~ €O

VS

Operating System Services
Reference
Release 7 Series







TMPORTANT USER NOTICE

The VS Operating System Services Reference is a controlled release draft,
intended for use with controlled Release 7.06 of the VS Operating System.
This draft describes certain Release 7.10 Operating System features that will
not be available until the general release of the product. At this time,
Multivolume files, volume sets, and the Resource Sharing Facility are not
included in the controlled release 7.06 version of the VS Operating System.

Controlled Release Draft October, 1985



et




VS

Operating System Services

Reference
Release 7 Series

1st Edition — October 1985
Copyright © Wang Laboratories, Inc., 1985
716-0423

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 e TEL: §17/459-5000, TWX 710-343-6769, TELEX 94-7421



DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However, nothing
contained herein modifies or alters in any way the standard terms and conditions of the Wang purchase,
lease, or license agreement by which the product was acquired, nor increases in any way Wang’s liability
to the customer. In no event shall Wang or its subsidiaries be liable for incidental or consequential dam-
ages in connection with or arising from the use of the product, the accompanying manual, or any related
materials.

SOFTWARE NOTICE

All Wang Program Products (software) are licensed to customers in accordance with the terms and con-
ditions of the Wang Standard Software License. No title or ownership of Wang software is transferred,
and any use of the software beyond the terms of the aforesaid license, without the written authorization
of Wang, is prohibited.

WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device, pursuant to Subpart J of Part
15 of FCC rules, which are designed to provide reasonable protection against such interference when
operated in a commercial environment. Operation of this equipment in a residential area is likely to
cause interference, in which case the user, at his own expense, will be required to take whatever meas-
ures may be required to correct the interference.



PREFACE

The VS Operating System Services Reference provides users of the VS
operating system with detailed reference information on what the system
services are and how to wuse them. The VS system services allow
experienced assembler programmers to use operating system routines to
control the execution and interaction of programs.

Intended Audience

This manual is intended for system and application programmers who
are programming in the assembler language. It is assumed that the user
is familiar with the VS operating system and is an experienced assembler
language programmer. For an overview of the VS operating system, refer
to PART III of this manual.

PART I provides summary information on the use of the sytem services.

e Chapter 1 introduces the topic, defines the categories of systems
services and lists those available.

e Chapter 2 describes how to call system services.

PART II provides detailed reference information on each system
service.

® Chapter 3 describes detailed reference information on the system
services that utilize the JSI instruction as well as associated
macroinstructions. The descriptions are presented in
alphabetical order for ease of reference. Examples of using some
of these system services are provided.

e Chapter 4 contains descriptions of the services that are invoked
by issuing an SVC instruction as well as associated
macroinstructions. The descriptions are listed in alphabetical
order. This chapter also contains a description of the control
blocks that are of interest to the user.

i1l
Controlled Release Draft October, 1985



PART III provides an overview description of the VS operating system.

Chapter 5 discusses the user program and concepts relating to the
development of programs within the VS operating system
environment.

Chapter 6 describes the VS operating system concepts that aid the
user in understanding how the operating system manages the
resources of the computing system.

Appendix A includes information concerning program file structure
and processing.

Appendix B is a glossary to be used as a quick reference of terms
while using the manual.

Throughout this manual, the following notation conventions are used:

[]

{}

Brackets indicate that the enclosed parameter is
optional.

Braces indicate that a selection is to be made from
the enclosed list of elements. If a default value is
supplied, it is indicated by an underscore. If the
element is not coded, the underscored default value
is assumed.

An ellipsis indicates that the element may be
repeated.

UPPERCASE Syntax elements presented in uppercase characters

must be supplied exactly as shown in the statement.

lowercase Syntax elements presented in lowercase characters

indicate elements to be supplied by the programmer.

All punctuation marks, such as commas, parentheses, or equal signs,
must be coded as shown. In the syntax descriptions, the assembly rules
for coding labels, variable names, and register specifications apply.

ASSOCIATED PUBLICATIONS

The following publications provide information that is helpful to the
assembler language programmer:

® & ¢ 0 0 0 0 o

VS Assembler Language Pocket Guide (800-6203AP)

VS Assembler Language Reference (800-1200AS)

VS DMS Reference (800-1124)

VS DMS/TX Reference (800-1128)

VS Operating System Services Pocket Guide (715-0424)
VS Principles of Operation (715-0422)

VS Program Development- Tools Reference (715-0884)
VS Programmer's Introduction (715-0417)

Controlled Release Draft iv October, 1985



OPERATING SYSTEM SERVICES REFERENCE MANUAL
RELEASE 7.10

CONTENTS

PART I USING SYSTEM SERVICES

CHAPTER 1 INTRODUCTION TO SYSTEM SERVICES

Overview ......c0000e S eseecsessecitearsteensaseeans
Summary of System Services .....c.civeiiiicccnscnanas
Program ServiCes ......eeeeeeeiecrsoscsossssnnns
I/0 ServiCes .....ceceeeeeececarsoonnonans ceeenes
Memory Management Services ....... Cesesseessenas
Communication and Synchronization Services .....
File ServiCes ...eevsoesessnsonasnnnnnas teerenns
Security Services ...eieeeerceiictierracsasonnns

=
. .

N
TERTTY
WHONOWN M

1

R0
=

CHAPTER

N

CALLING SYSTEM SERVICES

OVeLVIeW .. ieeernseerosacnoocesssessasnsoseassnanns 2-1
Calling the System Services .......cvveeveneenennass 2-1
Return Codes ......ciiiiiiitiiecienresconassassonnas 2-3
Assembly Language Coding Conventions ...........c... 2-3
Register Conventions .......c.cceeeevnesoanaccnes oo 2-4

[SS TN S BN S I SC Y N
N W N =

PART II SYSTEM SERVICES DESCRIPTION

CHAPTER 3 JSI-TYPE SYSTEM SERVICES AND RELATED MACROINSTRUCTIONS

3.1 Overview ...... ceessrereennsas Checrseciteceeesreneson 3-1
V Type Address Constants ..... Ceeerescesaans caven 3-1
Linking JSI-Type System Services .......cccccee. 3-1
3.2 Service-by-Service Descriptions .......ccc0e0evunnen 3-2
CNTROLOG - Control Logging of System Security
Bvents ....ciiiiiiiiiiiiiitiiiieienannn 3-4
LOGR - System Security Logging Record Format  3-11
MSMAP Map Region of Virtual Address Space .. 3-25

MSUNMAP - Unmap Region of Virtual Address Space 3-30
PROCINFO - Process Information ............ et 3-32
PUTLOG - Security Logging - Put Record ........ 3-35
SBREAK - Break Synchronization ................ 3-38
SCREATE - Create Synchronization Object ........ 3-41
SDELETE - Delete Synchronization Object ........ 3-43
SENTER - Enter Synchronization ........ ceseeenn 3-46

Controlled Release Draft v October, 1985



CHAPTER

3

L3
N =

.3

CONTENTS (continued)

SEXIT - BExit Synchronization .........cc0000.. 3-49
TCOMPLET - Check Task for Completion ............ 3-51
TINVOKE - Invoke Task ...cceiuieeecennnceacnnonns 3-53
TKILL — Task Termination .........000 cecanen 3-58
VOLINFO - Volume Information ................... 3-60
VSETINFO - Volume Set Information ............... 3-63
Programming Examples ......cccciireeerrocsnoccsnones 3-67
Memory Management Example ........ccceeieeeeenenes 3-67
Security Logging Example ........... Ceesesesaenns 3-68
User Synchronization Example ........c.veeeeeenns 3-74

SVC-TYPE SYSTEM SERVICES AND RELATED MACROINSTRUCTIONS

OVBLVIEW .ivieesrsoscessesocsossosasssoscssscssessss 4-1
Service-by-Service Descriptions ...... e esaennes 4-2

AXD1 — Describe AXD1 Structure .....ceoeeeees 4-3
AXDGEN - Generate Alternate Index Descriptor

BloCKk ...vvitiinenennerenenccncnsnnnas 4-9
BCE — Describe Buffer Control Entries ...... 4-11
BCTBL — Describe Buffer Control Table ........ 4-14
BCTGEN - Generate a Buffer Pool

Control Table .....ccciveeeennsccacaes 4-17
BEGTRANS - DMS/TX Transaction Rollback (SVC 80) . 4-18
CALL - Call a Subroutine ......coc0ietenceans 4-20
CANCEL - Cancel Program (SVC 16) .....cieevunnn 4-22
CEXIT - Cancel Exit (SVC 39) .....ccivivnnnnns 4-24
CHARGEN - Macro Processor Large Character

Generator ........cciicttenincrncnnnas 4-28
CHECK - Check for Event Occurrence (SVC 17) .. 4-29
CLOSE - Close File (SVC 1) ....... cessessssass 4-39
COMMIT - Commit Resources (SVC 52) ............ 4-41
CREATE - Create Intertask Message Port

(SVC 37) ittt iineeesoennassancsnnss 4-44
CXT — CEXIT Return Information ............. 4-47
DELETE -~ Delete Record from Indexed File ..... 4-49
DESTROY - Destroy Intertask Message Port

(SVC 3B) +iviiieiiienencasennsannnanns 4-51
DEXIT — DMS/TX Deadlock EXit ..veeevvcrecaccns 4-53
DFB - Describe Document File Block ......... 4-57
DISMOUNT - Dismount Disk or Tape Volume (SVC 41) 4-69
ENDLOCAL - End Generation of Local

Symbol Names .......ccceeeeueveenncans 4-73
EXTRACT - Extract Data from System Control

Blocks (SVC 28) .....cvvevennns cecenns 4-74
EXTRD - Describe Output Area for the

Extract SVC .....iiiiiiiitierieteennans 4-87
FDR1 ~ Describe File Descriptor Record 1 .... 4-109
FDR2 - Describe File Descriptor Record 2 .... 4-115
FDR3 - Describe File Descriptor Record 3 .... 4-118

vi

Controlled Release Draft October, 1985



CONTENTS (continued)

FMTLIST

FREEALL
FREEBUF
FREEHEAP
FREESHR
FREEXRTS
GETBUF
GETHEAP
GETPARM
GETXRTS
HALTIO
IPCB

IPCLOSE

IPOPEN

KEYLIST
LINK

LINKPARM
LNKB
LOADCODE

LOCAL
LOGOFF
MOUNT
MSGLIST
OPEN
PCEXIT

PROTECT
PUTPARM
READ
READFDR
READVTOC

RECEIVE

REGS
RENAME
RESETIME
RETURN
REWRITE
ROLLBACK

Controlled Release Draft

Generate Selected Parameter Group

Control List Fields ...ovvvvevecccsnss 4-120
Free Resources (SVC 52) .......c00000s 4-124
Free Buffer Space (SVC 6) ............ 4-127
Deallocate Heap Storage (SVC 57) ..... 4-130

Free Shared Resources (SVC 52) ....... 4-134
Free Extension Rights (SVC 52) ....... 4-136
Get Buffer Space (SVC 5) ............ 4-138
Allocate Heap Storage (SVC 56) ....... 4-141
Get Parameters (SVC 20) ..........c.n 4-145
Hold Extension Rights (SVC 52) ....... 4-158
Halt I/0 Operations (SVC 12) ......... 4-160
Describe Inter-Processor Control

BloCk ..iivvieerecneecsecsonsncsonnnnns 4-164

Close for I/0 with Telecommunications
Devices or Data Link Processor

(SVC S0) .iiieereereeeneenocasoonsonne 4-166
Open for I/O with Telecommunications

Devices or Data Link Processor

(SVC 50) .ivverernesvnssennossnnnnnans 4-171
Generate Parameter Group Control

5 -3 4-176
Link to Another Program or

Subprogram (SVC 4) ........cciiieeeens 4-180
Supply Program Parameters (SVC 33) ... 4-187
Describe Link Return List Block ...... 4-198
Load Microcode for Devices/IOPs

(SVC 45) ... iiienreienoseonnanonsonnnn 4-202
Generate Local Symbols ......cco0even 4-209

Log Off Interactive Terminal (SVC 43) 4-211
Mount Disk or Tape Volume (SVC 30) ... 4-212
Generate Display Message .......ceueee 4-223
Open a File (SVC 0) .......... ceveess 4-224

Modify Program Exception Exit Status
(SVC 31) ..iiviiinnerennosoassannsones 4-231
Protect a Disk File (SVC 42) ......... 4-234

Supply Program Parameters (SVC 33) ... 4-240
Read a Record .......cciiiiiininennnnnn 4-250
Read File Descriptor Record (SVC 24) . 4-254
Read Volume Table of Contents

(SVC 19) .iieeereeeeeeoencnnsanansnnas 4-262
Receive Telecommunications I/0

(SVC 3) tiiiiiieeennsossensssoesannnnns 4-272
Register Equation ............. ... 4-276
Rename a Disk File (SVC 26) .......... 4-278
Remove Timer Interval (SVC 32) ....... 4-283
Return to Invoker ......ceceveevseannse 4-284
Rewrite a Record .....ccecvvvnnnncanns 4-285
Rollback Transaction (SVC 76) ........ 4-287

vii

October, 1985



CONTENTS (continued)

SCRATCH - Scratch a File (SVC 27) .vevev.n seeees 4-290
SET - Set Task-Related Defaults (SVC 35) ... 4-295
SETIME - Set Interval Timer (SVC 32) .......... 4-302
SETRECOV - DMS/TX Set File Recovery Option

(SVC 82) ..ivveereernonoersasscennsoanans 4-304
START - Start File Processing in Specified

Mode or at Specified Record Location . 4-309
START HOLD/RELEASE - Hold/Release Resource ...... 4-315
SUBMIT - Submit Job or Print Request (SVC 46) . 4-317
SUBMIT — Submit Transmit or Retrieve

Request (SVC 46) .......ccivvvvnnnnnnns 4-331
SYSERROR - System Error Code Definitions ........ 4-342
TCOPTION - Set Telecommunications Stream Options 4-347
TIME — Get Date and Time (SVC 2) ...veveveene 4-350
TPLAB — Describe Magnetic Tape File Header,

Trailer and End-of-Volume Labels ..... 4-353
TPLB2 — Describe Magnetic Tape Secondary

Header, Trailer and End-of-Volume

Labels .v.iiiereieneenenersecesocnneans 4-355
TRANSMIT - Transmit Telecommunications I/0 _

(SVC 3) tieiiiiiiiieeeeooanonoooannonnns 4-357
UFB — Describe User File Block ............. 4-361
UFBGEN - Generate User File Block .......c..... 4-382
UNITRES - Reserve/Release Telecommunications

Devices, Lines, and Peripheral

Processors (SVC 51) ....ceeeeiconnanes 4-395
UPDATFDR — Update File Descriptor Record (SVC 25) 4-399
VOL1 -~ Describe Volume Label ................ 4-411
WPCALL — Call VS Document Access Subroutines .. 4-415
WRITE — Write a Record ......ivievinreneeennnnn 4-418
WV46MAP - Describe Parameter List .............. 4-420
XI0 - Execute Physical I/0 (SVC 3) ......... 4-426
XMIT — Transmit Intertask Message (SVC 36) .. 4-436

PART III VS OPERATING SYSTEM OVERVIEW

CHAPTER 5 THE USER PROGRAM
5.1 Introduction ......cccieiiiiieiernersnncosonerconnannes 5-1
5.2 The Program Development Process ........ceeeeceeuanun 5-1
Problem Definition and Coding ..........ccceuuunnn 5-2
Translation of the Code ..........cciiveiveenrn.. 5-2
Running, Testing and Debugging the Program ...... 5-2
5.3 Structure of the Program File ...................... 5~-2
The Reentrant Program Section ........icveeeceeen 5-2
The Modifiable Section .......civieiviinneecnnas . 5-3
5.4 The User's Modifiable Data Area .....ccccieeeennnnns 5-3
JSCI, SVC, and LINK Save Areas .....ceveeeeesaene 5-4
Buffer Management .......... Stsseeccncssassanecans 5-6

Controlled Release Draft viii October, 1985



CONTENTS (continued)

5.5 Transfer of Program Control ...........civvivnenennn 5-6

5.6 Interacting with the Workstation ............... e 5-7

5.7 Standard Prnames .......cecceeeeeccecesnncocnns N 5-8

5.8 Runtime Device and File Assignment ........ et 5-8

5.9 Default File Specifications.........coiiiivivennnnnn 5-9

5.10 OPTIONS Prname ......... cesesesseeaeenana e easeaean 5-9

5.11 Error Handling .....oveieereennoceccensonannss ceeess 5-10

CHAPTER 6 VS OPERATING SYSTEM DESCRIPTION

6.1 Introduction ...... Ceeteeneaannn feeteetesrenes ceeees 6-1

6.2 Tasks checereeaaeas Ceeesenanas 6-2

Task States ........... e et ssecsscesssessasnennnn 6-2

Task Scheduling .......iciiieeniiineceenensnnass . 6-3

Event Scheduling ..........ciiiiiiiiennnanns oo 6—-4

System Task Queue Verification Routine .......... 6-4

6.3 System Support ............... ceetssseacscresnanaanan 6-5

Language Translators ...............00vue ceeeee 6-5

Program Editing and Linking ................. - 6-5

DEbUGINgG ..vveeereneanereceaensenenneenonnns e 6-5

System Configuration ....................... e 6-6

Performance Monitoring ........c.vivivivviennnnn . 6-6

6.4 Communication and Synchronization ....... Cee e . 6~7

Semaphore ..iveeeseescsecssassssocoossanns e 6--7

Intertask Messaging (ITM) .........icieuunnenns .. 6-7

User Synchronization Facility ....oovveiinnnnanns 6-8

6.5 Scheduling .......eciveerenrecsteresenneesenneaasanns 6-9

Categories of Tasks ......vvevennnneccennenns e 6-9

Scheduling Formula ..........cc0vveenevnnns ceeees. 6-10

6.6 Memory Management ..........viivteeverereeascnsnssss 6-11

Virtual Address SpPace .....ceosvsvesvsasvrnnccces . 6-11
Relationship of Virtual Memory

to Physical Memory ....coeeeeenneeannnnas ceee... b-14

Regions..... Gt et et e e eat sttt et anna teeses 6-15

Pages, Page Faults, and Address Translation ..... 6-15

User Program Efficiency and Paging .............. 6-17

6.7 Ring Memory Protection Scheme.................. ceee. 6-17

Process Levels.....ccevuenn et ceeees 6-17

System StacksS. ..o iiiiiiieesirirsseersesssassenseasss 6-18

JSI-type System Services ........ciiiiiiiiiennenns 6~18

6.8 The I/0 Subsystem.....ooiiveiiierreeronaronnnes cesees 6-19

6.9 VS File Structure ...... ceeerenenans feteeets e 6-19

Volume Label ......iiiiieriniriieerinnnecennonnnns 6-20

Extent Organization ........cciieevreveesrneneess 6-20

Volume Table of Contents ................. e 6-21

Controlled Release Draft ix October, 1985






Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

I 11 11
NN HBWNHWNEWN R

D’J’ﬁ’:b‘:lvmmmmmm

TABLES

Program Services and Related Macroinstructions ..... 1-4
I/0 Services and Related Macroinstructions ......... 1-6
Memory Management Services and Related

Macroinstructions ....ieiiiiierireerecnocccnconconnns 1-8
Communication and Synchronization Services and

Related Macroinstructions ........iiivivieeiennnnn. 1-9
File Services and Related Macroinstructions ........ 1-11
Security Services and Related Macroinstructions .... 1l-14
Data Type Conversion Table .......ccvevveeceseoccenns 3-3
START - Modes of use with Disk Files ............ oo 4-313
Parameter Usage Table, Record Access Method ........ 4-389
Task States ........ 000 cetetecesesesnesanaseesanes 6-3
Internal Memory Process Levels .......iivievenecaans 6-17

FIGURES

The User's Modifiable Data Area ........eeeeeeeeeen. 5-4
JSCI Save Area ...... e tessetreseecsessasecsannaaens 5-5
SVC Save Area ....ceecoese e Chesetessasatecsnnn 5-5
VS 8-MB Address Space Allocatlon ................ ees 6-12
VS 16-MB Address Space Allocation .........cecceeuene 6-13
The 24-bit Address ....ccviviiveercnrensscansecnannanas 6-16
Program File Structure ............ Ceeesereseesnasnn A-1
The Run Block, Version 0 .....cciveeeeeoccscnancs oo A-2
The Static Block, Version 0 .....cc0veeeensn teeesaense A-3
The Data Field, Version 0 .......cciiiiincennnnnnans A-6
The Symbolic Block, Version 0 .....cccieeeveencccens A-8
Statement Number Block, Version 0 ............. ceses A-10
Data Name Subblock, Version 0 ........cevevevennanas A-11
The Linkage Block, Version 0 .......ciieetinieennnns A-14
Relocation Reference Block, Ver51on 0 cieieriiniannns A-17
The Run Block, Version 1 .......... Ceeteseasannes ... A-18
The Prolog Block, Version 1 .......cccevierecccnnnans A-19
The Lengths Block, Version 1 .......c.ciieeteeennnns a-21
The Static Block, Version 1 ......cccievecerecacnnan A-22
The Data Field, Version 1 ......cciicetetcessacncones A-24
The Module Block, Version 1 ........cciiieiiceencans A-26
The Symbolic Block, Version 1 .......cvveerrevoceons A-29
Statement Number Block, Version 1 ..........co0e0 ees  A-31
Data Name Subblock, Version 1 .......iecuevenecnaans A-32
Optional Information, Version 1 ......cceceveccacans A-36
The Linkage Block, Version 1 .......cceeteeroccaacss A-38
Relocation Reference Block, Version 1 .......cc0000e A-41

Controlled Release Draft xi October, 1985



CONTENTS (continued)

APPENDIX A PROGRAM FILE STRUCTURE AND PROCESSING
A.1 The Program File Structure .......ccieeeuiueenencss A-1
A.2 Object File Format for Release 6.00 Series ........ A-1
The Run Block, Version 0 ..... ettt A-2
The Symbolic Block, Version 0 ........ ceseceenee A-8
The Linkage Block, Version 0 .......civeeuecenes A-14
A.,3 Object File Format for Release 7.00 Series ........ A-18
The Run Block, Version 1 ........ Cheteeacseaaas A-18
The Symbolic Block, Version 1 .......... N A-28
The Linkage Block, Version 1 ........ceeveeuenns A-37
A.4 Translator ProcesSSing .....eececcecccsccscns ceseses A-42
A.5 Linker Processing ......... eceeseesearenssnsannone A-42
A.6 Run ProcessSing ....ceeeeeeesess Cectsesessseaseaannas A-43
APPENDIX B GLOSSARY ..... St e eetteseteatatasetcstsssatesaaaenras B-1
INDEX [To be provided]

Controlled Release Draft October, 1985



CHAPTER 1
INTRODUCTION TO SYSTEM SERVICES

1.1 OQVERVIEW

System services are software routines that are part of the operating

system.

They perform functions that most user and application programs,

as well as the operating system itself, commonly perform. Although most
system services are used primarily by the operating system, some services
are available for use by application programs.

Assembly language programmers can use system services to efficiently
control the execution and interaction of programs.

The macroinstructions save programming time because the necessary
code has already been written.

The macroinstructions save debugging time because they have
already been tested and debugged.

If a change in the supervisor call or a data structure occurs,
the macroinstructions are automatically updated. The programmer
only needs to reassemble the program to incorporate the changes.

For example, the Security Logging facility records security-related

system

events in a log file. To meet specific security needs, the

programmer can write a program that calls the CNTRLOG system service to
enable or disable logging, and to retrieve logging information.

There are two types of system services:

JSI-type system services —— these services use the JSI (jump to
subroutine) instruction to call an individual service routine.
These services can be called from an assembly language or
high-level language program at run time.

SVC-type system services -- these services wuse the SVC
instruction to c¢all an 1individual service routine. These
services can be called from an assembly language program only.

Controlled Release Draft 1-1 October, 1985



This manual describes both types of system services and related
information necessary for using them most efficiently in an assembly
language program. Chapter 3 covers the JSI-type system services and
related macroinstructions descriptions. Chapter 4 covers the SVC-type
system services and related macroinstructions descriptions.

1.2 SUMMARY OF SYSTEM SERVICES

Both JSI-type and SVC-type system services that are available to user
programs are grouped into the following categories, according to the
function they perform:

¢ Program services, including program initiation: program
termination; timing; interrupt handling; and data structure
maintenance.

e TI/0 services, including granting resources to requesting tasks
and driving peripheral devices such as printers, tape and disk
drives, and terminals.

e Memory management services, including dynamic allocation of heap
storage (buffers); creating and accessing files in memory that
contain code or data that can be shared.

¢ Communication and synchronization services, including
transmitting commands and data from one task to another and
sharing data between tasks.

e File services, including managing files (opening, closing,
deleting and renaming).

® Security services, including protecting data structures and
tasks; and ensuring privacy to users.

Sections 1.2.1 through 1.2.6 summarize the system services according
to these functional categories. Each service is grouped in a category
for organization only. A service can be used to fulfill other functions
as needed by a particular program.

Controlled Release Draft 1-2 October, 1985



1.2.1 Program Services

Program services include functions such as program initiation,
termination, and program resource management. The LINK and UNLINK
services accomplish program initiation and termination. The command
processor initiates user programs when the user issues a run request at
the workstation. The user program can then link to other user programs
by invoking LINK. Each time LINK is invoked, a new link level is
created. Each 1link level is represented by a data structure called the
program file block, which keeps track of program information during the
course of program execution, and a LINK save area which is built on the
modifiable data area stack. LINK performs such functions: as allocating
system control blocks used to monitor the called program, initializing
the modifiable data area static area for the called program, and
transferring control to the new program.

