
Architectural Evolution in DEC’s 18b Computers 
Bob Supnik, revised 08-Oct-2006 
 

Abstract 
 
DEC built five 18b computer systems: the PDP-1, PDP-4, PDP-7, PDP-9, and PDP-15.  This 
paper documents the architectural changes that occurred over the lifetime of the 18b systems and 
analyses the benefits and tradeoffs of the changes made. 
 

Introduction 
 
From 1961 to 1975, Digital Equipment Corporation (DEC) built five 18b computer systems: the 
PDP-1, PDP-4, PDP-7, PDP-9, and PDP-15 (see table below).  Each system differed from its 
predecessors, sometimes in major ways representing significant architectural breaks, and 
sometimes in minor ways representing new features or incompatibilities.  The architectural 
evolution of these systems demonstrates how DEC’s ideas about architectural versus 
implementation complexity, I/O structures, and system features evolved over the period of a 
decade. 
 
 PDP-1 PDP-4 PDP-7 PDP-9 PDP-15 
First ship Nov 1960 Jul 1962 Dec 1964 Aug 1966 May 1970 
Number built 50 45 120 445 790 
Memory cycle 5usec 8usec 1.75usec 1usec 0.8usec 
Base price $120K $65.5K $45K $25K $19.8K 
 
Reproduced from Computer Engineering: A DEC View Of Hardware Systems Design 
 

The PDP-1 
 
The PDP-1 was DEC’s first computer system.  Introduced in 1960, the PDP-1 reflected ideas from 
Lincoln Labs’ TX-2 project as well as the existing capabilities of DEC’s module logic family.  It was 
implemented in 5Mhz logic. 

Arithmetic System 

 
The PDP-1 was a 1’s complement arithmetic machine.  In 1’s complement arithmetic, negative 
numbers are represented by the bit-for-bit inversion of their positive counterparts: 
 
 +1 =  000001 
 -1 =  777776 
 
 +4 =  000004 
 -4 =  777773 

 
One’s complement arithmetic has two problems.  First, zero has two representations, +0 and -0: 
 
 +0 =  000000 
 -0 =  777777 

 



Second, addition of negative numbers requires an “end around carry” from the high order position 
to the low order position: 
 
 -1 =    777776 
 -1 =    777776 
 --   --------- 
 sum   1 777774 
    |----->1 
 -2 =    777775 

 
The PDP-1 tried to solve the zero-representation problem by guaranteeing that arithmetic 
operations never produced –0.  To do this, it performed an extra logic step during addition, 
checking the result for –0 and converting it to 0.  However, the PDP-1 performed subtraction by 
complementing the AC, adding the memory operand, and recomplementing the result.  The 
recomplementation step occurred in the same time slot as the –0 detect during add.  As a result, 
subtract had one special case: -0 – (+0) yielded –0. 

Character Sets 

 
The PDP-1’s first console typewriter was a Friden Flexowriter.  (Production units used a Soroban 
typewriter, which was a modified IBM Model B.)   The console’s six bit character set was called 
FIODEC, which stood for Friden Input Output for Digital Equipment Corporation.  This code 
included both upper and lower case letters, using shift characters to move between sets.  The 
console echoed characters locally, a feature that would be retained in all later 18b systems (and 
no other DEC systems). 
 
The PDP-1’s line printer used Hollerith (BCD) coding.  FIODEC and Hollerith had common 
encodings for letters but not for symbols, requiring character conversions throughout the software. 

Instruction Set Architecture 

 
The PDP-1’s visible state included the following registers and capabilities: 
 
 AC<0:17>  accumulator 
 IO<0:17>  I/O register 
 OV   overflow flag 
 PC<0:11>  program counter 
 EPC<0:3>  extended program counter (if memory > 4K) 
 EXTM   extend mode 
 PF<1:6>  program flags 
 SS<1:6>  sense switches 
 TW<0:17>  test word (front panel switches) 
 IOSTA<0:17>  I/O status 
 
In addition, the PDP-1 had non-observable state in the I/O system for I/O timing (see below). 
 
The PDP-1 had 32 opcodes and implemented six instruction formats: memory reference, skip, 
shift, operate, I/O, and load immediate.  The memory reference format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
|      op      |in|              address              | mem reference 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
 
<0:4> <5> mnemonic action 
 
 00 



 02  AND  AC = AC & M[MA] 
 04  IOR  AC = AC | M[MA] 
 06  XOR  AC = AC ^ M[MA] 
 10   XCT  M[MA] is executed as an instruction 
 12 
 14 
 16  0 CAL  M[100] = AC, AC = PC, PC = 101 
 16    1 JDA  M[MA] = AC, AC = PC, PC = MA + 1 
 20  LAC  AC = M[MA] 
 22  LIO  IO = M[MA] 
 24   DAC  M[MA] = AC 
 26  DAP  M[MA]<6:17> = AC<6:17> 
 30   DIP  M[MA]<0:5> = AC<0:5> 
 32  DIO  M[MA] = IO 
 34   DZM  M[MA] = 0 
 36 
 40  ADD  AC = AC + M[MA] 
 42  SUB  AC = AC - M[MA] 
 44   IDX  AC = M[MA] = M[MA] + 1 
 46  ISP  AC = M[MA] = M[MA] + 1, skip if AC >= 0 
 50  SAD  skip if AC != M[MA] 
 52  SAS  skip if AC == M[MA] 
 54  MUL  AC'IO = AC * M[MA] 
 56  DIV  AC, IO = AC'IO / M[MA] 
 60   JMP  PC = MA 
 62  JSP  AC = PC, PC = MA 

 
The skip format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  0  1  0|  |  |  |  |  |  |  |  |  |  |  |  |  | skip 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

     |     |  |  |  |  | \______/ \______/ 
       |     |  |  |  |  |     |        | 
       |     |  |  |  |  |     |        +---- program flags 
       |     |  |  |  |  |     +------------- sense switches 
       |     |  |  |  |  +------------------- AC == 0 
       |     |  |  |  +---------------------- AC >= 0 
       |     |  |  +------------------------- AC < 0 
       |     |  +---------------------------- OV == 0 
       |     +------------------------------- IO >= 0 
       +------------------------------------- invert skip 

 
The shift format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  0  1  1| subopcode |      encoded count       | shift 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
                 |  | \___/ 
                 |  |   | 
                 |  |   +------------------------------ 1=AC,2=IO, 
                 |  |                                   3=both 
                 |  +---------------------------------- rotate/shift 
                 +------------------------------------- right/left 
 

The shift count was the number of 1’s in bits <9:17>. 
 
