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1. Overview 
 
SIMH (history simulators) is a set of portable programs, written in C, which simulate various historically 
interesting computers.  This document describes how to design, write, and check out a new simulator for 
SIMH.  It is not an introduction to either the philosophy or external operation of SIMH, and the reader should 
be familiar with both of those topics before proceeding.  Nor is it a guide to the internal design or operation 
of SIMH, except insofar as those areas interact with simulator design.  Instead, this manual presents and 
explains the form, meaning, and operation of the interfaces between simulators and the SIMH simulator 
control package.  It also offers some suggestions for utilizing the services SIMH offers and explains the 
constraints that all simulators operating within SIMH will experience. 
 
Some terminology: Each simulator consists of a standard simulator control package (SCP and related 
libraries), which provides a control framework and utility routines for a simulator; and a unique virtual 
machine (VM), which implements the simulated processor and selected peripherals.  A VM consists of 
multiple devices, such as the CPU, paper tape reader, disk controller, etc.  Each controller consists of a 
named state space (called registers) and one or more units.  Each unit consists of a numbered state space 
(called a data set).  The host computer is the system on which SIMH runs; the target computer is the system 
being simulated. 
 
SIMH is unabashedly based on the MIMIC simulation system, designed in the late 1960’s by Len Fehskens, 
Mike McCarthy, and Bob Supnik.   This document is based on MIMIC’s published interface specification, 
“How to Write a Virtual Machine for the MIMIC Simulation System”, by Len Fehskens and Bob Supnik. 
 

2. Data Types 
 
SIMH is written in C.  The host system must support (at least) 32-bit data types (64-bit data types for the 
PDP-10 and other large-word target systems).  To cope with the vagaries of C data types, SIMH defines 
some unambiguous data types for its interfaces: 
 
 SIMH data type   interpretation in typical 32-bit C 
 
 int8, uint8   signed char, unsigned char 
 int16, uint16   signed short, unsigned short 
 int32, uint32   signed int, unsigned int 
 t_int64, t_uint64   long long, _int64 (system specific) 
 t_addr    simulated address, uint32 or t_uint64 
 t_value    simulated value, uint32 or t_uint64 
 t_svalue   simulated signed value, int32 or t_int64 
 t_mtrec    mag tape record length, uint32 
 t_stat    status code, int 
 t_bool    true/false value, int 
 
[The inconsistency in naming t_int64 and t_uint64 is due to Microsoft VC++, which uses int64 as a structure 
name member in the master Windows definitions file.] 
 
In addition, SIMH defines structures for each of its major data elements: 
 
 DEVICE   device definition structure 
 UNIT    unit definition structure 
 REG    register definition structure 
 MTAB    modifier definition structure 



 CTAB    command definition structure 
 DEBTAB   debug table entry structure 
 

3. VM Organization 
 
A virtual machine (VM) is a collection of devices bound together through their internal logic.  Each device is 
named and corresponds more or less to a hunk of hardware on the real machine; for example: 
 
 VM device   Real machine hardware 
 
 CPU    central processor and main memory 
 PTR    paper tape reader controller and paper tape reader 
 TTI    console keyboard 
 TTO    console output 
 DKP    disk pack controller and drives 
 
There may be more than one device per physical hardware entity, as for the console; but for each 
user-accessible device there must be at least one.  One of these devices will have the pre-eminent 
responsibility for directing simulated operations.  Normally, this is the CPU, but it could be a higher-level 
entity, such as a bus master. 
 
The VM actually runs as a subroutine of the simulator control package (SCP).  It provides a master routine 
for running simulated programs and other routines and data structures to implement SCP’s command and 
control functions.  The interfaces between a VM and SCP are relatively few: 
 
 Interface   Function 
 
 char sim_name[]  simulator name string 
 REG *sim_pc   pointer to simulated program counter 
 int32 sim_emax  maximum number of words in an instruction 
 DEVICE *sim_devices[] table of pointers to simulated devices, NULL terminated 
 char *sim_stop_messages[] table of pointers to error messages 
 t_stat sim_load (…)  binary loader subroutine 
 t_stat sim_inst (void)  instruction execution subroutine 
 t_stat parse_sym (…)  symbolic instruction parse subroutine 
 t_stat fprint_sym (…)  symbolic instruction print subroutine 
 
In addition, there are six optional interfaces, which can be used for special situations, such as GUI 
implementations: 
 
 Interface    Function 
 
 void (*sim_vm_init) (void)  pointer to once-only initialization routine for VM 
 t_addr (*sim_vm_parse_addr) (…) pointer to address parsing routine 
 void (*sim_vm_fprint_addr) (…) pointer to address output routine 
 char (*sim_vm_read) (…)  pointer to command input routine 
 void (*sim_vm_post) (…)  pointer to command post-processing routine 
 CTAB *sim_vm_cmd   pointer to simulator-specific command table 
 
There is no required organization for VM code.  The following convention has been used so far.  Let name 
be the name of the real system (i1401 for the IBM 1401; i1620 for the IBM 1620; pdp1 for the PDP-1; 
pdp18b for the other 18-bit PDP’s; pdp8 for the PDP-8; pdp11 for the PDP-11; nova for Nova; hp2100 for 
the HP 21XX; h316 for the Honeywell 315/516; gri for the GRI-909; pdp10 for the PDP-10; vax for the VAX; 
sds for the SDS-940): 



 

• name.h contains definitions for the particular simulator 

• name_sys.c contains all the SCP interfaces except the instruction simulator 

• name_cpu.c contains the instruction simulator and CPU data structures 

• name_stddev.c contains the peripherals which were standard with the real system. 

• name_lp.c contains the line printer. 

• name_mt.c contains the mag tape controller and drives, etc. 
 

The SIMH standard definitions are in sim_defs.h.  The base components of SIMH are: 
 
 Source module  header file  module 
 
 scp.c   scp.h   control package 
 sim_console.c  sim_console.h  terminal I/O library 
 sim_fio.c  sim_fio.h  file I/O library 
 sim_timer.c  sim_timer.h  timer library 
 sim_sock.c  sim_sock.h  socket I/O library 
 sim_ether.c  sim_ether.h  Ethernet I/O library 
 sim_tmxr.c  sim_tmxr.h  terminal multiplexer simulation library 
 sim_tape.c  sim_tape.h  magtape simulation library 

3.1 CPU Organization 

 
Most CPU’s perform at least the following functions: 
 

• Time keeping 

• Instruction fetching 

• Address decoding 

• Execution of non-I/O instructions 

• I/O command processing 

• Interrupt processing 
 
Instruction execution is actually the least complicated part of the design; memory and I/O organization 
should be tackled first. 

3.1.1 Time Base 

 
In order to simulate asynchronous events, such as I/O completion, the VM must define and keep a time 
base.  This can be accurate (for example, nanoseconds of execution) or arbitrary (for example, number of 
instructions executed), but it must be used consistently throughout the VM.  All existing VM’s count time in 
instructions. 
 
The CPU is responsible for counting down the event counter sim_interval and calling the asynchronous 
event controller sim_process_event.  SCP does the record keeping for timing. 

3.1.2 Step Function 

 
SCP implements a stepping function using the step command.  STEP counts down a specified number of 
time units (as described in section 3.1.1) and then stops simulation.  The VM can override the STEP 
command’s counts by calling routine sim_cancel_step: 
 

• t_stat sim_cancel_step (void) – cancel STEP count down. 
 



The VM can then inspect variable sim_step to see if a STEP command is in progress.  If sim_step is 
non-zero, it represents the number of steps to execute.  The VM can count down sim_step using its own 
counting method, such as cycles, instructions, or memory references. 

3.1.3 Memory Organization 

 
The criterion for memory layout is very simple: use the SIMH data type that is as large as (or if necessary, 
larger than), the word length of the real machine.  Note that the criterion is word length, not addressability: 
the PDP-11 has byte addressable memory, but it is a 16-bit machine, and its memory is defined as uint16 
M[].  It may seem tempting to define memory as a union of int8 and int16 data types, but this would make the 
resulting VM endian-dependent.  Instead, the VM should be based on the underlying word size of the real 
machine, and byte manipulation should be done explicitly.  Examples: 
 
 Simulator  memory size  memory declaration 
 
 IBM 1620  5-bit   uint8 
 IBM 1401  7-bit   uint8 
 PDP-8   12-bit   uint16 
 PDP-11, Nova  16-bit   uint16 
 PDP-1   18-bit   uint32 
 VAX   32-bit   uint32 
 PDP-10, IBM 7094 36-bit   t_uint64 

3.1.4 Interrupt Organization 

 
The design of the VM’s interrupt structure is a complex interaction between efficiency and fidelity to the 
hardware.  If the VM’s interrupt structure is too abstract, interrupt driven software may not run.  On the other 
hand, if it follows the hardware too literally, it may significantly reduce simulation speed.  One rule I can offer 
is to minimize the fetch-phase cost of interrupts, even if this complicates the (much less frequent) evaluation 
of the interrupt system following an I/O operation or asynchronous event.  Another is not to over-generalize; 
even if the real hardware could support 64 or 256 interrupting devices, the simulators will be running much 
smaller configurations.  I’ll start with a simple interrupt structure and then offer suggestions for 
generalization. 
 