Once the user program has been executed, the RETURN macroinstruction
returns control to the UNLINK service. In this way, all operations
performed by LINK are reversed, and the calling program resumes
execution. UNLINK performs such functions as closing all remaining open
files, releasing devices which were reserved at the current link level,
deallocating system control blocks, cleaning up stack data to the
original address before the call to the program, and returning control to
the command processor or the previous link level.

Abnormal Termination of a Program

Abnormal termination of a program may occur in response to one of the
following actions:

e The user presses the HELP key and requests abnormal termination
by pressing the PF key to cancel the program.

¢ The program issues a CANCEL or enters the Debugger as a result of
a program check, and the user requests abnormal termination in
response to the Debugger prompt.

e The program issues a CANCEL SVC, or a program check was issued
and a CEXIT SVC with the NODEBUG or DUMP option was previously
set.

The abnormal termination routines provide support for system resource
retrieval in the event of a program malfunction or user-selected early
termination. CANCEL is invoked by the system or user when a
nonrecoverable error condition has occurred. An error message describing
the type of error may be coded with the call to CANCEL. Through the use
of the CEXIT service, a user program can cancel processing at a certain
link level and receive control directly.

Table 1-1 summarizes the program services. For detailed instructions
on using these services, refer to Chapters 3 and 4.

Controlled Release Draft 1-3 October, 1985



Table 1-1.

Program Services and Related Macroinstructions

Service Name

Function

CALL Provides linkage information to transfer control
to another routine.

CANCEL Cancel a program in the event of an
uncorrectable program error.

CEXIT Cancel or set 1link 1level parameters which
specify the way a program handles error
conditions.

CHARGEN Generate 8 by 8 space characters for each
character entered.

CXT Symbolically reference the information returned
to a program's cancellation-intercept routine.

DFB Describes the data structure of a document file
block (DFB).

ENDLOCAL Terminates the automatic generation of local
symbol names started by LOCAL.

EXTRACT Extracts data from system control blocks for use
in programs.

EXTRD Describes the data structure which stores the
output from EXTRACT.

FMTLIST Generates the control block for input to the
GETPARM and PUTPARM services.

GETPARM Solicits information from users or from
procedures.

KEYLIST Generates a data structure which is used by
GETPARM to store the response to GETPARM.

LINK Initiates the execution of another program from
within the currently active program.

LINKPARM Supplies parameters to another program's
GETPARM, cleans up data structures created by
LINKPARM's PUT option; and allows the calling
program to access changed parameters or
previously created parameters.

LNKB Describes the link return block (LNKB) used with

LINK.

Controlled Release Draft

1-4 October, 1985




Table 1-1. Program Services and Related Macroinstructions (continued)

Service Name Function

LOCAL Automatically generates local symbol names.

LOGOFF Generates code to issue logoff by program
request.

MSGLIST Generates a data structure to use with the

GETPARM's MSG parameter and CANCEL.

PCEXIT Allows execution of a user-written exception
handling routine for user-selected exceptions.

PROCINFO? Provides user programs with information related
to a specific process or task.

PUTPARM Enables a program to supply parameters to a
GETPARM issued by another program.

REGS Equates register numbers with the standard
symbolic names used by other macroinstructions.

RETURN Exit conditionally from a program to the system
for a standard termination.

SET Sets default values for task related
parameters.

SYSERROR Establishes symbolic names with their numeric
codes for common system error conditions.

TCOMPLET? Allows a parent task to check on the completion
of its child task.

TINVOKE® Allows a running program to create a child
task.

TKILL?® Allows a parent task to force a child task and

all of the descendants into CANCEL and LOGOFF.

a

JSI-type system service.

Controlled Release Draft 1-5 October, 1985



1.2.2 I/0 Services

User programs can use the I/0 services to manage peripheral devices
such as printers and tape drives. I/0 services include managing the
physical devices used during an I/O (i.e. mounting and dismounting a
volume) and managing the resources associated with I/0 (holding and
releasing telecommunications devices). I/0 services can be used to
complete these tasks while a program is executing.

The I/O services perform the following initiation and completion
routines for the operating system:

e Manage workstation screen display and interaction with the user.
e Open and close channels for telecommunication devices.
e Load microcode to devices.

L Reserve and release telecommunication devices, lines and
peripherals.

Table 1-2 summarizes the I/O services. For detailed instructions on
using these services, refer to Chapters 3 and 4.

Table 1-2. I/0O Services and Related Macroinstructions

Service Name Function

CHECK Checks for an occurrence of an event (I/O
operation, timing interval expiration, message
to be sent, PF key, unsolicited interrupt, TC
1/0, semaphore wait, session ID, mailbox) or
combination of events.

DISMOUNT Requests dismount of disk or tape volume.

HALTIO Stops an input/output operation started by XIO.

LOADCODE Loads microcode into a processor or device.

MOUNT Issues a mount request for a disk or tape
volume.

READVTOC Reads the volume table of contents (VIOC) of a

! disk.

Controlled Release Draft 1-6 October, 1985



Table 1-2. I/0 Services and Related Macroinstructions (continued)

Service Name Function

TPLAB Describes file header, trailer, and
end-of-volume labels for a magnetic tape.

TPLAB2 Describes secondary file header, trailer, and
end-of-volume labels for a magnetic tape.

VOL1 Describes the standard volume label for disk or
magnetic tape.

VOLINFO® Extracts system information on a specific volume.

VSETINFO® Extracts volume information on volume sets.

XIO Manages the physical I/O operation.

2 JSI-type system service.

1.2.3 Memory Management

Services

The memory management services provide buffer management, memory
protection and memory mapping functions for VS systems. These services
manage buffers and heap storage areas. Also, program and data files can
be mapped into a task's virtual address space.

Table 1-3 summarizes the memory management services. For detailed
instructions on using these services, refer to Chapters 3 and 4.

Controlled Release Draft

1-7 October, 1985



Table 1-3. Memory Management Services and Related Macrcinstructions

Service Name Function

FREEBUF Releases a buffer area allocated by GETBUF.

FREEHEAP Releases heap storage area allocated by GETHEAP.

GETBUF Allocates a buffer area on a 2048-byte (one
page) boundary.

GETHEAP Dynamically allocates system storage, in any
size block, independent of the system stack.

MSMAP? Maps program and data files into a task's
virtual address space.

MSUNMAP? Unmaps a file from a task's virtual address
space.

a

JSI-type system service.

1.2.4 Communication and Synchronization Services

The communication and synchronization services provide a method for
tasks to cooperate with one another to perform complex functions. This
typically involves transmitting commands and data from one task to
another or sharing data between tasks. Synchronization operations
control task access to common or shared data areas. This technique
prevents a task from destroying the integrity of shared data by
simultaneously updating the same data record or reading a record before
another task has finished updating it

To control task execution, the VS operating system uses semaphores
that are not available to user-level code. Semaphores act like gates
into critical areas of software to protect shared data or 1/0.

To control access to shared data in user-level code, the VS operating
system provides the User Synchronization facility, a fast, simple
synchronization technique. System services that can be called from a
user program allow a user to create, delete and use a synchronization
object to coordinate the access to shared data. The synchronization
object is probably used most often for resource control, that is to
update a data base or to access a specific piece of code. However, it
can be used to satisfy other application needs as well.

Controlled Release Draft 1-8 October, 1985



Clock Interruptions

The VS central processor supports two timer-related values which are
stored in control registers: the time-of-day clock and the clock
comparator. The time-of-day clock is a value, contained in one or two
control registers (depending on VS system), that is incremented
periodically, independent of central processor activity. The clock
comparator is a value, contained in one or two control registers
(depending on VS system), that is continuously compared with the
time—-of~day clock. Whenever this comparison finds the time-of-day clock
to be equal to or greater than the clock comparator, a clock interrupt is
made pending. Any task running under the operating system may request
interval timing services.

For more information on communication and synchronization, refer to
Chapter 6.

Table 1-4 summarizes the communication and synchronization services.
For detailed instructions on using these services, refer to Chapters 3
and 4.

Table 1-4. Communication and Synchronization Services
and Related Macroinstructions

Service Name Function

CHECK Checks for an occurrence of an event (I/O
operation, timing interval expiration, message
to be sent, PF key, unsolicited interrupt, TC
I/0, semaphore wait, session ID, mailbox) or
combination of events.

CREATE Creates an intertask message receipt port.

DESTROY Deletes an intertask message receipt port.

IPCB Describes the interprocessor control block
(IPCB).

IPCLOSE Closes a specified number of telecommunications

devices that were opened with IPOPEN.

IPOPEN Opens specified telecommunications devices for
I/0 between the operating systems and the data
link processor (DLP).

Controlled Release Draft 1-9 October, 1985



Table 1-4. Communication and Synchronization Services
and Related Macroinstructions (continued)

Service Name Function

RECEIVE Initiates a data reception operation between the
operating system and the data link processor
{DLP) .

RESETIME Cancels an interval timing request previously

established by SETIME which has not been the
subject of a CHECK INTERVAL or previous
RESETIME.

SBREAK® Removes a task that is holding a synchronous
object and gives the object to the task that
issued the break synchronization call.

SCREATE® Creates a data structure that controls the use
of a shared resource.

SDELETE® Marks a synchronous object for delete, thereby
disallowing any new waiters to enter the queue.

SENTER® ‘| Issues a request to gain control of the
synchronization object to use the resource.

SETIME Sets a timer interval for the issuing task to
expire at the time specified, or after the
number of 1/100 second units specified.

SEXIT? Releases the <caller from control of the
resource, and activates the next waiter.

SUBMIT Transfers files from one system to another over
WangNet. It also submits files for printing.

TCOPTION Sets the TC stream options in the user file
block (UFB).

TRANSMIT Initiates an I/0 operation directed to the DLP
on the addressed communication channel device.

UNITRES Reserves - and releases exclusive use of
telecommunications devices, lines, and

peripheral processors.

XMIT Sends a message to a specified intertask message
port.

a

JSI-type system service.

Controlled Release Draft 1-10 October, 1985



1.2.5. File Services

File services support many file management routines including file
resource allocation, file information update and retrieval, DMS file
transaction, and file open, close, delete and rename.

Table 1-5 summarizes the file services. For detailed information on
using these services, refer to Chapter 4.

Table 1-5. File Services and Related Macroinstructions

Service Name Function

AXD1 Allows symbolic reference to the alternate
descriptor block (AXD1) which describes the
alternate index structure of an indexed file.

AXDGEN Generates the AXD1l block.

BCE Describes the buffer control entry (BCE)
contained in the buffer control table (BCT).

BCTBL Describes the buffer control table (BCT).

BCTGEN Generates a buffer control table for use in

buffer pooling.

BEGTRANS . Marks the beginning of a DMS transaction.
CLOSE Closes a file.
DELETE Deletes the last record read from an indexed

file on disk.

DEXIT Provides a deadlock exit from DMS/TX.

FDR1 Describes the file descriptor record block,
format 1 (FDR1l), which contains the attributes
of the file and the first three extents of
single volumes.

FDR2 Maps symbol names to the file descriptor record
block, format 2 (FDR2), which describes up to 10
additional extents to a file for a single volume
file; up to nine additional extents for a
multivolume file.

FDR3 Maps symbol names to the file descriptor record
block, format 3 (FDR3), which contains
information on files on volume sets.

Controlled Release Draft 1-11 October, 1985



Table 1-5. File Services and Related Macroinstructions (continued)

Service Name Function

FREEALL Frees all resources acquired through the sharing
task.

FREESHR Releases all of |user's resources acgqguired
through the sharing task.

FREEXRTS Releases extension rights acquired through
GETXRTS (DMS function).

GETXRTS Acquires more resources while already holding
resources (DMS function).

OPEN Opens a file.

PROTECT Updates protection information (protection
class, owner of record, expiration date) for a
disk file or a library of disk files.

READ Reads a record from a file or device supported
by DMS.

READFDR Locates a disk file on a specified volume and
copies its FDR1, FDR2, or FDR3 blocks into
memory.

READVTOC Provides a disk volume table of contents (VIOC)
information.

RENAME Renames a disk file or library.

REWRITE Rewrites a record to a file or device.

ROLLBACK Undoes a DMS/TX transaction.

SCRATCH Deletes a disk file or library from a volume.

SETRECOV Attaches or detaches a file with recovery blocks
to a DMS/TX database, or clears a crash status.

START Start file processing in a specified mode or at
specific record.

START HOLD/RELEASE | Requests a hold or release on resources in a
data file.

Controlled Release Draft

1-12 October, 1985




Table 1-5. File Services and Related Macroinstructions (continued)

Service Name Function

SUBMIT Transfers files from one system to another using
WangNet. It also submits files for printing.

UFB Describes the user file block (UFB).

UFBGEN Generates the wuser file block (UFB) with
specified fields initialized.

UPDATFDR Updates existing FDR blocks.

WPCALL Calls routines to do I/0O on a word processing
document.

WRITE Writes the next consecutive record (consecutive

or indexed files) or writes a specified record
(indexed file).

WV46MAP Maps the parameter list supplied to SUBMIT and
provides information to use by SUBMIT with the
PLIST option.

1.2.6 Security Services

The Security Logging facility tracks security related events that
occur during system operation and stores this information in a log file.
Security Logging not only provides a method of accountability for system
use, but can also serve as an effective deterrent to security
violations. Application programs can be written to control the Security
Logging facility using the system services that support the facility.
These services can be used only by System Administrators.

Table 1-6 summarizes the security services. For detailed information
on using these services, refer to Chapters 3 and 4.

Controlled Release Draft 1-13 October, 1985



Table 1-6. Security Services and Related Macroinstructions

Service Name

Function

o

CNTROLOG?

Communicates control information to the
operating system security logging task.

LOGR

Generates a DSECT which defines all the fields
found in a security 1logging system PUTLOG
record, their identifiers, and the event types
and subtypes.

PROTECT

Updates  protection information (protection
class, owner of record, and/or expiration date)
for a disk file or a library of disk files on a
volume.

PUTLOG?

Inserts a record into the system security event
logging database file.

a

JSI-type system service.

Controlled Release Draft

1-14 - October, 1985



CHAPTER 2
CALLING SYSTEM SERVICES

2.1 OVERVIEW

This chapter describes how to call both the JSI-type services and the
SVC-type services. Examples of using the JSI-type services are provided
in Section 3.3. As part of those examples, SVC-type services are also
used. Refer to Chapter 6 for a detailed description of how the program
stack is handled for the JSI-type and SVC-type services.

2.2 CALLING THE SYSTEM SERVICES

The system services that use the JSI instruction do not wuse
supervisor calls (SVC) to perform the service. As a result, there is
more flexibility in their use because they could be loaded to any free
space in memory, whereas SVC-type services are loaded at a defined
location.

NOTE

The JSI (jump to subroutine) instruction operates in the same
manner as the JSCI (jump to subroutine on condition indirect)
instruction, except that the jump to the specified subroutine
is always made. No conditions have to be met. The stack for
the JSI instruction is handled the same way as the stack is
handled for the JSCI instruction. Refer to Chapter 6 for
more information on the JSCI instruction.

Controlled Release Draft 2-1 October, 1985



The macro definitions of the JSI-type services are stored in @MACLIB@
on the system volume. The executable code of the JSI-type services are
part of a shared subroutine library, called @SYSSERV on the system
volume. To call one of these services, the Linker is used. The shared
subroutine library must be enabled (enter YES next to the field SHAREDSL
for the prompt "Create a SHARED subroutine library?" on the Linker
OPTIONS screen). An alias is a name of up to 40 characters assigned to
each shared subroutine library. The alias for the JSI-type system
services shared subroutine library is @SYSSERV. @SYSSERV is entered on
the SSLALIAS screen. At runtime, the address of the service is resolved,
the routine is called and run. It does not become part of the resident
code of the program. Refer to Section 3.3 for examples on using these
system services. Refer to VS Linker and Symbolic Debegger Reference for
more information on using the Linker.

The SVC-type system services are 1located in the system library
@MACLIB@ on the system volume. These services are a resident part of the
operating system code. They are accessed when the program is run. Refer
to VS Principles of Operation for more information on the SVC
instruction.

The assembly language code for calling either type of service (JSI or
SVC type) is the same. The name of the macro is entered, along with any
necessary parameters, as follows:

[label] name_of_service [parameter], [parameter], ...

An example of a call for the MSUNMAP system service (JSI-type) is as
follows:

MSUNMAP RETURNCODE=RC, PATHNAME=PTH

An example of a call for the GETPARM system service (SVC-type) is as
follows:

GETPARM FORM=SELECT ,KEYLIST=CNTRL,MSG=MSGl,PFKEYS=(R10)

When printing out assembled program code that includes system
services, the option of printing the expanded macro statements is
available. PRINT GEN prints the expanded macro; PRINT NOGEN does not
print the expanded macro. When PRINT GEN is specified, a "+" symbol
precedes all program statements generated by the macro. For example,
lines 69 through 73 of the following program section are the
assembler—-generated statements for the GETPARM system service:

68 GETPARM FORM=SELECT, KEYLIST=CNTRL, MSG=MSGl, PFKEYS=(R10)
69+ PUSH 0.R10 Push the PF key mask on the stack
70+ PUSHA  0,CNTRL Put the KEYLIST address on the stack
71+ PUSHA  0A,MSGl Put the MSG address on the stack

72+ MVI (0(15),B'00010100' Move in the GETPARM options byte
73+ SvC 20 (GETPARM)

Controlled Release Draft 2-2 October, 1985



2.3 RETURN CODES

When a system service has been completed, a return code is issued.
The return code indicates the status of the operation:

e If the operation was successful, the return code is always zero.

° If there was an error, the return code is a nonzero value. The
relevant values returned for each service are described in the
detailed service-by-service descriptions.

All return codes and associated error definitions are maintained in

the system file SYSERROR in @MACLIBGE.

2.4 ASSEMBLY LANGUAGE CODING CONVENTIONS

This section describes two conventions to remember when assembling a
program. For more information on conventions to use when coding a
program, refer to the VS Assembly Language Reference.

The first statement in a program should be a CODE statement. This
causes the source code following the statement to be part of the
reentrant program section named by the label in the CODE statement. The
syntax for the CODE statement is as follows:

label CODE Not used; should be blank
The label is required and may have a maximum of eight characters. It is
used as the external name of this reentrant program section. Entry
symbols in code or static sections are also limited to eight characters.
If a static area is desired, the STATIC statement should be used.
The assembler allows any number of these statements and allows initial

values to be specified. The syntax for the STATIC statement is as
follows:

label STATIC Not used; should be blank

The label is required and may have a maximum length of eight characters.
It is used as the external name of this static section.

Controlled Release Draft 2-3 October, 1985



2.5 REGISTER CONVENTIONS

There are 16 general 32-bit registers provided for the programmer's
general use. The standard conventions for the use of these registers are
as follows:

e RO through R13 —- general use. However, Rl is used as a pointer
to an argument list for use with some system services. Refer to
the service-by-service descriptions.

® Rl4 -- references static area (refer to the programming example
in Section 4.3.1).

® RI15 —-- Register 15 is the stack pointer (SP) and must always
address the 1lowest location on the stack which contains usable
data or into which data may be placed by any non-PUSH
instruction. This convention must be followed in all programs.

Use the REGS macroinstruction (refer to Chapter 4) for establishing
symbolic names for the general registers.

Controlled Release Draft 2-4 October, 1985



CHAPTER THREE
JSI-TYPE SYSTEM SERVICES AND RELATED MACROINSTRUCTIONS

3.1 OQOVERVIEW

This chapter describes macros for system services that require
special 1linking procedures for their use. Chapter 4 discusses system
services invoked by the SVC instruction.

The macroinstruction definitions are contained in individual files
(identified by name) in the library, @MACLIB@, on the system volume. The
assembler may access one or more of these files when processing a source
program containing macro calls.

3.1.1 V Type Address Constants

For system services described in this chapter, each macro generates a
V type address constant for the linkage table entry of the system service
that it invokes. The V type constant implies that the 1label is an
external reference whose address will be resolved later. There is no
need to declare the label as external by coding an EXTRN statement.

3.1.2 Linking the System Services

The executable object code for each system service resides in a
system shared subroutine library called @SYSSERV on G@GSYSTEM@ of the
system volume. The code is linked into the user program by supplying
@SYSSERV as the alias during the link procedure. Refer to the VS Linker
and Symbolic Debugger Reference for further information on how to link in
a shared subroutine library.

Controlled Release Draft 3-1 October, 1985



3.2 SYSTEM SERVICE DESCRIPTIONS

In the following sections, each system service description contains
the following information:

e Syntax -—- This section describes the format for coding a
macroinstruction. The programmer must adhere to assembly
language syntax rules as described in the VS Assembly Language
Reference when coding the macroinstructions. Parameters for the
call are listed in the reverse order in which they are pushed
onto the parameter block. That is, the return code address is
always the 1last parameter pushed. As the macro generates the
code to push the parameters in the expected order, assembly
language programmers may code the call to the service with the
parameters in any order. However, high-level language
programmers must respect the order shown in the syntax section of
the system service description.

* Function -- This section describes the functions of the service.

e Parameter definitions -- This section describes in detail the
parameters that may be used with the macro call, and their valid
values. Unless otherwise stated, the argument to a KEYWORD is
the address of the wvalue, not the value itself. The address may
be a register specification in parenthesis or an address
expression. This section also describes whether the parameter is
an input or output parameter and the parameter's data type.

e Return Codes —— This section lists the valid return codes for the
system service. A return code of zero always indicates success.
The SYSERROR macro in Chapter 4 is provided for standardization
of wuser program error message. The return code section is
onmitted for macroinstructions that generate or describe system
data structures.

e Example -- The section contains at least one coding example for
each macro. Also included is the code generated when the macro
is expanded and the static sections statements containing
constant or storage declarations for the parameters.

Data Types

The data type descriptions are represented in PL/1 notation for easy
interpretation by high-level language programmers. Table 3-1 is a
conversion chart from PL/1 to assembly language.

Controlled Release Draft 3-2 October, 1985



Table 3-1. Data Type Conversion Table

PL/1 Assembler
Fixed bin(31.,0) DS F
Fixed bin(15,0) DS H
Char(n) DS CLn
Char(n) var® DC H'n'

DS CLn
Bit(n) DS BL.n
Pointer DS A(symbol)

The char(n) var data type assumes that the first two bytes
(halfword aligned) contain a count of the number of characters
that follow. The variable n specifies the maximum number of
characters that may follow.

Error Handling Routines

Some of the services have an additional optional parameter for
specifying the entry point of an error handling routine. The syntax is:
[ ,ERROREXIT=1label]. When a service returns a code indicating a failure
in the call and the ERROREXIT parameter is specified, the system
transfers control to the address specified with the ERROREXIT parameter.

Controlled Release Draft 3-3 October, 1985



3.2.1 CNTROLOG - Control Logging of System Security Events

Syntax

[label] CNTROLOG RC=returncode

[ .SETEVENTS=setevents]

[ .RESETEVENTS=resetevents]

[ ,SETVIOLATION=setviolation]

[ ,RESETVIOLATION=resetviolation]
[ ,CONTROL=control

[ .NEWLIB=newlibrary]

[ ,NEWVOL=newvolume]

( .GETEVENTS=getevents]

[ .GETVIOLATIONS=getviolations]
[ .GETSTATUS=getstatus]

[ ,ACTFILE=activefile]

[ ,ACTLIB=activelibrary]

[ ,ACTVOL=activevolume]

[ ,INACTFILE=inactivefile]

[ ,INACTLIB=inactivelibrary]

[ ,INACTVOL=inactivevolume]

[ ,SETALTVOL=setalternatevolume]
[ ,SETNRECS=setnrecs]

[ ,GETALTVOL=getalternatevolume]
[ ,GETNRECS=getnrecs]

Function

CNTROLOG communicates control

security logging task.

information to the operating system

This service provides the following functions:

1. Start and stop logging up to 256 individual types of events.

2. Start and stop logging of attempted violations of up to 256

individual events.

3. Specify a new file name to be used for logging events or
continuing using an already active file.

4, Return the types of events which are currently being logged, the
types of events whose attempted violations are being logged, the
status of the logging task, the volume, library and file of the
active logging file, the volume, library and file of the inactive

logging file.

Controlled Release Draft

3-4 October, 1985



Events consist of logon, logoff, file open and close, file rename,
file delete, file attribute change, userlist change, program invocation,
procedure invocation, background job initiation, DP print request, WP
print request, mount and dismount commands, operator-user communications,
system messages to the operator, attach/detach of disks and printers,
acquire/release of workstations, system snapshot dumps, and attempted
violations. See the LOGR macro for the event/bit definitionms.

When starting the logging task with the new log file option, the
system creates a file name that consists of the time and date of file
creation. The caller specifies the library and volume with the NEWLIB
and NEWVOL parameters. To obtain the file specification for a log file
just closed as a result of a new log file request, specify the INACTFILE,
INACTLIB and INACTVOL output parameters on the same call to CNTROLOG as
the request to start a new log file. The system returns the file
specification of the new file in the ACTFILE, ACTLIB and ACTVOL
parameters.

The caller must have system administrator and operator privileges to
perform the privileged functions of this service.

Parameter Definitions

Parameter I/0 Data Type
Definition
activefile Output char(8) var

Returns the name of the currently active log file. If used when
opening a new log file (CONTROL=2), CNTROLOG returns the name of the
newly created log file.

activelibrary Output char(8) var
Returns the name of the library of the currently active log file. If
used when opening a new log file (CONTROL=2), CNTROLOG returns the
library of the newly created log file.

activevolume Output char(8) var
Returns the name of the volume of the currently active log file. If

used when opening a new log file (CONTROL=2), CNTROLOG returns the
volume of the newly created log file.

