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The HP 2100 simulator for the 21xx and 1000 series of machines originally
modeled I/O interface communication with the CPU by dispatching I/O instructions
to the interfaces for action.  A revised model, based on dispatching I/O backplane
signals, has been implemented to solve several problems inherent in the original
design.

The HP I/O Hardware Structure
The structure of the I/O system is compatible across all HP 21xx/1000-M/E/F
systems.  The I/O backplane distributes a 16-bit data output path, a 16-bit data
input path, and control and timing signals to the interface cards.  All I/O card slots
are electrically interchangeable, and an interface derives its I/O address (select
code) from the slot into which it is installed.  Lower-numbered slots have interrupt
priority over higher-numbered ones.

An I/O timing cycle is divided into five periods, designated T2 through T6.  On the
early machines (2114-2116), these form a subset of, and are synchronous with,
the machine cycle that occupies T0-T7.  On the later microprogrammed machines
(2100 and 1000), each microcycle occupies one T-period; the micromachine runs
asynchronously with the I/O subsystem and synchronizes whenever an I/O micro-
order is executed.  Backplane signals are asserted during specific T-periods to
control the timing of the interfaces.

The basic device control structure of a typical HP interface consists of a control
and a flag flip-flop.  A programmed “set control” instruction asserts the STC signal
on the I/O backplane to set the control flip-flop on the interface and initiate
operation on the I/O device.  When an operation completes, the device sets the
flag flip-flop, which asserts the FLG signal.  The state of the flag can be tested
under program control.  A programmed “skip if flag set” or “skip if flag clear”
instruction asserts either the SFS or SFC signal to test whether the flag flip-flop is
set or clear, and the interface responds by asserting the SKF signal if the flag is in
the state indicated by the request.  This advances the CPU program counter,
causing the next instruction to be skipped to indicate that the programmed
condition was met.

Because device completion occurs asynchronously with I/O timing, a flag buffer
flip-flop is inserted before the flag flip-flop.  The flag buffer is set asynchronously
by the device, and then the flag is set during the appropriate CPU T-period by the
ENF signal.  If DMA is employed, the flag also requests a DMA cycle by asserting
SRQ.  If the device requires a per-operation start signal, then a command flip-flop
is added that is set by STC and cleared by device completion, although this flip-
flop is not involved in the backplane interface.



The combination of flag buffer, flag, and control enables the generation of the IRQ
(interrupt request) signal, presuming that no higher-priority device is interrupting.
Priority is established through the chain of PRH and PRL signals passing from
higher-priority interfaces to lower-priority interfaces; the chain is broken at the first
interface that asserts flag and control.  Interrupt acknowledgement asserts IAK,
which clears the flag buffer and leaves the flag and control set to continue to hold
off lower-priority devices until the interrupt service routine is complete.

Upon application of power to the CPU, the PON signal asserts to indicate that the
power supply voltages have stabilized.  Pressing the front-panel PRESET button
asserts the POPIO signal to reset all interfaces to known states in preparation for
running programs.  PRESET or a programmed ”clear control” instruction directed
to select code 0 asserts the CRS signal.  A typical interface might use PON to
enable output drivers to the device, POPIO to set the flag buffer and flag, and CRS
to clear the control flip-flop.  The combination of POPIO and CRS turns off the I/O
device and places the interface in an idle state.

An important consideration is that while the foregoing structure is common, it is
neither required nor universal.  An interface card is free to drive the backplane
signals in any manner that meets the I/O timing requirements.  Indeed, a few
interfaces depart from the standard implementation, either to improve I/O transfer
speed, or to meet a particular device control requirement.

The Original SIMH Implementation
At its origin in revision 2.5, the HP simulator embodied the typical interface
structure mentioned above.  The device reset function simulated power-on and
PRESET.  The DEVICE structure’s context value pointed to a device information
block (DIB) that contained the interface’s select code, the flag buffer, flag, control,
and command flip-flops, and a pointer to the interface simulator’s I/O instruction
handler.  The CPU simulator dispatched I/O instructions to the addressed device,
which altered its four flip-flop values accordingly.

The CPU simulator calculated DMA service requests by inspecting the flag values
of each interface.  Interrupt requests were calculated by ANDing the control, flag,
and flag buffer values from each interface, and the priority chain was determined
by ANDing the control and flag values.  During interrupt acknowledgement, the
CPU cleared the flag buffer value of the interrupting interface.