In the simplest structure, interrupt requests correspond to device flags and are kept in an interrupt request 
variable, with one flag per bit.  The fetch-phase evaluation of interrupts consists of two steps: are interrupts 
enabled, and is there an interrupt outstanding?  If all the interrupt requests are kept as single-bit flags in a 
variable, the fetch-phase test is very fast: 
 
 if (int_enable && int_requests) { …process interrupt… } 
 
Indeed, the interrupt enable flag can be made the highest bit in the interrupt request variable, and the two 
tests combined: 
 
 if (int_requests > INT_ENABLE) { …process interrupt… } 
 
Setting or clearing device flags directly sets or clears the appropriate interrupt request flag: 
 
 set:  int_requests = int_requests | DEVICE_FLAG; 
 clear: int_requests = int_requests & ~DEVICE_FLAG; 
 
At a slightly higher complexity, interrupt requests do not correspond directly to device flags but are based on 
masking the device flags with an enable (or disable) mask.  There are now two parallel variables: device 
flags and interrupt enable mask.  The fetch-phase test is now: 
 



 If (int_enable && (dev_flags & int_enables)) { …process interrupt… } 
 
As a next step, the VM may keep a summary interrupt request variable, which is updated by any change to 
a device flag or interrupt enable/disable: 
 
 enable: int_requests = device_flags & int_enables; 
 disable: int_requests = device_flags & ~int_disables; 
 
This simplifies the fetch phase test slightly. 
 
At yet higher complexity, the interrupt system may be too complex or too large to evaluate during the 
fetch-phase.  In this case, an interrupt pending flag is created, and it is evaluated by subroutine call 
whenever a change could occur (start of execution, I/O instruction issued, device time out occurs).  This 
makes fetch-phase evaluation simple and isolates interrupt evaluation to a common subroutine. 
 
If required for interrupt processing, the highest priority interrupting device can be determined by scanning 
the interrupt request variable from high priority to low until a set bit is found.  The bit position can then be 
back-mapped through a table to determine the address or interrupt vector of the interrupting device. 

3.1.5 I/O Dispatching 

 
I/O dispatching consists of four steps: 
 

• Identify the I/O command and analyze for the device address. 

• Locate the selected device. 

• Break down the I/O command into standard fields. 

• Call the device processor. 
 
Analyzing an I/O command is usually easy.  Most systems have one or more explicit I/O instructions 
containing an I/O command and a device address.  Memory mapped I/O is more complicated; the 
identification of a reference to I/O space becomes part of memory addressing.  This usually requires 
centralizing memory reads and writes into subroutines, rather than as inline code. 
 
Once an I/O command has been analyzed, the CPU must locate the device subroutine.  The simplest way 
is a large switch statement with hardwired subroutine calls. More modular is to call through a dispatch table, 
with NULL entries representing non-existent devices; this also simplifies support for modifiable device 
addresses and configurable devices.  Before calling the device routine, the CPU usually breaks down the 
I/O command into standard fields.  This simplifies writing the peripheral simulator. 

3.1.6 Instruction Execution 

 
Instruction execution is the responsibility of VM subroutine sim_instr.  It is called from SCP as a result of a 
RUN, GO, CONT, or BOOT command.  It begins executing instructions at the current PC (sim_PC points to 
its register description block) and continues until halted by an error or an external event. 
 
When called, the CPU needs to account for any state changes that the user made.  For example, it may 
need to re-evaluate whether an interrupt is pending, or restore frequently used state to local register 
variables for efficiency.  The actual instruction fetch and execute cycle is usually structured as a loop 
controlled by an error variable, e.g., 
 
 reason = 0; 
 do { … } while (reason == 0); or while (reason == 0) { … } 
 
Within this loop, the usual order of events is: 
 



• If the event timer sim_interval has reached zero, process any timed events.  This is done by SCP 
subroutine sim_process_event.  Because this is the polling mechanism for user-generated 
processor halts (^E), errors must be recognized immediately: 

 
if (sim_interval <= 0) { 

if (reason = sim_process_event ()) break;  } 
 

• Check for outstanding interrupts and process if required. 
 

• Check for other processor-unique events, such as wait-state outstanding or traps outstanding. 
 

• Check for an instruction breakpoint.  SCP has a comprehensive breakpoint facility.  It allows a VM 
to define many different kinds of breakpoints.  The VM checks for execution (type E) breakpoints 
during instruction fetch. 

 

• Fetch the next instruction, increment the PC, optionally decode the address, and dispatch (via a 
switch statement) for execution. 

 
A few guidelines for implementation: 
 

• In general, code should reflect the hardware being simulated.  This is usually simplest and easiest 
to debug. 

 

• The VM should provide some debugging aids.  The existing CPU’s all provide multiple instruction 
breakpoints, a PC change queue, error stops on invalid instructions or operations, and symbolic 
examination and modification of memory. 

3.2 Peripheral Device Organization 

 
The basic elements of a VM are devices, each corresponding roughly to a real chunk of hardware.  A device 
consists of register-based state and one or more units.  Thus, a multi-drive disk subsystem is a single 
device (representing the hardware of the real controller) and one or more units (each representing a single 
disk drive).  Sometimes the device and its unit are the same entity as, for example, in the case of a paper 
tape reader.  However, a single physical device, such as the console, may be broken up for convenience 
into separate input and output devices. 
 
In general, units correspond to individual sources of input or output (one tape transport, one A-to-D 
channel).  Units are the basic medium for both device timing and device I/O.  Except for the console, all I/O 
devices are simulated as host-resident files.  SCP allows the user to make an explicit association between 
a host-resident file and a simulated hardware entity. 
 
Both devices and units have state.  Devices operate on registers, which contain information about the state 
of the device, and indirectly, about the state of the units.  Units operate on data sets, which may be thought 
of as individual instances of input or output, such as a disk pack or a punched paper tape.  In a typical 
multi-unit device, all units are the same, and the device performs similar operations on all of them, 
depending on which one has been selected by the program being simulated. 
 
(Note: SIMH, like MIMIC, restricts registers to devices. Replicated registers, for example, disk drive current 
state, are handled via register arrays.) 
 
For each structural level, SIMH defines, and the VM must supply, a corresponding data structure.  
sim_device structures correspond to devices, sim_reg structures to registers, and sim_unit structures to 
units.  These structures are described in detail in section 4. 
 
The primary functions of a peripheral are: 



 

• command decoding and execution 

• device timing 

• data transmission. 
 
Command decoding is fairly obvious.  At least one section of the peripheral code module will be devoted to 
processing directives issued by the CPU.  Typically, the command decoder will be responsible for register 
and flag manipulation, and for issuing or canceling I/O requests.  The former is easy, but the later requires 
a thorough understanding of device timing. 

3.2.1 Device Timing 

 
The principal problem in I/O device simulation is imitating asynchronous operations in a sequential 
simulation environment.  Fortunately, the timing characteristics of most I/O devices do not vary with external 
circumstances.  The distinction between devices whose timing is externally generated (e.g., console 
keyboard) and those whose timing is internally generated (disk, paper tape reader) is crucial.  With an 
externally timed device, there is no way to know when an in-progress operation will begin or end; with an 
internally timed device, given the time when an operation starts, the end time can be calculated. 
 
For an internally timed device, the elapsed time between the start and conclusion of an operation is called 
the wait time.  Some typical internally timed devices and their wait times include: 
 
 PTR (300 char/sec)  3.3 msec 
 PTP (50 char/sec)  20 msec 
 CLK (line frequency)  16.6 msec 
 TTO (30 char/sec)  33 msec 
 
Mass storage devices, such as disks and tapes, do not have a fixed response time, but a start-to-finish time 
can be calculated based on current versus desired position, state of motion, etc. 
 
For an externally timed device, there is no portable mechanism by which a VM can be notified of an external 
event (for example, a key stroke).  Accordingly, all current VM’s poll for keyboard input, thus converting the 
externally timed keyboard to a pseudo-internally timed device.  A more general restriction is that SIMH is 
single-threaded.  Threaded operations must be done by polling using the unit timing mechanism, either with 
real units or fake units created expressly for polling. 
 
SCP provides the supporting routines for device timing.  SCP maintains a list of devices (called active 
devices) that are in the process of timing out.  It also provides routines for querying or manipulating this list 
(called the active queue).  Lastly, it provides a routine for checking for timed-out units and executing a 
VM-specified action when a time-out occurs. 
 
Device timing is done with the UNIT structure, described in section 4.  To set up a timed operation, the 
peripheral calculates a waiting period for a unit and places that unit on the active queue.  The CPU counts 
down the waiting period.  When the waiting period has expired, sim_process_event removes the unit from 
the active queue and calls a device subroutine.  A device may also cancel an outstanding timed operation 
and query the state of the queue.  The timing subroutines are: 
 

• t_stat sim_activate (UNIT *uptr, int32 wait).  This routine places the specified unit on the active 
queue with the specified waiting period.  A waiting period of 0 is legal; negative waits cause an 
error.  If the unit is already active, the active queue is not changed, and no error occurs. 

 

• t_stat sim_cancel (UNIT *uptr).  This routine removes the specified unit from the active queue.  If 
the unit is not on the queue, no error occurs. 

 



• int32 sim_is_active (UNIT *uptr).  This routine tests whether a unit is in the active queue.  If it is, 
the routine returns the time (+1) remaining; if it is not, the routine returns 0. 

 

• double sim_gtime (void).  This routine returns the time elapsed since the last RUN or BOOT 
command. 