Controlled Release Draft 3-5 October, 1985



control Input fixed bin(31,0)

Changes the state of the logging facility. A value of 3 means that
logging is restarted, and is to continue using the same log file that
was used the last time logging was active. If logging is already
active, this is an invalid request, and the caller is notified. A
value of 1 causes logging activity to terminate (the caller is
notified if logging is not active). A value of 2 causes a new log
file to be opened. If logging is active at the time of the call,
then the current file is closed. If logging is inactive, then
logging is started. Parameter restricted to privileged callers.

getalternatevolume Cutput char(6)var

Returns the name of the volume to be used if the primary volume
cannot be used. Cannot be used with SETALTVOL.

getevents Output bit(256)
Returns the events which are being logged. Each bit represents an
individual event. This parameter may not be used with the SETEVENTS
or RESETEVENTS parameters.
getnrecs Output fixed bin(31,0)
Returns the value set by the last SEINRECS. This is the number
used to set the initial extent size when opening a new log file.
It cannot be used with SETNRECS.
getstatus Output fixed bin(31,0)
Returns the state of the logging facility. A value of 0 means that
logging is inactive. A value of 1 means that logging is active.
This parameter may not be used with the CONTROL parameter.
getviolations Output bit(256)
Returns the events whose attempted violations are being logged.
Each bit represents an individual event. This parameter may not be
used with the SETVIOLATIONS or RESETVIOLATIONS parameters.
inactivefile Output char(8) var
Returns the name of the log file just closed by the CONTROL=2

action. This parameter may only be used in conjunction when
specifying CONTROL=2. Restricted to privileged callers.

Controlled Release Draft 3-6 October, 1985



inactivelibrary Output char(8) var

Returns the name of the library of the log file just closed by the
CONTROL=2 action. This parameter may only be used when specifying
CONTROL=2. Restricted to privileged callers.

inactivevolume Output char(8) var

Returns the name of the volume of the log file just closed by the
CONTROL=2 action. This parameter may only be used when specifying
CONTROL=2. Restricted to privileged callers.

newlibrary Input char(8) var

The name of the 1library in which the new log file is to be
created. This parameter is only valid when specifying CONTROL=2.
Restricted to privileged callers. Defaults to last library used.

newvolume Input char(8) var

The name of the volume on which the new log file is to be created.
This parameter is only valid when specifying CONTROL=2. Restricted
to privileged callers. Defaults to last volume used.

resetevents Input bit(256)

Determines the events which are no longer to be logged. Each bit
represents an individual event. Bits set to 1 will correspond to
events to be turned off (not to be logged). If both SETEVENTS and
RESETEVENTS are specified at the same time, RESETEVENTS will be
processed first. Restricted to privileged callers.

resetviolations Input bit(256)
Determines the events whose attempted violations shall no longer be
logged. Each bit represents an individual event. Bits set to 1
will correspond to events to be turned off (not to be logged). If
both SETVIOLATIONS and RESETVIOLATIONS are specified at the same

time, RESETVIOLATIONS will be processed first. Restricted to
privileged callers.

returncode Output fixed bin(31,0)

Code indicating the success or failure of the routine call.
setalternatevolume Input char(6) var

The name of a wvolume to be used as an alternate volume when the

primary volume cannot be used. Defaults to NEWVOL if no previous
ALTVOL specified. Restricted to privileged callers.

Controlled Release Draft 3-7 October, 1985



setevents Input bit(256)
Determines the events to be logged. Each bit represents an
individual event. Bits set to 1 indicate the events to be logged.
Restricted to privileged callers.
setnrecs Input fixed bin(31,0)
The size of the initial extent of a new log file (in number of
records). This number is used to get UFBNRECS. Restricted to
privileged callers.
setviolations Input bit(256)
Determines the events whose attempted violations are to be logged.
Each bit represents an individual event. Bits set to 1 will

correspond to events to be logged. Restricted to privileged
callers.

Return Codes

Code Definition
@ERACC Access denied.
@ERGETRSTEVENTS Cannot do both getevents and resetevents on

same CNTROLOG call.

@ERGETRSTVIOLS Cannot do both getviolations and
resetviolations on same CNTROLOG call.

@ERGETSETEVENTS Cannot do both getevents and setevents on
same CNTROLOG call.

@ERGETSETVIOLS Cannot do both getviolations and
setviolations on same CNTROLOG call.

@ERINACTNOTNEW Cannot request inactivefile when not doing a
newlog on CNTROLOG call.

@ERIOERR I/0 error.

GERIPTYP Illegal parameter type.

@ERLOGGINGON Logging is already active.

GERLOGINACTIVE Logging is not active.

Controlled Release Draft

3-8 October, 1985

~—



Code

@ERLOGNOTPRIV

@ERNEWLIBNOTNEW

@ERNOREPLY

@ERSTATCNTRL

@ERUNPRIV
@ERWRONGMSG

@ERGETSETALT

@ERGETSETNRECS

Example

Definition

Caller not authorized to 1log this event
type.

Cannot specify newlib and control if control
not = newlog.

No reply message from SYSTSK.

Cannot do both control and getstatus on same
CNTROLOG call.

Unprivileged caller.
Invalid message sent back by SYSTSK.

Cannot do both getalternatevolume and
setalternatevolume on same CNTROLOG call.

Cannot do both getnrecs and setnrecs on same
CNTROLOG call.

CNTROLOG RC=RCODE, GETEVENTS=EVENTMAP,
GETVIOLATIONS=VICMAP,ACTFILE=LOGFILE,ACTLIB=LOGLIB,
ACTVOL=LOGVOL ,GETSTATUS=0NOFF , STATIC=(R14)

PUSHA 0,LOGVOL
OI 0(15).,x'80"
PUSHA 0,LOGLIB
PUSHA 0,LOGFILE
PUSHA 0,ONOFF
PUSHA 0,VIOMAP
PUSHA 0,EVENTMAP
PUSHA 0
PUSHA 0
PUSHA 0
PUSHA 0
PUSHA 0
PUSHA 0
PUSHA 0
PUSHA O

+ 4+ +++++HF+++++++
OCOO0OOO0OC0CO

el

CODE

Controlled Release Draft

. Volume for Active Log .
. Indicate Parameter List End .
. Library for Active Log .
. Filename for Active Log .
. Get Status .
. Get Violations .
. Get Events .
(New Log File's Volume)
(New Log File's Library)
(Control parameter)
(Reset Violations)
(Set Violations)
(Reset Events)
. {Set Events) .
. Return Code .

3-9 October, 1985



+#CNTROLG

+ 4+ +++++++

RCODE
EVENTMAP
VIOMAP
LOGFILE
LOGLIB
LOGVOL
ONOFF

STATIC

ORG  #CNTROLG

DC V(CNTROLOG)
CSECT

L 1,=R(#CNTROLG)
L 1,0(R14,1)
PUSH 0,1

LA 1,4(,15)

JSI  0(,15)

POPN 0,60

(Static Section)

DS F

DC BL.256'0"

DC BL.256'0'

DC CL8' !
DC CL8' !
DC CL6' !
DC F'0'

Controlled Release Draft

. with the VCON .

. Section for PUTLOG VCON .
. Start the section ...

Rejoin current section .
Address Static Section .

Add Static Base .

. Enstack VCON Address .
. Address Parameters .
. Call PUTLOG .

Restore Stack .

3-10

October,

1985



3.2.2 LOGR - System Security Logging Record Format

Syntax

[label] LOGR [NODSECT]([,STORAGE={ NO}]
{YES}

Function

This macro generates a DSECT which defines all the fields found in a
security logging system PUTLOG record, their identifiers, 'and the event
types and subtypes. It optionally allocates storage for a code section
through the NODSECT parameter. The STORAGE parameter controls the amount
of storage allocated for a code section (if NODSECT is specified) or the
offsets shown in a DSECT. Also may be used in conjunction with the
CNTROLOG macro for setting events.

Parameter Definitions

Parameter I1/0 Data Type
Definition
NODSECT Input

Specifying NODSECT results in storage being allocated as part of the
current code or static section. If not specified, the system
generates a dummy section (with no storage allocation) showing
offsets relative to the beginning of the section.

STORAGE Input

STORAGE=YES sets the replication factor for each DS statement to one
starting with LOGR$TYPE. STORAGE=NO sets the replication factor for
each DS statement to zero. If NODSECT is specified, specifying
STORAGE=YES generates storage for the total macro. Specifying
NODSECT, STORAGE=NO generates storage for the shorter form of the
macro.

Controlled Release Draft 3-11 October, 1985



Example

LOGR
+LOGR DSECT

4hhkhhhkkhhhhhdhhhhhhhhhhhhhhkhhhhkhhhkhhhhhkhhkhhkhhhkhkhhhkhhhkhkhhkhhkdhkk

+%*

+* This DSECT contains the definition of all fields found in a PUTLOG
+* record, their identifiers, the event types, and the event

+* subtypes. Within this DSECT, a labeling convention is used that

+* makes things easier to follow. The convention is: labels

+* with '#' in them refer to field identification numbers; labels with
+* '$' in them refer to the value portion of the field:; labels with

+* '@' in them refer to possible values for the field. Another

+* convention is that identifiers for common fields start with the

+* number 255 and descend.

+*

Identifiers for type-dependent fields
+* start with the number 1 and ascend.

¥ % % N N X ¥ F X F* F *

- Fe e e de e Je de e de de e de de de e de e e de e o de de e de de Fo e do du o do de e e de de de e e de de o de K Ko do g o de de Ko do de de e Je do o do dode de e dede Fodede ke ke

+LOGRBEGIN
+LOGRRECLENGTH
+LOGRFIELD

+%*
+LOGRFIELDID
+LOGRFIELDLEN
+%

+%
+LOGRFIELDVALUE
+LOGRHDR
+LOGR#TYPE
+LOGR$TYPE

4%
+LOGR#SUBTYPE
+LOGR$SUBTYPE
+LOGR#TIME
+LOGR$TIME
+LOGR#VIOLATION
+LOGR$VIOLATION
+LOGR@ALERT

+%*

+LOGR#CUID
+LOGR$CUID
+LOGRH#CWS
+LOGR$CWS
+LOGR#CJOB
+LOGR$CJOB
+LOGR#SUID
+LOGRSSUID
+LOGR#SWS

+%

DS
DS
DS

DS
DS

DS
DS
EQU
DS

EQU
DS
EQU
DS
EQU
DS
EQU

EQU
DS
EQU
DS
EQU
DS
EQU
DS
EQU

OF
H
()4
XLl
XL2

0XL.256
0X
255
0XL2

254
0XL2
253
0XL8
252
0BL2
1

251
0CL8
250
0CLS8
249
0CL8
248
0CL38
247

Controlled Release Draft

Total length of record

The format of a field in a PUTLOG
record.

Contains the field identifier.
Contains the length of the field
value (does not include the ID or
length bytes).

Contains the value of the field.

The common fields of a PUTLOG record
The ID # of the event type field

The description of the value portion
of the event type field

The record subtype

Timestamp

Violation Flag byte

. Record represents an attempted
violation

User ID of the PUTLOG caller
Workstation used by the PUTLOG caller
Job name used by the PUTLOG caller
User ID of the subject of the PUTLOG

Workstation used by the subject of
the PUTLOG

3-12 October, 1985



+LOGR$SWS DS 0CL8

+LOGR#SJOB EQU 246 Job name of the subject of the PUTLOG
+LOGR$SJOB DS O0CLS
+LOGR#STASK EQU 245 Task ID # of the subject of the PUTLOG
+LOGR$STASK DS O0XL2

+LOGREVENTDATA EQU  *

phhhhhkhhkhhhkhkhhhhhhkhhkhkhhkhkhkkhkhkkhhkhhkhk

+* User Application Event Type *
fhhkhkhhhkhhhkhhhkhkhkhkhhkhhhhhhkkhkhhkhhkkhkkhkhhhkkk

+LOGRUSER EQU 0 User application event type
+LOGR#USERDATA EQU 1 ID # for user data field
+LOGR$USERDATA DS 0XL256 User data

ghhkhhkhhhkhkhhhkhkhhhhhhkhhhkhdkhhkhhhkhdkhkkhikt

+* Logon Event Type *

P dede e e e e e ke deds e ok ok o e ke e e ok ok ok ok ok e

+ ORG  LOGREVENTDATA

+LOGRLOGON EQU 1 Logon event type

+LOGR#LOGONERR EQU 1 ID # for logon error field
+LOGRSLOGONERR DS 0XL1 Error code when logon is rejected

+LOGR@INVIDPSW EQU
+LOGREGMULTLOG  EQU
+LOGREUNBOPRD  EQU
+LOGR@LOGINHIB EQU
+LOGREWSRESTR  EQU
+LOGREGETMEM EQU
+LOGR@GETBLK EQU
+LOGR@SEG2SZ EQU . Segment 2 size error

+LOGRE@NOLOGPROC EQU NO LOGON PROC FOR NOHELP USER

*******************************************

. Invalid user ID or password

. User logged on elsewhere

. Unable to open or read user list
. Logon inhibited

User restricted from WS

. Getmem error

. Getblk error

WO NN W
L]

+* Logoff Event Type *
phhkhkkhhhhkhhhkhhhhhhhkhhhkhhhkhhhhhhhdihhhkhhkh

+ ORG LOGREVENTDATA

+LOGRLOGOFF EQU 2 Logoff Event Type

+LOGR#LREASON EQU 1 ID # for Reason for Logoff field
+LOGR$LREASON DS OXL1

+LOGRELNORMAL. EQU 0 . User - initiated (normal) logoff
+LOGR@LFORCED EQU 1 . Forced Logoff

Controlled Release Draft 3-13 October,

1985



o de e o de e e de e de de de K e de g e de de e e do ke e de K ek de ek ke e de de g de ke e ke

+* Opens for Input Only *

e dedede dededo dode ke e e de de ded e e e e dedede e e ek dede dede e e e ke ek

+ ORG  LOGREVENTDATA

+LOGROPENINPUT EQU 3 Opens for input only event type
+LOGR#OICLASS EQU 1 File class of file opened
+LOGR$OICLASS DS O0CL8

+LOGR#OIDEVCLASS EQU 2 Device class (from UCBCLASS)
+LOGR$OIDEVCLASS DS OXL1

+LOGR#0OIDEVICE EQU 3 Device name

+LOGR$OIDEVICE DS OCL8

+LOGR#0IOWNER EQU 4 User ID of file owner
+LOGR$OIOWNER DS OCLS8

+LOGR#OIFILE EQU S File name of file opened
+LOGR$OIFILE DS OCL8

+LOGR#OILIB EQU 6 Library of file opened
+LOGR$OILIB DS O0OCL8

+LOGR#O0IVOL EQU 7 Volume of file opened
+LOGR$OIVOL DS OCL8

+LOGR#OITYPE EQU 8 Open type (from UFBF2)
+LOGR$OITYPE DS O0XL1

+LOGR#0OIERROR EQU 9 Error on protection violation

+LOGR$OIERROR DS OXL1l
R T T

+*  Opens for Possible Modification *
dhhhhkhhkhkhhhkhhkhhhhhhkhhkhkhhkhhhhkhkkkkhhhhkhhkk

+ ORG  LOGREVENTDATA

+LOGROPENMOD EQU 4 Opens for possible modification event type
+LOGR#OMCLASS EQU 1 File class of file opened
+LOGRJOMCLASS DS OCL8

+LOGR#OMDEVCLASS EQU 2 Device class (from UCBCLASS)
+LOGR$OMDEVCLASS DS OXL1

+LOGR#OMDEVICE EQU 3 Device name

+LOGR$OMDEVICE DS OCL8

+LOGR#OMOWNER EQU 4 Userid of file owner
+LOGR$OMOWNER DS OCL8

+LOGR#OMFILE EQU 5 Filename of file opened
+LOGR$OMFILE DS OCL8

+LOGR#OMLIB EQU 6 Library of file opened
+LOGR$OMLIB DS OCL8

+LOGR#0MVOL EQU 7 Volume of file Opened
+LOGR$OMVOL DS OCL8

+LOGR#OMTYPE EQU 8 Open type (from UFBF2)
+LOGR$OMTYPE DS OXL1

+LOGR#OMERROR EQU 9 Error on protection violation

+LOGR$OMERROR DS OXL1

Controlled Release Draft 3-14 October, 1985



hhdedekhdhhhkhkhhihhhdhdhhhleddhhdekhkikhikik

+* Close *
gdedededededededede e dok dok K dedodedodedededededodededededkhdddedekkk

+ ORG  LOGREVENTDATA

+L.OGRCLOSE EQU 5 Close event type
+LOGR#CFILE EQU 1 Filename of file closed
+LOGRCFILE DS 0CL8

+LOGR#CLIB EQU 2 Library of file closed
+LOGR$CLIB DS 0CL8

+LOGR#CVOL EQU 3 Volume of file closed
+LOGRSCVOL DS OCLS8

+LOGR#CDEVCLASS EQU 4 Device class (from UCBCLASS)
+LOGR$CDEVCLASS DS OXL1

+LOGR#CDEVICE EQU 5 Device name

+LOGR$CDEVICE DS 0CL8
+LOGR#COPENTYPE EQU 6

+LOGR$COPENTYPE DS O0XL1
ek dedededededededededdedededodode dodo e e e e ek e ke e e e ek e

Open type (from UFBF2)

+* Rename *
dhhkkhkkdhdhhkhkhhhhhhhkhhhhhhhhdkikhhkkhhik

+ ORG LOGREVENTDATA

+LOGRRENAME EQU 6 Rename event type
+LOGR#RCLASS EQU 1 File class of file renamed
+LOGR$RCLASS DS 0OCL8

+LOGR#ROWNER EQU 2 User ID of file owner
+LOGRSROWNER DS O0CLS8

+LOGR#ROFILE EQU 3 Filename of old file
+LOGR$ROFILE DS OCLS8

+LOGR#ROLIB EQU 4 Library of old file
+LOGR$ROLIB DS 0OCLS

+LOGR#ROVOL EQU 5 Volume of old file
+LOGR$ROVOL DS 0OCLS8

+LOGR#RNFILE EQU 6 File name of new file
+LOGR$RNFILE DS OCL8

+LOGR#RNLIB EQU 7 Library of new file
+LOGR$SRNLIB DS 0CL8

+LOGR#RNVOL EQU 8 Volume of new file
+LOGR$RNVOL DS OCLS8

+LOGR#RTYPE EQU 9 Type of rename
+LOGR$RTYPE DS OXL1

+LOGRE@RTFILE EQU 1 Rename of a file
+LOGR@RTLIB EQU 2 Rename of a library

Controlled Release Draft 3-15

October,

1985



S dedededo oo de de de de oo e do o de ke de do ko dode de e ke o do de e ded ke de e ke ke ke ke

+* Scratch *

o Fe de e e de de e e Jo Je K Jo do e de e Fe de e de Je o de Je o de e e de ke e de de Ko ke e e ke

+ ORG LOGREVENTDATA

+LOGRSCRATCH EQU 7 Scratch event type
+LOGR#SCLASS EQU 1 File class of file to be scratched
+LOGR$SCLASS DS OCL8

+LOGR#SOWNER EQU 2 User ID of file owner
+LOGRPSOWNER DS OCLS

+LOGR#SFILE EQU 3 File name of file scratched
+LOGR$SFILE DS OCL8

+LOGR#SLIB EQU 4 Library of file scratched
+LOGR$SLIB DS 0CLS8

+LOGR#SVOL EQU 5 Volume of file scratched
+LOGR$SVOL DS OCL8
dhhhhhhhhhkhhhhhkkhkhhhhhkhhihdhdkhkhhkikk

+* Change File Attributes *
fhhkhkhkhhhkhkhhhhhhhkhhhhkhhkhkhhkhhhhhkihhkskkk

+ ORG LOGREVENTDATA

+LOGRCHNGFATTR EQU 8 Change file attributes event type
+LOGR#CFACLASS EQU 1 File class of file
+LOGR$CFACLASS DS OCL8

+LOGR#CFAOWNER  EQU 2 User ID of file owner
+LOGRJCFAOWNER DS OCL8

+LOGR#CFAFILE EQU 3 File name of fiel scratched
+LOGR$CFAFILE DS OCLS8

+LOGR#CFALIB EQU 4 Library of file scratched
+LOGR$CFALIB DS 0CL8

+LOGR#CFAVOL EQU S Volume of file scratched
+LOGR$CFAVOL DS 0OCL8

+LOGR#CFAATTR EQU 6 Attribute name
+LOGR$CFAATTR DS OCL16

+LOGR#CFAOLDVAL EQU 7 01d attribute value
+LOGR$CFAOLDVAL DS 0XL32 (data type depends on attribute)
+LOGR#CFANEWVAL EQU 8 New attribute value

+LOGR$CFANEWVAL DS 0XL32

hhhhhhhkhhhhhhhkhhdkhhkhhkhkhhkhhhkhkhkihh

+% Security Program Usage *

L e T T P T T

+ ORG LOGREVENTDATA

+LOGRSECURITY EQU 9 Security program usage event type
+* oo do do & do e ke de de I ke de de K o do Jo e do de K de dode ke de Kk do ke de Kk Ko ke ke do de ke ok de de & de e e ke e ke

+* *  Subtype Add User for Security Event Type *

+%* o e de e e Jo e e e Je I e Je de Fe de de Ko de e K do e e e de K K Jo e de K e do e K de de e de de do K de K Kok de ke
+LOGRSUBSECADD EQU 1 Security subtype for add user
+LOGR#SUADUID EQU 1 User ID of new user
+LOGR$SUADUID DS OCL8

+LOGR#SUADNAME  EQU 2 New username

+LOGR$SUADNAME DS O0OCL24

Controlled Release Draft 3-16 October, 1985



+%* khkhhkhhhkhhhhhhhhhkhkhkhkhhkhhkikhkhkhkhhhhhkhkhhkhhkhkkhkhkhkkkk
+% *  Subtype Delete User for Security Event Type *

+% khkkhhkhhhhhhhhhkhhhkhihhhhhhkhihikiokikhikhihkhikihhih

+ ORG  LOGREVENTDATA

+LOGRSUBSUDEL EQU 2 Security subtype for delete user
+LOGR#SUDUID EQU 3 User ID deleted

+LOGR$SUDUID DS OCL8

+% e de de do Jo e de e de de de do do e Ko e e Ak e de e e e e e Ko e K g de Je g de e ke e de de e e K e K de ke de e e de g de de g de ke de de ke ke K K ke

+* *  Subtype Change User Attributes for Security Event Type *

+%* Je do do do e o do de Jo do o o e KoK d do e K e e e e K K e e e de B de e K K de e de ke e e de et e g g e de e de e de ke ke e e K ek ke ok

+ ORG  LOGREVENTDATA

+LOGRSUBCUA EQU 3 Security subtype for change user

+* attributes

+LOGR#SCUAUID EQU 4 User ID whose attributes are being

+* changed

+LOGR$SCUAUID DS OCLS8

+LOGR#SCUAATTR EQU 5 Name of attribute being changed
+LOGR$SCUAATTR DS O0CL16

+LOGR#SCUAOLD EQU 6 0ld attribute value

+LOGR$SCUAOLD DS O0XL72

+LOGR#SCUANEW EQU 7 New attribute value

+LOGRFSCUANEW DS O0XL72

+% hhkhkhkhkhkhkkhhhhkhhkhhkhkkhhkhkhkhkhkhkhhhkhhkhhkhhkkhhhkkhhkkhkkhhkhhkhhhhkhkhhkkkhkk
+* *  Subtype Change User Access Rights for Security Event Type *
+% Ahkkdhkhhkhhhhhkhhhkhhkkhhhhhiehhkhhhhhhhhkkhhhkhkhhhkhkhhkhhkkhhhkhkhhhkhkkhikkkk
+ ORG  LOGREVENTDATA

+LOGRSUBSUAC EQU 4 Security subtype for change user access
+* rights

+LOGR#SUACUID EQU 8 User ID whose access rights are being
+* changed

+LOGR$SUACUID DS OCLS8

+LOGR#SUACCLASS EQU 9 File class

+LOGRSSUACCLASS DS OCL8

+LOGR#SUACOLD EQU 10 Access rights

+LOGR$SUACOLD DS OBL1

+LOGR@SUACEX EQU X'80' . Execute

+LOGR@SUACRD EQU X'40' . Read

+LOGR@SUACWR EQU X'20' . Write

+LOGR#SUACNEW EQU 11 New access value

+LOGR$SUACNEW DS OBL1

Controlled Release Draft 3-17 October, 1985



+% There are still more subtypes to define here.

