
WANG

Operating System Services
Reference

Release 7 Series

---.~, ..

n-
--'.,__!/

IMPORTANT USER NOTICE

The VS Operating System Services Reference is a controlled release draft,
intended for use with controlled Release 7. 06 of the VS Operating System.
This draft describes certain Release 7.10 Operating System features that will
not be available until the general release of the product. At this time,
Multivolume files, volume sets, and the Resource Sharing Facility are not
included in the controlled release 7.06 version of the VS Operating System.

Controlled Release Draft October, 1985

.......

~'

vs
Operating System Services

Reference
Release 7 Series

1st Edition - October 1985
Copyright e Wang Laboratories, Inc., 1985
716-0423

WANG
WANG LABORATORIES, INC.1 ONE INDUSTRIAL AVENUE. LOWELL, MA 01851 • TEL: 6171459-5000, TWX 710-343-6769, TELEX 94-7421

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However, nothing
contained herein modifies or alters in any way the standard terms and conditions of the Wang purchase,
lease, or license agreement by which the product was acquired, nor increases in any way Wang's liability
to the customer. In no event shall Wang or its subsidiaries be liable for incidental or consequential dam
ages in connection with or arising from the use of the product, the accompanying manual, or any related
materials.

SOFTWARE NOTICE
All Wang Program Products (software) are licensed to customers in accordance with the terms and con
ditions of the Wang Standard Software License. No title or ownership of Wang software is transferred,
and any use of the software beyond the terms of the aforesaid license, without the written authorization
of Wang, is prohibited.

WARNING
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device, pursuant to Subpart J of Part
15 of FCC rules, which are designed to provide reasonable protection against such interference when
operated in a commercial environment. Operation of this equipment in a residential area is likely to
cause interference, in which case the user, at his own expense, will be required to take whatever meas
ures may be required to correct the interference.

~.

PREFACE

The VS Operating System Services Reference provides users of the VS
operating system with detailed reference information on what the system
services are and how to use them. The VS system services allow
experienced assembler progranuners to use operating system routines to
control the execution and interaction of programs.

Intended Audience

This manual is intended for system and application progranuners who
are progranuning in the assembler language. It is assumed that the user
is familiar with the VS operating system and is an experienced assembler
language programmer. For an overview of the VS operating system, ref er
to PART III of this manual.

PART I provides summary information on the use of the sytem services.

• Chapter 1 introduces the topic, defines the categories of systems
services and lists those available.

• Chapter 2 describes how to call system services.

PART II provides detailed reference information on each system
service.

• Chapter 3 describes detailed reference information on the system
services that utilize the JS! instruction as well as associated
macroinstructions. The descriptions are presented in
alphabetical order for ease of reference. Examples of using some
of these system services are provided.

• Chapter 4 contains descriptions of the services that are invoked
by issuing an SVC instruction as well as associated
macroinstructions. The descriptions are listed in alphabetical
order. This chapter also contains a description of the control
blocks that are of interest to the user.

iii
Controlled Release Draft October, 1985

PART III provides an overview description of the VS operating system.

• Chapter 5 discusses the user program and concepts relating to the
development of programs within the VS operating system ~
environment.

• Chapter 6 describes the VS operating system concepts that aid the
user in understanding how the operating system manages the
resources of the computing system.

• Appendix A includes information concerning program file structure
and processing.

• Appendix B is a glossary to be used as a quick reference of terms
while using the manual.

Throughout this manual, the following notation conventions are used:

[]

{ }

UPPERCASE

lowercase

Brackets indicate that the enclosed parameter is
optional.

Braces indicate that a selection is to be made from
the enclosed list of elements. If a default value is
supplied, it is indicated by an widerscore. If the
element is not coded, the underscored default value
is assumed.

An ellipsis indicates that the element may be
repeated.

Syntax elements presented in uppercase characters
must be supplied exactly as shown in the statement.

Syntax elements presented in iowercase characters
indicate elements to be supplied by the programmer.

All punctuation marks, such as corrunas, parentheses, or equal signs,
must be coded as shown. In the syntax descriptions, the assembly rules
for coding labels, variable names, and register specifications apply.

ASSOCIATED PUBLICATIONS

The following publications provide information that is helpful to the
assembler language programmer:

• VS Assembler Language Pocket Guide (800-6203AP)
• VS Assembler Language Reference (800-1200AS)
• VS DMS Reference (800-1124)
• VS DMS/TX Reference (800-1128)
• VS Operating System Services Pocket Guide (715-0424)
• VS Principles of Operation (715-0422)
• VS Program Development· Tools Reference (715-0884)
• VS Programmer's Introduction (715-0417)

Controlled Release Draft iv October, 1985

PART I

CHAPTER 1

OPERATING SYSTEM SERVICES REFERENCE MANUAL
RELEASE 7.10

CONTENTS

USING SYSTEM SERVICES

INTRODUCTION TO SYSTEM SERVICES

1 . 1 Overview • . • • . • • . • • . . • . . . • . 1-1
1.2 Swmnary of System Services .•.....•..............•• 1-2

Program Services • . . • • • • . • • 1-3
I/O Services . . . • • . . • . . • . • . . • • • 1-6
Memory Management Services .•..•..•..•....••.••• 1-7
Communication and Synchronization Services .•..• 1-8
File Services . . . • • • . • • . . • • 1-11
Security Services ..•...•....•.................. 1-13

CHAPTER 2 CALLING SYSTEM SERVICES

PART II

CHAPTER

2 . 1 Ove rv i ew . 2-1
2.2 Calling the System Services •...••..............•... 2-1
2. 3 Return Codes • • . • • • . . . 2-3
2.4 Assembly Language Coding Conventions•.......• 2-3
2. 5 Register Conventions • . . . • • . • • . • 2-4

SYSTEM SERVICES DESCRIPTION

3

3.1

3.2

JSI-TYPE SYSTEM SERVICES AND RELATED MACROINSTRUCTIONS

Ov'e rvi ew .. .
V Type Address Constants .•.•....•..•..•...••.••.
Linking JSI-Type System Services••..•.

Service-by-Service Descriptions•..•...•••...
CNTROLOG - Control Logging of System Security

Events ...•.••.•............•........•
LOGR - System Security Logging Record Format
MSMAP - Map Region of Virtual Address Space ..
MSUNMAP - Urunap Region of Virtual Address Space
PROCINFO - Process Information•..••.•.•.•
PUTLOG - Security Logging - Put Record
SBREAK - Break Synchronization ..••.........•.•
SCREATE - Create Synchronization Object ••......
SDELETE - Delete Synchronization Object .•......
SENTER - Enter Synchronization ..•.....••...•..

3-1
3-1
3-1
3-2

3-4
3-11
3-25
3-30
3-32
3-35
3-38
3-41
3-43
3-46

Controlled Release Draft v October, 1985

•

3.3

CHAPTER 4

CONTENTS (continued)

SEXIT
TCOMPLET
TINVOKE
TKILL
VOLINFO
VSETINFO

- Exit Synchronization ..••............
- Check Task for Completion ...•.•....•.
- Invoke Task •.........................
- Task Termination•....•.....•.
- Volume Information •...••.............
- Volume Set Information ..•.....•....•.

Programming Examples .•...............•....•........
Memory Management Example•....•............
Security Logging Example .•......................
User Synchronization Example

SVC-TYPE SYSTEM SERVICES AND RELATED MACROINSTRUCTIONS

3-49
3-51
3-53
3-58
3-60
3-63
3-67
3-67
3-68
3-74

4 .1 Overview . . • . • • • • . . • • 4-1
4.2 Service-by-Service Descriptions•.•..•••....• 4-2

AXDl - Describe AXI>l Structure •............. 4-3
AXDGEN - Generate Alternate Index Descriptor

BCE
BCTBL
BCTGEN

BEGTRANS
CALL
CANCEL
CEXIT
CHARGEN

CHECK
CLOSE
COMMIT
CREATE

CXT
DELETE
DESTROY

DEXIT
DFB
DISMOUNT
END LOCAL

EXTRACT

EXT RD

FDRl
FDR2
FDR3

Controlled Release Draft

Block • . • . . . • • • 4-9
- Describe Buffer Control Entries
- Describe Buffer Control Table
- Generate a Buff er Pool

Control Table
- OMS/TX Transaction Rollback (SVC 80) .
- Call a Subroutine••...•.••.•.•.
- Cancel Program CSVC 16)•.•......
- Cancel Exit CSVC 39)•.•.•....
- Macro Processor Large Character

Generator•......•......
- Check for Event Occurrence (SVC 17) ..
- Close File C SVC 1) •••••••••••••••••••

- Commit Resources CSVC 52)
- Create Intertask Message Port

C SVC 3 7) •••••••••••••••••••••••••••••
- CEXIT Return Information•••....•.
- Delete Record from Indexed File
- Destroy Intertask Message Port

(SVC 3 8) •••••••••••••••••••••••••••••
- OMS/TX Deadlock Exit ...•.............
- Describe Document File Block •••......
- Dismount Disk or Tape Volume (SVC 41)
- End Generation of Local

Symbol Names•....•.............
- Extract Data from System Control

Blocks (SVC 28) •............•.•......
- Describe Output Area for the

Extract SVC•....•.••....•
- Describe File Descriptor Record 1
- Describe File Descriptor Record 2
- Describe File Descriptor Record 3

vi

4-11
4-14

4-17
4-18
4-20
4-22
4-24

4-28
4-29
4-39
4-41

4-44
4-47
4-49

4-51
4-53
4-57
4-69

4-73

4-74

4-87
4-109
4-115
4-118

October, 1985

FMTLIST

FREEALL
FREEBUF
FREEHEAP
FREES HR
FREEXRTS
GETBUF
GET HEAP
GET PARM
GETXRTS
HALTIO
IPCB

CONTENTS (continued)

- Generate Selected Parameter Group
Control List Fields ..•........•......

- Free Resources (SVC 52)
- Free Buffer Space (SVC 6)
- Deallocate Heap Storage (SVC 57)•
- Free Shared Resources (SVC 52)•
- Free Extension Rights (SVC 52) .•..•..
- Get Buffer Space (SVC 5)
- Allocate Heap Storage (SVC 56)
- Get Parameters (SVC 20)
- Hold Extension Rights (SVC 52)
- Halt I/O Operations (SVC 12)•..
- Describe Inter-Processor Control

Block .•••................•....•...•..
IPCLOSE - Close for I/O with Telecommunications

Devices or Data Link Processor

4-120
4-124
4-127
4-130
4-134
4-136
4-138
4-141
4-145
4-158
4-160

4-164

(SVC 50) • . • . . . 4-16 6
IPOPEN - Open for I/O with Telecommunications

Devices or Data Link Processor
(SVC 5 0) • . . . • . • • . • • 4-1 71

KEYLIST - Generate Parameter Group Control
List

LINK - Link to Another Program or
Subprogram (SVC 4) •••••••••••••••••••

LINKPARM - Supply Program Parameters (SVC 33) ..•
LNKB - Describe Link Return List Block
LOADCODE - Load Microcode for Devices/IOPs

LOCAL
LOGO FF
MOUNT
MSGLIST
OPEN
PCEXIT

C SVC 4 5) •••••••••••••••••••••••••••••
- Generate Local Symbols ••.••...••..•.•
- Log Off Interactive Terminal (SVC 43)
- Mount Disk or Tape Volume (SVC 30) ...
- Generate Display Message•......
- Open a Fi 1 e (SVC 0) • • . . • . • •
- Modify Program Exception Exit Status

(SVC 31) ...•.....•..........•....••.•
PROTECT - Protect a Disk File (SVC 42) .•....•.•
PUTPARM - Supply Program Parameters (SVC 33) ...
READ - Read a Record ...•.......•...•.....•..
READFDR - Read File Descriptor Record (SVC 24) .
READVTOC - Read Volume Table of Contents

(SVC 19) ••.•................•.....•..
RECEIVE - Receive Telecommunications I/O

(SVC 3)
REGS - Register Equation•..
RENAME - Rename a Disk File (SVC 26) ..•.......
RESETIME - Remove Timer Interval (SVC 32)
RETURN - Return to Invoker•••.......•....
REWRITE - Rewrite a Record
ROLLBACK - Rollback Transaction (SVC 76) ...•...•

vii

4-176

4-180
4-187
4-198

4-202
4-209
4-211
4-212
4-223
4-224

4-231
4-234
4-240
4-250
4-254

4-262

4-272
4-276
4-278
4-283
4-284
4-285
4-287

Controlled Release Draft October, 1985

PART III

SCRATCH
SF.T
SETIME
SETRECOV

START

CONTENTS (continued)

- Scratch a File (SVC 27) ..•.•.•••....•
- Set Task-Related Defaults (SVC 35) ..•
- Set Interval Timer (SVC 32) •.•..••.••
- OMS/TX Set File Recovery Option

(SVC 82)••....•.............•
- Start File Processing in Specified

Mode or at Specified Record Location •
START HOLD/RELEASE - Hold/Release Resource•
SUBMIT - Submit Job or Print Request (SVC 46) .
SUBMIT - Submit Transmit or Retrieve

Request (SVC 46)
SYSERROR - System Error Code Definitions
TCOPTION - Set Telecorrununications Stream Options
TIME
TPLAB

TPLB2

- Get Date and Time (SVC 2)
- Describe Magnetic Tape File Header,

Trailer and End-of-Volume Labels
- Describe Magnetic Tape Secondary

Header, Trailer and End-of-Volume

4-290
4-295
4-302

4-304

4-309
4-315
4-317

4-331
4-342
4-347
4-350

4-353

Labels • • . . 4-355
TRANSMIT - Transmit Telecorrununications I/O

(SVC 3) ••............................ 4-357
UFB - Describe User File Block•..•. 4-361
UFBGEN - Generate User File Block 4-382
UNITRES

UP DAT FDR
VOLl
WPCALL
WRITE
WV46MAP
XIO
XMIT

- Reserve/Release Telecommunications
Devices, Lines, and Peripheral
Processors (SVC 51) .•.•.•..........•.

- Update File Descriptor Record (SVC 25)
- Describe Volume Label•.........
- Call VS Document Access Subroutines ..
- Write a Record
- Describe Parameter List
- Execute Physical I/O (SVC 3)
- Transmit Intertask Message (SVC 36) ..

VS OPERATING SYSTEM OVERVIEW

4-395
4-399
4-411
4-415
4-418
4-420
4-426
4-436

CHAPTER 5 THE USER PR<X.;RAM

5.1 Introduction . • . . 5-1
5.2 The Program Development Process •................... 5-1

Problem Definition and Coding................... 5-2
Translation of the Code . 5-2
Running, Testing and Debugging the Program...... 5-2

5.3 Structure of the Program File...................... 5-2
The Reentrant Program Section................... 5-2
The Modifiable Section . 5-3

5.4 The User's Modifiable Data Area.................... 5-3
JSCI, SVC, and LINK Save Areas 5-4
Buffer Management • • • . . . • . . . • • • . 5-6

Controlled Release Draft viii October, 1985

5.5
5.6
5.7
5.8
5.9
5.10
5.11

CHAPTER 6

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

CONTENTS (continued)

Transfer of Program Control
Interacting with the Workstation
Standard Prnames •......•..........................
Runtime Device and File Assignment•..
Default File Specifications•.
OPTIONS Prname•...........................
Error Handling ..•..••..•...........................

VS OPERATING SYSTEM DESCRIPTION

Introduction ••....
Tasks•...

Task States
Task Scheduling••
Event Scheduling
System Task Queue Verification Routine

System Support ..•................................•.
Language Translators .•.....................•..••
Program Editing and Linking
Debugging
System Configuration
Performance Monitoring

Communication and Synchronization
Semaphore
Intertask Messaging (ITM)
User Synchronization Facility•...

Schedu 1 i ng •..........•.............................
Categories of Tasks
Scheduling Formula •......................•......

Memory Management•.•.
Virtual Address Space•...................•
Relationship of Virtual Memory
to Phys i ca 1 Memory

Regions
Pages, Page Faults, and Address Translation ...•.
User Program Efficiency and Paging

Ring Memory Protection Scheme
Process Levels•...
System Stacks ••.•................................
JSI-type System Services

The I /0 Subsystem•.
VS Fi le Structure•...........................

Volume Label •..........•........................
Extent Organization•...•....................
Volume Table of Contents ..•..............•..

5-6
5-7
5-8
5-8
5-9
5-9

5-10

6-1
6-2
6-2
6-3
6-4
6-4
6-5
6-5
6-5
6-5
6-6
6-6
6-7
6--7
6-7
6-8
6-9
6-9

6-10
6-11
6-11

6-14
6-15
6-15
6-17
6-17
6-17
6-18
6-18
6-19
6-19
6-20
6-20
6-21

Controlled Release Draft ix October, 1985

·-:-.

:::-

; ~ .. -

n ·,__....._

~ \;·· ·:9
·........._ ..

Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1-1
1-2
1-3

1-4

1-5
1-6
3-1
4-1
4-2
6-1
6-2

5-1
5-2
5-3
6-1
6-2
6-3
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21

TABLES

Program Services and Related Macroinstructions •.••.
I/O Services and Related Macroinstructions .•....••.
Memory Management Services and Related
Macroinstructions •.••.•..•...................••...

Communication and Synchronization Services and
Related Macroinstructions•....•••....

File Services and Related Macroinstructions .••.•...
Security Services and Related Macroinstructions
Data Type Conversion Table ..•.........•....•.......
START - Modes of use with Disk Files .••.......•.•.•
Parameter Usage Table, Record Access Method ...•....
Task States
Internal Memory Process Levels .•...•.....•.........

FIGURES

The User's Modifiable Data Area .•..••.•••••..•.••..
JSCI Save Area .•..•••..•..•........•....••.....••••
SVC Save Area ..•..•....•.................••...•..•.
VS 8-MB Address Space Allocation .•.......••.....•••
VS 16-MB Address Space Allocation•..•......•.
The 24-bit Address ...••..•....•..•.•...•.....•.••••
Program Fi 1 e Structure ••.••.••....•....•..•......••
The Run Block, Version 0 •••••••••••••••••••••••••••
The Static Block, Version 0 ••••••••••••••••••••••••
The Data Field, Version 0 ••••••••••••••••••••••••••
The Symbolic Block, Version 0
Statement Nwnber Block, Version 0 ••••••••••••••••••
Data Name Subblock, Version 0
The Linkage Block, Version O •••••••••••••••••••••••
Relocation Reference Block, Version 0 •••••.••••••••
The Run Block, Version 1 ..•........................
The Prolog Block, Version 1
The Lengths Block, Version 1•
The Static Block, Version 1
The Data Field, Version 1
The Module Block, Ve rs ion 1
The Symbolic Block, Version 1
Statement Nwnber Block, Version 1•.••••
Data Name Subblock, Version 1•.•.•
Optional Information, Version 1
The Linkage Block, Version 1•••.....•••.•..
Relocation Reference Block, Version 1 .•.....•••.•..

1-4
1-6

1-8

1-9
1-11
1-14

3-3
4-313
4-389

6-3
6-17

5-4
5-5
5-5

6-12
6-13
6-16
A-1
A-2
A-3
A-6
A-8

A-10
A-11
A-14
A-17
A-18
A-19
A-21
A-22
A-24
A-26
A-29
A-31
A-32
A-36
A-38
A-41

Controlled Release Draft xi October, 1985

APPENDIX A

A.1
A.2

A.3

A.4
A.5
A. 6

APPENDIX B

INDEX

CONTENTS (continued)

PROGRAM FILE STRUCTURE AND PROCESSING

The Program File Structure••........•...
Object File Format for Release 6.00 Series ••.••..•

The Run Block, Version 0 ...•.•.••••••.••..•..•.
The Symbolic Block, Version 0••.•.•••.••••.
The Linkage Block, Version 0 ...•••.••.•...•..•.

Object File Format for Release 7.00 Series ..•••.••
The Run Block, Version 1•.•.••.•........
The Symbolic Block, Version 1 .••..•...•..••..••
The Linkage Block, Version 1 •.••...•.....•....•

Translator Processing •••...•...•.••..••••..••..•..
Linker Processing .•..•••..•••••••.•.••...•.•.••••.
Run Processing ..••••.••..••...••••..•••......••••.

GLOSSARY ...•.•..•..•..............•..•.•.•...•...•.

[To be provided]

A-1
A-1
A-2
A-8

A-14
A-18
A-18
A-28
A-37
A-42
A-42
A-43

B-1

Controlled Release Draft October, 1985

!"",

CHAPTER 1
INTRODUCTION TO SYSTEM SERVICES

1.1 OVERVIEW

System services are software routines that are part of the operating
system. They perform functions that most user and application programs,
as well as the operating system itself, commonly perform. Although most
system services are used primarily by the operating system, some services
are available for use by application programs.

Assembly language programmers can use system services to efficiently
control the execution and interaction of programs.

• The macroinstructions save programming time because the necessary
code has already been written.

• The macroinstructions save debugging time because they have
already been tested and debugged.

• If a change in the supervisor call or a data structure occurs,
the macroinstructions are automatically updated. The programmer
only needs to reassemble the program to incorporate the changes.

For example, the Security Logging facility records security-related
system events in a log file. To meet specific security needs, the
programmer can write a program that calls the CNTRLOG system service to
enable or disable logging, and to retrieve logging information.

There are two types of system services:

• JSI-type system services -- these services use the JSI (jtunp to
subroutine) instruction to call an individual service routine.
These services can be called from an assembly language or
high-level language program at run time.

• SVC-type system services these services use the SVC
instruction to call an individual service routine. These
services can be called from an assembly language program only.

Controlled Release Draft 1-1 October, 1985

This manual describes both types of system services and related
information necessary for using them most efficiently in an assembly
language program. Chapter 3 covers the JSI-type system services and
related macroinstructions descriptions. Chapter· 4 covers the SVC-type
system services and related macroinstructions descriptions.

1.2 SUMMARY OF SYSTEM SERVICES

Both JSI-type and SVC-type system services that are available to user
programs are grouped into the following categories, according to the
function they perform:

• Program services,
termination; timing;
maintenance.

including
interrupt

program
handling;

initiation; program
and data structure

• I/O services, including granting resources to requesting tasks
and driving peripheral devices such as printers, tape and disk
drives, and terminals.

• Memory management services, including dynamic allocation of heap
storage (buffers); creating and accessing files in memory that
contain code or data that can be shared.

• Communication and synchronization
transmitting commands and data from one
sharing data between tasks.

services, including
task to another and

• File services, including managing files (opening, closing,
deleting and renaming).

• Security services, including protecting data structures and
tasks; and ensuring privacy to users.

Sections 1.2.1 through 1.2.6 summarize the system services according
to these functional categories. Each service is grouped in a category
for organization only. A service can be used to fulfill other functions
as needed by a particular program.

Controlled Release Draft 1-2 October, 1985

I~

1.2.1 Program Services

Program services include functions such as program initiation,
termination, and program resource management. The LINK and UNLINK
services accomplish program initiation and termination. The command
processor initiates user programs when the user issues a run request at
the workstation. The user program can then link to other user programs
by invoking LINK. Each time LINK is invoked, a new link level is
created. Each link level is represented by a data structure called the
program file block, which keeps track of program information during the
course of program execution, and a LINK save area which is built on the
modifiable data area stack. LINK performs such functions· as allocating
system control blocks used to monitor the called program, initializing
the modifiable data area static area for the called program, and
transferring control to the new program.

Once the user program has been executed, the RETURN macroinstruction
returns control to the UNLINK service. In this way, all operations
performed by LINK are reversed, and the calling program resumes
execution. UNLINK performs such functions as closing all remaining open
files, releasing devices which were reserved at the current link level,
deallocating system control blocks, cleaning up stack data to the
original address before the call to the program, and returning control to
the command processor or the previous link level.

Abnormal Termination of a Program

Abnormal termination of a program may occur in response to one of the
following actions:

• The user presses the HELP key and requests abnormal termination
by pressing the PF key to cancel the program.

• The program issues a CANCEL or enters the Debugger as a result of
a program check, and the user requests abnormal termination in
response to the Debugger prompt.

• The program issues a CANCEL SVC, or a program check was issued
and a CEXIT SVC with the NODEBUG or DUMP option was previously
set.

The abnormal termination routines provide support for system resource
retrieval in the event of a program malfunction or user-selected early
termination. CANCEL is invoked by the system or user when a
nonrecoverable error condition has occurred. An error message describing
the type of error may be coded with the call to CANCEL. Through the use
of the CEXIT service, a user program can cancel processing at a certain
link level and receive control directly.

Table 1-1 sununarizes the program services. For detailed instructions
on using these services, refer to Chapters 3 and 4.

Controlled Release Draft 1-3 October, 1985

Table 1-1. Program Services and Related Macroinstructions

Service Name Function

CALL Provides linkage information to transfer control
to another routine.

CANCEL Cancel a program in the event of an
uncorrectable program error.

CEXIT Cancel or set link level parameters which
specify the way a program handles error
conditions.

CHARGEN Generate 8 by 8 space characters for each
character entered.

CXT Symbolically reference the information returned
to a program's cancellation-intercept routine.

DFB Describes the data structure of a document file
block (DFB).

END LOCAL Terminates the automatic generation of local
symbol names started by LOCAL.

EXTRACT Extracts data from system control blocks for use
in programs.

EXT RD Describes the data structure which stores the
output from EXTRACT •

....

FMTLIST Generates the control block for input to the
GETPARM and PUTPARM services.

GETPARM Solicits information from users or from
procedures.

r-

KEYLIST Generates a data structure which is used by
GETPARM to store the response to GETPARM.

LINK Initiates the execution of another program from
within the currently active program.

LINKPARM Supplies parameters to another program's
GETPARM, cleans up data structures created by
LINKPARM's PUT option; and allows the calling
program to access changed parameters or
previously created parameters.

LNKB Describes the link return block (LNKB) used with
LINK.

Controlled Release Draft 1-4 October, 1985

Table 1-1. Program Services and Related Macroinstructions (continued)

Service Name Function

LOCAL Automatically generates local symbol names.

LOGO FF Generates code to issue logof f by program
request.

MSGLIST Generates a data structure to use with the
GETPARM's MSG parameter and CANCEL.

PCEXIT Allows execution of a user-written exception
handling routine for user-selected exceptions.

PROCINFOa Provides user programs with information related
to a specific process or task.

PUTPARM Enables a program to supply parameters to a
GET PARM issued by another program.

REGS Equates register numbers with the standard
symbolic names used by other macroinstructions.

RETURN Exit conditionally from a program to the system
for a standard termination.

SET Sets default values for task related
parameters.

SYS ERROR Establishes symbolic . names with their numeric
codes for common system error conditions.

TCOMPLETa Allows a parent task to check on the completion
of its child task.

TINVOKEa Allows a running program to create a child
task.

TKILLa Allows a parent task to force a child task and
all of the descendants into CANCEL and LOGOFF.

a JSI-type system service.

Controlled Release Draft 1-5 October, 1985

1.2.2 I/O Services

User programs can use the I/O services to manage peripheral devices
such as printers and tape drives. I/O services include managing the
physical devices used during an I/0 (i.e. mounting and dismounting a
volume) and managing the resources associated with I/O (holding and
releasing telecommunications devices). I/O services can be used to
complete these tasks while a program is executing.

The I/O services perform the following initiation and completion
routines for the operating system:

• Manage workstation screen display and interaction with the user.

• Open and close channels for telecommunication devices.

• Load microcode to devices.

• Reserve and release telecommunication devices,
peripherals.

lines and

Table 1-2 summarizes the I/0 services. For detailed instructions on
using these services, refer to Chapters 3 and 4.

Table 1-2. I/O Services and Related Macroinstructions

Service Name Function

CHECK Checks for an occurrence of an event (I/0

operation, timing interval expiration, message
to be sent, PF key, unsolicited interrupt, TC
I/0, semaphore wait, session ID, mailbox) or
combination of events.

DISMOUNT Requests dismount of disk or tape volume.

HALTIO Stops an input/output operation started by XIO.

LOADCODE Loads microcode into a processor or device.

MOUNT Issues a mount request for a disk or tape
volume.

READVTOC Reads the volwne table of contents CVTOC) of a

i disk.

Controlled Release Draft 1-6 October, 1985

Table 1-2. I/O Services and Related Macroinstructions (continued)

Service Name Function

TPLAB Describes file header, trailer, and
end-of-volume labels for a magnetic tape.

TPLAB2 Describes secondary file header, trailer, and
end-of-volume labels for a magnetic tape.

VOLl Describes the standard volume label for disk or
magnetic tape.

VOLINFOa Extracts system information on a specific volume.

VSETINFOa Extracts volume information on volume sets.

XIO Manages the physical I/O operation.

a JSI-type system service.

1.2.3 Memory Management Services

The memory management services provide buffer management, memory
protection and memory mapping functions for VS systems. These services
manage buffers and heap storage areas. Also, program and data files can
be mapped into a task's virtual address space.

Table 1-3 summarizes the memory management services. For detailed
instructions on using these services, refer to Chapters 3 and 4.

Controlled Release Draft 1-7 October, 1985

'

Table 1-3. Memory Management Services and Related Macre;i_nstructions

Service Name Function

FREEBUF Releases a buffer area allocated by GETBUF.

FREEHEAP Releases heap storage· area allocated by GETHEAP.

GETBUF Allocates a buff er area on a 2048-byte (one
page) boundary.

GETHEAP Dynamically allocates system storage, in any
size block, independent of the system stack.

MSMAPa Maps program and data files into a task's
virtual address space.

MSUNMAPa Unmaps a file from a task's virtual address
space.

·- -- -

a JSI-type system service.
_,. __ . _____ ----··

1.2.4 Commu!}.~cat~q_n and Synchronization Services

The communication and synchronization services provide a method for
tasks to cooperate with one another to perform complex functions. This
typically involves transmitting commands and data from one task to
another or sharing data between tasks. Synchronization operations
control task access to common or shared data areas. This technique
prevents a task from destroying the integrity of shared data by
simultaneously updating the same data recocd or reading a record before
another task has finished updating it

To control task execution, the VS operating system uses semaphores
that are not available to user-level code. Semaphores act like gates
into critical areas of software to protect shared data or I/O.

To control access to shared data in user-level code, the VS operating
system provides the User Synchronization facility, a fast, simple
synchronization technique. System services that can be called from a
user program allow a user to create, delete and use a synchronization
object to coordinate the access to shared data. The synchronization
object is probably used most often for resource control, that is to
update a data base or to access a specific piece of code. However, it
can be used to satisfy other application needs as well.

Controlled Release Draft 1-8 October, 1985

Clock Interruptions

The VS central processor supports two timer-related values which are
stored in control registers: the time-of-day clock and the clock
comparator. The time-of-day clock is a value, contained in one or two
control registers (depending on VS system), that is incremented
periodically, independent of central processor activity. The clock
comparator is a value, contained in one or two control registers
(depending on VS system), that is continuously compared with the
time-of-day clock. Whenever this comparison finds the time-of-day clock
to be equal to or greater than the clock comparator, a clock interrupt is
made pending. Any task running under the operating system may request
interval timing services.

For more information on conununication and synchronization, refer to
Chapter 6.

Table 1-4 summarizes the communication and synchronization services.
For detailed instructions on using these services, refer to Chapters 3
and 4.

Table 1-4. Conununication and Synchronization Services
and Related Macroinstructions

Service Name Function

CHECK Checks for an occurrence of an event (I/0
operation, timing interval expiration, message
to be sent, PF key, unsolicited interrupt, TC
I/0, semaphore wait, session ID, mailbox) or
combination of events.

CREATE Creates an intertask message receipt port.

DESTROY Deletes an intertask message receipt port.

!PCB Describes the interprocessor control block
(!PCB).

IPCLOSE Closes a specified number of teleconununications
devices that were opened with IPOPEN.

IPOPEN Opens specified teleconununications devices for
I/O between the operating systems and the data
link processor (OLP).

Controlled Release Draft 1-9 October, 1985

Table 1-4. Communication and Synchronization Services
and Related Macroinstructions (continued)

Service Name Function

RECEIVE Initiates a data reception operation between the
operating system and the data link processor
(DLP).

RESET I ME Cancels an interval timing request previously
established by SETIME which has not been the
subject of a CHECK INTERVAL or previous
RESETIME.

SBREAKa Removes a task that is holding a synchronous
object and gives the object to the task that
issued the break synchronization call.

SCREATEa Creates a data structure that controls the use
of a shared resource.

SDELETEa Marks a synchronous object for delete, thereby
disallowing any new waiters to enter the queue.

SENTER a Issues a request to gain control of the
synchronization object to use the resource.

SETIME Sets a timer interval for the issuing task to
expire at the time specified, or after the
m.unber of 1/100 second units specified.

SEXITa Releases the caller from control of the
resource, and activates the next waiter.

SUBMIT Transfers files from one system to another over
WangNet. It also submits files for printing.

TCOPTION Sets the TC stream options in the user file
block CUFB).

TRANSMIT Initiates an I/O operation directed to the DLP
on the addressed communication channel device.

UNITRES Reserves · and releases exclusive use of
telecommunications devices, lines, and
peripheral processors.

XMIT Sends a message to a specified intertask message
port.

a JSI-type system service.

Controlled Release Draft 1-10 October, 1985

1.2.5. File Services

File services- support many file management routines including file
resource allocation, file information update and retrieval, DMS file
transaction, and file open, close, delete and rename.

Table 1-5 sununarizes the file services. For detailed information on
using these services, refer to Chapter 4.

Table 1-5. File Services and Related Macroinstructions

Service Name Function

AXDl Allows symbolic reference to the alternate
descriptor block CAXDl) which describes the
alternate index structure of an indexed file.

lOOlGEN Generates the ~1 block.

BCE Describes the buff er control entry (BCE)
contained in the buff er control table CBCT).

BCTBL Describes the buff er control table CBCT).

BCTGEN Generates a buff er control table for use in
buffer pooling.

BEGTRANS Marks the beginning of a DMS transaction.

CLOSE Closes a file.

DELETE Deletes the last record read from an indexed
file on disk.

DEXIT Provides a deadlock exit from DMS/TX.

FDRl Describes the file descriptor record block,
format 1 (FDRl), which contains the attributes
of the file and the first three extents of
single volumes.

FDR2 Maps symbol names to the file descriptor record
block, format 2 (FDR2), which describes up to 10
additional extents to a file for a single volume
file; up to nine additional extents for a
multivolume file.

FDR3 Maps symbol names to the file descriptor record
block, format 3 (FDR3), which contains
information on files on volume sets.

--------- -~ -- . -· -- ~ _ ... __ _..... --.· ---··-"' .. -----

Controlled Release Draft 1-11 October, 1985

Table 1-5. File Services and Related Macroinstructions (continued)

Service Name Function

FREEALL Frees all resources acquired through the sharing
task.

FREESHR Releases all of user's resources acquired
through the sharing task.

FREEXRTS Releases extension rights acquired through
GETXRTS (OMS function).

GETXRTS Acquires more resources while already holding
resources (DMS function).

OPEN Opens a file.

PROTECT Updates protection information (protection
class, owner of record, expiration date) for a
disk file or a library of disk files.

READ Reads a record from a file or device supported
by DMS.

READ FDR Locates a disk file on a specified volume and
copies its FDRl, FDR2, or FDR3 blocks into
memory.

READVTOC Provides a disk volume table of contents (VTOC)
information.

RENAME Renames a disk file or library.

REWRITE Rewrites a record to a file or device.

ROLLBACK Undoes a DMS/TX transaction.
.£._-----4--··--- ... ~. -

SCRATCH Deletes a disk file or library from a volume.

SETRECOV Attaches or detaches a file with recovery blocks
to a OMS/TX database, or clears a crash status.

START Start file processing in a specified mode or at
specific record.

START HOLD/RELEASE Requests a hold or release on resources in a
data file.

Controlled Release Draft 1-12 October, 1985

Table 1-5. File Services and Related Macroinstructions (continued)

Service Name Function

SUBMIT Transfers files from one system to another using
WangNet. It also submits files for printing.

UFB Describes the user file block (UFB).

UFBGEN Generates the user file block (UFB) with
specified fields initialized.

UPDATFDR Updates existing FDR blocks.

WPCALL Calls routines to do I/O on a word processing
document.

WRITE Writes the next consecutive record (consecutive
or indexed files) or writes a specified record
(indexed file).

WV46MAP Maps the parameter list supplied to SUBMIT and
provides information to use by SUBMIT with the
PLIST option.

1.2. 6 Security Services

The Security Logging facility tracks security related events that
occur during system operation and stores this information in a log file.
Security Logging not only provides a method of accountability for system
use, but can also serve as an effective deterrent to security
violations. Application programs can be written to control the Security
Logging facility using the system services that support the facility.
These services can be used only by System Administrators.

Table 1-6 sununarizes the security services. For detailed information
on using these services, refer to Chapters 3 and 4.

Controlled Release Draft 1-13 October, 1985

Table 1-6. Security Services and Related Macroinstructions

---.. -·--···· --~

Service Name Function I~

CNTROL008 Communicates control information to the
operating system security logging task.

LOOR Generates a DSECT which defines all the fields
found in a security logging system PUT LOG
record, their identifiers, and the event types
and subtypes.

PROTECT Updates protection information (protection
class, owner of record, and/or expiration date)
for a disk file or a library of disk files on a
volume.

PUTL008 Inserts a record into the system security event
logging database· file.

a JSI-type system service.

Controlled Release Draft 1-14 October, 1985

CHAPTER 2
CALLING SYSTEM SERVICES

2.1 OVERVIEW

This chapter describes how to call both the JSI-type services and the
SVC-type services. Examples of using the JSI-type services are provided
in Section 3. 3. As part of those examples, SVC-type services are also
used. Refer to Chapter 6 for a detailed description of how the program
stack is handled for the JSI-type and SVC-type services.

2.2 CALLING THE SYSTEM SERVICES

The system services that use the JSI instruction do not use
supervisor calls (SVC) to perform the service. As a result, there is
more flexibility in their use because they could be loaded to any free
space in memory, whereas SVC-type services are loaded at a defined
location.

NOTE

The JS! (jump to subroutine) instruction operates in the same
manner as the JSCI (jump to subroutine on condition indirect)
instruction, except that the jump to the specified subroutine
is always made. No conditions have to be met. The stack for
the JSI instruction is handled the same way as the stack is
handled for the JSCI instruction. Ref er to Chapter 6 for
more information on the JSCI instruction.

Controlled Release Draft 2-1 October, 1985

The macro definitions of the JSI-type services are stored in @MACLIB@
on the system volume. The executable code of the JSI-type services are ~
part of a shared subroutine library, called @SYSSERV on the system r '
volume. To call one of these services, the Linker is used. The shared
subroutine library must be enabled (enter YES next to the field SHAREDSL
for the prompt "Create a SHARED subroutine library?" on the Linker
OPTIONS screen). An alias is a name of up to 40 characters assigned to
each shared subroutine library. The alias for the JSI-type system
services shared subroutine library is @SYSSERV. @SYSSERV is entered on
the SSLALIAS screen. At runtime, the address of the service is resolved,
the routine is called and run. It does not become part of the resident
code of the program. Refer to Section 3. 3 for examples on using these
system services. Refer to VS Linker and Symbolic Debegger Reference for
more information on using the Linker.

The SVC-type system services are located in the system library
@MACLIB@ on the system volume. These services are a resident part of the
operating system code. They are accessed when the program is run. Refer
to VS Principles of Operation for more information on the SVC
instruction.

The assembly language code for calling either type of service (JSI or
SVC type) is the same. The name of the macro is entered, along with any
necessary parameters, as follows:

[label] name_of_service [parameter], [parameter], ...

An example of a call for the MSUNMAP system service (JSI-type) is as ~
follows:

MSUNMAP RETURNCODE=RC,PATHNAME=PTH

An example of a call for the GETPARM system service (SVC-type) is as
follows:

GETPARM FORM=SELECT,KEYLIST=CNTRL,MSG=MSGl,PFKEYS=(RlO)

When printing out assembled program code that includes system
services, the option of printing the expanded macro statements is
available. PRINT GEN prints the expanded macro; PRINT NOGEN does not
print the expanded macro. When PRINT GEN is specified, a "+" symbol
precedes all program statements generated by the macro. For example,
lines 69 through 73 of the following program section are the
assembler-generated statements for the GETPARM system service:

68 GETPARM FORM=SELECT, KEYLIST=CNTRL, MSG=MSGl, PFKEYS=(RlO)
69+ PUSH O,RlO Push the PF key mask on the stack
70+ PUSHA 0,CNTRL Put the KEYLIST address on the stack
71+ PUSHA OA,MSGl Put the MSG address on the stack
72+ MVI (0(15),B'00010100' Move in the GETPARM options byte
73+ SVC 20 (GETPARM)

Controlled Release Draft 2-2 October, 1985

2.3 RETURN CODES

When a system service has been completed, a return code is issued.
The return code indicates the status of the operation:

• If the operation was successful, the return code is always zero.

• If there was an error, the return code is a nonzero value. The
relevant values returned for each service are described in the
detailed service-by-service descriptions.

All return codes and associated error definitions are maintained in
the system file SYSERROR in @MACLIB@.

2.4 ASSEMBLY LANGUAGE CODING CONVENTIONS

This section describes two conventions to remember when assembling a
program. For more information on conventions to use when coding a
program, refer to the VS Assembly Language Reference.

The first statement in a program should be a CODE statement. This
causes the source code following the statement to be part of the
reentrant program section named by the label in the CODE statement. The
syntax for the CODE statement is as follows:

label CODE Not used; should be blank

The label is required and may have a maximum of eight characters. It is
used as the external name of this reentrant program section. Entry
symbols in code or static sections are also limited to eight characters.

If a static area is desired, the STATIC statement should be used.
The assembler allows any number of these statements and allows initial
values to be specified. The syntax for the STATIC statement is as
follows:

label STATIC Not used; should be blank

The label is required and may have a maximum length of eight characters.
It is used as the external name of this static section.

Controlled Release Draft 2-3 October, 1985

2.5 REGISTER CONVENTIONS

There are 16 general 32-bit registers provided for the progranuner' s ~
general use. The standard conventions for the use of these registers are
as follows:

• RO through R13 -- general use. However, Rl is used as a pointer
to an argument list for use with some system services. Refer to
the service-by-service descriptions.

• R14 -- references static area (ref er to the progranuning example
in Section 4.3.1).

• RlS -- Register 15 is the stack pointer (SP) and must always
address the lowest location on the stack which contains usable
data or into which data may be placed by any non-PUSH
instruction. This convention must be followed in all programs.

Use the REGS macroinstruction (ref er to Chapter 4) for establishing
symbolic names for the general registers.

Controlled Release Draft 2-4 October, 1985

CHAPTER THREE
JSI-TYPE SYSTEM SERVICES AND RELATED MACROINSTRUCTIONS

3.1 OVERVIEW

This chapter describes macros for system services that require
special linking procedures for their use. Chapter 4 discusses system
services invoked by the SVC instruction.

The macroinstruction definitions are contained in individual files
(identified by name) in the library, @MACLIB@, on the system volume. The
assembler may access one or more of these files when processing a source
program containing macro calls.

3.1.1 V Type Address Constants

For system services described in this chapter, each macro generates a
V type address constant for the linkage table entry of the system service
that it invokes. The V type constant implies that the label is an
external reference whose address will be resolved later. There is no
need to declare the label as external by coding an EXTRN statement.

3.1.2 Linking the System Services

The executable object code for each system service resides in a
system shared subroutine library called @SYSSERV on @SYSTEM@ of the
system volwne. The code is linked into the user program by supplying
@SYSSERV as the alias during the link procedure. Refer to the VS Linker
and Symbolic Debugger Reference for further information on how to link in
a shared subroutine library.

Controlled Release Draft 3-1 October, 1985

3.2 SYSTEM SERVICE DESCRIPTIONS

In the following sections, each system service description contains
the following information:

• Syntax This section describes the format for coding a
macroinstruction. The programmer must adhere to assembly
language syntax rules as described in the VS Assembly Language
Reference when coding the macroinstructions. Parameters for the
call are listed in the reverse order in which they are pushed
onto the parameter block. That is, the return code address is
always the last parameter pushed. As the macro generates the
code to push the parameters in the expected order, assembly
language programmers may code the call to the service with the
parameters in any order. However, high-level language
programmers must respect the order shown in the syntax section of
the system service description.

• Function -- This section describes the functions of the service.