The load immediate format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 



| 1  1  1  0  0| S|           immediate               | LAW 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
                 | 
            +----- if S = 0, AC = IR<6:17> 
         else AC = ~IR<6:17> 

 
The I/O transfer format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  0  1| W| C|   subopcode  |      device     | I/O transfer 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
 
The operate format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  1  1|  |  |  |  |  |  |  |  |  |  |  |  |  | operate 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
               |  |  |  |  |  |        | \______/ 
               |  |  |  |  |  |        |     | 
               |  |  |  |  |  |        |     +---- PF select 
               |  |  |  |  |  |        +---------- clear/set PF 
               |  |  |  |  |  +------------------- or PC 
               |  |  |  |  +---------------------- clear AC 
               |  |  |  +------------------------- halt 
               |  |  +---------------------------- CMA 
               |  +------------------------------- or TW 
               +---------------------------------- clear IO 

 
There are significant discrepancies in the PDP-1 documentation about memory extension options.  
The original 1960 User Handbook (F15) didn’t mention any.  The 1961 Handbook (F15B) 
described two, the Type 13 and Type 14.  The 1962 and 1963 Handbooks (F15C and F15D, 
respectively), and the Maintenance Manual, described only one, the Type 15.  This option 
expanded memory to 64K words.  The address space was divided into sixteen 4K word fields.  An 
instruction could directly address, via its 12b address, the entire current field.  If extend mode was 
off, indirect addresses accessed the current field, and multi-level indirect addressing was enabled; 
if on, indirect addresses could access all 64K, and indirect addressing was single level.  The state 
of extend mode was captured by subroutine calls and sequence breaks, and extend mode was 
cleared at the start of a sequence break. 
 
BBN built a custom memory manager for its PDP-1 timesharing system.  There are also scattered 
referenced to a PDP-1D, built by DEC itself for timesharing.  Gordon Bell believes two were built, 
one for BBN and one for Stanford. 

I/O System 

 
The PDP-1’s I/O system offered multiple modes for I/O instructions, including synchronous 
waiting, timed waiting, asynchronous, and sequence break (interrupt) driven.  This multiplicity 
made the I/O system complex and redundant. 
 
I/O operations were initiated by a single instruction, Input/Output Transfer (IOT).   Bits<12:17> 
addressed a particular device; bits <7:11> provided additional control or opcode bits.  Bits<5:6> 
specified the mode for the I/O transfer: 
 
<5:6>  mode 
 
  00  asynchronous - no wait, no device completion pulse 
  01  timed wait - no wait, device completion pulse 



  10  synchronous - wait for completion 
  11  not used - wait, no completion pulse (hung the system if <12:17> != 0) 
 
In synchronous wait, the CPU effectively stalled until the I/O operation completed.  If synchronous 
wait was not specified, three different mechanisms were available for I/O completion: 
 
• Timed wait.  Execution proceeded.  Eventually, the CPU issued a wait instruction.  The CPU 

then stalled until the I/O operation completed and the device issued a completion pulse. 
• Polled wait.  Execution proceeded.  The CPU monitored the device’s flag in the I/O status 

word until the I/O operation completed. 
• Sequence break driven.  Execution proceeded.  When the I/O operation completed, a 

sequence break (interrupt) occurred, signaling I/O done. 
 
The IOT wait mechanism was implemented with four control flip-flops: 
 
• IOC (I/O command): when asserted, allowed IOT pulses to be sent to a device; when clear, 

IOT was effectively a NOP. 
• IOH (I/O halt): when asserted, stalled the CPU by re-executing the current instruction. 
• IHS (I/O halt save): saved the state of IOH on a no-wait IOT. 
• IOS (I/O synchronization): when asserted, terminated I/O wait state. 
 
An IOT that specified wait would set IOH, execute the IOT, and, if IOS was clear, clear IOC and 
decrement the PC.  Thus, subsequent re-executions of the IOT would do nothing, because IOC 
was not asserted.  When the I/O operation completed, the device would set IOS.   This caused 
the IOT to set IOC and not decrement the PC, allowing execution to proceed. 
 
An IOT that did not specify wait copied IOS to IHS, set IOC, executed the IOT, and copied IHS 
back to IOH.  If IOH was set as a result of the copy, IOC was cleared.  This implemented a one-
level memory for wait state.  If an IOT with wait was interrupted, the interrupt routine could 
execute no-wait IOT’s while preserving wait state for the main line program. 
 
The sequence break mechanism recorded break requests in a single pulse sensitive flip flop.  
Thus, like the PDP-11 but unlike the other 18b systems, break requests were independent of the 
device completion flags.  If the sequence break system was enabled, and a break request 
occurred, the CPU automatically stored the state of the machine and initiated a new program by: 
 
• storing AC in location 0 
• storing EPC and PC, plus overflow and extend mode, in location 1 
• storing IO in location 2 
• clearing overflow and extend mode 
• setting the PC to 3 
• setting the sequence break in progress flag 
 
The sequence break in progress flag blocked further breaks. 
 