+ ORG  LOGREVENTDATA

+LOGRSUBSPAC EQU 5 Security subtype for change program
+* access rights

+LOGR#SPAVOL EQU 12 Program volume

+LOGR$SPAVOL DS OCL6

+LOGR#SPALIB EQU 12 Program library

+LOGR$SPALIB DS OCLS8

+LOGR#SPAFILE EQU 12 Program file name

+LOGR$SPAFILE DS OCL8

+LOGR#SPACCLASS EQU 9 File class for program access rights
+LOGR$SPACCLASS DS OCLS8

+LOGR#SPACOLD EQU 10 Access rights

+LOGR$SPACOLD DS OBL1

+LOGR@SPACEX EQU X'80' . Execute

+LOGR@SPACRD EQU X'40' . Read

+LOGR@SPACWR EQU X'20' . Write

+LOGR#SPACNEW EQU 11 New access value

+LOGR$SPACNEW DS OBL1

phhkhhhhhhhhkhkhkhhkhkhhkhkhhkhhkhhkhhhkhhkkhhkkhk

+* Program Invocations *

A Fe e e & e de e o Je de B Ko de e Je e de e e de de o de de de K e de de e de de de e de Ko Ko de

+ ORG LOGREVENTDATA

+LOGRPROGRAM EQU 10 Program invocations event type
+LOGR#PRGCLASS EQU 1 File class of program
+LOGR$PRGCLASS DS O0OCL8

+LOGR#PRGOWNER  EQU 2 Userid of owner of file
+LOGR$PRGOWNER DS OCLS8

+LOGR#PRGFILE EQU 3 File name of program
+LOGR$PRGFILE DS OCL8

+LOGR#PRGLIB EQU 4 Library of program
+LOGR$PRGLIB DS OCL8

+LOGR#PRGVOL EQU 5 Volume of program

+LOGR$PRGVOL DS OCL8

- Fe de de o de de e o do de de Ko o e o o de o o e de e o ok de Ko de de de do de de Fe e ke de ke

+* Procedure Invocations *

S dedede & dedede Ko dode do ke do ke dododode do do do e he do kb do de do de e de ke ke de ko de ke

+ ORG  LOGREVENTDATA

+LOGRPROCEDURE EQU 11 Procedure invocations event type
+LOGR#PROCCLASS EQU 1 File class of procedure
+LOGR$PROCCLASS DS 0OCLS8

+LOGR#PROCOWNER EQU 2 Userid of owner of file
+LOGR$PROCOWNER DS OCL8

+LOGR#PROCFILE EQU 3 File name of procedure
+LOGR$PROCFILE DS OCL8

+LOGR#PROCLIB EQU 4 Library of procedure
+LOGR$PROCLIB DS OCLS8

+LOGR#PROCVOL EQU 5 Volume of procedure

+LOGR$PROCVOL DS 0CL8

Controlled Release Draft 3-18 October, 1985



- Fede e g e de e e de he e e e de e e de de e de de e de de Fo K o de Ko o de de ke de e Kk ke

+* Background Jobs *
phdehkdkhhihhhihhhikhhihhhhhhhhhiinkkhhhk

+ ORG  LOGREVENTDATA

+LOGRBACKGRND EQU 12 Background jobs event type

+¥ Fields common to all subtypes within the background jobs
+* event type.

+LOGR#BGSFILE EQU 1 File name of procedure
+LOGR$BGSFILE DS OCL8

+LOGR#BGSLIB EQU 2 Library of procedure

+LOGR$BGSLIB DS O0CL8

+LOGR#BGSVOL EQU 3 Volume of procedure

+LOGR$BGSVOL DS O0OCL8

+LOGR#BGSJOB EQU 4 Job name used

+LOGR$BGSJOB DS O0CL8

+% hhkhhhhhhhhdhhhhhhhhkhkhkhhhhkhhkhhhhhkhkhkhkhkihkiekhhkik

+% *  Subtype Submit for Background Jobs Event Type *

+% Khkkhhkhhhkhhhhkhhhhhkhhhhhhhhkhhkhhhhhhhkkhhkkhhhhhhkhhikik
+LOGRSUBBGSUB EQU 1 Subtype submit background job
+LOGR#BGSCLASS EQU S File class of procedure
+LOGR$BGSCLASS DS O0CL8

+LOGR#BGSOWNER EQU 6 User ID of file owner
+LOGR¥BGSOWNER DS OCLS8

+LOGR#BGSJOBCLAS EQU 7 Job class

+LOGR$BGSJOBCLAS DS O0OCL1

+LOGR#BGSJOBTYPE EQU 8 Type of job

+LOGRSBGSJOBTYPE DS OXL1

+LOGR@BGSPERM EQU X'80' . Permanent Job

+% Rhhdhhhhkdehhkhhhhhhhhdhhhhkhhkdhhdhhkhhhdhidhihihihdhihihhkihiikiihk
+* *  Subtype Job Initiation for Background Jobs Event Type *
+% hhhhhhdhkhhkhkhhhhhkhhhhhhhkhhkihhhhkhhhkhhhhhhhkhhhhhhhhhkhhhhiihkhs
+ ORG  LOGREVENTDATA

+LOGRSUBBGJINIT EQU 2 Subtype job initiation

+* There are no additional fields for this subtype

+%* Jo e de e Fe Je Ko Je Fo Ko de do Ko do Ko d de K do Jo de Yo Ko e dede K Fe Ko de do K T Ko K de e K de K de Je e de K Jo ke K dede K do ek ek X ke Kk ok
+* *  Subtype Job Termination for Background Jobs Event Type *
+* hhhhhhhhhhhhkhhhhhhhhkhhhhhkhhhdhhhhkihddhihihhhidkkkhhhihhdkdiihi
+ ORG  LOGREVENTDATA

+LOGRSUBBGJTERM EQU 3 Subtype job termination
+LOGR#BGJTWHY EQU 9 Reason for job termination
+LOGR$BGITWHY DS O0XL1

+LOGR@BGJTINORM EQU 1 . Normal completion
+LOGR@BGJTDIED EQU 2 . Error completion (cancel condition,
+% program exception, etc.)
+LOGR@BGJTTIME EQU 3 . Expired time limit
+LOGR@BGJTOPER EQU 4 . Cancelled by operator

Controlled Release Draft 3-19 October, 1985



hhkhdkkhkhkhkhhkhkhkhhkhkhhkhhkhkhhhkhhhhkhhikk

+* DP Print Jobs *
4hhhkhkhhkhhhhhhhkhhhhhkhkhhkkhkhhkhkkhkhhkhkkhki

+ ORG LOGREVENTDATA

+LOGRDPPRINT EQU 13 DP print jobs event type

+% Fields common to all subtypes within the print jobs

+* event type.

+LOGR#DPSFILE EQU 1 File name of print file
+LOGR$DPSFILE DS 0OCL8

+LOGR#DPSLIB EQU 2 Library of print file
+LOGR$DPSLIB DS OCL8

+LOGR#DPSVOL EQU 3 Volume of print file
+LOGR$DPSVOL DS OCLS8

+* khkhhkhhhkkhhkhkhhhkhkhhkhhhhhhhhhkhhhhhhkhhkhhhkhhkhhkhihkkkk

+* *  Subtype Submit for DP Print Jobs Event Type *

+% dedede & dede e de do i de Ko K Fodo kK de Kt de ke de e b ke K Jo do Ko do ke e do do K de Kk de K de K de Kk kk ke ke
+LOGRSUBDPSUB EQU 1 Subtype submit DP print job
+LOGR#DPSCLASS EQU 5 File class of print file
+LOGR$DPSCLASS DS 0CLS8

+LOGR#DPSOWNER  EQU 6 User ID of file owner
+LOGRSDPSOWNER DS O0OCL8

+LOGR#DPSPRTCLAS EQU 7 Print class

+LOGR$SDPSPRTCLAS DS OCL1

+% % e de 3 Jo ke e de de o e de o & do g dede oK de de e de de ke Ko K de e g Jo o de do de K de e e de K K do ke K do de K de e K de de ke de de K K
+* *  Subtype Job Initiation for DP Print Jobs Event Type ¥
+% % Je Je de Je & & de de de e de e de de de de de e de de e K de ho e K de de & de de K de do K ke de K g de de dede e K de e g de ek de ke ke de ke K de
+ ORG  LOGREVENTDATA

+LOGRSUBDPJINIT EQU 2 Subtype job initiation
+LOGR#DPJIPRTR EQU 8 Name of printer used
+LOGR$DPJIPRTR DS OCLS

+% Jode de dode do o ke ke de dehe de e o e Kok de do e K de e b g dodede de o de o de ke de do K de ok ke ke ke ke de K Kok dkodo ok ok otk okodek ok k
+* *  Subtype Job Termination for DP Print Jobs Event Type

+* B de de o de o Ko de de e K de do Ko dode dede Ko K K de ke de do K ke K ok de ok K dode K do Kk do ke Ko de ke Ko do K K de K ke de do ke de de kel ok
+ ORG  LOGREVENTDATA

+LOGRSUBDPJTERM EQU 3 Subtype job termination
+LOGR#DPJTWHY EQU 10 Reason for job termination
+LOGR$DPJITWHY DS 0XLl

+LOGR@DPJTNORM EQU 1 . Normal completion
+LOGR@DPJTREAD EQU 2 . I/0 errors reading input file
+LOGR@DPJTPRTR EQU 3 . I/0 errors on printer
+LOGREGDPJTOPER EQU 4 . Cancelled by operator

Controlled Release Draft 3-20 October,

1985



dRRkhdeddddiohdodhdededodddedddedoddoddokkkkkkdkikk

+* Mount *
Fhededededededekdedddedededede dede ek e do ko g dedede e de e dede ok ke

+ ORG  LOGREVENTDATA

+LOGRMOUNT EQU 15 Mount event type
+LOGR#MTVOLUME EQU 1 Name of volume mounted
+LOGR$MIVOLUME DS 0CL8

+LOGR#MTDEVCLAS EQU 2 Device class of device
+LOGR$MTDEVCLAS DS 0XL1

+LOGR#MTDEVICE EQU 3 Device name
+LOGR$MTDEVICE DS OCL8

+LOGR#MTOWNER EQU ¢4 User ID of owner of volume
+LOGRSMTOWNER DS OCL8

+LOGR#MTMOUNTER EQU 5 User ID of mounter of volume

+LOGR$MTMOUNTER DS OCL8

dhhhhkhdhkhhkhkhkhhkhhhhkhhhhhhhhhhdhihiikikk

+* Dismount *

- de e e de e de de e dede de e dede e b de e de e de de de de de ke ke de ke dede ke de de ok ke ke ke

+ ORG LOGREVENTDATA

+LOGRDISMOUNT EQU 16 Dismount event type
+LOGR#DMVOLUME EQU 1 Name of volume dismounted
+LOGR$DMVOLUME DS 0OCLS8

+LOGR#DMDEVCLAS EQU 2 Device class of device
+LOGR$DMDEVCLAS DS 0XL1

+LOGR#DMDEVICE EQU 3 Device name

+LOGR$DMDEVICE DS 0CL8

+LOGR#DMOWNER EQU 4 User ID of owner of volume
+LOGR$DMOWNER DS O0CL8

+LOGR#DMMOUNTER EQU 5 User ID of dismounter of volume

+LOGR$DMMOUNTER DS OCLS8
pRedkddedehdededhdhhhihdodedhdhhhhhkhkikkihkhk

+* Operator - User Communications ¥

- e e e e e e e e e e e e e ke e e e e e e ok ok o ok o ok ok o e e e e e ok e

+ ORG  LOGREVENTDATA

+LOGROPERUSER EQU 17 Operator-user communications event type
+LOGR#0OUSENDER EQU 1 Sender of message

+LOGR$OUSENDER DS O0XL1

+LOGR@OUSOPER EQU 1 . Operator sent to user
+LOGR@OUSUSER EQU 2 . User sent to operator
+LOGR#OUDEVFROM EQU 2 Name of device message sent from
+LOGR$OUDEVFROM DS O0CL8

+LOGR#OUDEVTO EQU 3 Name of device message sent to
+LOGR$OUDEVTO DS OCLS8

+LOGR#OUTOUSER EQU 4 User ID message sent to
+LOGR$OUTOUSER DS OCLS8

+LOGR#OUFRUSER EQU 5 User ID message sent from
+LOGR$OUFRUSER DS OCLS8

+LOGR#OUOPEROPT EQU 6 Option used from operator screen

+LOGR$OUOPEROPT DS 0XL1

Controlled Release Draft 3-21 October, 1985



+LOGRGOUOPTONE EQU 1 . Send to single user
+LOGR@OUOPTONEI EQU 2 . Send to single user immediately
+LOGR@OUOPTALL EQU 3 . Send to all users
+LOGR@OUOPTALLI EQU 4 . Send to all users immediately
+LOGR@OUOPTREM EQU S . Remove current messages
+LOGR#OUMESSAGE EQU 7 The message sent

o

+LOGR$OUMESSAGE DS

Rdededededodedudodedodedodeododododododododedodododododededededede e ok ke ke

+% System Messages to Operator *

Rkl hhhhdehhhhkhhhhhhhihhhhkikikikkikik

+ ORG  LOGREVENTDATA

+LOGRSYSOPER EQU 18 System messages to operator event type
+LOGR#SOMESSAGE EQU 1 The message sent

+LOGR$SOMESSAGE DS 0CL160

Jhhkhhhhhhhhhhhkhkhkhkhkhkhhhhhhhhhkkhhhkiikk

+* Attach/Detach *
fRhhhhhkhkhhhhhhhhhkhhhkhhhhhhhhkhhkhkhhhhkk

+ ORG  LOGREVENTDATA

+LOGRATTDET EQU 19 Attach/detach devices event type
+LOGR#ADWHICH EQU 1 Attach or detach

+LOGR$SADWHICH DS OXL1

+LOGR@GADATTACH EQU 1 . Attach

+LOGRE@ADDETACH EQU 2 . Detach

+LOGR#ADDEVCLAS EQU 2 Device class of device
+LOGR$ADDEVCLAS DS O0XL1

+LOGR#ADDEVICE EQU 3 Name of device attached or detached
+LOGR$ADDEVICE DS O0CLS8

+LOGR#ADUSER EQU 4 User ID of operator
+LOGR$ADUSER DS OCL8

+LOGR#ADOPRDEV  EQU 5 Name of device used as operator

+LOGR$ADOPRDEV DS 0CLS8

fhhkhhhhhhkhkhkhkhhhhhhhkhkhhhhhhkkhkhhhkkkkkkk

+* Acquire/Release *
dhhhhhhkhhhhkhhkhhhhhhhhkhkhkdhhhkhhhhhkkkhkhk

+ ORG  LOGREVENTDATA

+LOGRACQREL EQU 20 Acquire/release devices event type
+LOGR#ARWHICH EQU 1 Acquire or Release

+LOGR$ARWHICH DS OXL1

+LOGR@ARACQUIRE EQU 1 . Acquire

+LOGR@ARRELEASE EQU 2 . Release

+LOGR#ARDEVCLAS EQU 2 Device class of device
+LOGR$ARDEVCLAS DS O0XL1

+LOGR#ARDEVICE EQU 3 Name of device acquired or released
+LOGR$ARDEVICE DS O0CL8

+LOGR#ARUSER EQU 4 User ID of operator

+LOGR$ARUSER DS OCL8

+LOGR#AROPRDEV  EQU 5 Name of device used as operator

+LOGR$AROPRDEV DS OCL8

Controlled Release Draft 3-22 October, 1985



thhhhhkhhkkhkhhkhhhhhhhhhkhkhkhkhkhkhhhhkkkhkkkk

+* System Snapshots *
phhkkhhkhkhkhkhhhhkhhhhhhhkikkhkkhhhhikkkkkkkik

+ ORG  LOGREVENTDATA

+LOGRSNAPS EQU 21 System snapshots event type
+LOGR#SNUSER EQU 1 User ID of operator

+LOGR$SNUSER DS OCL8

+LOGR#SNOPRDEV ~ EQU 2 Name of device used as operator
+LOGR$SNOPRDEV DS OCL8

thhdkhhkhhhhhhhhhihhkhkhkhkhkhhhhhhkhkkhkhhhhhhh

+* Logger Messages *
fRhkhhhhhhhhdhhhhhhhhhhhkhhkikhkikhidikk

+ ORG LOGREVENTDATA

+LOGRLOGGER EQU 22 Logger messages event type
+LOGR#LMSGTYPE EQU 1 Type of message

+LOGRFLMSGTYPE DS O0XL1

+LOGRGLSTARTNEW EQU 1 Logging started because of Newlog command
+LOGR@LCONT EQU 2 Logging started because of Continue

+* command

+LOGREGLSTOP EQU 3 Logging stopped because Stop command

+% issued

+LOGRE@LSTOPNL EQU 4 Logging stopped because Newlog command
+% issued

+LOGRGLRSTEVNTS EQU 5 Reset events issued 01\
+LOGR@LSETEVNTS EQU 6 Set events issued 01\
+LOGR@LRSTVIOLS EQU 7 Reset violations issued 01\
+LOGR@LSETVIOLS EQU 8 Set violations issued 01\
+LOGR@LOLDBAD EQU 9 New file opened because old one bad 02\
+LOGR@LIPL EQU 10 Logging continued because of IPL 04\
+LOGR#LUSER EQU 2 User ID of CNTROLOG caller

+LOGR$LUSER DS OCL8

+LOGR#LDEVICE EQU 3 Name of device used

+LOGR$LDEVICE DS O0CL8

+LOGR#LOLDMAP EQU 4 Previous event or violations bit map01\
+* (before set or reset issued) 01\
+LOGR$LOLDMAP DS 0BL.256 01\
+LOGR#LNEWMAP EQU 5 New event or violations bit map 01\
+% (as a result of set or reset issued)O1\
+LOGR$LNEWMAP DS OBL.256 01\
Controlled Release Draft 3-23 October, 1985



dhkhdhhhhhhhhkhihkhhhdhhhhhhhkhikiidhiikkk

+* Operator message to Logging Task *
e e e de d de de do Je e e B de de de o e de e de de e de de do K K ke T dede do ke K de ke e ke

+ ORG  LOGREVENTDATA
+LOGROPRMSG EQU 23 Operator message to logging task event
+* Type
+LOGR#OMUSER EQU 1 User ID of operator
+LOGRSOMUSER DS OCL8
+LOGR#OMOPRDEV  EQU 2 Name of device used as operator
+LOGRSOMOPRDEV DS 0CL8
+LOGR#OMMESSAGE EQU 3 The text of the message sent
+LOGR$OMMESSAGE DS O0CL160
+ ORG ,
+LOGRLENGTH EQU  *-LOGRBEGIN
+ CSECT

END BEGIN

Controlled Release Draft 3-24 October, 1985



3.2.3 MSMAP - Map Region of Virtual Address Space

Syntax

[label] MSMAP RETURNCODE=returncode,
PATHNAME=pathname,
TYPE=type,

[ OPTION=option,]

COMMAND=command,

[ .READLEVEL=readlevel]

[ ,WRITELEVEL=writelevel]
,STRTADDR=strtaddr

[ ,LOWERVA=lowerva, ]

[ UPPERVA=upperva]

[ ,FILESIZE=filesize]

[ ,FILECLS=fileclass]

Function

MSMAP provides for mapping program and data files into a task's
virtual address space. The file may already exist or may be opened in
exclusive or shared mode when issuing the MSMAP call. Through the
COMMAND parameter, the user may specify mapping at a specific address,
within a range of addresses or at any available address. The recommended
choice is at any available address. MSMAP returns the mapped address
through the STRTADDR parameter. Files must be aligned on a 1/8-MB
boundary.

The caller may also specify the process level required to read or
write to the file. For all nonprivileged code, the read and write levels
default to process level 0.

Parameter Definitions

Parameter I/0 Data Type
Definition
command Input fixed bin(15,0)

Specifies the address at which the file is to be mapped. The values
may be 0, 1, or 2. A value of 0 means to map the file at any
available location and is the recommended choice. A value of 1 means
to map at any available location between the addresses specified by
the LOWERVA and UPPERVA parameters. A value of 2 means to map at the
address specified by the STRTADDR parameter. In all three cases, the
file must be aligned on a 1/8-MB boundary. If COMMAND=2, this means
that STRTADDR must specify an address which is an integer multiple of
1/8-MB. If COMMAND=1, then the range specified by LOWERVA and
UPPERVA must contain at least one 1/8-MB boundary.

Controlled Release Draft 3-25 October, 1985



fileclass Input char(1l)

FILECLS specifies the file security access code of the data file to
be mapped (such as '#' or 'A' or ' '). If FILECLS is not
specified, the default output file class of the caller is used for
the mapped data file. This parameter is only used when creating a
data file.

filesize Input fixed bin(31,0)

FILESIZE specifies the initial size (in bytes) of the file. This
parameter is required only when creating a new data file.

lowerva Input pointer

Specifies the lower virtual address limit at which the file may be
mapped. Required only if specifying a range of addresses for the
map (COMMAND=1). UPPERVA must also be supplied.

option Input fixed bin(15,0)

OPTION specifies that the data file already exists or is to be
created. This parameter is required only if mapping an exclusive
data file (TYPE=2) or a shared data file (TYPE=3). A value of 0
means to map an existing data file with a specified name. A value
of 2 means to create and map a data file with a specified name and
file size.

pathname Input char(22) varying
PATHNAME specifies the volume, library, and file name of the file
to be mapped. The parameter must be generated as follows: a
6-byte volume name plus an eight byte library name and an 8-byte
file name. If the actual values for the volume, library and file
consist of fewer characters than the allocated size, they must be
left—-justified and padded with blanks.

readlevel Input fixed bin(15,0)

Contains the read level of the region to be mapped. READLEVEL
defaults to 0 if it is not specified and is the only valid level
for nonprivileged code.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.
strtaddr I/0 pointer

As an input parameter, STRTADDR specifies a specific wvirtual

address at which to map the file. As an output parameter, STRTADDR
contains the actual virtual address that was mapped.

Controlled Release Draft 3-26 October, 1985



type Input fixed bin(15,0)

The TYPE parameter specifies whether the file is a program file,
an exclusive data file or a shared data file. A value of 1
means to map a program file. A wvalue of 2 means to map an
exclusive data file. A value of 3 means to map a shared data
file.

upperva Input pointer
Contains the upper limit of the highest virtual address of the
region to be mapped. Required only if mapping within a range of
addresses (COMMAND=1).

writelevel Input fixed bin(15,0)
Contains the write level of the region to be mapped. WRITELEVEL
defaults to 0 if it is not specified and is the only valid level

for nonprivileged code.

Return Codes

The return codes listed here are the base values. Some values
may be returned that are 1000, 2000, 3000, 4000, or 5000 plus the base
values. However, the definition of the return code does not change.
For example, the return code values of 16 and 1016 have the same
definitions.

Code Definition

@ERSUCC Success

@ERIPVAL Illegal parameter value

G@ERPROT Attempted protection violation

4 File already mapped with different
conditions

8 File not found or inaccessible

12 Library not found or inaccessible

16 Volume not mounted or inaccessible

20 All buffers in use

24 VTOC errors

28 I/0 error on VIOC

32 Buffer size not enough for. all FDRs

36 READFDR failed

Controlled Release Draft 3-27 October, 1985



Code
40
44

48

60
64
88
92
96
100

104

108
110
112
116
120

200

Controlled Release Draft

Definition

Not enough virtual space to map the file

GETMEM failure during region node creation

Region node table full (max. # of nodes

exist)

Caller not privileged enough
Bad parameter list

Access rights denied

No space on volume or VTOC
CREATFDR failed

Bad object format

Stack space not available for
allocation

Insufficient data area space.
Error from MAP called by MAP.
Unresolved SSL references.
Too many SSL files.

Could not open alias file.

static

Subroutine not set up for specified file

type — invalid mode.

3-28 October, 1985



Example

MSMAP RETURNCODE=RCODE, PATHNAME=FSPEC, TYPE=DATAFILE
COMMAND=ANY , STRTADDR=HERE

DS OH
PUSHA 0,0

PUSHA 0.0
PUSHA 0,
PUSHA 0O,
PUSHA 0,
PUSHA 0,
PUSHA 0O,
PUSHA 0,
PUSHA 0,
PUSHA 0,
PUSHA 0,
PUSHA 0,RCODE
STATIC

ORG  #MSMAP
DC V(MSMAP)
CSECT

+++ A+t o+

i
=
72}
5
o

PUSH O.,R1

LA R1,4(,SP)
JSI  0(,SP)
POPN 0,12%4+4

+ 4+ 4+ + + + + + +

(Static Section)

RCODE
FSPEC
DATAFILE
ANY
HERE

L

Q=

22 ' TDATA
Ol
Ol

w383 &
> oo

Controlled Release Draft

o1 0(SP),X'80'

L R1,=R(#MSMAP)
L R1,0(R14,R1)

MYLIBRY SYSTEM'

3-29

flag last argument

October,

1985



3.2.4 MSUNMAP - Unmap Region of Virutal Address Space

Syntax

[label] MSUNMAP RETURNCODE=returncode,
PATHNAME=pathname
Function
Unmaps a file from a task's virtual address space.

Parameter Definitions

Parameter I/0 Data Type
Definition
pathname Input char(22) varying

Contains the volume, library and file name of the data file to be
unmapped. The parameter must be generated as follows: a 6-byte
volume name plus an 8-byte library name and an 8-byte file name. If
the actual values for the volume, library and file consist of fewer
characters than the allocated size, they must be left-justified and
padded with blanks.

returncode Output fixed bin(31,0)

Contains a code that indicates the success or failure of the routine
call.

Return Codes

Code Definition

0 Success

4 File not mapped on present link level
8 Caller not privileged enough

12 Error from FREEHEAP

Controlled Release Draft 3-30 October, 1985



Example

DOMAP  MSUNMAP RETURNCODE=RCODE, PATHNAME=FSPEC
+DOMAP  EQU *

+ PUSHA 0,FSPEC
+ (0)8 0(sSp).X'80" flag last argument
+ PUSHA 0,RCODE

+#MSUNMAP STATIC

+ ORG  #MSUNMAP

+ DC V{(MSUNMAP)

+ CSECT

+ L R1,=R(#MSUNMAP)
+ L R1,0(R14,R1)

+ PUSH 0.Rl

+ LA R1,4(,SP)

+ JSI  0(,SP)

+ POPN 0,2%4+4

(Static Section)

RCODE DS F
FSPEC DC CL22'TDATA  MYLIBRY SYSTEM'
END BEGIN

Controlled Release Draft 3-31 October, 1985



3.2.5 PROCINFO - Process Information

Syntax

[label] PROCINFO RETURNCODE=returncode
[ ,PROCESSID=processid]
[ ,PARENTID=parentid]
[ ,MYPID=mypid]
[ , WSNUM=wsnum]
[ ,DEBUGSTATUS=debugstatus]

Function
PROCINFO provides wuser programs with information related to a
specific process or task. Information is provided for the caller's

process/task or other processes/tasks if the correct ID is known.