 

• uint32 sim_grtime (void).  This routine returns the low-order 32b of the time elapsed since the last 
RUN or BOOT command. 

 

• int32 sim_qcount (void).  This routine returns the number of entries on the clock queue. 
 

• t_stat sim_process_event (void).  This routine removes all timed out units from the active queue 
and calls the appropriate device subroutine to service the time-out. 

 

• int32 sim_interval.  This variable counts down the first outstanding timed event.  If there are no 
timed events outstanding, SCP counts down a “null interval” of 10,000 time units. 

3.2.2 Clock Calibration 

 
The timing mechanism described in the previous section is approximate.  Devices, such as real-time clocks, 
which track wall time will be inaccurate.  SCP provides routines to synchronize multiple simulated clocks (to 
a maximum of 8) to wall time. 
 

• int32 sim_rtcn_init (int32 clock_interval, int32 clk).  This routine initializes the clock calibration 
mechanism for simulated clock clk.  The argument is returned as the result. 

 

• int32 sim_rtcn_calb (int32 tickspersecond, int32 clk).  This routine calibrates simulated clock clk.  
The argument is the number of clock ticks expected per second. 

 
The VM must call sim_rtcn_init for each simulated clock in two places: in the prolog of sim_instr, before 
instruction execution starts, and whenever the real-time clock is started.  The simulator calls sim_rtcn_calb 
to calculate the actual interval delay when the real-time clock is serviced: 
 
 /* clock start */ 
 
 if (!sim_is_active (&clk_unit)) sim_activate (&clk_unit, sim_rtcn_init (clk_delay, clkno)); 
 etc. 
 
 /* clock service */ 
 
 sim_activate (&clk_unit, sim_rtcb_calb (clk_ticks_per_second, clkno); 
 
The real-time clock is usually simulated clock 0; other clocks are used for polling asynchronous multiplexers 
or intervals timers. 

3.2.3 Idling 

 
If a VM implements a free-running, calibrated clock of 100Hz or less, then the VM can also implement idling.  
Idling is a way of pausing simulation when no real work is happening, without losing clock calibration.  The 
VM must detect when it is idle; it can then inform the host of this situation by calling sim_idle: 
 

• t_bool sim_idle (int32 clk, t_bool one_tick) – attempt to idle the VM until the next scheduled I/O 
event, using simulated clock clk as the time base, and decrement sim_interval by an appropriate 



number of cycles.  If a calibrated timer is not available, or the time until the next event is less than 
1ms, decrement sim_interval by 1 if one_tick is TRUE; otherwise, leave sim_interval unchanged. 

 
sim_idle returns TRUE if the VM actually idled, FALSE if it did not. 
 
Because idling and throttling are mutually exclusive, the VM must inform SCP when idling is turned on or 
off: 
 

• t_stat sim_set_idle (UNIT *uptr, int32 val, char *cptr, void *desc) – informs SCP that idling is 
enabled. 

• t_stat sim_clr_idle (UNIT *uptr, int32 val, char *cptr, void *desc) – informs SCP that idling is 
disabled. 

• t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, void *desc) – displays whether idling is 
enabled or disabled, as seen by SCP. 

3.2.4 Data I/O 

 
For most devices, timing is half the battle (for clocks it is the entire war); the other half is I/O.  Some devices 
are simulated on real hardware (for example, Ethernet controllers).  Most I/O devices are simulated as files 
on the host file system in little-endian format.  SCP provides facilities for associating files with units 
(ATTACH command) and for reading and writing data from and to devices in a endian- and 
size-independent way. 
 
For most devices, the VM designer does not have to be concerned about the formatting of simulated device 
files.  I/O occurs in 1, 2, 4, or 8 byte quantities; SCP automatically chooses the correct data size and 
corrects for byte ordering.  Specific issues: 
 

• Line printers should write data as 7-bit ASCII, with newlines replacing carriage-return/line-feed 
sequences. 

 

• Disks should be viewed as linear data sets, from sector 0 of surface 0 of cylinder 0 to the last sector 
on the disk.  This allows easy transcription of real disks to files usable by the simulator. 

 

• Magtapes, by convention, use a record based format.  Each record consists of a leading 32-bit 
record length, the record data (padded with a byte of 0 if the record length is odd), and a trailing 
32-bit record length.  File marks are recorded as one record length of 0. 

 

• Cards have 12 bits of data per column, but the data is most conveniently viewed as (ASCII) 
characters.  Column binary can be implemented using two successive characters per card column.. 

 
Data I/O varies between fixed and variable capacity devices, and between buffered and non-buffered 
devices.  A fixed capacity device differs from a variable capacity device in that the file attached to the former 
has a maximum size, while the file attached to the latter may expand indefinitely.  A buffered device differs 
from a non-buffered device in that the former buffers its data set in host memory, while the latter maintains 
it as a file.  Most variable capacity devices (such as the paper tape reader and punch) are sequential; all 
buffered devices are fixed capacity. 
 
3.2.4.1 Reading and Writing Data 
 
The ATTACH command creates an association between a host file and an I/O unit.  For non-buffered 
devices, ATTACH stores the file pointer for the host file in the fileref field of the UNIT structure.  For 
buffered devices, ATTACH reads the entire host file into a buffer pointed to by the filebuf field of the UNIT 
structure.  If unit flag UNIT_MUSTBUF is set, the buffer is allocated dynamically; otherwise, it must be 
statically allocated. 
 



For non-buffered devices, I/O is done with standard C subroutines plus the SCP routines sim_fread and 
sim_fwrite.  sim_fread and sim_fwrite are identical in calling sequence and function to fread and fwrite, 
respectively, but will correct for endian dependencies.  For buffered devices, I/O is done by copying data to 
or from the allocated buffer.  The device code must maintain the number (+1) of the highest address 
modified in the hwmark field of the UNIT structure.  For both the non-buffered and buffered cases, the 
device must perform all address calculations and positioning operations. 
 
SIMH provides capabilities to access files >2GB (the int32 position limit).  If a VM is compiled with flags 
USE_INT64 and USE_ADDR64 defined, then t_addr is defined as t_uint64 rather than uint32.  Routine 
sim_fseek allows simulated devices to perform random access in large files: 
 

• int sim_fseek (FILE *handle, t_addr position, int where) 
 
sim_fseek is identical to standard C fseek, with two exceptions: where = SEEK_END is not supported, and 
the position argument can be 64b wide. 
 
The DETACH command breaks the association between a host file and an I/O unit.  For buffered devices, 
DETACH writes the allocated buffer back to the host file. 
 
3.2.4.2 Console I/O 
 
SCP provides three routines for console I/O. 
 

• t_stat sim_poll_char (void).  This routine polls for keyboard input.  If there is a character, it returns 
SCPE_KFLAG + the character.  If the user typed the interrupt character (^E), it returns 
SCPE_STOP.  If the console is attached to a Telnet connection, and the connection is lost, the 
routine returns SCPE_LOST.  If there is no input, it returns SCPE_OK. 

 

• t_stat sim_putchar (int32 char).  This routine types the specified ASCII character to the console.  If 
the console is attached to a Telnet connection, and the connection is lost, the routine returns 
SCPE_LOST. 

 

• t_stat sim_putchar_s (int32 char).  This routine outputs the specified ASCII character to the 
console.  If the console is attached to a Telnet connection, and the connection is lost, the routine 
returns SCPE_LOST; if the connection is backlogged, the routine returns SCPE_STALL. 

 

4. Data Structures 
 
The devices, units, and registers that make up a VM are formally described through a set of data structures 
which interface the VM to the control portions of SCP.  The devices themselves are pointed to by the device 
list array sim_devices[].  Within a device, both units and registers are allocated contiguously as arrays of 
structures.  In addition, many devices allow the user to set or clear options via a modifications table. 
 
Note that a device must always have at least one unit, even if that unit is not needed for simulation 
purposes.  A device must always point to a valid register table, but the register table can consist of just the 
“end of table” entry. 

4.1 sim_device Structure 

 
Devices are defined by the sim_device structure (typedef DEVICE): 
 

struct sim_device { 
 char  *name;    /* name */ 



 struct sim_unit  *units;    /* units */ 
 struct sim_reg *registers;   /* registers */ 
 struct sim_mtab *modifiers;   /* modifiers */ 
 int32  numunits;   /* #units */ 
 uint32  aradix;    /* address radix */ 
 uint32  awidth;    /* address width */ 
 uint32  aincr;    /* addr increment */ 
 uint32  dradix;    /* data radix */ 
 uint32  dwidth;    /* data width */ 
 t_stat  (*examine)();   /* examine routine */ 
 t_stat  (*deposit)();   /* deposit routine */ 
 t_stat  (*reset)();   /* reset routine */ 
 t_stat  (*boot)();   /* boot routine */ 
 t_stat  (*attach)();   /* attach routine */ 
 t_stat  (*detach)();   /* detach routine */ 
 void  *ctxt    /* context */ 
 uint32  flags;    /* flags */ 
 uint32  dctrl;    /* debug control flags */ 
 struct sim_debtab debflags;   /* debug flag names */ 
 t_stat  (*msize)();   /* memory size change */ 
 char  *lname;    /* logical name */ 

}; 
 
The fields are the following: 
 

name  device name, string of all capital alphanumeric characters. 
units  pointer to array of sim_unit structures, or NULL if none. 
registers pointer to array of sim_reg structures, or NULL if none. 
modifiers pointer to array of sim_mtab structures, or NULL if none. 
numunits  number of units in this device. 
aradix  radix for input and display of device addresses, 2 to 16 inclusive. 
awidth  width in bits of a device address, 1 to 64 inclusive. 
aincr increment between device addresses, normally 1; however, byte addressed 

devices with 16-bit words specify 2, with 32-bit words 4. 
dradix  radix for input and display of device data, 2 to 16 inclusive. 
dwidth  width in bits of device data, 1 to 64 inclusive. 
examine address of special device data read routine, or NULL if none is required. 
deposit  address of special device data write routine, or NULL if none is required. 
reset  address of device reset routine, or NULL if none is required. 
boot  address of device bootstrap routine, or NULL if none is required. 
attach  address of special device attach routine, or NULL if none is required. 
detach  address of special device detach routine, or NULL if none is required. 
ctxt  address of VM-specific device context table, or NULL if none is required. 
flags  device flags. 
dctrl  debug control flags. 
debflags pointer to array of sim_debtab structures, or NULL if none. 
msize  address of memory size change routine, or NULL if none is required. 
lname  pointer to logical name string. 