The end of the break was recognized when the CPU decoded a JMP I 1 (from field 0 in a multi-
field system) while the sequence break system was enabled.  At that point, the CPU automatically 
restored the state of the system by: 
 
• temporarily turning on extend mode 
• obtaining the new PC from location 1 
• restoring the original values of overflow and extend mode 
• clearing sequence-break-in-progress 
 



A CPU option expanded the standard sequence break system from one channel to sixteen.  Each 
channel was a unique priority level and had a dedicated four location memory block (0 – 3 for the 
highest priority channel, 4 – 7 for the next, etc.).  The first three locations of the block were used 
to store AC, PC, and IO when a break occurred; the PC was then set to point to the fourth 
location.   

Software 

 
The PDP-1 featured some notable software offerings, including an interactive editor (called 
Expensive Typewriter), a macro assembler (Macro), a symbolic debugger (DDT), a Lisp 
interpreter, and the world’s first computer video game, Spacewar.  Sources to Lisp and Spacewar 
are available on the Internet, and source listings for Macro and DDT are in the Computer History 
Museum collections. 
 

The PDP-4 
 
The PDP-4 was intended to be substantially lower cost than the PDP-1.  Part of the cost reduction 
was achieved by using slower and less expensive logic (500Khz instead of 5Mhz), but part was 
achieved by simplifying the system and reducing the number of gates.  Thus, the PDP-4 (and its 
closely related successors, the PDP-7 and PDP-9) simplified the architecture of the PDP-1 along 
multiple dimensions. 

Arithmetic Systems 

 
The PDP-4 introduced two’s complement arithmetic in parallel with the PDP-1’s one’s 
complement arithmetic.  Two’s complement arithmetic eliminated the need for -0 detection and 
made implementation of multi-precision arithmetic much easier.  However, 1’s complement 
capability was not dropped; indeed, it remained the predominant arithmetic system, as reflected in 
architectural extensions such as the EAE.  Thus, the PDP-4 still needed end around carry 
propagation, as well as 1’s complement overflow detection.  The result was greater, rather than 
lesser complexity, in the hardware, and loss of valuable opcode space in the architecture.  Gordon 
Bell commented that the retention of 1’s complement arithmetic was, simply, “a mistake.”  By the 
PDP-5, it had vanished from DEC’s architectures. 

Character Sets 

 
The PDP-4’s console typewriter was an ASR-28 Teletype.  Its five bit character code was called 
Baudot.  It supported only upper case letters and required shift characters to get from letters to 
figures and back again.  The line printer was unchanged and continued to use Hollerith coding. 

Instruction Set Architecture 

 
The PDP-4 and its successors reduced the amount of visible state in the CPU.  Specifically, 
 
 register  PDP-1   PDP-4,-7,-9 
 
 AC  arithmetic register same, plus I/O register 
 IO  I/O register  removed (MQ with EAE option) 
 OV  overflow indicator replaced by Link register 
 PF  program flags  removed 
 SS  sense switches  removed 
 TW  test word  front panel switches 



 EXTM  extend mode  same 
 IOSTA  IO flags   same 
 
The register changes simplified the logic implementation.  The L was essentially the 19

th
 bit of the 

AC, rather than a special flag.  The AC no longer implemented -0 detection.  I/O now used the 
existing access paths to the AC rather than separate paths to an IO register.  The elimination of 
the program flags and the sense switches was pure gain. 
 
The PDP-4 halved the number of instructions, from 32 to 16, and reduced the number of 
instruction formats from 6 to 4.  The memory reference format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
|     op    |in|               address                | mem reference 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

 
The I/O transfer format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  0  0  0|      device     | sdv |cl|  pulse | I/O transfer 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

 
The operate format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  1  0|  |  |  |  |  |  |  |  |  |  |  |  |  | operate 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
            |  |  |  |  |  |  |  |  |  |  |  |  | 
            |  |  |  |  |  |  |  |  |  |  |  |  +- CMA (3) 
            |  |  |  |  |  |  |  |  |  |  |  +---- CML (3) 
            |  |  |  |  |  |  |  |  |  |  +------- OAS (3) 
            |  |  |  |  |  |  |  |  |  +---------- RAL (3) 
            |  |  |  |  |  |  |  |  +------------- RAR (3) 
            |  |  |  |  |  |  |  +---------------- HLT (4) 
            |  |  |  |  |  |  +------------------- SMA (1) 
            |  |  |  |  |  +---------------------- SZA (1) 
            |  |  |  |  +------------------------- SNL (1) 
            |  |  |  +---------------------------- inv skip (1) 
            |  |  +------------------------------- rotate two (2) 
            |  +---------------------------------- CLL (2) 
            +------------------------------------- CLA (2) 

 
The immediate format was: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  1  1|            immediate                 | LAW 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

 
The following table shows the reduction in instruction count between the PDP-1 and the PDP-4: 
 
 PDP-1 instruction  PDP-4 instruction 
 
 AND    AND 
 IOR    removed 
 XOR    XOR 
 LAC    LAC 



 DAC    DAC 
 DZM    DZM 
 DIP    removed 
 DAP    removed 
 LIO    removed 
 DIO    removed 
 ADD    ADD; L used in place of overflow 
 SUB    removed 
 MUL    (EAE option) 
 DIV    (EAE option) 
 not present   TAD (2’s complement add) 
 IDX    removed 
 ISP    ISZ 
 XCT    XCT 
 SAD    SAD 
 SAS    removed 
 CAL    CAL 
 JDA    JMS 
 JSP    removed 
 JMP    JMP 
 skips    OPR skips 
 operate    OPR operates 
 shifts    (EAE option) 
 LAW    LAW 
 IOT    IOT 
 
Beyond the reduction in instruction count, the PDP-4’s instruction set required less logic to 
implement. 
 
• Instructions were encoded to minimize logic.  For example, all instructions with IR<0:1> = 00 

(CAL, DAC, JMS, DZM) did not read a memory operand.  All instructions with IR<0:1> = 11 
(JMP, EAE, IOT, OPR/LAW) were single cycle. 

• ISZ (replacing IDX and ISP) did not modify the AC.  By using 2’s complement arithmetic, it did 
not need to detect -0. 