Parameter Definitions

Parameter I/0 Data Type
Definition
debugstatus Qutput fixed bin(15,0)

A nonzero value indicates that the process or task specified by
PROCESSID is under control of the system debugger program.

mypid Output fixed bin(31,0)
The process ID or task number of the caller.
parentid Output fixed bin(31,0)

Contains the process ID or task number of the parent task, if any.
If there is no parent task, this value is 0.

processid Input fixed bin(31,0)

The process or task ID of this request.
returncode Output fixed bin(31,0)

A code that indicates the success or failure of the routine call.
wsnum Output fixed bin(31,0)

Contains the workstation number of the process or task specified by
PROCESSID.

Controlled Release Draft 3-32 October, 1985



Return Codes

Code Definition

@ERSUCC Success

@ERBADPID Process ID specified and not found
Example

GETINFO PROCINFO RETURNCODE=RCODE,MYPID=MYTASK, WSNUM=MYTUBE
+GETINFO DS OH

PUSHA 0,0

+ o1 0(sSp) ,X'80' flag last argument

+ PUSHA 0,MYTUBE

+ PUSHA 0,MYTASK
+
+

-+

PUSHA 0,0

PUSHA 0,0

PUSHA 0,RCODE
+#PROCINF STATIC

+ ORG  #PROCINF

+ DC V(PROCINFO)

+ CSECT

+ L R1,=R(#PROCINF)
+ L R1,0(R14,R1)

+ PUSH O,R1

+ LA R1,4(,SP)

+ JSI  0(,SP)

+ POPN 0,6%*4+4

(Static Section)

RCODE DS F
MYTASK DS F
MYTUBE DS F

GETINFO PROCINFO RETURNCODE=RCODE, PROCESSID=PID,PARENTID=DAD, -
DEBUGSTATUS=INDEBUG , WSNUM=TUBENUM

DS OH

PUSHA 0,INDEBUG

0} 0(SP),X'80"' flag last argument

PUSHA 0, TUBENUM

PUSHA 0,0

PUSHA 0,DAD

PUSHA 0,PID

PUSHA 0,RCODE

:
3

+ 4+ + + +

Controlled Release Draft 3-33 October, 1985



+#PROCINF STATIC

+ ORG  #PROCINF

+ DC V{(PROCINFQ)

+ CSECT

+ L R1,=R{#PROCINF)
+ L R1,0(R14,R1)

+ PUSH O,R1

+ LA R1,4(,SP)

+ JSI 0(,SP)

+ POPN 0,6%4+4

(Static Section)

RCODE DS F
PID DS F
DAD DS F
INDEBUG DS H

Controlled Release Draft

3-34

October, 1985

~—e”



3.2.6 PUTLOG - Put Record Into System Security Database File

Syntax

[label] PUTLOG RC=returncode,
[ ,TYPE=type]
[ ,SUBTYPE=subtype]
[ ,VIOLATION=violation]
[ ,WAIT=wait]
[ ,DATA=data]
[ ,SUBJUID=userid]
[ ,SUBJWS=workstation]
[ ,SUBJJOB=jobname]
[ ,SUBJTASKID=subjtaskid]

Function

PUTLOG inserts a record into the system security event logging
database file. Two hundred, fifty-six characters of event-related user
data may be stored in the record along with the job name, task ID, user

ID, workstation, and event type.

Parameter Definitions

Parameter I/0 Data Type
Definition
data Input char(256) var

The information to be logged. Up to 256 characters of information
may be recorded.

jobname Input char(8) var
The job name used by the subject of the PUTLOG message.
returncode Output fixed bin(31,0)
A code that specifies the success or failure of the routine call.
subtaskid Input fixed bin(15,0)
The task ID of the subject of the PUTLOG.
subtype Input fixed bin(15,0)
An integer that enables finer distinctions, within TYPE, for the

information being logged. This is for informational purposes only
and can be defined by the user. SUBTYPE defaults to 0.

Controlled Release Draft 3-35 October, 1985



type Input fixed bin(15,0)
An integer that corresponds to the type of event to be logged.
Each TYPE corresponds directly to a bit in the events bit mask
modifiable via the CNTROLOG System Service. The TYPE specified is
validated against the privilege level of the caller. The default
is 0.

userid Input char(8) var
The user ID of the subject of the PUTLOG message.

violation Input fixed bin(15,0)

If the specified value is 1, PUTLOG marks the event as an attempted
violation. The default is 0.

wait Input fixed bin(15,0)
If the value specified is 1, PUTLOG will wait for the IPC message
to be sent to the logging task. If 0, a NOWAITSEND will be
specified on the IPC-generated ISEND and PUTLOG will not wait for
the message to be sent. The default is 1.

workstation Input char(8) var

The workstation being used by the subject of the PUTLOG message.

Return Codes

Code Definition

@ERLOGEVNTNOTSET Event specified on PUTLOG is not set to be
logged.

@ERLOGINACTIVE Logging is not active.

@ERLOGNOTPRIV Caller not authorized to 1log this event
type.

@ERLOGVIOLNOTSET Violation specified on PUTLOG is not set to
be logged.

@ERNOLOGGING Logging task has been terminated.

Controlled Release Draft 3-36 October, 1985



Example

LOGR#USER EQU 0
PUTLOG RC=RCODE, TYPE=EVITYPE, DATA=DATAMSG

+++++++ o+

EVITYPE
RCODE
DATAMSG

PUSHA 0,DATAMSG
oI 0(15).,X'80'
PUSHA 0,0

PUSHA 0,0

PUSHA 0,0

PUSHA 0,EVITYPE
PUSHA 0,RCODE
STATIC

ORG  #PUTLOG
DC V(PUTLOG)
CSECT

L 1,=R(#PUTLOG)
L 1,0(14,1)
PUSH 0,1

LA 1,4(,15)

JSI  0(,15)

POPN 0,28

(Static Section)

DC Y(LOGR#USER)
pC F'0'

DC H'3'

DC CL3'EVT'

Controlled Release Draft

. Data to be Logged .
. Indicate Parameter List End .

(Wait)

(VIOLATION Parameter)

(Subtype)

. Type .

. Return Code .
. Section for PUTLOG VCON .
. Start the section ...

. with the VCON .

3-37

. Rejoin current section .
. Address Static Section .
. Add Static Base .
. Enstack VCON Address .
. Address Parameters .

. Call PUTLOG .

. Restore Stack .

October,

1985



3.2.7 SBREAK - Break Synchronization

[label] SBREAK RETURNCODE=returncode,
[ NUMHAN=numhan, ]
HANDLES=handles
[ .CANCEL={YES}]
{NO }

Function

Break synchronization allow users to handle a task that has hung
while holding a synchronous object. It will remove the task that is
holding the object and gives the object to the task which issued the
break synchronization call. If the requesting task is the current user
of the synchronous object then the calling task remains the user and the
cancel option (if specified) is ignored. If there is no user of the
object then the caller is given control of the object and the cancel
option (if specified) is ignored. This service therefore allows users to
do cleanup if necessary before further damage is done (particularly with
partial data base updates).

If the synchronous object was created with the RESTRICT option, the
break synchronization call can only be accepted from the object creator.
Any other callers are not accepted. If the RESTRICT option was not
specified at create time, any task can do a break.

The CANCEL parameter allows the break caller to specify that the task
which previously held the synchronous object is to be cancelled. The
task being cancelled has any CEXITS disabled. If there is a fatal task
crash, the cancel is ineffective. Some other cases may also cause the
task not to cancel. However, in no known case does task remain in user
code.

Parameter Definitions

Parameter I1/0 Data Type
Definition
cancel Input fixed bin(31,0)

CANCEL specifies whether the task currently holding the synchronous
object should be cancelled. A value of 1 indicates that it should be
cancelled. A value of 0 indicates that it should not.

handles Input pointer to an array of
char (8) entries

HANDLES specifies a pointer to an array of 8-character handle
identifiers. The array is currently restricted to one entry.

Controlled Release Draft 3-38 October, 1985



numhan Input

fixed bin(31,0)

NUMHAN indicates how many handles there are in the call. Defaults
to 1. Currently restricted to one handle.

returncode Output

fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Return Codes

Code
@ERSUCC
@ERIPVAL
@ERNOTFOUND
@ERNOTOWN
@ERSOACCDIS
@ERPROT
@ERMISALIGN
@ERIPTYP

@ERUNPRIV

Example

Definition

Success

Invalid parameter

Synchronous object not found

Access denied

Access denied (call from anynchronous exit)
Protection violation

Parameter misaligned

Invalid parameter type

Caller does not have high enough process
level for this object

SBREAK RETURNCODE=RTC, NUMHAN=NUM, HANDLES=HANPTR, -

CANCEL=YES
PUSHA 0,=A(1)
oI 0(sSp),X'80'
PUSHA 0,HANPTR
DS OH
PUSHA 0,NUM
PUSHA 0,RIC

+ 4+ + 4+ + +

Controlled Release Draft

INDICATE CANCEL REQUESTED
FLAG LAST ARGUMENT
Handle pointer

Number of handles in array
Return code

3-39 October, 1985



+#SBREAK STATIC

ORG  #SBREAK

DC V(SBREAK)
CSECT

L R1,=R(#SBREAK)
L R1,0(R14,R1)
PUSH O,R1

LA R1,4(,SP)

JSI  0(,SP)

POPN 0,4%4+4

+++++++++

(Static Section)

.

RTC DS F

NUM DC F'1'
HANPTR DC A(HANDLES)
HANDLES DS D

Controlled Release Draft

Address of routine to call

Point to argument list
Call SBREAK

3-40

October,

1985



3.2.8 SCREATE - Create Synchronization Object

[label] SCREATE RETURNCODE=returncode,
[ NUMHAN=numhan, ]
HANDLES=handles
[ .RESTRICT={YES}]
{NO }

Function

Create synchronization object creates a data structure that controls
the use of a shared resource. A synchronization object must be created
before it can be used.

Each time SCREATE is called, a new synchronization object is created
for the caller with a unique identifier (handle). The synchronization
object creator then passes the handle to any other users of this
synchronization object.

Parameter Definitions

Parameter 1/0 Data Type
Definition
handles Output pointer to an array of

char (8) entries

HANDLES specifies a pointer to an array of 8-character identifiers.
The parameter is currently restricted to one entry in the array.

numhan Input fixed bin(31,0)
NUMHAN indicates how many handles are specified in the HANDLES
array. The default is 1 and the parameter is currently restricted to
one handle.

restrict Input fixed bin(31,0)
The RESTRICT parameter allows the creator to impose some restrictions
on a synchronization object. If RESTRICT is set to yes (a value of
1), only the creator can issue a delete or break on the
synchronization object. If RESTRICT is set to no (a value of 0), or
omitted, any caller may issue a delete or break.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Controlled Release Draft 3-41 October, 1985



Return Codes

Code Definition
@ERSUCC Success
@ERIPVAL Invalid parameter
@ERPROT Protection violation
@ERMISALIGN Parameter misaligned
@ERIPTYP Invalid parameter type
@ERSQACCDIS Access disallowed (call from asynchronous
exit which is not allowed)
Example
SCREATE RETURNCODE=RIC, NUMHAN=NUM, HANDLES=HANPTR, -
RESTRICT=NO
+ DS OH
+ PUSHA 0,=A(0) No restriction
+ o1 0(SP).,X'80"' Flag last argument
+ PUSHA 0,HANPTR Handle pointer
+ DS OH
+ PUSHA 0,NUM Number of handles in array
+ PUSHA 0,RIC Return code
+#SCREATE STATIC
+ ORG  #SCREATE
+ DC V(SCREATE)
+ CSECT
+ L R1,=R(#SCREATE) Address of routine to call
+ L R1,0(R14,R1)
+ PUSH O,R1
+ LA R1,4(,SP) Point to argument list
+ JSI  0(,SP) Call SCREATE
+ POPN 0,4%4+4
(Static Section)
RTC DS F
NUM DC F'1'
HANPTR DC A(HANDLES)
HANDLES DS D
Controlled Release Draft 3-42 October, 1985



3.2.9 SDELETE - Delete Synchronization QObject

Syntax

[label] SDELETE RETURNCODE=returncode,
[NUMHAN=numhand, ]
HANDLES=handles

Function

Delete synchronization object marks a synchronous object for delete,
thereby disallowing any new waiters to enter the queue. The caller must
first issue a call to SENTER to be able to delete the object. If there
are no tasks currently waiting on the object, the synchronous object is
deleted promptly. Any tasks that are waiting at the time of the delete
can proceed normally. 1In this case, the object is deleted when all
waiting tasks have been serviced.

If the object was created with the RESTRICT option, only the creator
can successfully issue the delete call. Otherwise, any caller can issue
the delete.

Parameter Definitions

Parameter I/0 Data Type
Definition
handles Input pointer to an array of

char (8) entries
HANDLES specifies a pointer to an array of 8-character identifiers.
The number of identifiers in the array is specified with the NUMHAN
parameter. Currently there is a restriction of one identifier per
routine call. The default is 1.
numhan Input fixed bin(31,0)

The NUMHAN parameter indicates how many handles are to be created in
this call. The default is 1 and is currently restricted to one.

returncode Output fixed bin(31,0)

Code that indicates success or failure of the call.

Controlled Release Draft 3-43 October, 1985



Return Codes
Code
@ERSUCC
@ERIPVAL
@ERNOTFOUND
GERNOTOWN

@ERSOACCDIS

@ERPROT
@ERMISALIGN
@ERIPTYP

@ERUNPRIV

@ERMKDEL

Example

Definition

Success

Invalid parameter
Synchronous object not found
Access disallowed

Access disallowed (call from anynchronous
exit)

Protection violation
Parameter misaligned
Invalid parameter type

Caller does not have high enough process
level for this object

Object marked for delete (will be deleted
when last of current waiters has finished)

SDELETE RETURNCODE=RTC, NUMHAN=NUM , HANDLES=HANPTR,

+ + 4+ + +

-+
H#
192]
=]
[}
[
2
=

+++ 4+ +++++

PUSHA 0,HANPTR

01 0(SP) ,X'80'
DS OH

PUSHA 0,NUM

PUSHA 0,RTIC
STATIC

ORG  #SDELETE

DC V(SDELETE)
CSECT

L R1,=R(#SDELETE)
L R1,0(R14,R1)
PUSH O,R1

LA R1,4(,SP)
JSI  0(,SP)

POPN 0,3*4+4

(Static Section)

Controlled Release Draft

Handle pointer
Flag last argument

Number of handles in array
Return code

Address of routine to call

Point to argument list
Call SDELETE

3-44 October, 1985



RTC DS F

NUM DC F'1'
HANPTR DC A(HANDLES)
HANDLES. DS D

Controlled Release Draft 3-45 October, 1985



3.2.10 SENTER - Enter Synchronization

Syntax
[label] SENTER RETURNCODE=returncode,
[ NUMHAN=numhan, ]
HANDLES=handles
[ . NOWAIT={YES}]
{NO }
Function

Issues the request to gain control of the synchronization object in
order to use the resource. If no other user has control of the
synchronization object, the caller receives control of the
synchronization object. Control is then be passed back to the caller who
may then proceed to use the resource.

If some other user is holding the synchronization object when a
caller requests it, the caller is blocked and has to wait for the
resource on a first in/first out queue. When the resource becomes
available, control is returned to the next caller in the queue, who can
then use the resource.

The NOWAIT parameter allows users not to block if the resource is not
free, but to return to the caller with a return code indicating that the
resource is not free. This allows callers to process other work while
waiting for the resource to become free.

In some cases, users can receive error return codes from enter
synchronization (see below). Therefore, callers must check the return
code before assuming that they have control of the synchronization object.

Parameter Definitions

Parameter I1/0 Data Type
Definition
handles Input pointer to an array of

char (8) entries

HANDLES specifies a pointer to an array of 8-character identifiers.
Currently restricted to one entry in the array.

nowait Input

Specifying YES indicates not to wait if a resource is not available.
Specifying NO indicates to wait for resource availability.

numhan Input fixed bin(31,0)

Indicates how many handles in the call. The default is one and is a
current system restriction.

Controlled Release Draft 3-46 October, 1985



returncode Output

fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Return Codes
Code
@ERSUCC
@ERIPVAL
@ERNOTFOUND

@ERSOUNAV

@ERSOACCDIS

@ERALRDYHAS

@ERPROT
@ERMISALIGN
@ERIPTYP

@ERUNPRIV

Example

Definition

Success

Invalid parameter
Synchronous object not found

Synchronous object unavailable (for NOWAIT
option)

Access to synchronous object disallowed (for
async exits)

User already has control of synchronous
object

Protection violation
Parameter misaligned
Invalid parameter type

Caller does not have the correct process
level for this object

SENTER RETURNCODE=RTC,NUMHAN=NUM, HANDLES=HANPTR, -

NOWAIT=NO
DS OH
PUSHA 0,=A(0)
oI 0(sp),X'80"'
PUSHA 0,HANPTR
DS OH
PUSHA 0,NUM
PUSHA 0,RTC

+ 4+ + o+

Controlled Release Draft

No NOWAIT
Flag last argument
Handle pointer

Number of handles in array
Return code

3-47 October, 1985



+#SENTER STATIC

ORG  #SENTER

DC V(SENTER)
CSECT

L R1,=R(#SENTER)
L R1,0(R14,R1)
PUSH O0.R1

LA R1,4(,SP)

JSI  0(,.SP)

POPN 0,4%4+4

+ 4+ o+

(Static Section)

.

RTIC DS F

NUM DC F'1'
HANPTR DC A(HANDLES)
HANDLES DS D

Controlled Release Draft

Address of routine to call

Point to argument list
Call SENTER

3-48

October,

1985



3.2.11 SEXIT - Exit Synchronization

Syntax

[label] SEXIT RETURNCODE=returncode,
[NUMHAN=numhan, ]
HANDLES=handles

Function

Exit synchronization releases the caller from control of
resource, and activates the first waiter.

Parameter Definitions

Parameter I/0 Data Type
Definition
handles Input pointer to an array of

char (8) entries

the

HANDLES specifies a pointer to an array of handle identifiers.

Currently restricted to one entry in the array.

numhan Input fixed bin(31,0)

Indicates how many handles in the call. The default is 1 and is the

current system restriction.
returncode Output fixed bin(31,0)
Code that indicates the success or failure of the routine call.

Return Codes

Code Definition

@ERSUCC Success

@ERIPVAL Invalid parameter

@ERNOfFOUND Synchronous object not found
@ERNOTOWN Synchronous object not owned by caller
@ERPROT Protection violation

@ERMISALIGN Parameter misaligned

GERIPTYP Invalid parameter type

Controlled Release Draft 3-49 October,

1985



Code

@ERUNPRIV

@ERSOACCDIS

+ 4+ A+ + o+ o+

RTC
NUM
HANPTR
HANDLES

Definition

Caller does not have the correct process
level for this object

Access to synchronous object disallowed (for
async exits)

SEXIT RETURNCODE=RTC, NUMHAN=NUM, HANDLES=HANPTR

PUSHA 0,HANPTR

o1 0(sp).,X'80'
DS OH

PUSHA 0,NUM

PUSHA 0,RTC
STATIC

ORG  #SEXIT

DC V(SEXIT)
CSECT

L R1,=R(#SEXIT)
L R1,0(R14,R1)
PUSH 0,R1

LA R1,4(,SP)
JSI  0(,SP)

POPN 0,3*4+4

(Static Section)

DS F

DC F'1’

DC A(HANDLES)
DS D

Controlled Release Draft

Handle pointer
Flag last argument

Number of handles in array
Return code

Address of routine to call

Point to argument list

Call SEXIT

3-50 October, 1985



3.2.12 TCOMPLET - Check Task for Completion

Syntax

[label] TCOMPLET RETCODE=retcode,
TASKID=taskid

Function

This service allows a parent task to check on the completion of its
child task. TCOMPLET does not return control to the calling task until
the child task and its descendants have finished executing. When
completed, all resources are released and TCOMPLET returns to the
caller. A parent task should call either TKILL or TCOMPLET for all
subtasks before its own completion.

Parameter Definitions

Parameter I/0 Data Type
Definition
retcode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.
taskid Input fixed bin(31,0)

Specifies the task number of the subtask to be 1logged off and
cancelled.

Return Codes

Code Definition
@ERSUCC Success
@ERIPVAL Illegal parameter value

Controlled Release Draft 3-51 October, 1985



+#TCOMPLT

+ 4+ A+ +++

RCODE
USRID

TCOMPLET RETCODE=RCODE, TASKID=USRID

PUSHA 0,USRID

o1 0(sp).X'80'
PUSHA 0,RCODE
STATIC

ORG  #TCOMPLT
DC V(TCOMPLET)

CSECT

L R1,=R(#TCOMPLT)
L R1,0(R14,R1)
PUSH O,R1

LA R1,4(,SP)

JSI  0(,SP)

POPN 0,2*4+4

(Static Section)

DS F
DC F'0'

Controlled Release Draft

.SET task ID

.SET return code

3-52

October,

1985



3.2.13 TINVOKE - Invoke Task

[label] TINVOKE RETCODE=retcode,
TIDLOC=tidloc,
EPLOC=eploc,

WS=ws
[ .LIBRARY=1ibrary]
[ ,VOLUME=volume]
[ ,SYSTEM=system]
[ .DATAREALTH=datarealth]
[ ,QUOTA=quota]
[ ,USER=user]
[ ,PASSWORD=password]
[ .DISABHELP=disabhelp]

Function

Through the TINVOKE service, a running program can create another
task. The new task is the child of the invoking program's task and can
be the parent of other tasks through programs issuing TINVOKEs. The new
task may either be an interactive task (i.e., foreground with an
associated workstation) or a non interactive task that executes programs
through procedures.

There is a limit to the number of subtasks that a task may create.
The system maximum for a task is 255. For each subsequent TINVOKE within
the parent-child chain, this quota may not exceed (QUOTA-1) of the parent
task. In order for the parent task to regain its original quota, all
subtasks must release all resources and be terminated.

If the newly created task is an interactive task and the EPLOC
parameter is not specified, the task is created and control is passed to
the command processor which displays the Command Processor menu. When a
logoff command is received by the command processor either by pressing PF
key 16 at the workstation or through a program issuing a call to the
LOGOFF system service, the task will be removed from the system. The
parent task must issue a TCOMPLET to insure that the subtask is
finished. 1If the EPLOC parameter is specified on the interactive task
invocation, the specified program will be initiated at the workstation.

If the newly created task is a background task, the procedure is
executed and upon completion the task is removed from the system. The
parent must check that the task has completed.

The parent task must insure that all its children are removed from

the system before it can be terminated. See the TKILL and the TCOMPLET
system services for how to remove tasks from the system.

Controlled Release Draft 3-53 October, 1985



Parameter Definitions

Parameter I/0 Data Type
Definition
datarealth Input fixed bin(31,0)

Specifies the data segment size for the task to be created. It must
be a value between 64K and 8128K bytes. The default size is 256K
bytes.

disabhelp Input fixed bin(15,0)

A value of 1 disables the HELP key. If the value is 0 and the USER
parameter is not specified, TINVOKE uses the HELP setting of the
calling program's task. If the value is 0 and the USER parameter is
specified, TINVOKE uses the HELP setting of the specified user.

eploc Input char(8) var
Specifies the name of the program or procedure to run in the newly
created subtask. If the WS parameter is not specified, the program
runs in the background and the task is removed from the system when
the program ends. If WS is specified, the program runs as an
interactive task in the foreground and control passes to the command
processor when the program is completed. This parameter is required
if the WS parameter is not specified.

library Input char(8) var
Library to be searched for the program indicated by the EPLOC
parameter. If EPLOC is specified, this parameter is required and the
SYSTEM parameter may not be coded.

password Input char(8) var

Specifies the password for the USERID. This is a required parameter
if the caller is not privileged and the USERID parameter is specified.

quota Input fixed bin(31,0)
Specifies the maximum number of subtasks which the new task can
create. The default value is 0. The maximum value is 255. This
guota may not exceed the parent task's (QUOTA-1).

retcode Input fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Controlled Release Draft 3-54 October, 1985



system Input fixed bin(15,0)

A value of 1 indicates that the system defaults are to be used for
the LIBRARY and VOLUME parameter values. A value of 0 indicates
that the values specified with the LIBRARY and VOLUME parameters are
to be used in the search for the program file. SYSTEM is a required
parameter if EPLOC is specified.

tidloc Output fixed bin(31,0)

Specifies a storage location where the task number of the created
task may be stored. This number is used as input to the CHECK,
TCOMPLET, and KILL system services. A required parameter.

user Input char(8) var

Specifies the USERID under which the program is to be run. The
subtask's base file access privileges are determined by this ID; the
default is the same user ID as the task which is calling TINVOKE.
If no program is specified wvia EPLOC, the LOGON procedure for the
specified user ID is run. If supplied by a task which is not
privileged, the PASSWORD parameter must also be supplied.

volume Input char(8) var

Specifies the wvolume name for the program to be run. This is a
required parameter if EPLOC is specified. It may not be used with
the SYSTEM parameter.

ws Input fixed bin(15.0)

Specifies the workstation number to associate with the task.
Specifying the WS parameter indicates an interactive task and the
program is to run in the foreground. The workstation must be
reserved by the calling routine. On completion of the subtask the
workstation is released. It can be retrieved by using CHECK or
TCOMPLET. This option must be specified if EPLOC is not specified.