Because these calculations were done after each I/O operation, the values were
stored in bit vectors during simulation runs for speed.  However, to allow I/O
device select codes to be reassigned during simulation stops and to allow user
alteration of the flip-flop states, the values had to be stored in the DIBs.  To
accommodate both requirements, the values were copied between the DIBs and
the bit vectors each time simulated execution started and stopped.



Problems with the Implementation
This implementation worked well with the initial devices supplied with the HP
simulator.  As new devices were added, though, minor issues arose, due to
interfaces that did not follow the standard design.

For example, the control flip-flops on the 12606B Fixed-Head Disc Memory and
12610B Drum Memory interfaces that were added at version 2.9 are not tied into
the interrupt request logic, so setting control, flag, and flag buffer does not
generate an interrupt.  Because interrupt generation was calculated in the CPU
simulator, the interface simulator had to use the command flip-flop as the control
flip-flop to avoid generating interrupt requests inappropriately.

At version 3.2, CPU interrupt acknowledgement handling added a special case for
the 12581A and 12892B Memory Protect cards, as they clear both flag and flag
buffer in response to IAK.  Also at 3.2, the DMA service requests were separated
from the flags, and a new SRQ flip-flop was added to the DIBs, as the forthcoming
13037D Disc Controller simulator required separate control over these two values.
The new disc controller required notification of DMA transfer completion as well,
so the EDT (end of data transfer) backplane signal was dispatched to all interfaces
as a pseudo-I/O instruction.

At version 3.3, the –P option to the RESET command was added to allow device
reset functions to differentiate between power-up reset and ordinary reset.  The
12578A and 12895A DMA simulators had been clearing their control words as part
of the reset handler.  While this is correct for power-up, it is not correct for
PRESET, and this error manifested itself in RTE “slow bootstrap” failures.

At version 3.6, the CRS backplane signal was introduced as another pseudo-I/O
instruction.  The original implementation had sent a CLC instruction to each
interface in response to a CLC 0 execution.  Most interfaces respond to CRS and
CLC identically by clearing their control flip-flops.  However, not all do.  In
particular, the DMA card clears control in response to CLC but control and
command in response to CRS.  Clearing command stops an in-progress DMA
operation, which the original implementation failed to do.

Impasse
For version 3.8-1, a simulation of the 12936A and 12620A Privileged Interrupt
Fences was planned.  The PIFs are required to run the 12920A Terminal
Multiplexer under the DOS and RTE operating systems.  These systems run with
the interrupt system off when servicing any device, as they are not reentrant.  The
12920A is not buffered and will lose characters if it requests service while the
interrupt system is off.  The PIF is used in conjunction with special multiplexer
drivers to break the priority chain to all lower-priority devices, allowing the interrupt
system to remain on.  This allows the higher-priority multiplexer to be serviced
immediately, even during execution of a lower-priority device interrupt handler.



The 12936A has a unique behavior.  Setting either control or flag denies priority.
An interrupt occurs when flag and flag buffer are set and control is clear.  The flag
and flag buffer are cleared with the CLF instruction but set with the OTA/B
instruction.  This presented a problem because of the implicit assumptions of the
roles of control, flag, and flag buffer by the CPU simulator.  The only way that
those assumptions could be maintained was if the PIF simulator made these
translations between its internal flip-flop values and those maintained by the CPU:

CONTROL’ = CONTROL + FLAG * FLAGBUF

FLAG’ = 1
           _______
FLAGBUF’ = CONTROL * FLAG

The prime values would be presented to the CPU as the device flip-flop values,
while the original values would be presented to the user when the device state
was examined.  While this would coerce the CPU into generating the correct
interrupt request and priority chain behavior, interrupt acknowledgement would
clear the flag buffer, which would have to be reset to the indicated value for proper
operation.  Fortunately, the correct value could be restored during processing of
the STF instruction that would be sent to the card by the OS interrupt handler.
Unfortunately, the visible state presented to the user would be wrong between
these two events.  Equally unfortunately, user alteration of the visible values would
not be reflected in the translated values, because the CPU simulator simply copied
the DIB values to the bit vectors when simulated execution began.