• Parameter definitions -- This section describes in detail the
parameters that may be used with the macro call, and their valid
values. Unless otherwise stated, the argument to a KEYWORD is
the address of the value, not the value itself. The address may
be a register specification in parenthesis or an address
expression. This section also describes whether the parameter is
an input or output parameter and the parameter's data type.

• Return Codes -- This section lists the valid return codes for the
system service. A return code of zero always indicates success.
The SYSERROR macro in Chapter 4 is provided for standardization
of user program error message. The return code section is
omitted for macroinstructions that generate or describe system
data structures.

• Example -- The section contains at least one coding example for
each macro. Also included is the code generated when the macro
is expanded and the static sections statements containing
constant or storage declarations for the parameters.

Data Types

The data type descriptions are represented in PL/1 notation for easy
interpretation by high-level language progranuners. Table 3-1 is a
conversion chart from PL/1 to assembly language.

Controlled Release Draft 3-2 October, 1985

.~

a

Table 3-1.

PL/l

Fixed bin(31,0)
Fixed bin(15,0)
Char(n)
Char(n) vara

Bit(n)
Pointer

Data Type Conversion Table

Assembler

DS F
DS H
DS CLn
DC H'n'
DS CLn
DS BL.n
DS A(symbol)

The char(n) var data type assumes that the first two bytes
(halfword aligned) contain a count of the number of characters
that follow. The variable n specifies the maximum number of
characters that may follow.

Error Handling Routines

Some of the services have an additional optional parameter for
specifying the entry point of an error handling routine. The syntax is:
[,ERROREXIT=label]. When a service returns a code indicating a failure
in the call and the ERROREXIT parameter is specified, the system
transfers control to the address specified with the ERROREXIT parameter.

Controlled Release Draft 3-3 October, 1985

3.2.1 CNTROLOG - Control Logging of System Security Events

Syntax

[label] CNTROLOG RC=returncode

Function

[,SETEVENTS=setevents]
[,RESETEVENTS=resetevents]
[,SETVIOLATION=setviolation]
[,RESETVIOLATION=resetviolation]
[,CONTROL=control
[,NEWLIB=newlibrary]
[,NEWVOL=newvolume]
[,GETEVENTS=getevents]
[,GETVIOLATIONS=getviolations]
[,GETSTATUS=getstatus]
[,ACTFILE=activefile]
[,ACTLIB=activelibrary]
[,ACTVOL=activevolume]
[,INACTFILE=inactivefile]
[,INACTLIB=inactivelibrary]
[,INACTVOL=inactivevolume]
[,SETALTVOL=setalternatevolume]
[,SETNRECS=setnrecs]
[,GETALTVOL=getalternatevolume]
[,GETNRECS=getnrecs]

CNTROLOG communicates control information to the operating system
security logging task. This service provides the following functions:

1. Start and stop logging up to 256 individual types of events.

2. Start and stop logging of attempted violations of up to 256
individual events.

3. Specify a new file name to be used for logging events or
continuing using an already active file.

4. Return the types of events which are currently being logged, the
types of events whose attempted violations are being logged, the
status of the logging task, the volume, library and file of the
active logging file, the volume, library and file of the inactive
logging file.

Controlled Release Draft 3-4 October, 1985

.
Events consist of logon, logoff, file open and close, file rename,

file delete, file attribute change, userlist change, program invocation,
procedure invocation, background job initiation, DP print request, WP
print request, mount and dismount commands, operator-user conununications,
system messages to the operator, attach/detach of disks and printers,
acquire/release of workstations, system snapshot dumps, and attempted
violations. See the LOGR macro for the event/bit definitions.

When starting the logging task with the new log file option, the
system creates a file name that consists of the time and date of file
creation. The caller specifies the library and volume with the NEWLIB
and NEWVOL parameters. To obtain the file specification for a log file
just closed as a result of a new log file request, specify the INACTFILE,
INACTLIB and INACTVOL output parameters on the same call to CNTROLOG as
the request to start a new log file. The system returns the file
specification of the new file in the ACTFILE, ACTLIB and ACTVOL
parameters.

The caller must have system administrator and operator privileges to
perform the privileged functions of this service.

Parameter Definitions

Parameter
Definition

activefile

I/O

Output

Data TyPe

char(8) var

Returns the name of the currently active log file. If used when
opening a new log file (CONTROL=2), CNTROLOG returns the name of the
newly created log file.

activelibrary Output char(8) var

Returns the name of the library of the currently active log file. If
used when opening a new log file CCONTROL=2) , CNTROLOG returns the
library of the newly created log file.

activevolume Output char(8) var

Returns the name of the volwne of the currently active log file. If
used when opening a new log file CCONTROL=2), CNTROLOG returns the
volume of the newly created log file.

Controlled Release Draft 3-5 October, 1985

control Input fixed bin(31,0)

Changes the state of the logging facility. A value of 3 means that ~,
logging is restarted, and is to continue using the same log file that
was used the last time logging was active. If logging is already
active, this is an invalid request, and the caller is notified. A
value of 1 causes logging activity to terminate (the caller is
notified if logging is not active). A value of 2 causes a new log
file to be opened. If logging is active at the time of the call,
then the current file is closed. If logging is inactive, then
logging is started. Parameter restricted to privileged callers.

getalternatevolwne Output char(6)var

Returns the name of the volwne to be used if the primary volwne
cannot be used. Cannot be used with SETALTVOL.

get events Output bit(256)

Returns the events which are being logged. Each bit represents an
individual event. This parameter may not be used with the SETEVENTS
or RESETEVENTS parameters.

getnrecs Output fixed bin(31,0)

Returns the value set by the last SETNRECS. This is the number
used to set the initial extent size when opening a new log file.
It cannot be used with SETNRECS.

getstatus Output fixed bin(31,0)

Returns the state of the logging facility. A value of 0 means that
logging is inactive. A value of 1 means that logging is active.
This parameter may not be used with the CONTROL parameter.

getviolations Output bit(256)

Returns the events whose attempted violations are being logged.
Each bit represents an individual event. This parameter may not be
used with the SETVIOLATIONS or RESETVIOLATIONS parameters.

inactivef ile Output char(8) var

Returns the name of the log file just closed by the CONTROL=2
action. This parameter may only be used in conjunction when
specifying CONTROL=2. Restricted to privileged callers.

Controlled Release Draft 3-6 October, 1985

inactivelibrary Output char(8) var

Returns the name of the library of the log file just closed by the
CONTROL=2 action. This parameter may only be used when specifying
CONTROL=2. Restricted to privileged callers.

inactivevolume Output char(8) var

Returns the name of the volume of the log file just closed by the
CONTROL=2 action. This parameter may only be used when specifying
CONTROL=2. Restricted to privileged callers.

newlibrary Input char(8) var

The name of the library in which the new log file is to be
created. This parameter is only valid when specifying CONTROL=2.
Restricted to privileged callers. Defaults to last library used.

newvolume Input char(8) var

The name of the volume on which the new log file is to be created.
This parameter is only valid when specifying CONTROL=2. Restricted
to privileged callers. Defaults to last volume used.

resetevents Input bit(256)

Determines the events which are no longer to be logged. Each bit
represents an individual event. Bi ts set to 1 wi 11 correspond to
events to be turned off (not to be logged). If both SETEVENTS and
RESETEVENTS are specified at the same time, RESETEVENTS will be
processed first. Restricted to privileged callers.

resetviolations Input bit(256)

Determines the events whose attempted violations shall no longer be
logged. Each bit represents an individual event. Bits set to 1
will correspond to events to be turned off (not to be logged). If
both SETVIOLATIONS and RESETVIOLATIONS are specified at the same
time, RESETVIOLATIONS will be processed first. Restricted to
privileged callers.

returncode Output fixed bin(31, 0)

Code indicating the success or failure of the routine call.

setalternatevolume Input char(6) var

The name of a volume to be used as an alternate volume when the
primary volume cannot be used. Defaults to NEWVOL if no previous
ALTVOL specified. Restricted to privileged callers.

Controlled Release Draft 3-7 October, 1985

set events Input bit(256)

Determines the events to be logged. Each bit represents an ~.
individual event. Bits set to 1 indicate the events to be logged.
Restricted to privileged callers.

setnrecs Input fixed bin(31,0)

The size of the initial extent of a new log file
records) . This number is used to get UFBNRECS.
privileged callers.

C in number of
Restricted to

setviolations Input bit(256)

Determines the events whose attempted violations are to be logged.
Each bit represents an individual event. Bits set to 1 will
correspond to events to be logged. Restricted to privileged
callers.

Return Codes

Code

@ERACC

@ERGETRSTEVENTS

@ERGETRSTVIOLS

@ERGETSETEVENTS

@ERGETSETVIOLS

@ERINACTNOTNEW

@ERIOERR

@ERIPTYP

@ERLOGGINGON

@ERLOGINACTIVE

Controlled Release Draft

Definition

Access denied.

Cannot do both getevents and resetevents on
same CNTROLOG call.

Cannot do both getviolations
resetviolations on same CNTROLOG call.

and

Cannot do both getevents and setevents on
same CNTROLOG call.

Cannot do both getviolations and
setviolations on same CNTROLOG call.

Cannot request inactivefile when not doing a
newlog on CNTROLOG call.

I/O error.

Illegal parameter type.

Logging is already active.

Logging is not active.

3-8 October, 1985

.~

I~

Code

@ERLOGNOTPRIV

@ERNEWLIBNOTNEW

@ERNO REPLY

@ERSTATCNTRL

@ERUNPRIV

@ERWRONGMSG

@ERGETSETALT

@ERGETSETNRECS

Definition

Caller not authorized to log this event
type.

Cannot specify newlib and control if control
not = newlog.

No reply message from SYSTSK.

Cannot do both control and getstatus on same
CNTROLOG call.

Unprivileged caller.

Invalid message sent back by SYSTSK.

Cannot do both getalternatevolume and
setalternatevolume on same CNTROLOG call.

Cannot do both getnrecs and setnrecs on same
CNTROLOG cal I.

Example

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

CNTROLOG RC=RCODE,GETEVENTS=EVENTMAP,
GETVIOLATIONS=VIOMAP,ACTFILE=LOGFILE,ACTLIB=LOGLIB,
ACTVOL=LOGVOL,GETSTATUS=ONOFF,STATIC=CR14)

PUSHA 0,LOGVOL . Volume for Active Log .
OI OC15),X'80' . Indicate Parameter List End .
PUSHA 0,LOGLIB . Library for Active Log .
PUSHA 0,LOGFILE . Filename for Active Log •
PUSHA 0,0NOFF • Get Status .
PUSHA O,VIOMAP • Get Violations .
PUSHA 0,EVENTMAP . Get Events .
PUSHA 0,0 . (New Log File's Volume) .
PUSHA 0,0 . (New Log File's Library) .
PUSHA 0,0 . (Control parameter) .
PUSHA 0,0 . (Reset Violations) .
PUSHA 0,0 . (Set Violations) .
PUSHA 0,0 . (Reset Events) .
PUSHA 0,0 . (Set Events) .
PUSHA 0 ,RCODE . Return Code .

Controlled Release Draft 3-9 October, 1985

+#CNTROLG STATIC
+ ORG #CNTROLG
+ DC V(CNTROLOG)
+ CSECT
+ L
+ L
+ PUSH
+ LA
+ JSI
+ POPN

l,=R(#CNTROLG)
l,O(R14,l)
0,1
l,4(,15)
0(,15)
0,60

(Static Section)

RCODE OS F
EVENTMAP DC BL.256'0'
VIOMAP DC BL.256'0'
LOGFILE DC CL8'
LOGLIB DC CL8'
LOGVOL DC CL6'
ONOFF DC F'O'

Controlled Release Draft

. Section for PUTLOG VCON .

. Start the section
• . . . with the VCON •
• Rejoin current section •
• Address Static Section •
• Add Static Base .
. Enstack VCON Address .
. Address Parameters .
• Call PUTLOG .
• Restore Stack .

3-10 October, 1985

3.2.2 LOGR - System Security Logging Record Format

Syntax

[label] LOGR [NODSECT][,STORAGE={ NO}]
{YES}

Function

This macro generates a DSECT which defines all the fields found in a
security logging system PUTLOG record, their identifiers, •and the event
types and subtypes. It optionally allocates storage for a code section
through the NODSECT parameter. The STORAGE parameter controls the amount
of storage allocated for a code section (if NODSECT is specified) or the
off sets shown in a DSECT. Also may be used in conjunction with the
CNTROLOG macro for setting events.

Parameter Definitions

Parameter
Definition

NODSECT

I/O

Input

Data Type

Specifying NODSECT results in storage being allocated as part of the
current code or static section. If not specified, the system
generates a dwmny section (with no storage allocation) showing
offsets relative to the beginning of the section.

STORAGE Input

STORAGE=YES sets the replication factor for each DS statement to one
starting with LOGR$TYPE. STORAGE=NO sets the replication factor for
each DS statement to zero. If NODSECT is specified, specifying
STORAGE=YES generates storage for the total macro. Specifying
NODSECT, STORAGE=NO generates storage for the shorter form of the
macro.

Controlled Release Draft 3-11 October, 1985

Example

+LOGR
LOGR

DSECT
+***
+• *
+• This DSECT contains the definition of all fields found in a PUTLOG *
+* record, their identifiers, the event types, and the event *
+• subtypes. Within this DSECT, a labeling convention is used that *
+* makes things easier to follow. The convention is: labels *
+• with '#' in them refer to field identification numbers; labels with *
+* '$' in· them refer to the value portion of the field; labels with *
+• '@' in them refer to possible values for the field. Another *
+* convention is that identifiers for common fields start with the *
+* number 255 and descend. Identifiers for type-dependent fields *
+* start with the number 1 and ascend. •
+* •
+***

+LOGRBEGIN DS OF
+LOGRRECLENGTH DS H
+LOGRFIELD DS ox
+•
+LOGRFIELDID DS XLl
+LOGRFIELDLEN DS XL2
+•
+*
+LOGRFIELDVALUE DS OXL256
+LOGRHDR DS OX
+LOGR#TYPE EQU 255
+LOGR$TYPE DS OXL2
+•
+LOGR#SUBTYPE EQU 254
+LOGR$SUBTYPE DS OXL2
+LOGR#TIME EQU 253
+LOGR$TIME DS OXLS
+LOGR#VIOLATION EQU 252
+LOGR$VIOLATION DS OBL2
+LOGR@ALERT EQU 1
+*
+LOGR#CUID
+LOGR$CUID
+LOGR#CWS
+LOGR$CWS
+LOGR#CJOB
+LOGR$CJOB
+LOGR#SUID
+LOGR$SUID
+LOGR#SWS
+•

EQU 251
DS OCLS
EQU 250
DS OCLS
EQU 249
DS OCL8
EQU 248
DS OCL8
EQU 247

Controlled Release Draft

Total length of record
The format of a field in a PUTLOG
record.
Contains the field identifier.
Contains the length of the field
value (does not include the ID or
length bytes).
Contains the value of the field.
The common fields of a PUTLOG record
The ID # of the event type field
The description of the value portion
of the event type field
The record subtype

Timestamp

Violation Flag byte

. Record represents an attempted
violation
User ID of the PUTLOG caller

Workstation used by the PUTLOG caller

Job name used by the PUTLOG caller

User ID of the subject of the PUTLOG

Workstation used by the subject of
the PUTLOG

3-12 October, 1985

... _ ..

+LOGR$SWS
+LOGR#SJOB
+LOGR$SJOB
+LOGR#STASK
+LOGR$STASK
+LOGREVENTDATA

DS OCL8
EQU 246
DS OCL8
EQU 245
DS OXL2
EQU *

Job name of the subject of the PUTLOG

Task ID # of the subject of the PUTLOG

+***
+* User Application Event Type *
+***
+LOGRUSER EQU 0 User application event type
+LOGR#USERDATA EQU 1 ID # for user data field
+LOGR$USERDATA DS OXI...256 User data

+***
+* Logon Event Type *
+***
+ ORG LOGREVENTDATA

Logon event type
ID # for logon error field

+LOGRLOGON EQU 1
+LOGR#LOGONERR EQU 1
+LOGR$LOGONERR DS OXLl
+LOGR@INVIDPSW EQU 1
+LOGR@MULTLOG EQU 2
+LOGR@UNBOPRD EQU 3
+LOGR@LOGINHIB EQU 4
+LOGR@WSRESTR EQU 5

Error code when logon is rejected
. Invalid user ID or password

+LOGR@GETMEM EQU 6
+LOGR@GETBLK EQU 7
+LOGR@SEG2SZ EQU 8
+LOGR@NOLOGPROC EQU 9

. User logged on elsewhere

. Unable to open or read user list

. Logon inhibited

. User restricted from WS

. Getmem error

. Getblk error

. Segment 2 size error

. NO LOGON PROC FOR NOHELP USER

+* Logof f Event Type *
+***
+ ORG
+LOGRLOGOFF
+LOGR#LREASON
+LOGR$LREASON
+LOGR@LNORMAL
+LOGR@LFORCED

LOGREVENTDATA
EQU 2
EQU 1
DS OXLl
EQU 0
EQU 1

Controlled Release Draft

Logof f Event Type
ID # for Reason for Logoff field

. User - initiated (normal) logoff

. Forced Logof f

3-13 October, 1985

+***
+* Opens for Input Only *
+***
+ ORG LOGREVENTDATA
+LOGROPENINPUT EQU 3 Opens for input only event type
+LOGR#OICLASS EQU 1 File class of file opened
+LOGR$0ICLASS DS OCL8
+LOGR#OIDEVCLASS EQU 2 Device class (from UCBCLASS)
+LOGR$0IDEVCLASS DS OXLl
+LOGR#OIDEVICE EQU 3 Device name
+LOGR$0IDEVICE DS OCL8
+LOGR#OIOWNER EQU 4 User ID of file owner
+LOGR$0IOWNER DS OCL8
+LOGR#OIFILE EQU 5 File name of file opened
+LOGR$0IFILE DS OCL8
+LOGR#OILIB EQU 6 Library of file opened
+LOGR$0ILIB DS OCL8
+LOGR#OIVOL EQU 7 Volume of file opened
+LOGR$0IVOL DS OCL8
+LOGR#OITYPE EQU 8 Open type (from UFBF2)
+LOGR$0ITYPE DS OXLl
+LOGR#OIERROR EQU 9 Error on protection violation
+LOGR$0IERROR DS OXLl
+***
+* Opens for Possible Modification *
+***
+ ORG LOGREVENTDATA
+LOGROPENMOD EQU 4 Opens for possible modification event type
+LOGR#OMCLASS EQU 1 File class of file opened
+LOGR$0MCLASS DS OCL8
+LOGR#OMDEVCLASS EQU 2 Device class (from UCBCLASS)
+LOOR$0MDEVCLASS DS OXLl
+LOGR#OMDEVICE EQU 3 Device name
+LOGR$0MDEVICE DS OCL8
+LOGR#OMOWNER EQU 4 Userid of file owner
+LOGR$0MOWNER DS OCL8
+LOGR#OMFILE EQU 5 Filename of file opened
+LOGR$0MFILE DS OCLB
+LOGR#OMLIB EQU 6 Library of file opened
+LOGR$0MLIB DS OCL8
+LOGR#OMVOL EQU 7 Volume of file Opened
+LOGR$0MVOL DS OCL8
+LOGR#OMTYPE EQU 8 Open type (from UFBF2)
+LOOR$0MTYPE DS OXLl
+LOOR#OMERROR EQU 9 Error on protection violation
+LOGR$0MERROR DS OXLl

Controlled Release Draft 3-14 October, 1985

.~

.~

+**************************************
+* Close *
+**************************************
+ ORG
+I.OGRCLOSE
+LOGR#CFILE
+LOGR$CFILE
+LOGR#CLIB
+LOGR$CLIB
+LOGR#CVOL
+LOGR$CVOL
+LOGR#CDEVCLASS
+LOGR$CDEVCLASS
+LOGR#CDEVICE
+LOGR$CDEVICE
+LOGR#COPENTYPE
+LOGR$COPENTYPE

LOGREVENTDATA
EQU 5
EQU 1
DS OCL8
EQU 2
DS OCL8
EQU 3
DS OCL8
EQU 4
DS OXLl
EQU 5
DS OCL8
EQU 6
DS OXLl

Close event type
Filename of file closed

Library of file closed

Volume of file closed

Device class (from UCBCLASS)

Device name

Open type (from UFBF2)

+**************************************
+* Rename *
+**************************************
+ ORG
+LOGRRENAME
+LOGR#RCLASS
+LOGR$RCLASS
+LOGR#ROWNER
+LOGR$ROWNER
+LOGR#ROFILE
+LOGR$ROFILE
+LOGR#ROLIB
+LOGR$ROLIB
+LOGR#ROVOL
+LOGR$ROVOL
+LOGR#RNFILE
+LOGR$RNFILE
+LOGR#RNLIB
+LOGR$RNLIB
+LOGR#RNVOL
+LOGR$RNVOL
+LOGR#RTYPE
+LOGR$RTYPE
+LOGR@RTFILE
+LOGR@RTLIB

LOGREVENTDATA
EQU 6
EQU 1
DS OCL8
EQU 2
DS OCL8
EQU 3
DS OCLS
EQU 4
DS OCL8
EQU 5
DS OCLS
EQU 6
DS OCL8
EQU 7
DS OCL8
EQU 8
DS OCL8
EQU 9
DS OXLl
EQU 1
EQU 2

Controlled Release Draft

Rename event type
File class of file renamed

User ID of file owner

Filename of old file

Library of old file

Volume of old file

File name of new file

Library of new file

Volume of new file

Type of rename

Rename of a file
Rename of a library

3-15 October, 1985

+**************************************
+* Scratch *
+**************************************
+ ORG LOGREVENTDATA

EQU 7 Scratch event type +LOGRSCRATCH
+LOGR#SCLASS
+LOGR$SCLASS
+LOGR#SOWNER
+LOGR$SOWNER
+LOGR#SFILE
+LOGR$SFILE
+LOGR#SLIB
+LOGR$SLIB
+LOGR#SVOL
+LOGR$SVOL

EQU 1 File class of file to be scratched
DS OCL8
EQU 2
DS OCL8
EQU 3
DS OCL8
EQU 4
DS OCL8
EQU 5
DS OCL8

User ID of file owner

File name of file scratched

Library of file scratched

Volume of file scratched

+**************************************
+* Change File Attributes *
+**************************************
+ ORG
+LOGRCHNGFATTR
+LOGR#CFACLASS
+LOGR$CFACLASS
+LOGR#CFAOWNER
+LOGR$CFAOWNER
+LOGR#CFAFILE
+LOGR$CFAFILE
+LOGR#CFALIB
+LOGR$CFALIB
+LOGR#CFAVOL
+LOGR$CFAVOL
+LOGR#CFAATTR
+LOGR$CFAATTR
+LOGR#CFAOLDVAL
+LOGR$CFAOLDVAL
+LOGR#CFANEWVAL
+LOGR$CFANEWVAL

LOOREVENTDATA
EQU 8
EQU 1

Change file attributes event type
File class of file

DS OCL8
EQU 2
DS OCL8
EQU 3
DS OCL8
EQU 4
DS OCL8
EQU 5
DS OCL8
EQU 6
DS OCL16
EQU 7

User ID of file owner

File name of f iel scratched

Library of file scratched

Volume of file scratched

Attribute name

Old attribute value
DS OXI..32
EQU 8

(data type depends on attribute)
New attribute value

DS OXI..32

+**************************************
+* Security Program Usage *
+**************************************
+ ORG LOOREVENTDATA
+LOORSECURITY EQU 9 Security program usage event type
+* ***
+* * Subtype Add User for Security Event Type *
+* ***
+LOGRSUBSECADD EQU 1 Security subtype for add user
+LOOR#SUADUID EQU 1 User ID of new user
+LOOR$SUADUID DS OCL8
+LOGR#SUADNl\ME EQU 2 New username
+LOGR$SUADN1\ME DS OCL24

Controlled Release Draft 3-16 October, 1985

+* ***
+* * Subtype Delete User for Security Event Type *
+* ***
+ ORG LOGREVENTDATA
+LOGRSUBSUDEL EQU 2
+LOGR#SUDUID EQU 3
+LOGR$SUDUID DS OCL8

Security subtype for delete user
User ID deleted

+* **
+* * Subtype Change User Attributes for Security Event Type *
+* **
+ ORG LOGREVENTDATA
+LOGRSUBCUA EQU 3
+*
+LOGR#SCUAUID
+*
+LOGR$SCUAUID
+LOGR#SCUMTTR
+LOGR$SCUMTTR
+LOGR#SCUAOLD
+LOGR$SCUAOLD
+LOGR#SCUANEW
+LOGR$SCUANEW

EQU 4

DS OCL8
EQU 5
DS OCL16
EQU 6
DS OXL72
EQU 7
DS OXL72

Security subtype for change user
attributes
User ID whose attributes are being
changed

Name of attribute being changed

Old attribute value

New attribute value

+* ***
+* * Subtype Change User Access Rights for Security Event Type *
+* ***
+ ORG LOGREVENTDATA
+LOGRSUBSUAC EQU 4
+*

+LOGR#SUACUID
+*
+LOGR$SUACUID
+LOGR#SUACCLASS
+LOGR$SUACCLASS
+LOGR#SUACOLD
+LOGR$SUACOLD
+LOGR@SUACEX
+LOGR@SUACRD
+LOGR@SUACWR
+LOGR#SUACNEW
+LOGR$SUACNEW

EQU 8

DS OCL8
EQU 9
DS OCL8
EQU 10
DS OBLl
EQU X'80'
EQU X'40'
EQU X'20'
EQU 11
DS OBLl

Controlled Release Draft

Security subtype for change user access
rights

User ID whose access rights are being
changed

File class

Access rights

. Execute

. Read

. Write
New access value

3-17 October, 1985

+* There are still more subtypes to define here.
+ ORG LOGREVENTDATA
+LOGRSUBSPAC EQU 5
+*
+LOGR#SPAVOL
+LOGR$SPAVOL
+LOGR#SPALIB
+LOGR$SPALIB
+LOGR#SPAFILE
+LOGR$SPAFILE
+LOGR#SPACCLASS
+LOGR$SPACCLASS
+LOGR#SPACOLD
+LOGR$SPACOLD
+LOGR@SPACEX
+LOGR@SPACRD
+LOGR@SPACWR
+LOGR#SPACNEW
+LOGR$SPACNEW

EQU 12
DS OCL6
EQU 12
DS OCL8
EQU 12
DS OCL8
EQU 9
DS OCL8
EQU 10
DS OBLl
EQU X'80'
EQU X'40'
EQU X'20'
EQU 11
DS OBLl

Security subtype for change program
access rights
Program volume

Program library

Program file name

File class for program access rights

Access rights

. Execute

. Read

. Write
New access value

+**************************************
+* Program Invocations *
+**************************************
+ ORG
+LOGRPROGRAM
+LOGR#PRGCLASS
+LOGR$PRGCLASS
+LOGR#PRGOWNER
+LOGR$PRGOWNER
+LOGR#PRGFILE
+LOGR$PRGFILE
+LOGR#PRGLIB
+LOGR$PRGLIB
+LOGR#PRGVOL
+LOGR$PRGVOL

LOGREVENTDATA
EQU 10
EQU 1
DS OCL8
EQU 2
DS OCL8
EQU 3
DS OCL8
EQU 4
DS OCL8
EQU 5
DS OCL8

Program invocations event type
File class of program

Userid of owner of file

File name of program

Library of program

Volume of program

+**************************************
+* Procedure Invocations *
+**************************************
+ ORG
+LOGRPROCEDURE
+LOGR#PROCCLASS
+LOGR$PROCCLASS
+LOGR#PROCOWNER
+LOGR$PROCOWNER
+LOGR#PROCFILE
+LOGR$PROCFILE
+LOGR#PROCLIB
+LOGR$PROCLIB
+LOGR#PROCVOL
+LOGR$PROCVOL

LOGREVENTDATA
EQU 11
EQU 1
DS OCL8
EQU 2
DS OCLB
EQU 3
DS OCLB
EQU 4
DS OCLB
EQU 5
DS OCLB

Controlled Release Draft

Procedure invocations event type
File class of procedure

Userid of owner of file

File name of procedure

Library of procedure

Volume of procedure

3-18 October, 1985

+••···································· +* Background Jobs *
+**************************************
+ ORG LOGREVENTDATA
+LOGRBACKGRND EQU 12 Background jobs event type
+* Fields common to all subtypes within the background jobs
+* event type.
+LOGR#BGSFILE EQU 1
+LOGR$BGSFILE DS OCL8
+LOGR#BGSLIB EQU 2
+LOGR$BGSLIB DS OCL8
+LOGR#BGSVOL EQU 3

+LOGR$BGSVOL
+LOGR#BGSJOB
+LOGR$BGSJOB

DS OCL8
EQU 4
DS OCL8

File name of procedure

Library of procedure

Volume of procedure

Job name used

+* ***
+* * Subtype Submit for Background Jobs Event Type *
+• ***
+LOGRSUBBGSUB EQU 1 Subtype submit background job
+LOGR#BGSCLASS EQU 5 File class of procedure
+LOGR$BGSCLASS DS OCL8
+LOGR#BGSOWNER EQU 6 User ID of file owner
+LOGR$BGSOWNER DS OCL8
+LOGR#BGSJOBCLAS EQU 7 Job class
+LOGR$BGSJOBCLAS DS OCLl
+LOGR#BGSJOBTYPE EQU 8 Type of job
+LOGR$BGSJOBTYPE DS OXLl
+LOGR@BGSPERM EQU X'80' . Permanent Job

+• •••
+* * Subtype Job Initiation for Background Jobs Event Type *
+• ***
+ ORG LOGREVENTDATA
+LOGRSUBBGJINIT EQU 2 Subtype job initiation
+* There are no additional fields for this subtype
+• ••
+* • Subtype Job Termination for Background Jobs Event Type *
+* ••
+ ORG LOGREVENTDATA
+LOGRSUBBGJTERM EQU 3
+LOGR#BGJTWHY EQU 9
+LOGR$BGJTWHY DS OXLl
+LOGR@BGJTNORM EQU 1
+LOGR@BGJTDIED EQU 2
+*
+LOGR@BGJTTIME
+LOGR@BGJTOPER

EQU 3
EQU 4

Controlled Release Draft

Subtype job termination
Reason for job termination

. Normal completion

. Error completion (cancel
program exception, etc.)

. Expired time limit

. Cancelled by operator

3-19

condition,

October, 1985

+**************************************
+* DP Print Jobs *
+**************************************
+ ORG LOGREVENTDATA
+LOGRDPPRINT EQU 13 DP print jobs event type
+* Fields common to all subtypes within the print jobs
+* event type.
+LOGR#DPSFILE EQU 1 File name of print file
+LOGR$DPSFILE DS OCLB
+LOGR#DPSLIB EQU 2 Library of print file
+LOGR$DPSLIB DS OCLB
+LOGR#DPSVOL EQU 3 Volume of print file
+LOGR$DPSVOL DS OCLB

+* ***
+* * Subtype Submit for DP Print Jobs Event Type *
+* ***
+LOGRSUBDPSUB EQU 1 Subtype submit DP print job
+LOGR#DPSCLASS EQU 5 File class of print file
+LOGR$DPSCLASS DS OCLS
+LOGR#DPSOWNER EQU 6 User ID of file owner
+LOGR$DPSOWNER DS OCLS
+LOGR#DPSPRTCLAS EQU 7 Print class
+LOGR$DPSPRTCLAS DS OCLl

+* ***
+* * Subtype Job Initiation for DP Print Jobs Event Type *
+* ***
+ ORG LOGREVENTDATA
+LOGRSUBDPJINIT EQU 2
+LOGR#DPJIPRTR EQU 8
+LOGR$DPJIPRTR DS OCLS

Subtype job initiation
Name of printer used

+* **
+* * Subtype Job Termination for DP Print Jobs Event Type *
+* **
+ ORG LOGREVENTDATA
+LOGRSUBDPJTERM EQU 3
+LOGR#DPJTWHY EQU 10
+LOGR$DPJTWHY DS OXLl
+LOGR@DPJTNORM EQU 1
+LOGR@DPJTREAD EQU 2
+LOGR@DPJTPRTR EQU 3
+LOGR@DPJTOPER EQU 4

Controlled Release Draft

Subtype job termination
Reason for job termination

. Normal completion

. I/O errors reading input file

. I/O errors on printer

. Cancelled by operator

3-20 October, 1985

+******~*******************************
+* Mount *
+**************************************
+ ORG
+LOGRMOUNT
+LOGR#MTVOLUME
+LOGR$MTVOLUME
+LOGR#MTDEVCLAS
+LOGR$MTDEVCLAS
+LOGR#MTDEVICE
+LOGR$MTDEVICE
+LOGR#MTOWNER
+LOGR$MTOWNER
+LOGR#MTMOUNTER
+LOGR$MTMOUNTER

LOGREVENTDATA
EQU 15
EQU 1
DS OCL8
EQU 2
DS OXLl
EQU 3
DS OCL8
EQU 4
DS OCL8
EQU 5
DS OCL8

Mount event type
Name of volume mounted

Device class of device

Device name

User ID of owner of volume

User ID of mounter of volume

+**************************************
+* Dismount *
+**************************************

LOGREVENTDATA
EQU 16
EQU 1
OS OCL8
EQU 2
OS OXLl
EQU 3

Dismount event type
Name of volume dismounted

Device class of device

Device name

User ID of owner of volume

+ ORG
+LOGRDISMOUNT
+LOGR#DMVOLUME
+LOGR$DMVOLUME
+LOGR#DMDEVCLAS
+LOGR$DMDEVCLAS
+LOGR#DMDEVICE
+LOGR$DMDEVICE
+LOGR#DMOWNER
+LOGR$DMOWNER
+LOGR#DMMOUNTER
+LOGR$DMMOUNTER

OS OCL8
EQU 4
OS OCL8
EQU 5 User ID of dismounter of volume
OS OCL8

+**************************************
+* Operator - User Communications *
+**************************************
+ ORG
+LOGROPERUSER
+LOGR#OUSENDER
+LOGR$0USENDER
+LOGR@OUSOPER
+LOGR@OUSUSER
+LOGR#OUDEVFROM
+LOGR$0UDEVFROM
+LOGR#OUDEVTO
+LOGR$0UDEVTO
+LOGR#OUTOUSER
+LOGR$0UTOUSER
+LOGR#OUFRUSER
+LOGR$0UFRUSER
+LOGR#OUOPEROPT
+LOGR$0UOPEROPT

LOGREVENTDATA
EQU 17
EQU 1
OS OXLl
EQU 1
EQU 2
EQU 2
OS OCL8
EQU 3
OS OCL8
EQU 4
OS OCL8
EQU 5
DS OCL8
EQU 6
OS OXLl

Controlled Release Draft

Operator-user communications event type
Sender of message

. Operator sent to user

. User sent to operator
Name of device message sent from

Name of device message sent to

User ID message sent to

User ID message sent from

Option used from operator screen

3-21 October, 1985

+LOGR@OUOPTONE EQU 1 • Send to single user
+LOGR@OUOPTONEI EQU 2 . Send to single user inunediately
+LOGR@oUOPTALL EQU 3 . Send to all users
+LOGR@OUOPTALLI EQU 4 . Send to all users inunediately
+LOGR@oUOPTREM EQU 5 . Remove current messages
+LOGR#OUMESSAGE EQU 7 The message sent
+LOGR$0UMESSAGE DS OCL160

+**************************************
+* System Messages to Operator *
+**************************************
+ ORG LOGREVENTDATA
+LOGRSYSOPER EQU 18
+LOGR#SOMESSAGE EQU 1
+LOGR$SOMESSAGE DS OCL160

System messages to operator event type
The message sent

+**************************************
+* Attach/Detach *
+**************************************
+ ORG
+LOGRATTDET
+LOGR#ADWHICH
+LOGR$ADWHICH
+LOGR@ADATTACH
+LOGR@ADDETACH
+LOGR#ADDEVCLAS
+LOGR$ADDEVCLAS
+LOGR#ADDEVICE
+LOGR$ADDEVICE
+LOGR#ADUSER
+LOGR$ADUSER
+LOGR#ADOPRDEV
+LOGR$ADOPRDEV

LOGREVENTDATA
EQU 19
EQU 1
DS OXLl
EQU 1
EQU 2
EQU 2
DS OXLl
EQU 3
DS OCL8
EQU 4
DS OCL8
EQU 5
DS OCL8

Attach/detach devices event type
Attach or detach

• Attach
. Detach
Device class of device

Name of device attached or detached

User ID of operator

Name of device used as operator

+**************************************
+* Acquire/Release *
+**************************************
+ ORG
+LOGRACQREL
+LOGR#ARWHICH
+LOGR$ARWHICH
+LOGR@ARACQUIRE
+LOGR@ARRELEASE
+LOGR#ARDEVCLAS
+LOGR$ARDEVCLAS
+LOGR#ARDEVICE
+LOGR$ARDEVICE

+LOGR#ARUSER
+LOGR$ARUSER
+LOGR#AROPRDEV
+LOGR$AROPRDEV

LOGREVENTDATA
EQU 20
EQU 1
DS OXLl
EQU 1
EQU 2
EQU 2
DS OXLl
EQU 3
DS OCL8

EQU 4
DS OCL8
EQU 5
DS OCL8

Controlled Release Draft

Acquire/release devices event type
Acquire or Release

. Acquire

. Release
Device class of device

Name of device acquired or released

User ID of operator

Name of device used as operator

3-22 October, 1985

~

+**************************************
+* System Snapshots *
+**************************************
+ ORG
+LOGRSNAPS
+LOGR#SNUSER
+LOGR$SNUSER
+LOGR#SNOPRDEV
+LOGR$SNOPRDEV

LOGREVENTDATA
EQU 21
EQU 1
DS OCL8
EQU 2
DS OCL8

System snapshots event type
User ID of operator

Name of device used as operator

+**************************************
+* Logger Messages *
+**************************************
+ ORG
+LOGRLOGGER
+LOGR#LMSGTYPE
+LOGR$LMSGTYPE
+LOOR@LSTARTNEW
+LOOR@LCONT
+*
+LOGR@LSTOP
+*
+LOGR@LSTOPNL
+*
+LOGR@LRSTEVNTS
+LOGR@LSETEVNTS
+LOOR@LRSTVIOLS
+LOOR@LSETVIOLS
+LOOR@LOLDBAD
+LOOR@LIPL
+LOOR#LUSER
+LOGR$LUSER
+LOGR#LDEVICE
+LOOR$LDEVICE
+LOGR#LOLDMAP
+*
+LOOR$LOLDMAP
+LOGR#LNEWMAP
+*
+LOOR$LNEWMAP

LOGREVENTDATA
EQU 22
EQU 1
DS OXLl
EQU 1
EQU 2

EQU 3

EQU 4

EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
EQU 2
DS OCL8
EQU 3
DS OCL8
EQU 4

DS OBL.256
EQU 5

DS OBL.256

Controlled Release Draft

Logger messages event type
Type of message

Logging started because of Newlog command
Logging started because of Continue
command
Logging stopped because Stop command
issued
Logging stopped because Newlog command
issued
Reset events issued 01\
Set events issued 01\
Reset violations issued 01\
Set violations issued 01\
New file opened because old one bad 02\
Logging continued because of IPL 04\
User ID of CNTROLOG caller

Name of device used

Previous event or violations bit mapOl\
(before set or reset issued) 01\

01\
New event or violations bit map 01\
(as a result of set or reset issued)Ol\

01\

3-23 October, 1985

+**************************************
+* Operator message to Logging Task *
+**************************************
+ ORG LOGREVENTDATA
+LOGROPRMSG
+*

EQU 23 Operator message to logging task event
Type
User ID of operator +LOGR#OMUSER

+LOGR$0MUSER
+LOGR#OMOPRDEV
+LOGR$0MOPRDEV
+LOGR#OMMESSAGE
+LOGR$0MMESSAGE
+ ORG ,
+LOGRLENGTH

EQU 1
DS OCLS
EQU 2 Name of device used as operator
OS OCLS
EQU 3 The text of the message sent

+

OS OCL160

EQU *-LOGRBEGIN
CSECT

END BEGIN

Controlled Release Draft 3-24 October, 1985

3.2.3 MSMAP - Map Region of Virtual Address Space

Syntax

[label] MSMAP

Function

RETURNCODE=returncode,
PATHNAME=pathname,
TYPE=type,
OPTION=option,]
COMMAND=conunand,

[,READLEVEL=readlevel]
(,WRITELEVEL=writelevel]

,STRTADDR=strtaddr
[,LOWERVA=lowerva,]
[UPPERVA=upperva]
[,FILESIZE=filesize]
[,FILECLS=fileclass]

MSMAP provides for mapping program and data files into a task's
virtual address space. The file may already exist or may be opened in
exclusive or shared mode when issuing the MSMAP call. Through the
COMMAND parameter, the user may specify mapping at a specific address,
within a range of addresses or at any available address. The recommended
choice is at any available address. MSMAP returns the mapped address
through the STRTADDR parameter. Files must be aligned on a 1/8-MB
boundary.

The caller may also specify the process level required to read or
write to the file. For all nonprivileged code, the read and write levels
default to process level 0.

Parameter Definitions

Parameter
Definition

command

I/O

Input

Data Type

fixed bin(l5,0)

Specifies the address at which the file is to be mapped. The values
may be 0, 1, or 2. A value of 0 means to map the file at any
available location and is the recommended choice. A value of 1 means
to map at any available location between the addresses specified by
the LOWERVA and UPPERVA parameters. A value of 2 means to map at the
address specified by the STRTADDR parameter. In all three cases, the
file must be aligned on a 1/8-MB boundary. If COMMAND=2, this means
that STRTADDR must specify an address which is an integer multiple of
1/8-MB. If COMMAND=l, then the range specified by LOWERVA and
UPPERVA must contain at least one 1/8-MB boundary.

Controlled Release Draft 3-25 October, 1985

fileclass Input char(1)

file security access code of the data file to
'#' or 'A' or '). If FILECLS is not
output file class of the caller is used for
This parameter is only used when creating a

FILECLS specifies the
be mapped (such as
specified, the default
the mapped data file.
data file.

filesize Input fixed bin(31,0)

FILESIZE specifies the initial size (in bytes) of the file. This
parameter is required only when creating a new data file.

lowerva Input pointer

Specifies the lower virtual address limit at which the file may be
mapped. Required only if specifying a range of addresses for the
map (COMMAND=!). UPPERVA must also be supplied.

option Input fixed bin(15,0)

OPTION specifies that the data file already exists or is to be
created. This parameter is required only if mapping an exclusive
data file (TYPE=2) or a shared data file (TYPE=3). A value of O
means to map an existing data file with a specified name. A value
of 2 means to create and map a data file with a specified name and
file size.

pathname Input charC22) varying

PATHNAME specifies the volume, library, and file name of the file
to be mapped. The parameter must be generated as follows: a
6-byte volume name plus an eight byte library name and an 8-byte
file name. If the actual values for the volume, library and file
consist of fewer characters than the allocated size, they must be
left-justified and padded with blanks.

readlevel Input fixed bin(15,0)

Contains the read level of the region to be mapped. READLEVEL
defaults to O if it is not specified and is the only valid level
for nonprivileged code.

returncode Output fixed binC31,0)

Code that indicates the success or failure of the routine call.

strtaddr I/O pointer

As an input parameter, STRTADDR specifies a specific virtual
address at which to map the file. As an output parameter, STRTADDR
contains the actual virtual address that was mapped.

Controlled Release Draft 3-26 October, 1985

type Input fixed bin(15,0)

The TYPE parameter specifies whether the file is a program file,
an exclusive data file or a shared data file. A value of 1
means to map a program file. A value of 2 means to map an
exclusive data file. A value of 3 means to map a shared data
file.

upperva Input pointer

Contains the upper limit of the highest virtual address of the
region to be mapped. Required only if mapping within a range of
addresses CCOMMAND=l).

writelevel Input fixed bin(l5,0)

Contains the write level of the region to be mapped. WRITELEVEL
defaults to 0 if it is not specified and is the only valid level
for nonprivileged code.

Return Codes

The return codes listed here are the base values. Some values
may be returned that are 1000, 2000, 3000, 4000, or 5000 plus the base
values. However, the definition of the return code does not change.
For example, the return code values of 16 and 1016 have the same
definitions.