Controlled Release Draft 3-55 October, 1985



Return Codes

Code
@ERSUCC
@ERIPVAL

@ERNOTRES

@ERDATSEGSIZ

@ERUSRPW
@ERUSRLST

@ERTHEAP

@ERTASKCR

@ERURESWS

@ERINSUFQ

@ERFDE

Example

Definition
Success.
Illegal parameter value.

Specified workstation is not reserved by
caller.

Invalid data segment size specified.
Invalid user ID and/or password.
Unable to read the userlist.

GETMEM failure (including GETBLOK failure
due to GETMEM).

Unable to create task (GETBLOK failure
other than GETMEM).

Specified user is restricted from this
workstation.

Insufficient task quota to satisfy
request.

Program file specified does not exist.

MAKETSK TINVOKE RETCODE=RCODE,TIDLOC=USRID,WS=WORKST , EPLOC=PROG, -
LIBRARY=MYLIB, VOLUME=MYVOL , DATAREALTH=DATASIZE, -

+MAKETSK PUSHA
oI

PUSHA
PUSHA
PUSHA
PUSHA
PUSHA
PUSHA
PUSHA
PUSHA

+++ 4+ ++++

QUOTA=NUMTSK

0,NUMTSK
0(sp),X'80"'
0,DATASIZE
0.0
0,MYVOL
0,MYLIB
0,WORKST
0,PROG
0,USRID
0,RCODE

Controlled Release Draft

.Set Quota value
.SET SEG2LTH

.Set Volume

.Set Library

.Set Workstation
.SET PROGRAM NAME
.SET TIDLOC

.SET Return Code

3-56 October, 1985



+#TINVOKE STATIC

(Static Section)

RCODE DS F
USRID DC F'0'
WORKST DS H

PROG DC CL8'TAXPROG'
MYLIB DC CL8'PAYEES
MYVOL DC CL6'MONEY'
DATASIZE DC F'512'

NUMISK DC F'4'

Controlled Release Draft

ORG  #TINVOKE
DC V(TINVOKE)

L R1,=R(#TINVOKE)
L R1,0(R14,R1)

LA R1,4(,SP)
JSI  0(,SP)
POPN 0,9%4+4

+
+

+ CSECT

+

+

+ PUSH O,R1
+

+

+

3-57

October,

1985



3.2.14 TKILL - Task Termination

Syntax

[label] TKILL RETCODE=retcode,
TASKID=taskid

Function

This service allows a parent task to force a child task and all of
the descendants into CANCEL and LOGOFF. All resources associated with
the specified child and descendants are returned to the system. The
issuing task must be the parent of the specified task.

Parameter Definitions

Parameter 1/0 Data Type
Definition
retcode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.
taskid Input fixed bin(31,0)

Specifies the task number of the subtask to be 1logged off and
cancelled.

Return Codes

Code Definition

@ERSUCC Success.

@ERIPVAL Illegal parameter value.

@ERNOTDESC Specified subtask is not an immediate

descendant of the caller.

Controlled Release Draft 3-58 October, 1985



Example

KILLUM
+KILLUM
+
+
+H#TKILL

++ 4+ +++F++

RCODE
USRID

TKILL RETCODE=RCODE, TASKID=USRID

PUSHA 0,USRID
01 0(sp),X'80'
PUSHA 0,RCODE

STATIC

ORG  #TKILL

DC V(TKILL)
CSECT

L R1,=R(#TKILL)
L R1,0(R14,R1)
PUSH 0O,R1

LA R1,4(,SP)

JsI  0(,Sp)

POPN 0,2*4+4
(Static Section)

DS F
DC F'0'

Controlled Release Draft

.SET task ID

.SET return code

3-59

October,

1985



3.2.15 VOLINFO - Extract Volume Information

Syntax

[label] VOLINFO RETURNCODE=returncode,
VOLNAME=volname,
VSID=vsid

[ ,TYPE=type]

[ ,MOUNTER=mounter]
[ .BC=bc]

[ .MAXTFR=maxtfr]
[,.CV=cv]

[ ,CVP=cvp]
[,CVD=cvd]

[ ,SECTYPE=sectype]
[ ,TOL=tol]

[ , DEVNUM=devnum]

[ ,VCBADDR=vcbaddr]

Function
This service extracts system information on a specific disk.

Parameter Definitions

Parameter I1/0 Data Type
Definition
be Output fixed bin(15,0)

Returns the number of blocks per cylinder on this disk.
cv Output fixed bin(15,0)

Returns the number of cylinders per disk.
cvd Output fixed bin(15,0)

Returns the number of cylinders per diagnostic disk.
cvp Output fixed bin(15,0)

Returns the number of cylinders per physical disk.
devnum Output char(1)

Returns the device number on which the disk is mounted.
maxtfr Output fixed bin(15,0)

Returns the maximum number of bytes in a transfer.

Controlled Release Draft 3-60 October, 1985



mounter Output char(3)

Returns the user ID of the disk mounter.
returncode Output fixed bin (31,0)

Code that indicates the success or failure of the routine call.
sectype Output char(1)

Returns the sector type (diskette only). (S) indicates a soft
sectored disk, (H) indicates a hard sectored disk.

tol Output char(2)

Returns the fault tolerance level. (CT) indicates crash tolerance,
(MT) indicates media tolerance and ( ) indicates no tolerance.

type Output char(1l)

Returns the disk type. F indicates fixed, R indicates removable
disk, blank indicates disk not mounted.

vcbaddr Output fixed bin (31,0)

Returns the VCB address for this disk
volname Input char(8)

The name of the disk for which the information request applies.
vsid Input binary(8)

Volume set identification number of the disk for which the
information request applies.

Return Codes

Code Definition
@ERSUCC Success
@GERVNM Volume not mounted

Controlled Release Draft 3-61 October, 1985



Examples

GETVOL  VOLINFO RETURNCODE=RCODE,VOLNAME=MYVOL,VSID=VOLNUM, -
MOUNTER=WHO , DEVNUM=DEVICE , VCBADDR=BLKNUM

+GETVOL DS OH

PUSHA 0, BLKNUM

MVI  0(SP),.X'80' flag last argument

PUSHA 0,DEVICE

PUSHA 0,

PUSHA 0,

PUSHA 0,

PUSHA O,

PUSHA 0,

PUSHA O,

PUSHA 0,

PUSHA 0,

PUSHA 0,

PUSHA 0, VOLNUM

PUSHA 0,MYVOL

PUSHA 0,RCODE

STATIC

ORG  #VOLINF

DC V(VOLINFO)

CSECT

L R1,=R(#VOLINF)

L R1,0(R14,R1)

PUSH O0,R1

LA R1,4(,SP)

JSI  0(,SP)

POPN 0,14*4+4

++++++ A+ F A+

%
<
g
=
=

+++++++++

(Static Section)
RCODE DS F
MYVOL DC CL8'OFFICE'
WHO DS CL3
VOLNUM DS BL1
DEVICE DS CL1
BLKNUM DS F

Controlled Release Draft 3-62 October, 1985



3.2.16 VSETINFO — Extract Information about a Volume Set

[label] VSETINFO RETURNCODE=returncode,

VOLNAME=volname

[ .SETTYPE=settype]

[ .LABELTYP=labeltyp]

[ .USAGE=usage]

[ ,USER=user]

{ ,OCNT=ocnt]

[ ,ADDREF=addref]

[ .PAGE=page]

[ ,SPOOL=spool]

[ ,WORK=work]

[ ,SECURE=secure]

[ . XLMTOPEN=x1mtopen]

[ . XLMITOTL=x1lmttotl]

[ ,VSIDMAP=vsidmap]

{ ,ROOTMTD=rootmtd]

Function
This service extracts volume information on volume sets.

Parameter Definitions

Parameter I/0 Data Type
Definition
addref Output char(1l)

Returns the addressing in effect. An S specifies standard and N
specifies nonstandard.

labeltyp Output char(2)

Returns the volume label type. SL specifies standard label and NL
specifies no label.

ocnt COutput fixed bin(15,0)
Returns the number of open files on this volume.
page Output char(l)

Specifies whether or not paging files are allowed on the volume. Y
specifies yes, N specifies no.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Controlled Release Draft 3-63 October, 1985



rootmtd Output char(1)
Returns whether the root volume of the volume set is mounted or
not. Y indicates the root volume is mounted. N indicates that it
ig not. For a single volume, this ROOTMID is N.

secure Output char(1l)

Returns whether this is a secure volume set or not. Y indicates
volume set is secure. N indicates that it is not.

settype Output char(1)

Returns the volume set type; S indicates a single volume, M
indicates a volume set.

spool Output char(1)
Returns whether the volume is eligible for spool files. Y
indicates that spool files are allowed, N indicates that they are
not allowed on the volume.

usage Output char(2)
Returns the volume usage. SH indicates the volume is opened in
shared mode, RR indicates restricted removal, PR indicates
protected, EX indicates exclusive, or the field may be blank.

user Output char(3)
Returns the user ID of the volume user.

volname Input char(8)

Specifies the name of the volume for which the information request
applies. Required parameter.

vsidmap Output char(32)

Returns a 32-byte bitmap showing the VSIDs of the mounted volumes
of a volume set. Valid only for volume sets.

work Output char(1)
Returns whether the volume is eligible for work files. Y indicates

that work files can be stored on the volume, N indicates that they
can not.

Controlled Release Draft 3-64 October, 1985



xlmtopen Output fixed bin(15,0)

Returns the maximum number of extents allowed on opening a file on
this volume.

xlmttotl Output fixed bin(31,0)
Returns the total extent limit for the volume set.

Return Codes

Code Definition

@ERSUCC Success

@ERVNM Volume not mounted
Examples

GETINFO VSETINFO RETURNCODE=RCODE, VOLNAME=MYVOL,USER=WHO, PAGE=PG, -
ROOTMTD=VOLROOT , LABELTYP=LABEL

+GETINFO DS OH

PUSHA 0,VOLROOT

MVI  0(SP),X'80' flag last argument

PUSHA 0,0

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA

PUSHA 0,LABEL

PUSHA 0,0

PUSHA 0,MYVOL

PUSHA 0,RCODE

STATIC

ORG  #VSETINF

DC V(VSETINFO)

CSECT

L R1,=R(#VSETINF)

L R1,0(R14,R1)

PUSH O,R1

LA R1,4(,SP)

JSI  0(,SP)

POPN 0,16%4+4

N N NN

OCOMPWPOOOOO

[eNeNeloNoNoNoNoNolo]
°F
(@]

A T T I S e S e S i

£
5

++ A+t F

Controlled Release Draft 3-65 October, 1985



(Static Section)
RCODE DS F
MYVOL DC CL8'OFFICE'
WHO DS CL3
PG DS C
VOLROOT DS C
LABEL DS CL2

Controlled Release Draft 3-66 October, 1985



3.3 PROGRAMMING EXAMPLES

This section contains three programming examples using the memory
management, security, and user synchronization system services. These
programs also contain examples of using system services described in
Chapter 4.

NOTE

The example programs in this section are provided to assist
users in preparation of their own programs. They are not
supported Wang products.

3.3.1 Memory Management Example

*THIS PROGRAM IS INTENDED AS A DEMONSTRATION OF MSMAP.

*THE PROGRAM MAPS A SINGLE DATA FILE INTO IT'S ADDRESS SPACE.
*THE FILE CONTAINS AN ARRAY OF 100 INTEGERS.

*THE PROGRAM MERELY COMPUTES THE SUM OF THESE INTEGERS.

RO EQU O
R1 EQU 1
R2 EQU 2
R3 EQU 3
DB EQU 12
CB EQU 13
R14 EQU 14
SP EQU 15
cMp CODE
PRINT NOGEN
BEGIN  BALR CB,0 BASE
USING *,CB
L DB, =R(DMP)
AR  DB,R14

USING DMP,DB
EXTRACT INVOL=PVOL,INLIB=PLIB
*THE FOLLOWING CALL MAPS AN EXISTING DATA FILE AT
*ANY AVAILABLE ADDRESS
MSMAP RETURNCODE=RC,
PATHNAME=PTH,
TYPE==Y(2),
OPTION==Y(0),
COMMAND==Y(0) ,

STRTADDR=SA
LT RO,RC ANY ERRORS?
BNZ DIE YES
L R1,5A ADDRESS OF DATA
LA R2,100 NUMBER OF WORDS OF DATA
XR R3,R3 ZERO

Controlled Release Draft 3-67 October, 1985



LOOP A R3,0(R1) ADD NUMBER TO SUM

LA R1,4(R1) ADDR OF NEXT WORD
BCT R2,LOOP AGAIN
ST R3,SUM STORE SUM

*THE FOLLOWING CALL UNMAPS THE FILE.
*THIS ISN'T REALLY NECESSARY AS THE UNLINK WOULD DO IT ANYWAY
DONE MSUNMAP RETURNCODE=RC,

PATHNAME=PTH
LT RO,RC ANY ERRORS?
BNZ DIE YES
L RO, SUM RETURN THE SUM
RT
DIE DC Y(0) ENTER DEBUGGER
LTORG
=R(DMP)
=R (#MSMAP)
=R(#MSUNMAP)
=Y (0)
=Y(2)
DMP STATIC
RC DS A RETURN CODE
SA DS A ADDRESS WHERE FILE WAS MAPPED
SUM DS A - THE SUM
PTH DC Y(6+8+8) FILESPEC:
PVOL DS CL6 VOLUME
PLIB DS CL8 LIBRARY
PFIL DC CL8 'MPDAT' FILENAME
END BEGIN

3.3.2 Security Logging Example

hhkhhkhkhdhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhhkhhhkhhkhkhhhkhhhhhhhkhhhkhhkhkhhhkd

THIS PROGRAM READS LOG SETTING PARAMETERS FROM THE WORKSTATION
AND TRANSLATES THE HEX CHARACTERS INTO THEIR BINARY EQUIVALENT. IT
THEN USES THE BINARY REPRESENTATION OF THE INPUT AS ARGUMENTS TO
THE "CNTRLOG" MACRO WHICH UPDATES THE SECURITY LOGGING OF THE
SYSTEM.

THE OPTIONS OF THIS PROGRAM ALSO INCLUDE THE ABILITY TO STOP
LOGGING, RESUME LOGGING, CHANGE THE LOG PARAMETERS AND CONTINUE
LOGGING, AS WELL AS CREATE A NEW LOG.

"HEXCHAR" IS THE NUMBER OF HEX CHARACTERS THAT REPRESENT THE BIT
STRING USED BY "CNTRLOG" TO SET THE LOGGING PARAMETERS.

WHEN MORE EVENTS ARE ADDED TO THE LOGGING

CAPABILITY, "HEXCHAR" MUST BE CHANGED FOR THIS PROGRAM TO BE RUN
PROPERLY. CURRENTLY, THIS PROGRAM CAN BE USED TO SET 32 EVENTS
AND VIOLATIONS ("HEXCHAR"*4 BITS). "HEXCHAR" MUST BE A MULTIPLE OF*

FOUR. *
hhhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhhkhhhkhkhhkhhkkkhkhkhhhhhhkhhkhkkk

*® % X® N F ¥ ¥ F ¥ * ¥ X * > ¥ *

* % ¥ X % X ¥ ¥ ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ *

Controlled Release Draft 3-68 October, 1985



REGS

HEXCHAR EQU 8 NO. HEX CHARACTERS
STOPLOG EQU 65 STOP LOGGING OPTION
STRTNEW EQU 66 START LOG , NEW PARAM
STRTOLD EQU 67 START LOG ,OLD PARAM
RSMNEW EQU 68 RESUME LOG NEW PARAMETERS
RSMOLD EQU 69 RESUME LOG , OLD PARAMETERS
CHGEVIS EQU 70 CHANGE LOG EVENTS
STPCNTL. EQU 1 STOP LOGGING CONTROL PARAM
NEWCNTL EQU 2 START NEW LOG CONTROL PARAM
RSMCNTL EQU 3 RESUME LOG CONTROL PARAM
BALR EP,0
USING *,EP

LR R12,R14
AL R12,=R(TESTSTAT)
USING TESTSTAT,R12

L R10,KEYS LOAD THE PFKEY MASK

GETPARM FORM=SELECT ,KEYLIST=CNTRL,MSG=MSG1, PFKEYS=(R10)
*

*

* GET THE PFKEY NUMBER IN HEX AND STORE
LC R4 ,CNTRL+8

ST R4 ,PFKEY
*

*
* CHECK FOR STOP,RESUME WITH OLD PARAM., START WITH NO PAR. CHANGE

L R4, PFKEY
LA R5,STOPLOG
CR R4,R5

BE STOPRES
LA R5,RSMOLD
CR R4,R5

BE STOPRES
LA R5,STRTOLD
CR R4,R5

BE NEWFIL
*

*

* NEED BIT SETTINGS FOR NEWLOG, CHANGE OPTIONS, AND RESUME NEW SETTING

GETPARM KEYLIST=SETLOG,MSG=MSG2 GET EVENT+VIO. SETTINGS
Fededededededede R dodddddededohddhdd Rk R dehdkdekhdhdokhddokdedded oAk dedo sk dedededede ok dede ok ek i e e e

* *
* CALCULATE THE NUMBER OF TIMES TO EXECUTE LOOPl. *
* THE NUMBER OF TIMES = HEXCHAR/4. THIS IS BECAUSE THE REGISTER *
* CAN HOLD ONLY FOUR CHARACTERS AT A TIME. *

hhkkkhhkhhhhhhhhkhkhhkhhhhhhhkhhhhthhhddhhdihihkikhkikihhihdikhhihkkiksikiiikiikihk
*

Controlled Release Draft 3-69 October, 1985



4°55

*»

B

* * ¥ * »*

B

LOOP

;gl“t“l"

*

R10,0
R11,HEXCHAR
R10,=F'4'
R11,LPCOUNT

R1,SETBITS

R2 , INPARM

R3,2

R10,LPCOUNT
R7,0(0,R1)
R11,0(0,R2)
R11,12(0,R11)

0 (HEXCHAR,R11) ,TRTAB

PREPARE FOR DIVIDE

DIVIDE BY 4
STORE THE LPCOUNT FOR THE
2ND PASS FOR VIOLATIONS

GET ADDRESS OF PROPER BIT
STRG 1ST PASS = EVENTS
2ND PASS = VIOLATIONS
GET ADDRESS OF PROPER INPUT
1ST PASS = EVENT SET INPUT
2ND PASS = VIOL. SET INPUT

LOAD NUMBER OF PASSES TO LOOP
CONTROL REGISTER

GET THE LOOP CONTROL FOR LOOP1
R7 =PARAMETER BIT STRG ADDRESS
R1l = INPUT STRG ADDRESS

ADD 12 BECAUSE OF GETPARM
TRANSLATE HEX INPUT TO BINARY

khkhhhhkhhkhhhhhhhhhkhkhkkhkkhkhkhkhhhhkhkhkhhhhhhhhkhhkhhkhhhkkkkhkhkkhkhhhhkhhhkhkhhkhkh

*

* AFTER THE NEXT INSTRUCTION, R5 WILL CONTAIN VVALID BITS EVERY FOUR

* PLACES STARTING WITH THE FOURTH BIT.

*

THE ZEROES MUST BE STRIPPED OFF AND THE REMAINING 16 BITS MUST
BE STORED IN THE APPROPRIATE PLACE(R7 POINTS) IN THE BIT STRG

* F ¥ X ¥ X X F* »

Ao e ¢ e de s e Ke Ja B do do ho o e Ko he o e e Ko de de KoK K de dodo ke ke de Kokt Ko e ke de de e de e de de e K ke de d de do e e de B de K e de Ko K e de de K de Kk ke K K

* E.G.
* SCREEN INPUT = AAAAAAAA
* AFTER EXECUTION R5=0A0A0AOA
*
*
* ARGUMENT
*
LOOP1 L RS,0(0,R11)
LA  RO,4
LOOP2  SLL RS,4
SLDL R4,4
BCT RO,LOOP2
*
ST  R4,TEMP
MVC  0(2,R7),TEMP+2
*
LA R7,2(0,R7)
LA  R11,4(0,R11)
BCT R10,LOOP1
LA  R1,4(0,R1)
LA R2,4(0,R2)
BCT R3,LOOP

Controlled Release Draft

3-70

LOAD 4 CHARACTERS (32 BITS)
RO= LOOPZ2 CONTROL

STRIP BITS OFF

MOVE GOOD BITS TO R4

DO FOUR TIMES

STORE THE DATA

MOVE THE LAST TWO BYTES TO
APPROPRIATE BIT STRG
INCREMENT BIT STRG PTR
INCREMENT INPUT STRG PTR

R1 NOW PTS TO VIOL. BIT STRG
R2 NOW PTS TO VIOL. INPUT STR

October, 1985



* THIS ENSURES THAT EVERYTHING IS INITIALLY TURNED OFF

LA
MVI
MvC
LA
MVI
MVC

* % * ¥ *

L

LA
CR
BE
LA

CR

BE
*

R4 ,NOEVENT
0(R4) ,X'FF'
1(31,R4),0(R4)
R4 ,NOVIOL
0(R4) ,X'FF'
1(31,R4),0(R4)

IF THE OPTION IS TO JUST CHANGE BIT SETTINGS OR RES
SETTINGS THEN BRANCH AROUND LIBRARY AND VOLUME

R4 ,PFKEY
RS ,CHGEVTS
R4,R5
CHGSET

RS ,RSMNEW
R4,R5
NEWRES

* GET THE LIBRARY AND VOLUME
NEWFIL GETPARM KEYLIST=INPUT,MSG=MSG3

*
*

* DETERMINE THE LENGTH OF THE VOLUME NAME

LA
LA
LA
LA

LOOP3 CLI
BE

SEEE

BCT

ENDOFVL STH
*

* GET THE NUMBER OF CHAR. IN LIBRARY NAME

LA
LA
LA
LA

LOOP4 CLI
BE
MvC
LA
LA
LA
BCT

ENDOFLB STH
*

R1,6
R5,0
R4 ,VOLUME+12
R9,VOLLEN+2

0(R4),X'20'
ENDOFVL
0(1,R9),0(R4)
R9,1(0,R9)
R4,1(0,R4)
R5,1(0,R5)
R1,LOOP3
RS,VOLLEN

R1,8

RS5,0

R4 ,LIBRARY+12
R9,LIBLEN+2

0(R4) ,X'20°'
ENDOFLB
0(1,R9),0(R4)
R9,1(0,R9)
R4,1(0,R4)
R5,1(0,R5)
R1,LOCP4
R5,LIBLEN

Controlled Release Draft 3-71

GET LIBRARY AND VOLUME

AND STORE IT

SIX POSSIBLE CHARACTERS

R5=NO. CHAR IN VOL. NAME

GET THE START POSITION

GET THE START OF VOLUME
PARAMETER TO BE PASSED

LOOK FOR BLANK

FOUND END OF STRG

MOVE NON BLANK CHAR.
INC. PARAMATER POSITION

GET THE NEXT BYTE
INCREMENT STRING COUNT

STORE THE NO. CHAR

AND STORE

EIGHT POSSIBLE CHARACTERS

R5=NO. CHAR IN LIB. NAME

GET THE START POSITION

GET THE START OF LIBRARY
PARAMETER TO BE PASSED
LOOK FOR BLANK

FOUND END OF STRG

MOVE NONBLANK CHAR.