• JMS (replacing JDA and JSP) did not modify the AC.  This eliminated the transfer path from 
the PC to the AC.  JMS (and interrupts) saved PC and L, and in later systems, the memory 
extend and memory protection flags. 

• LAW did not mask or modify the address but instead copied the entire instruction to AC. 
• OPR no longer guaranteed conflict-free execution of any combination of bits. 
 
Finally, indirect addressing was simplified by the elimination of multi-level indirection. 
 
The PDP-4 replaced the PDP-1’s multiply, divide, and multi-bit shifts with an option, the Extended 
Arithmetic Element (EAE).  The EAE added a second 18b arithmetic register, the MQ, and a 
shift/multiply/divide instruction.  The EAE instruction was microprogrammed and could implement 
a wide variety of unsigned and signed (one’s complement) operations: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  0  1|  |  |  |  |  |  |  |  |  |  |  |  |  |  | EAE 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
    |  |  |  |  |  |  |  |  |  |  |  |  |  | 
    |  |  |  |  |  |  |  |  |  |  |  |  |  +- or SC (3) 
    |  |  |  |  |  |  |  |  |  |  |  |  +---- or MQ (3) 
    |  |  |  |  |  |  |  |  |  |  |  +------- compl MQ (3) 
    |  |  |  |  |  |  |  |  \______________/ 
    |  |  |  |  |  |  |  |         | 



    |  |  |  |  |  \_____/         +--------- shift count 
    |  |  |  |  |     | 
    |  |  |  |  |     +---------------------- EAE cmd (3) 
    |  |  |  |  +---------------------------- clear AC (2) 
    |  |  |  +------------------------------- or AC (2) 
    |  |  +---------------------------------- load sign (1) 
    |  +------------------------------------- clear MQ (1) 
    +---------------------------------------- load link (1) 
 

The EAE architecture remained unchanged in the PDP-7, PDP-9 and PDP-15. 
 
The PDP-4 included an extended addressing option (Type 16); two of the surviving PDP-4’s in the 
1972 census have more than 8KW of memory.  No documentation has yet been found on this 
option, but it’s reasonable to assume that it was the same as the PDP-7’s.  If that is true, the PDP-
4’s extended memory model was essentially the same as the PDP-1’s, with 13 direct address bits 
instead of 12.  Addressable memory was divided into four 32K word banks.  Direct addresses 
always referenced the current memory bank; indirect addresses accessed either the current 
memory bank or all of memory, depending on the extend mode flag.   As on the PDP-1, 
subroutine calls and interrupts saved the state of extend mode automatically. 
 
In all, the architectural tradeoffs in the PDP-4 substantially reduced control logic at the cost of 
complete software incompatibility with the PDP-1.  There were also a few oversights; in particular, 
the lack of a “complement and increment” operate (present in the PDP-5) made two’s 
complement subtract an instruction longer.  The PDP-15 finally corrected this oversight. 
 
The PDP-4 (and the PDP-5) introduced a new feature, the concept of “auto-index” memory 
locations, that is, locations which, when used as indirect addresses, incremented before use.  
This feature allowed efficient traversal of linear data structures and made the IDX and DAP 
instructions unnecessary. 

I/O System 

 
The I/O system was pruned even more dramatically than the CPU.  Synchronous waits and timed 
waits were dropped.  Instead, only two mechanisms were supported: polled waits and interrupts.  
Further, the two mechanisms were integrated by having the device flag for polling be the triggering 
mechanism for device interrupts.  Finally, polled waiting was implemented more efficiently by 
allowing devices to increment the PC (skip) in response to an IO instruction.  The PDP-5 also 
used this I/O paradigm, and it was retained throughout the life of the 12b and 18b families. 
 
In the PDP-4, an ideal I/O device had one flag representing the state of an I/O operation.  This 
flag was cleared when the device initiated I/O; it was set when the device completed I/O.  For 
example, in the paper tape reader, the reader flag was cleared by a request to read a character or 
by explicit command, and set when the character was in the I/O buffer. 
 
Interrupts (as sequence breaks were now called) were simplified, and control was made explicit 
rather than implicit. 
 
 Function  PDP-1    PDP-4 
 
 interrupt request request flip-flop   logical OR of device flags 
 interrupt block  request in progress flop  interrupts turned off 
 interrupt action  save AC   -- 
    save PC + flags   save PC + flags   
    save IO    -- 
    clear OV   -- 
    clear extend mode  clear extend mode 



    set break in progress  turn off interrupts 
    set PC = 3   set PC = 1 
 interrupt complete monitor for JMP I 1  turn on interrupts, 
        one cycle delay to allow 
        for JMP I 0 
 
The PDP-4 offered a multi-level interrupt option.  As in the PDP-1, each interrupt vectored to a 
unique memory block.  Unlike the PDP-1, the memory block was a single location, which was 
executed.  If the location contained a JMS, control transferred to an interrupt service routine.  If 
the location contained any other instruction, the instruction was executed, but control returned to 
the main line program. 

Software 

 
Because the PDP-4 was not compatible with the PDP-1, it required new software.  DEC provided 
an editor, an assembler, and, most notably, a Fortran II compiler, all paper-tape based.  While the 
Fortran compiler was a significant advance, the assembler was actually a step backward: the 
PDP-1’s assembler had supported macros, the PDP-4’s did not.  But it offered some consolation 
by being a one pass assembler, obviating the need to read the source paper tape twice.  The 
assembler assumed that unresolved references would in fact be resolved and punched 
unresolved binary code as it processed the source, with a resolution dictionary at the end of the 
output tape.  The resulting tape was then read, upside down and backward, by the loader, which 
used the resolution dictionary to “fix up” the broken references in the binary. 
 
The PDP-4’s programs later became the basis for the PDP-7’s software offerings, which accounts 
for lingering use of Baudot code on the PDP-7.  However, the presence of FIODEC on the PDP-4 
(and thus on the PDP-7) is a mystery, since the PDP-1 software base was not carried forward. 
 