The choices, then, were to accept that the state display would be wrong and to
disallow user changes to the flip-flop values, to add more special cases to the
CPU simulator to accommodate the atypical I/O behavior, or to remodel the I/O
simulation to allow interfaces to set the interrupt request and priority chain values
directly.  Given that the existing implementation embodied assumptions that were
not valid across all I/O interfaces, and given that the number of special cases was
increasing as the breadth of the HP device simulations increased, implementation
of an I/O model closer to the actual hardware was selected.

The Revised I/O Implementation
Whereas the old model was based on dispatching I/O instructions, the new model
is based on dispatching I/O backplane signals.  This allows the interface to take
whatever action it wants in response.  Instead of examining the control, flag, and
flag buffer flip-flop values, the CPU monitors these signals from the interface
simulators:

• PRL — priority low

• IRQ — interrupt request

• SRQ — service request

• SKF — skip on flag



PRL indicates that interrupt requests by lower-priority devices may be granted.
IRQ is set when an interface wants to interrupt the CPU.  SRQ is set to initiate a
DMA cycle.  SKF indicates that the programmed flag test is true and that the next
instruction should be skipped.

The interface simulators monitor reception of these signals and dispatch for action
accordingly:

• CLC — clear the control flip-flop

• STC — set the control flip-flop

• CLF — clear the flag flip-flop

• STF — set the flag flip-flop

• SFC — skip if the flag is clear

• SFS — skip if the flag is set

• IOI — I/O data input

• IOO — I/O data output

• ENF — enable flag

• EDT — end of data transfer

• SIR — set interrupt request

• IAK — interrupt acknowledge

• CRS — control reset

• POPIO — power-on preset to I/O

• PON — power on normal

The first eight signals are generated as a result of I/O instructions: the LIA/B and
MIA/B instructions generate IOI, the OTA/B instructions generate IOO, and the
remaining signals are generated by their namesake instructions.  ENF sets the flag
buffer and flag flip-flops.  EDT occurs at the end of a DMA transfer.  SIR asks the
interface to calculate and set its IRQ, PRL, and SRQ values.  The CPU sends IAK
to acknowledge an interrupt.  CRS, POPIO, and PON have been discussed
previously.

In addition to allowing more flexibility in interface design, the new implementation
has a few other advantages:

• a more consistent structure (only signals are handled, rather than a mixture
of signals and I/O instructions)

• elimination of special cases in the CPU simulator (each interface simulator
determines its own responses)

• elimination of the flip-flop values from the DIB and of copying values
between the DIB and the bit vectors (the CPU no longer examines flip-flop
values, and the bit vectors are set at simulated execution start by sending
SIR to all devices; no action is needed at execution stop)



• unified handling of flip-flop values (values exist in one place—as local
variables in the individual device simulators—rather than in the DIB and in
the bit vectors, reducing coding error potential)

• simplification of CPU interrupt determination (only the IRQ and PRL vectors
need to be examined)

• simpler handling of power-on and preset conditions (the device reset
function simply dispatches PON and/or POPIO and CRS to the signal
handler; no duplication of the initialization code)

For efficiency, the simulator does not implement signal generation exactly as in the
hardware.  In hardware, ENF and SIR are periodic, PON is asserted continuously,
and most signals are common to all interfaces and are qualified at the interface by
the select code.  Under simulation, signals are sent only when actions are to be
taken and then only to the specific target device.  For instance, PON is dispatched
only once during power-on reset, rather than being included in every I/O cycle.
SIR is dispatched only when flip-flops affecting the PRL, IRQ, or SRQ signals are
changed, rather than after every instruction.  ENF is sent only when the device
indicates that the flag buffer and flag are to be set, whereas in hardware, ENF
samples the flag buffer value at every T2 and sets the flag accordingly.

A Problem with the Revised Implementation
The initial revised I/O implementation modeled the parallel hardware backplane as
a sequence of individual signal dispatches, with each signal assigned an
enumeration value.  For programmed I/O instructions, the CPU simulator sent
single signals (e.g., STC) or a signal pair (e.g., STC + CLF) to the target device’s
signal handler.  The CLF enumeration value was chosen so that the handler could
separate the two signals from the sum.