4.1.1 Awidth and Aincr 

 
The awidth field specifies the width of the VM’s fundamental computer “word”.  For example, on the 
PDP-11, awidth is 16b, even though memory is byte-addressable.  The aincr field specifies how many 
addressing units comprise the fundamental “word”.  For example, on the PDP-11, aincr is 2 (2 bytes per 
word). 



 
If aincr is greater than 1, SCP assumes that data is naturally aligned on addresses that are multiples of 
aincr.  VM’s that support arbitrary byte alignment of data (like the VAX) can follow one of two strategies: 
 

• Set awidth = 8 and aincr = 1 and support only byte access in the examine/deposit routines. 

• Set awidth and aincr to the fundamental sizes and support unaligned data access in the 
examine/deposit routines. 

 
In a byte-addressable VM, SAVE and RESTORE will require (memory_size_bytes / aincr) iterations to 
save or restore memory.  Thus, it is significantly more efficient to use word-wide rather than byte-wide 
memory; but requirements for unaligned access can add significantly to the complexity of the examine and 
deposit routines. 

4.1.2 Device Flags 

 
The flags field contains indicators of current device status.  SIMH defines 2 flags: 
 

flag name  meaning if set 
 
 DEV_DISABLE  device can be set enabled or disabled 
 DEV_DIS  device is currently disabled 
 DEV_DYNM  device requires call on msize routine to change memory size 
 DEV_NET  device attaches to the network rather than a file 
 DEV_DEBUG  device supports SET DEBUG command 
 DEV_RAW  device supports raw I/O 
 DEV_RAWONLY device supports only raw I/O 
 
Starting at bit position DEV_V_UF, the remaining flags are device-specific.  Device flags are automatically 
saved and restored; the device need not supply a register for these bits. 

4.1.3 Context 

 
The field contains a pointer to a VM-specific device context table, if required.  SIMH never accesses this 
field.  The context field allows VM-specific code to walk VM-specific data structures from the sim_devices 
root pointer. 

4.1.4 Examine and Deposit Routines 

 
For devices which maintain their data sets as host files, SCP implements the examine and deposit data 
functions.  However, devices which maintain their data sets as private state (for example, the CPU) must 
supply special examine and deposit routines.  The calling sequences are: 
 

t_stat examine_routine (t_val *eval_array, t_addr addr, UNIT *uptr, int32 switches) – Copy 
sim_emax consecutive addresses for unit uptr, starting at addr, into eval_array.  The switch 
variable has bit<n> set if the n’th letter was specified as a switch to the examine command. 
 
t_stat deposit_routine (t_val value, t_addr addr, UNIT *uptr, int32 switches) – Store the specified 
value in the specified addr for unit uptr.  The switch variable is the same as for the examine routine. 

4.1.5 Reset Routine 

 
The reset routine implements the device reset function for the RESET, RUN, and BOOT commands.  Its 
calling sequence is: 
 



 t_stat reset_routine (DEVICE *dptr) – Reset the specified device to its initial state. 
 
A typical reset routine clears all device flags and cancels any outstanding timing operations.  Switch –p 
specifies a reset to power-up state. 

4.1.6 Boot Routine 

 
If a device responds to a BOOT command, the boot routine implements the bootstrapping function.  Its 
calling sequence is: 
 

t_stat boot_routine (int32 unit_num, DEVICE *dptr) – Bootstrap unit  unit_num on the device dptr. 
 
A typical bootstrap routine copies a bootstrap loader into main memory and sets the PC to the starting 
address of the loader.  SCP then starts simulation at the specified address. 

4.1.7 Attach and Detach Routines 

 
Normally, the ATTACH and DETACH commands are handled by SCP.  However, devices which need to 
pre- or post-process these commands must supply special attach and detach routines.  The calling 
sequences are: 
 

t_stat attach_routine (UNIT *uptr, char *file) – Attach the specified file to the unit uptr. 
Sim_switches contains the command switch; bit SIM_SW_REST indicates that attach is being 
called by the RESTORE command rather than the ATTACH command. 
 
t_stat detach_routine (UNIT *uptr) – Detach unit uptr. 

 
In practice, these routines usually invoke the standard SCP routines, attach_unit and detach_unit, 
respectively.  For example, here are special attach and detach routines to update line printer error state: 
 

t_stat lpt_attach (UNIT *uptr, char *cptr) { 

t_stat r; 

if ((r = attach_unit (uptr, cptr)) != SCPE_OK) return r; 

lpt_error = 0; 

return SCPE_OK; 

} 

 

t_stat lpt_detach (UNIT *uptr) { 

 lpt_error = 1; 

 return detach_unit (uptr); 

} 

 
If the VM specifies an ATTACH or DETACH routine, SCP bypasses its normal tests before calling the VM 
routine.  Thus, a VM DETACH routine cannot be assured that the unit is actually attached and must test the 
unit flags if required. 
 
SCP executes a DETACH ALL command as part of simulator exit.  Normally, DETACH ALL only calls a 
unit’s detach routine if the unit’s UNIT_ATT flag is set.  During simulator exit, the detach routine is also 
called if the unit is not flagged as attachable (UNIT_ATTABLE is not set).  This allows the detach routine of 
a non-attachable unit to function as a simulator-specific cleanup routine for the unit, device, or entire 
simulator. 

4.1.8 Memory Size Change Routine 

 



Most units instantiate any memory array at the maximum size possible.  This allows apparent memory size 
to be changed by varying the capac field in the unit structure.  For some devices (like the VAX CPU), 
instantiating the maximum memory size would impose a significant resource burden if less memory was 
actually needed.  These devices must provide a routine, the memory size change routine, for RESTORE to 
use if memory size must be changed: 
 

t_stat change_mem_size (UNIT *uptr, int32 val, char *cptr, void *desc) – Change the capacity 
(memory size) of unit uptr to val.  The cptr and desc arguments are included for compatibility with 
the SET command’s validation routine calling sequence. 

 

4.1.9 Debug Controls 

 
Devices can support debug printouts.  Debug printouts are controlled by the SET {NO}DEBUG command, 
which specifies where debug output should be printed; and by the SET <device> {NO}DEBUG command, 
which enables or disables individual debug printouts. 
 
If a device supports debug printouts, device flag DEV_DEBUG must be set.  Field dctrl is used for the 
debug control flags.  If a device supports only a single debug on/off flag, then the debflags field should be 
set to NULL.  If a device supports multiple debug on/off flags, then the correspondence between bit 
positions in dctrl and debug flag names is specified by table  debflags.  debflags points to a continguous 
array of sim_debtab structures (typedef DEBTAB).  Each sim_debtab structure specifies a single debug 
flag: 
 
 Struct sim_debtab { 
  char  name;    /* flag name */ 
  uint32  mask;    /* control bit */ 
  }; 
 
The fields are the following: 
 
 name  name of the debug flag. 
 mask  bit mask of the debug flag. 
 
The array is terminated with a NULL entry. 

4.2 sim_unit Structure 

 
Units are allocated as contiguous array.  Each unit is defined with a sim_unit structure (typedef UNIT): 
 

struct sim_unit { 
 struct sim_unit *next;    /* next active */ 
 t_stat  (*action)();   /* action routine */ 
 char  *filename;   /* open file name */ 
 FILE  *fileref;    /* file reference */ 
 void  *filebuf;    /* memory buffer */ 
 uint32  hwmark;   /* high water mark */ 
 int32  time;    /* time out */ 
 uint32  flags;    /* flags */ 
 t_addr  capac;    /* capacity */ 
 t_addr  pos;    /* file position */ 
 int32  buf;    /* buffer */ 
 int32  wait;    /* wait */ 
 int32  u3;    /* device specific */ 
 int32  u4;    /* device specific */ 



 int32  u5;    /* device specific */ 
 int32  u6;    /* device specific */ 

}; 
 
The fields are the following: 
 

next  pointer to next unit in active queue, NULL if none. 
action  address of unit time-out service routine. 
filename pointer to name of attached file, NULL if none. 
fileref  pointer to FILE structure of attached file, NULL if none. 
hwmark buffered devices only; highest modified address, + 1. 
time  increment until time-out beyond previous unit in active queue. 
flags  unit flags. 
capac  unit capacity, 0 if variable. 
pos  sequential devices only; next device address to be read or written. 
buf  by convention, the unit buffer, but can be used for other purposes. 
wait  by convention, the unit wait time, but can be used for other purposes. 
u3  user-defined. 
u4  user-defined. 
u5  user-defined. 
u6  user-defined. 

 
buf, wait, u3, u4, u5, u6, and parts of flags are all saved and restored by the SAVE and RESTORE 
commands and thus can be used for unit state which must be preserved. 
 