Early Mass Storage 
 
The PDP-1 and PDP-4 started out as paper tape based systems.  The development software was 
paper tape based; magnetic tape, if used at all, was used strictly for data.  This situation was 
clearly unsatisfactory, and by 1963 DEC was experimenting with mass storage. 
 
The first mass storage products were based on Vermont Research Drums.  The Type 23 parallel 
and Type 24 serial drums offered 131,072 words of storage with rapid access.  But the drums 
were big (two six-foot cabinets for the Type 23, one for the Type 24), expensive, and inflexible: 
storage was tied to the computer.  This didn’t fit with the typical use of the 18b computers as 
“personal” or serially shared systems. 
 
To find a solution, DEC again turned to Lincoln Labs.  In 1962, Wes Clark had demonstrated the 
prototype of the LINC computer.  It featured LINCtape, a block-replaceable tape system with a 
simple, rugged transport and small, inexpensive tape reels.  LINCtape offered exactly the kind of 
“personal” storage needed to complement DEC’s computers.  With some changes in tape format, 
DEC offered “MicroTape” (later renamed DECtape) on the PDP-1 and PDP-4 in 1963.  The 
product also included a stand-alone program librarian, Microtrieve.  DECtape was to remain the 
dominant form of mass storage on DEC’s 12b and 18b systems into the early 1970’s, when it was 
supplanted by the RK05 (2315-style) cartridge disk drive. 
 

The PDP-7 
 



According to the history of the 18b series in Computer Architecture, the PDP-4 was not a success.  
The use of slower logic yielded a system that was 5/8 the performance of the PDP-1 at ½ the 
price.  What the market required was a system that was both higher performance and lower cost.  
That system was the PDP-7.  Implemented (primarily) in 10Mhz logic, its basic 1.75 usec cycle 
time was almost three times the speed of the PDP-1, at 1/3 the cost. 
 
The PDP-7’s basic architecture consisted of minor refinements of the PDP-4’s instruction set, 
accompanied by one interesting architectural extension: multi-user protection, the first in the 18b 
family. The PDP-7 also was the first 18b PDP to use ASCII coding. 

Arithmetic Systems and Character Sets 

 
The PDP-7’s arithmetic systems were identical to the PDP-4.  The console typewriter was an 
ASR-33 Teletype.  Its eight-bit character set was an early version of ASCII, with the high order bit 
always forced on.  The character set supported both upper and lower case letters, although the 
console only supported upper case.   The line printer’s SIXBIT character set was derived from 
ASCII by truncating codes 040 - 0137 to six bits.  The rapid evolution of character sets in the 18b 
family was embodied in the PDP-7’s DECtape-based operating system DECsys.  DECsys stored 
information in FIODEC, Baudot, and SIXBIT, depending on whether the underlying software was 
derived from the PDP-4 or newly written. 

Instruction Set Architecture and I/O System 

 
The PDP-7 used the same instruction set architecture as the PDP-4, including the EAE.  The 
extended memory model was the same as the PDP-4’s.  The PDP-7’s I/O architecture was 
identical to the PDP-4’s, and it used the same controllers for major I/O devices such as DECtape, 
magnetic tape, and the serial drum.  A few new IOT’s were added, for management of the trap 
system.  The PDP-7 featured an interprocessor link; this device set the model for the general 
purpose parallel I/O options in subsequent DEC computers.  Like the PDP-1 (but unlike the PDP-
4), the PDP-7 console featured a “read-in” switch, to automate system bootstrapping from paper 
tape.  The “read-in” function did not use the PDP-4’s RIM format but instead loaded memory 
sequentially from the tape.  Therefore, loading software required three steps: use the “read-in” 
switch to load the RIM loader; use the RIM loader to load the binary loader; and finally use the 
binary loader to load the software. 

Memory Management 

  
The PDP-7 implemented a primitive form of multi-user protection called trap mode.  If trapping 
was enabled, IOT’s and HLT became privileged instructions.  If extend mode was simultaneously 
disabled, indirect addresses were confined to the current bank.  This allowed for simple time-
sharing, with each user in a separate memory bank.  (An option, the KA70A, added a small 
bounds control register to protect memory within a bank.) 

Software 

 
The PDP-7 offered the 18b product line’s first mass-storage operating system, the DECtape-
based DECsys.  (DECsys also ran on the PDP-4.)  DECsys was a modest first step in operating 
system development.  It consisted of a simple memory-resident DECtape I/O library, a keyboard 
monitor, a Fortran II compiler, an assembler, a linking loader, and a symbolic debugger.  All of the 
components were based on PDP-4 and PDP-7 paper-tape counterparts, with calls to the DECtape 
I/O library replacing paper-tape I/O.  The internals of DECsys reflect its heterogeneous origins, 
with directory information stored in Baudot (3 six-bit characters per word, each character 
consisting of a 5b Baudot code plus a 1b shift flag) and source files in FIODEC. 
 



A DECsys system tape contained a tape label in block 1, the system directory in block 2, the 
library directory in block 3, and the keyboard monitor in blocks 4-6.  The first word of the system 
directory contained the directory length; the last word contained the address of the first free block 
on the tape.  Directory entries consisted of 5 or 6 words: 
 
 Word 1:  Type (1 for System, 2 for Working) 
 Words 2-3: File name, in Baudot 
 S, word 4: starting block on tape 
 S, word 5: starting address in memory 
 W, word 4: starting block on tape for F (Fortran) version 
 W, word 5: starting block on tape for A (assembler) version 
 W, word 6: starting block on tape for R (relocatable binary) version 
 
Files were simply linked DECtape blocks, with the first word of a block pointing to the next; a 
pointer of 0 signified end of file. 
 