While the CPU asserts at most two signals concurrently, DMA may assert up to
five.  A normal DMA I/O cycle consists of an IOI or IOO signal to transfer the data,
a CLF signal to clear the device flag to complete the prior I/O request, and an
optional STC signal to set the command flip-flop to begin the next request.  In
addition to these three signals, the last DMA cycle adds an EDT signal to indicate
the end of the DMA transfer and an optional CLC signal to idle the device.  These
signals are asserted in specific T-periods, as follows:

Input Output

Signal Normal Cycle Last Cycle Normal Cycle Last Cycle

IOI T2-T3 T2-T3

IOO T3-T4 T3-T4

STC * T3 T3 T3

CLC * T3-T4 T3-T4

CLF T3 T3 T3

EDT T4 T4

* if enabled by DMA Control Word 1



The initial implementation simulated a DMA cycle by dispatching the required
signals sequentially.  For example, a normal output cycle might send IOO and then
STC + CLF, and a final output cycle might send IOO, then STC + CLF, then CLC,
and then EDT.

A problem arose, however, when the forthcoming 12821A Disc Interface simulator
was being written.  This card takes certain actions when IOO and CLF or EDT are
asserted concurrently.  Because the DMA signals were dispatched sequentially,
detection would fail.

A review of the existing device simulators showed that two other cards also acted
upon multiple signals:

Interface Device Condition Action

12566B LPS STC + CLC Flag does not set in diagnostic mode

12821A DI CLC + CLF Master reset

12821A DI IOO + CLF Inhibit setting of end-of-transfer flag

12821A DI IOO + EDT Sets last-byte-out flag

12875A IPL IOO + EDT Delay DMA completion interrupt for TSB

The problem of sequential signal dispatching had been worked around in the LPS
and IPL simulators, but there was no easy solution to the DI issues, and it was
clear that a better I/O implementation was needed.

An Improved I/O Implementation
To address these issues, and to accommodate future I/O card simulators more
generally, a fully parallel I/O signal dispatch was implemented.  Each I/O cycle,
whether originated by the CPU or DMA, now results in a single call on the device’s
signal handler.  The signal parameter passed to the handler was replaced by a set
of signals, and the DMA cycle simulator was rewritten to supply all of the signals
required for a given I/O cycle concurrently.  The signal handler still processes the
signals sequentially, but a device simulator can now detect whether signals are
issued together.

The signal handler processes a “concurrent” set of signals sequentially in
ascending enumeration value order.  The order of execution generally follows the
order of T-period assertion.  One complication is that the assigned T-periods for
certain signals differ between CPU I/O and DMA I/O cycles:

Signal CPU I/O Cycle DMA I/O Cycle

IOI T4-T5 T2-T3

STC T4 T3

CLC T4 T3-T4

CLF T4 T3



The period shift allows sufficient time for SRQ assertion to steal consecutive I/O
cycles from the CPU.  This is not germane to simulation, so a single signal
processing order is used for both CPU and DMA cycles.

Multiple-Device Signal Handlers
SIMH device simulators are usually written to handle a single instance of an I/O
card or card set.  There is no inherent provision for multiple copies of a given card,
although cards are generally configurable for the maximum number of connected
devices allowed by the hardware.  For example, a disc controller card simulator
may allow connection of up to eight disc drives, but a second controller card
simulator with its complement of drives is not supported, except by duplicating the
simulation code and assigning different device and function names.

In general, there is a one-to-one correspondence between a card and a DEVICE
structure.  A good example is the common two-card disc interface, such as the
13210A Disc Controller supporting one to four 7900 disc drives.  The DP device
simulator defines separate DEVICEs (DPD and DPC) for the data and command
cards, as well as separate I/O signal handlers.  This is optimal, as the cards are of
different designs and respond differently to I/O signals.

In some cases, though, a peripheral may use two cards with identical or nearly
identical behaviors.  In this case, duplicating the I/O signal handler functions is
unnecessary, more difficult to maintain, and may result in significant code bloat if
the card operation is complex.

Current examples of this are the DMA devices and the 12875A Interprocessor Link
device.  DMA consists of two channels that are identical except for priority.  The
IPL device consists of two identical 12566A Microcircuit Interface cards—one used
as an input device, and the other used as an output device.  In each case, a
common signal handler (or handlers, in the case of DMA, which has primary and
secondary select codes for each channel) is employed, and the cards’ state
variables, such as control and flag flip-flops, are kept in arrays indexed by a zero-
based card number.  For DMA, the channel number is derived from the last bit of

the select code addressed (2 or 6 → 0, 3 or 7 → 1).  For the IPL, the card number

is derived from an explicit select code comparison (input select code → 0, output

select code → 1).  In addition, the IPL signal handler needs the device and unit
pointers associated with the card to access the flip-flop and buffer variables.
Similarly, a common unit service routine is used for both cards, which needs the
card number and the debug flags (via the device pointer) for the indicated card.