Code

@ERSUCC

@ERIPVAL

@ERPROT

4

8

12

16

20

24

28

32

36

Controlled Release Draft

Definition

Success

Illegal parameter value

Attempted protection violation

File already mapped with
conditions

File not found or inaccessible

different

Library not found or inaccessible

Volume not mounted or inaccessible

All buffers in use

VTOC errors

I/O error on VTOC

Buff er size not enough for. all FDRs

READFDR failed

3-27 October, 1985

Code

40

44

48

60

64

88

92

96

100

104

108

110

112

116

120

200

Controlled Release Draft

Definition

Not enough virtual space to map the file

GETMEM failure during region node creation

Region node table full (max. # of nodes
exist)

Caller not privileged enough

Bad parameter list

Access rights denied

No space on volume or VTOC

CREATFDR failed

Bad object format

Stack space not available for static
allocation

Insufficient data area space.

Error from MAP called by MAP.

Unresolved SSL references.

Too many SSL files.

Could not open alias file.

Subroutine not set up for specified file
type - invalid mode.

3-28 October, 1985

~

.~

Exam12le

MSMAP RETURNCODE=RCODE,PATHNAME=FSPEC,TYPE=DATAFILE
COMMAND=ANY,STRTADDR=HERE

+ DS OH
+ PUSHA 0,0
+ OI 0(SP),X'80' flag last argtunent
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,DATAFILE
+ PUSHA Q,FSPEC
+ PUSHA 0,RCODE
+#MSMAP STATIC
+ ORG #MSMAP
+ DC VCMSMAP)
+ CSECT
+ L Rl,=R(#MSMAP)
+ L Rl, 0 (R14 ,Rl)
+ PUSH 0,Rl
+ LA Rl ,4(,SP)
+ JSI 0 (,SP)
+ POPN 0,12*4+4

(Static Section)

DS F RCODE
FSPEC DC CL22'TDATA MYLIBRY SYSTEM'
DATAFILE DC H'O'
ANY DC H'O'
HERE DS A

Controlled Release Draft 3-29 October, 1985

3.2.4 MSUNMAP - Unmap Region of Virutal Address Space

Syntax

[label] MSUNMAP RETURNCODE=returncode,
PATHNl\ME=pathname

Function

Unmaps a file from a task's virtual address space.

Parameter Definitions

Parameter
Definition

pathname

I/O

Input

Data Type

chac(22) varying

Contains the volume, library and file name of the data file to be
unmapped. The parameter must be generated a:s follows: a 6-byte
volume name plus an 8-byte library name and an 8-byte file name. If
the actual values for the volume, library and file consist of fewer
characters than the allocated size, they must be left-justified and
padded with blanks.

returncode Output fixed bin(31,0)

Contains a code that indicates the success or failure of the routine
call.

Return Codes

Code Definition

0 Success

4 File not mapped on present link level

8 Caller not privileged enough

12 Error from FREEHEAP

Controlled Release Draft 3-30 October, 1985

Example

DOMAP MSUNMAP RETURNCODE=RCODE,PATHNAME=FSPEC
+DOMAP EQU *
+ PUSHA 0,FSPEC
+ QI 0(SP),X'80' flag last argwnent
+ PUSHA 0,RCODE
+#MSUNMAP STATIC
+ ORG #MSUNMAP
+ DC V(MSUNMAP)
+ CSECT
+ L Rl,=R(#MSUNMAP)
+ L Rl,0(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JS! 0(,SP)
+ POPN 0,2*4+4

(Static Section)

DS F RCODE
FSPEC DC CL22'TDATA MYLIBRY SYSTEM'

END BEGIN

Controlled Release Draft 3-31 October, 1985

3.2.5 PROCINFO - Process Information

Syntax ~

[label] PROCINFO RETURNCODE=returncode

Function

[,PROCESSID=processid]
[,PARENTID=parentid]
[,MYPID=mypid]
[, WSNUM=wsnum]
[,DEBUGSTATUS=debugstatus]

PROCINFO provides user programs with information related to a
specific process or task. Information is provided for the caller's
process/task or other processes/tasks if the correct ID is known.

Parameter Definitions

Parameter
Definition

debugstatus

I/O

Output

Data Type

fixed bin(15, 0)

A nonzero value indicates that the process or task specified by
PROCESSID is under control of the system debugger program.

mypid Output fixed bin(31,0)

The process ID or task number of the caller.

parent id Output fixed bin(31,0)

Contains the process ID or task number of the parent task, if any.
If there is no parent task, this value is 0.

process id Input fixed bin(31,0)

The process or task ID of this request.

returncode Output fixed binC31,0)

A code that indicates the success or failure of the routine call.

wsnum Output fixed bin(31,0)

Contains the workstation number of the process or task specified by
PROCESSID.

Controlled Release Draft 3-32 October, 1985

Return Codes

Code Definition

Success @ERSUCC
@ERBADPID Process ID specified and not found

Example

GETINFO PROCINFO RETURNCODE=RCODE,MYPID=MYTASK,WSNUM=MYTUBE
+GETINFO DS OH
+ PUSHA 0,0
+ OI O(SP) ,X' 80' flag last argument
+ PUSHA Q,MYTUBE
+ PUSHA 0,MYTASK
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,RCODE
+#PROCINF STATIC
+ ORG #PROCINF
+ DC V(PROCINFO)
+ CSECT
+ L Rl,=R(#PROCINF)
+ L Rl,OCR14,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JSI OC,SP)
+ POPN 0,6*4+4

(Static Section)

RCODE DS F
MYTASK DS F
MYTUBE DS F

GETINFO PROCINFO RETURNCODE=RCODE,PROCESSID=PID,PARENTID=DAD,
DEBUGSTATUS=INDEBUG,WSNUM=TUBENUM

+GETINFO DS OH
+ PUSHA 0,INDEBUG
+ OI OCSP),X'80' flag last argument
+ PUSHA 0,TUBENUM
+ PUSHA 0,0
+ PUSHA 0,DAD
+ PUSHA 0,PID
+ PUSHA 0,RCODE

Controlled Release Draft 3-33 October, 1985

+#PROCINF STATIC
+ ORG #PROCINF
+ DC V(PROCINFO)
+ CSECT
+ L Rl,=R(#PROCINF)
+ L Rl,O(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JSI 0(,SP)
+ POPN 0,6*4+4

(Static Section)

RCODE DS F
PID DS F
DAD DS F
INDEBUG DS H

Controlled Release Draft 3-34 October, 1985

3.2.6 PUTLOG - Put Record Into System Security Database File

Syntax

[label] PUTLOG

Function

RC=returncode,
[, TYPE=type]
(,SUBTYPE=subtype]
[,VIOLATION=violation]
[, WAIT=wai t]
[,DATA=data]
[,SUBJUID=userid]
(,SUBJWS=workstation]
[,SUBJJOB=jobname]
[,SUBJTASKID=subjtaskid]

PUTLOG inserts a record into the system security event logging
database file. Two hundred, fifty-six characters of event-related user
data may be stored in the record along with the job name, task ID, user
ID, workstation, and event type.

Parameter Definitions

Parameter
Definition

data

I/O

Input

Data Type

char(256) var

The information to be logged. Up to 256 characters of information
may be recorded.

jobname Input char(8) var

The job name used by the subject of the PUTLOG message.

returncode Output fixed bin(31,0)

A code that specifies the success or failure of the routine call.

subtaskid Input fixed bin(l5,0)

The task ID of the subject of the PUTLOG.

subtype Input fixed bin(l5,0)

An integer that enables finer distinctions, within TYPE, for the
information being logged. This is for informational purposes only
and can be defined by the user. SUBTYPE defaults to 0.

Controlled Release Draft 3-35 October, 1985

type Input fixed bin(15,0)

An integer that corresponds to the type of event to be logged.
Each TY:PE corresponds directly to a bit in the events bit mask
modifiable via the CNTROLOG System Service. The TYPE specified is
validated against the privilege level of the caller. The default
is 0.

user id Input char(8) var

The user ID of the subject of the PUTLOG message.

violation Input fixed bin(l5,0)

wait

If the specified value is 1, PUTLOG marks the event as an attempted
violation. The default is 0.

Input fixed bin(l5,0)

If the value specified is l, PUTLOG will wait for the IPC message
to be sent to the logging task. If 0, a NOWAITSEND will be
specified on the !PC-generated !SEND and PUTLOG will not wait for
the message to be sent. The default is 1.

workstation Input char(8) var

The workstation being used by the subject of the PUTLOG message.

Return Codes

@ERLOGEVNTNOTSET

@ERLOGINACTIVE

@ERLOGNOTPRIV

@ERLOGVIOLNOTSET

@ERNOLOGGING

Controlled Release Draft

Definition

Event specified on PUTLOG is not set to be
logged.

Logging is not active.

Caller not authorized to log this event
type.

Violation specified on PUTLOG is not set to
be logged.

Logging task has been terminated.

3-36 October, 1985

'~

""""'

Example

LOGR#USER EQU 0
PUTLOG RC=RCODE,TYPE=EVTTYPE,DATA=DATAMSG

+ PUSHA 0,DATAMSG
+ OI 0(15),X' 80 I

+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,EVTTYPE
+ PUSHA 0,RCODE
+#PUTLOG STATIC
+ ORG #PUTLOG
+ DC VCPUTLOG)
+ CSECT
+ L l,=R(#PUTLOG)
+ L 1,0(14,l)
+ PUSH 0,1
+ LA 1,4(,15)
+ JSI 0(,15)
+ POPN 0,28

(Static Section)

EVTTYPE DC Y(LOGR#USER)
RCODE DC F'O'
DATAMSG DC H'3'

DC CL3'EVT'

Controlled Release Draft

Data to be Logged .
Indicate Parameter List End .
(Wait) .
(VIOLATION Parameter) .
(Subtype) .
Type .
Return Code .

. Section for PUTLOG VCON .

. Start the section

...• with the VCON.

. Rejoin current section .

. Address Static Section .

. Add Static Base .

. Enstack VCON Address .

. Address Parameters .

. Call PUTLOG .
• Restore Stack .

3-37 October, 1985

3.2.7 SBREAK - Break Synchronization

[label] SBREAK

Function

RETURNCODE=returncode,
NUMHAN=nwnhan,]
HANDLES=handles

[, CANCEL={ YES}]
{NO }

Break synchronization allow users to handle a task that has hung
while holding a synchronous object. It will remove the task that is
holding the object and gives the object to the task which issued the
break synchronization call. If the requesting task is the current user
of the synchronous object then the calling task remains the user and the
cancel option (if specified) is ignored. If there is no user of the
object then the caller is given control of the object and the cancel
option (if specified) is ignored. This service therefore allows users to
do cleanup if necessary before further damage is done (particularly with
partial data base updates).

If the synchronous object was created with the RESTRICT option, the
break synchronization call can only be accepted from the object creator.
Any other callers are not accepted. If the RESTRICT option was not
specified at create time, any task can do a break.

The CANCEL parameter allows the break caller to specify that the task ~.

which previously held the synchronous object is to be cancelled. The
task being cancelled has any CEXITS disabled. If there is a fatal task
crash, the cancel is ineffective. Some other cases may also cause the
task not to cancel. However, in no known case does task remain in user
code.

Parameter Definitions

Parameter
Definition

cancel

I/O

Input

Data Type

fixed bin(31, 0)

CANCEL specifies whether the task currently holding the synchronous
object should be cancelled. A value of 1 indicates that it should be
cancelled. A value of 0 indicates that it should not.

handles Input pointer to an array of
char (8) entries

HANDLES specifies a pointer to an array of 8-character handle
identifiers. The array is currently restricted to one entry.

Controlled Release Draft 3-38 October, 1985

numhan Input fixed bin(31,0)

NUMHAN indicates how many handles there are in the call. Defaults
to 1. Currently restricted to one handle.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Return Codes

Code

@ERSUCC

@ERIPVAL

@ERNOTFOUND

@ERNOTOWN

@ERSOACCDIS

@ERP ROT

@ERMISALIGN

@ERIPTYP

@ERUNPRIV

Example

Definition

Success

Invalid parameter

Synchronous object not found

Access denied

Access denied (call from anynchronous exit)

Protection violation

Parameter misaligned

Invalid parameter type

Caller does not have high enough process
level for this object

SBREAK RETURNCODE=RTC,NUMHAN=NUM,HANDLES=HANPTR,

+
+
+
+
+
+

CANCEL= YES
PUSHA 0,=A(l)
OI Q(SP),X'80'
PUSHA Q,HANPTR
DS OH
PUSHA Q,NUM
PUSHA 0,RTC

Controlled Release Draft

INDICATE CANCEL REQUESTED
FLAG LAST ARGUMENT
Handle pointer

Ntunber of handles in array
Return code

3-39 October, 1985

+#SBREAK STATIC
+ ORG #SBREAK
+ DC V(SBREAK)
+ CSECT
+ L Rl,=RC#SBREAK)
+ L Rl,O(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JSI OC,SP)
+ POPN 0,4*4+4

(Static Section)

RTC DS F
NUM DC F'l'
HANPTR DC A(HANDLES)
HANDLES OS D

Controlled Release Draft

Address of routine to call

Point to argument list
Call SBREAK

3-40 October, 1985

3.2.8 SCREATE - Create Synchronization Object

[label] SCREATE

Function

RETURNCODE=returncode,
NUMHAN=numhan,]
HANDLES=handles

[,RESTRICT={YES}]
{NO }

Create synchronization object creates a data structure that controls
the use of a shared resource. A synchronization object must be created
before it can be used.

Each time SCREATE is called, a new synchronization object is created
for the caller with a unique identifier (handle). The synchronization
object creator then passes the handle to any other users of this
synchronization object.

Parameter Definitions

Parameter
Definition

handles

I/O

Output

Data Type

pointer to an array of
char (8) entries

HANDLES specifies a pointer to an array of a-character identifiers.
The parameter is currently restricted to one entry in the array.

numhan Input fixed bin(31,0)

NUMHAN indicates how many handles are specified in the HANDLES
array. The default is 1 and the parameter is currently restricted to
one handle.

restrict Input fixed bin(31,0)

The RESTRICT parameter allows the creator to impose some restrictions
on a synchronization object. If RESTRICT is set to yes Ca value of
1), only the creator can issue a delete or break on the
synchronization object. If RESTRICT is set to no Ca value of 0), or
omitted, any caller may issue a delete or break.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Controlled Release Draft 3-41 October, 1985

Return Codes

@ERSUCC

@ERIPVAL

@ERP ROT

@ERMISALIGN

@ERIPTYP

@ERSOACCDIS

Example

Definition

Success

Invalid parameter

Protection violation

Parameter misaligned

Invalid parameter type

Access disallowed (call from asynchronous
exit which is not allowed)

SCREATE RETURNCODE=RTC,NUMHAN=NUM,HANDLES=HANPTR,
RESTRICT=NO

+ DS OH
+ PUSHA O,=A(O)
+ OI 0(SP),X'80'
+ PUSHA O,HANPTR
+ DS OH
+ PUSHA 0,NUM
+ PUSHA 0,RTC
+#SCREATE STATIC
+ ORG #SCREATE
+ DC V(SCREATE)
+ CSECT
+ L
+ L
+ PUSH
+ LA
+ JSI
+ POPN

Rl,=R(#SCREATE)
Rl , 0 (Rl 4 , Rl)
0,Rl
Rl,4(,SP)
0(,SP)
0,4*4+4

(Static Section)

RTC DS F
NUM DC F'l'
HANPTR DC A(HANDLES)
HANDLES DS D

Controlled Release Draft

No restriction
Flag last argument
Handle pointer

Nwnber of handles in array
Return code

Address of routine to call

Point to argument list
Call SCREATE

3-42 October, 1985

3.2.9 SDELETE - Delete Synchronization Object

Syntax

[label] SDELETE

Function

RETURNCODE=returncode,
[NUMHAN=numhand,]
HMIDLES=handles

Delete synchronization object marks a synchronous object for delete,
thereby disallowing any new waiters to enter the queue. The caller must
first issue a call to SENTER to be able to delete the object. If there
are no tasks currently waiting on the object, the synchronous object is
deleted promptly. Any tasks that are waiting at the time of the delete
can proceed normally. In this case, the object is deleted when all
waiting tasks have been serviced.

If the object was created with the RESTRICT option, only the creator
can successfully issue the delete call. Otherwise, any caller can issue
the delete.

Parameter Definitions

Parameter
Definition

handles

I/O

Input

Data TyPe

pointer to an array of
char (8) entries

HANDLES specifies a pointer to an array of a-character identifiers.
The nwnber of identifiers in the array is specified with the NUMHAN
parameter. Currently there is a restriction of one identifier per
routine call. The default is 1.

nwnhan Input fixed bin(31,0)

The NUMHAN parameter indicates how many handles are to be created in
this call. The default is 1 and is currently restricted to one.

returncode Output fixed bin(31,0)

Code that indicates success or failure of the call.

Controlled Release Draft 3-43 October, 1985

Return Codes

Code

@ERSUCC

@ERIPVAL

@ERNOTFOUND

@ERNOTOWN

@ERSOACCDIS

@ERP ROT

@ERMISALIGN

@ERIPTYP

@ERUNPRIV

@ERMKDEL

Example

Definition

Success

Invalid parameter

Synchronous object not found

Access disallowed

Access disallowed (call from anynchronous
exit)

Protection violation

Parameter misaligned

Invalid parameter type

Caller does not have high enough process
level for this object

Object marked for delete (will be deleted
when last of current waiters has finished)

SDELETE RETURNCODE=RTC,NUMHAN=NUM,HANDLES=HANPTR,
+ PUSHA O,HANPTR Handle pointer
+ OI OCSP) ,X' 80' Flag last argument
+ DS OH
+ PUSHA O,NUM
+ PUSHA 0,RTC
+#SDELETE STATIC
+ ORG #SDELETE
+ DC V(SDELETE)
+ CSECT
+ L
+ L
+ PUSH
+ LA
+ JSI
+ POPN

Rl,=R(#SDELETE)
Rl,0(R14,Rl)
0,Rl
Rl ,4 (,SP)
0 (,SP)
0,3*4+4

(Static Section)

Controlled Release Draft

Number of handles in array
Return code

Address of routine to call

Point to argument list
Call SDELETE

3-44 October, 1985

RTC DS F
NUM DC F'l'
HANPTR DC ACHANDLES)
HANDLES DS D

Controlled Release Draft 3-45 October, 1985

3.2.10 SENTER - Enter Synchronization

Syntax

[label] SENTER RETURNCODE=returncode,
NUMHAN=numhan,]
HMIDLES=handles

Function

[,NOWAIT={YES}]
{NO }

Issues the request to gain control of the synchronization object in
order to use the resource. If no other user has control of the
synchronization object, the caller receives control of the
synchronization object. Control is then be passed back to the caller who
may then proceed to use the resource.

If some other user is holding the synchronization object when a
caller requests it, the caller is blocked and has to wait for the
resource on a first in/first out queue. When the resource becomes
available, control is returned to the next caller in the queue, who can
then use the resource.

The NOWAIT parameter allows users not to block if the resource is not
free, but to return to the caller with a return code indicating that the
resource is not free. This allows callers to process other work while
waiting for the resource to become free. (\,

In some cases, users can receive error return codes from enter
synchronization (see below) . Therefore, callers must check the return
code before assuming that they have control of the synchronization object.

Parameter Definitions

Parameter
Definition

handles

I/O

Input

Data Type

pointer to an array of
char (8) entries

HANDLES specifies a pointer to an array of 8-character identifiers.
Currently restricted to one entry in the array.

nowait Input

Specifying YES indicates not to wait if a resource is not available.
Specifying NO indicates to wait for resource availability.

numhan Input fixed bin(31,0)

Indicates how many handles in the call. The default is one and is a
current system restriction.

Controlled Release Draft 3-46 October, 1985

~

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Return Codes

Code

@ERSUCC

@ERIPVAL

@ERNOTFOUND

@ERSOUNAV

@ERSOACCDIS

@ERALRDYHAS

@ERP ROT

@ERMISALIGN

@ERIPTYP

@ERUNPRIV

Example

Definition

Success

Invalid parameter

Synchronous object not found

Synchronous object unavailable (for NOWAIT
option)

Access to synchronous object disallowed (for
async exits)

User already has control of synchronous
object

Protection violation

Parameter misaligned

Invalid parameter type

Caller does not have the correct process
level for this object

SENTER RETURNCODE=RTC,NUMHAN=NUM,HANDLES=HANPTR,

+
+
+
+
+
+
+

NOWAIT=NO
DS OH
PUSHA 0,=A(O)
QI 0(SP),X'80'
PUSHA 0,HANPTR
DS OH
PUSHA 0,NUM
PUSHA 0,RTC

Controlled Release Draft

No NOWAIT
Flag last argument
Handle pointer

Number of handles in array
Return code

3-47 October, 1985

+#SENTER STATIC
+ ORG #SENTER
+ DC V(SENTER)
+ CSECT
+ L Rl,=R(#SENTER)
+ L Rl,O(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JSI 0(,SP)
+ POPN 0,4*4+4

(Static Section)

RTC DS F
NUM DC F'l'
HANPTR DC A(HANDLES)
HANDLES DS D

Controlled Release Draft

Address of routine to call

Point to argument list
Call SENTER

3-48 October, 1985

3.2.11 SEXIT - Exit Synchronization

Syntax

[label] SEXIT

Function

RETURNCODE=returncode,
[NUMHAN=numhan,]
HANDLES=handles

Exit synchronization releases the caller from control of the
resource, and activates the first waiter.

Parameter Definitions

Parameter
Definition

handles

I/O

Input

Data TyPe

pointer to an array of
char (8) entries

HANDLES specifies a pointer to an array of handle identifiers.
Currently restricted to one entry in the array.

numhan Input fixed bin(31,0)

Indicates how many handles in the call. The default is 1 and is the
current system restriction.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Return Codes

Code Definition

@ERSUCC Success

@ERIPVAL Invalid parameter

@ERNOTFOUND Synchronous object not found

@ERNOTOWN Synchronous object not owned by caller

@ERPROT Protection violation

@ERMISALIGN Parameter misaligned

@ERIPTYP Invalid parameter type

Controlled Release Draft 3-49 October, 1985

Code Definition

@ERUNPRIV Caller does not have the correct process
level for this object

@ERSOACCDIS Access to synchronous object disallowed (for
async exits)

Example

SEXIT RETURNCODE=RTC,NUMHAN=NUM,HANDLES=HANPTR
+ PUSHA 0,HANPTR Handle pointer
+ OI 0(SP),X'80' Flag last argtunent
+ DS OH
+ PUSHA 0,NUM Ntunber of handles in array
+ PUSHA 0,RTC Return code
+#SEXIT STATIC
+ ORG #SEXIT
+ DC VCSEXIT)
+ CSECT
+ L Rl,=RC#SEXIT) Address of routine to call
+ L Rl,OCR14,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP) Point to argtunent list
+ JSI OC,SP) Call SEXIT
+ POPN 0,3*4+4

RTC
NUM
HANPTR
HANDLES

(Static Section)

DS F
DC F'l'
DC A(HANDLES)
DS D

Controlled Release Draft 3-50 October, 1985

3.2.12 TCOMPLET - Check Task for Completion

Syntax

[label] TCOMPLET RETCODE=retcode,
TASKID=taskid

Function

This service allows a parent task to check on the completion of its
child task. TCOMPLET does not return control to the calling task until
the child task and its descendants have finished executing. When
completed, all resources are released and TCOMPLET returns to the
caller. A parent task should call either TKILL or TCOMPLET for all
subtasks before its own completion.

Parameter Definitions

Parameter
Definition

retcode

I/O

Output

Data Type

fixed bin(31,0)

Code that indicates the success or failure of the routine call.

taskid Input fixed bin(31,0)

Specifies the task nwnber of the subtask to be logged off and
cancelled.

Return Codes

Code

@ERSUCC
@ERIPVAL

Controlled Release Draft

Definition

Success
Illegal parameter value

3-51 October, 1985

Example

CHEKUM TCOMPLET RETCODE=RCODE,TASKID=USRID
+cHEKUM PUSHA 0,USRID .SET task ID
+ OI 0(SP),X'80'
+ PUSHA 0,RCODE .SET return code
+#TCOMPLT STATIC
+ ORG #TCOMPLT
+ DC V(TCOMPLET)
+ CSECT
+ L Rl,=R(#TCOMPLT)
+ L Rl,0(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,~(,SP)

+ JSI 0(,SP)
+ POPN 0,2*4+4

RC ODE
USRID

(Static Section)

DS F
DC F'O'

Controlled Release Draft 3-52 October, 1985

3.2.13 TINVOKE - Invoke Task

[label] TINVOKE

Function

RETCODE=retcode,
TIDLOC=tidloc,
EPLOC=eploc,
WS=ws

(,LIBRARY=library]
[,VOLUME=volume]
[,SYSTEM=system]
(,DATAREALTH=datarealth]
[,QUOTA=quota]
[,USER=user]
[,PASSWORD=password]
(,DISABHELP=disabhelp]

Through the TINVOKE service, a running program can create another
task. The new task is the child of the invoking program's task and can
be the parent of other tasks through programs issuing TINVOKEs. The new
task may either be an interactive task (i.e., foreground with an
associated workstation) or a non interactive task that executes programs
through procedures.

There is a limit to the number of subtasks that a task may create.
The system maximum for a task is 255. For each subsequent TINVOKE within
the parent-child chain, this quota may not exceed CQUOTA-1) of the parent
task. In order for the parent task to regain its original quota, all
subtasks must release all resources and be terminated.

If the newly created task is an interactive task and the EPLOC
parameter is not specified, the task is created and control is passed to
the conunand processor which displays the Conunand Processor menu. When a
logoff conunand is received by the conunand processor either by pressing PF
key 16 at the workstation or through a program issuing a call to the
LOOOFF system service, the task will be removed from the system. The
parent task must issue a TCOMPLET to insure that the subtask is
finished. If the EPLOC parameter is specified on the interactive task
invocation, the specified program will be initiated at the workstation.

If the newly created task is a background task, the procedure is
executed and upon completion the task is removed from the system. The
parent must check that the task has completed.

The parent task must insure that all its children are removed from
the system before it can be terminated. See the TKILL and the TCOMPLET
system services for how to remove tasks from the system.

Controlled Release Draft 3-53 October, 1985

Parameter Definitions

Parameter
Definition

datarealth

I/O

Input

Data Type

fixed bin(31,0)

Specifies the data segment size for the task to be created.
be a value between 64K and 8128K bytes. The default size
bytes.

disabhelp Input fixed bin(l5,0)

It must
is 256K

A value of 1 disables the HELP key. If the value is 0 and the USER
parameter is not specified, TINVOKE uses the HELP setting of the
calling program's task. If the value is 0 and the USER parameter is
specified, TINVOKE uses the HELP setting of the specified user.

eploc Input char(8) var

Specifies the name of the program or procedure to run in the newly
created subtask. If the WS parameter is not specified, the program
runs in the background and the task is removed from the system when
the program ends. If WS is specified, the program runs as an
interactive task in the foreground and control passes to the conunand
processor when the program is completed. This parameter is required
if the WS parameter is not specified.

library Input char(8) var

Library to be searched for the program indicated by the EPLOC
parameter. If EPLOC is specified, this parameter is required and the
SYSTEM parameter may not be coded.

password Input char(8) var

Specifies the password for the USERID. This is a required parameter
if the caller is not privileged and the USERID parameter is specified.

quota Input fixed bin(31,0)

Specifies the maximum number of subtasks which the new task can
create. The default value is 0. The maximum value is 2 55. This
quota may not exceed the parent task's CQUOTA-1).

retcode Input fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Controlled Release Draft 3-54 October, 1985

system Input fixed bin(15,0)

A value of 1 indicates that the system defaults are to be used for
the LIBRARY and VOLUME parameter values. A value of 0 indicates
that the values specified with the LIBRARY and VOLUME parameters are
to be used in the search for the program file. SYSTEM is a required
parameter if EPLOC is specified.

tidloc Output fixed bin(31,0)

user

Specifies a storage location where the task number of the created
task may be stored. This number is used as input to the CHECK,
TCOMPLET, and KILL system services. A required parameter.

Input char(8) var

Specifies the USERID under which the program is to be run. The
subtask's base file access privileges are determined by this ID; the
default is the same user ID as the task which is calling TINVOKE.
If no program is specified via EPLOC, the LOGON procedure for the
specified user ID is run. If supplied by a task which is not
privileged, the PASSWORD parameter must also be supplied.

volume Input char(8) var

ws

Specifies the volume name for the program to be run. This is a
required parameter if EPLOC is specified. It may not be used with
the SYSTEM parameter.

Input fixed bin(15, 0)

Specifies the workstation number to associate with the task.
Specifying the WS parameter indicates an interactive task and the
program is to run in the foreground. The workstation must be
reserved by the calling routine. On completion of the subtask the
workstation is released. It can be retrieved by using CHECK or
TCOMPLET. This option must be specified if EPLOC is not specified.

Controlled Release Draft 3-55 October, 1985

Return Codes

Code Definition

@ERSUCC Success.

@ERIPVAL Illegal parameter value.

@ERNOTRES Specified workstation is not reserved by
caller.

@ERDATSEGSIZ Invalid data segment size specified.

@ERUSRPW Invalid user ID and/or password.

@ERUSRLST Unable to read the userlist.

@ERTHEAP GETMEM failure C including GETBLOK failure
due to GETMEM) .

@ERTASKCR Unable to create task CGETBLOK failure
other than GETMEM).

@ERURESWS Specified user is restricted from this
workstation.

@ERINSUFQ Insufficient
request.

task quota to satisfy

@ERFDE Program file specified does not exist.

Example

MAKETSK TINVOKE RETCODE=RCODE,TIDLOC=USRID,WS=WORKST,EPLOC=PROG,
LIBRARY=MYLIB,VOLUME=MYVOL,DATl\REALTH=DATASIZE,
QUOTA=NUMTSK

+MAKETSK PUSHA O,NUMTSK .Set Quota value
+ OI OCSP),X'80'
+ PUSHA O,DATASIZE .SET SEG2LTH
+ PUSHA 0,0
+ PUSHA O,MYVOL .Set Volume
+ PUSHA 0,MYLIB .Set Library
+ PUSHA O,WORKST .Set Workstation
+ PUSHA 0,PROG .SET PROGRAM NAME
+ PUSHA O,USRID .SET TIDLOC
+ PUSHA O,RCODE .SET Return Code

Controlled Release Draft 3-56 October, 1985

+#TINVOKE STATIC
+ ORG #TINVOKE
+ DC V(TINVOKE)
+ CSECT
+ L Rl,=R(#TINVOKE)
+ L Rl,O(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JSI 0(,SP)
+ POPN 0,9*4+4

(Static Section)

RCODE DS F
USRID DC F'O'
WORKST OS H
PROG DC CLS'TAXPROG'
MYLIB DC CL8'PAYEES
MYVOL DC CL6'MONEY'
DATASIZE DC F'512'
NUMTSK DC F'4'

Controlled Release Draft 3-57 October, 1985

3.2.14 TKILL - Task Termination

Syntax ~

[label] TKILL RETCODE=retcode,
TASKID=taskid

Function

This service allows a parent task to force a child task and all of
the descendants into CANCEL and LOGOFF. All resources associated with
the specified child and descendants are returned to the system. The
issuing task must be the parent of the specified task.

Parameter Definitions

Parameter
Definition

retcode Output

Data TyPe

fixed bin(31,0)

Code that indicates the success or failure of the routine call.

ta skid Input fixed bin(3l,0)

Specifies the task nwnber of the subtask to be logged off and
cancelled.

Return Codes

Code

@ERSUCC

@ERIPVAL

@ERNOTDESC

Controlled Release Draft

Definition

Success.

Illegal parameter value.

Specified subtask is not an inunediate
descendant of the caller.

3-58 October, 1985

Example

KILLUM
+KILL UM
+
+
+#TKILL
+
+
+
+
+
+
+
+
+

RC ODE
USRID

TKILL RETCODE=RCODE,TASKID=USRID
PUSHA 0,USRID .SET task ID
OI O(SP),X'BO'
PUSHA 0,RCODE .SET return code
STATIC
ORG #TKILL
DC V(TKILL)
CSECT
L Rl,=R(#TKILL)
L Rl,0(Rl4,Rl)
PUSH 0,Rl
LA Rl,4(,SP)
JSI 0(,SP)
POPN 0,2*4+4

(Static Section)

DS F
DC F'O'

Controlled Release Draft 3-59 October, 1985

3.2.15 VOLINFO - Extract Volwne Information

Syntax

[label] VOLINFO RETURNCODE=returncode,
VOLNAME=volname,
VSID=vsid

Function

[, TYPE=type]
[,MOUNTER=mounter]
[,BC=bc]
[, MAXTFR=rnaxtf r]
[,CV=cv]
[,CVP=cvp]
[,CVD=cvd]
[,SECTYPE=sectype]
[,TOL=tol]
[,DEVNUM=devnwn]
[,VCBADDR=vcbaddr]

This service extracts system information on a specific disk.

Parameter Definitions

Parameter
Definition

be

Returns the

CV

Returns the

cvd

Returns the

cvp

Returns the

devnum

I/O

Output

nwnber of

Output

nwnber of

Output

nwnber of

Output

nwnber of

Output

Data Type

fixed bin(l5,0)

blocks per cylinder on this disk.

fixed binC15,0)

cylinders per disk.

fixed bin(l5,0)

cylinders per diagnostic disk.

fixed bin(l5,0)

cylinders per physical disk.

char(l)

Returns the device nwnber on which the disk is mounted.

maxtf r Output fixed bin(l5,0)

Returns the maximum number of bytes in a transfer.

Controlled Release Draft 3-60 October, 1985

mounter Output char(3)

Returns the user ID of the disk mounter.

returncode Output fixed bin (31,0)

Code that indicates the success or failure of the routine call.

sectype Output char(l)

tol

type

Returns the sector type (diskette only). (S) indicates a soft
sectored disk, CH) indicates a hard sectored disk.

Output char(2)

Returns the fault tolerance level. (CT) indicates crash tolerance,
(MT) indicates media tolerance and () indicates no tolerance.

Output char(1)

Returns the disk type. F indicates fixed, R indicates removable
disk, blank indicates disk not mounted.

vcbaddr Output fixed bin (31,0)

Returns the VCB address for this disk

vol name Input char(8)

The name of the disk for which the information request applies.

vs id Input binary(8)

Volume set identification number of the disk for which the
information request applies.

Return Codes

Code

@ERSUCC
@ERVNM

Controlled Release Draft

Definition

Success
Volume not mounted

3-61 October, 1985

Exam.12les

GETVOL VOLINFO RETURNCODE=RCODE,VOLNAME=MYVOL,VSID=VOLNUM, ("'\.
MOUNTER=WHO,DEVNUM=DEVICE,VCBADDR=BLKNUM

+GETVOL OS OH
+ PUSHA Q,BLKNUM
+ MVI Q(SP) ,X' 80 I flag last argument
+ PUSHA 0,DEVICE
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,WHO
+ PUSHA 0,0
+ PUSHA 0,VOLNUM
+ PUSHA 0,MYVOL
+ PUSHA O,RCODE
+#VOLINF STATIC
+ ORG #VOL INF
+ DC V(VOLINFO)
+ CSECT
+ L Rl,=R(#VOLINF)
+ L Rl,0(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)

~ + JSI 0 (,SP)
+ POPN 0,14*4+4

(Static Section)

RCODE DS F
MYVOL DC CL8'0FFICE'
WHO OS CL3
VOLNUM OS BLl
DEVICE OS CLl
BLKNUM OS F

Controlled Release Draft 3-62 October, 1985

3.2.16 VSETINFO - Extract Information about a Volwne Set

[label] VSETINFO RETURNCODE=returncode,

Function

VOLNAME=volname
[,SETTYPE=settype]
[,LABELTYP=labeltyp]
[, USAGE=usage]
[,USER=user]
[,OCNT=ocnt]
[,ADDREF=addref]
[, PAGE=page]
[,SPOOL=spool]
[,WORK=work]
[,SECURE=secure]
[,XLMTOPEN=xlmtopen]
[,XLMTTOTL=xlmttotl]
[,VSIDMAP=vsidmap]
[,ROOTMTD=rootmtd]

This service extracts volwne information on volwne sets.

Parameter Definitions

Parameter
Definition

addref

I/O

Output

Data Type

char Cl)

Returns the addressing in effect. An S specifies standard and N
specifies nonstandard.

labeltyp Output char(2)

ocnt

page

Returns the volwne label type. SL specifies standard label and NL
specifies no label.

Output fixed bin(15,0)

Returns the number of open files on this volwne.

Output char(l)

Specifies whether or not paging files are allowed on the volwne. Y
specifies yes, N specifies no.

returncode Output fixed bin(31,0)

Code that indicates the success or failure of the routine call.

Controlled Release Draft 3-63 October, 1985

rootmtd Output char(l)

Returns whether the root volume of the volume set is mounted or ~
not. Y indicates the root volume is mounted. N indicates that it
is not. For a single volume, this ROOTMTD is N.

secure Output charCl)

Returns whether this is a secure volume set or not. Y indicates
volume set is secure. N indicates that it is not.

set type Output char Cl)

spool

usage

user

Returns the volume set type; S indicates a single volume, M
indicates a volwne set.

Output char(l)

Returns whether the volume is eligible for spool files. Y
indicates that spool files are allowed, N indicates that they are
not allowed on the volume.

Output char(2)

Returns the volume usage. SH indicates the volume is opened in
shared mode, RR indicates restricted removal, PR indicates
protected, EX indicates exclusive, or the field may be blank.

Output char(3)

Returns the user ID of the volume user.

vol name Input char(8)

Specifies the name of the volume for which the information request
applies. Required parameter.

vsidmap Output char(32)

work

Returns a 32-byte bitmap showing the VSIDs of the mounted volumes
of a volume set. Valid only for volume sets.

Output char(l)

Returns whether the volume is eligible for work files. Y indicates
that work files can be stored on the volume, N indicates that they
can not.

Controlled Release Draft 3-64 October, 1985

xlmtopen Output fixed bin(l5,0)

Returns the maximum number of extents allowed on opening a file on
this volume.

xlmttotl Output fixed bin(31,0)

Returns the total extent limit for the volume set.

Return Codes

Code

@ERSUCC
@ERVNM

Examples

Definition

Success
Volume not mounted

GETINFO VSETINFO RETURNCODE=RCODE,VOLNAME=MYVOL,USER=WHO,PAGE=PG,
ROOTMTD=VOLROOT,LABELTYP=LABEL

+GETINFO DS OH
+ PUSHA 0,VOLROOT
+ MVI OCSP),X'BO' flag last argument
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA 0,PG
+ PUSHA 0,0
+ PUSHA 0,0
+ PUSHA O,WHO
+ PUSHA 0,0
+ PUSHA 0,LABEL
+ PUSHA 0,0
+ PUSHA 0,MYVOL
+ PUSHA O,RCODE
+#VSETINF STATIC
+ ORG #VSETINF
+ DC V(VSETINFO)
+ CSECT
+ L Rl,=R(#VSETINF)
+ L Rl,Q(Rl4,Rl)
+ PUSH 0,Rl
+ LA Rl,4(,SP)
+ JSI 0(,SP)
+ POPN 0,16*4+4

Controlled Release Draft 3-65 October, 1985

RCODE
MYVOL
WHO
PG
VOLROOT
LABEL

(Static Section)

DS F
DC CLS'OFFICE'
DS CL3
DS C
DS C
DS CL2

Controlled Release Draft

···-··

3-66 October, 1985

3.3 PROGRAMMING EXAMPLES

This section contains three prograrruning examples using the memory
management, security, and user synchronization system services. These
programs also contain examples of using system services described in
Chapter 4.

NOTE

The example programs in this section are provided to assist
users in preparation of their own programs. They are not
supported Wang products.