The first word of the library directory contained the directory length in words.  Directory entries 
were variable length, depending on the number of entry points in the routine: 
 
 Words 1-2: entry name, in Baudot 
 Words 3-4: second entry name (if any, in Baudot) 
 : 
 Word 2n+1: 777777, marking end of entry names 
 Word 2n+2: starting block for the library 
 Word 2n+3: 777777, end of directory entry 
 
After many unsuccessful years of searching, a copy of DECsys was found with the last functioning 
PDP-7 on the planet, Professor Harlan Lefevre’s system at the University of Oregon (Now residing 
at Paul Allen’s computer museum in Seattle).  But so far, no copies have been found of an even 
more historic system for the PDP-7, UNIX.  The PDP-7’s multi-user protection, crude as it was, 
sufficed for implementation of the first version of UNIX, making the PDP-7 a significant system in 
the history of computing.  Unfortunately, all copies of UNIX for the PDP-7 have been lost.  Some 
details of the PDP-7 version can be found on Dennis Ritchie’s personal web site. 
 

The PDP-9 
 
The PDP-7 was considerably more successful than its predecessors, selling more than 100 
systems thanks to its significant price/performance improvements.  The PDP-9 was intended to 
carry the line forward.  The arithmetic system and character sets were unchanged, and the 
instruction set and I/O architecture changed only minimally.  The I/O subsystem changed from a 
radial to a bus design, necessitating redesign of all peripherals.  Interfaces to programmed I/O 
peripherals (paper tape, console, line printer) remained basically the same as the PDP-4 and 
PDP-7; however, interfaces to mass storage peripherals (magnetic tape, DECtape) changed 
significantly.  An entirely new multi-level interrupt option, called the Automatic Priority Interrupt 
(API), was designed.  The PDP-9 carried over little of the PDP-7’s admittedly small software base. 

Instruction Set Architecture and I/O System 

 
Although intended to be upward compatible with the PDP-7, the PDP-9 introduced a number of 
differences: 
 
• Auto-indexing.  In the PDP-7, each bank of memory had auto-index registers.  In the PDP-9, 

only bank 0 had auto-index registers, and indirect references through addresses 00010-00017 
were forced to reference bank 0. 



• Extend mode restore.  The PDP-7 used EMIR to prepare the system to restore extend mode 
at the end of an interrupt.  The PDP-9 introduced the more ambitious RES, which prepared 
the system to restore the link, extend mode, and memory protect mode.  This removed two 
instructions from the end of all interrupt routines. 

• Extend mode behavior.  The PDP-7 set extend mode on a protection trap but cleared it on an 
interrupt; the PDP-9 cleared it on both.  The PDP-7 performed a modified JMS, storing the 
program state in location 0 but taking the next instruction from location 2; the PDP-9 
performed a JMS 0 or JMS 20, depending on whether interrupts were on or off. 

 
The PDP-9’s I/O architecture contained some modest improvements in flexibility and error 
detection.  Status flags were added for reader and punch errors.  The line printer controller 
implemented a device-specific interrupt enable/disable.  The new DECtape, magnetic tape, and 
fixed head disk controllers implemented better programming models than their PDP-7 
counterparts and used up fewer device numbers in the process. 
 
The PDP-9 also implemented an entirely new design for multi-level interrupts.  Called the 
Automatic Priority Interrupt (API) option, the API separated the concept of interrupt channel from 
priority.  The API option supported 32 channels (interrupting devices), but the channels were 
grouped into eight priority levels.  Four channels, on the four lowest priorities, were reserved for 
software interrupts.  When an API break occurred, the memory location corresponding to the 
channel was executed.  The location had to contain a JMS to an interrupt service routine; use of 
other instructions was not supported.  The API was carried over unchanged to the PDP-15. 

Memory Management 

 
The PDP-9 introduced a more flexible form of memory management, with a bounds register 
separating system (lower) memory from user (upper) memory.  The PDP-7’s trap flag became the 
PDP-9’s user mode flag.  Memory management was partially integrated with the API subsystem: 
the CAL instruction, automatically activated API 4, effectively locking out software interrupts. 

Software 

 
The PDP-9’s close compatibility with the PDP-7 allowed the latter’s software to be brought 
forward.  However, that code base, dating from the PDP-4, was considered inadequate and 
relegated to use in the smallest systems.  For mainstream use, a new software suite was written 
from scratch. The three-step software loading process was simplified by eliminating the 
intermediate RIM loader.  The hodge-podge of I/O routines and libraries was replaced by a 
standard I/O executive that maintained compatible interfaces from the paper-tape environment 
through the mass-storage based operating systems (Advanced Monitor System, its 
foreground/background extension, and DOS).  The PDP-4/7 assembler syntax and binary formats 
were scrapped and replaced with a new macro assembler, Macro 9.  Fortran II was replaced by 
Fortran IV.  The intent versus the practice for PDP-9 software is illustrated by the changes in the 
manual set.  The examples in the Systems Reference Manual all follow PDP-7 assembler syntax, 
but most surviving software is written in Macro 9. 
 

The PDP-15 
 
The PDP-15 introduced the most significant set of architectural changes in the 18b product line 
since the transition from the PDP-1 to the PDP-4.  It represented a major technology shift, from 
discrete transistors to TTL integrated circuits.  The PDP-15 was the fastest and most popular 18b 
computer in Digital’s history.  It was also the last. 



Instruction Set Architecture and I/O System 

 
The PDP-15 introduced three architectural extensions: 
 
• two new registers, an 18b index register and a 9b limit register 
• extended addressing to 128K words 
• hardware floating point  
 
The introduction of the index register made the PDP-15 more competitive with contemporary 
machines such as the SDS 940 and DDP 516, both of which had indexing.  To get an index 
register select into the memory reference instructions, the directly addressable memory range 
was reduced from 8K to 4K: 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
|   op   |in| x|                address               | mem reference 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

 
Direct addressing beyond 4K words could be done by indirect addressing (maximum 32K words), 
or by indexing (maximum 128K words).  However, until the XVM memory management option 
was introduced, return addresses remained limited to 15b; thus the maximum practical code 
segment size remained 32K words.  Extended memory worked best with the new memory 
relocation and protection option; in that environment, multiple 32K word programs could reside in 
memory simultaneously. 
 