The forthcoming 12821A Disc Interface card is used to interface several device
classes to the HP 1000.  This card supports the HP 7906/20/25 ICD (Amigo) disc
drives, the CS/80 family of disc drives, and the HP 7974/78 Amigo reel-to-reel tape
drives.  Under simulation, each class consists of a device and several units.
Because the card is complex, a common signal handler for all three interfaces is
desirable to avoid duplication of code.



To accommodate this, a slightly revised peripheral model is needed.  The current
one-to-one mapping of cards to DEVICEs to signal handlers is extended to provide
a many-to-one map of cards to a common signal handler by including an explicit
card number in the DIB.  The one-to-one map of cards to DEVICEs remains.

I/O Device Simulator Details
The new I/O implementation requires changes in the CPU simulator and in each
device simulator.

The CPU maintains the PRL, IRQ, and SRQ values for all devices in global bit
vectors.  Each vector requires a two-element array of unsigned 32-bit integers:

uint32 dev_prl [2] = { ~0, ~0 };
uint32 dev_irq [2] = {  0,  0 };
uint32 dev_srq [2] = {  0,  0 };

Element 0 holds the bits for devices with select codes 0-31 (0-37 octal), and
element 1 holds the bits for devices with select codes 32-63 (40-77 octal).  Within
each element, the LSB corresponds to the lowest-numbered device.  The initial
values indicate that all devices are granting priority to lower-priority devices, and
no device is requesting an interrupt or DMA service,

A device requests an interrupt by setting its bit in the IRQ vector and clearing its bit
in the PRL vector.  The lowest-numbered (highest-priority) request for which an
unbroken priority chain exists (that is, all bits below its location are set) is granted.
An IAK signal is sent to the device, which must clear its IRQ bit.  This removes the
interrupt source but maintains a hold-off of lower-priority requests.

When the CPU is called via sim_instr to begin executing instructions, it first resets
each vector to its initial value.  It then sends an SIR signal to every enabled
device.  Each device calculates the values of its IRQ, PRL, and SRQ responses
and sets them into the vectors.

A simulator for a given device defines a DIB structure and places a pointer to it in
the ctxt field of the associated DEVICE structure.  The DIB contains a pointer to
the I/O signal handler, the device select code, and a card index associated with
the device.  For signal handlers that serve only one device, the card index value is
set to 0.  If several devices are served, the card index values of the corresponding
DIBs are set to 0, 1, 2, etc.

A simulator for device dev must declare the handler as:

IOHANDLER dev_io;

...and then define it as:

uint32 dev_io (DIB *dibptr, IOCYCLE signal_set, uint32 stat_data)



The CPU simulator calls the signal handler and passes a pointer to the device’s
DIB, a set of I/O signals, and a combined status and data value.  The handler
returns a combined status and data value representing the result of the operation.

The state variables that represent the standard control, flag, and flag buffer flip-
flops used by the signal handler should be declared in a structure:

struct {
FLIP_FLOP control;
FLIP_FLOP flag;
FLIP_FLOP flagbuf;
} dev;

...and assigned values using the enumeration constants CLEAR and SET.  If a
signal handler is to serve multiple cards, an array of structures should be used:

struct {
FLIP_FLOP control;
FLIP_FLOP flag;
FLIP_FLOP flagbuf;
} dev [2];

...and any additional per-card state variables should be declared in the structure
array as well.  Additional device flip-flops, e.g., command or srq, may be declared
either as scalars or as structure members, as desired.