INC. PARAMETER POSITION

GET THE NEXT BYTE
INCREMENT STRING COUNT

STORE THE NO. CHAR

October,

UME WITH NEW BIT

1985



* CHECK FOR NEW LOG FILE , OLD PARAMETERS

L R4 ,PFKEY
LA R5,STRTOLD
CR R4,R5

BE NEWOLD

* *»

NEWLOG, NEW PARAMETERS
LA RS, NEWCNTL GET THE NEW CONTROL PAR.
ST  RS,LOGCNTL STORE IT IN THE CONTROL
CREATE  CNTROLOG RC=RC,SETEVENTS=SETEVTS,
SETVIOLATION=SETVIOS ,CONTROL=LOGCNTL,
RESETEVENTS=NOEVENT , RESETVIOLATION=NOVIOL,
NEWLIB=LIBLEN, NEWVOL=VOLLEN
B DONE
%*
* THIS HANDLES THE NEWLOG WITH OLD PARAMETERS
NEWOLD LA  RS,NEWCNTL
ST  RS,LOGCNTL
CNTROLOG RC=RC,CONTROL=LOGCNTL , NEWLIB=LIBLEN , NENVOL=VOLLEN

B DONE
*
* THIS WORKS FOR THE STOP AND RESUME WITH SAME PARAMETERS
STOPRES L RS, PFKEY GET PFKEY
LA R4 ,STOPLOG GET STOPLOG PFKEY
CR R5,R4 CHECK FOR STOP LOG
BE STOPKEY PROPER CONTROL IN PRESENT
LA RS ,RSMCNTL GET THE RESUME CONTROL
ST RS, LOGCNTL STORE IN LOG CONTROL
B RESTOP

STOPKEY LA  RS,STPCNTL
ST  RS,LOGCNTL
*
* MAKE CALL FOR RESUME WITH SAME PARAMS. AND STOP
RESTOP  CNTROLOG RC=RC,CONTROL=LOGCNTL
B DONE
*
*
* MAKE CALL FOR RESUME WITH NEW PARAMETERS

NEWRES LA RS, RSMCNTL
ST RS, LOGCNTL

CNTROLOG RC=RC,SETEVENTS=SETEVTS, RESETVIOLATION=NOVIOL, +
SETVIOLATION=SEIVIOS, RESETEVENTS=NOEVENT , CONTROL=LOGCNTL
B DONE

Controlled Release Draft 3-72 October, 1985



* THIS CHANGES BIT SETTINGS
CHGSET CNTROLOG RC=RC,SETEVENTS=SETEVTS, RESETVIOLATION=NOVIOL, +
SETVIOLATION=SETVIOS, RESETEVENTS=NOEVENT

DONE RT
TESTSTAT STATIC
RC DC F'0'
LOGCNTL DC F'0’ SET NEWLOG PARAMETER
PFKEY DS F
LIBLEN DS H NEW LOG LIBRARY
DS CL8
VOLLEN DS H NEW VOLUME LIBRARY
DS CL6
SETEVIS DC BL.256'0' LOG EVENTS BIT STRG
SETVIOS DC BL.256'0' LOG VIOLATIONS BIT STRG
NOEVENT DC BL.256'0"’ TURN OFF EVENTS BIT STRG
NOVIOL DC BL.256'0'’ TURN OFF VIOLATIONS BIT STRG
INPUT KEYLIST PRNAME='INPUT',6 LABELPFX="'"',6 PREVIEW=YES, +
'VOLUME', ('WORK ',ANL),'LIBRARY', ('@SYSLOG@',ANL)
SETLOG  KEYLIST PRNAME='LOGHEX',, LABELPFX='' PREVIEW=YES, +

'LOGSET', ('00000000' ,HEX), 'VIOSET', ( '00000000' ,HEX)
CNTRL KEYLIST PRNAME='LOGCNIL',6 LABELPFX='',6 PREVIEW=YES,TEXT,('PFl +
STOP LOGGING',1,'AlQ0'),TEXT,('PF2 START LOGGING IN A+
NEW FILE WITH NEW PARAMETERS',1,'Al0'),TEXT,('PF3 ST+
ART LOGGING IN A NEW FILE WITH THE OLD PARAMETERS',1,'Al+
0'),TEXT, ('PF4 RESUME LOGGING IN THE LAST FILE WITH N+
EW PARAMETERS',1,'Al0'),TEXT,('PF5 RESUME LOGGING IN +
THE LAST FILE WITH THE OLD PARAMETERS',1,'Al0'),TEXT, ('P+
F6 CHANGE THE LOGGING PARAMETERS ONLY',1,'Al0')

DS OF AALLIGNMENT
KEYS DC XL4'FC000000'
MSG3 MSGLIST '03', 'SCLOGT','ENTER THE LOGGING VOLUME AND LIBRARY'
MSG2 MSGLIST '02','SCLOGT','ENTER LOGGING AND VIOLATION BIT SETTING+
S IN HEX'
MSG1 MSGLIST '0Ol','SCLOGT', 'SELECT THE PF-KEY DESIRED'
*
TRTAB DC CL256'0" TRANSLATE TABLE USED FOR
ORG TRTAB+X'30' CONVERTING HEX TO BINARY

DC X'00010203040506070809"
ORG TRTAB+X'4l'
DC X'OAOBOCODOEQF'

ORG
TEMP DC F'0’
SETBITS DC A(SETEVTS) PTR TO LOG EVENTS BIT STRG
DC A(SETVIOS) PTR TO LOG VIOLATIONS BIT STRG
INPARM DC A(LOGSET) PTR TO LOG EVENTS INPUT
DC A(VIOSET) PTR TO LOG VIOL. INPUT
LPCOUNT DS F
END

Controlled Release Draft 3-73 October, 1985



3.3.3 U

ser Synchronization Example

This
services

program is intended to show how to use the user synchronization

First, use SCREATE to create the object for synchonization.

To access the resource that is being managed, use SENTER. SENTER
releases the resource to the program once its free. At this
point, the application program would be able to process the
resource as needed.

SEXIT removes the synchonization object from the program and
activates the next request for the object.

To delete the synchronization object, you have to enter it (use
SENTER). Then, use SDELETE to remove it and free the associated
memory space. If there are other requests to use the resource
when the program issues SDELETE, all requests are processed
before SDELETE is run.

START CODE
REGS
BALR EP,0
USING *,EP
USING DATA,R14
SCREATE RETURNCODE=RC,HANDLES=PTR
LT R1,RC CHECK RETURN CODE
BNZ CRTERROR BRANCH IF ERROR
SENTER RETURNCODE=RC, HANDLES=PTR
LT R1,RC CHECK RETURN CODE
BNZ  ENTERROR BRANCH IF ERROR
SEXIT RETURNCODE=RC, HANDLES=PTR
LT R1,RC CHECK RETURN CODE
BNZ EXTERROR BRANCH IF ERROR
SENTER RETURNCODE=RC,HANDLES=PTR
LT R1,RC CHECK RETURN CODE
BNZ  ENTERROR BRANCH IF ERROR
SDELETE RETURNCODE=RC,HANDLES=PTR
LT R1,RC CHECK RETURN CODE
BNZ DELERROR BRANCH IF ERROR
RT

CRTERROR RT

ENTERROR RT

EXTERROR RT

DELERROR RT

DATA STATIC

PTR DC A(HANDLE)

HANDLE DS CL8

RC DS F RETURN CODE
END

Controlled Release Draft 3-74 October, 1985



CHAPTER 4
SVC-TYPE SERVICES AND ASSOCIATED MACROINSTRUCTIONS

4.1 OVERVIEW

This chapter describes the system services available for general use
that are invoked by issuing an SVC instruction. The assembler interface
to system services are macros located in the system library @MACLIB@ on
the system volume, which the assembler accesses when assembling a source

program.

In the following sections, each system service description containg
the following information:

e Syntax -- This section describes the format in which to code a
macroinstruction. There may be more than one possible format.
The programmer must adhere to assembly language syntax rules as
described in the VS Assembly Language Reference when coding the

macroinstructions.

] Function — This section describes the functions of each
macroinstruction.

. Parameter Definitions -- This section describes in detail the

parameters that may be used with the macro call, and the valid
values for each parameter.

e Structure -- When present, this section describes system control
blocks in graphic form showing the offsets (in hexadecimal) for
each symbol in the control block.

¢ Output —- This section describes the output of the SVC, including
the information placed on or removed from the program stack and
the valid return codes for the SVC. This section is omitted for
those macroinstructions that generate or describe system data
structures.

In cases where there are restrictions on the use of the

macroinstruction, a separate section is included that describes these
restrictions.

Controlled Release Draft 4-1 October, 1985



4.2 SERVICE-BY-SERVICE DESCRIPTIONS

Macroinstructions described here are for two commonly performed
operations: the description of a system control block and the generation
of an orderly call to the supervisor to perform a service.

Corresponding to each system control block is a macroinstruction
which system and user programs freely use to define standard labels for
fields within the control block. If only the macroinstruction name is
coded, the system generates a dummy section (DSECT) of that name. If a
register specification is included, a USING instruction is also
generated. If the user provides a SUFFIX parameter, each label generated
contains the suffix character immediately following the block name. (The
suffix must be one character only.) If the user specifies the NODSECT
parameter, the DSECT statement is not generated.

Controlled Release Draft 4-2 October, 1985



4.2.1 AXD1l - Describe AXD1l Structure

Syntax

AXD1  [NODSECT][,REG=expression][,SUFFIX=character]
Function

Allows the user to symbolically reference the Alternate Descriptor
Block (AXD1) which describes the alternate index structure of an indexed
file. An indexed file has an AXD1l block if, and only if, a flag
(FDR1FLAGSALTX) is set in its label (FDR1).

Parameter Definitions

NODSECT Specification of NODSECT results in the AXD1 fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, a DSECT with the name AXDl (plus the
optional suffix) is generated.

REG Provides for the optional specification of a register for which a
USING statement for the AXD1 fields is generated.

SUFFIX 1If provided, all labels are generated by the concatenation of the

letters AXD1, the user-provided SUFFIX (one ASCII character in
length), and the field name.

Controlled Release Draft 4-3 October, 1985



Structure

BYTE O BYTE 1 BYTE 2 BYTE 3
AXD1
BEGIN
+0 | BL
+4 | MASK
+8 |
+ | UFB
+10 | aLTINX | FLAGS | MSIZE | DUPINX
+14 | BCB
+18 |
+1c |
+20 |
+24 | pMASK
+28 |
+2C | ORECSIZE | OFLAGS | OSTART
+30 | | ONRECS
+34 | | OEBLK
+38 | OSPAREX | OSPARE
ENTRY +3C | XORD | EFLaGs | XLEVELS
+40 | KEYPOS | KEYSIZE | HXBLK
+44¢ | | NRECS
+48 | | PTRD
+4C | PRLEN | PRAKPOS | PRPKPOS | ESPARE
+50 |
+54 |
+58 |
+73C | SPARE3
For DMS Processing
+2C | SAVEADR
+30 | SAVELTH
For Save Area Type S
+2C | KEYSIZE | HXBLK
+30 | SEREC | ENTOFF
+34 | PTRN | CURINX
+38 | SPAREX | EXSPARE
Controlled Release Draft 4-4

LENGTH 800

October,

1985



Example

AXD1 NODSECT

*,* AXD1 DEFINITION
dedddededededededdededoddededodedededkdedodedededededodededede N dedodefoddedede e dodedededed Ko de ok o de de ke e de ek e e e e e e e ke o

THE ALTERNATE INDEX DESCRIPTOR BLOCK (AXD1) DESCRIBES THE
ALTERNATE INDEX STRUCTURES OF AN INDEXED FILE. AN INDEXED
FILE HAS AN AXD1 BLOCK, IF AND ONLY IF, FLAG FDR1FLAGSALTX
IS SET IN ITS LABEL (FDR1l). THE AXD1 BLOCK CONTAINS

UP TO 16 (64) ALTERNATE INDEX DESCRIPTIONS (AXD1ENTRY). THE
NUMBER OF DESCRIPTIONS IS CONTAINED IN FDR1ALTXCNT OF THE
FDR1 RECORD.

THE AXD1l IS LOCATED IN BLOCK NUMBER ZERO OF THE FILE.
THE AXD1 IS DIVIDED INTO 4 AREAS:
1. BLOCK DESIGNATOR AREA (AXD1BL)
2. DMS PROCESSING AREA (AXDIMASK TO AXD1ENTRY)
3. AXD ENTRIES (ONE AXD ENTRY PER ALT-INDEX)
4. SPARE AREA (UP TO END OF 2K BLOCK)
AREAS 1-3 ARE HELD IN THE AXD1-AREA (POINTED TO BY UFBALTPTR)
DURING FILE PROCESSING.

DATE 07/16/82
VERSION 5.04.02

* X Ok X X X X X ¥ N N ¥ F ¥ ¥ ¥ % F* ¥ * %

dddekhkdhkhhhhkhhhhkhhhhkhhhhhhhihhhhkhhhhhhhhhhhhhhhhihhihhhhhihhhikhhhhihk
* BLOCK DESIGNATOR AREA:

AXD1BEGIN DS OF
AXD1BL DS BL4 BLOCK TYPE DESIGNATION

* AXD1BL. MUST EQUAL XL4'2'

* OR XL4'4'

* DMS PROCESSING AREA:

AXD1MASK DS BL8 BITS ON INDICATE ALTERNATE

* INDEX STRUCTURES (NUMBERED

* 1 TO 16) PRESENT

* (INITIAL IMPLEMENTATION OF

* 2-BYTE MASK ONLY)

AXD1UFB DS A  POINTER TO UFB FOR THIS FILE

* AFTER THE FILE HAS BEEN OPENED
AXD1ALTINX DS BL1 ORDINAL INDEX NUMBER FOR READ
AXD1FLAGS DS BL1 DMS FLAG BYTE

AXD1FLAGSOK EQU X'80' ALTERNATE INDEX STRUCTURES HAVE
* BEEN CREATED WHEN FLAG SET

* THE FOLLOWING FLAGS ARE USED FOR DMS PROCESSING (0 IN LABEL)
AXD1FLAGSOPENA EQU X'08' OPEN ALLOCATED THIS AXD1 BLOCK
* (ONLY IF NOT OUTPUT MODE)
AXD1FLAGSQ EQU X'04' START QUALIFIED OPTION
AXD1FLAGSTYPER EQU X'02' TYPE R SAVEAREA IN USE
AXD1FLAGSTYPEV EQU X'01' TYPE V SAVEAREA IN USE

* %

Controlled Release Draft 4-5 October, 1985



AXDIMSIZE DS BL1 SIZE OF MASK PER FILE

* VALUE FROM 2-8 BYTES (MUST BE 2
* FOR FIRST IMPLEMENTATION)
AXD1DUPINX DS BL1 ORDINAL INDEX NUMBER OF THE

* ALT-TREE HAVING DUPLICATED KEY

* MINIMUM AXD1-AREA FOR SHARED MODE ENDS HERE.

* AXDIMASK, AXDIMSIZE, AND AXD1ALTINX ARE REQUIRED.
*

AXD1BCB DS BL16 BCB FOR DMS PROCESSING (SEE UFB)
AXD1PMASK DS BL8 MASK OF VALID ALTERNATE ACCESS
* PATHS (SET AT FILE CREATION ONLY)

*

* THE FOLLOWING FIELDS ARE INTERMEDIATE OUTPUT MODE FIELDS
*

AXD1ORECSIZE DS H WORK RECORD - MAX LENGTH
AXD1OFLAGS DS BL1 OUTPUT FLAGS (RESERVED)

AXD10OSTART DS BL3 FIRST BLOCK CONTAINING WORK RECORDS
AXD]ONRECS DS BL3 TOTAL COUNT OF WORK RECORDS
AXD10OEBLK DS BL3 LAST USED BLOCK NUMBER IN PRIMARY

* TREE (ALT-TREE TO AXD1EBLK+1)
AXD10SPAREX DS H *kk%x (unused) ****

AXD1OSPARE : DS BL2 RESERVED IN OUTPUT MODE

k%

ORG AXD1ORECSIZE
* THE FOLLOWING FIELDS ARE USED FOR DMS PROCESSING (EXISTING FILES)
*ok
AXD1SAVEADR DS A SAVE AREA ADDRESS (TYPE V)
AXD1SAVELTH DS H SAVE AREA LENGTH (TYPE V)

ORG AXD1ORECSIZE
* THE FOLLOWING 3 FIELDS ARE USED FOR SAVE AREA TYPE S

AXD1SKEYSIZE DS BL1 SAVED PRIMARY KEYSIZE

AXD1SHXBLK DS BL3 SAVED PRIMARY ROOT BLOCK NUMBER
AXD1SEREC DS H SAVED PRIMARY LEVEL COUNT

*

AXD]1ENTOFF DS H OFFSET OF ACTIVE AXD1ENTRY(IN AXD1)
AXD1PTRN DS BL3 NEXT SEQUENTIAL BLOCK (ALT-TREE)
AXD1CURINX DS BL1 ORDINAL NUMBER ASSOCIATED WITH

* BLOCK IN AXD1BCB

AXD]1SPAREX DS H *kk% (unused) *¥&%

AXD1EXSPARE DS BL2 SPARE - ALL FILES

*%
*

Controlled Release Draft 4-6 October, 1985



fekdedhddhhhhhhhhdhhhhkhkhhkhhhhhhhhhhhkhkhhkhhhkhdhdhhkhdhhkhhhhhkdhkkkhhkhkhkhkik

* AXDIMASK AND AXDIALTINX ARE THE ONLY FIELDS IN THE AXD1-AREA WHICH
* MAY BE MODIFIED BY THE USER-PROGRAM WHILE THE FILE IS OPEN.

*

*

PRIOR TO ISSUING SVC OPEN.

*
*
*
%*
*
*

FOR EXISTING FILES, NO FIELDS IN THE AXD1-AREA ARE USER-SUPPLIED

FOR OUTPUT MODE, USER-PROGRAM FILLS IN THE REQUIRED AXD1-AREA WITH:
AXDIMSIZE (THE ACCESS MASK PREFIX SIZE):
AXD1KEYPOS, AXD1KEYSIZE, AXD1EFLAGS, AND AXD1XORD
FOR EACH AXD1ENTRY (COUNT IN UFBALTCNT).

hhkhkhhhhhhhhkhhhhkhhhhkhkkhkhhhhhkhkhkhkhhkhhkhkhhkhhkkhkkhkhhkhkkhhhhkhkhhhkhhhhkihihkk

*
* AXD ENTRIES:

AXD1ENTRY
*

%*

%*

AXD1XORD DS
*

*

%*

AXD1EFLAGS DS
AXD1EFLAGSDUPS EQU
AXD1EFLAGSKCOM EQU

*
* THE FOLLOWING FLAGS ARE USED

AXD1EFLAGSACT EQU
*

AXD1EFLAGSUP EQU
*

*

AXD1XLEVELS DS
%*

*

AXD1KEYPOS DS
AXD1KEYSIZE DS
AXD1HXBLK DS
%*

AXD1NRECS DS
AXD1PTRD DS
%*

%*

AXD1PRLEN DS
AXD1PRAKPOS DS

Controlled Release Draft

BL1

X'80'
X'40'

DS 0XL28 UP TO 64 ENTRIES

(EACH A DESCRIPTION OF ONE
ALTERNATE INDEX STRUCTURE:;
UNUSED ENTRIES ZERO-FILLED)

ORDINAL NUMBER (STARTING FROM 1)
IDENTIFYING THIS INDEX STRUCTURE

(CORRESPONDS TO BIT IN
(AXDIMASK)

OPTION FLAGS

DUPLICATE KEYS ALLOWED
KEY COMPRESSION IN INDEX
(NOT IN FIRST VERSION)

FOR DMS PROCESSING (0 IN LABEL)
X'02"

X'0l'

HL1
FL3

BL3
FL3

BL1
BL1

4-7

INDICATES THIS ALT-TREE IS THE

ACTIVE ALT-TREE DURING PROCESSING
INDICATES AXD1PTRD, AXD1XLEVELS

OR AXD1HXBLK HAS BEEN MODIFIED
DURING ALT-TREE PROCESSING
NUMBER OF LEVELS OF THIS
ALTERNATE INDEX STRUCTURE
EXCLUDING LOWEST LEVEL

KEY POSITION IN RECORD

KEY LENGTH

BLOCK-IN-FILE OF ROOT BLOCK
OF THIS ALTERNATE INDEX

ITEM COUNT - LOW LEVEL OF TREE
FIRST BLOCK OF LOW LEVEL

OF THIS ALTERNATE INDEX
(ALTERNATE KEY SEQUENCE)
LENGTH OF ALT TREE PSEUDO-REC
POS OF ALT KEY IN PSEUDO-REC

October,

1985



AXD1PRPKPOS
AXD1ESPARE
AXD1ENTRYEND

AXD1ENTRYLENGTH
*

DS BL1 POS OF PRI KEY IN PSEUOD-REC
DS BLS (RESERVED IN EACH ENTRY)

EQU *
EQU AXD1ENTRYEND-AXD1ENTRY

ORG AXD1ENTRY+64*L'AXD1ENTRY

AXD1SPARE3
*

AXD1END
AXD1LENGTH

Controlled Release Draft

DS XL196 (RESERVED)

EQU *
EQU AXD1END-AXD1BEGIN

October,

1985



4,2.2 AXDGEN - Generate Alternate Index Descriptor Block, (AXD1)

Syntax

[label] AXDGEN [MASKSIZE={integer}][,ENTRIES={integer}]
{ 2 1} { 0 1}

[, (ORD=integer ,KEYPOS=integer ,KEYSIZE=integer
[ ,NODUPS] [ ,COMPRESS]) ]
Function

Generates an alternate index descriptor block (AXD1) to be addressed
by UFB field UFBALTPTR (ALTAREA parameter of UFBGEN macroinstruction).
The AXD1l describes the alternate index structures of an indexed file.
The AXD1 block contains up to 16 alternate index descriptions
(AXD1ENTRY). Unused entries are filled with zeroes.

For existing files, no fields in the AXDl1 are user-supplied prior to
issuing the OPEN SVC. For files in Output mode, the user program may
define each alternate index structure by supplying the access mask size,
the key position, the key size, the flags, and the ordinal number of the
index structure.

Parameter Definitions

MASKSIZE The size, in bytes, of the alternate mask field. A bit is
set in the mask that corresponds to the index of the
alternate index structure. Must be specified as an

integer. Must be equal to 2 for the current versions of
the system. The parameter defaults to a value of 2.

ENTRIES To use the AXD1 for OUTPUT mode processing, this parameter
must equal the number of alternate index structures which
are described in the following positional parameters. The
value must be an integer from 0 to 16, and if not supplied,
defaults to 0.

ORD Ordinal number defining this alternate index structure
(access path). This number corresponds to the On bit in
the access mask. Specified as an integer between 1 and
16. Required in all supplied positional parameters.

KEYPOS Key position in the record (i.e., offset in bytes into the
record, counting from 0 for the first byte). Specified as
an integer. Required in all supplied positional parameters.

KEYSIZE Key length. Specified as an integer. Required in all
supplied positional parameters.

Controlled Release Draft 4-9 October, 1985



NODUPS If specified for Output mode, duplicate keys are not
allowed. The default is to allow duplicate keys. Ignored
in other modes.

COMPRESS Ignored in the current system releases.
Example
AXDGEN ENTRIES=1
+ DC F'0’ BL
+ DC XL14'0’ MASK,UFB,ALTINX,FLAGS
+ bC HL1'2' MSIZE
+ DC XL41'0" SPARE1,BCB,PMASK, SPARE
+* AXD ENTRY FOR ALTERNATE ACCESS PATH
+ DC AL1(0) XORD
+ DC BL1'10000000'
+% FLAGS
+ DC H'O' LEVELS
+ DC AL2(0) KEYPOS
+ DC AL1(0) KEYSIZE
+ DC XL21'0!' HXBLK,NRECS, PTRD, ESPARE

Controlled Release Draft 4-10 October, 1985



4.2.3 BCE - Describe Buffer Control Entries

Syntax

BCE [NODSECT]{.,REG=expression][,SUFFIX=character]

Function

Describes the buffer control entries (BCE) which are contained in the
buffer control table (BCTBL). There is one BCE per 2K buffer in a data
management buffer pool.

Parameter Definitions

NODSECT

REG

SUFFIX

Structure

BCE
BEGIN
+0
BUFCMD +4
+8

+10
+14
+18
+1C
+20
+24
+28
+2C
+30
+34

Specification of NODSECT results in the BCE fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, the system generates a DSECT
with the name BCE (plus the optional SUFFIX).

If specified, a USING statement is generated with the given
register number.

One ASCII character in length. If provided, all labels are

generated by the concatenation of the letters BCE, the
user-provided SUFFIX, and the field name.

BYTE 0O BYTE 1 BYTE 2 BYTE 3

OFB
BUFADR

BUFDATAL | SPARE

BUFBLOCK | BCBFLAGS
KEYHI

TYPE | wr | AGEWT | SPARE1
TOCHN
KEYLOW

EXPAND

LENGTH = 38

Controlled Release Draft 4-11 October, 1985



=
»
)]
3
—

Lxample

BCE REG=4
DSECT

=

**#****l‘**g

BCEBEGIN
BCEOFB
BCEBUFCMD
BCEBUFADR
BCEBUFDATAL
BCESPARE
BCEBUFBLOCK

*

BCEBCBFLAGS
BCEBCBFLAGSLOD
BCEBCBFLAGSTOR
BCEBCBFLAGSIO

BCEBCBFLAGSREF
*

BCEKEYHI
*

DATE 3/28/79
VERSION 4.00

DS OF
DS A
DS OBLl
DS A
DS H
DS H
DS FL3

DS BL1
EQU X'01'
EQU X'02'
EQU X'04'
EQU X'80"

DS CL12

THE BUFFER CONTROL ENTRIES (BCE) ARE CONTAINED IN THE BUFFER
CONTROL TABLE (BCTBL). THERE IS ONE BCE PER 2K BUFFER IN A
DATA MANAGEMENT BUFFER POOL. BCTNBUF (WHICH AGREES WITH
OFBBCOUNT FOR AN ACTIVE BUFFER POOL) INDICATES THE NUMBER
OF BUFFER CONTROL ENTRIES PER BCTBL.

(FULLWORD ALIGNMENT)
OFB ADDRESS

COMMAND BYTE

BUFFER MEMORY ADDRESS
IO-LENGTH (2K)

OFFSET (UNUSED IN BCE)
BLOCK WITHIN

FILE OF BUFFERED DATA
FLAGS

BUFFER CONTENTS VALID
BUFFER TO BE REWRITTEN
BUFFER I/0 IN PROGRESS

REFERENCE BIT

BIT=1 ON ANY READ/WRITE
TRUNCATED HI KEY VALUE
(TYPE D)

* BLOCK TYPE (BCETYPE) CONTAINS INTERNAL AND EXTERNAL VALUES
* DEPENDING ON FILE ORG (INDEXED FILES HAVE **%% NO *%%% B[.OCK TYPE
* BYTE IN THE BLOCK; THUS I,D,A BELOW ARE INTERNAL TYPES.)