The addition of indexing created a serious compatibility problem with the PDP-9.  To ameliorate 
migration issues, the PDP-15 redefined the PDP-7’s and PDP-9’s extend mode flag as PDP-9 
compatibility mode, or bank mode.  If bank mode was enabled, memory reference decoding was 
identical to the PDP-9, without index capability.  The PDP-15 did not implement the PDP-9’s 
extend mode capability within bank mode, because extend mode, which was a compatibility aid 
for PDP-4 and PDP-7 programs, was no longer needed. 
 
The hardware floating point unit was another new addition to the architecture.  It dramatically 
improved the performance of the system in scientific applications.  To support indexing and 
floating point, the PDP-15 introduced two new instructions, both carved out of the IOT instruction.  
Bits <4:5> of the IOT instruction had been defined as sub-device selects but in practice were 
unused.  The PDP-15 used them to differentiate between IOT instructions (<4:5> = 00), floating 
point instructions (<4:5> = 01),  
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  0  0  1|            subopcode              | floating point 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
|in|                   address                        | 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

 
and index operate instructions (<4:5> = 1x): 
 
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
| 1  1  1  0  1| subopcode |        immediate         | index operate 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

 
In addition to the major changes outlined above, the PDP-15 had its own set of tweaks and 
incompatibilities compared to its predecessor: 
 



• Two meaningless operates were redefined as IAC (increment AC) and BSW (byte swap).  
The former facilitated a one-instruction 2’s complement, thereby correcting a hole in the 
arithmetic system. 

• On the PDP-9, DBR and RES were triggered by a JMP indirect, on the PDP-15 by any 
indirect. 

• The PDP-15 implemented new IOT skips for bank mode, and redefined the SKP7 IOT to test 
whether the high-speed reader was present in the configuration. 

• A mid-life ECO (called the “re-entrancy ECO”) added two additional IOT’s to inhibit and enable 
interrupts.  Also, in monitor mode it suppressed interrupts for one instruction following a PI, 
JMS, or CAL (two after a NORM). 

• The PDP-15 EAE did not require that the link be cleared for IMUL and IDIV. 
• The PDP-15 API placed the program interrupt priority between the API hardware and software 

interrupts, rather than below the software interrupts. 
• The PDP-15 CAL instruction only set API 4 if API’s 0-3 were inactive, rather than 

unconditionally. 
 
From a programming viewpoint, the PDP-15’s I/O architecture was the same as the PDP-9’s, but 
the implementations were quite different.  The PDP-15 implemented a separate I/O processor, 
providing greater expandability and flexibility, and a different I/O bus.  It had more powerful 
peripherals, including the RP15/RP02 disk pack and the LP15 DMA line printer.  Some PDP-9 
controllers, such as the TC09 DECtape controller and the RF09 fixed head disk controller, were 
redesigned to connect directly to the PDP-15’s I/O bus; others were interfaced through a 
backwards-compatible bus converter. 

Memory Management 

 
Over its lifetime, the PDP-15 implemented three different memory management options: 
 
• The KM15 memory protection option implemented boundary register protection.  It was 

programmatically identical to the PDP-9’s KX09 option. 
• The KT15 memory relocation option implemented base register relocation and boundary 

register protection.  This base-and-bounds style of memory management was used in DOS-
15 and RSX-15. 

• The XM15 (XVM) memory management option.  This option provided not only the base-and-
bounds relocation of the KT15, but additional options for shared segments and >32KW virtual 
addressing.  It was supported by the XVM series of software releases, particularly XVM/RSX. 

System Extensions 

 
Although the PDP-15 was more successful than any prior 18b system, compared to the PDP-11 
its volume was low.  This made continuing investment in new technology and options difficult.  
The CPU was never re-implemented to take advantage of advances in component integration.  
Investments in new peripheral types and controllers had to be limited. The PDP-15 group 
responded with great ingenuity to these constraints.  Notable developments included: 
 
• Multiprocessing.  Two CPU’s could share memory and I/O subsystems, for increased 

throughput in a multiprogramming environment. 
• PDP-11 add-on processor.  The Unichannel-15 was a PDP-11/05 CPU that functioned as an 

I/O controller.  The Unibus tied in directly to the PDP-15’s memory system, using the two data 
parity lines as extra data lines.  This gave the PDP-15 access to inexpensive PDP-11 
peripherals, such as the RK05 and LP11. 

• XVM memory subsystem.  The XVM project was the final spin on the PDP-15.  It replaced the 
initial memory relocation option with a more sophisticated unit that allowed individual 



programs to extend beyond 32K words. It added instruction prefetching to improve 
performance and a high-resolution clock for task-level accounting. 

 
These structural innovations stretched the lifetime of the product line but could not reverse its 
status as a niche rather than a volume product.  By the mid 1970’s, the PDP-15’s position in 
DEC’s product line was eclipsed by the success of the more flexible PDP-11 (as the position of 
the PDP-10 would be by the VAX).  In 1977, the PDP-15 was retired, ending the history of the 18b 
product family. 

Software 

 
The PDP-15 built on the PDP-9’s software base.  The Advanced Monitor System was retained 
and extended to create DOS-15 and its batch extension, BOS-15.  A new real-time operating 
system, RSX15, evolved from an execution-only environment into a full-featured 
multiprogramming system, RSX15-Plus III, that exploited the memory relocation hardware and 
multiprocessing capabilities to provide simultaneous timesharing, batch, and real-time capabilities.  
Another notable system was MUMPS (MGH Utility Multi Programming System), a timesharing 
system developed at Massachusetts General hospital for processing medical records.  
Descendents of MUMPS (now known as the M language) continue to be used today in medical 
systems.  DOS, RSX-Plus III, and MUMPS were all substantially rewritten in the mid-70’s to take 
advantage of XVM memory management. 
 