The following signal macros are provided in hp2100_defs.h to aid implementation:

setSKF(B)   — set SKF to boolean value B
setPRL(S,B) — set PRL for select code S to boolean value B
setIRQ(S,B) — set IRQ for select code S to boolean value B
setSRQ(S,B) — set SRQ for select code S to boolean value B

setstdSKF(N) — set SKF from fields in structure N
setstdPRL(N) — set PRL from fields in structure N
setstdIRQ(N) — set IRQ from fields in structure N
setstdSRQ(N) — set SRQ from fields in structure N

PRL(S) — return boolean PRL state for select code S
IRQ(S) — return boolean IRQ state for select code S
SRQ(S) — return boolean SRQ state for select code S

The setstdNNN macros use the standard logic to set the indicated signal values.
That is:

                         ____
SKF = SFS * FLAG + SFC * FLAG
      ______________
PRL = CONTROL * FLAG

IRQ = CONTROL * FLAG * FLAGBUF

SRQ = FLAG



For example:

setstdSRQ (dev);

...sets the SRQ vector bit for the select code given by dibptr→select_code to the
value of variable dev.flag.  The macros assume that the indicated structure
contains fields named control, flag, and flagbuf.

If the signal handler serves multiple cards, then the structure name should be an
array reference:

setstdSRQ (dev [card]);

...where card is the current card number (identified by dibptr→card_index).  This
would set the SRQ vector bit to the value of dev [card].flag.

If the standard logic is not applicable, a simulator may use the setNNN macros to
set the indicated signals explicitly.

The IOHANDLER function dispatches the signal set as follows:

IOSIGNAL signal;
IOCYCLE  working_set = IOADDSIR (signal_set);

while (working_set) {
signal = IONEXT (working_set);

switch (signal) {
case ioCLF:

...
break;

case ioSTF:
...
break;

[ additional signal handlers... ]

default:
...
break;

)

working_set = working_set & ~signal;
}

return stat_data;

The IOADDSIR macro adds an ioSIR signal to the signal set if it contains any
signal that potentially affects interrupt or DMA requests.  If such a signal is
present, SIR processing is added to update the PRL, IRQ, and SRQ signals.  The
IONEXT macro isolates the next signal in the execution order to be processed.



After that signal is processed, it is removed from the working set, and signal
dispatching continues until the set is exhausted.  The original signal set remains
available to enable detection of concurrent signal assertions, if needed.

For example, executing an STC 10B,C instruction calls the handler with a
signal_set value of ioSTC | ioCLF.  The IOADDSIR macro adds an ioSIR signal to
the working set, as both STC and CLF affect interrupt requests.  The IONEXT
macro extracts in turn the ioSTC, ioCLF, and ioSIR signals.  Finally, a combined
status and data value is returned to the caller.

A simulator for an interface card with the standard flip-flop logic and I/O buffers

employs the following common signal handlers within the switch statement.  For
the flag logic:

case ioCLF:
dev.flag = dev.flagbuf = CLEAR;
break;

case ioSTF:
case ioENF:

dev.flag = dev.flagbuf = SET;
break;

case ioSFC:
setstdSKF (dev);
break;

case ioSFS:
setstdSKF (dev);
break;

Interface responses to the STF and ENF signals are usually identical, and
therefore the ioSTF handler may simply fall into the ioENF handler.  If the actions
are different, however, then ioSTF must be given its own handler.

The CPU implements the SKF signal as the data value returned from the signal
handler when it is called to process the SFS and SFC signals.  The setstdSKF
macro sets the stat_data value to ioSKF if the flag condition is true or to ioNONE if
the flag condition is false.  Although the standard responses to ioSFC and ioSFS
are the same, separating the cases improves the optimization of the SKF value
calculation.

For input and output:

case ioIOI:
stat_data = IORETURN (status, dev_ibuf);
break;

case ioIOO:
dev_obuf = IODATA (stat_data);
break;



The following macros in hp2100_defs.h assist in data handling:

IORETURN(E,D) — form return value from status E and data D
IODATA(C)     — extract data value from combined value C
IOSTATUS(C)   — extract status value from combined value C

For input, the handler returns a combined status and data value that is formed by
the IORETURN macro.  For output, the handler is called with a status of
SCPE_OK combined with the value to be written.  The IODATA macro isolates the
data value.

For the control logic:

case ioPON:
...
break;

case ioPOPIO:
dev.flag = dev.flagbuf = SET;
break;

case ioCRS:
case ioCLC:

dev.control = CLEAR;
break;

case ioSTC:
dev.control = SET;
break;

Application of main power generates the hardware signals PON, POPIO, and
CRS.  Most cards do not process PON, so the corresponding handler is usually
omitted.  POPIO and CRS are also generated for PRESET; CLC 0 generates CRS
only.  If the CRS action is the same as the CLC action, the ioCRS handler may
simply fall into the ioCLC handler, as in the example above.  Otherwise, ioCRS
must be given its own handler.