3.3.1 Memory Management Example

*THIS PROGRAM IS INTENDED AS A DEMONSTRATION OF MSMAP.
*THE PROGRAM MAPS A SINGLE DATA FILE INTO IT'S ADDRESS SPACE.
*THE FILE CONTAINS AN ARRAY OF 100 INTEGERS.
*THE PROGRAM MERELY COMPUTES THE SUM OF THESE INTEGERS.
RO EQU 0
Rl EQU 1
R2 EQU 2
R3 EQU 3
DB EQU 12
CB EQU 13
R14 EQU 14
SP EQU 15
CMP CODE

BEGIN
PRINT NOGEN
BALR CB,0
USING *,CB
L DB,=R(DMP)
AR DB,R14
USING DMP,DB

BASE

EXTRACT INVOL=PVOL,INLIB=PLIB
*THE FOLLOWING CALL MAPS AN EXISTING DATA FILE AT
*ANY AVAILABLE ADDRESS

MSMAP RETURNCODE=RC,
PATHNAME=PTH,
TYPE==YC2),
OPTION==Y(Q),
COMMAND==Y(Q),
STRTADDR=SA

LT
BNZ
L
LA
XR

RO,RC
DIE
Rl,SA
R2,100
R3,R3

Controlled Release Draft

ANY ERRORS'?
YES
ADDRESS OF DATA
NUMBER OF WORDS OF DATA
ZERO

3-67 October, 1985

LOOP A R3 ,0 (Rl) ADD NUMBER TO SUM
LA Rl,4(Rl) ADDR OF NEXT WORD
BCT R2,LOOP AGAIN
ST R3,SUM STORE SUM

*THE FOLLOWING CALL UNMAPS THE FILE.
*THIS ISN'T REALLY NECESSARY AS THE UNLINK WOULD DO IT ANYWAY
DONE MSUNMAP RETURNCODE=RC,

PATHNAME=PTH
LT RO,RC ANY ERRORS?
BNZ DIE YES
L RO,SUM RETURN THE SUM
RT

DIE DC Y(Q) ENTER DEBUGGER
LTORG

=RCDMP)
=RC#MSMAP)
=R(#MSUNMAP)
=YCO)
=Y(2)

DMP STATIC
RC DS A RETURN CODE
SA DS A ADDRESS WHERE FILE WAS MAPPED
SUM DS A THE SUM
PTH DC Y(6+8+8) FILESPEC:
PVOL OS CL6 VOLUME
PLIB OS CLB LIBRARY
PFIL DC CL8'MPDAT' FILENAME

END BEGIN

3.3.2 Security Logging Example

**
* *
* THIS PROGRAM READS LOG SETTING PARAMETERS FROM THE WORKSTATION *
* AND TRANSLATES THE HEX CHARACTERS INTO THEIR BINARY EQUIVALENT. IT *
* THEN USES THE BINARY REPRESENTATION OF THE INPUT AS ARGUMENTS TO *
* THE "CNTRLOG" MACRO WHICH UPDATES THE SECURITY LOGGING OF THE *
* SYSTEM. *
* *
* THE OPTIONS OF THIS PROGRAM ALSO INCLUDE THE ABILITY TO STOP *
* LOGGING, RESUME LOGGING, CHANGE THE LOG PARAMETERS AND CONTINUE *
* LOGGING, AS WELL AS CREATE A NEW LOG. *
* *
* "HEXCHAR" IS THE NUMBER OF HEX CHARACTERS THAT REPRESENT THE BIT *
* STRING USED BY "CNTRLOG" TO SET THE LOGGING PARAMETERS. *
* WHEN MORE EVENTS ARE ADDED TO THE LOGGING *
* CAPABILITY, "HEXCHAR" MUST BE CHANGED FOR THIS PROGRAM TO BE RUN *
* PROPERLY. CURRENTLY, THIS PROGRAM CAN BE USED TO SET 32 EVENTS *
* AND VIOLATIONS C"HEXCHAR"*4 BITS). "HEXCHAR" MUST BE A MULTIPLE OF*
* FOUR. *
**

Controlled Release Draft 3-68 October, 1985

~

(9'\

HEX CHAR
STOPLOG
STRTNEW
ST RT OLD
RSMNEW
RS MOLD
CHGEVTS
STPCNTL
NEWCNTL
RSMCNTL

*
*

REGS
EQU 8
EQU 65
EQU 66
EQU 67
EQU 68
EQU 69
EQU 70
EQU 1
EQU 2
EQU 3
BALR EP,0
USING *,EP
LR Rl2,R14
AL R12,=RCTESTSTAT)
USING TESTSTAT,R12

NO. HEX CHARACTERS
STOP LOGGING OPTION
START LOG , NEW PARAM
START LOG ,OLD PARAM
RESUME LOG NEW PARAMETERS
RESUME LOG , OLD PARAMETERS
CHANGE LOG EVENTS
STOP LOGGING CONTROL PARAM
START NEW LOG CONTROL PARAM
RESUME LOG CONTROL PARAM

L RlO,KEYS LOAD THE PFKEY MASK
GETPARM FORM=SELECT,KEYLIST=CNTRL,MSG=MSGl,PFKEYS=(RlO)

*
*
* GET THE PFKEY NUMBER IN HEX AND STORE

LC R4,CNTRL+8
ST R4,PFKEY

*
*
*CHECK FOR STOP,RESUME WITH OLD PARAM., START WITH NO PAR. CHANGE

*
*

L R4,PFKEY
LA R5,STOPLOG
CR R4,R5
BE STOPRES
LA R5,RSMOLD
CR R4,R5
BE STOPRES
LA R5,STRTOLD
CR R4,R5
BE NEWFIL

* NEED BIT SETTINGS FOR NEWLOG, CHANGE OPTIONS, AND RESUME NEW SETTING
GETPARM KEYLIST=SETLOG,MSG=MSG2 GET EVENT+VIO. SETTINGS

* * * CALCULATE THE NUMBER OF TIMES TO EXECUTE LOOPl. *
* THE NUMBER OF TIMES = HEXCHAR/4. THIS IS BECAUSE THE REGISTER *
* CAN HOLD ONLY FOUR CHARACTERS AT A TIME. *

*

Controlled Release Draft 3-69 October, 1985

*
*
*

*
*

*
*
*
*

*
*
LOOP

*

LA
LA
D
ST

LA

LA

LA

L
L
L
LA
TR

Rl0,0
Rll,HEXCHAR
Rl0,=F'4'
Rll,LPCOUNT

Rl,SETBITS

R2,INPARM

R3,2

RlO,LPCOUNT
R7,0(0,Rl)
Rll,0(0,R2)
Rll,12(0,Rll)
OCHEXCHAR,Rll),TRTAB

PREPARE FOR DIVIDE

DIVIDE BY 4
STORE THE LPCOUNT FOR THE

2ND PASS FOR VIOLATIONS

GET ADDRESS OF PROPER BIT
STRG lST PASS = EVENTS
2ND PASS = VIOLATIONS
GET ADDRESS OF PROPER INPUT
lST PASS = EVENT SET INPUT
2ND PASS = VIOL. SET INPUT

LOAD NUMBER OF PASSES TO LOOP
CONTROL REGISTER

GET THE LOOP CONTROL FOR LOOPl
R7 =PARAMETER BIT STRG ADDRESS
Rll = INPUT STRG ADDRESS
ADD 12 BECAUSE OF GETPARM
TRANSLATE HEX INPUT TO BINARY

* * * AFTER THE NEXT INSTRUCTION, RS WILL CONTAIN VVALID BITS EVERY FOUR *
* PLACES STARTING WITH THE FOURTH BIT. *
* ·*
* E.G. *
* SCREEN INPUT = 'AAAAAAM *
* AFTER EXECUTION RS=OAOAOAOA *
* THE ZEROES MUST BE STRIPPED OFF AND THE REMAINING 16 BITS MUST *
* BE STORED IN THE APPROPRIATE PLACECR7 POINTS) IN THE BIT STRG *
* ARGUMENT
**
*
LOO Pl

LOOP2

*

*

*

L
LA
SLL
SLDL
BCT

RS,0(0,Rll)
R0,4
RS,4
R4,4
RO,LOOP2

ST R4,TEMP
MVC 0(2,R7),TEMP+2

LA R7,2(0,R7)
LA Rll,4(0,Rll)
BCT RlO,LOOPl
LA Rl,4(0,Rl)
LA R2,4(Q,R2)
BCT R3,LOOP

Controlled Release Draft 3-70

LOAD 4 CHARACTERS (32 BITS)
RO= LOOP2 CONTROL
STRIP BITS OFF
MOVE GOOD BITS TO R4
DO FOUR TIMES

STORE THE DATA
MOVE THE LAST TWO BYTES TO

APPROPRIATE BIT STRG
INCREMENT BIT STRG PTR
INCREMENT INPUT STRG PTR

Rl NOW PTS TO VIOL. BIT STRG
R2 NOW PTS TO VIOL. INPUT STR

October, 1985

~I

~

* THIS ENSURES THAT EVERYTHING IS INITIALLY TURNED OFF

*
*

LA R4,NOEVENT
MVI 0(R4),X'FF'
MVC 1(31,R4),0(R4)
LA R4,NOVIOL
MVI 0(R4),X'FF'
MVC 1(31,R4),0(R4)

* IF THE OPTION IS TO JUST CHANGE BIT SETTINGS OR RESUME WITH NEW BIT
* SETTINGS THEN BRANCH AROUND LIBRARY AND VOLUME

*
L R4,PFKEY
LA RS,CHGEVTS
CR R4,R5
BE CHGSET
LA RS,RSMNEW
CR R4,R5
BE NEWRES

*
* GET THE LIBRARY AND VOLUME
NEWFIL GETPARM KEYLIST=INPUT,MSG=MSG3 GET LIBRARY AND VOLUME

*
* * DETERMINE THE LENGTH OF THE VOLUME NAME AND STORE IT

*
LOOP3

ENDOFVL
*

LA Rl,6 SIX POSSIBLE CHARACTERS
LA RS,0 RS=NO. CHAR IN VOL. NAME
LA R4,VOLUME+12 GET THE START POSITION
LA R9,VOLLEN+2 GET THE START OF VOLUME

CLI
BE
MVC
LA
LA
LA
BCT
STH

Q(R4),X'20'
ENDOFVL
0(1,R9) ,Q(R4)
R9, 1(0 ,R9)
R4, 1(0 ,R4)
RS,l CO ,RS)
Rl,LOOP3
RS,VOLLEN

PARAMETER TO BE PASSED
LOOK FOR BLANK
FOUND END OF STRG
MOVE NON BLANK CHAR.
INC. PARAMATER POSITION
GET THE NEXT BYTE
INCREMENT STRING COUNT

STORE THE NO. CHAR

* GET THE NUMBER OF CHAR. IN LIBRARY NAME AND STORE
LA Rl,8 EIGHT POSSIBLE CHARACTERS
LA RS,0 RS=NO. CHAR IN LIB. NAME
LA R4,LIBRARY+l2 GET THE START POSITION
LA R9,LIBLEN+2 GET THE START OF LIBRARY

* PARAMETER TO BE PASSED
LOOP4 CLI Q(R4),X'20' LOOK FOR BLANK

BE ENDOFLB FOUND END OF STRG
MVC 0(1,R9),Q(R4) MOVE NONBLANK CHAR.
LA R9,1(0,R9) INC. PARAMETER POSITION
LA R4, 1(0 ,R4) GET THE NEXT BYTE
LA RS, l(O ,RS) INCREMENT STRING COUNT
BCT Rl,LOOP4

ENDOFLB STH RS,LIBLEN STORE THE NO. CHAR

*

Controlled Release Draft 3-71 October, 1985

* CHECK FOR NEW LOG FILE , OLD PARAMETERS

*
*

L R4,PFKEY
LA RS,STRTOLD
CR R4,R5
BE NEWOLD

* NEWLOG, NEW PARAMETERS
LA RS,NEWCNTL GET THE NEW CONTROL PAR.
ST RS,LOGCNTL STORE IT IN THE CONTROL

CREATE CNTROLOG RC=RC,SETEVENTS=SETEVTS,
SETVIOLATION=SETVIOS,CONTROL=LOGCNTL,
RESETEVENTS=NOEVENT,RESETVIOLATION=NOVIOL,
NEWLIB=LIBLEN,NEWVOL=VOLLEN

B DONE

* THIS HANDLES THE NEWLOG WITH OLD PARAMETERS
NEWOLD LA RS,NEWCNTL

ST RS,LOGCNTL
CNTROLOG RC=RC,CONTROL=LOGCNTL,NEWLIB=LIBLEN,NEWVOL=VOLLEN
B DONE

* THIS WORKS FOR THE STOP AND RESUME WITH SAME PARAMETERS
STOPRES L RS,PFKEY GET PFKEY

LA R4,STOPLOG GET STOPLOG PFKEY
CR R5,R4 CHECK FOR STOP LOG
BE STOPKEY PROPER CONTROL IN PRESENT
LA RS,RSMCNTL GET THE RESUME CONTROL
ST RS,LOGCNTL STORE IN LOG CONTROL
B RES TOP

STOPKEY LA RS,STPCNTL
ST RS,LOGCNTL

* MAKE CALL FOR RESUME WITH SAME PARAMS. AND STOP
RESTOP CNTROLOG RC=RC,CONTROL=LOGCNTL

B DONE

* * MAKE CALL FOR RESUME WITH NEW PARAMETERS
NEWRES LA RS,RSMCNTL

ST RS,LOGCNTL
CNTROLOG RC=RC,SETEVENTS=SETEVTS,RESETVIOLATION=NOVIOL, +

SETVIOLATION=SETVIOS,RESETEVENTS=NOEVENT,CONTROL=LOGCNTL
B DONE

Controlled Release Draft 3-72 October, 1985

* THIS CHANGES BIT SETTINGS
CHGSET CNTROLOG RC=RC,SETEVENTS=SETEVTS,RESETVIOLATION=NOVIOL, +

SETVIOLATION=SETVIOS,RESETEVENTS=NOEVENT
DONE RT
TESTSTAT STATIC
RC DC F'O'
LOGCNTL DC F'O'
PFKEY OS F
LIBLEN OS H

SET NEWLOG PARAMETER

NEW LOG LIBRARY
OS CLB

VOLLEN OS H
OS CL6

NEW VOLUME LIBRARY

SETEVTS
SETVIOS
NO EVENT
NOVIOL
INPUT

SETLOG

CNTRL

KEYS
MSG3
MSG2

MSGl

*

DC BL.256'0' LOG EVENTS BIT STRG
DC BL.256'0' LOG VIOLATIONS BIT STRG
DC BL.256'0' TURN OFF EVENTS BIT STRG
DC BL.256'0' TURN OFF VIOLATIONS BIT STRG
KEYLIST PRNAME= I INPUT I ,LABELPFX= I I , PREVIEW=YES, +

'VOLUME',('WORK ',ANL),'LIBRARY',('@SYSLOG@',ANL)
KEYLIST PRNAME='LOGHEX',LABELPFX=' ',PREVIEW=YES, +

'LOGSET',('00000000',HEX),'VIOSET',('00000000',HEX)
KEYLIST PRNAME='LOGCNTL' ,LABELPFX='',PREVIEW=YES,TEXT,('PFl +

STOP LOGGING',l,'A10'),TEXT,C'PF2 START LOGGING IN A+
NEW FILE WITH NEW PARAMETERS',l,'A10'),TEXT,('PF3 ST+

ART LOGGING IN A NEW FILE WITH THE OLD PARAMETERS' ,l,'Al+
0'),TEXT,('PF4 RESUME LOGGING IN THE LAST FILE WITH N+
EW PARAMETERS' ,l,'A10'),TEXT,('PF5 RESUME LOGGING IN+
THE LAST FILE WITH THE OLD PARAMETERS',l,'AlO'),TEXT,('P+
F6 CHANGE THE LOGGING PARAMETERS ONLY',1,'AlO')

OS OF MLLIGNMENT
DC XL4'FCOOOOOO'
MSGLIST '03','SCLOGT','ENTER THE LOGGING VOLUME AND LIBRARY'
MSGLIST '02','SCLOGT','ENTER LOGGING AND VIOLATION BIT SETTING+

S IN HEX'
MSGLIST '01','SCLOGT','SELECT THE PF-KEY DESIRED'

TRTAB DC CL256'0'
ORG TRTAB+X I 30 I

TRANSLATE TABLE USED FOR
CONVERTING HEX TO BINARY

DC X'00010203040506070809'
ORG TRTAB+X'41'
DC X'OAOBOCODOEOF'
ORG

TEMP DC F'O'
SETBITS DC ACSETEVTS)

DC ACSETVIOS)
INPARM DC ACLOGSET)

DC ACVIOSET)
LPCOUNT OS F

END

Controlled Release Draft 3-73

PTR TO LOG EVENTS BIT STRG
PTR TO LOG VIOLATIONS BIT STRG
PTR TO LOG EVENTS INPUT
PTR TO LOG VIOL. INPUT

October, 1985

3.3.3 User Synchronization Example

This program is intended to show how to use the user synchronization
services.

• First, use SCREATE to create the object for synchonization.

• To access the resource that is being managed, use SENTER. SENTER
releases the resource to the program once its free. At this
point, the application program would be able to process the
resource as needed.

• SEXIT removes the synchonization object from the program and
activates the next request for the object.

• To delete the synchronization object, you have to enter it (use
SENTER). Then, use SDELETE to remove it and .free the associated
memory space. If there are other requests to use the resource
when the program issues SDELETE, all requests are processed
before SDELETE is run.

START CODE
REGS
BALR EP,0
USING *,EP
USING DATA,R14
SCREATE RETURNCODE=RC,HANDLES=PTR
LT Rl,RC CHECK RETURN CODE
BNZ CRTERROR BRANCH IF ERROR
SENTER RETURNCODE=RC,HANDLES=PTR
LT Rl,RC CHECK RETURN CODE
BNZ ENTERROR BRANCH IF ERROR
SEXIT RETURNCODE=RC,HANDLES=PTR
LT Rl,RC CHECK RETURN CODE
BNZ EXTERROR BRANCH IF ERROR
SENTER RETURNCODE=RC,HANDLES=PTR
LT Rl,RC CHECK RETURN CODE
BNZ ENTERROR BRANCH IF ERROR
SDELETE RETURNCODE=RC,HANDLES=PTR
LT Rl,RC CHECK RETURN CODE
BNZ DELERROR BRANCH IF ERROR
RT

CRTERROR RT
ENTERROR RT
EXTERROR RT
DELERROR RT
DATA STATIC
PTR DC AC HANDLE)
HANDLE DS CL8
RC DS F RETURN CODE

END

Controlled Release Draft 3-74 October, 1985

CHAPTER 4
SVC-TYPE SERVICES AND ASSOCIATED MACROINSTRUCTIONS

4.1 OVERVIEW

This chapter describes the system services available for general use
that are invoked by issuing an SVC instruction. The assembler interface
to system services are macros located in the system library @MACLIB@ on
the system volume, which the assembler accesses when assembling a source
program.

In the following sections, each system service description contains
the following information:

• Syntax -- This section describes the format in which to code a
macroinstruction. There may be more than one possible format.
The programmer must adhere to assembly language syntax rules as
described in the VS Assembly Language Reference when coding the
macroinstructions.

• Function This section describes the functions of each
macroinstruction.

• Parameter Definitions -- This section describes in detail the
parameters that may be used with the macro call, and the valid
values for each parameter.

• Structure -- When present, this section describes system control
blocks in graphic form showing the off sets (in hexadecimal) for
each symbol in the control block.

• Output -- This section describes the output of the SVC, including
the information placed on or removed from the program stack and
the valid return codes for the SVC. This section is omitted for
those macroinstructions that generate or describe system data
structures.

In cases where there are restrictions on the use of the
macroinstruction, a separate section is included that describes these
restrictions.

Controlled Release Draft 4-1 October, 1985

4.2 SERVICE-BY-SERVICE DESCRIPTIONS

Macroinstructions described here are for two commonly performed
operations: the description of a system control block and the generation
of an orderly call to the supervisor to perform a service.

Corresponding to each system control block is a macroinstruction
which system and user programs freely use to define standard labels for
fields within the control block. If only the macroinstruction name is
coded, the system generates a dwnmy section (DSECT) of that name. If a
register specification is included, a USING instruction is also
generated. If the user provides a SUFFIX parameter, each label generated
contains the suffix character immediately following the block name. (The
suffix must be one character only.) If the user specifies the NODSECT
parameter, the DSECT statement is not generated.

Controlled Release Draft 4-2 October, 1985

4.2.1 AXDl - Describe AXDl Structure

Syntax

AXDl [NODSECT][,REG=expression][,SUFFIX=character]

Function

Allows the user to symbolically reference the Alternate Descriptor
Block (AXDl) which describes the alternate index structure of an indexed
file. An indexed file has an AXDl block if, and only if, a flag
(FDRlFLAGSALTX) is set in its label CFDRl).

Parameter Definitions

NODSECT Specification of NODSECT results in the AXDl fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, a DSECT with the name AXDl (plus the
optional suffix) is generated.

REG Provides for the optional specification of a register for which a
USING statement for the AXDl fields is generated.

SUFFIX If provided, all labels are generated by the concatenation of the
letters AXDl, the user-provided SUFFIX (one ASCII character in
length), and the field name.

Controlled Release Draft 4-3 October, 1985

Structure

BYTE 0 BYTE 1

AXDl
BEGIN

+o BL
+4 MASK
+8
+c UFB

+10 ALTINX FLAGS
+14 BCB
+18
+lC
+20
+24 PMASK
+28
+2C ORECSIZE
+30
+34 IOEBLK
+38 OSPAREX

ENTRY +3C XORD EFLAGS
+40 KEYPOS
+44
+48 PTRD
+4C PRLEN PRAKPOS
+50
+54
+58

+73C I SPARE3

For DMS Processing

+2C SAVEADR
+30 SAVELTH

For Save Area Type S

+2C
+30
+34
+38

KEYSIZE HXBLK
SEREC
PTRN
SPAREX

Controlled Release Draft

BYTE 2 BYTE 3
~

MSIZE DUPINX

OFLAGS OSTART
ONRECS

OS PARE
XLEVELS
KEYSIZE HXBLK
NRECS

PRPKPOS ES PARE

I"'\

I LENGTH 800

ENT OFF
CURINX

EXSPARE

4-4 October, 1985

Example

AXDl NODSECT
, AXDl DEFINITION
**
* * THE ALTERNATE INDEX DESCRIPTOR BLOCK (AXDl) DESCRIBES THE
* ALTERNATE INDEX STRUCTURES OF AN INDEXED FILE. AN INDEXED
* FILE HAS AN AXDl BLOCK, IF AND ONLY IF, FLAG FDRlFLAGSALTX
* IS SET IN ITS LABEL (FDR!). THE AXDl BLOCK CONTAINS
* UP TO 16 (64) ALTERNATE INDEX DESCRIPTIONS (AXDlENTRY). THE
* NUMBER OF DESCRIPTIONS IS CONTAINED IN FDRlALTXCNT OF THE
* FDRl RECORD.
*
* THE AXDl IS LOCATED IN BLOCK NUMBER ZERO OF THE FILE.
* THE AXDl IS DIVIDED INTO 4 AREAS:
* 1. BLOCK DESIGNATOR AREA (AXDlBL)
* 2. OMS PROCESSING AREA (AXDlMASK TO AXDlENTRY)
* 3. AXD ENTRIES (ONE AXD ENTRY PER ALT-INDEX)
* 4. SPARE AREA (UP TO END OF 2K BLOCK)
* AREAS 1-3 ARE HELD IN THE AXDl-AREA (POINTED TO BY UFBALTPTR)
* DURING FILE PROCESSING.
* * DATE 07/16/82
* VERSION 5.04.02
*
**
* BLOCK DESIGNATOR AREA:
AXDlBEGIN
AXDlBL
*
*
* OMS PROCESSING AREA:

DS OF
DS BL4 BLOCK TYPE DESIGNATION

AXDlBL MUST EQUAL XL4'2'
OR XL4'4'

AXDlMASK DS BL8 BITS ON INDICATE ALTERNATE
* INDEX STRUCTURES (NUMBERED
* 1 TO 16) PRESENT
* (INITIAL IMPLEMENTATION OF
* 2-BYTE MASK ONLY)
AXDlUFB DS A POINTER TO UFB FOR THIS FILE
* AFTER THE FILE HAS BEEN OPENED
AXDlALTINX DS BLl ORDINAL INDEX NUMBER FOR READ
AXDlFLAGS DS BLl DMS FLAG BYTE
AXDlFLAGSOK EQU X'80' ALTERNATE INDEX STRUCTURES HAVE
* BEEN CREATED WHEN FLAG SET
* THE FOLLOWING FLAGS ARE USED FOR OMS PROCESSING (0 IN LABEL)
AXDlFLAGSOPENA EQU X'08 1 OPEN ALLOCATED THIS AXDl BLOCK
* (ONLY IF NOT OUTPUT MODE)
AXDlFLAGSQ EQU X'04' START QUALIFIED OPTION
AXDlFLAGSTYPER EQU X'02' TYPE R SAVEAREA IN USE
AXDlFLAGSTYPEV EQU X'Ol' TYPE V SAVEAREA IN USE
**

Controlled Release Draft 4-5 October, 1985

AXDlMSIZE DS BLl SIZE OF MASK PER FILE
* VALUE FROM 2-8 BYTES (MUST BE 2
* FOR FIRST IMPLEMENTATION)
AXDlDUPINX DS BLl ORDINAL INDEX NUMBER OF THE
* ALT-TREE HAVING DUPLICATED KEY
* MINIMUM AXDl-AREA FOR SHARED MODE ENDS HERE.
* AXDlMASK, AXDlMSIZE, AND AXDlALTINX ARE REQUIRED.

AXDlBCB
AXDlPMASK
*
*

DS BL16 BCB FOR OMS PROCESSING (SEE UFB)
OS BL8 MASK OF VALID ALTERNATE ACCESS

PATHS (SET AT FILE CREATION ONLY)

* THE FOLLOWING FIELDS ARE INTERMEDIATE OUTPUT MODE FIELDS
*
AXDlORECSIZE DS H WORK RECORD - MAX LENGTH
AXDlOFLAGS DS BLl OUTPUT FLAGS (RESERVED)
AXDlOSTART DS BL3 FIRST BLOCK CONTAINING WORK RECORDS
AXDlONRECS DS BL3 TOTAL COUNT OF WORK RECORDS
AXDlOEBLK DS BL3 LAST USED BLOCK NUMBER IN PRIMARY
* TREE (ALT-TREE TO AXDlEBLK+l)
AXDlOSPAREX DS H **** (unused) ****
AXDlOSPARE DS BL2 RESERVED IN OUTPUT MODE
**

ORG AXDlORECSIZE
* THE FOLLOWING FIELDS ARE USED FOR OMS PROCESSING (EXISTING FILES)
**
AXDlSAVEADR DS A SAVE AREA ADDRESS (TYPE V)
AXDlSAVELTH DS H SAVE AREA LENGTH (TYPE V)

ORG AXDlORECSIZE
* THE FOLLOWING 3 FIELDS ARE USED FOR SAVE AREA TYPE S
AXDlSKEYSIZE DS BLl SAVED PRIMARY KEYSIZE
AXDlSHXBLK OS BL3 SAVED PRIMARY ROOT BLOCK NUMBER
AXDlSEREC DS H SAVED PRIMARY LEVEL COUNT

*
AXDlENTOFF DS H OFFSET OF ACTIVE 1\XDlENTRY(IN AXDl)
AXDlPTRN DS BL3 NEXT SEQUENTIAL BLOCK (ALT-TREE)
AXDlCURINX DS BLl ORDINAL NUMBER ASSOCIATED WITH
* BLOCK IN AXDlBCB
AXDlSPAREX DS H **** (unused) ****
AXDlEXSPARE DS BL2 SPARE - ALL FILES
**
*

Controlled Release Draft 4-6 October, 1985

·····················~··· * AXDlMASK AND AXDlALTINX ARE THE ONLY FIELDS IN THE AXDl-AREA WHICH
* MAY BE MODIFIED BY THE USER-PROGRAM WHILE THE FILE IS OPEN.
* * FOR EXISTING FILES, NO FIELDS IN THE AXDl-AREA ARE USER-SUPPLIED
* PRIOR TO ISSUING SVC OPEN.
* * FOR OUTPUT MODE, USER-PROGRAM FILLS IN THE REQUIRED AXDl-AREA WITH:
* AXDlMSIZE (THE ACCESS MASK PREFIX SIZE);
* AXDlKEYPOS, AXDlKEYSIZE, AXDlEFLAGS, AND AXDlXORD
* FOR EACH AXDlENTRY (COUNT IN UFBALTCNT).

•
* AXD ENTRIES:
AXDlENTRY DS OXL28 UP TO 64 ENTRIES
* (EACH A DESCRIPTION OF ONE
* ALTERNATE INDEX STRUCTURE;
* UNUSED ENTRIES ZERO-FILLED)
AXDlXORD OS HLl ORDINAL NUMBER (STARTING FROM 1)
* IDENTIFYING THIS INDEX STRUCTURE
* (CORRESPONDS TO BIT IN
* (AXDIMASK)
AXDlEFLAGS OS BLl OPTION FLAGS
AXDlEFLAGSDUPS EQU X'BO' DUPLICATE KEYS ALLOWED
AXDlEFLAGSKCOM EQU x I 40 I KEY COMPRESSION IN INDEX
* (NOT IN FIRST VERSION)
* THE FOLLOWING FLAGS ARE USED FOR OMS PROCESSING (0 IN LABEL)
AXDlEFLAGSACT EQU X'02' INDICATES THIS ALT-TREE IS THE
* ACTIVE ALT-TREE DURING PROCESSING
AXDlEFLAGSUP EQU X'Ol' INDICATES AXDlPTRD, AXDlXLEVELS
* OR AXDlHXBLK HAS BEEN MODIFIED
* DURING ALT-TREE PROCESSING
AXDlXLEVELS OS H NUMBER OF LEVELS OF THIS
* ALTERNATE INDEX STRUCTURE
* EXCLUDING LOWEST LEVEL
AXDlKEYPOS DS H KEY POSITION IN RECORD
AXDlKEYSIZE OS HLl KEY LENGTH
AXDlHXBLK OS FL3 BLOCK-IN-FILE OF ROOT BLOCK
* OF THIS ALTERNATE INDEX
AXDlNRECS OS BL3 ITEM COUNT - LOW LEVEL OF TREE
AXDlPTRD OS FL3 FIRST BLOCK OF LOW LEVEL
* OF THIS ALTERNATE INDEX
* (ALTERNATE KEY SEQUENCE)
AXDlPRLEN OS BLl LENGTH OF ALT TREE PSEUDO-REC
AXDlPRAKPOS OS BLl POS OF ALT KEY IN PSEUDO-REC

Controlled Release Draft 4-7 October, 1985

AXDlPRPKPOS
AXDlESPARE
AXDlENTRYEND
AXDlENTRYLENGTH .,,

.AXD1SPARE3 .,,
AXDlEND
.AXDlLENGTH

DS BLl POS OF PR! KEY IN PSEUOD-REC
DS BL9 (RESERVED IN EACH ENTRY)
EQU *
EQU AXDlENTRYEND-AXDlENTRY

ORG AXD1ENTRY+64*L'AXD1ENTRY
DS XL196 (RESERVED)

EQU *
EQU AXDlEND-AXDlBEGIN

Controlled Release Draft 4-8 October, 1985

. __.

4.2.2 AXDGEN - Generate Alternate Index Descriptor Block, (AXDl)

Syntax

[label] AXDGEN [MASKSIZE={integer}][,ENTRIES={integer}]
{ ~ } { Q }

[,(ORD=integer,KEYPOS=integer,KEYSIZE=integer

[,NODUPS][,COMPRESS])] .•.

Function

Generates an alternate index descriptor block (AXDl) to be addressed
by UFB field UFBALTPTR (ALTAREA parameter of UFBGEN macroinstruction).
The AXDl describes the alternate index structures of an indexed file.
The AXDl block contains up to 16 alternate index descriptions
(AXDlENTRY). Unused entries are filled with zeroes.

For existing files, no fields in the AXDl are user-supplied prior to
issuing the OPEN SVC. For files in Output mode, the user program may
define each alternate index structure by supplying the access mask size,
the key position, the key size, the flags, and the ordinal number of the
index structure.

Parameter Definitions

MASKSIZE

ENTRIES

ORD

KEYPOS

KEYSIZE

The size, in bytes, of the alternate mask field. A bit is
set in the mask that corresponds to the index of the
alternate index structure. Must be specified as an
integer. Must be equal to 2 for the current versions of
the system. The parameter defaults to a value of 2.

To use the AXDl for OUTPUT mode processing, this parameter
must equal the number of alternate index structures which
are described in the following positional parameters. The
value must be an integer from 0 to 16, and if not supplied,
defaults to 0.

Ordinal number defining this alternate index structure
(access path). This number corresponds to the On bit in
the access mask. Specified as an integer between 1 and
16. Required in all supplied positional parameters.

Key position in the record (i.e., offset in bytes into the
record, counting from 0 for the first byte). Specified as
an integer. Required in all supplied positional parameters.

Key length. Specified as an integer.
supplied positional parameters.

Required in all

Controlled Release Draft 4-9 October, 1985

NODUPS

COMPRESS

Example

If specified for Output mode, duplicate keys
allowed. The default is to allow duplicate keys.
in other modes.

Ignored in the current system releases.

1-\XDGEN ENTRIES=l
+ DC F'O' BL
+ DC XL14'0' MASK,UFB,ALTINX,FLAGS
+ DC HL1'2' MSIZE
+ DC XL41'0' SPAREl,BCB,PMASK,SPARE
+* AXD ENTRY FOR ALTERNATE ACCESS PATH
+ DC ALl(0) XORD
+ DC BLl'lOOOOOOO'
+*
+
+
+
+

DC
DC
DC
DC

H'O'
AL2(0)
ALl(Q)
XL21'0'

FLAGS
LEVELS
KEYPOS
KEYSIZE
HXBLK,NRECS,PTRD,ESPARE

are not
Ignored

Controlled Release Draft 4-10 October, 1985

I~

4.2.3 BCE - Describe Buffer Control Entries

Syntax

BCE [NODSECT][,REG=expression][,SUFFIX=character]

Function

Describes the buffer control entries (BCE) which are contained in the
buffer control table CBCTBL). There is one BCE per 2K buffer in a data
management buffer pool.

Parameter Definitions

NODSECT

REG

SUFFIX

Structure

BCE
BEGIN

+o
BUFCMD +4

+8
+c

+10
+14
+18
+lC
+20
+24
+28
+2C
+30
+34

Specification of NODSECT results in the BCE fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, the system generates a DSECT
with the name BCE (plus the optional SUFFIX).

If specified, a USING statement is generated with the given
register number.

One ASCII character in length. If provided, all labels are
generated by the concatenation of the letters BCE, the
user-provided SUFFIX, and the field name.

BYTE 0 BYTE 1 BYTE 2 BYTE 3

OFB
BUFADR
BUFDATAL SPARE
BUFBLOCK BCBFLAGS
KEYHI

TYPE WT AGEWT SPARE!
IOCHN
KEYL OW

EXPAND
LENGTH = 38

Controlled Release Draft 4-11 October, 1985

Example

BCE
•

BCE REG=4
DSECT

* THE BUFFER CONTROL ENTRIES (BCE) ARE CONTAINED IN THE BUFFER
* CONTROL TABLE (BCTBL). THERE IS ONE BCE PER 2K BUFFER IN A
* DATA MANAGEMENT BUFFER POOL. BCTNBUF (WHICH AGREES WITH
* OFBBCOUNT FOR AN ACTIVE BUFFER POOL) INDICATES THE NUMBER
* OF BUFFER CONTROL ENTRIES PER BCTBL .
•
* DATE 3/28/79
* VERSION 4.00
•
BCEBEGIN DS OF (FULLWORD ALIGNMENT)
BCEOFB DS A OFB ADDRESS
BCEBUFCMD DS OBLl COMMAND BYTE
BCEBUFADR DS A BUFFER MEMORY ADDRESS
BCEBUFDATAL DS H IO-LENGTH (2K)
BCESPARE DS H OFFSET (UNUSED IN BCE)
BCEBUFBLOCK DS FL3 BLOCK WITHIN

* FILE OF BUFFERED DATA
BCEBCBFLAGS DS BLl FLAGS
BCEBCBFLAGSLOD EQU X'Ol' BUFFER CONTENTS VALID
BCEBCBFLAGSTOR EQU X'02 I BUFFER TO BE REWRITTEN
BCEBCBFLAGSIO EQU X'04' BUFFER I/O IN PROGRESS

BCEBCBFLAGSREF EQU X'80' REFERENCE BIT
* BIT=l ON ANY READ/WRITE
BCEKEYHI DS CL12 TRUNCATED HI KEY VALUE
* (TYPE D)
* BLOCK TYPE (BCETYPE) CONTAINS INTERNAL AND EXTERNAL VALUES
* DEPENDING ON FILE ORG (INDEXED FILES HAVE **** NO **** BLOCK TYPE
*BYTE IN THE BLOCK; THUS I,D,A BELOW ARE INTERNAL TYPES.)
BCETYPE DS CLl BLOCK TYPE (ASCII CHAR)
* BLOCK TYPE VALUES (INTERNAL) FOR INDEXED FILES
BCETYPEI EQU c I I I INDEX BLOCK
* (CONTAINS INDEX ITEMS)
BCETYPED EQU C'D' DATA BLOCK
* (CONTAINS DATA RECORDS)
* BCEKEYHI/LOW SET IF TYPE = D
BCETYPEA EQU C' A' AVAILABLE BLOCK (CHANGED TO
* TYPE I OR D IF USED
* BY BLOCK SPLIT)
BCETYPES EQU C'S' BLOCK FROM LOW-LEVEL OF AN

• ALTERNATE TREE

Controlled Release Draft 4-12 October, 1985

BCEWT DS BLl
BCEAGEWT DS BLl
BCEFLAGSl DS BLl
BCEFLAGSlCLAIMED EQU X'Ol'
BCEIOCHN DS A
*
BCEKEYLOW DS CL12
*
BCEEXPAND DS BL8
*EXPANSION= 12 (TRUNC KEYS =12), PLUS 4
BCELENGTH EQU *-BCEBEGIN

CSECT
USING BCE,4

Controlled Release Draft 4-13

STARTING WEIGHT VALUE
AGED WEIGHT VALUE
EXTRA FLAGS
REPL BCE HAS BEEN CLAIMD
CHAIN FOR BCE'S WITH I/O
IN PROGRESS
TRUNCATED LOW KEY VALUE
(TYPE D)
BCE EXPANSION

<CHN BCE PER UFB)+4 EXTRA
BCE LENGTH (=56)

October, 1985

4.2.4 BCTBL - Describe Buffer Control Table

Syntax

BCTBL [NODSECT][,REG=expression][,SUFFIX=character]

Function

Describes the buffer control table (BCTBL). The BCTBL is addressed
by the user file block (UFB) and contains a header defining a data
management buffer pool and buffer control entries (BCE) defining the
contents of each buffer in the pool.

Parameter Definitions

NODSECT

REG

SUFFIX

Structure

BCTBL
BEGIN
LNBUF +o

+4
REPINUM +8

+c
+10
+14
+18
+lC
+20
+24
+28
+2C
+30
+34
+38
+3C
+40

Specification of NODSECT results in the BCTBL fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, the system generates a DSECT
with the name BCTBL (plus the optional SUFFIX).

Provides for the optional specification of a register for
which a USING statement for the BCTBL fields is generated.

One ASCII character in length. If provided, all labels are
generated by the concatenation of the letters BCTBL, the
user provided SUFFIX, and the field name.

BYTE 0 BYTE l BYTE 2 BYTE 3

HITCT
LOCKl
MISSCT
FILECT FLAGS TYPE SPARE
IOHEAD
WDATA WDATAH WIND EX WROOT I WTABLE
WADATA WAINDEX WAROOT WRES
EXPAND
BCEl