18b Systems Today 
 
Because of the low numbers produced (< 1500), and the early retirement of the product line, 
relatively few examples of the DEC 18b computers are still extant (a fate shared by the early 36b 
products as well).  Surviving systems are scattered and often in private collections, making an 
accurate census difficult. 
 
• PDP-1: The Computer History Museum (Mountain View, Ca) has three PDP-1’s.  One of 

these was running as recently as 1995 and is being restored to operation.  The other two are 
from DEC’s history collection. 

• PDP-4: The Computer History Museum has three PDP-4’s, all from DEC’s history collection.  
None are considered restorable. 

• PDP-7: The Computer History Museum has a PDP-7, from DEC’s history collection.  Max 
Burnet (Sydney, Australia) has a PDP-7 in his collection.  Neither is considered restorable.  
There is a partially running PDP-7 in Norway and, incredibly, one still in operation in Oregon, 
which has been donated to a computer museum in Seattle Washington. 

• PDP-9, 9/L: The Computer History Museum has both a PDP-9 and a -9/L.  Max Burnet also 
has one of each, and the PDP-9/L works.  The Rhode Island Computer Museum has a PDP-
9, which is being restored.  There are two PDP-9’s at ACONIT (Grenoble, France); Hans 
Pufal and his team have restored one to working order. 

• PDP-15: Multiple examples in private hands. 
 

Sources 
 
The primary source for this article was DEC’s documentation archive.  The author was fortunate 
to have access to the archive while it was still being staffed and maintained (Compaq dismissed 
the archive staff and dispersed the documents; HP has donated the archive to the Computer 
History Museum).  Max Burnet has graciously shared his unique collection of DEC documents and 
hardware.  In addition, Al Kossow and Dave Gesswein have done the field of “computer 
archaeology” a tremendous service by scanning, transcribing, and publishing online, surviving 



documents, DECtapes, and paper-tapes from the 18b family.  Davis Johnson located a 
fascinating memo documenting differences between the PDP-9 and the PDP-15.  Last, but hardly 
least, the staff of the Computer History Museum has made available its significant archive of DEC 
material.  Among the items consulted: 
 
Family 
 1972 Field Service Census of Systems under contract – Computer History Museum 
 
PDP-1 
 PDP-1 Handbook (F-15, 1960 edition) – online 
 PDP-1 Handbook (F-15B, 1961 edition) – online 
 PDP-1 Handbook (F-15C, 1962 edition) – Max Burnet’s collection, now online 
 PDP-1 Handbook (F-15D, 1963 edition) – Computer History Museum, now online 
 PDP-1 Maintenance Manual (F-17) – Max Burnet’s collection, now online 
 PDP-1 Input-Output Systems Manual (F-25) – DEC archive, now online 
 
PDP-4 
 PDP-4 Handbook (F-45, 1962 edition) – DEC archive, now online 
 PDP-4 Maintenance Manual (F-47) – Max Burnet’s collection, now online 
 PDP-4 Technical Specification (DEC memo M-1142) – online 
 PDP-4 Fortran Users’ Manual (J-4FT) – DEC library, now online 
 PDP-4 EAE Option Bulletin (F-43(18)P) – Computer History Museum 
 PDP-4 Paper, Gordon Bell, August 1977 – Computer History Museum 
 
PDP-7 
 PDP-7 Reference Manual (F-75, 1964 edition) – DEC archive, now online 
 PDP-7 Maintenance Manual (F-77) – Max Burnet’s collection, now online 
 DECSYS-7 Operating Manual (7-5-S) – DEC library, now online 
 
PDP-9 
 PDP-9 User’s Handbook (F-95, 1968 edition) – online 
 PDP-9 Maintenance Manual (F-97) – online 
 PDP-9 schematics – online 
 KE09A Extended Arithmetic Element Instruction Manual – online 
 PDP-9 – Design History, Don Vonada, undated – Computer History Museum 
 
PDP-15 
 PDP-15 Reference Manual (first and sixth editions) – online 
 PDP-15 Maintenance Manual – online 
 XVM System Reference Manual – online 
 XVM Maintenance Manual – online 
 XVM Processor and Memory Subsystem schematics – online 
 PDP-15 processor diagnostics – online 

PDP-15 Development Project History, Jerry Butler, September 1977 – Computer History 
Museum 

 
Another critical source was Computer Engineering: A DEC View Of Hardware Systems Design.  
The article “The PDP-1 and Other 18-Bit Computers”, by Gordon Bell, Gerald Butler, Robert Gray, 
John McNamara, Donald Vonada, and Ronald Wilson, contains unique hardware, marketing, and 
technology information about the 18b family.  The book, out of print for years, is now online, 
thanks to the efforts of Gordon Bell. 
 
Most recently, Professor Harlan Lefevre of the University of Oregon made an invaluable 
contribution to the software archive for the 18b PDP’s by providing a copy of DECsys, DEC’s first 
mass storage operating system.  Professor Lefevre’s careful preservation of a functioning PDP-7 
and all its software made possible the restoration of a long-missing piece of DEC history. 



 
Lastly, the author had the benefit of the recollections of people who worked on the 18b family, 
including Gordon Bell, Dennis Ritchie, and Barry Rubinson, as well as access to the surviving 
archive of PDP-7 software from Applied Data Research. 
 

18b PDP Web Sites 
 
Gordon Greene’s PDP-1 web site, http://www.dbit.com/~greeng3/pdp1/ 
 
Al Kossow’s documentation archive, including the 18b PDP’s, http://bitsavers.org/pdf/ 
 
Dennis Ritchie and Ken Thompson memoir of early UNIX, http://www.bell-
labs.com/history/unix/pdp7.html 
 
SIMH simulation site, http://simh.trailing-edge.com 
 
 
 