Macro UDATA is available to fill in the common fields of a UNIT.  It is invoked by 
 
 UDATA  (action_routine, flags, capacity) 
 
Fields after buf can be filled in manually, e.g, 
 
 UNIT lpt_unit =  

{ UDATA (&lpt_svc, UNIT_SEQ+UNIT_ATTABLE, 0), 500 }; 

 
defines the line printer as a sequential unit with a wait time of 500. 

4.2.1 Unit Flags 

 
The flags field contains indicators of current unit status.  SIMH defines 12 flags: 
 

flag name  meaning if set 
 
UNIT_ATTABLE the unit responds to ATTACH and DETACH. 
UNIT_RO  the unit is currently read only. 
UNIX_FIX  the unit is fixed capacity. 
UNIT_SEQ  the unit is sequential. 
UNIT_ATT  the unit is currently attached to a file. 
UNIT_BINK  the unit measures “K” as 1024, rather than 1000. 
UNIT_BUFABLE the unit buffers its data set in memory. 
UNIT_MUSTBUF the unit allocates its data buffer dynamically. 
UNIT_BUF  the unit is currently buffering its data set in memory. 
UNIT_ROABLE  the unit can be ATTACHed read only. 
UNIT_DISABLE  the unit responds to ENABLE and DISABLE. 
UNIT_DIS  the unit is currently disabled. 
UNIT_RAW  the unit is attached in RAW mode. 



 
Starting at bit position UNIT_V_UF, the remaining flags are unit-specific.  Unit-specific flags are set and 
cleared with the SET and CLEAR commands, which reference the MTAB array (see below).  Unit-specific 
flags and UNIT_DIS are automatically saved and restored; the device need not supply a register for these 
bits. 

4.2.2 Service Routine 

 
This routine is called by sim_process_event when a unit times out.  Its calling sequence is: 
 

t_stat service_routine (UNIT *uptr) 
 
The status returned by the service routine is passed by sim_process_event back to the CPU. 

4.3 sim_reg Structure 

 
Registers are allocated as contiguous array, with a NULL register at the end.  Each register is defined with 
a sim_reg structure (typedef REG): 
 

struct reg { 
 char  *name;    /* name */ 
 void  *loc;    /* location */ 
 uint32  radix;    /* radix */ 
 uint32  width;    /* width */ 
 uint32  offset;    /* starting bit */ 
 uint32  depth;    /* save depth */ 
 uint32  flags;    /* flags */ 
 uint32  qptr;    /* current queue pointer */ 

}; 
 
The fields are the following: 
 

name  device name, string of all capital alphanumeric characters. 
loc  pointer to location of the register value. 
radix  radix for input and display of data, 2 to 16 inclusive. 
width  width in bits of data, 1 to 32 inclusive. 
width  bit offset (from right end of data). 
depth  size of data array (normally 1). 
flags  flags and formatting information. 
qptr  for a circular queue, the entry number for the first entry 

 
The depth field is used with “arrayed registers”.  Arrayed registers are used to represent structures with 
multiple data values, such as the locations in a transfer buffer; or structures which are replicated in every 
unit, such as a drive status register.  The qptr field is used with “queued registers”.  Queued registers are 
arrays that are organized as circular queues, such as the PC change queue. 
 
A register that is 32b or less keeps its data in a 32b scalar variable (signed or unsigned).  A register that is 
33b or more keeps its data in a 64b scalar variable (signed or unsigned).  There are several exceptions to 
this rule: 
 

• An arrayed register keeps its data in a C-array whose SIMH data type is as large as (or if 
necessary, larger than), the width of a register element.  For example, an array of 6b registers 
would keep its data in a uint8 (or int8) array; an array of 16b registers would keep its data in a uint16 
(or int16) array; an array of 24b registers would keep its data in a uint32 (or int32) array. 



• A register flagged with REG_FIT obeys the sizing rules of an arrayed register, rather than a normal 
scalar register.  This is useful for aliasing registers into memory or into structures. 

 
Macros ORDATA, DRDATA, and HRDATA define right-justified octal, decimal, and hexidecimal registers, 
respectively.  They are invoked by: 
 
 xRDATA (name, location, width) 
 
Macro FLDATA defines a one-bit binary flag at an arbitrary offset in a 32-bit word.  It is invoked by: 
 
 FLDATA (name, location, bit_position) 
 
Macro GRDATA defines a register with arbitrary location and radix.  It is invoked by: 
 
 GRDATA (name, location, radix, width, bit_position) 
 
Macro BRDATA defines an arrayed register whose data is kept in a standard C array.  It is invoked by: 
 
 BRDATA (name, location, radix, width, depth) 
 
For all of these macros, the flag field can be filled in manually, e.g., 
 
 REG lpt_reg = { 

  { DRDATA (POS, lpt_unit.pos, 31), PV_LFT }, … } 

 
Finally, macro URDATA defines an arrayed register whose data is part of the UNIT structure.  This macro 
must be used with great care.  If the fields are set up wrong, or the data is actually kept somewhere else, 
storing through this register declaration can trample over memory.  The macro is invoked by: 
 
 URDATA (name, location, radix, width, offset, depth, flags) 
 
The location should be an offset in the UNIT structure for unit 0.  The width should be 32 for an int32 or 
uint32 field, and T_ADDR_W for a t_addr filed.  The flags can be any of the normal register flags; 
REG_UNIT will be OR’d in automatically.  For example, the following declares an arrayed register of all the 
UNIT position fields in a device with 4 units: 
 
 { URDATA (POS, dev_unit[0].pos, 8, T_ADDR_W, 0, 4, 0) } 

4.3.1 Register Flags 

 
The flags field contains indicators that control register examination and deposit. 
 

flag name  meaning if specified 
 
PV_RZRO  print register right justified with leading zeroes. 
PV_RSPC  print register right justified with leading spaces. 
PV_LEFT  print register left justified. 
REG_RO  register is read only. 
REG_HIDDEN  register is hidden (will not appear in EXAMINE STATE). 
REG_HRO  register is read only and hidden. 
REG_NZ  new register values must be non-zero. 
REG_UNIT  register resides in the UNIT structure. 
REG_CIRC  register is a circular queue. 
REG_VMIO  register is displayed and parsed using VM data routines. 
REG_VMAD  register is displayed and parsed using VM address routines. 



REG_FIT  register container uses arrayed rather than scalar size rules. 

4.4 sim_mtab Structure 

 
Device-specific SHOW and SET commands are processed using the modifications array, which is allocated 
as contiguous array, with a NULL at the end.  Each possible modification is defined with a sim_mtab 
structure (synonym MTAB), which has the following fields: 
 

struct sim_mtab { 
 uint32  mask;    /* mask */ 
 uint32  match;    /* match */ 
 char  *pstring;   /* print string */ 
 char  *mstring;   /* match string */ 
 t_stat  (*valid)();   /* validation routine */ 
 t_stat  (*disp)();   /* display routine */ 
 void  *desc;    /* location descriptor */ 

}; 
 
MTAB supports two different structure interpretations: regular and extended.  A regular MTAB entry 
modifies flags in the UNIT flags word; the descriptor entry is not used.  The fields are the following: 
 

mask  bit mask for testing the unit.flags field 
match value to be stored (SET) or compared (SHOW) 
pstring pointer to character string printed on a match (SHOW), or NULL 
mstring pointer to character string to be matched (SET), or NULL 
valid address of validation routine (SET), or NULL 
disp address of display routine (SHOW), or NULL 

 
For SET, a regular MTAB entry is interpreted as follows: 
 

1. Test to see if the mstring entry exists. 
2. Test to see if the SET parameter matches the mstring. 
3. Call the validation routine, if any. 
4. Apply the mask value to the UNIT flags word and then or in the match value.  

 
For SHOW, a regular MTAB entry is interpreted as follows: 
 

1. Test to see if the pstring entry exists. 
2. Test to see if the UNIT flags word, masked with the mask value, equals the match value. 
3. If a display routine exists, call it, otherwise 
4. Print the pstring. 

 
Extended MTAB entries have a different interpretation: 
 

mask  entry flags 
  MTAB_XTD extended entry 
  MTAB_VDV valid for devices 
  MTAB_VUN valid for units 
  MTAB_VAL takes a value 
  MTAB_NMO valid only in named SHOW 
  MTAB_NC do not convert option value to upper case 
  MTAB_SHP SHOW parameter takes optional value 
match value to be stored (SET) 
pstring pointer to character string printed on a match (SHOW), or NULL 
mstring pointer to character string to be matched (SET), or NULL 



valid address of validation routine (SET), or NULL 
disp address of display routine (SHOW), or NULL 
desc pointer to a REG structure (MTAB_VAL set) or 
 a validation-specific structure (MTAB_VAL clear) 

 
For SET, an extended MTAB entry is interpreted as follows: 
 

1. Test to see if the mstring entry exists. 
2. Test to see if the SET parameter matches the mstring. 
3. Test to see if the entry is valid for the type of SET being done (SET device or SET unit). 
4. If a validation routine exists, call it and return its status.  The validation routine is responsible for 

storing the result.  
5. If desc is NULL, exit. 
6. If MTAB_VAL is set, parse the SET option for “option=n”, and store the value n in the register 

described by desc. 
7. Otherwise, store the match value in the int32 pointed to by desc. 