Controlled Release Draft 4-14 October, 1985

~

~

'~

+44
+48
+4C
+50
+54

BYTE 0

+58 BCE2

BYTE l BYTE 2 BYTE 3

~~~~~~~~~~~~~~~~~-

Example 

+ 5 C 
+60 
+64 
+68 
+6C 
+70 
+74 
+78 
+7C 
+80 
+84 
+88 
+SC 

BCTBL REG=2,SUFFIX=T 
+BCTBLT DSECT 
+* 
+* THE BUFFER CONTROL TABLE (BCTBL) IS ADDRESSED FROM THE USER 
+* FILE BLOCK (UFB), AND CONTAINS A HEADER DEFINING A DATA 
+* MANAGEMENT BUFFER POOL AND BUFFER CONTROL ENTRIES (BCE) 
+* DEFINING THE CONTENTS OF EACH BUFFER IN THE POOL. 
+* 
+* DATE 3-28-79 
+* VERSION 4.00 
+* 
+BCTBLTBEGIN DS OF (FULLWORD ALIGNMENT) 
+* 
+*** BUFFER CONTROL TABLE 
+* 
+BCTBLTNBUF DS OHLl COUNT OF BUFFERS (BCE'S) 
+BCTBLTHITCT OS A HIT-COUNT (READ) 

+BCTBLTLOCKl DS A BCE LOCK! (OMS INTERNAL) 
+BCTBLTREPLNUM DS OHLl CIRCULAR BCE NUMBER (SCAN) 
+* BCTBLHITCT AND BCTBLMISSCT INDICATE PERCENTAGE OF READ OPERATIONS 
+*HANDLED WITHIN THE BUFFER POOL (WITHOUT PHYSICAL IO OPERATION). 
+BCTBLTMISSCT OS A MISS-COUNT (READ) 

+BCTBLTFILECT OS BLl COUNT OF FILES USING BCT 
+BCTBLTFLAGS OS BLl BCTBL FUNCTION FLAGS 

Controlled Release Draft 4-15 October, 1985 



+BCTBLTFLAGSEXT EQU X'80' INTERNAL FLAG FOR 
+* EXTRACT FUNCTION 
+BCTBLTFLAGSRPL EQU X'40' GET REPLACEMENT BUFFER 
+* WITHOUT IO OPERATION 
+BCTBLTTYPE DS CLl BLOCK TYPE FOR FUNCTION 
+* (VALUE AS IN BCETYPE) 
+BCTBLTSPARE DS BLl SPARE 
+BCTBLTIOHEAD DS A HEAD OF CHAIN FOR BCES 
+* WITH I/O OUTSTANDING 
+BCTBLTWTABLE DS XLS TABLE OF WEIGHTS FOR REPL 
+* VALUE IN PAREN BELOW IS DEFAULT VALUE LOADED BY SVC OPEN. 
+ ORG BCTBLTWTABLE 
+BCTBLTWDATA DS XLl DATA BLOCK NO HOLD (1) 
+BCTBLTWDATAH DS XLl DATA BLOCK HOLD (2) 
+BCTBLTWINDEX DS XLl INDEX BLOCK (PRIMARY) (3) 
+BCTBLTWROOT DS XLl INDEX ROOT (PRIMARY) (5) 
+BCTBLTW.ADATA DS XLl LOW LEVEL ALT BLOCK (1) 
+BCTBLTWAINDEX DS XLl INDEX BLOCK (ALT) (3) 
+BCTBLTWAROOT DS XLl INDEX ROOT (ALT) (5) 
+BCTBLTWRES DS XLl RESERVED WEIGHT CLASS (0) 
+BCTBLTEXPAND DS BL4 EXPANSION AREA (BCTBL) 
+* END OF BCTBL HEADER; BCE'S BEGIN HERE 
+BCTBLTBCEl DS BL56 BUFFER CONTROL ENTRY 
+BCTBLTBCE2 DS BL56 BUFFER CONTROL ENTRY 2,ETC 
+BEGIN CODE 
+ USING BCTBLT,2 

Controlled Release Draft 4-16 October, 1985 



4.2.5 BCTGEN - Generate a Buffer Pool Control Table 

Syntax 

[label] BCTGEN NBUF=absolute expression 

Function 

Generates a skeleton buffer pool control table (BCT) for use in 
buffer pooling (UFBGEN macroinstruction, parameters POOL and BCT). 

Parameter Definitions 

NBUF 

Example 

LABl 
+LABl 
+ 
+ 
+ 

The number of buffers to be included in the buffer pool. 
The user must supply an absolute expression which evaluates 
to an integer not greater than 255. 

BCTGEN NBUF=8 
DS OF 
DC AL1(8) 
DC XL31'0' 
DC (8)XL56'00' 

BUFFER COUNT 
REMAINDER OF PREFIX 
BUFFER CONTROL ENTRY 

Controlled Release Draft 4-17 October, 1985 



4.2.6 BEGTRANS - OMS/TX Transaction Rollback (SVC 80) 

Syntax 

[label] BEGTRANS RETCODE={(register)}[,ACK={YES}][,CANCEL={YES}] 
{ address } {NO } { NO} 

Function 

BEGTRANS marks the beginning of a OMS/TX transaction or 
subtransaction. 

Parameter Definitions 

RETCODE 

CANCEL 

ACK 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

Address where the return code will be stored. 

YES specifies to cancel the operation on error detection. 

YES specifies to produce an acknowledge GETPARM when errors 
are detected. 

Definition 

Success. 

No recovered files are open. 

OMX/TX not supported on this system. 

Invalid function request. 

Invalid parameter or parameter list. 

Unable to process before image journal for this task. 
Run DMSTX utility on this database. 

Error encountered on this file during rollback. Run 
DMSTX utility on this file. 

Specified mark not found. The entire transaction has 
been rolled back. 

Unable to set file crash status. File may contain 
uncommitted updates. 

Unable to set database crash status. Database may 
contain uncommitted updates. 

Controlled Release Draft 4-18 October, 1985 



Example 

+ 
+ 
+ 
+ 
+ 
+ 

BEGTRANS RETCODE=RCADDR,CANCEL=YES,ACK=NO 
PUSHA 0,=A(64) 
MVI 0(15),X'SO' Set last parameter flag 
PUSHA 0,RCADDR return code 
LR 1,15 
SVC 80 (BEGTRANS) 
POPN 0,2*4 
END BEGIN 

Controlled Release Draft 4-19 October, 1985 



4.2.7 CALL - Call a Subroutine 

Syntax 

[label] CALL 

Function 

EPLOC=address {,PARM={Cregister)}} 
{ address } 

{,PARMLOC=address } 

[,COND={integer}] 
{ 15 } 

Provides the necessary linkage to transfer control to another 
routine. Loads the address of a parameter list (if specified in PARM or 
PARMLOC) into register Rl. Also branches (conditionally) to the label or 
address specified in EPLOC by means of a JSCI instruction, leaving the 
return address on the stack. The JSCI instruction 

• Saves the contents of control register 1 

• Stores general registers 0 to 14 on the stack 

• Places the address of the register O save area in control 
register l, as well as in the stack pointer, (GR 15) 

The lowest address in any current static area is, by convention, 
passed in register R14. 

Restrictions 

A stack, with stack top addressed by GR 15, must be available to the 
caller. 

Parameter Definitions 

EPLOC 

PARM 

PARMLOC 

COND 

The address of a word that contains the called routine's 
entry point. This must be specified in a form allowable in 
the D2(X2,B2) field of the RX-type assembly instruction 
format. 

The address of a parameter list to be passed in register 1 
(Rl). 

The address of a word that contains the address of a 
parameter list to be passed in Rl Cwi th format of the 
address as specified for EPLOC). 

Specifies the condition code under which the routine is to 
be called. The default value is 15. 

Controlled Release Draft 4-20 October, 1985 



Example 

GETPGM CALL PARM=PADDR,EPLOC=ENTRYWRD,COND=8 
+GETPGM LA l,PADDR 
+ JSCI 8,ENTRYWRD 

Controlled Release Draft 4-21 October, 1985 



4.2.8 CANCEL - Cancel Program (SVC 16) 

Syntax 

[label] CANCEL MSG={Cregister)} 
{ address } 

Function 

To terminate a program in the event of uncorrectable program failure, 
such as 

• Exhaustion of a system resource 

• Illegal or invalid parameters to an SVC routine or other system 
service program 

• A program-detected condition which cannot be satisfactorily 
resolved within the program 

~CEL causes the trans£ er of program control to the Help processor 
for cancellation of the issuing program. The message specified in the 
MSG parameter, along with a standard CANCEL message, is displayed on the 
workstation. The user cannot immediately resume program execution by the 
CONTINUE PROCESSING command processor command. The user may, however, 
examine the program by means of the Help processor's debugging 
facilities, modify the current instruction address by means of the 
Debugger's Inspect and Modify option, and then attempt to resume program ~ 

execution or issue the CANCEL command to remove the program from the 
system. A program terminated by a CANCEL supervisor call from within 
privileged code cannot be continued. The CANCEL macro is used in 
conjunction with the CEXIT macro. 

Restrictions 

Must not be issued while in system must complete (SMC) state. 

Parameter Definitions 

MSG The address of a message to be displayed, contained in the 
specified register, or at the specified address. A 
register specification must be in parentheses, as shown. 
The message must be in the format generated by the MSGLIST 
macroinstruction. 

Controlled Release Draft 4-22 October, 1985 



Stack On Input 

OCSP) 
(1) Address of 

Message 
Preceding 

Stack Data 

Lower 
Address 

Higher 
Address 

(1) The address of the message to be sent to the user is constructed 
in the following format: 

Byte 0 4 10 12 N 
I (2) I (3) I (4) I (5) ---1 
I Message munber I Issuer ID I Length I Text I ----

(2) Message number in ASCII characters (four bytes). Always 
required. 

(3) Issuer identification in ASCII characters (six bytes). 

(4) Length of the message to be sent in binary (two bytes). This is 
the length of the text which starts at byte 12. 

(5) Message text in ASCII characters. If the message is more than 
one line, an end-of-line is indicated by an ASCII new line 
character. No line may contain more than 79 characters, including 
the end-of-line indicator. The last, or only, line does not require 
an end-of-line character. 

Stack On Output 

The Help processor is entered with no return to issuing program. The 
user program abnormally terminates when the user issues the CANCEL 
command in the Help processor. 

Example 

LABl 
+LABl 
+ 

LAB2 

+LAB2 
+ 
+ 
+ 

LA 
CANCEL 
PUSH 
SVC 

MSGLIST 

oc 
oc 
oc 
oc 

Controlled Release Draft 

R5,LAB2 
MSG=CR5) 
0,R5 
16 (CANCEL) 

'COOl' ,'SUPVSR' ,'MEMORY 
EXHAUSTED' 
CL4'C001' 
CLG'SUPVSR' 
AL2(21) 
C'MEMORY POOL EXHAUSTED' 

4-23 

POOL 

October, 1985 



4.2.9 CEXIT - Cancel Exit (SVC 39) 

Syntax ~ 

Format 1: 

[label] CEXIT SET [,([{NODEBUG}][,NOHELP])] 
{DUMP } 

Format 2: 

[,ADDRESS={(register)}] 
{ address } 

[,MESSAGE={(register)}] 
{ address } 

[label] CEXIT CANCEL 

Function 

The CEXIT SVC sets or cancels link level parameters which specif iy 
the way a program handles error conditions. 

The SET option allows the issuing program upon detecting an error, to 
complete one of the following actions: 

• bypass the debug processor 
• initiate a full program dump 
• disable the HELP key 
• supply an alternate error handling intercept routine 

The CANCEL option negates the effect of any previously issued CEXIT 
supervisor call in the current link level. Abnormal termination 
conditions are not intercepted at the current link level and are 
processed in the normal way by the command processor. 

The caller may cancel the parameters specified via the CANCEL option 
or reset them via another SET option during the same link level or may 
temporarily override the specified parameters at subsequent link levels 
by issuing another CEXIT SET at the appropriate link level. 

Controlled Release Draft 4-24 October, 1985 



The error handling intercept routine gains control from the cancel 
processor in the following manner: 

• If the abnormal termination condition occurred within the same 
link level, the cancellation process returns control to the 
program at the address of the cancellation-intercept routine. 
This routine may also gain control if the current or any 
subsequent link level issues a LOGOFF SVC and this CEXIT option 
is still active. The registers are those at the time of either 
the program check or the entrance to the supervisor call 
resulting in the abnormal termination condition. A frequent 
error is to fail to re-establish the addressability in the 
cancel-exit routine. 

• If the abnormal condition occurred while Data Management for 
either disk or tape was in control, an attempt is made to 
complete that operation. All non-I/O wait conditions are 
removed. The cancellation process does not, in this case, 
attempt to close any files. 

• If the abnormal termination condition occurred within a 
subsequent link level (that is, a linked-to program, for which no 
cancellation-interception routine was specified), the 
cancellation process attempts to complete I/O operations and 
close files and then UNLINK each link level until a link level 
with a cancellation-interception routine (if any) is found. 
Control then passes to the cancellation-interception routine. In 
this case, the registers are those at entry to the LINK 
supervisor call. As in previous cases, all non-I/O wait 
conditions are removed. 

In both cases (termination at the present link level or termination 
at a subsequent level), entry to the cancellation-intercept routine 
cancels the CEXIT options for the link level. They may be reset by the 
user via a subsequent CEXIT supervisor call. On the stack, the 
cancellation-intercept routine may access the following data using the 
DSECT produced by the CXT macroinstruction: 

CANCELLATION PCW 
CANCELLED PROGRAM'S NAME 
CEXIT OPTION IN EFFECT 
(RESERVED) 
GENERAL REGISTERS 0-15 
CANCEL MSGLIST 

8 bytes 
8 bytes 
1 byte (as in PFBCXTOPTS) 
47 bytes 
64 bytes 
Variable length 

Parameter Definitions 

NO DEBUG 

DUMP 

The Debugger is bypassed for abnormal 
conditions. Control passes directly to 
processor without direct user notification. 

termination 
the cancel 

This option also provides a full program dump prior to 
entry into the cancel processor. 

Controlled Release Draft 4-25 October, 1985 



NOHELP 

ADDRESS 

MESSAGE 

Stack On Input 

This option causes the HELP key to be disabled at the 
current link level to enable entry into the Help 
processor. When the programmer specifies NOHELP, pressing 
the HELP key in User mode has the following effects: 

• If the workstation does not have operator privileges, 
the alarm is sounded. 

• If the workstation is a dual-mode operator console, 
the system enters Operator mode. This option remains 
in effect until the user issues a CEXIT without the 
NOHELP option or until the program unlinks back to 
either the command processor's initiator or to a link 
level for which NOHELP was not specified. 

Unless specifically disabled within a link level, the 
NOHELP option is propagated to higher link levels. The 
NOHELP option should only be utilized in those situations 
where user access to CANCEL and other system functions must 
be limited, as in the case of critical sections of 
application programs updating multiple file chains and 
pointers. Such programs should be as error-free as 
possible prior to using this facility. 

Specifies the address of a cancellation-intercept routine 
provided by the user program. 

Provides text to be used by both the Help processor.and the 
Debugger in place of the Cancel Processing menu 
descriptions. Specification is of a modifiable data area 
location containing a 1-byte binary length field followed 
by up to 27 bytes of text. Specification of this option is 
independent of any user cancellation-intercept routine 
specification. 

CEXIT SET Option 

Lower 
Address 

lo 1 2 3 
OCSP) I I 

In> I ( 2) Address of 
IFLAG I Intercept RTN 

4CSP) I 
I (3) Address of 
I· HelE Message 

8CSP) I 
I Unused Higher 
I Address 
I Preceding 
I Stack Data 

Controlled Release Draft 4-26 October, 1985 



~ 

(1) Flags: 
Bit 0 1 = SET option 
Bits 1-2 00 = Debug enabled 

01 = Nodebug option 
10 = PDUMP option 
11 = Dump option 

Bit 3 0 = HELP key enabled 
1 = HELP key disabled 

(2) Address of user error handling intercept routine or zero. 

(3) Address of user-supplied PF16 HELP display message to be used in 
place of the CANCEL PROCESSING default message. 

CANCEL Option 

Lower 
I Address 
lo 1 2 3 

O(SP) I I (1) I 
I Flags I Higher 
I I Address 
I Preceding 
I Stack Data 

(1) Flags: 
Bit 0 0 = CANCEL option 
Remainder of word not examined. 

Stack On Output 

0 (SP) I 

Example 

Preceding 
Stack Data 

Lower 
Address 
Higher 
Address 

EXIT 
+EXIT 
+ 

CEXIT SET,NODEBUG,ADDRESS=FIXPROBS,MESSAGE=CANCELME 
PUSHA 0,0 
MVI 0(15),B'OOOOOOOO' x 

+ 
+ MVI 1(15),B'OOOOOOOO' 

PF KEYS 1-8 MASK 
x 

+ 
+ 
+ 
+ 
+ 

PUSHA 0,CANCELME 
PUSHA 0,FIXPROBS 
MVI 0(15),B'lOlOOOOO' 
SVC 39 

Controlled Release Draft 4-27 

PF KEYS 9-16 MASK 

OPTIONS BYTE 
(CEXIT SET) 

October, 1985 



4.2.10 CHARGEN - Macro Processor Large Character Generator 

Syntax 

CHARGEN string 

Function 

This macro generates an 8 x 8 space character for each character 
input to the macro. It uses the assembly macro instruction MNOTES to 
generate the string. Therefore, the string prints as a comment in the 
source listing when the PRINT NOGEN assembly listing control instruction 
is in effect. 

Parameter Definitions 

string A character string which cannot continue on another source 
line. The string can contain embedded blanks if enclosed 
within single quotes. 

Example 

CHARGEN WV54LOG 
+* 
+• ## ## ## ## #### # ## ##### ##### 
+* ## ## ## ## # ## ## ## ## ## ## 
+* ## ## ## ## # # # ## ## ## ## ## 
+* ## ## ## ## #### # # ## ## ## ## 
+* ## # ## ## ## # ###### ## ## ## ## ### 
+* ####### ## ## # # # ## ## ## ## ## 
+* ### ### ### # # # ## ## ## ## ## 
+* # # # ### # ####### ##### ##### 
+* 

Controlled Release Draft 4-28 October, 1985 



4.2.11 CHECK - Check for Event Occurrence CSVC 17) 

Syntax 

Format 1: 

[label] CHECK {OFB=}{ address }[,ERREXIT={ address }] 
{VCB=}{Cregister)} {(register)} 

[,IOSWREG='RO'][,FORM=LIST] 

Format 2: 

[label] CHECK INTERVAL[,FORM=LIST] 

Format 3: 

[label] CHECK MESSAGE={ address },PORT={ address }[,FORM=LIST] 
{(register>} {(register)} 

{ 'string' } 

Format 4: 

[label] CHECK WSKEY={ address }[,FORM=LIST] 
{(register)} 

Format 5: 

[label] CHECK INTERRUPT={ address },IOSWADDR={ address } 
{(register)} {<register)} 

[ ,FORM=LIST] 

Format 6: 

[label] CHECK TCIO,OFB={ address }[,IOSWADDR={ address }] 
{(register)} {(register)} 

[ , FORM=LIST] 

Format 7: 

[label] CHECK SEMA={ address }[,FORM=LIST] 
{(register)} 

Format 8: 

[label] CHECK MULTIPLE,PLIST={ address }, 
{(register)} 

COUNT={self-def ining term} 
{ (register) } 

Controlled Release Draft 4-29 October, 1985 



Function 

The function of this macro varies slightly depending on the format used. 

• Format 1 -- CHECK OFB or VCB waits for completion of an I/O 
operation. If "intervention required" is indicated on 
completion, an appropriate workstation message is issued (if 
possible) to inform the user, and CHECK proceeds when the 
"intervention required" condition has been cleared. (CHECK may 
reissue the message if the condition was not corrected.) CHECK 
waits for completion again after the condition has been cleared. 
If the operation has not been completed, CHECK suspends 
processing of the issuing program until it has. In the event of 
a permanent error completion (IOSW bit EC set, bits NC or IRQ not 
set), CHECK returns to the address specified by the ERREXIT 
parameter. Otherwise, CHECK returns to the next sequential 
instruction address. CHECK logs I/O errors by means of a 
nonresident subroutine. 

• Format 2 -- CHECK INTERVAL waits for expiration of a timing 
interval as set by the SETIME macroinstruction. 

• Format 3 -- CHECK MESSAGE waits for a message to be sent to the 
issuing task through the specified port name which the issuing 
task must have established by making a call to the CREATE SVC. 

• Format 4 -- CHECK WSKEY waits for a program function key to be 
pressed at the specified workstation, which must be reserved for 
use by the issuing task. An unchecked XIO request must not be 
outstanding to this workstation when this CHECK is issued-. -The 
issuing program is cancelled if an unchecked I/O operation (XIO) 
has been issued to the specified workstation, or if that 
workstation is not reserved for use by this task. 

• Format 5 -- CHECK INTERRUPT waits for an unsolicited interrupt 
from a workstation, a printer, or a telecommunications device. 
For a workstation, this CHECK option waits for a program function 
key whether the keyboard is locked or not. The issuing task is 
cancelled if the device is not reserved for use by the issuing 
task or an unchecked I/O is outstanding. The IOSW of the 
unsolicted interrupt is moved to the 8-byte area specified in the 
input parameter list. 

Controlled Release Draft 4-30 October, 1985 



• Format 6 CHECK TCIO waits for the occurrence of a 
telecommunications I/O event. This event may be the completion 
of an I/O operation previously initiated by a call of the XIO SVC 
by the RECEIVE or TRANSMIT macro. This event may also be an 
unsolicited interrupt from a Data Link Processor (DLP) if no 
previous I/O command was issued. If the TC I/O is completed with 
an error because of missing device microcode or missing 
peripheral processor microcode, the error is logged and the 
microcode is not loaded. 

Sequencing rules for alternation of the RECEIVE or TRANSMIT 
macroinstruction followed by CHECK TCIO are enforced by the XIO 
SVC routine. XIO also checks that the device and the OLP are 
not exclusively reserved by another task, and that the channel 
device is currently open (using the IPOPEN SVC). 

CHECK TCIO may be issued without any previous I/O being issued 
provided the specified device is reserved by the calling task. 
In this case the CHECK acts as an unsolicited interrupt from the 
DLP on the specified device. To receive an unsolicited interrupt 
from the DLP, at least one of the devices on the DLP must have 
been opened with the IPOPEN SVC and reserved by the caller. For 
this option, an IOSWADDR must be provided for the transfer of the 
IOSW to the caller. 

If an unsolicited IOSW was returned by the DLP and the user has 
issued an XIO and is awaiting the completion IOSW to that I/O, 
the unsolicited IOSW does not cancel the effects of that 
condition. That is, the user is able to receive the unsolicited 
IOSW, and is allowed to reissue the CHECK TCIO to receive the 
IOSW in response to the XIO. The general status byte of the IOSW 
returned indicates to the user that it is an unsolicited IOSW, 
rather than a normal IOSW in response to an XIO. If the user has 
received an unsolicited IOSW while waiting for the completion of 
an outstanding XIO, he must wait for the completion of the XIO by 
resubmitting the CHECK TCIO before issuing another XIO on the 
specified VS/DLP I/O channel. The issuing task is cancelled if 
the device is not reserved for use by the issuing task or an 
unchecked I/O operation is outstanding. 

• Format 7 -- CHECK SEMA allows a privileged user to wait upon a 
supplied semaphore. CHECK SEMA issues a CANCEL if the caller is 
not privileged. 

• Format 8 -- CHECK MULTIPLE waits for any one of several specified 
events to occur. These events can be any one of the events 
explained in Formats 1 through 7 above. 

Controlled Release Draft 4-31 October, 1985 



Restrictions 

CHECK OFB or VCB should be issued only after issuing an XIO call. 

Parameter Definitions 

OFB 

VCB 

• ERREXIT 

IOSWREG 

For the OFB or VCB option, the address of the open file 
block (OFB) for a file previously opened. Must be 
presented as an address expression, or as a register 
specification in parentheses where the register contains 
the address of the OFB. 

For the TCIO option, the address of the open file block 
(OFB) for the I/O channel device used in the I/O operation 
initiated by the corresponding RECEIVE or TRMJSMIT call. 
The address supplied in the OFB parameter is an address 
pointing to a 4-byte field containing the address of the 
OFB in the low-order three bytes. 

The address of a vol tune control block (VCB). May be used 
only if the caller is in system mutual exclusion (SME) or 
the · vol tune is mounted for initialization. Must be 
presented as an address expression, or as a register 
specification in parentheses where the register contains 
the address of the VCB. Note that the displacement 
constant of +1 is appended to either specification option 
by the macroinstruction code in order to distinguish the 
CHECK VCB option from the CHECK OFB option . 

Optional parameter specifying the address of an error 
handling routine to receive control in the event of an I/O 
error. Must be presented as an address expression, or as a 
register specification in parentheses where the register 
contains the error exit address. 

If IOSWREG='RO' is specified, the completion IOSW is placed 
in general registers 0 and 1. 

Controlled Release Draft 4-32 October, 1985 



MESSAGE 

PORT 

WSKEY 

INTERRUPT 

IOSWADDR 

PL I ST 

COUNT 

An address in the user modifiable area, where a received 
message is placed. The receipt area in the user modifiable 
area must contain the total length of the area, in binary, 
in its first two bytes. The length must not be greater 
than 2048 bytes. The message is placed in the specified 
area. If the area length is less than the message length 
plus two, the message is truncated on the right. The area 
length bytes are updated to reflect the length of the 
message, plus two. (This is the full length of the 
message, even if the message was truncated.) 

The 4-character name of one of this task's active message 
receipt ports, as established by CREATE. The port can be 
specified as an expression that addresses a 4-byte field 
containing the port name, as a register in parentheses that 
points to the 4-byte field containing the port name, or as 
a character string in single quotes which is the port name. 

A workstation device number is specified in the low-order 
byte of the 4-byte field pointed to by an address 
expression, or in the low-order byte of a register in 
parentheses. 

The device number of a workstation, printer, or 
teleconununications device. The number may be specified in 
the low-order byte of the 4-byte field pointed to by an 
address expression, or in the low-order byte of a register 
in parentheses. 

An address in the user modifiable area, into which the I/O 
status word CIOSW) is placed. May be specified as an 
address expression, or as a register in parentheses 
containing the address of the IOSW receipt area. This 
parameter is required for the CHECK INTERRUPT option and 
for the CHECK TCIO option if the CHECK is for a TC 
unsolicited interrupt. 

The IOSWADDR parameter is not required for the TCIO option 
if checking for completion of an TC I/O event. 

Address of a parameter list for CHECK MULTIPLE. May be 
specified as an address expression, or as a register in 
parentheses containing the address of the parameter list. 

Number of events CPLIST entries) for CHECK MULTIPLE. May 
be specified as a self-defining expression which is the 
number of events, or as a register in parentheses which 
contains the number of events (in binary) in the low-order 
byte. 

Controlled Release Draft 4-33 October, 1985 



SEMA 

FORM 

Stack On Input 

The address of the semaphore upon which to wait. May be 
specified as an address expression, or as a register in 
parentheses which contains the address. 

The FORM=LIST parameter may be used with Formats 1-7 above 
to build a multiple CHECK list on the stack. This example 
code builds a multiple CHECK list which waits for a 
semaphore (SIGNAL}, a PF key, or a timer, in that order: 

CHECK INTERVAL,FORM=LIST 
CHECK WSKEY=(Rl},FORM=LIST 
CHECK SEMA=SIGNAL,FORM=LIST 
LR R9,SP 
CHECK MULTIPLE,PLIST=CR9),COUNT=3 

After the call to CHECK MULTIPLE, the top stack word 
contains the off set into the parameter list of the event 
that occurred. The parameter list remains on the stack. 

Single Event CHECK 

For a single-event CHECK, a single 8-byte data structure as described 
under multiple event check is put on top of the stack. 

I 
I 
lo 1 2 

OCSP) I 
I (1) 1<2> 
I I 

4CSP) I 
I (3) 
I 
I Preceding 
I Stack Data 

Controlled Release Draft 

3 

4-34 

Lower 
Address 

Higher 
Address 

October, 1985 



Multi12le Event 

I 
I 
lo 

O(SP) I 
I (1) 

I 
4(SP) I 

I (3) 
I 
I 
I 

CHECK 

1 2 3 

(2) Address of. 
Parameter List 

Count of items 
being checked 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(1) Count of the number of parameter items contained in the 
parameter list (bits 1-7). Bit 0 of this byte is set to 1. 

( 2) The address of a parameter list of i terns constructed as shown 
below. 

(3) Count of the number of items being checked. 

For multiple-event CHECK, if the option flag (byte 0) on the input 
parameter list for the event is set to X'FF', then the particular event 
is bypassed, i.e., no WAIT is done for the event. 

The FORM=LIST option of the CHECK macro should be used to build a 
multiple-event CHECK list on the stack. See CHECK macroinstruction 
description for further detail. 

Each 8-byte data structure is constructed as follows: 

I 
I 
lo· 

PLIST ADR I 
I (a) 
I 
I 
I Cc> 
I 
I 

ARGUMENT LIST. 
1 2 3 

(b) 

Higher 
Address 

Lower 
Address 

(1) Normal I/0 check (QFB) item: 
(a) Byte 0: zero 
(b) Bytes 1-3: OFB address 
(c) Bytes 4-7: alternate return address to be used in case 
of I/O error, or zero. If the low-order bit of byte 7 is 
on, then return the completion IOSW in general registers 0 
and 1. 

Controlled Release Draft 4-35 October, 1985 



(2) VOLIO I/O check (VCB) item: 
(a) Byte O: zero 
(b) Bytes 1-3: VCB address plus 1 
Cc) Bytes 4-7: alternate return address to be used in case 
of I/O error, or zero. If the low-order bit of byte 7 is on, 
then return the completion IOSW in general registers 0 and 1. 

(3) Timer check item: 
Ca) Byte 0: X'lO' 
(b) Bytes 1-7: ignored 

(4) Intertask message check item: 
(a) Byte 0: X'20' 
Cb) Bytes 1-3: address of an area in the user modifiable 
area where a message is received. The first two bytes of 
this area must contain its length in bytes (binary) including 
these bytes. This length must not be greater than 2048. The 
message (not including its length bytes) is moved to the area 
following these bytes, truncated if it is too long for the 
specified area. The area's length bytes are adjusted to 
reflect the length of the message, including these bytes. 
(c) Bytes 4-7: the name CCL4) of one of this task's active 
ports, as established by the CREATE SVC. 

(5) Workstation program function key check item: 
(a) Byte O: X'40' 

(6) 

(b) Bytes 1-3: workstation device number 
(c) Bytes 4-7: ignored 

Unsolicited interrupt item: 
(a) Byte 0: X'OB' 
(b) Bytes 1-3: number of any device on line 
(c) Bytes 4-7: address of 8-byte area to receive 
be in user-modifiable-area buffer area or in 
validated by MCBRWTST) 

IOSW (must 
stack as 

(7) TC event item: 
(a) Byte 0: X'Ol' 
(b) Bytes 1-3: the OFB address of the TC device on which XIO 
was issued 
Cc) Bytes 4-7: the address of an 8-byte receiving area for 
the completion IOSW, or binary zeroes if the IOSW is not 
desired 

(8) Semaphore check item: 
Ca) Byte 0: X'02' 
(b) Bytes 1-3: the address of the semaphore upon which to 
wait 
(c) Bytes 4-7: reserved; must be zero 

Controlled Release Draft 4-36 October, 1985 



.~ 

Stack On Output 

Single-event CHECK 

Inputs popped from stack. For I/O completion CHECK, a workstation 
message is displayed, if possible, on conditions that require 
intervention. See the XMIT SVC description for the format of the 
intertask messages after a message CHECK. 

Multiple-event CHECK 

One word of inputs popped from stack. Second word replaced by 
displacement within parameter item list of item corresponding to event 
which has occurred. Device intervention required conditions must be 
handled by the CHECK issuer, who must reissue a CHECK (single- or 
multiple-event) to wait for I/O completion. 

OCSP) 
(1) Displacement 

into Event List 
Preceding 

Stack Data 

Lower 
Address 

Higher 
Address 

(1) Displacement into the parameter list of the item corresponding 
to the event that occurred. The displacement value starts from 0, 
and is incremented in multiples of eight. 

Examples 

LABl 
+LABl 
+ 

TIMR 
+TIMR 
+ 
+ 

CHECK OFB=(R2),ERREXIT=ERROR 
PUSHA 0,ERROR 
SVC 17 (CHECK) 

CHECK INTERVAL 
PUSHN 0,8 
MVI 0 (15) ,X' 10 ' CHECK INTERVAL 
SVC 17 (CHECK) 

Controlled Release Draft 4-37 October, 1985 



+ 
+ 
+ 
+ 

CHECK SEMA=(R4) 
PUSHA 0,0 
PUSH 0,R4 
MVI 0(15),X'02' 
SVC 17 (CHECK) 

Controlled Release Draft 

RESERVED - MUST BE ZERO 
PUSH SEMAPHORE ADDRESS 
INDICATE SEMAPHORE CHECK 

4-38 October, 1985 

··:_....--



4.2.12 CLOSE - Close File (SVC 1) 

Syntax 

[label] CLOSE [{REEL }][,UFB={(register)}] 
{NOREWIND} { address } 
{UNLOAD } 

Function 

Closes a file. CLOSE places the user file block (UFB) in a state in 
which the OPEN SVC can return the file to processable status. This 
includes placing sufficient file location information in the UFB so that 
a succeeding OPEN refers to the same file, volume, and device. If the 
UFB bit UFBFlWORK is set and the file is in a library named #xxxWORK 
(where xxx is the USERID), the file is deleted as well as closed. ·The 
UFB address is pushed onto the stack before the system issues the CLOSE 
SVC. On return, the UFB address is removed from the stack. 

Parameter Definitions 

UFB 

REEL 

NO REWIND 

UNLOAD 

Examples 

LABl 
+LABl 
+ 
+ 

+ 
+ 
+ 

The address of a user file block of an open file. It must 
be presented as a register specification in parentheses 
(where the register is assumed to contain the UFB address), 
or as a UFB address expression not in parentheses. If 
omitted, only the SVC instruction is generated. 

For magnetic tape volumes only. If specified, the file is 
not closed, but rather is positioned so that the first 
record on the next volume (if any) is provided on the next 
READ, or written on the next WRITE. 

For magnetic tape volumes only. If specified, rewinding is 
suppressed when the file is closed. 

For magnetic tape volumes only. If specified, the tape is 
rewound, set to offline, and effectively dismounted when 
the file is closed. 

CLOSE UFB=(R3) 
PUSH O,R3 
MVI 0(15),B'OOOOOOOO' 
SVC 1 (CLOSE) 

CLOSE REEL,UFB=(R2) 
PUSH 0,R2 
MVI 0(15),B'lOOOOOOO' 
SVC 1 (CLOSE) 

FLAGS 

FLAGS 

Controlled Release Draft 4-39 October, 1985 



END 
+END 
+ 
+ 

CLOSE NOREWIND,UFB=CR2) 
PUSH 0,R2 
MVI 0(15),B'OlOOOOOO' 
SVC 1 (CLOSE) 

Controlled Release Draft 

FLAGS 

4-40 October, 1985 



4.2.13 COMMIT - Commit Resources (SVC 52) 

Syntax 

[label] COMMIT [ALL={YES}][,LEVELS={(Register)}] 

Function 

{NO } {expression} 

[CANCEL={YES}] 
{NO } 

[ ,ACK={YES}] 
{NO } 

Commits resources for the user through the sharing task including 
files, records and extension rights. 

Parameter Definitions 

ALL 

LEVELS 

CANCEL 

ACK 

Stack On Input 

Q(SP) 

4(SP) 

Indicates that all transaction levels should be committed. 

Nwnber of levels to be corruni tted. The value can be an 
expression or a register in parentheses. If it is a 
register, the register must contain the address of a 
fullword which gives the level nwnber. 

Indicates whether to cancel on errors. 

Indicates whether to issue an acknowledge GETPARM on errors. 

I Lower 
I Address 
lo 1 2 3 
I 
I (1) (2) I <3> 
I I 
I 
I Higher 
I Address 
I Preceding 
I Stack Data 

(1) Flag byte: 
Bit 0 1 = HOLD, 0 = RELEASE 
Bit 1 1 = EXTENSION RIGHTS request 
Bit 2 1 = RELEASE ALL and commit DMS/TX transaction 
Bit 3 1 = TIME OUT in use 
Bit 4 1 = Cancel on error 
Bit 5 1 = Produce ACK GETPARM on error 
Bit 6 Reserved for internal use, must be zero 
Bit 7 Reserved for internal use, must be zero 

Controlled Release Draft 4-41 October, 1985 



(2) Time out value in seconds from 0 - 255 

( 3) Reserved, must be 0 

Stack On Out12ut 

I Lower 
I Address 
lo 1 2 3 

OCSP) I 
I (1) Return Code 
I 

4CSP) I 
I (2) User IDI (3) Higher 
I I Address 
I Preceding 
I Stack Data 

(1) Return code 
(2) User ID of user holding extension rights 
(3) Unused 

Output 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

Definition 

Success. 

Timeout. 

Invalid function sequence. 

Request to HOLD or FREE with no shared files open. 

System error: the sharer is not active or has run out 
of memory space. 

System error: before image journal error during an 