BCETYPE DS CL1
* BLOCK TYPE VALUES (INTERNAL) FOR INDEXED
BCETYPEIL EQU C'T"
*

BCETYPED EQU C'D'
%*

*

BCETYPEA EQU C'A"
*

*

BCETYPES EQU C'S'
*

Controlled Release Draft

BLOCK TYPE (ASCII CHAR)
FILES

INDEX BLOCK

(CONTAINS INDEX ITEMS)

DATA BLOCK

(CONTAINS DATA RECORDS)
BCEKEYHI/LOW SET IF TYPE =D
AVAILABLE BLOCK (CHANGED TO
TYPE I OR D IF USED

BY BLOCK SPLIT)

BLOCK FROM LOW-LEVEL OF AN
ALTERNATE TREE

October, 1985



BCEWT DS BL1 STARTING WEIGHT VALUE

BCEAGEWT DS BL1 AGED WEIGHT VALUE
BCEFLAGS1 DS BLl1 EXTRA FLAGS
BCEFLAGS1CLAIMED EQU X'01' REPL BCE HAS BEEN CLAIMD
BCEIOCHN DS A CHAIN FOR BCE'S WITH I1/0
* IN PROGRESS
BCEKEYLOW DS CL12 TRUNCATED LOW KEY VALUE
* (TYPE D)
BCEEXPAND DS BLS8 BCE EXPANSION
* EXPANSION = 12 (TRUNC KEYS =12), PLUS 4 (CHN BCE PER UFB)+4 EXTRA
BCELENGTH EQU *-BCEBEGIN BCE LENGTH (=56)

CSECT

USING BCE,4

Controlled Release Draft 4-13 October, 1985



4.2.4 BCTBL - Describe Buffer Control Table

Syntax

BCTBL

Function

[NODSECT] [ ,REG=expression] [ ,SUFFIX=character]

Describes the buffer control table (BCTBL). The BCTBL is addressed
by the user file block (UFB) and contains a header defining a data
management buffer pool and buffer control entries (BCE) defining the
contents of each buffer in the pool.

Parameter Definitions

NODSECT

REG

SUFFIX

Structure

BCTBL
BEGIN
LNBUF +0
+4
REPINUM +8

+10
+14
+18
+1C
+20
+24
+28
+2C
+30
+34
+38
+3C
+40

Specification of NODSECT results in the BCTBL fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, the system generates a DSECT
with the name BCTBL (plus the optional SUFFIX).

Provides for the optional specification of a register for
which a USING statement for the BCTBL fields is generated.

One ASCII character in length. If provided, all labels are

generated by the concatenation of the letters BCTIBL, the
user provided SUFFIX, and the field name.

BYTE O BYTE 1 BYTE 2 BYTE 3

HITCT

LOCK1

MISSCT

FILECT | FLAGS | TYPE | SPARE
IOHEAD

WDATA WDATAH | WINDEX | WROOT
WADATA WAINDEX | WAROOT | WRES
EXPAND

BCE1

| | WTABLE

Controlled Release Draft 4-14 October, 1985



BYTE © BYTE 1 BYTE 2 BYTE 3

+44 | |

+48 | I

+4c | I

+50 | |

+54 | |

+58 | BCE2 [

+5C | I

+60 | |

+64 | |

+68 | I

+6C | |

+70 | I

+7¢ | I

+78 | I

+7C | |

+80 | |

+84 | I

+88 | |

+8C | |
Example

BCTBL REG=2,SUFFIX=T
+BCTBLT DSECT
+*
+* THE BUFFER CONTROL TABLE (BCTBL) IS ADDRESSED FROM THE USER
+% FILE BLOCK (UFB), AND CONTAINS A HEADER DEFINING A DATA
4% MANAGEMENT BUFFER POOL AND BUFFER CONTROL ENTRIES (BCE)
+* DEFINING THE CONTENTS OF EACH BUFFER IN THE POOL.
+*
+%* DATE 3-28-79
+* VERSION 4.00
+*
+BCTBLTBEGIN DS OF (FULLWORD ALIGNMENT)
+*
+*%% BUFFER CONTROL TABLE
+*
+BCTBLTNBUF DS OHL1 COUNT OF BUFFERS (BCE'S)
+BCTBLTHITCT DS A HIT-COUNT (READ)
+BCTBLTLOCK1 DS A BCE LOCK1 (DMS INTERNAL)
+BCTBLTREPLNUM DS OHL1 CIRCULAR BCE NUMBER (SCAN)
+* BCTBLHITCT AND BCTBLMISSCT INDICATE PERCENTAGE OF READ OPERATIONS
+* HANDLED WITHIN THE BUFFER POOL (WITHOUT PHYSICAL IO OPERATION).
+BCTBLTMISSCT DS A MISS—-COUNT (READ)
+BCTBLTFILECT DS BL1 COUNT OF FILES USING BCT
+BCTBLTFLAGS DS BL1 BCTBL FUNCTION FLAGS

Controlled Release Draft 4-15 October, 1985



INTERNAL FLAG FOR
EXTRACT FUNCTION

GET REPLACEMENT BUFFER
WITHOUT IO OPERATION
BLOCK TYPE FOR FUNCTION
(VALUE AS IN BCETYPE)
SPARE

HEAD OF CHAIN FOR BCES
WITH I/0 OUTSTANDING
TABLE OF WEIGHTS FOR REPL
VALUE LOADED BY SVC OPEN.

DATA BLOCK NO HOLD (1)
DATA BLOCK HOLD (2)
INDEX BLOCK (PRIMARY) (3)
INDEX ROOT (PRIMARY) (5)
LOW LEVEL ALT BLOCK (1)
INDEX BLOCK (ALT) (3)
INDEX ROOT (ALT) (5)
RESERVED WEIGHT CLASS (0)
EXPANSION AREA (BCTBL)

BUFFER CONTROL ENTRY
BUFFER CONTROL ENTRY 2,ETC

+BCTBLTFLAGSEXT EQU X'80'

+%

+BCTBLTFLAGSRPL EQU X'40'

+%

+BCTBLITYPE DS CL1

+%

+BCTBLTSPARE DS BL1
+BCTBLTIOHEAD DS A

+*

+BCTBLTIWIABLE DS XL8

+* VALUE IN PAREN BELOW IS DEFAULT

+ ORG BCTBLTIWTABLE
+BCTBLIWDATA DS XL1
+BCTBLTIWDATAH DS XLl
+BCTBLTWINDEX DS XLl
+BCTBLTWROOT DS XLl
+BCTBLTWADATA DS XLl
+BCTBLTWAINDEX DS XLl
+BCTBLIWARQOT DS XL1
+BCTBLTWRES DS XLl
+BCTBLTEXPAND DS BL4

+* END OF BCTBL HEADER; BCE'S BEGIN HERE
+BCTBLTBCE1 DS BL56
+BCTBLTBCE2 DS BL56

+BEGIN CODE

+ USING BCTBLT, 2

Controlled Release Draft

4-16

October,

1985



4.2.5 BCTGEN - Generate a Buffer Pool Control Table

Syntax

[label] BCTGEN NBUF=absolute expression
Function

Generates a skeleton buffer pool control table (BCT) for use in
buffer pooling (UFBGEN macroinstruction, parameters POOL and BCT).

Parameter Definitions

NBUF The number of buffers to be included in the buffer pool.
The user must supply an absolute expression which evaluates
to an integer not greater than 255.

Example

LAB1 BCTGEN NBUF=8

+LAB1 DS oF

+ DC AL1(8) BUFFER COUNT

+ DC XL31'0 REMAINDER OF PREFIX
+ DC (8)XL56'00' BUFFER CONTROL ENTRY

Controlled Release Draft 4-17 October, 1985



4.2.6 BEGTRANS - DMS/TX Transaction Rollback (SVC 80)

Syntax

[label] BEGTRANS RETCODE={(register)}[,ACK={YES}][,CANCEL={YES}]
{ address } . {NO } { NO}

Function

BEGTRANS marks the beginning of a DMS/TX transaction or
subtransaction.

Parameter Definitions

RETCODE Address where the return code will be stored.
CANCEL YES specifies to cancel the operation on error detection.
ACK YES specifies to produce an acknowledge GETPARM when errors

are detected.

Return Codes

Code Definition
0 Success.
4 No recovered files are open.
8 DMX/TX not supported on this system.
12 Invalid function request.
16 Invalid parameter or parameter list.
20 Unable to process before image journal for this task.

Run DMSTX utility on this database.

24 Error encountered on this file during rollback. Run
DMSTX utility on this file.

28 Specified mark not found. The entire transaction has
been rolled back.

32 Unable to set file crash status. File may contain
uncommitted updates.

36 Unable to set database crash status. Database may
contain uncommitted updates.

Controlled Release Draft 4-18 October, 1985



Example

BEGTRANS RETCODE=RCADDR,CANCEL=YES, ACK=NO

PUSHA 0,=A(64)

MVI  0(15),X'80' Set last parameter flag
PUSHA 0,RCADDR return code

LR 1,15

svC 80 (BEGTRANS)

POPN 0,2*%4

END BEGIN

+ + 4+ + +

Controlled Release Draft 4-19 October, 1985



4.2.7 CALL - Call a Subroutine

Syntax
(label] CALL EPLOC=address {,PARM={(register)}}
{ address }
{,PARMLOC=address }
[ ,COND={integer}]
{ 15 }
Function

Provides the necessary linkage to transfer control to another
routine. Loads the address of a parameter list (if specified in PARM or
PARMLOC) into register R1l. Also branches (conditionally) to the label or
address specified in EPLOC by means of a JSCI instruction, leaving the
return address on the stack. The JSCI instruction

e Saves the contents of control register 1

e Stores general registers 0 to 14 on the stack

e Places the address of the register 0 save area in control
register 1, as well as in the stack pointer, (GR 15)

The lowest address in any current static area is, by convention,
passed in register R14.

Restrictions

A stack, with stack top addressed by GR 15, must be available to the
caller.

Parameter Definitions

EPLOC The address of a word that contains the called routine's
entry point. This must be specified in a form allowable in
the D2(X2,B2) field of the RX-type assembly instruction

format.

PARM The address of a parameter list to be passed in register 1
(R1).

PARMLOC The address of a word that contains the address of a

parameter list to be passed in Rl (with format of the
address as specified for EPLOC).

COND Specifies the condition code under which the routine is to
be called. The default value is 15.

Controlled Release Draft 4-20 October, 1985



Example

GETPGM CALL PARM=PADDR,EPLOC=ENTRYWRD,COND=8
+GETPGM LA 1,PADDR
+ JSCI  8,ENTRYWRD

Controlled Release Draft 4-21 October, 1985



4.2.8 CANCEL - Cancel Program (SVC 16)

Syntax

[label] CANCEL MSG={(register)}
{ address }

Function

To terminate a program in the event of uncorrectable program failure,
such as

e Exhaustion of a system resource

e Tllegal or invalid parameters to an SVC routine or other system
service program

e A program-detected condition which cannot be satisfactorily
resolved within the program

CANCEL causes the transfer of program control to the Help processor
for cancellation of the issuing program. The message specified in the
MSG parameter, along with a standard CANCEL message, is displayed on the
workstation. The user cannot immediately resume program execution by the
CONTINUE PROCESSING command processor command. The user may, however,
examine the program by means of the Help processor's debugging
facilities, modify the current instruction address by means of the
Debugger's Inspect and Modify option, and then attempt to resume program
execution or issue the CANCEL command to remove the program from the
system. A program terminated by a CANCEL supervisor call from within
privileged code cannot be continued. The CANCEL macro is used 1in
conjunction with the CEXIT macro.

Restrictions
Must not be issued while in system must complete (SMC) state.

Parameter Definitions

MSG The address of a message to be displayed, contained in the
specified register, or at the specified address. A
register specification must be in parentheses, as shown.
The message must be in the format generated by the MSGLIST
macroinstruction.

Controlled Release Draft 4-22 October, 1985



Stack On Input

Lower
| | Address
0(SP) | |
| (1) Address of | Higher
| Message | Address
| Preceding I
Stack Data

(1) The address of the message to be sent to the user is constructed
in the following format:

Byte O 4 10 12
| (2) [ (3) (&) 1 (5)
| Message number | Issuer ID | Length | Text |

(2) Message number in ASCII characters (four bytes). Always
required.

(3) Issuer identification in ASCII characters (six bytes).

(4) Length of the message to be sent in binary (two bytes). This is
the length of the text which starts at byte 12. .
(5) Message text in ASCII characters. If the message is more than
one line, an end-of-line 1is indicated by an ASCII new line
character. No line may contain more than 79 characters, including
the end-of-line indicator. The last, or only, line does not require
an end-of-line character.

Stack On Qutput

The Help processor is entered with no return to issuing program. The
user program abnormally terminates when the user issues the CANCEL
command in the Help processor.

Example
LA RS5,LAB2
LAB1 CANCEL MSG=(RS)
+LAB1 PUSH 0.R5
+ SvC 16 (CANCEL)
LAB2 MSGLIST 'C001', 'SUPVSR', '"MEMORY POOL
EXHAUSTED'
+LAB2 DC CL4'Coo1l’
+ DC CL6 'SUPVSR'
+ DC AL2(21)
+ DC C'MEMORY POOL EXHAUSTED'

Controlled Release Draft 4-23 October, 1985



4.2.9 CEXIT - Cancel Exit (SVC 39)

Syntax

Format 1:

[label] CEXIT SET [.,([{NODEBUG}][,NOHELP])]
{DUMP }

[ ,ADDRESS={(register)}]
{ address }

[ .MESSAGE={(register)}]
{ address }
Format 2:
[label] CEXIT CANCEL
Function

The CEXIT SVC sets or cancels link level parameters which specifiy
the way a program handles error conditions.

The SET option allows the issuing program upon detecting an error, to
complete one of the following actions:

bypass the debug processor

initiate a full program dump

disable the HELP key

supply an alternate error handling intercept routine

® & 0 o

The CANCEL option negates the effect of any previously issued CEXIT
supervisor call in the current 1link level. Abnormal termination
conditions are not intercepted at the current 1link 1level and are
processed in the normal way by the command processor.

The caller may cancel the parameters specified via the CANCEL option
or reset them via another SET option during the same link level or may
temporarily override the specified parameters at subsequent 1link levels
by issuing another CEXIT SET at the appropriate link level.

Controlled Release Draft 4-24 October, 1985



The error handling intercept routine gains control from the cancel
processor in the following manner:

e If the abnormal termination condition occurred within the same
link 1level, the cancellation process returns control to the
program at the address of the cancellation-intercept routine.
This routine may also gain control if the current or any
subsequent link level issues a LOGOFF SVC and this CEXIT option
is still active. The registers are those at the time of either
the program check or the entrance to the supervisor call
resulting in the abnormal termination condition. A frequent
error is to fail to re-establish the addressability in the
cancel-exit routine.

e If the abnormal condition occurred while Data Management for
either disk or tape was in control, an attempt is made to
complete that operation. All non-I/0 wait conditions are
removed. The cancellation process does not, in this case,
attempt to close any files.

. If the abnormal termination condition occurred within a
subsequent link level (that is, a linked-to program, for which no
cancellation-interception routine was specified), the
cancellation process attempts to complete I/0 operations and
close files and then UNLINK each link level until a link level
with a cancellation-interception routine (if any) is found.
Control then passes to the cancellation-interception routine. In
this case, the registers are those at entry to the LINK
supervisor call. As in previous cases, all non-I/0 wait
conditions are removed.

In both cases (termination at the present link level or termination
at a subsequent 1level), entry to the cancellation-intercept routine
cancels the CEXIT options for the link level. They may be reset by the
user via a subsequent CEXIT supervisor call. On the stack, the
cancellation-intercept routine may access the following data using the
DSECT produced by the CXT macroinstruction:

CANCELLATION PCW 8 bytes

CANCELLED PROGRAM'S NAME 8 bytes

CEXIT OPTION IN EFFECT 1 byte (as in PFBCXTOPTS)
(RESERVED) 47 bytes

GENERAL REGISTERS 0-15 64 bytes

CANCEL MSGLIST Variable length

Parameter Definitions

NODEBUG The Debugger 1is bypassed for abnormal termination
conditions, Control passes directly to the cancel
processor without direct user notification.

DUMP This option also provides a full program dump prior to
entry into the cancel processor.

Controlled Release Draft 4-25 October, 1985



NOHELP This option causes the HELP key to be disabled at the
current 1link 1level to enable entry into the Help
processor. When the programmer specifies NOHELP, pressing
the HELP key in User mode has the following effects:

. If the workstation does not have operator privileges,
the alarm is sounded.

. If the workstation is a dual-mode operator console,
the system enters Operator mode. This option remains
in effect until the user issues a CEXIT without the
NOHELP option or until the program unlinks back to
either the command processor's initiator or to a link
level for which NOHELP was not specified.

Unless specifically disabled within a 1link 1level, the
NOHELP option is propagated to higher 1link 1levels. The
NOHELP option should only be utilized in those situations
where user access to CANCEL and other system functions must
be 1limited, as 1in the case of c¢ritical sections of
application programs updating multiple file chains and
pointers. Such programs should be as error-free as
possible prior to using this facility.

ADDRESS Specifies the address of a cancellation-intercept routine
provided by the user program.

MESSAGE Provides text to be used by both the Help processor and the
Debugger in place of the Cancel Processing menu
descriptions. Specification is of a modifiable data area
location containing a 1l-byte binary length field followed
by up to 27 bytes of text. Specification of this option is
independent of any user cancellation-intercept routine
specification.

Stack On Input

CEXIT SET Option

Lower
Address
lo 1 2 3 I
o(sp) | | I I
(1) 1(2) Address of |
|FLAG |Intercept RTN |
4(SP) | I
| (3) Address of |
| Help Message I
8(SP) I |
| Unused | Higher
I I Address
| Preceding |
| Stack Data I

Controlled Release Draft 4-26 October, 1985



(1) Flags:

Bit 0 1 =  SET option
Bits 1-2 00 = Debug enabled
01 = Nodebug option
10 = PDUMP option
11 = Dump option
Bit 3 0 = HELP key enabled
1 =  HELP key disabled

(2) Address of user error handling intercept routine or zero.

(3) Address of user—-supplied PF16 HELP display message to be used in
place of the CANCEL PROCESSING default message.

CANCEL Option

Lower

| | Address
lo 1 2 3 I

ospy | | (1) | I
|Flagsl| | Higher
| | | Address
| Preceding |
| Stack Data |

(1) Flags:
Bit 0 0 = CANCEL option

Remainder of word not examined.

Stack On Output

| [ Lower
| I Address
o(sp) | | Preceding | Higher
| Stack Data | Address
Example

EXIT CEXIT SET,NODEBUG,ADDRESS=FIXPROBS, MESSAGE=CANCELME
+EXIT PUSHA 0,0

+ MVI  0(15),B'00000000' X

+ PF KEYS 1-8 MASK
+ MVI 1(15),B'00000000' X

+ PF KEYS 9-16 MASK
+ PUSHA 0,CANCELME

+ PUSHA 0,FIXPROBS

+ MVI  0(15),B'10100000' OPTIONS BYTE

+ svC 39 (CEXIT SET)

Controlled Release Draft 4-27 October, 1985



4.2.10 CHARGEN - Macro Processor Large Character Generator

Syntax
CHARGEN string

Function

This macro generates an 8 x 8 space character for each character
input to the macro. It uses the assembly macro instruction MNOTES to
generate the string. Therefore, the string prints as a comment in the
source listing when the PRINT NOGEN assembly listing control instruction
is in effect.

Parameter Definitions

string A character string which cannot continue on another source
line. The string can contain embedded blanks if enclosed
within single quotes.

Example

CHARGEN WVS54LOG
+%
+% #4  H# # ## R # # i ik
4% ## o #H# # 4 ## 34 #H ## $
+% ## ## # # # # #H ## ## ##
+* #H O HH #H  HHE ¥ # H# 3 #HE 4
+* #% % H HE ## #  iHBEREHEEE #H# # #H
+* #iEEERE HE # # # 4 H## #4# ## ##
+* #iE Hi4 # # # ## H## #4# #¥# ##
+* ¥ # # 4 # HHHHEE R 4
+%

Controlled Release Draft 4-28 October, 1985



4.2.11 CHECK - Check for Event Occurrence (SVC 17)

Syntax

Format 1:

[label] CHECK

Format 2:
[label] CHECK
Format 3:

[label] CHECK

Format 4:

[label] CHECK

FPormat 5:

[label] CHECK

Format 6:

[label] CHECK

Format 7:

[label] CHECK

Format 8:

[label] CHECK

Controlled Release Draft

{OFB=}{ address }[.ERREXIT={ address }]
{VCB=}{(register)} {(register)}

[ ,IOSWREG='RO'][,FORM=LIST]

INTERVAL[ ,FORM=LIST]

MESSAGE={ address
{(register)}

}.PORT={ address }[,FORM=LIST]
{(register)}
{ 'string' }

WSKEY={ address }[,FORM=LIST]
{(register)}

INTERRUPT={ address
{(register)}

} ,IOSWADDR={ address }
{(register)}

[ .FORM=LIST]

TCIO,OFB={ address }[,IOSWADDR={ address }]

{(register)} {(register)}
{ ,FORM=LIST]
SEMA={ address }[,FORM=LIST]
{(register)}
MULTIPLE,PLIST={ address },
{(register)}

COUNT={self-defining term}

{ (register) }

4-29 October,

1985



Function
The function of this macro varies slightly depending on the format used.

e Format 1 --— CHECK OFB or VCB waits for completion of an I/0O
operation. If ‘“intervention required" is indicated on
completion, an appropriate workstation message is issued (if
possible) to inform the wuser, and CHECK proceeds when the
"intervention required" condition has been cleared. (CHECK may
reissue the message if the condition was not corrected.) CHECK
waits for completion again after the condition has been cleared.
If the operation has not been completed, CHECK suspends
processing of the issuing program until it has. In the event of
a permanent error completion (IOSW bit EC set, bits NC or IRQ not
set), CHECK returns to the address specified by the ERREXIT
parameter. Otherwise, CHECK returns to the next sequential
instruction address. CHECK 1logs I/0 errors by means of a
nonresident subroutine.

e Format 2 -- CHECK INTERVAL waits for expiration of a timing
interval as set by the SETIME macroinstruction.

e Format 3 -- CHECK MESSAGE waits for a message to be sent to the
issuing task through the specified port name which the issuing
task must have established by making a call to the CREATE SVC.

¢ Format 4 -- CHECK WSKEY waits for a program function key to be
pressed at the specified workstation, which must be reserved for
use by the issuing task. An unchecked XIO request must not be
outstanding to this workstation when this CHECK is issued. The
issuing program is cancelled if an unchecked I/O operation (XIO)
has been issued to the specified workstation, or if that
workstation is not reserved for use by this task.

e Format 5 -- CHECK INTERRUPT waits for an unsolicited interrupt
from a workstation, a printer, or a telecommunications device.
For a workstation, this CHECK option waits for a program function
key whether the keyboard is locked or not. The issuing task is
cancelled if the device is not reserved for use by the issuing
task or an unchecked I/0 is outstanding. The IOSW of the
unsolicted interrupt is moved to the 8-byte area specified in the
input parameter list.

Controlled Release Draft 4-30 October, 1985



e Format 6 -- CHECK TCIO waits for the occurrence of a
telecommunications I/0O event. This event may be the completion
of an I/0 operation previously initiated by a call of the XIO SVC
by the RECEIVE or TRANSMIT macro. This event may also be an
unsolicited interrupt from a Data Link Processor (DLP) if no
previous I/0 command was issued. If the TC I/0 is completed with
an error because of missing device microcode or missing
peripheral processor microcode, the error is logged and the
microcode is not loaded.

Sequencing rules for alternation of the RECEIVE or TRANSMIT
macroinstruction followed by CHECK TCIO are enforced by the XIO
SVC routine. XIO also checks that the device and the DLP are
not exclusively reserved by another task, and that the channel
device is currently open (using the IPOPEN SVC).

CHECK TCIO may be issued without any previous I/0 being issued
provided the specified device is reserved by the calling task.
In this case the CHECK acts as an unsolicited interrupt from the
DLP on the specified device. To receive an unsolicited interrupt
from the DLP, at least one of the devices on the DLP must have
been opened with the IPOPEN SVC and reserved by the caller. For
this option, an IOSWADDR must be provided for the transfer of the
IOSW to the caller.

If an unsolicited IOSW was returned by the DLP and the user has
issued an XIO and is awaiting the completion IOSW to that I/O,
the unsolicited IOSW does not cancel the effects of that
condition. That is, the user is able to receive the unsolicited
IOSW, and is allowed to reissue the CHECK TCIO to receive the
IOSW in response to the XIO. The general status byte of the IOSW
returned indicates to the user that it is an unsolicited IOSW,
rather than a normal IOSW in response to an XIO. If the user has
received an unsolicited IOSW while waiting for the completion of
an outstanding XIO, he must wait for the completion of the XIO by
resubmitting the CHECK TCIO before issuing another XIO on the
specified VS/DLP I/0 channel. The issuing task is cancelled if
the device is not reserved for use by the issuing task or an
unchecked I/0 operation is outstanding.

e Format 7 —— CHECK SEMA allows a privileged user to wait upon a
supplied semaphore. CHECK SEMA issues a CANCEL if the caller is
not privileged.

e Format 8 —-- CHECK MULTIPLE waits for any one of several specified

events to occur. These events can be any one of the events
explained in Formats 1 through 7 above.

Controlled Release Draft 4-31 October, 1985



Restrictions

CHECK OFB or VCB should be issued only after issuing an XIO call.

Parameter Definitions

OFB

VCB

ERREXIT

IOSWREG

For the OFB or VCB option, the address of the open file
block (OFB) for a file previously opened. Must be
presented as an address expression, or as a register
specification in parentheses where the register contains
the address of the OFB.

For the TCIO option, the address of the open file block
(OFB) for the I/O channel device used in the I/0 operation
initiated by the corresponding RECEIVE or TRANSMIT call.
The address supplied in the OFB parameter is an address
pointing to a 4-byte field containing the address of the
OFB in the low-order three bytes.

The address of a volume control block (VCB). May be used
only if the caller is in system mutual exclusion (SME) or
the volume is mounted for initialization. Must be
presented as an address expression, or as a register
specification in parentheses where the register contains
the address of the VCB. Note that the displacement
constant of +1 is appended to either specification option
by the macroinstruction code in order to distinguish the
CHECK VCB option from the CHECK OFB option.

Optional parameter sp