 
For SHOW, an extended MTAB entry is interpreted as follows: 
 

1. Test to see if the pstring entry exists. 
2. Test to see if the entry is valid for the type of SHOW being done (device or unit). 
3. If a display routine exists, call it, otherwise, 
4. If MTAB_VAL is set, print “pstring=n”, where the value, radix, and width are taken from the 

register described by desc, otherwise, 
5. Print the pstring. 

 
SHOW [dev|unit] <modifier>{=<value>} is a special case.  Only two kinds of modifiers can be displayed 
individually: an extended MTAB entry that takes a value; and any MTAB entry with both a display routine 
and a pstring.  Recall that if a display routine exists, SHOW does not use the pstring entry.  For displaying 
a named modifier, pstring is used as the string match.  This allows implementation of complex display 
routines that are only invoked by name, e.g., 
 
 MTAB cpu_tab[] = { 

  { mask, value, “normal”, “NORMAL”, NULL, NULL, NULL }, 

  { MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, “SPECIAL”, 

NULL, NULL, NULL, &spec_disp }, 

  { 0 } 

}; 

 
A SHOW CPU command will display only the modifier named NORMAL; but SHOW CPU SPECIAL will 
invoke the special display routine. 

4.4.1 Validation Routine 

 
The validation routine can be used to validate input during SET processing.  It can make other state 
changes required by the modification or initiate additional dialogs needed by the modifier.  Its calling 
sequence is: 
 

t_stat validation_routine (UNIT *uptr, int32 value, char *cptr, void *desc) – test that uptr.flags can 
be set to value.  cptr points to the value portion of the parameter string (any characters after the = 
sign); if cptr is NULL, no value was given.  desc points to the REG or int32 used to store the 
parameter. 

4.4.2 Display Routine 

 



The display routine is called during SHOW processing to display device- or unit-specific state.  Its calling 
sequence is: 
 

t_stat display_routine (FILE *st, UNIT *uptr, int value, void *desc) – output device- or unit-specific 
state for uptr to stream st.  If the modifier is regular MTAB entry, or an extended entry without 
MTAB_SHP set, desc points to the structure in the MTAB entry.  If the modifier is an extended 
MTAB entry with MTAB_SHP set, desc points to the optional value string or is NULL if no value was 
supplied.  value is the value field of the matched MTAB entry. 

 
When the display routine is called for a regular MTAB entry, SHOW has output the pstring argument but 
has not appended a newline.  When it is called for an extended MTAB entry, SHOW hasn’t output anything.  
SHOW will append a newline after the display routine returns, except for entries with the MTAB_NMO flag 
set. 

4.5 Other Data Structures 

 
char sim_name[] is a character array containing the VM name. 
 
int32 sim_emax contains the maximum number of words needed to hold the largest instruction or data item 
in the VM.  Examine and deposit will process up to sim_emax words. 
 
DEVICE *sim_devices[] is an array of pointers to all the devices in the VM.  It is terminated by a NULL.  By 
convention, the CPU is always the first device in the array. 
 
REG *sim_PC points to the reg structure for the program counter.  By convention, the PC is always the first 
register in the CPU’s register array. 
 
char *sim_stop_messages[] is an array of pointers to character strings, corresponding to error status 
returns greater than zero.  If sim_instr returns status code n > 0, then sim_stop_message[n] is printed by 
SCP. 
 

5. VM Provided Routines 

5.1 Instruction Execution 

 
Instruction execution is performed by routine sim_instr.  Its calling sequence is: 
 

t_stat sim_instr (void) – execute from current PC until error or halt. 

5.2 Binary Load and Dump 

 
If the VM responds to the LOAD (or DUMP) command, the load routine (dump routine) is implemented by 
routine sim_load.  Its calling sequence is: 
 

t_stat sim_load (FILE *fptr, char *buf, char *fnam, t_bool flag) - If flag = 0, load data from binary file 
fptr.  If flag = 1, dump data to binary file fptr.  For either command, buf contains any VM-specific 
arguments, and fnam contains the file name.   

 
If LOAD or DUMP is not implemented, sim_load should simply return SCPE_ARG.  The LOAD and DUMP 
commands open and close the specified file for sim_load. 



5.3 Symbolic Examination and Deposit 

 
If the VM provides symbolic examination and deposit of data, it must provide two routines, fprint_sym for 
output and parse_sym for input.  Their calling sequences are: 
 

t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 switch) – Based on the 
switch variable, symbolically output to stream ofile the data in array val at the specified addr in unit 
uptr. 
 
t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 switch) – Based on the 
switch variable, parse character string cptr for a symbolic value val at the specified addr in unit uptr. 

 
If symbolic processing is not implemented, or the output value or input string cannot be parsed, these 
routines should return SCPE_ARG.  If the processing was successful and consumed more than a single 
word, then these routines should return extra number of addressing units consumed as a negative number.  
If the processing was successful and consumed a single addressing unit, then these routines should return 
SCPE_OK.  For example, PDP-11 parse_sym would respond as follows to various inputs: 
 
 input    return value 
 
 XYZGH    SCPE_ARG 
 MOV R0,R1   -1 
 MOV #4,R5   -3 
 MOV 1234,5670  -5 
 
There is an implicit relationship between the addr and val arguments and the device’s aincr fields.  Each 
entry in val is assumed to represent aincr addressing units, starting at addr: 
 

val[0] addr + 0 

val[1] addr + aincr 

val[2] addr + (2 * aincr) 

val[3] addr + (3 * aincr) 

: : 

 
Because val is typically filled in and stored by calls on the device’s examine and deposit routines, 
respectively, the examine and deposit routines and fprint_sym and fparse_sym must agree on the 
expected width of items in val, and on the alignment of addr.  Further, if fparse_sym wants to modify a 
storage unit narrower than awidth, it must insert the new data into the appropriate entry in val without 
destroying surrounding fields. 
 
The interpretation of switch values is arbitrary, but the following are used by existing VM’s: 
 
 switch    interpretation 
 
 -a    single character 
 -c    character string 
 -m    instruction mnemonic 
 
In addition, on input, a leading ‘ (apostrophe) is interpreted to mean a single character, and a leading “ 
(double quote) is interpreted to mean a character string. 

5.4 Optional Interfaces 

 
For greater flexibility, SCP provides some optional interfaces that can be used to extend its command input, 
command processing, and command post-processing capabilities.  These interfaces are strictly optional 



and are off by default.  Using them requires intimate knowledge of how SCP functions internally and is not 
recommended to the novice VM writer. 

5.4.1 Once Only Initialization Routine 

 
SCP defines a pointer (*sim_vm_init)(void).  This is a “weak global”; if no other module defines this value, 
it will default to NULL.  A VM requiring special initialization should fill in this pointer with the address of its 
special initialization routine: 
 
 void sim_special_init (void); 

 void (*sim_vm_init)(void) = &sim_special_init; 

 
The special initialization routine can perform any actions required by the VM.  If the other optional interfaces 
are to be used, the initialization routine can fill in the appropriate pointers; however, this can just as easily be 
done in the CPU reset routine. 

5.4.2 Address Input and Display 

 
SCP defines a pointer t_addr *(sim_vm_parse_addr)(DEVICE *, char *, char **).  This is initialized to 
NULL.  If it is filled in by the VM, SCP will use the specified routine to parse addresses in place of its 
standard numerical input routine.  The calling sequence for the sim_vm_parse_addr routine is: 
 

t_addr sim_vm_parse_addr (DEVICE *dptr, char *cptr, char **optr) – parse the string pointed to by 
cptr as an address for the device pointed to by dptr.  optr points to the first character not 
successfully parsed.  If cptr == optr, parsing failed. 

 
SCP defines a pointer void *(sim_vm_fprint_addr)(FILE *, DEVICE *, t_addr).  This is initialized to NULL.  
If it is filled in by the VM, SCP will use the specified routine to print addresses in place of its standard 
numerical output routine.  The calling sequence for the sim_vm_fprint_addr routine is: 
 

t_addr sim_vm_fprint_addr (FILE *stream, DEVICE *dptr, t_addr addr) – output address addr to 
stream in the format required by the device pointed to by dptr. 

5.4.3 Command Input and Post-Processing 

 
SCP defines a pointer char* (sim_vm_read)(char *, int32 *, FILE *).  This is initialized to NULL.  If it is filled 
in by the VM, SCP will use the specified routine to obtain command input in place of its standard routine, 
read_line.  The calling sequence for the sim_vm_read routine is: 
 

char sim_vm_input (char *buf, int32 *max, FILE *stream) – read the next command line from 
stream and store it in buf, up to a maximum of max characters 

 
The routine is expected to strip off leading whitespace characters and to return NULL on end of file. 
 
SCP defines a pointer void *(sim_vm_post)(t_bool from_scp).  This is initialized to NULL.  If filled in by the 
VM, SCP will call the specified routine at the end of every command.  This allows the VM to update any local 
state, such as a GUI console display.  The calling sequence for the vm_post routine is: 
 

void sim_vm_postupdate (t_bool from_scp) – if called from SCP, the argument from_scp is 
TRUE; otherwise, it is FALSE. 