end transaction. 

Invalid function parameter. 

Controlled Release Draft 4-42 October, 1985 

~ 



Example 

COMMIT ALL=NO,LEVELS=2,CANCEL=YES,ACK=YES 
+ PUSHA 0,2 Push LEVELS parameter 
+ PUSHA 0,0 
+ MVI OC15),X'20' FREE ALL SHARED RESOURCES 
+ OI 0(15),X 1 08 1 SET UP CANCEL-ON-ERROR CONDITION 
+ OI 0(15),X'04' SET UP ACKNOWLEDGE-ERROR CONDITION 
+ SVC 52 (FREEALL) 

Controlled Release Draft 4-43 October, 1985 



4.2.14 CREATE - Create Intertask Message Port (SVC 37) 

Syntax 

[label] CREATE PORT={(register)},BUFSIZE={(register)} 

Function 

{ address } { address } 
{ 'string' } 

RESIDENT={YES} [,PRIVILEGED] 
{NO } 

KEEP={YES} 
{NO} 

Allows the issuing task to receive intertask messages sent by the 
XMIT SVC by establishing a buffer called a message port. When a message 
is sent to a task, the message is copied from the system message buff er 
to this message receipt port. If the specified message receipt port was 
created with the PRIVILEGED option, the SVC rejects any messages 
generated from nonprivileged state code or from tasks that are not 
dedicated system tasks. 

Creates a resident or nonresident message port with the specified 
port name and the issuing task as the valid receiver. The port enables a 
task to accept messages from other tasks. CREATE optionally screens out 
messages not transmitted by privileged code or by dedicated system tasks. 

After creating the message receipt port, a task would use the XMIT 
macro to transmit messages and the MESSAGE function of the CHECK macro to 
wait for the receipt of messages in the specified port. 

All message receipt ports are destroyed during an UNLINK to free 
space. To maintain message receipt ports, the KEEP parameter must be 
specified as YES. Then, message receipt ports are maintained until 
return to the command processor (link level 0). The default is NO. 

Restrictions 

Only dedicated system tasks may use the parameter RESIDENT = YES. 

Parameter Definitions 

PORT The 4-character name of a message receipt port (chosen by 
the issuing program; any characters are allowed). The name 
can be specified as a register in parentheses pointing to 
the port name, as a character string in single quotes which 
is the port name, or as an expression addressing a 4-byte 
field containing the port name. 

Controlled Release Draft 4-44 October, 1985 



BUFSIZE 

RESIDENT 

PRIVILEGED 

KEEP 

The space in bytes to be allocated for buffering messages. 
The space can not be greater than 2048 bytes. 

Specifying YES makes the message port memory resident at 
all times. If NO is specified, the message port may be 
paged in and out of memory as necessary. 

Causes only messages transmitted by tasks in privileged 
code or dedicated system tasks to be received by the 
message receipt port being created. 

When KEEP=YES, the message receipt ports created will not 
be destroyed until return to the command processor (link 
level 0). 

Stack On In12ut 

I 
I 
lo 

O(SP) I 
I (1) 

I 
4CSP) I 

I (3) 
I 
I 
I 

1 2 3 
I I (2) 
I I Buff er 
I I Size 

Message Receipt 
Port Name 
Preceding 

Stack Data 

Lower 
Address 

Higher 
Address 

(1) Flags 
X' 80' - Sets XMBUFFLAGPRSYS which limits receipt of messages 
to those sent by privileged code and dedicated system tasks. 
X'Ol' - Sets XMBUFFLAGRS so that the message receipt port is 
always memory resident. 

( 2) Buff er size: Size of the buff er to allocate for messages. 
Cannot be greater than 2048. 

(3) Message receipt port name: a 4-character name to be assigned to 
the message receipt port. 

Stack On Output 

O(SP) 
Return Code 

Preceding 
Stack Data 

Controlled Release Draft 4-45 

Lower 
Address 

Higher 
Address 

October, 1985 



Output 

Return codes are placed in the word on the stack top, as follows: 

Code 

0 

4 

8 

12 

Example 

CMSG 
+cMSG 
+ 
+ 
+* 

Definition 

Success. 

Another task has activated the specified port name. 

Same task has already activated the specified port 
name. 

GETMEM failure. 

CREATE PORT=PORTNAME,BUFSIZE=(RO) 
PUSHC 0(4,0),PORTNAME 
PUSH 0,RO 
MVI 0(15),X'OO' 

PORT NAME 
BUFFER SIZE 

+ SVC 37 (CREATE) 

Controlled Release Draft 4-46 October, 1985 



4.2.15 CXT - CEXIT Return Information 

Syntax 

CXT [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

The CXT macroinstruction allows the user to symbolically reference 
the information returned to a program's cancellation-intercept routine. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Structure 

CXT 
BEG INT 

Specification of NODSECT results in the CXT fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, a DSECT with the name CXT (plus 
optional SUFFIX) is generated. 

Provides for the optional specification of a register for 
which a USING statement for the CXT fields is generated. 

One ASCII character in length. If provided, all labels are 
generated by the concatenation of the characters CXT, the 
user-provided SUFFIX, and the field name. 

BYTE 0 BYTE l BYTE 2 BYTE 3 

+0 _PCW~:...;__---------------------------------
+4 
+8 PROGRAM 
+c 

+10 FLAGS SPARE 
+14 
+18 
+lC 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 

Controlled Release Draft 4-47 October, 1985 



+40 
+44 
+48 
+4C 
+50 
+54 
+58 
+6C 
+60 
+64 
+68 
+6C 
+70 
+74 
+78 
+7C 

MSGLIST 1+80 
+84 
+88 

Example 

CXT CXT 

BYTE 0 

REGS 

MSG ID 
MSGISSUER 

+CXT DSECT 

BYTE 1 BYTE 2 BYTE 3 

MSGLENGTH 

+* THE CEXIT RETURN INFORMATION BLOCK IS RETURNED TO 
+* A PR(X;RAM'S CEXIT ROUTINE FOR PR(X;RAMMED ANALYSIS 
+* OF AN ABNORMAL TERMINATION CONDITION. 
+* DATE 03/28/79 
+* VERSION 4.00 
+CXTBEGIN 
+CXTPCW 
+CXTPR(X;RAM 
+* 
+* 
+* 
+CXTFLAGS 
+* 
+CXTSPARE 
+cXTREGS 
+* 
+cXTMSGLIST 
+cXTMSGID 
+cXTMSGISSUER 
+CXTMSGLENGTH 
+cXTMSG 

Controlled Release Draft 

DS OF 
DS CL8 
DS CL8 

DS XLl 

DS CL47 
DS CL64 

DS OX 
DS CL4 
DS CL6 
DS H 
EQU * 

4-48 

(FULLWORD ALIGNMENT) 
CANCELLED PR(X;RAM'S PCW 
NAME OF CANCELLED PR(X;RAM 
X'OO' IF UNABLE TO OBTAIN 
BUFFER DURING CANCEL 
PROCESSING) 
PFBCXTOPTS AT TIME OF 
PR(X;RAM CANCELLATION 
(RESERVED) 
REGISTER'S OF PR(X;RAM 
AT TIME OF PROGRAM CANCEL 
CANCEL MSGLIST 
MESSAGE IDENTIFIER 
MESSAGE ISSUER 
MESSAGE LENGTH 
MESSAGE BEGINS HERE 

October, 1985 



4.2.16 DELETE - Delete Record From Indexed File 

Syntax 

[label] DELETE {EOF},UFB={Cregister)}[,COND={ integer }] 
{REL} { address } {absolute expression} 

{ 15 } 

Function 

To delete the last record read from an indexed file on disk. 
Normally, control is returned to the instruction location following the 
DELETE macroinstruction. If the record to be deleted is not held, if the 
file is not an indexed file, or if the DELETE function is not allowed for 
the current open mode, control is returned to the I/O error return 
address as specified in the UFB, with the normal return address in 
register 0. If the I/O error return address in the UFB contains all 
binary zeroes when an error occurs, the program is abnormally terminated. 

Restrictions 

The file specified must be opened in record access method (RAM) for 
I/O or Shared mode processing. The last function on this file must have 
been a successful READ with the HOLD option. In Shared mode, the lock on 
the record to be rewritten must not have been released by an intervening 
operation on any other shared file. 

Parameter Definitions 

UFB 

COND 

EOF 

REL 

The address of a user file block. It may be presented as a 
register specification, where the register is assumed to 
contain the UFB address, or as an address expression not in 
parentheses, in which case the word addressed is assumed to 
begin the UFB. 

If specified, the number or absolute expression becomes the 
first parameter of the JSCI instruction by which the DELETE 
function is entered. Thus the DELETE is made conditional. 
COND = 15 is the default. Register 1 is loaded with the 
UFB address under any condition. 

Deletes records following the present record to the end of 
the file. This option is used for relative files only. 

Deletes a record for relative file organization only. 
Performing a READ HOLD is not required before the delete. 

Controlled Release Draft 4-49 October, 1985 



Output 

File status bytes in the UFB are set as follows for DELETE: 

• Success -- UFBF~l = 0, UFBFS2 = 0 
• I/O error -- UFBFSl = 3, UFBFS2 = 0 
• Invalid function or function sequence -- UFBFSl = 9, UFBFS2 = 5 
• Invalid key (DELETE REL) -- UFBFSl = 2, UFBFS2 = 3 

NOTE 

Register 1 is loaded with the address of the UFB. 

Examples 

LAB2 
+LAB2 
+ 

LAB3 
+LAB3 
+ 

DELETE UFB=(R2) 
LR l,R2 
JSCI 15,12(1) 

DELETE UFB=DSKUFB,COND=7 
LA l,DSKUFB 
JSCI 7 ,12(1 

Controlled Release Draft 4-50 

SET REGISTER 1 
DELETE FUNCTION 

SET REGISTER 1 
DELETE FUNCTION 

October, 1985 



4.2.17 DESTROY - Destroy Intertask Message Receipt Port (SVC 38) 

Syntax 

[label] DESTROY PORT={(register)} 
{ address } 
{ 'string' } 

Function 

Deallocates the intertask message receipt port with the specified 
port name. The port must have been activated by the same task using the 
CREATE macroinstruction. 

Parameter Definitions 

PORT 

. ~ Stack On Input 

Q(SP) 

The 4-character name of a message receipt port. The name 
can be specified as a register in parentheses which points 
to the port name, as a character string in single quotes 
which is the port name, or as an expression addressing a 
4-byte field which contains the port name. 

The issuing task's named message receipt port is 
deallocated. The buff er space is returned to the 
appropriate memory pool and the port name is released for 
further use . 

Message Receipt 
Port Name 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Stack On Output 

O(SP) 
Return Code 

Preceding 
Stack Data 

Controlled Release Draft 4-51 

Lower 
Address 

Higher 
Address 

October, 1985 



Output 

A return code is placed in the topword of the stack top as follows: 

Code 

Example 

DACT 
+DACT 
+ 

0 

4 

8 

Description 

Success. 

One or more messages were not received and are lost; 
otherwise successful. 

No such message buff er was allocated by this task. 

DESTROY PORT=(Rl) 
PUSHC 0(4,0),0(Rl) PORT NAME 
SVC 38 (DESTROY) 

Controlled Release Draft 4-52 October, 1985 

-.______...-



4.2.18 DEXIT - DMS/TX Deadlock Exit (SVC 81) 

Syntax 

DEXIT { SET }[,CANCEL={NO }][,ACK={NO }][,RETCODE={Cregister)}] 
{ CLEAR } {YES} {YES} { address } 
{CLEARALL} 

[,STATUS={Cregister)}][,ADDRESS={(register)}] 
{ address } { address } 

Function 

The DEXIT SVC is used to establish an address to which control is 
returned after deadlock processing when a deadlock is detected under 
DMS/TX. This SVC sets and clears deadlock exits. There is a maximum 
limit of 24 deadlock exits per link level. The parameters for a deadlock 
exit are the address of the deadlock exit, and the address of a fullword 
which receives the ROLLBACK return code. If the status code address is 
zero, any errors encountered during deadlock processing cause the program 
to cancel. The SUSPEND function suspends the current DEXIT, so the exit 
is not taken. There are two options for clearing a deadlock exit. The 
first is to clear the most recently established deadlock exit at the 
current link level. Clearing a suspended DEXIT results in its 
reactivation. The second option is to clear all deadlock exits for this 
link level. See the VS DMS/TX Reference for more information. 

Parameter Definitions 

SET 

CLEAR 

CLEARALL 

ACK 

CANCEL 

RETCODE 

ADDRESS 

STATUS 

Function request set a DEXIT. 

Function request clear the most recent DEXIT. 

Function request clear all DEXITs at this link level. 

Specifies production of acknowledge GETPARM for errors. 

Specifies cancellation on errors. 

Address at which to store the return code on exit from the 
DEXIT SVC. 

Address to return to after deadlock processing; meaningful 
only for SET function. 

Address at which to place deadlock ROLLBACK and FREEALL 
return codes. This parameter is optional; it is meaningful 
only for SET function. 

Controlled Release Draft 4-53 October, 1985 



Stack on Input 

Register 1 points to a 4-word parameter list constructed as follows: 

(1) 
Address of 
Return Code 
(2) 
Address of 
Function Request 
(3) 
Address of 
Exit Address 
(4) 
Address of 
Status Word 

Lower 
Address 

Higher 
Address 

(1) Address of the memory location where the return code is to be 
stored. 

(2) Address of function request -- one word constructed as follows: 
Byte 0 - error handling 

·--

Bit 0: 1 = Cancel on error. If the cancel flag is set, ~ 
then the ACK flag is ignored and the user is cancelled on 
error. 
Bit 1: 1 = Issue acknowledge GETPARM on error and produce 
a return code. 
Bits 2-7: Reserved, must be 0. 

Bytes 1-2 -- Reserved, must be 0. 
Byte 3 -- Function request code: 

0 = Set deadlock exit. 
1 = Clear deadlock exit. 
2 = Clear all deadlock exits in this link level. 
3 = Suspend current DEXIT. 
4 = Reactivate current DEXIT. 

(3) Address where the deadlock exit address is stored. 

(4) Address of the fullword which receives the deadlock exit 
status. The first halfword contains ROLLBACK return code and the 
second halfword contains FREEALL return code. 

Controlled Release Draft 4-54 October, 1985 



Stack on Output 

The return code from the deadlock exit SVC is stored at the address 
supplied on input to the SVC. 

Output 

A return code is placed in the topword of the stack. 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

28 

32 

36 

Examples 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Description 

Success. 

Invalid function request parameter. 

Invalid ROLLBACK and FREEALL return code address 
parameter. 

No deadlock exit found for this link level. 

Cannot set more than 24 deadlock exits per link 
level. No exit set. 

GETMEM failure while trying to set deadlock exit. 

Invalid parameter list or parameter address. 

Invalid deadlock exit address. 

DMS/TX not supported on system. No deadlock exit set. 

DEXIT SET,STATUS=CR2),ADDRESS=DLKADR,RETCODE=CR3) 
PUSH 0,R2 
MVI OC15),X'80' 
PUSHA 0,DLKADR 
PUSHA 0,=ACO) 
PUSH 0,R3 
LR 1,15 
SVC 81 CDEXIT) 
POPN 0,4*4 

SET 'LAST' PARAMETER BIT 

PUSH FUNCTION PARAMETER 
PUSH POINTER TO RETCODE 
POINT Rl TO PARAMETER LIST 

Controlled Release Draft 4-55 October, 1985 



+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

DEXIT CLEAR,RETCODE=(R2) 
PUSHA 0,=A(l) 
MVI 0(15),X'80' 
PUSH 0,R2 
LR 1,15 
SVC 81 CDEXIT) 
POPN 0,2*4 

PUSH FUNCTION PARAMETER 
SET 'LAST' PARAMETER BIT 01 
PUSH POINTER TO RETCODE 
POINT Rl TO PARAMETER LIST 

DEXIT CLEARALL,CANCEL=YES,RETCODE=CR2) 
PUSHA 0,=A(-2147483646) PUSH FUNCTION PARAMETER 
MVI 0(15),X'80' SET 'LAST' PARAMETER BIT 01 
PUSH 0,R2 PUSH POINTER TO RETCODE 
LR 1,15 POINT Rl TO PARAMETER LIST 
SVC 81 CDEXIT) 
POPN 0,2*4 

Controlled Release Draft 4-56 October, 1985 

~. 



4.2.19 DFB - Describe Document File Block 

Syntax 

DFB NODSECT[,SUFFIX=character] 

Function 

Describes the structures utilized to pass parameters to and from the 
Wang VS Document Access subroutines. A copy of the Document File Block 
( DFB) should be brought into the user's assembly program via the CALL 
macro. It may be used to generate a DSECT or a data area within a 
program's static area. Multiple such DSECTS and/or data areas may be 
created via repeated use of this macro with the SUFFIX option. 

Parameter Definitions 

NODSECT 

SUFFIX 

Example 

Specification of NODSECT results in the DFB fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, the system generates a DSECT 
with the name DFB (plus the optional suffix). 

If provided, all labels are generated by the concatenation 
of the letters DFB, the user-provided SUFFIX Cone ASCII 
character in length), and the field name. 

DFB SUFFIX=A 
+*********************************************************************** 
+*********************************************************************** 
+** ** 
+** "DFB" Document File Block ** 
+** 
+** 
+** 
+** 
+** 
+** 
+** 
+** 
+** 
+** 
+** 
+** 

Version 2.00.04 July 6, 1982 
Wang VS Document Access Subroutines 

These structures are utilized to pass parameters to and 
from the Wang VS Document Access Subroutines. A copy of 
the DFB should be brought into the user's Assembly 
Program via Macro Call. It may be used to generate a 
DSECT or a data area within a program's static area. 
Multiple such DSECTs and/or data areas may be created 
via repeated use of this macro with the &SUFFIX= option. 

** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 

+*********************************************************************** 
+*********************************************************************** 
+*********************************************************************** 

Controlled Release Draft 4-57 October, 1985 



+DFBA 
+DFBAFULLDOCID 
+ 
+ 
+* 
+* 
+* 
+* 
+* 
+DFBADOCUMENTID 
+ 
+ 
+* 
+* 
+* 
+* 
+DFBASPAREOl 
+DFBALIBRARY 
+ 
+DFBASPARE02 
+DFBAVOLUME 
+ 
+ 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+DFBAVOLUMEDFLT 
+DFBASPARE03 
+DFBASPARE03 
+DFBARETURNSTATUS 
+ 
+ 
+* 
+* 
+* 
+* 
+DFBARETURNCODE 
+ 
+ 
+* 
+* 
+DFBARCSUCCESS 
+ 
+ 
+* 
+* 

Controlled Release Draft 

DSECT 
DS OCL24 

DC CL4' I 

DC CL4' I 

DC CLl' I 

DC CL7' I 

DC CL6' I 

EQU C' I 

DC CL2' ' 
DC CL2' ' 
DS OCL12 

DC H'O' 

EQU 0 

4-58 

These fields are utilized to 
identify the document to be 
processed by the user's program. 
They must be filled in 
as indicated in each field 
prior to calling WPOPEN. They 
may not be modified until 
WPCLOSE is called. 
Must have a 4-digit number as 
value unless document is being 
created for the first time in 
which case spaces indicates that 
the document is to be numbered 
as the next document in the 
library. 
[Reserved] 
Document library must always 
be provided. 
[Reserved] 
Volume name normally should be 
filled with spaces in which 
case the document library's 
default volume is automatically 
provided. (WPOPEN will provide 
that volume name upon return.) 
Any program-supplied value in 
this field overrides the 
document library's default 
volume value. 

[Reserved] 
[Reserved] 
These fields are used to 
conununicate the results of the 
most recent function call back 
to the calling program. Common 
values are used by all the 
functions - a value of 0 always 
indicates unqualified success. 
Contains the primary status 
should be tested first. If it 
indicates a DMS error, the 
DFBFILESTATUSl must be examined 
for further information. 
Unqualified success. 
See VS Document Access 
Subroutines Documentation for 
significance of other return 
codes. 

* 
* 

* 
* 

* 

* 
* 

October, 1985 



+DFBARCPAGELIMIT 
+DFBARCTXTOVERFLW 
+DFBARCTXTNOTFND 
+DFBARCHEADER 
+DFBARCPRTPRM 
+DFBARCENDFORMAT 
+DFBARCENDSCTION 
+DFBARCEMPTYLIBR 
+DFBARCLOW 
+DFBARCHIGH 
+DFBARCDOCUMENTID 
+DFBARCLIBRARY 
+DFBARCVOLUME 
+DFBARCOPENMODE 
+DFBARCPROTECTCL 
+DFBARCRECORDCNT 
+DFBARCRETENTION 
+DFBARCPAGE 
+DFBARCELEMENT 
+DFBARCCHARACTER 
+DFBARCLENGTHREQ 
+DFBARCUNITACCESS 
+DFBARCMODEACCESS 
+DFBARCSEARCHMODE 
+DFBARCNAME 
+DFBARCOPERATOR 
+DFBARCAUTHOR 
+DFBARCCOMMENTS 
+DFBARCDATECR 
+DFBARCTIMECR 
+DFBARCWORKTIMECR 
+DFBARCKEYSCR 
+DFBARCDATERE 
+DFBARCTIMERE 
+DFBARCWORKTIMERE 
+DFBARCKEYSRE 
+DFBARCWORKTIMETO 
+DFBARCKEYSTOTAL 
+DFBARCLINESTOTAL 
+DFBARCLINESPAGE 
+DFBARCDATEPR 
+DFBARCTIMEPR 
+DFBARCDATEAR 
+DFBARCTIMEAR 
+DFBARCARCHIVEID 
+DFBARCPASSWORD 
+DFBARCFROMPAGE 
+DFBARCTHRUPAGE 
+DFBARCSTARTPAGE 
+DFBARClSTHEADERP 

Controlled Release Draft 

EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
EQU 10 
EQU 1100 
EQU 1186 
EQU 1101 
EQU 1102 
EQU 1103 
EQU 1111 
EQU 1112 
EQU 1113 
EQU 1114 
EQU 1121 
EQU 1122 
EQU 1123 
EQU 1124 
EQU 1125 
EQU 1126 
EQU 1128 
EQU 1131 
EQU 1132 
EQU 1133 
EQU 1134 
EQU 1135 
EQU 1136 
EQU 1137 
EQU 1138 
EQU 1139 
EQU 1140 
EQU 1141 
EQU 1142 
EQU 1143 
EQU 1144 
EQU 1145 
EQU 1147 
EQU 1148 
EQU 1149 
EQU 1150 
EQU 1151 
EQU 1152 
EQU 1153 
EQU 1161 
EQU 1162 
EQU 1163 
EQU 1164 

4-59 October, 1985 



+DFBARClSTFOOTERP 
+DFBARClSTFOOTERL 
+DFBARCPAPERLNGTH 
+DFBARCMARGINl 
+DFBARCMARGIN2 
+DFBARCCOPYCOUNT 
+DFBARCFORMNUMBER 
+DFBARCCHARACSETl 
+DFBARCCHARACSET2 
+DFBARCPRINTAREA 
+DFBARCPRINTCLASS 
+DFBARCPRINTTYPE 
+DFBARCDISPOSITN 
+DFBARCFORMSTYPE 
+DFBARCHORIZONTAL 
+DFBARCFINALDRAFT 
+DFBARCFORMAT 
+DFBARCDOCSUMMARY 
+DFBARCVERTICAL 
+DFBARCDOCUMENTI2 
+DFBARCLIBRARY2 
+DFBARCVOLUME2 
+DFBARCBADTEXT 
+DFBARCBADFORMAT 
+DFBARCDMS 
+DFBARCDMS2ND 
+DFBARCDMSPROTO 
+DFBARCDMSMAP 
+DFBARCDMSQUEUE 
+DFBARCNOTOPEN 
+DFBARCWRONGMODE 
+DFBARCBEYONDPAGE 
+DFBARCDOCFULL 
+DFBARCINUSE 
+DFBARCALREADYOPN 
+DFBARCDOCEXISTS 
+DFBARCNODOCUMENT 
+DFBARCREVISION 
+DFBARCNOTFOUND 
+DFBARCDAMAGED 
+DFBARCADDRESSSP 
+DFBARCNOTHELD 
+DFBARCOVERQUEUE 
+DFBARCLIBRFULL 
+DFBARCNOFORMAT 
+DFBARCPRVTOCERR 
+DFBARCPRXMITERR 
+DFBARCVOLNOMOUNT 
+DFBARCVOLEXCLUSV 
+DFBARCVOLVTOCERR 

Controlled Release Draft 

EQU 1165 
EQU 1166 
EQU 1167 
EQU 1168 
EQU 1169 
EQU 1170 
EQU 1171 
EQU 1172 
EQU 1173 
EQU 1174 
EQU 1175 
EQU 1176 
EQU 1177 
EQU 1178 
EQU 1179 
EQU 1180 
EQU 1181 
EQU 1182 
EQU 1183 
EQU 1184 
EQU 1185 
EQU 1186 
EQU 1200 
EQU 1201 
EQU 2100 
EQU 2200 
EQU 2300 
EQU 2400 
EQU 2500 
EQU 3001 
EQU 3002 
EQU 3003 
EQU 3004 
EQU 3005 
EQU 3006 
EQU 3007 
EQU 3011 
EQU 3013 
EQU 3014 
EQU 3015 
EQU 3017 
EQU 3018 
EQU 3020 
EQU 3021 
EQU 3022 
EQU 3023 
EQU 3024 
EQU 3025 
EQU 3026 
EQU 3027 

4-60 October, 1985 



+DFBARCNOBUFFERS EQU 3028 
+DFBARCSTRINGPARM EQU 4000 
+DFBARCPARAMOVRLP EQU 4001 
+DFBAFILESTATUSl DC X'OO' Significant only if a DMS error 
+ is indicated above and can be 
+ used to determine whether 
+* subsequent information is 
+* provided in either 
+* DFBFILESTATUS2 or DFBFILECANCEL. 
+DFBAFSlSUCCESS EQU C'O' Values as per UFBFSl. 
+DFBAFSlATEND EQU C'l' 
+DFBAFSlINVKEY EQU C'2' 
+DFBAFSlIOERR EQU C'3' 
+DFBAFSlCANCEL EQU C'6' 
+DFBAFSlTIME EQU C'7' 
+DFBAFSlSHARE EQU C'S' 
+DFBAFSlOTHER EQU C'9' 
+DFBAFILESTATUS2 DC X'OO' Significant only if a DMS error 
+ indicated by DFBRETURNCODE and 
+ DFBFILESTATUSl does not indicate 
+* that a cancel code has been 
+* stored in DFBFILECANCEL. 
+* For values that indicate format 
+* or conflict errors, check the 
+* value DFBFILESTATUSX. 
+DFBAFS2NOINFO EQU C'O' Values as per UFBFS2. 
+DFBAFS2BYVIOL EQU C'4' 

,-."\ +DFBAFS2ACC EQU C'S' 
+DFBAFS2RESERR EQU C'6' 
+DFBAFS2INVFUN EQU C'S' 
+DFBAFS2XFILE EQU X'80' 
+DFBAFS2XLIB EQU X'40' 
+DFBAFS2XVOL EQU X' 20' 
+DFBAFS2XSPACE EQU X' 10' 
+DFBAFS2XVTOC EQU X'08' 
+DFBAFS2XPOS EQU X'04' 
+DFBAFS2XPROT EQU X'02' 
+DFBAFS2XFORMAT EQU X'Ol' 
+DFBAFILESTATUSX DC X'OO' Significant only if a DMS error 
+ is indicated by DFBRETURNCODE 
+ and DFBFILESTATUS2 indicates 
+* a format or conflict error. 
+DFBAFSXNOINFO EQU X'OO' Values as per UFBXCODE. 
+DFBAFSXUSE EQU X'Ol' 
+DFBAFSXDET EQU X'02' 
+DFBAFSXVOLX EQU X'03' 
+DFBAFSXPOSS EQU X'04' 
+DFBAFSXAOPEN EQU X'07' 
+DFBAFSXAUSE EQU X'08' 
+DFBAFSXDNWP EQU X'l4' 
+DFBASPARE04 DC XL3'00' [Reserved] 

Controlled Release Draft 4-61 October, 1985 



+DFBAFILECANCEL 
+ 
+ 
+* 
+* 
+* 
+* 
+* 
+DFBAOPENINFO 
+ 
+ 
+* 
+* 
+* 
+* 
+DFBAOPENMODE 
+ 
+ 
+DFBAOPENINPUT 
+DFBAOPENUPDATE 
+DFBAOPENEXTEND 
+DFBAOPENOUTPUT 
+DFBAOPENDEFAULT 
+DFBAPROTECTCLASS 
+ 
+ 
+DFBAPROTECTDFLT 
+ 
+DFBAPROTECTNONE 
+ 
+DFBARECORDCOUNT 
+ 
+ 
+* 
+* 
+* 
+* 
+DFBARETENTION 
+ 
+ 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+DFBASPAREOS 
+DFBAACCESSPARAMS 
+ 
+ 
+* 

Controlled Release Draft 

DC XI..4'00' 

DS OCL16 

DC CLl'I' 

EQU C'I' 
EQU C'U' 
EQU C'E' 
EQU C'O' 
EQU C'D' 
DC XLl'OO' 

EQU X' 00' 

EQU C' I 

DC PL4'0' 

DC PL2'0' 

DC XL8'00' 
DS OXL40 

Significant only if a DMS error 
is indicated by DFB-RETURN-CODE 
and DFBFILESTATUSl indicates 
that a cancel code has been 
stored. (This normally 
indicates an unusual condition 
for which an "Open Exit" cannot 
be used to intercept an error. 
These fields are used to 
conununicate certain parameters 
to and from WPOPEN. They must 
be filled in as indicated prior 
to calling WPOPEN (or WPCHMODE). 
Subsequent program modifications 
are ignored by other functions. 
Indicates the mode by which the 
document is processed by 

4-62 

the calling program: 
Input 
Update 
Extend 
Output 
Default Output 
File Protection Class - needs 
only be specified for "0" output 
and "D" default output modes. 
Default to user's default file 
protection class. 
No protection to be applied to 
document. 
Record count - needs only be 
specified for "0" output and 
"D" default output modes. A zero 
value indicates that the system 
should estimate a record count 
to accommodate a document of 
several pages. 
Retention period (days) - needs 
only be specified for "0" output 
and "D" default output modes. A 
zero value indicates that the 
document file may be deleted at 
any time. Any other value, up 
to 999 indicates a number of 
days in the future from which 
an "expiration date" may be 
calculated by the system. 
[Reserved] 
These fields are used to 
conununicate additional 
parameters to one or more of the 
document access subroutines. 

October, 1985 



+DFBALOCATION 
+ 
+ 
+* 
+* 
+* 
+DFBAPAGE 
+DFBAELEMENT 
+DFBACHARACTER 
+ 
+DFBASPARE06 
+DFBATEXTLENGTHS 
+ 
+ 
+* 
+* 
+DFBALNGTHREQ 
+ 
+ 
+DFBALNGTHACTUAL 
+ 
+DFBASPARE07 
+DFBAUNITACCESS 
+ 
+ 
+DFBAUNITDOCUMENT 
+ 
+DFBAUNITPAGE 
+DFBAUNITELEMENT 
+DFBAMODEACCESS 
+ 
+ 
+DFBAMODESEQ 
+DFBAMODERANDOM 
+DFBAHOLDINDIC 
+ 
+ 
+* 
+DFBAHOLDUPDATE 
+ 
+DFBASEARCHMODE 
+ 
+ 
+DFBASEARCHSPECF 
+DFBASEARCHGENRL 
+DFBASPAREOS 
+DFBASPARE09 
+DFBADOCUMENTINFO 
+ 
+ 

Controlled Release Draft 

DS OXL16 

DC PL4'0' 
DC PL4'0' 
DC PL4'0' 

DC XL4'00' 
DS OXLS 

DC H'O' 

DC H'O' 

DC XL4'00' 
DC C'P' 

EQU C'D' 

EQU C'P' 
EQU C'E' 
DC C'S' 

EQU C'S' 
EQU C'R' 
DCC' I 

EQU C'H' 

DC C'S' 

EQU C'S' 
EQU C'G' 
DC XL12'0' 
DC XL36'0' 
DS OXL384 

.These variables communicate the 
desired starting location for 
certain functions. Upon return 
from most functions, these 
fields are updated with the 
"current" location. 

4-63 

"Page" number (-2 to 120) 
"Element" within "Page" 
"Character" number within 
"Element" within "Page" 
[Reserved] 
These variables communicate 
data lengths to and from 
functions that have second 
arguments that are variable 
length text strings)-
Length of data submitted to or 
maximum data length to be 
received from function. 
Indicates actual count of bytes 
of data transferred by function. 
[Reserved] 
Used to specify the maximum 
extent of WPREAD and WPSEARCH 
operations. 
To end of document 
(WPSEARCH only) 
To end of current page 
To end of current text element 
Used to specify Sequential 
or Random mode for WPREAD and 
WPWRITE operations. 
Sequential 
Random 
Used for WPREAD operations 
to specify that a subsequent 
WPDELETE or WPREWRITE operation 
may be requested. 
Hold text for possible update 
or deletion. 
Used to specify to WPSEARCH 
whether a specific or a Ggneric 
search is to be performed. 
Specific search 
Generic (general) search 
[Reserved] 
[Reserved] 
Swnmary I header information 
stored within the document's 
"admin" block. 

October, 1985 



+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+DFB.ADOCIDENTITY 
+ 
+DFBANAME 
+DFBASPARElO 
+DFBAOPERATOR 
+DFBASPAREll 
+DFBMUTHOR 
+DFBASPARE12 
+DFBACOMMENTS 
+DFBASPARE13 
+DFBASPARE14 
+DFBADTWORKKEYS 
+ 
+ 
+DFBACREATE 
+ 
+DFBADATECR 
+DFBATIMECR 
+DFBAWORKTIMECR 
+DFBAKEYSCR 
+DFBAREVISED 
+ 
+ 
+DFBADATERE 
+DFBATIMERE 
+DFBAWORKTIMERE 
+DFBAKEYSRE 
+DFBAWORKTOTALS 
+ 
+DFBAWORKTIMETO 
+DFBAKEYSTOTAL 
+DFBALINESTOTAL 
+ 
+DFBAPAGESTOTAL 
+ 
+ 
+* 
+* 
+* 

Controlled Release Draft 

DS OXL256 

DC CL25' I 

DC CL15' I 

DC CL20' I 

DC CL20' I 

DC CL20' I 

DC CL20' I 

DC CL20' I 

DC CL20' I 

DC CL96 I I 

DS OXL30 

DS OXL15 

DC PL4'0' 
DC PL3'0' 
DC PL4'0' 
DC PL4'0' 
DS OXL15 

DC PL4'0' 
DC PL3'0' 
DC PL4'0' 
DC PL4'0' 
DS OXL18 

DC PL4'0' 
DC PL4'0' 
DC PL4'0' 

DC PL3'0' 

4-64 

Upon successful completion of 
WPOPEN, these fields contain 
either current information 
(existing document) or the 
established initial values for 
these fields if new document 
(For "D" default output mode, 
some initial values, including 
the print defaults, are obtained 
from the library's prototype 
document). 
Internal descriptive 
identification of document: 
Document Name 
[Reserved] 
Operator 
[Reserved] 
Author 
[Reserved] 
Comments 
[Reserved] 
[Reserved] 
Fields with creation I revision 
date I time stamps and work 
statistics. 
Statistics for new document: 
(prior to first print request) 
Creation date (OmmddyyF) 
Creation time (QhhmmF) 

Creation work time (OhhhhmmF) 
Creation keystrokes 
Statistics for document 
revision (after first print 
request) 
Revision date (OmmddyyF) 
Revision time (QhhmmF) 

Revision work time (OhhhhmmF) 
Revision keystrokes 
Work and statistical totals for 
document. 
Total work time (QhhhhmmF) 
Total keystrokes 
Estimated line count (need NOT 
be filled in; set by WP Editor) 
Count of total number of pages 
in the document (not including 
header, footer, and work pages) 
- updated by WPDELETE, WPREWRIT, 
and WPWRITE upon successful 
completion of requests. 

October, 1985 



+DFBALINESPAGE 
+ 
+ 
+* 
+DFBALASTPRINTED 
+ 
+DFBADATEPR 
+DFBATIMEPR 
+DFBALASTARCHIVED 
+ 
+ 
+DFBADATEAR 
+DFBATIMEAR 
+DFBAARCHIVEID 
+DFBAPASSWORD 
+ 
+DFBAPASSWORDNULL 
+DFBASPARE15 
+DFBAGLOSSARYOPT 
+ 
+ 
+* 
+DFBAGLOSSARY 
+DFBASPARE16 
+DFBAINFOUPDATE 
+ 
+ 
+* 
+* 
+* 
+* 
+* 
+DFBAINFOUPDATEY 
+DFBAPRINTPARAMS 
+ 
+ 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+* 

Controlled Release Draft 

DC PL3'0' 

DS OXL7 

DC PL4'0' 
DC PL3'0' 
DS OXL12 

DC PL4'0' 
DC PL3'0' 
DC CLS' I 

DC CL6' I 

EQU C' I 

DC XL2'0' 
DC CLl' I 

EQU C'G' 
DC XLSl'O' 
DC C'Y' 

EQU C'Y' 
DS OXL96 

4-65 

Lines I page count used for 
repagination functions, 
including the WP editor's 
(-COMMAND-)(-PAGE-) function. 
Date I time stamp of last, 
if any, printing of document. 
Last printing date (QmmddyyF) 
Last printing time (OhhmmF) 
Date I time stamp and archive ID 
from last, if any, archiving 
of document. 
Last archiving date (QmmddyyF) 
Last archiving time (QhhmmF) 
Last archive diskette's ID 
Document password - WP Editor 
protection mechanism. 
Null password value 
[Reserved] 
Glossary option indicator - if 
set by WPOPEN, indicates that 
document was previously verified 
as a glossary. 
Document is a verified glossary. 
[Reserved] 
If the document is open for any 
mode other than input and this 
field is set to "Y", the 
document will be updated with 
the appropriate fields from 
DFBDOCUMEN'l;INFO and 
DFBPRINTPARAMS when WPCLOSE is 
called. 
Yes, update document information 
Inf ormat1on used both as 
printing defaults for a 
document and as 
WPPRINT entry to submit document 
print requests. Except where 
noted, these fields are updated 
by WPCLOSE as per value of 
DFBINFOUPDATE. 
When calling WPPRINT, these 
parameters can be used 
individually as follows: 
- Valid values provided therein 

are used for the print request. 
- Numeric values of -1 and 

alphanumeric spaces or X'OO' 
indicate that the parameters are 
to be taken from the document's 
own print defaults or from 
user task's defaults or from both. 

October, 1985 



+DFBAPRINTRANGES 
+ 
+ 
+DFBAFROMPAGE 
+DFBATHRUPAGE 
+DFBASTARTPAGE 
+ 
+DFBAlSTHEADERP 
+DFBAlSTFOOTERP 
+DFBAPRINTLINES 
+ 
+DFBAlSTFOOTERL 
+ 
+DFBAPAPERLENGTH 
+ 
+DFBAPRINTMARGINS 
+ 
+DFBAMARGINl 
+DFBAMARGIN2 
+ 
+ 
+DFBACOPYCOUNT 
+DFBAFORMNUMBER 
+ 
+DFBACHARACSETl 
+DFBACHARACSET2 
+ 
+ 
+* 
+DFBASPARE17 
+DFBAPRINTSCHED 
+ 
+DFBAPRINTAREA 
+ 
+DFBAPRINTCLASS 
+DFBASPARE18 
+DFBAPRINTTYPE 
+ 
+DFBAPRTNORMAL 
+ 
+DFBAPRTMERGE 
+DFBAPRTDUAL 
+ 
+DFBADISPOSITION 
+DFBAPRTSAVE 
+DFBAPRTDELETE 
+DFBAPRINTSTYLE 
+ 
+DFBAFORMSTYPE 
+DFBASTANDARD 

DS OXL15 

DC PL3'0' 
DC PL3'0' 
DC PL3'0' 

DC PL3'0' 
DC PL3'0' 
OS OXL6 

DC PL3'0' 

DC PL3'0' 

DS OXL4 

DC PL2'0' 
DC PL2'0' 

DC PL3'0' 
DC PL2'0' 

DC PL2'0' 
DC PL2'0' 

DC XL14'0' 
DS OXL16 

DC CL8' I 

DC CLl' I 

DC XLS'O' 
DC CLl'N' 

EQU C'N' 

EQU C'M' 
EQU C'D' 

DC C'S' 
EQU C'S' 
EQU C'D' 
DS OXL16 

DC C'S' 
EQU C'S' 

Controlled Release Draft 

Variables giving range 
parameters (for pages) for 
print requests. 
First page to be printed. 
Last page to be printed. 
For page numbering, first 
to be used in headers I footers 
First page for headers, if any. 
First page for footers, if any. 
Variables specifying line 
count specifications. 
First line on page for footers, 
if any. 
Number of lines per physical 
form. 
Variables specifying left 
margin print specifications. 
Number of characters in left margin 
Number of characters in left margin 
for secondary document for 
dual-column print requests 
Copy count. 
VS printing form number or WP 
Printer device number, 0 - 254 
Character set number, 0 - 9 
Character set number, 0 - 9, 
for dual-wheel printers and for 
secondary document in 
dual-column print requests. 
[Reserved] 

4-66 

Print request scheduling 
parameters. 
Print area (not stored as 
default in doctunent). 
Print class. 
[Reserved] 
Type of print request (not 
stored as default in document). 
Normal print request. 
(single doctunent, single column) 
Merge print request, 
Dual column print request 
(one or two doctunents). 
After-print doctunent disposition 
Save document. 
Delete document. 
Print request style and format 
specification parameters. 
Forms type. 
Standard. 

October, 1985 



+DFBACONTINUOUS 
+DFBAFORMSl 
+DFBAFORMS2 
+DFBAHORIZONTAL 
+DFBAlOPITCH 
+DFBA12PITCH 
+DFBAlSPITCH 
+DFBAPSPITCH 
+DFBAVERTICAL 
+ 
+DFBAOGVPITCH 
+DFBAOSVPITCH 
+DFBAFINALDRAFT 
+DFBAFINAL 
+DFBADRAFT 
+DFBAFORMAT 
+DFBAUNJUSTIFIED 
+DFBAJUSTIFIED 
+DFBAWITHNOTES 
+DFBADOCSUMMARY 
+ 
+DFBASUMMARYYES 
+DFBASUMMARYNO 
+DFBASPARE19 
+DFBAFULLDOCID2 
+ 
+ 
+* 
+* 
+DFBADOCUMENTID2 
+ 
+ 
+* 
+DFBASPARE20 
+DE13ALIBRARY2 
+ 
+DFBASPARE21 
+DFBAVOLUME2 
+ 
+ 
+* 
+DFBASPARE22 
+DFBASPARE24 
+DFBALIBRARYLIST 
+ 
+ 
+* 
+* 
+DFBALIBRTOTAL 
+ 

Controlled Release Draft 

EQU C'C' 
EQU C'l' 
EQU C'2' 
DC C'lO' 
EQU C' 10' 
EQU C' 12' 
EQU C'15' 
EQU C'PS' 
DC C'06' 

EQU C'06' 
EQU C'08' 
DC C'F' 
EQU C'F' 
EQU C'D' 
DC C'JU' 
EQU C'UN' 
EQU C'JU' 
EQU C'NO' 
DC C'Y' 

EQU C'Y' 
EQU C'N' 
DC XL7'00' 
DS OCL24 

DC CL4' I 

DC CL4' I 

DC CLl' I 

DC CL7' I 

DC CL6' I 

DC CL2' I 

DC XL152'0' 
OS OXL256 

DC H'O' 

4-67 

Continuous forms. 
Forms I bin 1. 
Forms I bin 2. 
Horizontal pitch. 
10 pitch. 
12 pitch. 
15 pitch. 
Proportional spacing pitch. 
Vertical pitch (not stored as 
default in document). 
6 lines per inch. 
8 lines per inch. 
Final/draft specification. 
Final. 
Draft (doubled spaced). 
Justification specification. 
Unjustified. 
Justified. 
With notes, unjustified. 
Document summary print option 
specification. 
Yes, print document summary. 
No, do not print summary. 
[Reserved] 
These fields are utilized to 
identify the document to be 
used as.a secondary document 
for a merge or dual-column 