For the interrupt logic:

case ioSIR:
setstdPRL (dev);
setstdIRQ (dev);
setstdSRQ (dev);
break;

case ioIAK:
dev.flagbuf = CLEAR;
break;

The CPU sends the IAK signal when the device’s interrupt request is granted.

Finally, there should be a default handler for all signals that are not used by the
simulator (e.g., PON or EDT):



default:
break;

The return value from the signal handler contains two parts: a status code and a
data value.  The returned status normally is SCPE_OK, and this status is supplied
in the stat_data parameter when the handler is called.  The parameter value may
be returned unmodified by the handler if desired.  If an error status return is
desired, the IORETURN macro should be used to form the value.  Returning a
status code other than SCPE_OK will cause a simulation stop.

The returned data value is significant only for the IOI signal, where the value will
be stored in a register or memory, and for the SFS and SFC signals, where the
value is the signal asserted in response (ioSKF or ioNONE).  For all other signals,
the returned data value is ignored.

The device reset function is called to simulate a power-on condition or a front-
panel PRESET operation.  The two states are differentiated by the ”P” value of the
sim_switches global variable: a power-on reset is invoked with the RESET -P

command, whereas PRESET is invoked with RESET.

If the interface responds to  PON, the device reset function is implemented as
follows:

t_stat dev_reset (DEVICE *dptr)
{
if (sim_switches & SWMASK ('P')) { /* PON reset? */

IOPOWERON (&dev_dib);
... /* power-on simulator-specific init */
}

else /* PRESET device */
IOPRESET (&dev_dib);

... /* general simulator-specific init */

return SCPE_OK;
}

A RESET -P invocation uses the IOPOWERON macro in hp2100_defs.h to send
ioPON, ioPOPIO, and ioCRS directly to the signal handler.  This may be followed

by any power-on actions specific to simulation.  A RESET invocation uses the
IOPRESET macro to send ioPOPIO and ioCRS directly to the handler.  Finally,
any required simulator-specific operations, e.g., canceling in-progress simulation
events, are performed.

If the interface ignores PON, then the if statement above becomes:

if (sim_switches & SWMASK ('P')) { /* power-on init? */
... /* power-on simulator specific init */
}

IOPRESET (&dev_dib); /* PRESET device */



If no actions specific to power-on reset are needed, then the entire if statement
may be omitted.

The PON and POPIO signals cannot be generated programmatically, so the
division of the initialization effort between the signal handler and the device reset
function is arbitrary.  However, the convention embodied in the current devices is
to place actions implemented in the hardware (e.g., clearing flip-flops) in the signal
handler and actions present only in simulation (e.g., canceling simulation events)
in the reset function.  The CPU simulator’s signal handler and reset function (cpuio
and cpu_reset, respectively) provide an illustration of this separation.

A device simulator generally sets the flag buffer and flag in response to operation
completion, typically in the device’s unit service routine.  This may be done by:

dev_io (&dev_dib, ioENF, 0); /* send ENF signal */

If special handling is required, e.g., because SRQ is separated from FLG on the
interface, then ENF may be used to set the flag as above, and SRQ may be set
explicitly:

dev.srq = SET; /* set SRQ flip-flop */
dev_io (&dev_dib, ioSIR, 0); /* send SIR signal */

SIR must be dispatched if any of the flip-flops that affect the generation of
interrupts or DMA requests are changed.  For a standard interface where SRQ
follows FLG, these would be the control, flag buffer, or flag flip-flops.  If SRQ is
independent of FLG, then SIR is required after changing the SRQ flip-flop as well.

One additional macro is provided in hp2100_defs.h:

IOERROR(B,E) — if boolean value B is true, return status E

This is employed in the unit service routine to return an error status (unit not
attached, unit offline, etc.) when the device simulator is set to stop execution on an
I/O error.

Summary
The original I/O simulation structure was based on devices handling I/O
instructions from the execution stream.  This was a good match to the typical HP
interface card, as embodied in the set of devices provided with the release of the
HP simulator.  However, as more complex and higher-performance interfaces
were added, special cases had to be included to allow for atypical behavior.
Eventually, reimplementation based on a model of I/O backplane signals became
attractive to alleviate restrictions of the original design.  This new model also
removed the special cases and allowed for easier future expansion of the
simulated device repertoire.
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