5.4.4 VM-Specific Commands 

 



SCP defines a pointer CTAB *sim_vm_cmd.  This is initialized to NULL.  If filled in by the VM, SCP 
interprets it as a pointer to SCP command table.  This command table is checked before user input is looked 
up in the standard command table. 
 
A command table is allocated as a contiguous array.  Each entry is defined with a sim_ctab structure 
(typedef CTAB): 
 

struct sim_ctab { 
 char  *name;    /* name */ 
 t_stat  (*action)();   /* action routine */ 
 int32  arg;    /* argument */ 
 char  *help;    /* help string */ 

}; 
 
If the first word of a command line matches ctab.name, then the action routine is called with the following 
arguments: 
 

t_stat action_routine (int32 arg, char *buf) – process input string buf based on optional argument 
arg 

 
The string passed to the action routine starts at the first non-blank character past the command name. 

6. Other SCP Facilities 

6.1 Terminal Input/Output Formatting Library 

 
SIMH provides routines to convert ASCII input characters to the format expected VM, and to convert 
VM-supplied ASCII characters to C-standard format.  The routines are 
 

int32 sim_tt_inpcvt (int32 c, uint32 mode) – convert input character c according to the mode 
specification and return the converted result (-1 if the character is not valid in the specified mode). 
 
int32 sim_tt_outcvt (int32 c, uint32 mode) – convert output character c according to the mode 
specification and return the converted result (-1 if the character is not valid in the specified mode). 

 
The supported modes are: 
 
 TTUF_MODE_8B 8b mode; no conversion 
 TTUF_MODE_7B 7b mode; the high-order bit is masked off 
 TTUF_MODE_7P 7b printable mode; the high-order bit is masked off 
    In addition, on output, if the character is not printable, 
    -1 is returned 
 TTUF_MODE_UC 7b upper case mode; the high-order bit is masked off 
    In addition, lower case is converted to upper case 
    If the character is not printable, -1 is returned 
 
On input, TTUF_MODE_UC has an additional modifier, TTUF_MODE_KSR, which forces the high order bit 
to be set rather than cleared. 
 
The set of printable control characters is contained in the global bit-vector variable sim_tt_pchar.  Each bit 
represents the character corresponding to the bit number (e.g., bit 0 represents NUL, bit 1 represents SOH, 
etc.).  If a bit is set, the corresponding control character is considered printable.  It initially contains the 
following characters: BEL, BS, HT, LF, and CR.  The set may be manipulated with these routines: 
 



t_stat sim_set_pchar (int32 flag, char *cptr) – set sim_tt_pchar to the value pointed to by cptr; 
return SCPE_2FARG if cptr is null or points to a null string, or SCPE_ARG if the value cannot be 
converted or does not contain at least CR and LF. 
 
t_stat sim_show_pchar (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr) – output the 
sim_tt_pchar value to the stream st. 

 
Note that the DEL character is always considered non-printable and will be suppressed in the UC and 7P 
modes. 
 

6.2 Terminal Multiplexer Emulation Library 

 
SIMH supports the use of multiple terminals.  All terminals except the console are accessed via Telnet.  
SIMH provides two supporting libraries for implementing multiple terminals: sim_tmxr.c (and its header file, 
sim_tmxr.h), which provide OS-independent support routines for terminal multiplexers; and sim_sock.c 
(and its header file, sim_sock.h), which provide OS-dependent socket routines.  Sim_sock.c is implemented 
under Windows, VMS, UNIX, and MacOS. 
 
Two basic data structures define the multiple terminals.  Individual lines are defined by an array of  tmln 
structures (typedef TMLN): 
 

struct tmln { 
 SOCKET conn;    /* line conn */ 
 uint32  ipad;    /* IP address */ 
 uint32  cnms;    /* connect  time ms */ 
 int32  tsta;    /* Telnet state */ 
 int32  rcve;    /* rcv enable */ 
 int32  xmte;    /* xmt enable */ 
 int32  dstb;    /* disable Tlnt bin */ 
 int32  rxbpr;    /* rcv buf remove */ 
 int32  rxbpi;    /* rcv buf insert */ 
 int32  rxcnt;    /* rcv count */ 
 int32  txbpr;    /* xmt buf remove */ 
 int32  txbpi;    /* xmt buf insert */ 
 int32  txcnt;    /* xmt count */ 
 FILE  *txlog;    /* xmt log file */ 
 char  *txlogname;   /* xmt log file name */ 
 char  rxb[TMXR_MAXBUF];  /* rcv buffer */ 
 char  rbr[TMXR_MAXBUF];  /* rcv break */ 
 char  txb[TMXR_MAXBUF];  /* xmt buffer */ 
 }; 

 
The fields are the following: 
 
 conn  connection socket (0 = disconnected) 
 tsta  Telnet state 
 rcve  receive enable flag (0 = disabled) 
 xmte  transmit flow control flag (0 = transmit disabled) 
 dstb  Telnet bin mode disabled 
 rxbpr  receive buffer remove pointer 
 rxbpi  receive buffer insert pointer 
 rxcnt  receive count 
 txbpr  transmit buffer remove pointer 
 txbpi  transmit buffer insert pointer 



 txcnt  transmit count 
 txlog  pointer to log file descriptor 
 txlogname pointer to log file name 

rxb  receive buffer 
rbr  receive buffer break flags 

 txb  transmit buffer 
 
The overall set of extra terminals is defined by the tmxr structure (typedef TMXR): 
 

struct tmxr { 
 int32  lines;    /* # lines */ 
 int32  port;    /* listening port */ 
 SOCKET master;    /* master socket */ 
 TMLN  *ldsc;    /* pointer to line descriptors */ 
 int32  *lnorder;   /* line connection order */ 
 DEVICE *dptr;    /* multiplexer device */ 
 }; 

 
The fields are the following: 
 
 lines  number of lines (constant) 
 port  master listening port (specified by ATTACH command) 
 master  master listening socket (filled in by ATTACH command) 
 ldsc  array of line descriptors 

lnorder array of line numbers in order of connection sequence, or NULL if user-defined 
connection order is not required 

dptr pointer to the multiplexer’s DEVICE structure, or NULL if the device is to be derived 
from the UNIT passed to the first attach call. 

 
The number of elements in the ldsc and lnorder arrays must equal the value of the lines field.  Set lnorder 
to NULL if the connection order feature is not needed.  If the first element of the lnorder array is –1, then the 
default ascending sequential connection order is used.  Set dptr to NULL if the device should be derived 
from the unit passed to the tmxr_attach call. 
 
Library sim_tmxr.c provides the following routines to support Telnet-based terminals: 
 

int32 tmxr_poll_conn (TMXR *mp) – poll for a new connection to the terminals described by mp.  If 
there is a new connection, the routine resets all the line descriptor state (including receive enable) 
and returns the line number (index to line descriptor) for the new connection.  If there isn’t a new 
connection, the routine returns –1. 
 
void tmxr_reset_ln (TMLN *lp) – reset the line described by lp.  The connection is closed and all 
line descriptor state is reset. 
 
int32 tmxr_getc_ln (TMLN *lp) – return the next available character from the line described by lp.  
If a character is available, the return variable is: 
 
 (1 << TMXR_V_VALID) | character 

 
If no character is available, the return variable is 0. 
 
void tmxr_poll_rx (TMXR *mp) – poll for input available on the terminals described by mp.  
 
void tmxr_rqln (TMLN *lp) – return the number of characters in the receive queue of the line 
described by lp. 
 



t_stat tmxr_putc_ln (TMLN *lp, int32 chr) – output character chr to the line described by lp.  
Possible errors are SCPE_LOST (connection lost) and SCPE_STALL (connection backlogged). 
 
void tmxr_poll_tx (TMXR *mp) – poll for output complete on the terminals described by mp. 
 
void tmxr_tqln (TMLN *lp) – return the number of characters in the transmit queue of the line 
described by lp. 
 
t_stat tmxr_attach (TMXR *mp, UNIT *uptr, char *cptr) – attach the port contained in character 
string cptr to the terminals described by mp and unit uptr. 
 
t_stat tmxr_open_master (TMXR *mp, char *cptr) – associate the port contained in character 
string cptr to the terminals described by mp.  This routine is a subset of tmxr_attach. 
 
t_stat tmxr_detach (TMXR *mp, UNIT *uptr) – detach all connections for the terminals described 
by mp and unit uptr. 
 
t_stat tmxr_close_master (TMXR *mp) – close the master port for the terminals described by mp.  
This routine is a subset of tmxr_detach. 
 
t_stat tmxr_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) – stub examine routine, needed 
because the extra terminals are marked as attached; always returns an error. 
 
t_stat tmxr_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) – stub deposit routine, needed 
because the extra terminals are marked as detached; always returns an error. 

 
void tmxr_linemsg (TMLN *lp, char *msg) – output character string msg to line lp. 
 
void tmxr_fconns (FILE *st, TMLN *lp, int32 ln) – output connection status to stream st for the line 
described by lp.  If ln is >= 0, preface the output with the specified line number. 
 
void tmxr_fstats (FILE *st, TMLN *lp, int32 ln) – output connection statistics to stream st for the line 
described by lp.  If ln is >= 0, preface the output with the specified line number. 
 