print-request. 
Must have a 4-digit number as 
value unless no secondary 
document, in which case spaces 
should be utilized. 
[Reserved] 
Document library must always 
be provided. 
[Reserved] 
Any program-supplied value in 
this field will override the 
document library's default 
volume value. 
[Reserved] 
[Reserved] 
Fields used by the WPDOCLIB 
entry for obtaining the start 
document and returning the total 
document count and the document 
list to the calling program. 
Total number of documents 
found in library. 

October, 1985 



+DFBALIBRSTART DC H'l' Number of the first document to 
+ be listed. 

~ +DFBASPARE25 DC XL12'0' [Reserved] 
+DFBALIBRENTRIES DS OXL240 Area defined for aggregate of 
+ all 30 entries. 
+DFBALIBRENTRY DS 30XL8 Individual entry aggregate. 
+ ORG DFBALIBRENTRY 
+DFBALIBRDOCUMENT DS CL4 Document in library. 
+DFBASPARE26 DC XL4'0' [Reserved] 
+ ORG 
+ ORG 
+* The following provides equates for the values of the 
+* formatting characters found in the text of the document 
+DFBACENTER EQU X'Ol' 
+DFBATAB EQU X'02' 
+DFBARETURN EQU X'03' 
+DFBAINDENT EQU x I 04 I 

+DFBADECIMALTAB EQU X'05' 
+DFBAFORMATLINE EQU X'06' 
+DFBASTOP EQU X'OB' 
+DFBANOTE EQU X'OC' 
+DFBAMERGE EQU X'OD' 
+DFBASUPERSCRIPT EQU X'OE' 
+DFBASUBSCRIPT EQU X'OF' 
+DFBANEWPAGE EQU X'86' 
+DFBASTOPX EQU X'8B' 
+DFBANOTEX EQU X'8C' 
+DFBAMERGEX EQU X'BD' 
+DFBASUPERSCRIPTX EQU X'BE' 
+DFBASUBSCRIPTX EQU X'8F' 
+DFBAEND EQU * 
+DFBALENGTH EQU DFBAEND-DFBA 
+BEGIN CODE 

Controlled Release Draft 4-68 October, 1985 



4.2.20 DISMOUNT - Dismount Disk or Tape Volume (SVC 41) 

Syntax 

[label] DISMOUNT VOLUME={(register)},TYPE={DISK}, 

Function 

{ 'string' } {TAPE} 
{ address } 

NODISPLAY={YES} [,NOWAIT={YES}][,VSID={(register)} 
{NO } { NO} { 'string' } 

{ address } 

Requests the logical dismounting of a disk or tape volume. If the 
volume referenced is a tape volume, it is also rewound and unloaded. If 
the disk is the root disk of a multidisk volume set and its VTOC shows 
any open files, the disk can not be dismounted. 

Parameter Definitions 

VOLUME The name of the volume which is to be dismounted. It may be 
specified as a register in parentheses pointing to the volume 
name, as a character string in single quotes which is the 
volume name, or as an expression addressing a 6-byte field 
containing the volume name. This parameter is required. 

TYPE Indicates whether the volume is a disk or a tape volume. 
Valid values are DISK and TAPE. This parameter is optional. 
The default is DISK. 

NODISPLAY YES indicates that no messages are to be displayed on the 
user's workstation; the operator console messages must be 
used to coordinate physical dismounting. The default is NO. 

NOWAIT YES indicates that the calling program will not wait for an 
answer back from the system task after issuing a dismount. 
No messages are displayed on the workstation C implied' 
NODISPLAY) or on the operator screen. The default is NO. 

VSID The volume set identification number for a volume which is 
part of a volume set. If no outstanding I/O exists on a 
non-root set member or on a root volumes, if no files are 
open on a single volume, the volume is dismounted. 

Controlled Release Draft 4-69 October, 1985 



Stack On InEut 

I 
I 
lo 1 2 3 

O(SP) I I I 
I (1) I <2 > 1<3> 
I FLAG I IVOL NAME 

4(SP) I 
I 
I 
I Preceding 
I Stack Data 

(1) Flag 
Bit 0 0 = Dismount disk 

1 = Dismount tape 
Bit 1 1 = No display option. 

Lower 
Address 

Higher 
Address 

Do not write to caller's workstation 
Bit 2 1 = No wait option 

Do not write dismount message, tell SYSTASK to 
erase dismount message. 

(2) Volume set ID 

(3) Volume name (6 bytes) 

Stack On Output 

O(SP) 
(1) Return Code 

Preceding 
Stack Data 

(1) Return code 

Output 

Lower 
Address 

Higher 
Address 

DISMOUNT issues a return code to the user program in the topword of 
the stack as follows: 

Controlled Release Draft 4-70 October, 1985 



Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

Examples 

Description 

Success. 

Input volume name is blank, or bytes 0-1 in input are 
nonzero. 

Volume not found. 

Volume can not be dismounted. 

Device detached. 

Volume in use by a user or the operating system. 

Volume reserved by another user. 

GETMEM pool failure. 

Device is reserved by another task. 

IPC error. 

Volume cannot be mounted, I/O in progress. 

Success, but VSCB deallocation failed. 

DMO DISMOUNT VOLUME='VOL444',TYPE=DISK 
+DMO PUSHN 0,8 GET TWO WORDS ON THE STACK 
+ MVC 2(6,15),*+10 SET VOLUME NAME 
+ B *+10 BRANCH AROUND CONSTANT 
+ DC CL6'VOL444' VOLUME NAME 
+ MVI 0(15),X'OO' SET FLAG FOR DISK VOLUME 
+ MVI 1(15),X'OO' SET BYTE 1 TO ZEROES (RESERVED) 
+ SVC 41 (DISMOUNT) ISSUE SVC 

DMl 
+DMl 
+ 
+ 
+ 
+ 

DISMOUNT VOLUME=CR4) 
PUSHN 0,8 
MVC 2(6,15),0(R4) 
MVI 0(15),X'OO' 
MVI 1(15),X'OO' 
SVC 41 (DISMOUNT) 

Controlled Release Draft 

GET TWO WORDS ON THE STACK 
SET VOLUME NAME 
SET FLAG FOR DISK VOLUME 
SET BYTE 1 TO ZEROES (RESERVED) 
ISSUE SVC 

4-71 October, 1985 



DM2 
+DM2 
+ 
+ 
+ 
+ 

LAB 
+ LAB 
+ 
+ 
+ 
+* 
+ 

DISMOUNT VOLUME=TAPEVOL,TYPE=TAPE 
PUSHN 0,8 GET TWO WORDS ON THE STACK 
MVC 2(6,15),TAPEVOL SET VOLUME NAME 
MVI 0(15),X'80' SET FLAG FOR TAPE VOLUME 
MVI 1(15),X'OO' SET BYTE 1 TO ZEROES (RESERVED) 
SVC 41 (DISMOUNT) ISSUE SVC 

DISMOUNT 
PUSHN 0,8 
MVC 
MVI 
MVI 

SVC 41 

VOLUME=TAPEVOL,TYPE=TAPE 

2(6,15),TAPEVOL 
0(15) ,X' 80' 
1(15) ,X' 00 I 

(DISMOUNT) 

GET TWO WORDS ON THE STACK 
SET VOLUME NAME 
SET FLAG FOR TAPE VOLUME 
SET BYTE 1 TO ZEROES 
(RESERVED) 
ISSUE SVC 

Controlled Release Draft 4-72 October, 1985 



4.2.21 ENDLOCAL - End Generation of Local Symbol Names 

Syntax 

END LOCAL 

Function 

Turns off the automatic generation of local symbol names initiated by 
the use of the LOCAL macro. 

Example 

See the use of this macro in the example under LOCAL. 

Controlled Release Draft 4-73 October, 1985 



4.2.22 EXTRACT - Extract Data From System Control Blocks (SVC 28) 

Syntax 

[label] EXTRACT FORM={BRIEF},AREA=address 
{FULL } 
{PCPCW} 
{LIST } 

[,ALOGFTIME=address][,ASUPPORT=address] [,ATOETRT=address] 
(,CDISKET=address] [,CPU=address] [,CURLIB=address] 
[,CURVOL=address] [,CURRENCY=address] [,DATEFMT=address] 
[,DATESEP=address] [,DECIMALPT=address][,DEVCNT=address] 
[,DISKIO=address] [,DYVAL=address] [,ETOATRT=address] 
[,EXFLGS=address] [,EXTPRIOR=address] [,ETIME=address] 
[,FILECLAS=address] [,FORM#=address] [,HZ=address] 
[,INLIB=address] [,INVOL=address] [,JOBCLASS=address] 
[,JOBLIMIT=address] [,JOBNAME=address] [,JOBQUEUE=address] 
[,LINES=address] [,NATION=address] [,NRES=address] 
[,OCNT=address] [,OTIO=address] [,OUTLIB=address] 
[,OUTVOL=address] [,PCPCW=address] (,PICOUNT=address] 
[,POCOUNT=address] [,PRINTER=address] [,PRINTIO=address] 
[,PRNTMODE=address] [,PROGLIB=address] [,PROGVOL=address] 
[,PRTCLASS=address] [,PTIME=address] [,RDFLGS=address] 
[,RUNLIB=address] [,RUNVOL=address] [,SEG2BUF=address] 
[,SEG2SIZE=address] (,SEG2SZE=address] [,SICOUNT=address] 
[,SOCOUNT=address] [,SPOOLIB=address] [,SPOOLSYS=address] 
[,SPOOLVOL=address] [,STACK=address] [,STATIC=address] 
[,SYSID=address] [,SYSLIB=address] [,SYSNAME=address] 
[,SYSPAGE=address] [,SYSVOL=address] [,SYSWORK=address] 
[,TAPEIO=address] [,TASK#=address] (,TASKTYPE=address] 
[,THOUSSEP=address] [,TIMESEP=address] [,UEXFLGS=address] 
(,URDFLGS=address] [,USERID=address] (,USERNAME=address] 
[,UWTFLGS=address] [,VERSION=address] [,VOICEIO=address] 
[,WORKLIB=address] [,WORKVOL=address] [,WS=address] 
[,WSIO--address] [,WTFLGS=address] [,PRTFILECLAS=address] 

[,ALOGFENAB=(inaddress,outaddress)] 
[,CLUSTER=(inaddress,outaddress)] 
[,DEVICE=(inaddress,outaddress)] 
[,DLPNAME=(inaddress,outaddress)] 
[,TAPEVOL=(inaddress,outaddress)] 
[,VOLVCB=(inaddress,outaddress)] 

[,DEVLIST=(inaddress,outaddress,outarealength)] 
[,DLPDEV#=(inaddress,outaddress,outarealength)] 
(,OTASK=(inaddress,outaddress,outarealength)] 
[,VOLUME=(inaddress,outaddress,outarealength)] 

Controlled Release Draft 4-74 October, 1985 



Function 

Extracts data from system control blocks that may be useful to user 
programs. 

Parameter Definitions 

FORM 

BRIEF 

FULL 

Describes the type of information required. 

Used to request four items as described below. The output 
area must be at least 12 bytes long. 

(1) Amount of memory, in bytes, that is currently not 
fixed (4 bytes). 

(2) Number of files that a task may have open 
simultaneously (2 bytes). 

(3) Workstation number associated with requesting task, 
or -1 if no associated workstation (2 bytes). 

(4) Remaining stack space, in bytes, after return from 
EXTRACT (4 bytes). 

Used to request all the i terns listed below. The output 
area must be at least 98 bytes long. 

(1) Total physical area in bytes not currently resident 
(4 bytes). 

(2) Number of files that a task may have open 
simultaneously (2 bytes). 

(3) Workstation number associated with requesting task, 
or -1 if no associated workstation (2 bytes). 

( 4) Remaining stack space in bytes after return from 
EXTRACT (4 bytes). 

(5) One day in clock units (4 bytes). 
(6) System default library volume name (6 bytes). 
(7) System default library name (8 bytes). 
( 8) Task's default printer number, or -1 if no default 

printer number (2 bytes). 
(9) User program library volume (6 bytes). 
(10) User program library name (8 bytes). 
(11) Current file-access bit map for execute access 

(12) 
(13) 
(14) 

(15) 
(16) 
(17) 

(18) 

(from program file block CPFB))(4 bytes). 
Default nonoutput volume for OPEN (6 bytes). 
Default nonoutput library name (8 bytes). 
Current file-access bit map for read access 
from program file block (PFB)(4 bytes). 
Default output volume for OPEN (6 bytes). 
Default output library name (8 bytes). 
Current file-access bit map for update access 
from program file block CPFB)(4 bytes). 
Number of the user modifiable area buffer pages 
currently available (2 bytes). 

Controlled Release Draft 4-75 October, 1985 



PCPCW 

AREA 

LIST 

(19) Print output mode: Spooled ( S) , Keep (K), Hold 
(H), or On-line (0) (1 byte). 

(20) Default output file-protection class, or blank (1 
byte). 

(21) User logon identification (3 bytes). 
(22) Task current paging priority, from task control 

block ( 1 byte) . 
(23) Suggested lines-per-page for print files (1 byte). 
(24) Operating system version nwnber (packed nwnber in 

the format VVRRPP, where VV is the version, RR is 
the revision, and PP is the patch level) (3 
bytes). 

Program control word (PCW) at the time of the most recent 
program exception for which a user exit was specified ( 8 
bytes). PCPCW is used to request the value of the current 
PCW when a program exception occurs for which an exit 
routine was provided, and intended for use in such a 
routine. Its use at other times results in undefined and 
irrelevant output. The output area must be at least 8 
bytes long. 

Specifies the address of the output area, either as an 
expression addressing that area, or as a register 
expression in parentheses, where the register contains the 
address of the area. Not valid with FORM=LIST. 

Used when a list of needed items is supplied. The 
parameter specifies the address of an area to receive the 
corresponding data item. 

To use any of the parameters described below, FORM=LIST must be 
specified. 

ALOGFTIME 

AS UP PORT 

ATOETRT 

CDISKET 

Automatic logoff time interval is used to obtain the 
maximum time that a workstation may remain inactive 
before it is automatically logged off. Time may be 
from 0 to 99 minutes. Returns one halfword with the 
time in the least significant byte (2 bytes). 

Application support 
Mailway®, and DMS/TX 
byte). 

is used to determine if WP, 
are supported on the system ( 1 

ASCII-to-EBCDIC translation table (256 bytes). See TR 
instruction in VS Principles of Operation manual for 
use. 

Device nwnber of system's central diskette (2 bytes). 

Controlled Release Draft 4-76 October, 1985 



~ 

CPU 

CURLIB 

CURRENCY 

CURVOL 

DATESEP 

DATEFMT 

DECIMALPT 

DEVCNT 

DISKIO 

DYVAL 

ETIME 

ET OAT RT 

EXFLGS 

EXTPRIOR 

FILECLAS 

FORM# 

HZ 

INLIB 

INVOL 

JOBCLASS 

JOBLIMIT 

JOBNAME 

Current CPU ID (2 bytes). 

Library in which current program resides (8 bytes). 

Currency symbol (3 bytes). 

Volume where current program resides (6 bytes). 

Date separator (1 byte). 

Indicates whether the date set is in European or 
American format (1 byte). 

Decimal point character (1 byte). 

Highest device number in device configuration (4 bytes). 

Count of disk I/Os for this run (4 bytes). 

One day in clock units (4 bytes). 

Elapsed run time since command processor initiation, in 
hundredths of seconds (4 bytes). 

EBCDIC-to-ASCII translation table (256 bytes). See TR 
instruction in VS Principles of Operation manual for 
use. 

Current file-access bit map for execute access, from 
program file block CPFB)(4 bytes). 

Task's current paging priority from task control block 
( 1 byte). 

Default output file-access protection class, or blank 
(1 byte). 

Default form number for print files (0-254) (1 byte). 

A/Cline frequency (2 bytes). 

Default input library (8 bytes). 

Default input volume for OPEN (6 bytes). 

Default job class (A-Z) (1 byte). 

Default job CPU time limit (4 bytes). 

Name of background job (8 bytes). 

Controlled Release Draft 4-77 October, 1985 



JOBQUEUE 

LINES 

NRES 

NATION 

OCNT 

OTIO 

OUTLIB 

OUTVOL 

PCPCW 

PI COUNT 

POCOUNT 

PRINTER 

PRINT IO 

PRNTMODE 

PROGLIB 

PROGVOL 

PRTCLASS 

PRTFILECLAS 

PTIME 

RDFLGS 

RUNLIB 

RUNVOL 

Default job status: Run (R) or Hold CH) (1 byte). 

Suggested lines-per-page for print files Cl byte). 

Total physical area not currently resident, in bytes (4 
bytes). 

Nation code (1 byte) 

Number of files that current task can have open 
simultaneously, excluding files already open (2 bytes). 

Count of I/Os for other devices not included under 
WSIO, DISKIO, PRINTIO, or TAPEIO (4 bytes). 

Default output library (8 bytes). 

Default output volwne for OPEN (6 bytes). 

Program Check Old PCW for last program check (8 bytes). 

Program pagein count (4 bytes). 

Program pageout count (4 bytes). 

Task's default printer number, or -1 if no default 
printer (2 bytes). 

Count of printer I/Os for this run (4 bytes). 

Default print output mode (1 byte). 

User program library used by LINK SVC (8 bytes). 

User program volwne name used by LINK SVC (6 bytes). 

Default print class for print files (A-Z) Cl byte). 

Default file class for print class Cl byte). 

Processor time of run since command processor 
initiation, in hundredths of seconds (4 bytes). 

Current file-access bit map for read access, from 
program file block (PFB) (4 bytes). 

User program library name, used by command processor 
RUN function ( 8 bytes). 

User program library volwne, used by command processor 
RUN function (6 bytes). 

Controlled Release Draft 4-78 October, 1985 



SEG2BUF 

SEG2SIZE 

SEG2SZE 

SI COUNT 

SOCOUNT 

SPOOLIB 

SPOOLSYS 

SPOOL VOL 

STACK 

STATIC 

SYS ID 

SYSLIB 

SY SN AME 

SYS PAGE 

SYSVOL 

SYSWORK 

TAPEIO 

TASK# 

TASKTYPE 

Number of the user modifiable area buffer pages 
currently available (2 bytes). 

Length of the user modifiable area, in bytes (4 bytes). 

Default the user modifiable area size for any task in 
the system (2 bytes). 

System pagein count (4 bytes). 

System pageout count (4 bytes). 

Spool library name constructed from user ID or 
background task number (8 bytes). 

Remote system to which print files are automatically 
routed via file transfer service (8 bytes). 

Default spool volume (6 bytes). 

Remaining stack space in bytes after return from 
EXTRACT (4 bytes). 

Pointer to beginning 
program ( 4 bytes) • 
re-establishing the 
routine.) 

of static areas for current 
This pointer may be useful in 

ability to address in a CEXIT 

System WangNet name (8 bytes). 

System default library name (8 bytes). 

System name (16 bytes). 

System paging library name (8 bytes). 

System default library volume name (6 bytes). 

System work library (paging files, system task queues, 
etc.) which BACKUP skips (8 bytes). 

Count of tape I/Os this run (4 bytes). 

Unique task identifier (4 bytes). 

Task type CF for foreground, FS for dedicated 
foreground system task, B for background task, and BS 
for dedicated background system task) (2 bytes). 

Controlled Release Draft 4-79 October, 1985 



THOUS SEP 

TIMESEP 

UEXFLGS 

URDFLGS 

USERID 

USERNAME 

UWTFLGS 

VERSION 

VOICEIO 

WORKLIB 

WORKVOL 

ws 

WSIO 

WTFLGS 

Thousands separator Cl byte). 

Time separator Cl byte). 

User's base file-access bit map for execute access, 
from user's extended task control block CETCB) (4 
bytes). 

User's base file-access bit map for read access, from 
user's extended task control block CETCB) (4 bytes). 

User logon identification (3 bytes). 

User name (from system user list) (24 bytes). 

User's base file-access bit map for update access, from 
user's extended task control block CETCB) (4 bytes). 

Operating system version number, which is a packed 
number in the format WRRPP, where VV is the version, 
RR is the revision, and PP is the patch level (3 bytes). 

The number of voice device I/Os for this run Cl byte). 

Work library name constructed from user ID or 
background task number (8 bytes). 

Default work volume (6 bytes). 

Workstation number associated with requesting task, or 
-1 if no associated workstation (2 bytes). 

Count of workstation I/Os for this run (4 bytes). 

Current file-access bit map for update access, from 
program file block (PFB) (4 bytes). 

For the following seven parameters, two addresses are supplied. The 
first address specifies further input, and the second address specifies 
an area to receive the corresponding data. To use these parameters, 
FORM=LIST must be specified. 

ALOGFENAB Input: Device number in hex Cl byte). 
Output: Automatic logoff enable status (1 byte). 

Y = YES, N = NO, hex 0 = invalid device number. 

Controlled Release Draft 4-80 October, 1985 



CLUSTER Input: Device number (2 bytes). 

DEVICE 

Output: 

NOTE 

( 1) Device nwnber of the archiver diskette, or 0 
if none (2 bytes). 
(2) Device number of the next device on the 
cluster, or 0 if none (2 bytes). 
(3) IOP port (1 byte). The value is taken from 
the UCBDRTEPORT field of the unit control block 
CUCB). 
(4) Broadband channel (1 byte). The value is 
taken from the UCBDRTECHL field of the UCB. 
(5) Short address (1 byte). The value is taken 
from the UCBDRTEASA field of the UCB. 
(6) Device on the cluster (1 byte). The value is 
taken from the UCBDRTEDCC field of the UCB. 
(7) Cluster on port (1 byte). The value is taken 
from the UCBDRTECC field of the UCB. 
(8) Spare (7 bytes). 

The CLUSTER parameter is used to obtain the device number of 
the archiver diskette on the same cluster as the input device 
number. If more than one archiver diskette is on the 
cluster, then the archiver diskette device number returned is 
the next in sequence. 

Input: 
Output: 

Device address (1 byte). 
(1) Device class (1 byte). 
(2) Device type Cl byte). 
(3) Usage: EX (exclusive), SH (shared), or DT 
(detached) (2 bytes). 
( 4) Task identifier of device owner, or -1 if no 
task identifier (4 bytes). 
(5) Volume name of removable volume, disk or tape 
only (6 bytes). Blank if nothing mounted. 
(6) Volume name of fixed volume, disk only (6 
bytes). Blank if nothing mounted. 
( 7) Density support for tapes (2 bytes). First 
byte = T for triple density, = D for double 
density. Second byte = G for 6250 BPI CGCR mode). 
For disks, this value represents the following: 
VSID for removable (1 byte); VSID for fixed (1 
byte). 
(8) Physical device address (2 bytes) 

Controlled Release Draft 4-81 October, 1985 



DLPNAME 

NOTE 

Input: Name of Data Link Processor (as specified in the 
SYSGEN procedure). 

The output area contains all zeroes if the specified DLP name 
is invalid. 

IOPTYPE 

Output: (1) Bit map of devices on DLP (4 bytes). 
(2) First device on DLP (2 bytes). 
(3) Type of DLP (1 = 22V06-l, 2 = 22V06-2, 

3 = 22V06-3) Cl byte). 
(4) Number of lines CRS-232) controlled by the DLP 
Cl byte>. 
(5) Microcode file status: X'OO' if stopped, 
X'80' if loaded (1 byte). 
(6) DLPKIND '0' = peripheral/device processor, 

'1' =device processor (1 byte). 
(7) Reserved for future use (2 bytes). 
C 8) Microcode file name C 8 bytes), zero if not 
loaded. 
(9) Microcode library name (8 bytes), zero if not 
loaded. 
(10) Microcode volume name (6 bytes), zero if not 
loaded. ~ 
(11) Reservation status of DLP (1 byte): X'80' if 
reserved, X'OO' if not 
(12) Task number of 
OLP ( 3 bytes ) . 
(13) Current protocol 
(14) Loadable status: 

reserved. 
the task which reserved the 

ID (2 bytes). 
X'OO' nonloadable 
X'Ol' loadable 

Input: Device address Cl byte). 
Output: ( 1) IOP/IOC type ( 1 byte) . The value is taken 

from the PPBTYPE field of the peripheral processor 
block (PPB) for the IOP associated with the input 
device address. 
(2) Spare (11 bytes). 

Controlled Release Draft 4-82 October, 1985 



TAPEVOL 

VOLVCB 

Input: 
Output: 

Volwne serial number (6 bytes). 
(1) Device address, or -1 if volwne not mounted (1 
byte). 
(2) 1 byte of binary zeroes (reserved). 
(3) Density, BPI in binary: 556, 800, or 1600 (2 
bytes). 
(4) Label type: AL (ANSI), NL (no label), IL (IBM 
label), or blank if volwne not mounted (2 bytes). 
(5) Usage: SH (shared), EX (exclusive), or blank 
if not mounted (2 bytes). 
( 6) Task identifier of tape mounter, or -1 if no 
task ID (4 bytes). 
(7) Current file sequence number (2 bytes). 
(8) 6 bytes of binary zeroes (reserved). 

Input: Volwne name (6 bytes). 
Output: (1) VCB address (4 bytes). 

(2) Reserved (4 bytes). 

The next four parameters each have three subparameters. The first 
subpararneter specifies the address of further input, the second 
subparameter specifies the address of an area to receive the 
corresponding data, and the third subparameter is the length of the 
output area (specified as an expression or register in parentheses). The 
maximum number of device addresses in the device list is two less than 
the output length specified. 

DEVLIST Input: 
Output: 

DLPDEV# Input: 
Output: 

NOTE 

Device class, as in EXTRDDEVCLASS Cl byte). 
( 1) Total number of devices for specified device 
class (1 byte). 
(2) Number of device addresses supplied (1 byte). 
( 3) Device address list ( 1 byte for each device 
address). 

Device address (2 bytes). 
Cl) Device status flag ( 1 byte): X' 80' if open, 
X'40' if reserved, zero otherwise. 
(2) Task number of the task which reserved the 
OLP, or zero if device is unreserved (3 bytes). 
(3) Name of the DLP on which the device is 
configured (4 bytes). 

For the DLPDEV# parameter, the output area contains zeroes if 
the specified device address is invalid. 

Controlled Release Draft 4-83 October, 1985 



OTASK 

NOTE 

Input: Task identifier (4 bytes). 
Output: ( 1) Workstation device number of task 

specified, or -1 if no associated 
workstation Cl byte). 
(2) Current user ID for task specified, or 
blank if no associated user ID (3 bytes). 
(3) Current user name for task specified, 
or blank if no associated user name (24 
bytes). 
(4) Type (F, FS, B, BS) of task specified 
(see TASKTYPE) ( 2 bytes) . 
(5) Status of task (18 bytes). 
(6) Name of initial program run (8 bytes). 
(7) Name of current program run (8 bytes). 
(8) Initial program start date (4 bytes). 
(9) Initial program start time (4 bytes). 
( 10) Elapsed time since CP initiation, in 
hundredths of seconds (4 bytes). 
(11) Processor time since CP initiation, in 
hundredths of seconds. 
(12) Count of workstation I/O since initial 
program run (4 bytes). 
(13) Count of disk I/O since initial 
program run (4 bytes). 
( 14) Count of tape I/O since initial 
program run (4 bytes). 
(15) Count of printer I/O since initial 
program run (4 bytes). 
(16) Count of other I/O since initial 
program run (4 bytes). 
(17) Program pagein count (4 bytes). 
(18) Program pageout count (4 bytes). 
(19) System pagein count (4 bytes). 
(20) System pageout count (4 bytes). 
(21) Reserved (4 bytes). 

The VOLUME parameter cannot be used for volume sets. Use 
VSETINFO or VOLINFO. 

Controlled Release Draft 4-84 October, 1985 



VOLUME 

Examples 

EXO 
+EXO 
+ 
+ 

Input: Volume name (6 bytes). 
Output: ( 1) Device number ( 1 byte) , or -1 if volume not 

mounted. 

EXTRACT 
PUSH 
MVI 
SVC 

(2) Volume type (1 byte): F for fixed, R for 
removable, or blank if not mounted. 
(3) Label type (2 bytes): SL (standard label), NL 
(no label), or blank if not mounted. 
(4) Usage (2 bytes): SH (shared), RR (restricted 
removal), PR (protected), EX (exclusive), or blank. 
(5) Task identifier always -1 (4 bytes). 
(6) Blocks per cylinder (2 bytes). 
(7) Maximum transfer in bytes (2 bytes). 
(8) Cylinders per volume (2 bytes). 
( 9) Cylinders per physical volume, 
including replacement or unused blocks (2 
bytes>. 
(10) Number of files open on this volume (2 
bytes). 
C 11) Sector type, diskette only Cl byte) : 
soft sector CS), hard sector CH). 
(12) Addressing in effect, diskette only (1 
byte): nonstandard (N), standard (S). 
(13) Fault tolerance level (2 bytes): (CT) 
crash tolerant, (MT) media tolerant, or 
blank for no tolerance. 
(14) Paging file eligibility (1 byte): CY} 
paging files allowed, (N) no paging files 
allowed. 
(15) Spool file eligibility Cl byte): CY> 
spool files allowed, (N) no spool files 
allowed. 
(16) Work file eligibility (1 Byte): (Y) 

work files allowed, (N) no work files 
allowed. 
(17) Secure volume. Cl byte): (Y) volume is 
secure, (N) volume is not secure. 
(18) Cylinders per diagnostic volume (4 
bytes). Includes all of EXTRDVOLCVP plus 
diagnostic cylinders. 
(19) Extent limit for file creations Cl 
byte). 
(20) Total extent limit (1 byte). 

FORM=BRIEF,AREA=CR3) 
0,R3 AREA 
0(15),0 FORM=BRIEF 
2 8 C EXTRACT) 

Controlled Release Draft 4-85 October, 1985 



EXl 
+EXl 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

EX2 
+EX2 
+ 
+ 
+ 
+ 
+ 

EX3 
+EX3 
+ 
+ 
+' 
+ 
+ 
+ 
+ 

EXTRACT INLIB=Al,INVOL=(Rl) 
DS OH 
PUSH 0,Rl INVOL 
PUS HA 0,11 IDENTIFIER 
PUS HA 0,Al INLIB 
PUS HA 0,12 IDENTIFIER 
PUS HA 0,2 COUNT OF ITEMS 
MVI 0(15),3 FORM=LIST 
SVC 28 (EXTRACT) 

EXTRACT 
DS 

OUTLIB=Al,VOLUME=CA2,(Rl)) 
OH 

PUS HA 
PUS HA 
PU SHA 
MVI 
SVC 

0,Al 
0,15 
0,1 
0(15),3 
2 8 (EXTRACT) 

OUTLIB 
IDENTIFIER 
COUNT OF ITEMS 
FORM=LIST 

EXTRACT DEVLIST=(A2,(Rl),12) 
DS OH 
PUSHA 0,A2 
PUSH 0,Rl 
MVI 0(15),12 
PUSHA 0,59 
PUSHA 0,1 
MVI (15) ,4 
SVC 28 (EXTRACT) 

DEVLIST INPUT 
DEVLIST OUTPUT 
OUTPUT LENGTH 
IDENTIFIER 
COUNT OF ITEMS 
FORM=LIST WITH ADDITIONAL INPUT 

Controlled Release Draft 4-86 October, 1985 

~ 



4.2.23 EXTRD - Describe Output Area For The Extract SVC 

Syntax 

EXT RD [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

Describes the data structure used by the EXTRACT supervisor call to 
store the values of the requested information. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Structure 

EXT RD 
BEGIN ~ 
CLASSO I +O 

+4 
+8 

ORG 

CLASSl +o 
+4 
+8 
+c 

SYSVOL I +10 
+14 
+18 
+lC 

RUNVOL I +20 
+24 
+28 
+2C 
+30 
+34 

Specification of NODSECT results in the EXTRD fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, the system generates a DSECT 
with the name EXTRD (plus the optional suffix). 

Provides the optional specification of a register for which 
a USING statement for the EXTRD fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters EXTRD, the user-provided SUFFIX Cone ASCII 
character in length), and the field name. 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

NRES 
OCNT ws 
STACK 

DYVAL 
SCDVOL 

SCDNAME +16 i SYSLIB 

DEFPRT +lE i PRINTER 
UPDVOL 

UPDNAME +26 i RUNLIB 

EXLFGS 
VOL +32 l INVOL 

Controlled Release Draft 4-87 October, 1985 



BYTE 0 BYTE l BYTE 2 BYTE 3 

~' 

INLIB +38 FILEl 
+3C 
+40 RDFLGS 

OUTVOL +44 VOLO 
+48 FILElO +4A t OUTLIB 
+4C 
+so I WTFLGS 
+S4 I SEG2BUF 

PRNTMODEf +S8 PRTTYPE FPCLASS I USERID TCBSCC +S9 t FILECLAS 
+SC EXTPRIORI LINES VERSION +SD t TCBSCC 
+60 I DEFLIBlN +SF t SPAREl 
+64 
+68 DEFLIBlV 

+33A I 

ORG 

CLASS2 +o PCPCW 
+4 

ORG ~ 

+o DEVCLASSI TYPE DEVUSAGE 
+4 DEVUSER 
+8 DEVREM 
+c DEVFUCED 

+10 
+14 DEVSPEC IDEVSPEC2 IDEVPDA 

ORG 

+o VOLD EV VOLTYPE VOLLABEL I 
+4 VOL USAGE VOL USER I 
+8 VOLBC I 
+c VOLMAXTFR VOLCV I 

+10 VOLCVP VOLOCNT I 
+14 VOLSECT I VOLADDR VOLTOL I 
+18 VOL PAGE I VOLSPOOL VOLWORK I VOLSECUREI 
+lC VOLCVD XLMTOPENIXLMTTOTL I 

Controlled Release Draft 4-88 October, 198S 



BYTE 0 BYTE 1 BYTE 2 BYTE 3 

~ 

ORG 

+O OTASKWS OTASKUID 
+4 OTASKNAME 
+8 
+c 

+10 
+14 
+18 
+IC OTASKTYPE OTASKSTAT 
+20 
+24 
+28 
+2C 
+30 OTASKPROGI 
+34 
+38 OTASKPROGC 
+.3C 
+40 OTASKIDATE 
+44 OTASKITIME 
+48 OTASKETIME 
+4C OTASKPTIME 
+SO OTASKWSIC 
+S4 OTASKDSKIO 

~ +S8 OTASKTAPIO 
+SC OTASKPRTIO 
+60 OTASKVCIO 
+64 OTASKOTIO 
+68 OTASKPICNT 
+6C OTASKPOCNT 
+70 OTASKSICNT 
+74 OTASKSOCNT 
+78 OTASKSPARE 

ORG 

+o TAPED EV TPESPARll TAPED EN 
+4 TAPELABEL I TAPEUSAGE 
+8 TAPEUSER 
+c TAPEFSEQ TAPESPAR2 

+10 

ORG 

+O I DLTOT DLNUM DLENTRY I +2 t DLIST 

Controlled Release Draft 4-89 October, 198S 



ORG 

ORG 

ORG 

ORG 

ORG 

ORG 

+o 
+4 
+8 
+c 

+10 
+14 
+18 
+1c 
+20 
+24 

+o 
+4 

+o 
+4 

+o 

+o 
+4 
+8 
+c 

BYTE 0 BYTE l 

I DLPDEVMAP 
I DLPDEV#l 
IDMCSTATUSI DLPKIND 
I MCFILE 
I 
I MCLIB 
I 
I MCVOL 
I 
I 

IDEVSTATUSI DEVTASK# 
I DEVDLPNAME 

VCBADDR 

I DEFLIBR 

ADISKET 
PORT DCHNL 
COP SPARE 

+78 I IDIDERR 

+ 0 I ALOOF 

Controlled Release Draft 

BYTE 2 BYTE 3 

~ 

I 
DLPTYPE IDLPLINECNTI 
DLPSPARE I 

I 
I 
I 
I 
I 

DLPRSRV DLPTASK# I 
I 

(""\ 

NEXT DEV 
ASA DCC 

4-90 October, 1985 



Example 

EXT RD 
EXT RD DSECT 
* * SYMBOLIC DEFINITION OF THE RESULT AREA OF THE 'EXTRACT' 
* SUPERVISOR ROUTINE, AND ID CODES FOR CLASS 3 AND 4 EXTRACT 
* ITEMS 
* 
* 
* 
* 

DATE 5/27179 
VERSION 2.01 (INCLUDES 2246C WORKSTATION) 

EXTRDBEGIN 
* 
EXTRDIDMAX 
* 
***********************CLASS 
EXTRDCLASSO 
EXTRDNRES 
* 
EXTRDOCNT 
* 
* 
* 
EXTRDWS 
* 

* 
EXTRDSTACK 
* 

OS OXLl 

EQU 100 

(UNALIGNED) 

MAX ID # CURRENTLY IN 
USE-FROM EXTRACT MACRO 

O***************************************** 
OS OXL12 RETURNED FOR CLASS 0: 
OS AL4 PHYSICAL MEMORY (BYTES) 

NOT PERMANENTLY RESIDENT 
OS HL2 NUMBER OF FILES WHICH 

CURRENT TASK MAY HAVE 
OPEN, EXCLUDING FILES 
ALREADY OPEN 

OS HL2 TASK'S ASSOCIATED 

OS AL4 

WORKSTATION NUMBER, OR 

-1 IF NONE 
REMAINING STACK SPACE 

***********************CLASS l***************************************** 
ORG EXTRDBEGIN 

EXTRDCLASSl OS OXL98 RETURNED IN ADDITION 
* FOR CLASS 1: 

ORG EXTRDBEGIN+L'EXTRDCLASSO 
OS FL4 EXTRDDYVAL 

EXTRDSYSVOL 
EXTRDSCDVOL 
EXTRDSYSLIB· 
EXTRDSCDNAME 
EXT RD PRINTER 
EXTRDDEFPRT .,, 
EXTRDRUNVOL 
EXTRDUPDVOL 
EXTRDRUNLIB 
EXTRDUPDNAME 
EXTRDEXFLGS 
EXTRDINVOL 

Controlled Release Draft 

OS OCLG 
OS CL6 
OS OCLB 
OS CLB 
OS OHL2 
OS HL2 

DS OCLG 
OS CL6 
OS OCLB 
DS CLB 
OS BL4 
OS OCL6 

4-91 

ONE DAY IN CLOCK UNITS 
SYSTEM DEFAULT LIBRARY 

VOLUME NAME 
SYSTEM DEFAULT LIBRARY 

Nl\ME 
DEFAULT ONLINE PRINTER 

DEVICE NUMBER, 
OR -1 OF NONE 

USER PROGRAM LIB.VOLUME 

USER PROGRAM LIB.NAME 
'EXECUTE' ACCESS MASK 

October, 1985 



EXTRDVOL DS CL6 DEFAULT INPUT VOLUME 
EXTRDINLIB DS OCL8 
EXTRDFILEl DS CL8 DEFAULT INPUT LIBRARY ~ 
EXTRDRDFLGS DS BL4 'READ' ACCESS MASK 
EXTRDOUTVOL DS OCL6 
EXTRDVOLO DS CL6 DEFAULT OUTPUT VOLUME 
EXTRDOUTLIB DS OCL8 
EXTRDFILElO DS CL8 DEFAULT OUTPUT LIBRARY 
EXTRDWTFLGS DS BL4 'WRITE' ACCESS MASK 
EXTRDSEG2BUF DS BL2 NUMBER OF USER MODIFIABLE 

* AREA 'BUFFER' PAGES 
* CURRENTLY AVAILABLE 
EXTRDPRNTMODE DS OCLl 
EXTRDPRTTYPE DS CLl PRINT OUTPUT MODE 
* ( I s I , 'H I , OR I 0 I ) 

EXTRDFILECLAS DS OCLl 
EXTRDFPCLASS DS CLl DEFAULT FILE PROTECT 
* CLASS 
EXTRDUSERID DS CL3 CURRENT USER LOGON ID 
EXTRDTCBSCC DS OHLl (DO NOT USE) 
EXTRDEXTPRIOR DS HLl TASK'S PAGING PRIORITY 
EXTRDLINES DS HLl SUGGESTED LINES/PAGE 
EXTRDSPAREl DS OBL3 UNUSED PRIOR TO RELEASE 3.1 

* (WAS BINARY ZEROES) 
EXTROVERSION DS XL3 SYSTEM VERSION NUMBER 
* (SEE EXTRDIDVERSION) 
EXTRDIDDEFLIBl EQU 93,80,C 
EXTRDIDDEFLIB2 EQU 94,80,C ~ 

EXTRDIDDEFLIB3 EQU 95,80,C 
EXTRDIDDEFLIB4 EQU 96,80,C 
EXTRDIDDEFLIBS EQU 97,80,C 
EXTRDIDDEFLIB6 EQU 98,80,C 
EXTRDIDDEFLIB7 EQU 99,80,C 
EXTRDIDDEFLIB8 EQU 100,80,C 
EXTRDIDDEFLIB9 EQU 101,80,C 
EXTRDIDDEFLIBlO EQU 102,80,C 
EXTRDDEFLIBlN DS CL8 DEFAULT LIB NAME #1 
EXTRDDEFLIBlV DS CL72 DEFAULT NAMESTRING 1 
EXTRDDEFLIB2N DS CL8 DEFAULT LIB NAME #2 
EXTRDDEFLIB2V DS CL72 DEFAULT NAMESTRING 2 
EXTRDDEFLIB3N DS CL8 DEFAULT LIB NAME #3 
EXTRDDEFLIB3V DS CL72 DEFAULT NAMESTRING 3 
EXTRDDEFLIB4N DS CL8 DEFAULT LIB NAME #4 
EXTRDDEFLIB4V DS CL72 DEFAULT NAMESTRING 4 
EXTRDDEFLIBSN DS CL8 DEFAULT LIB NAME #5 
EXTRDDEFLIBSV DS CL72 DEFAULT NAMESTRING 5 
EXTRDDEFLIB6N DS CL8 DEFAULT LIB NAME #6 
EXTRDDEFLIB6V DS CL72 DEFAULT NAMESTRING 6 
EXTRDDEFLIB7N DS CL8 DEFAULT LIB NAME #7 

Controlled Release Draft 4-92 October, 1985 



l""-1 

EXTRDDEFLIB7V 
EXTRDDEFLIB8N 
EXTRDDEFLIB8V 
EXTRDDEFLIB9N 
EXTRDDEFLIB9V 
EXTRDDEFLIBlON 
EXTRDDEFLIBlOV 
* 
***********************CLASS 

EXTRDCLASS2 
EXTRDPCPCW 
* 
* 

ORG EXTRDBEGIN 

DS CL72 
DS CL8 
DS CL72 
DS CL8 
DS CL72 
DS CL8 
DS CL72 

DEFAULT NAMESTRING 7 
DEFAULT LIB NAME #8 
DEFAULT NAMESTRING 8 
DEFAULT LIB NAME #9 
DEFAULT NAMESTRING 9 
DEFAULT LIB NAME #10 
DEFAULT NAMESTRING 10 

2***************************************** 

DS OXL8 
DS BL8 

RETURNED FOR CLASS 2 
PROGRAM OLD PCW FOR 

LAST PROGRAM CHECK 

***********************CLASS 3***************************************** 
* 
* FOR CLASS 3, ITEM ID CODES ARE SUPPLIED BY THE EXTRACT SVC 
* ISSUER AND RETURNED IN INDIVIDUAL AREAS SUPPLIED PER ITEM. 
* THE FOLLOWING IS A LIST OF ITEM ID CODES. THE LENGTH OF AN 
* ITEM "ITEMID" MAY BE REFERENCED "L'ITEMID". THE TYPE ATTRIBUTE 
* MAY BE REFERENCED AS "T'ITEMID". 
* 
*********************************************************************** 
* SYSTEM-WIDE INFORMATION: 
*********************************************************************** 
* 
EXTRDIDNRES .,, 
EXTRDIDDYVAL 

EXTRDIDSYSVOL 
* 
EXTRDIDSYSLIB .,, 
EXTRDIDSYSWORK 
* 
EXTRDIDSYSPAGE 
* 
EXTRDIDCPU 
EXTRDIDHZ 
EXTRDIDVERSION .,, 

* 
* 
* 
EXTRDIDDEVCNT 
EXTRDIDATOETRT 
* 
EXTRDIDETOATRT 
* 

Controlled Release Draft 

EQU 0,4,A 

EQU 4,4,F 

EQU 5,6,C 

EQU 6,8,C 

EQU 24,8,C 

EQU 60,8,C 

EQU 61,2,H 
EQU 62,2,H 
EQU 25,3,X 

EQU 56,4,F 
EQU 57,256,C 

EQU 58,256,C 

4-93 

PHYSICAL MEMORY (BYTES) 
NOT PERMANENTLY RESIDENT 

ONE DAY IN CLOCK UNITS 

SYSTEM DEFAULT LIBRARY 
VOLUME NAME 

SYSTEM DEFAULT LIBRARY 
NAME 

SYSTEM WORK LIBRARY NAME 
(BACKUP SKIPS) 

SYSTEM PAGING LIB NAME 
(BACKUP SKIPS) 

CURRENT CPU ID 
A/C LINE FREQUENCY 
SYSTEM VERSION NUMBER 

(PACKED WRRPP, WHERE 
'W' IS VERSION 
'RR' IS REVISION 
'PP' IS PATCH LEVEL 

