENT PAGE 11

Signal

AO-AI5
DO-D7
SYNC
R/W-L
~2
~1
SO
¢O
IRQ-L
NMI-L
RES-L
RDY
HALT-L

Buffer
Type

74xxx

LS245
LS245
LS04

F04
LS04
LS04
LS04
LSOO
LS32
LS32
LS32
LS32
LS32

Output
Drive

High
rnA

-15.0
-15.0
-0.4
-1.0
-0.4
-0.4

Low
rnA

24.0
24.0
8.0
2.0
8.0
8.0

*** ELECTRICAL (DC) CHARACTERISTIC

Input
Load

High
rnA

0.02

0.02
0.02
0.02
0.02
0.02
0.02
0.02

Low
rnA

0.2

-0.4
-0.4
-0.4
-0.4
-0.4
-0.4
-0.4

Delay, Termination,
additional pull-up R

nSec
typical

12
8

13
7

13
20
20
20
14
14
24
14
14

ohms