t_stat tmxr_dscln (UNIT *uptr, int32 val, char *cptr, void *mp) – parse the string pointed to by cptr 
for a decimal line number.  If the line number is valid, disconnect the specified line in the terminal 
multiplexer described by mp.  The calling sequence allows tmxr_dscln to be used as an MTAB 
processing routine. 
 
t_stat tmxr_set_lnorder (UNIT *uptr, int32 val, char *cptr, void *desc) – set the line connection 
order array associated with the TMXR structure pointed to by desc.  The string pointed to by cptr is 
parsed for a semicolon-delimited list of ranges.  Ranges are of the form: 
 

line1-line2 ascending sequence from line1 to line2 

line1/length ascending sequence from line1 to line1+length-1 

ALL ascending sequence of all lines defined by the 

multiplexer 

 
The line order array must provide an int32 element for each line.  The calling sequence allows 
tmxr_set_lnorder to be used as an MTAB processing routine. 
 
t_stat tmxr_show_lnorder (FILE *st, UNIT *uptr, int32 val, void *desc) – output the line connection 
order associated multiplexer (TMXR *) desc to stream st.  The order is rendered as a 
semicolon-delimited list of ranges.  The calling sequence allows tmxr_show_lnorder to be used 
as an MTAB processing routine. 
 



t_stat tmxr_show_summ (FILE *st, UNIT *uptr, int32 val, void *desc) – outputs the summary 
status of the multiplexer (TMXR *) desc to stream st. 
 
t_stat tmxr_show_cstat (FILE *st, UNIT *uptr, int32 val, void *desc) – outputs either the 
connections (val = 1) or the statistics (val = 0) of the multiplexer (TMXR *) desc to stream st. Also 
checks for multiplexer not attached, or all lines disconnected. 
 
t_stat tmxr_show_lines (FILE *st, UNIT *uptr, int32 val, void *desc) – outputs the number of lines 
in the terminal multiplexer (TMXR *) I to stream I. 
 

The OS-dependent socket routines should not need to be accessed by the terminal simulators.  

6.3 Magnetic Tape Emulation Library 

 
SIMH supports the use of emulated magnetic tapes.  Magnetic tapes are emulated as disk files containing 
both data records and metadata markers; the format is fully described in the paper “SIMH Magtape 
Representation and Handling”.  SIMH provides a supporting library, sim_tape.c (and its header file, 
sim_tape.h), that abstracts handling of magnetic tapes.  This allows support for multiple tape formats, 
without change to magnetic device simulators. 
 
The magtape library does not require any special data structures.  However, it does define some additional 
unit flags: 
 
 MTUF_WLK  unit is write locked 
 
If magtape simulators need to define private unit flags, those flags should begin at bit number MTUF_V_UF 
instead of UNIT_V_UF.  The magtape library maintains the current magtape position in the pos field of the 
UNIT structure. 
 
Library sim_tape.c provides the following routines to support emulated magnetic tapes: 
 

t_stat sim_tape_attach (UNIT *uptr, char *cptr) – Attach tape unit uptr to file cptr.  Tape  
Simulators should call this routine, rather than the standard attach_unit routine, to allow for future 
expansion of format support. 
 
t_stat sim_tape_detach (UNIT *uptr) – Detach tape unit uptr from its current file. 
 
t_stat sim_tape_set_fmt (UNIT *uptr, int32 val, char *cptr, void *desc) – Set the tape format for unit 
uptr to the format specified by string cptr. 
 
t_stat sim_tape_show_fmt (FILE *st, UNIT *uptr, int32 val, void *desc) – Write the tape format for 
unit uptr to the file specified by descriptor st. 
 
t_stat sim_tape_set_capac (UNIT *uptr, int32 val, char *cptr, void *desc) – Set the tape capacity 
for unit uptr to the capacity, in MB, specified by string cptr. 
 
t_stat sim_tape_show_capac (FILE *st, UNIT *uptr, int32 val, void *desc) – Write the capacity for 
unit uptr to the file specified by descriptor st. 
 
t_stat sim_tape_rdrecf (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max) – Forward read the next 
record on unit uptr into buffer buf of size max.  Return the actual record size in tbc. 
 
t_stat sim_tape_rdrecr (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max) – Reverse read the next 
record on unit uptr into buffer buf of size max.  Return the actual record size in tbc.  Note that the 
record is returned in forward order, that is, byte 0 of the record is stored in buf[0], and so on. 



 
t_stat sim_tape_wrrecf (UNIT *uptr, uint8 buf, t_mtrlnt tbc) – Write buffer uptr of size tbc as the 
next record on unit uptr. 
 
t_stat sim_tape sprecf (UNIT *uptr, t_mtrlnt *tbc) – Space unit uptr forward one record.  The size of 
the record is returned in tbc. 
 
t_stat sim_tape_sprecr (UNIT *uptr, t_mtrlnt *tbc) – Space unit uptr reverse one record.  The size 
of the record is returned in tbc. 
 
t_stat sim_tape_wrtmk (UNIT *uptr) – Write a tape mark on unit uptr. 
 
t_stat sim_tape_wreom (UNIT *uptr) – Write an end-of-medium marker on unit uptr (this effectively 
erases the rest of the tape). 
 
t_stat sim_tape_wrgap (UNIT *uptr, uint32 gaplen, uint32 bpi) – Write an erase gap on unit uptr of 
gaplen tenths of an inch in length at a tape density of bpi bits per inch. 
 
t_stat sim_tape_rewind (UNIT *uptr) – Rewind unit uptr.  This operation succeeds whether or not 
the unit is attached to a file. 
 
t_stat sim_tape_reset (UNIT *uptr) – Reset unit uptr.  This routine should be called when a tape 
unit is reset. 
 
t_bool sim_tape_bot (UNIT *uptr) – Return TRUE if unit uptr is at beginning-of-tape. 
 
t_bool sim_tape wrp (UNIT *uptr) – Return TRUE if unit uptr is write-protected. 
 
t_bool sim_tape_eot (UNIT *uptr) – Return TRUE if unit uptr has exceed the capacity specified of 
the specified unit (kept in uptr->capac). 

 
Sim_tape_attach, sim_tape_detach, sim_tape_set_fmt, sim_tape_show_fmt, sim_tape_set_capac, 
and sim_tape_show_capac return standard SCP status codes; the other magtape library routines return 
return private codes for success and failure.  The currently defined magtape status codes are: 
 
 MTSE_OK  operation successful 
 MTSE_UNATT  unit is not attached to a file 
 MTSE_FMT  unit specifies an unsupported tape file format 
 MTSE_IOERR  host operating system I/O error during operation 
 MTSE_INVRL  invalid record length (exceeds maximum allowed) 
 MTSE_RECE  record header contains error flag 
 MTSE_TMK  tape mark encountered 
 MTSE_BOT  beginning of tape encountered during reverse operation 
 MTSE_EOM  end of medium encountered 
 MTSE_WRP  write protected unit during write operation 
 
Sim_tape_set_fmt, sim_tape_show_fmt, sim_tape_set_capac, and sim_tape_show_capac should be 
referenced by an entry in the tape device’s modifier list, as follows: 
 
 MTAB tape_mod[] = { 

{ MTAB_XTD|MTAB_VDV, 0, “FORMAT”, “FORMAT”, 

      &sim_tape_set_fmt, &sim_tape_show_fmt, NULL }, 

{ MTAB_XTD|MTAB_VUN, 0, “CAPACITY”, “CAPACITY”, 

  &sim_tape_set_capac, &sim_tape_show_capac, NULL }, … 

}; 



6.4 Breakpoint Support 

 
SCP provides underlying mechanisms to track multiple breakpoints of different types.  Most VM’s 
implement at least instruction execution breakpoints (type E); but a VM might also allow for break on read 
(type R), write (type W), and so on.  Up to 26 different breakpoint types, identified by the letters A through Z, 
are supported. 
 
The VM interface to the breakpoint package consists of three variables and one subroutine: 
 

sim_brk_types – initialized by the VM (usually in the CPU reset routine) to a mask of all supported 
breakpoints. 
 

 sim_brk_dflt – initialized by the VM to the mask for the default breakpoint type. 
 

sim_brk_summ – maintained by SCP, providing a bit mask summary of whether any breakpoints 
of a particular type have been defined. 

 
If the VM only implements one type of breakpoint, then sim_brk_summ is non-zero if any breakpoints are 
set. 
 
To test whether a breakpoint of particular type is set for an address, the VM calls 
 

uint32l sim_brk_test (t_addr addr, int32 typ) – test to see if a breakpoint of type typ is set for 
location addr; returns 0 if no, and a bit mask of all breakpoints that match typ if yes 

 
Because sim_brk_test can be a lengthy procedure, it is usually prefaced with a test of sim_brk_summ: 
 
 if (sim_brk_summ && sim_brk_test (PC, SWMASK (‘E’))) { 

<execution break> } 

 
To accommodate more complex breakpoint schemes, SCP implements a concept of breakpoint spaces.  
Each breakpoint space is an orthogonal collection of breakpoints that are tracked independently.  For 
example, in a symmetric multiprocessing simulation, breakpoint spaces could be assigned to each CPU to 
distinguish E (execution) breakpoints for different processors.  SCP supports up to 64 breakpoint spaces; 
the space is specified by bits <31:26> of the typ argument to sim_brk_test.  By default, there is only one 
breakpoint space (space 0). 
 