HIGHEST DEVICE # IN CONFIG 
ASCII-TO-EBCDIC 
TRANSLATE TABLE 
EBCDIC-TO-ASCII 
TRANSLATE TABLE 

October, 1985 



EXTRDCDISKET EQU 66,2,H DEVICE # OF SYSTEM'S 
* CENTRAL DISKETTE 
EXTRDIDCDISKET EQU 66,2,H DEVICE # OF SYSTEM'S ~ 
* CENTRAL DISKETTE -- -... ___ . 

* ALIAS FOR EXTRDCDISKET 
EXTRDIDGENFLAG EQU 75,4,A MCBGENFLAGS CONTENTS 
* (GENEDITOR FLAGS) 
EXTRDGENDMSTX EQU X'04' OMS/TX Supported 
EXTRDGENDMSTXB EQU 29 Bit displacement into 
* MCBGENFLAG word for 
* use with BTEST instr 
* on DMSTX support bit 
EXTRDGENWP EQU X'02' WP SUPPORTED ON SYSTEM 
EXTRDGENWPB EQU 30 BIT DISPLACEMENT INTO 

* MCBGENFLAG WORD FOR 
* USE WITH BTEST INSTR 

* ON WP SUPPORT BIT 
EXTRDGENMWAY EQU X'Ol' MAILWAY SUPPORTED 
EXTRDGENMWAYB EQU 31 BIT DISPLACEMENT INTO 
* MCBGENFLAG WORD FOR 
* USE WITH BTEST INSTR 
* ON MAILWAY SUPPORT BIT 
* 
EXTRDGENOFFICE EQU X'08' Wang Off ice supported 
EXTRDGENOFFICB EQU 28 BIT DISPLACEMENT INTO 
* MCBGENFLAG WORD FOR 
* USE WITH BTEST INSTR 

* ON WANG OFFICE SUPPORT ~. 
* BIT 
* 
EXTRDPRTFCLAS EQU 76,1,C Print file class 
EXTRDSYSNAME EQU 77 ,16,C System name 
EXTRDSESMPORT EQU 78,4,C Session mgr port name 
EXTRDFTMPORT EQU 79,4,C File transfer mgr port 
EXTRDTSKMPORT EQU 80,4,C Task manager port name 
EXTRDSYSTPORT EQU 81,4,C System task port name 
EXTRDPRTTPORT EQU 82,4,C Printer task port name 
EXTRDSHRPORT EQU 83,4,C Sharer port name 
EXTRDSEG2SIZE EQU 84,2,H DEFAULT USER MOD. AREA SIZE 
EXTRDSYSTEMID EQU 85,8,C System Wangnet ID 
EXTRDNETCNFG EQU 86,8,C Wangnet conf ig file 
EXTRDSHRADDR EQU 87,4,A Addr of shared area 
EXTRDSHRSIZE EQU 88,4,A Size of shared area 
EXTRDIDDATEFMT EQU 91,1,C Date format 
EXTRDIDUIOSWAGE EQU 92,2,H System autologof f time 
EXTRDIDSDMSTXTO EQU 94,l,H SHARER's DMSTX timeout 
EXTRDIDHIADR EQU 96,4,A Physical memory size+l 
EXTRDOPERMSG EQU 98,80,C Oper broadcast message 
EXTRDIDOPERMSG EQU 98,80,C OPER BROADCAST 
EXTRDIDUSERMSG EQU 99,80,C Oper to User message 
* 

Controlled Release Draft 4-94 October, 1985 



*********************************************************************** 

~ 
* TASK-RELATED INFORMATION: 
*********************************************************************** 
* 
EXTRDIDOCNT EQU 1,2,H NUMBER OF FILES WHICH 
* CURRENT TASK MAY HAVE 
• OPEN, EXCLUDING FILES 
* ALREADY OPEN 
EXTRDIDWS EQU 2,2,H TASK'S ASSOCIATED 
* WORKSTATION NUMBER, OR 
* -1 IF NONE 
EXTRDIDSTACK EQU 3,4,A REMAINING STACK SPACE 
EXTRDIDEXFLGS EQU 10,4,B 'EXECUTE' ACCESS MASK 
EXTRDIDRDFLGS EQU 13,4,B 'READ' ACCESS MASK 
EXTRDIDWTFLGS EQU 16,4,B 'WRITE' ACCESS MASK 
EXTRDIDUEXFLGS EQU 63,4,B USER'S 'EXECUTE' ACCESS 
EXTRDIDURDFLGS EQU 64,4,B USER Is t READ t ACCESS 
EXTRDIDUWTFLGS EQU 65,4,B USER'S 'WRITE' ACCESS 
EXTRDIDSEG2BUF EQU 17,2,H NUMBER OF USER MODIFIABLE 
* AREA 'BUFFER' PAGES 
* CURRENTLY AVAILABLE 
EXTRDIDUSERID EQU 20,3,C CURRENT USER LOGON ID 
EXTRDIDUSERNAME EQU 26,24,C USER NAME (FROM USERLIST) 
EXTRDIDEXTPRIOR EQU 21,1,H TASK'S PAGING PRIORITY 
EXTRDIDPCPCW EQU 23,8,X PROGRAM OLD PCW FOR 
• LAST PROGRA!.\1 CHECK 
EXTRDIDTASK# EQU 27,4,A UNIQUE TASK IDENTIFIER 
EXTRDIDTASKTYPE EQU 28,2,C TASK TYPE: 
* 'F ' FOR FOREGROUND 

* 'FS' FOR DEDICATED 
* SYSTEM TASK CFG) 
* 'B I FOR BACKGROUND 
* 'BS' FOR DEDICATED 
* SYSTEM TASK (BG) 
EXTRDIDCURVOL EQU 29,6,C VOLUME OF CURRENT PROGRAM 
EXTRDIDCURLIB EQU 30,8,C LIBRARY OF CURRENT PROGRAM 
EXTRDIDWORKLIB EQU 31,8,C WORK LIBRARY NAME 
* CONSTRUCTED FROM USER ID 
* OR BG TASK # 
EXTRDIDSPOOLIB EQU 32,8,C SPOOL LIBRARY NAME 
* CONSTRUCTED FROM USER ID 
* OR BG TASK # 
EXTRDIDJOBNAME EQU 71,8,C NAME OF BACKGROUND JOB 
EXTRDIDSEG2SIZE EQU 33,4,F LENGTH OF USER MOD. AREA (BYTES) 
EXTRDIDSTATIC EQU 34,4,A ADDRESS OF START OF STATIC 
* AREAS (Rl4 AT PROGRAM 
* INVOCATION) 
EXTRDIDLOGPTR EQU 89,4,A PROCEDURE LOG FILE 
* CONTROL BLOCK PTR 
EXTRDIDTASKPRNT EQU 95,4,A PARENT'S TASK # 

* 
~I 

Controlled Release Draft 4-95 October, 1985 



*********************************************************************** 
* USER DEFAULTS. MAY BE SET USING SET SVC. 
*********************************************************************** 
* 
EXTRDIDPRINTER EQU 7,2,H DEFAULT ONLINE PRINTER 
• DEVICE NUMBER, 
* OR -1 IF NONE 
EXTRDIDRUNVOL EQU 8,6,C USER PROGRAM VOLUME 
• USED BY CP RUN COMMAND 
EXTRDIDRUNLIB EQU 9,8,C USER PROGRAM LIBRARY 
• USED BY CP RUN COMMAND 
EXTRDIDINVOL EQU 11,6,C DEFAULT INPUT VOLUME 
EXTRDIDINLIB EQU 12,8,C DEFAULT INPUT LIBRARY 
EXTRDIDOUTVOL EQU 14,6,C DEFAULT OUTPUT VOLUME 
EXTRDIDOUTLIB EQU 15,8,C DEFAULT OUTPUT LIBRARY 
EXTRDIDPRNTMODE EQU 18,l,C PRINT OUTPUT MODE 
* ( ' S ' , ' H' , ' 0 ' , OR 'K') 
EXTRDIDFILECLAS EQU 19,l,C DEFAULT FILE PROTECT 
• CLASS 
EXTRDIDLINES EQU 22,1,H SUGGESTED LINES/PAGE 
EXTRDIDPROGVOL EQU 35,6,C USER PROGRAM VOLUME 
• USED BY LINK SVC 
EXTRDIDPROGLIB EQU 36,8,C USER PROGRAM LIBRARY 
• USED BY LINK SVC 
EXTRDIDWORKVOL EQU 37,6,C DEFAULT WORK VOLUME 
EXTRDIDSPOOLVOL EQU 38,6,C DEFAULT SPOOL VOLUME 
EXTRDIDPRTCLASS EQU 39,1,C DEFAULT PRINT CLASS FOR 
• PRINT FILES (A-Z) 

EXTRDIDFORM# EQU 40,l,H DEFAULT FORM NUMBER FOR 
• PRINT FILES (0-254) 
EXTRDIDJOBQUEUE EQU 68,l,C DEFAULT JOB STATUS 
• ( 'R' OR 'H') 
EXTRDIDJOBCLASS EQU 69,l,C DEFAULT JOB CLASS 
* ('A' TO 'Z') 
EXTRDIDJOBLIMIT EQU 70,4,F DEFAULT JOB CPU TIME 
• LIMIT (SECONDS) 
EXTRDIDSPOOLSYS EQU 90,8,C DEFAULT SYSTEM FOR 
* PRINT ROUTING 
EXTRDIDOPERMSGS EQU 97,l,C Status of Help on 
* Opr Msgs flag 
* 
*********************************************************************** 
* RUN STATISTICS 
*********************************************************************** 
* 
EXTRDIDWSIO 
* 
EXTRDIDTAPEIO 
EXTRDIDDISKIO 

Controlled Release Draft 

EQU 41,4,F 

EQU 42,4,F 
EQU 43,4,F 

4-96 

COUNT OF WORKSTATION I/O'S 
THIS RUN 

COUNT OF TAPE !OS THIS RUN 
COUNT OF DISK IOS THIS RUN 

October, 1985 

.~ 



EXTRDIDPRINTIO 
EXTRDIDVOICEIO 
EXTRDIDOTIO 
EXTRDIDPICOUNT 
EXTRDIDPOCOUNT 
EXTRDIDSICOUNT 
EXTRDIDSOCOUNT 
EXTRDIDETIME 

* 
* 
* 
EXTRDIDPTIME 

* 
* 
* 
* 

EQU 44,4,F 
EQU 100,4,F 
EQU 45,4,F 
EQU 46,4,F 
EQU 47,4,F 
EQU 48,4,F 
EQU 49,4,F 
EQU 50,4,F 

EQU 51,4,F 

COUNT OF PRINTER IOS 
COUNT OF VOICE IOS 
COUNT OF OTHER IOS 
PROGRAM PAGEIN COUNT 
PROGRAM PAGEOUT COUNT 
SYSTEM PAGEIN COUNT 
SYSTEM PAGEOUT COUNT 
ELAPSED TIME OF RUN SINCE 

COMMAND PROCESSOR 
INITIATION, IN 
HUNDREDTHS OF SECONDS 

PROCESSOR TIME OF RUN 
SINCE COMMAND PROCESSOR 
INITIATION, IN 
HUNDREDTHS OF SECONDS 

***********************CLASS 4***************************************** 
* 
* 
* • 

CLASS 4 ITEMS ARE SIMILAR TO CLASS 3 ITEMS, EXCEPT THAT 
ADDITIONAL INPUT IS REQUIRED PER ITEM. 

EXTRDIDDEVICE 
* INPUT = DEVICE ADDRESS 
* OUTPUT AS FOLLOWS: 

ORG EXTRDBEGIN 
EXTRDDEVCLASS 
EXTRDDEVCLASSWS 
EXTRDDEVCLASSMT 
EXTRDDEVCLASSDK 

EXTRDDEVCLASSPR 
EXTRDDEVCLASSTC 
*EXTRD&SUFFIX.DEVCLASSFP 
EXTRDDEVCLASSVC 
EXT RD TYPE 
EXTRDTYPE2246P 
EXTRDTYPE2246S 
EXTRDTYPE2246R 
EXTRDTYPE2246C 
EXTRDTYPE2246K 
EXTRDTYPE2266C 
EXTRDTYPE2266S 
EXTRDTYPE2246SI 
EXTRDTYP2246CIJ 
EXTRDTYPE2256C 
EXTRDTYPE2276C 
EXTRDTYPE22460 
EXTRDTYPE2246CI 
EXTRDTYP2246SIK 
EXTRDTYPE2246RK 

Controlled Release Draft 

EQU 52,24,B 
(1 BYTE) 

DS HLl 
EQU 1 
EQU 2 
EQU 3 

EQU 4 
EQU 5 

EQU 6 
EQU 6 
DS HLl 
EQU 017 
EQU 018 
EQU 019 
EQU 020 
EQU 021 
EQU 022 
EQU 023 
EQU 024 
EQU 025 
EQU 026 
EQU 027 
EQU 028 
EQU 029 
EQU 030 
EQU 031 

4-97 

DEVICE CLASS: 
WORKSTATION 
MAGNETIC TAPE 
DISK 

PRINTER 
TELECOMMUNICATIONS 

FRONT END PROCESSOR 
VOICE DEVICE 

DEVICE TYPE: 
2246P WORKSTATION 
2246S WORKSTATION 
2246R WORKSTATION 
2246C WORKSTATION 
2246K WORKSTATION 
ARCHIVER C W/S 
ARCHIVER S W/S 
IDEOGRAPHIC S W/S 
Ideographic J C W/S 
64K C W/S 
ARCHIVER C 64K W/S 
OKIDATA WORKSTATION 
IDEOGRAPHIC C W/S 
IDEOGRAPHIC/K S W/S 
REMOTE KATAKANA W/S 

October, 1985 



EXTRDTYP2246SIJ EQU 032 IDEOGRAPHIC/J S W/S 
EXTRDTYPE2246CD EQU 033 2246SCD CASH DRAWER WS 

~ * 
EXTRDTYPE2209V EQU 034 2209V MAG TAPE 
* (1600 BPI) 
EXTRDTYPE2209V2 EQU 035 2209V-2 MAG TAPE 
* (800/1600 BPI) 
EXTRDTYPE2209V3 EQU 036 2209V-3 7-TRACK MAG TAPE 
EXTRDTYPE2219Vl EQU 037 2219V-1 9-TRACK 75 IPS 
* TAPE (1600/6250 BPI) 
EXTRDTYPE2219V2 EQU 038 2219V-2 9-TRACK 125 IPS 
* TAPE (1600/6250 BPI) 
EXTRDTYPE2219V3 EQU 039 2219V-3 9-TRACK 75 IPS 
* TAPE (800/1600/6250) 
EXTRDTYPE2219V4 EQU 040 2219V-4 9-TRACK 125 IPS .,, TAPE (800/1600/6250) 
EXTRDTYPE2246Sl EQU 041 029 STANDARD KEYPAD WS 
EXTRDTYPE2246S2 EQU 042 REVERSED NUMERIC KP WS 
EXTRDTYPE2246S3 EQU 043 029, REV NUMERIC KP WS 
EXTRDTYP2246SDB EQU 044 BIZDIAL workstation 
EXTRDTYPE2529V EQU 045 2529V CARTRIDGE TAPE 
EXTRDTYPE2509V EQU 046 2509V SERIAL TAPE .,, 
EXTRDTYPE2260V EQU 050 2260V DISK C408CYL F/R) 
EXTRDTYPE2265Vl EQU 051 2265V-l DISKC823CYL REM) 
EXTRDTYPE2265V2 EQU 052 2265V-2 DISK(823CYL REM) 
EXTRDTYPE2270V EQU 053 2270V DISKETTE 

* (77CYL REM) ~ EXTRDTYPE2280Vl EQU 054 2280V-1 DISKC823CYL F/R) 
EXTRDTYPE2280V2 EQU 055 2280V-2 DISKC823CYL F/R) 

EXTRDTYPE2280V3 EQU 056 2280V-3 DISKC823CYL F/R) 
EXTRDTYPE2270Vl EQU 057 2270V-1 DISKETTE .,, CHARD SECTORED) 
EXTRDTYPE2270V2 EQU 058 2270V-2 DISKETTE .,, (SOFT SECTORED) 
EXTRDTYPE2270V3 EQU 059 2270V-3 DISKETTE .,, CHARD OR SOFT SECTORED) 
EXTRDTYPE9614 EQU 060 9614 FIXED DISK .,, 
EXTRDTYP2265V1A EQU 061 2265VlA DUAL PORT .,, ( 75 MEG ) 
EXTRDTYP2265V2A EQU 062 2265V2A DUAL PORT .,, C 288 MEG ) 
EXTRDTYPE2270V4 EQU 063 2270V-4 Diskette 

* (soft sectored) 
EXTRDTYPE2265V3 EQU 064 2265V-3 FIXED DISK 

* (622 MEG) 
EXTRDTYPE2221V EQU 065 2221V PRINTER .,, (200CPS MAT) 

Controlled Release Draft 4-98 October, 1985 



EXTRDTYP2265V3A 
* 
EXTRDTYPE2231V2 

* 
EXTRDTYPE2263Vl 

* 
EXTRDTYPE2263V2 

* 
EXTRDTYPE2281V 

* 
EXTRDTYPE2263V3 
* 
EXTRDTYPE2273Vl 

* 
EXTRDTYPE2281WR 

* 
EXTRDTYP2281WCR 

* 
EXTRDTYPE2233 

* 
EXTRDTYPE2235 

* 
EXTRDTYPE2233K 

* 
EXTRDTYPE2235K 

* 
EXTRDTYPETC2 
* 
EXTRDTYPETC3 

* 
EXTRDTYPETC4 

* 
*** Serial Printers 

* 
EXTRDTYPE5521 

* 
EXTRDTYPE55312 

* 
EXTRDTYPE5577 

* 
EXTRDTYPELPS12 
* 
EXTRDTYPE5570 

* 
EXTRDTYPEDW20 

* 
EXTRDTYPE6581W 

* 
EXTRDTYPE5571 

* 

Controlled Release Draft 

EQU 066 

EQU 067 

EQU 069 

EQU 070 

EQU 073 

EQU 075 

EQU 076 

EQU 077 

EQU 078 

EQU 082 

EQU 083 

EQU 084 

EQU 085 

EQU 086 

EQU 087 

EQU 088 

EQU 097 

EQU 099 

EQU 100 

EQU 101 

EQU 102 

EQU 104 

EQU 105 

EQU 107 

4-99 

2265V-3A FIXED DISK 
(620 MEG) 

2231V-2 PRINTER 
Cl20CPS MAT) 

2263V-1 PRINTER 
C300LPM TR) 

2263V-2 PRINTER 
C600LPM TR) 

2281V PRINTER (30CPS 
DAISY WHEEL) 

2263V-3 PRINTER 
(430 LPM TR) 

2273V-1 PRINTER 
(REMOTE) 

2281WR PARALLEL PRT 
(REMOTE DAISY) 

2281WCR PARALLEL PRT 
(REMOTE DAISY) 

2233 PARALLEL PRT 
(REMOTE DOT MATRIX) 

2235 PARALLEL PRT 
(REMOTE DOT MATRIX) 

2233K REMOTE KAT MATR 

2235K REMOTE KAT MATR 

TC2 - BATCH TC DEVICE 
CON 22V56-1 IOP) 

TC3 - BATCH TC DEVICE 
(ON 22V66-l IOP) 

TC4 - BATCH TC DEVICE 

CON 25V76-1 ADAPTER) 

5521 PRINTER 
(200 CPS MATRIX) 

5531-2 PRINTER 
(120 CPS MATRIX) 

5577 PRINTER 
CHIGH DENSITY) 

LPS-12 LASER PRINTER 

5570 PRINTER 
(600 LPM TR) 

DW20 PRNTR 
( 20 CPS DAISY) 

6581W PRINTER 
C 30 CPS DAISY) 

5571 PRINTER 
(430 LPM TR) 

October, 1985 



EXTRDTYPE6581WC EQU 108 6581-WC WIDE PRINTER 
* ( 40 CPS DAISY ) 

~ EXTRDTYPE5573 EQU 109 5573 PRINTER 
* (300 LPM BAND) 
EXTRDTYPE5574 EQU 110 5574 PRINTER 
* (600 LPM BAND) 
EXTRDTYPE5521K EQU 111 5521K KATAKANA PRINTER 
* (200 CPS MATRIX) 
EXTRDTYPE55312K EQU 112 5531-2K KATAKANA PRT 
* (120 CPS MATRIX) 
EXTRDTYPE5548Z EQU 113 5548Z TYPESETTER 
* 
EXTRDTYPEIP41D EQU 114 INTELLIGENT IMAGE PRT 
* 
EXTRDTYPE5521I EQU 115 IDEOGRAPHIC MAT PRT 
* 
EXTRDTYPE5581WD EQU 116 DUAL-HEAD DAISY PRT 
* 
EXTRDTYPE5521IK EQU 118 IDEOGRAPHIC/K MAT PRT 
* 
EXTRDTYPE5535 EQU 119 180 CPS MAT PRT 
* 
EXTRDTYPEOK555 EQU 120 OKIDATA MATRIX PRT 
* 
EXTRDTYPE5575 EQU 121 HI-SPEED BAND PRINTER 
* 
EXTRDTYPE5590 EQU 122 900 LPM ARABIC DRUM PRT 
* ~' 
EXTRDTYPEBIZDL EQU 125 BIZDIAL AUTODIAL MODEM 
* 
EXTRDTYPE5533 EQU 126 100 CPS MATRIX PRINTER 

* 
EXTRDTYPE5535K EQU 127 180 CPS Katakana Matrx 
* 
EXTRDTYPE5533K EQU 128 100 CPS Katakana Matrx 
* 
EXTRDTYPECIU EQU 129 CIU PROCESSOR 
* 
EXTRDTYPETCBl EQU 130 TCBl DEVICE 
* 
EXTRDTYPE5556 EQU 131 5556 OIS WORKSTATION 
* 
EXTYRDTYPETCB3 EQU 132 TCB3 Device 
* 
EXTRDTYPE4210UK EQU 133 UNIVERSAL KEYPAD WS 
* 
EXTRDTYPE4210BK EQU 134 BANKING KEYPAD WS 
* 
EXTRDTYPES400 EQU 135 VALIDATION PRINTER 
* 

Controlled Release Draft 4-100 October, 1985 



EXTRDTYPEEXPWS EQU 150 EXPERIMENTAL WS 

* 
EXTRDTYPEXPRTW EQU 151 EXP PRINTER CNO DP) 

* 
EXTRDTYPEXPPRT EQU 152 EXP PRINTER 

* 
EXTRDTYPEMWSO EQU 153 Multitask W/S, port 0 

* 
EXTRDTYPEMWSl EQU 154 Multitask W/S, port 1 

* 
EXTRDTYPEMWS2 EQU 155 Multitask W/S, port 2 
* 
EXTRDTYPEMWS3 EQU 156 Multitask W/S, port 3 
* 
EXTRDTYPEMWS4 EQU 157 Multitask W/S, port 4 
* 
EXTRDTYPEMWS5 EQU 158 Multitask W/S, port 5 
* 
EXTRDTYPEMWS6 EQU 159 Multitask W/S, port 6 

* 
EXTRDTYPEMWS7 EQU 160 Multitask W/S, port 7 
* 
EXTRDTYPE9614X EQU 161 14-inch fixed disk 
* CMAXTFR=2K) 

* 
EXTRDTYPEQ2040 EQU 162 8-inch fixed disk 

* 
~ EXTRDTYP6300GM2 EQU 169 Graphic Mono WP W/S 

* 
EXTRDTYPEIDDOl EQU 170 Ideo RAM Dictionary 
* 

EXTRDTYP2246SID EQU 171 Ideo Serial Workstation 

* 
EXTRDTYP2246SJD EQU 172 Ideo Serial Workstation 
* 
EXTRDTYPETPil EQU 173 Ideo Toshiba Prtr, TPI-1 
* 
EXTRDTYPENETMUX EQU 174 Network Multiplexer 
* 
EXTRDTYPE6300GM EQU 175 Graphic Mono WP W/S 
* 
EXTRDTYPE4200A EQU 176 Wangnet Audio WS 
* 
EXTRDTYPE4300 EQU 177 Wangnet Combined WS 
* 
EXTRDTYPE4300A EQU 178 Wangnet Audio Ws 
* 
EXTRDTYPE5537 EQU 179 Matrix Prtr (400 cps) .,, 

Controlled Release Draft 4-101 October, 1985 



EXTRDTYPEDW55 EQU 180 Daisy Prtr (55 cps) 
* (+\ EXTRDTYPE4220R EQU 181 Bisync Remote WS 

* ~---

EXTRDTYP4210WM EQU 182 Monochrome DP WS 
* 
EXTRDTYPE2246DE EQU 184 Data Entry Terminal 

* 
EXTRDTYPE2220 EQU 185 8-in, 75-MB fixed disk 
* 
EXTRDTYPE4210NL EQU 186 32-LINE WS 
* 
EXTRDTYPE4230 EQU 187 Monochrome Combined WS 

* 
EXTRDTYPED2257 EQU 188 160-MB 8-inch fixed disk 
* 
EXTRDTYPE2270V5 EQU 189 5-1/4" console diskette 
* 
EXTRDTYPE2230 EQU 190 5-1/4" fixed winch disk 
• 
EXTRDTYPE4230A EQU 191 English/Arabic WS 
* 
EXTRDTYPE4205 EQU 192 DP only 32k WS 
*** 
EXTRDTYPE4240 EQU 193 BIT MAPPED WS 
*** 
EXTRDTYPE4245 EQU 194 COLOR BIT MAPPED WS 
*** ~ 
EXTRDTYPE4235 EQU 195 COLOR CHARACTER WS 
*** 
EXTRDTYPE4280 EQU 196 8086 BIT MAPPED WS 
*** 

EXTRDTYP4210WM2 EQU 197 4210 GRAPHICS SUB-WS 
*** 
EXTRDTYPE4245G2 EQU 198 4245 GRAPHICS SUB-WS 
*** 
EXTRDTYPEPC EQU 199 PROF. COMPUTER WS 
*** 
EXTRDTYPEPC2 EQU 200 PC GRAPHICS TWIN WS 
*** 
EXTRDTYPEPIC EQU 201 PROF IMAGE COMPUTER WS 
*** 
EXTRDTYPEPIC2 EQU 202 PIC GRAPHICS TWIN WS 
*** 
EXTRDTYPETC EQU 081 BATCH TC DEVICE 
EXTRDTYPEIOMPl EQU 203 VOICE - IOMPl DEVICE 
* 
EXTRDDEVUSAGE OS CL2 DEVICE USAGE: 
EXTRDDEVUEX EQU C'EX' EXCLUSIVE USE 

~I 

Controlled Release Draft 4-102 October, 1985 



EXTRDDEWSH 
EXTRDDEWDT 
EXTRDDEWSER 
* 
* 
EXTRDDEVREM 
* 
* 
* 
EXTRDDEVFIXED 
* 
* 
EXTRDDEVSPEC 
* 
EXTRDDEVST 
EXTRDDEVSD 
* 
EXTRDDEVSPEC2 .,, 
EXTRDDEVS2G .,, 
EXTRDDEVPDA 
*XTRD&SUFFIX.DEVSPARE 

EQU C'SH' 
EQU C'DT' 
DS AL4 

DS CL6 

DS CL6 

DS CLl 

EQU C'T' 
EQU C'D' 

DS CLl 

EQU C'G' 

DS H 
DS CL2 

SHARED USE 
DETACHED 

TASK IDENTIFIER OF 
CURRENT DEVICE OWNER, 
-1 IF NONE 

VOLSER OF REMOVABLE VOLUME 
DEFINED ONLY FOR DISK AND 
TAPE. CL6' ' IF NOTHING 
MOUNTED. 
VOLSER OF FIXED VOLUME 
DEFINED ONLY FOR DISK. 
CL6' I IF NOTHING MOUNTED. 
DEVICE SPECS FOR TAPES 

DRIVE SUPPORTS 3 DENSITIES 
DRIVE SUPPORTS 2 DENSITIES 

MORE DEVICE SPECS 

DRIVE SUPPORTS 6250 BPI 
DENSITY CGCR MODE) 
Physical Device Addr 
(UNUSED) 

*********************************************************************** .,, 
EXTRDIDVOLUME EQU 53,32,B 
* INPUT = VOLUME SERIAL NUMBER (6 BYTES) 
* OUTPUT AS FOLLOWS: 

ORG EXTRDBEGIN 
EXTRDVOLDEV DS ALI DEVICE NUMBER, OR -1 IF 
* VOLUME NOT MOUNTED 
* NOTE: EXTRDVOLTYPE, EXTRDVOLLABEL, 
* EXTRDVOLUSAGE, AND EXTRDVOLUSERID 

* ARE ALL BLANK IF VOLUME IS NOT MOUNTED. 
EXTRDVOLTYPE DS CLl VOLUME TYPE: 
EXTRDVOLTYPER EQU C'R' REMOVABLE 
EXTRDVOLTYPEF EQU C' F' FIXED 
EXTRDVOLLABEL DS CL2 LABEL TYPE: 
EXTRDVOLLABSL EQU C'SL' STANDARD LABEL 
EXTRDVOLLABNL EQU c' NL I NO LABEL 
EXTRDVOLUSAGE DS CL2 VOLUME USAGE: 
EXTRDVOLUSH EQU C'SH' SHARED USE 
EXTRDVOLURR EQU C'RR' RESTRICTED .• 
* .. REMOVAL 
EXTRDVOLUPR EQU C'PR' PROTECTED USE 
EXTRDVOLUEX EQU c I EX I EXCLUSIVE USE 
EXTRDVOLUSER DS AL4 TASK IDENTIFIER OF VOLUME 
* MOUNTER, -1 IF NONE 
EXTRDVOLBC DS HL2 BLOCKS PER CYLINDER 

Controlled Release Draft 4-103 October, 1985 



EXTRDVOLM1UITFR DS HL2 MAXIMUM TRANSFER IN BYTES 
EXTRDVOLCV DS HL2 CYLINDERS PER VOLUME (\ EXTRDVOLCVP DS HL2 CYLINDERS PER PHYSICAL 
* VOLUME, INCLUDING BAD 
* AND UNUSED BLOCKS 
EXTRDVOLOCNT DS HL2 NUMBER OF FILES OPF.N 
EXTRDVOLSECT DS CLl SECTOR TYPE: 
* -- DISKETTE ONLY --
EXTRDVOLSECTS EQU C'S' SOFT SECTOR 
EXTRDVOLSECTH EQU C'H' HARD SECTOR 
EXTRDVOLADDR DS CLl ADDRESSING IN EFFECT: 
* -- DISKETTE ONLY --
EXTRDVOLADDRN EQU C'N' NONSTANDARD 
EXTRDVOLADDRS EQU C'S' STANDARD 
EXTRDVOLTOL DS CL2 FAULT TOLERANCE LEVEL: 
EXTRDVOLTOLNO EQU C' NO TOLERANCE 
EXTRDVOLTOLCT EQU C'CT' CRASH TOLERANT 
EXTRDVOLTOLMT EQU C'MT' MEDIA TOLERANT 
EXTRDVOLPAGE DS CLl PAGING FILE ELIGIBILITY 
EXTRDVOLPAGEY EQU C'Y' PAGING FILES ALLOWED 
EXTRDVOLPAGEN EQU C'N' PAGING NOT ALLOWED 
EXTRDVOLSPOOL OS CLl SPOOL FILE ELIGIBILITY 
EXTRDVOLSPOOLY EQU C'Y' SPOOL FILES ALLOWED 
EXTRDVOLSPOOLN EQU C'N' SPOOL FILES NOT ALLOWED 
EXTRDVOLWORK DS CLl WORK FILE ELIGIBILITY 
EXTRDVOLWORKY EQU C'Y' WORK FILES ALLOWED 
EXTRDVOLWORKN EQU C'N' WORK FILES NOT ALLOWED 
EXTRDVOLSECURE DS CLl SECURE VOLUME ~ 
EXTRDVOLSECUREY EQU C'Y' VOLUME IS SECURE 
EXTRDVOLSECUREN EQU C'N' VOLUME IS NOT SECURE 
EXTRDVOLCVD DS HL2 CYLINDERS PER DIAGNOSTIC 
* VOLUME. INCLUDES ALL 
* OF EXTRDVOLCVP PLUS 
* DIAGNOSTIC CYLS 

EXTRDXLMTOPEN DS XLl XTNT LIMIT FOR FILE 
* CREATION 
EXTRDXLMTTOTL DS XLl TOTAL EXTENT LIMIT 
* 
*********************************************************************** 
* 
EXTRDIDOTASK EQU 54,120,B 
* INPUT = TASK IDENTIFIER (4 BYTES) 
* OUTPUT AS FOLLOWS: 

ORG EXTRDBEGIN 
EXTRDOTASKWS DS ALl WORKSTATION DEVICE NUMBER 
* OF TASK SPECIFIED, 
* OR -1 IF NOT FOREGROUND 
* TASK 

Controlled Release Draft 4-104 October, 1985 



EXTRDOTASKUID DS CL3 CURRENT USER ID FOR TASK 

~ * SPECIFIED, OR BLANK 
EXTRDOTASKNAME DS CL24 CURRENT USER NAME FOR TASK 
* SPECIFIED, OR BLANK 
EXTRDOTASKTYPE DS CL2 TASK TYPE -
* SEE EXTRDIDTASKTYPE 
EXTRDOTASKSTAT DS CL18 STATUS OF TASK 
EXTRDOTASKPROGI DS CL8 NAME OF INITIAL PROGRAM 
* RUN 
EXTRDOTASKPROGC DS CL8 NAME OF CURRENT PROGRAM 
* RUN 
EXTRDOTASKIDATE DS PL4 INITIAL PROGRAM START 
* DATE 
EXTRDOTASKITIME DS FL4 INITIAL PROGRAM START 
* TIME 
EXTRDOTASKETIME OS FL4 ELAPSED TIME SINCE CP 
* INITIATION, IN HUNDREDTHS 
* OF SECONDS 
EXTRDOTASKPTIME DS FL4 PROCESSOR TIME SINCE CP 
* INITIATION, IN HUNDREDTHS 
* OF SECONDS 
EXTRDOTASKWSIO DS FL4 COUNT OF WORKSTATION 
* I/O SINCE INITIAL PROGRAM 
* RUN 
EXTRDOTASKDSKIO DS FL4 COUNT OF DISK I/O SINCE 

* INITIAL PROGRAM RUN 
EXTRDOTASKTAPIO DS FL4 COUNT OF TAPE I/O SINCE 

* INITIAL PROGRAM RUN 
EXTRDOTASKPRTIO DS FL4 COUNT OF PRINTER I/O SINCE 
* INITIAL PROGRAM RUN 
EXTRDOTASKVCIO OS FL4 COUNT OF VOICE I/O FRM 

* INITIAL PROGRAM RUN 
EXTRDOTASKOTIO DS FL4 COUNT OF OTHER I/O SINCE 

* INITIAL PROGRAM RUN 
EXTRDOTASKPICNT DS FL4 PROGRAM PAGEIN COUNT 
EXTRDOTASKPOCNT DS FL4 PROGRAM PAGEOUT COUNT 

EXTRDOTASKSICNT DS FL4 SYSTEM PAGEIN COUNT 
EXTRDOTASKSOCNT DS FL4 SYSTEM PAGEOUT COUNT 
EXTRDOTASKSPARE DS BL4 RESERVED 
* 

Controlled Release Draft 4-105 October, 1985 



••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* 
EXTRDIDTAPEVOL EQU 55,20,B 
* INPUT = VOLUME SERIAL NUMBER (6 BYTES) 
* OUTPUT AS FOLLOWS: 

ORG EXTRDBEGIN 
EXTRDTAPEDEV 
• 
EXTRDTAPESPARl 

* * NOTE: EXTRDTAPELABEL, 

DS ALl 

DS BLl 

DEVICE NUMBER, OR -1 IF 
VOLUME NOT MOUNTED 

(UNUSED) 

* EXTRDTAPEUSAGE, AND EXTRDTAPEUSER ARE ALL BLANK 
* IF NO TAPE MOUNTED. 
EXTRDTAPEDEN DS HL2 
* 
EXTRDTAPELABEL DS CL2 
EXTRDTAPELABAL EQU C'AL' 
EXTRDTAPELABNL EQU C'NL' 
EXTRDTAPELABIL EQU C'IL' 
EXTRDTAPEUSAGE DS CL2 
EXTRDTAPEUSH EQU C'SH' 
EXTRDTAPEUEX EQU C'EX' 
EXTRDTAPEUSER DS AL4 
* 
EXTRDTAPEFSEQ DS HL2 
EXTRDTAPESPAR2 DS BL6 
* 

TAPE DENSITY IN BINARY 
BPI (556,800 OR 1600) 

LABEL TYPE: 
ANSI LABEL 
NO LABEL 
IBM LABEL 

VOLUME USAGE: 
SHARED USE 
EXCLUSIVE USE 

TASK IDENTIFIER OF VOLUME 
MOUNTER, -1 IF NONE 

FILE SEQUENCE NUMBER 
(UNUSED) 

*********************************************************************** 
* 
EXTRDIDDEVLIST EQU 59,3,B 
* INPUT = DEVICE CLASS, AS IN EXTRDDEVCLASS (1 BYTE) 
* OUTPUT AS FOLLOWS: 

EXTRDDLTOT 

* 
EXTRDDLNUM 
* 

ORG EXTRDBEGIN 

EXTRDDLIST 
EXTRDDLENTRY 

DS 

DS 

DS 
DS 

HLl TOTAL NUMBER OF DEVICES IN 
SPECIFIED CLASS 

HLl NUMBER OF DEVICES 
ADDRESSES SUPPLIED 

ox DEVICE LIST 
ALl DEVICE ADDRESS, OR X'FF' 

IF NO MORE DEVICES * 
*********************************************************************** 
* * TC RELATED INFORMATION 
EXTRDIDDLPNAME EQU 72,38,B 
* INPUT = DLPNAME (4 BYTE CHAR. STRING) 
* OUTPUT AS FOLLOWS: 

Controlled Release Draft 4-106 October, 1985 



ORG EXTRDBEGIN 
EXTRDDLPDEVMAP DS XL4 BITMAP OF DEVS ON DLP 
EXTRDDLPDEV#l DS XL2 lST DEV ON DLP 
EXTRDDLPTYPE DS XLl No. from PB or UCB 
EXTRDDLPLINECNT DS XLl # OF LINES CONTROLLABLE 
* BY DLP 
EXTRDMCSTATUS DS XLl MICROCODE FILE STATUS 
* 0 - IF STOPPED 
* HI BIT ON IF LOADED 
EXTRDDLPKIND DS XLl Periph./Device Proc. 
EXTRDDLPKINDPP EQU 0 Peripheral Processor 
EXTRDDLPKINDDP EQU 1 Device Processor 
EXTRDDLPSPARE DS XL2 RESERVED FOR FUTURE 
EXTRDMCFILE DS XLS MICROCODE FILE NAME 
EXTRDMCLIB DS XLS MICROCODE LIB NAME 
EXTRDMCVOL DS XL6 VOLUME NAME FOR MCFILE 
* 
EXTRDDLPRSRV DS XLl RESERVATION STATUS-DLP 
* HI BIT ON IF RESERVED 
EXTRDDLPTASK# DS XL3 RESERVING TASK # 

ORG 
******************************************************************** 
* 
EXTRDIDDLPDEV# EQU 73,8,B 
* INPUT = DEVICE NUMBER (2 BYTES) 
* OUTPUT AS FOLLOWS: 

* 
ORG EXTRDBEGIN 

EXTRDDEVSTATUS 
EXTRDDEVRSRV 
EXTRDDEVOPEN 
EXTRDDEVTASK# 
EXTRDDEVDLPNAME 

ORG 

DS XLl 
EQU X'40' 
EQU X' 80' 
DS XL3 
DS XL4 

DEV RESERVATION STATUS 
DEVICE RESERVED 
DEVICE OPEN 
RESERVING TASK # 
DLPNAME FOR DEVICE 

********************************************************************** 
* 
EXTRDIDVOLVCB EQU 74,08,B 
* INPUT = VOLUME SERIAL NUMBER (6 BYTES) 
* OUTPUT AS FOLLOWS: 

ORG EXTRDBEGIN 
EXTRDVCBADDR DS A 

* 
DS A 

VCB ADDRESS, OR 0 IF 
VOLUME NOT MOUNTED 
(UNUSED) 

ORG 
********************************************************************** 
********************************************************************** 
* 
EXTRDIDDEFLIB EQU 92,72,C 
* INPUT = DEFAULT LIBRARY NAME (8 BYTES) 

Controlled Release Draft 4-107 October, 1985 



* OUTPUT AS FOLLOWS: 
ORG EXTRDBEGIN 

EXTRDDEFLIB 

* 
* 

ORG , 

DS CL72 NAMESTRING CORRESPON
DING TO USER-SUPPLIED 
DEFAULT LIB NAME 

********************************************************************** 
* 
* DEVICE CLUSTER INFORMATION 
EXTRDIDCLUSTER EQU 67,16,B 
* INPUT = DEVICE NUMBER ( 2 BYTES) 
* OUTPUT AS FOLLOWS: 

ORG EXTRDBEGIN 
EXTRDADISKET 

* 
* 
EXTRDNEXTDEV 

* 
* 
EXTRDPORT 
EXTRDCHNL 
EXT RD ASA 
EXT RD DCC 
EXTRDCOP 
EXTRDSPARE 

* 
ORG 

EXTRDIDIDERR 

* 

DS HL2 

DS HL2 

OS XLl 
OS XLl 
OS XLl 
DS XLl 
DS XLl 
DS BL7 

OS XLl 

DEVICE # OF ASSOCIATED 
ARCHIVER'DISKETTE, 
OR ZERO IF NONE 

DEVICE # OF NEXT DEVICE 
ON CLUSTER OR ZERO 
IF NONE 

PORT ON IOP 
CHANNEL ON BROADBAND 
SHORT ADDRESS 
DEVICE ON CLUSTER 
CLUSTER ON PORT 
(UNUSED) 

USED TO GENERATE DUMMY 
FOR INVALID ID 

*********************************************************************** 
* * AUTOMATIC LOGOFF WS ENABLE 
EXTRDIDALOGF EQU 93,l,C 
* INPUT = DEVICE NUMBER (1 BYTE) 
* OUTPUT = "Y" WORKSTATION AUTOLOGOFF ENABLED OR 
* "N" WORKSTATION AUTOLOGOFF DISABLED 
EXTRDALOGF DS CLl 

CSECT 

Controlled Release Draft 4-108 October, 1985 



4.2.25 FDRl - Describe File Descriptor Record 1 CFDRl) 

Syntax 

FDRl [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

The file descriptor record (FDRl) describes the attributes of a file, 
including the first three extents of the file for sinlge volwnes only. 
Every file on a volwne (except the VTOC and volume label/IPL text area) 
has an FDRl associated with it. FDRls are located through the FDXl and 
FDX2 blocks. There are up to 25 80-byte FDR records per VTOC block. The 
2045th byte of a block containing FDRs contains an ASCII 'F'. All blocks 
containing available 80-byte slots for FDRs are chained together by block 
nwnbers (within VTOC from 0) in the 2047th and 2048th bytes of each such 
block, exactly as are the FDX2 blocks. The number of available 80-byte 
slots in a block is maintained in binary in the 2043rd and 2044th bytes 
of the block. FDRl records are present only on the root volwne of a 
volwne set. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Specification of NODSECT results in the FDRl fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, the system generates a DSECT 
with the name FDRl (plus the optional suffix). 

Provides for the optional specification of a register for 
which a USING statement for the FDRl fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters FDRl, the user-provided SUFFIX (one ASCII 
character in length), and the field name. 

Controlled Release Draft 4-109 October, 1985 



Structure 

BYTE 0 BY'TE 1 BYTE 2 BYTE 3 ~ 

FDRl 

BEGIN I 
XTNTCOUNTI +o FORMAT ORG FLAGS 

+4 XlPTR I FILENAME 
+8 
+c IMOREFLAGSI CREDATE +E t FILESECTION 

+10 I MODDATE 
+14 EXP DATE 
+18 FPCLASS CREATOR 
+IC BLKSIZE SECEXT 
+20 XlSTRT XlEND 
+24 X2STRT 
+28 X2END 
+2C X3STRT X3END 
+30 

ORG - For files on volwne sets: 

BY'TE 0 BYTE 1 BY'TE 2 BYTE 3 

+20 CHAIN3 ~ +24 #XTNT 
+28 SPAREO 
+2C NBLKS 
+30 NSEGS SPARE2 
+34 NRECS 
+38 RECSIZE SPARE3 EBLK 
+3C EREC 
+40 SPARE4 
+44 
+48 
+4C CHAIN LENGTH = 50 

For word processing files only: 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

FDRl 

+30 IWPBLKSIZEI WPBLS 

Controlled Release Draft 4-110 October, 1985 



For program files only: 

ACFLAGSI +40 
+44 
+48 

BYTE 0 

WT FLAGS 
RD FLAGS 
EXFLAGS 

BYTE 1 

For indexed files only: 

FDR! 

Example 

+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C 

FDR! 

BYTE 0 

KEYPOS 

CHAIN 

FDR! DSECT 
* 

BYTE 1 

PTRD 

BYTE 2 BYTE 3 

BYTE 2 BYTE 3 

PKI PKO 

ALTCNT 

KEYSIZE HXBLK 
DABLK 

* THE FORMAT 1 FILE DESCRIPTOR RECORD (FDRl) DESCRIBES THE 
* ATTRIBUTES OF A FILE, INCLUDING THE FIRST THREE EXTENTS 
* OF THE FILE. EVERY FILE ON A VOLUME (EXCEPT THE VTOC 
* AND VOLUME LABEL/IPL TEXT AREA) HAS A FORMAT 1 FDR 
* ASSOCIATED WITH IT. FORMAT 1 FORS ARE LOCATED THROUGH THE 
* FDXl AND FDX2 BLOCKS. THERE ARE UP TO 25 80-BYTE 
* FDR RECORDS PER VTOC BLOCK. THE 2045TH BYTE OF A BLOCK 
* CONTAINING FORS CONTAINS AN ASCII 'F'. ALL BLOCKS CONTAINING 
* AVAILABLE 80-BYTE SLOTS FOR FORS ARE CHAINED TOGETHER 
* BY BLOCK NUMBERS (WITHIN VTOC, FROM 0) IN THE 2047TH AND 
* 2048TH BYTES OF EACH SUCH BLOCK, EXACTLY AS ARE THE FDX2 
* BLOCKS. THE NUMBER OF AVAILABLE 80-BYTE SLOTS IN A 
* BLOCK IS MAINTAINED IN BINARY IN THE 2043TH AND 2044TH 
* BYTES OF THE BLOCK. 
* * DATE 5-17-77 
* VERSION 5.03.03 (UPDATED FOR ADMS REMOVAL) 

* 

Controlled Release Draft 4-111 October, 1985 



FDRlBEGIN 
FDR I FORMAT 
* 
FDRlINUSE 
FDRlNOTUSED 
FDRlXTNTCOUNT 
FDRlORG 
FDRlORGCONSEC 
FDRlORGINDEXED 
FDRlORGWP 
FDRlORGREL 
Organization 
FDRlORGPLOG 
FDRlORGVLEN 
FDRlORGPRINT 
FDRlORGPROG 
FDRlFLAGS 
FDRlFLAGSUPDAT 

FDRlFLAGSCOMP 
FDRlFLAGSRECOV .,, 
FDRlFLAGSALTX .,, 
FDRlFLAGSLOG 
FDRlFLAGSPART 
FDRlFLAGSADMS 

FDRlFLAGSPRIV 

FDRlXlPTR 

FDRlFILENAME 
FDRlFILESECTION .,, 

DS OF 
DS CLl 

( 'N' 
EQU C'l' 
EQU C'N' 
DS BLl 
DS BLl 
EQU X'Ol' 
EQU X'02 I 

EQU X'04' 
EQU 

EQU X'lO' 
EQU X'20' 
EQU X'40' 
EQU X'80' 
DS BLl 
EQU X'80' 

EQU X'40' 
EQU X'20' 

EQU X'lO' 

EQU X'08' 
EQU X'04' 
EQU X'02' 

EQU X'Ol' 

DS H 

DS CL8 
DS CLl 

ORG FDRlFILESECTION 
FDRlMOREFLAGS DS X 
FDRlTXALLOC EQU X'80' 
FDRlTXINUSE EQU X'40' 
FDRlEXLOCKCL EQU X'08' 

FDRlCREDATE 
FDRlMODDATE 
* 
FDRlEXPDATE 
FDRlFPCLASS 
FDRlCREATOR 
* 

Controlled Release Draft 

DS PL3 
DS PL3 

OS PL3 
OS CLl 
OS CL3 

4-112 

FORMAT OF FDR (ASCII '1') 
FOR FDR RECORD NOT IN USE) 

FDRl IN USE 
FDRl NOT IN USE 
COUNT OF EXTENTS IN USE 
FILE ORGANIZATION 
CONSECUTIVE ORGANIZATION 
INDEXED ORGANIZATION 
WORD PROCESSING FILE 

X'08' 

FILE PROLOGUE PRESENT 
VARIABLE-LENGTH RECORDS 
PRINT FILE 
PROGRAM FILE 
FLAGS FOR STATUS 
SET TO 0 BY CREATFDR, 
SET TO 1 BY UPDATFDR 
COMPRESSED RECORDS 

Relative 

USE PREFORMAT AND RECOVERY 
PROCEDURES FOR THIS FILE 
INDEXED FILE HAS AN AXDl 
BLOCK AND ALT-INDICES IF SET 
CONSEC LOG FILE FLAG 
PARTIAL BACKUP FILE 
ADMS FILE 

PROGRAM FILE CARRIES 
ADDITIONAL ACCESS PRIVILEGES 
FDXl BLOCK * 169 + FDXl 
ITEM IN BLOCK (FROM 0) 
MEMBER NAME 
VOLUME IN A MULTI-VOLUME 
FILE (ALWAYS ASCII '1') 

Additional Flags 
DMS/TX Blocks allocated 
OMS/TX Blocks in use 
SHARED FILE EXCLUSIVE 
LOCK ON AT CLOSE TIME 

CREATION DATE (PACKED YYDDD+ 
LAST MODIFICATION DATE 
(PACKED YYDDD+) 
EXPIRATION DATE (PACKED YYDD 
FILE PROTECTION ACCESS-CLASS 
USER LOGON IDENTIFICATION OF 
FILE CREATOR 

October, 1985 



J~ 

FDRlBLKSIZE DS H PHYSICAL BLOCK SIZE (2048) 
FDRlSECEXT DS H NO. BLOCKS SECONDARY EXTENT 
FDRlXlSTRT DS FL3 PRIMARY EXTENT START BLOCK 
FDRlXlEND DS FL3 PRIMARY EXTENT END BLOCK + 1 
FDR1X2STRT DS FL3 2ND EXTENT START 
FDR1X2END DS FL3 2ND EXTENT END 
FDR1X3STRT DS FL3 3RD EXTENT START 
FDR1X3END DS FL3 3RD EXTENT END 
* THE FOLLOWING OVERLAY ONLY FOR FILES ON VOLUME SETS 

ORG FDRlXlSTRT 
FDR1CHAIN3 DS F CHL1,FL3) ADDRESS OF 'A FORMAT 3 FDR 
* WHICH IS FOR THIS FILE'S BITMAP INFO 
FDRl#XTNT DS FL4 TOTAL NUMBER OF EXTENTS 
FDR1$SPAREO DS BL4 UNUSED 
FDRlNBLKS DS BL4 TOTAL NUMBER OF BLKS 
FDRlNSEGS DS BL2 TOTAL NUMBER OF SEGS 
* IF EXTENT LIMITS ARE NOT 
* SET, THE VALUE WILL BE 0 
************************************************************* 
* ORGANIZATION-DEPENDENT SECTION: 
************************************************************* 
FDR1SPARE2 
* 
FDRlNRECS 

FDRlRECSIZE 
FDR1SPARE3 
* 
FDRlEBLK 
* 
FDRlEREC 
* 
* 
* 
* 
FDR1SPARE4 
* 
* 

DS BL2 

DS F 

DS H 
DS BLl 

DS FL3 

DS H 

DS BL12 

(UNUSED FOR CONSECUTIVE 
FILES) 
NUMBER OF DATA RECORDS 

LOGICAL RECORD SIZE 
(UNUSED UNLESS 
FDRlFLAGSALTX SET) 
LAST RECORD'S BLOCK WITHIN 
FILE 
LAST RECORD'S NUMBER IN LAST 
BLOCK FOR CONSECUTIVE FILES 
WITH FIXED-LENGTH RECORDS 
(FOR INDEXED FILES, NUMBER 
OF PRIMARY INDEX LEVELS) 
(UNUSED FOR CONSECUTIVE 
FILES WHICH ARE NOT PROGRAM 
FILES) 

************************************************************* 
* FOR WORD PROCESSING FILES ONLY: 
************************************************************* 

FDRlWPBLKSIZE 
FDRlWPBLS 
* 

Controlled Release Draft 

ORG FDR1SPARE2 
DS XLl 
DS XLl 

4-113 

WP FILE BLOCK SIZE 
BYTES IN LAST 
SECTOR 

October, 1985 



************************************************************* 
* FOR PROGRAM FILES ONLY: 
************************************************************* 

ORG FDR1SPARE4 
FDRlACFLAGS DS OBL12 ADDITIONAL ACCESS 
* PRIVILEGES: 
FDRlWTFLAGS DS BL4 ADDITIONAL WRITE 
* PRIVILEGES 
FDRlRDFLAGS DS BL4 ADDITIONAL READ 
* PRIVILEGES 
FDRlEXFLAGS DS BL4 ADDITIONAL EXECUTE 
* PRIVILEGES 
************************************************************* 
*FOR INDEXED FILES ONLY (FILEORG X'02'): 
************************************************************* 

ORG FDR1SPARE2 
FDRlPKI DS HLl PACKING FACTOR FOR INDEX 
* ITEMS 
FDRlPKD DS HLl PACKING FACTOR FOR DATA 
* RECORDS 

ORG FDR1SPARE3 
FDRlALTCNT DS m,1 NUMBER OF ALTERNATE INDEX 
* STRUCTURES DEFINED IN THE 
* AXDl-BLOCK (UNUSED UNLESS 
* FDRlFLAGSALTX SET) 

ORG FDR1SPARE4 
FDRlKEYPOS DS H PRIMARY KEY POSITION IN 
* DATA RECORD 
FDRlKEYSIZE DS m.1 PRIMARY KEY LENGTH IN BYTES 
FDRlHXBLK DS FL3 BLOCK-IN-FILE OF ROOT BLOCK 

* OF PRIMARY INDEX 
FDRlDABLK DS FL3 BLOCK-IN-FILE OF STARTING 
* BLOCK OF AVAILABLE-BLOCK 
* CHAIN 
FDRlPTRD DS FL3 FIRST DATA BLOCK IN FILE 
* (PRIMARY KEY SEQUENCE) 
************************************************************* 
* FDR CHAIN - IN ALL FDR RECORDS: 
************************************************************* 
FDRlCHAIN 
* 
* 
* 
* 
* 
FDRlEND 
FDRlLENGTH 
FDRlCNT 

CSECT 

Controlled Release Draft 

DS F (lfi.,1,FL3) ADDRESS OF A FORMAT 2 FDR 

EQU * 

FOR THIS FILE'S ADDITIONAL 
EXTENTS, THE ADDRESS IS IN THE 
FORM: (lfi.,1) NUMBER STARTING 
FROM 0 OF FDR IN 1-PAGE BLOCK 
(FL3) BLOCK # IN VTOC FROM 0 

EQU FDRlEND-FDRlBEGIN 
EQU 25 # OF FDR! RECORDS PER BLOCK 

4-114 October, 1985 

~ 



!"'"""\ 

4.2.26 FDR2 - Describe File Descriptor Record 2 (FDR2) 

Syntax 

FDR2 [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

This macro maps symbol names to an FDR2 record. The FDR2 record 
describes up to ten additional extents for a file for a single volume. 
For a set member, nine additional extents are described. FDR2 is chained 
from the file's FDRl record and may be chained to another FDR2 record. 
For non-root volumes, FDR2 is chained from FDX. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Specification of NODSECT results in the FDR2 fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, the system generates a DSECT 
with the name FDR2 (plus the optional suffix). 

Provides for the optional specification of a register for 
which a USING statement for the FDR2 fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters FDR2, the user-provided SUFFIX (one ASCII 
character in length) and the field name. 

Controlled Release Draft 4-115 October, 1985 



Structure 

BYTE 0 BYTE l BYTE 2 BYTE 3 ~ 

FDR2 

BEGIN 
+o FORMAT SPAREl 
+4 FILENAME 
+8 
+c SPARE2 

+10 X4STRT X4END 
+14 X5TOX13 
+18 
+lC 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C CHAIN LENGTH = 50 

,r-\ 
BYTE 0 BYTE l BYTE 2 BYTE 3 

ORG - for multivolume files: 

+10 VSID FSN SPARE 
+14 XlPTR XlSTRT 
+18 XlEND 
+lC X2TOX9 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C CHAIN LENGTH = 50 

Controlled Release Draft 4-116 October, 1985 



Example 

FDR2 
FDR2 DSECT 

* 
* THE FORMAT 2 FILE DESCRIPTOR RECORD (FDR2) DESCRIBES UP TO 
* TEN (10) ADDITIONAL EXTENTS FOR A FILE (BEYOND THE FIRST 
* THREE). IT IS CHAINED FROM THE FILE'S FORMAT 1 FILE 
* DESCRIPTOR RECORD. A FORMAT 2 FDR MAY BE CHAINED TO ANOTHER 
* FORMAT 2 FDR. 

* 
* DATE 3/28/79 
* VERSION 5.00 
FDR2BEGIN DS OF FULLWORD ALIGNMENT 
FDR2FORMAT DS CLl FORMAT (ASCII '2') 
FDR2SPARE1 DS CLS (UNUSED) 
FDR2FILENAME DS CL8 FILE NAME AS IN FORMAT 1 FDR 
FDR2SPARE2 DS CL2 (UNUSED) 
FDR2X4STRT DS FL3 EXTENT 4 (OR 14, 24, ETC.) 
* STARTING BLOCK ON VOLUME (FROM 0) 
FDR2X4END DS FL3 EXTENT 4 ENDING BLOCK ON VOL 
FDR2XLEN EQU *-FDR2X4STRT EXTENT LEN 
FDR2XSTOX13 DS 18FL3 EXTENT DEFINITIONS 5 TO 13 
FDR2XCNT EQU (*-FDR2X4STRT)/FDR2XLEN 
* FOLLOWING IS MULTI VOL FDR2 ENTRY 

ORG FDR2X4STRT MULTI-VOL FILES 
FDR2$VSID DS BLl CURRENT VSID 

~ FDR2$FSN DS BL2 FILE SEQUENCE NUMBER 
FDR2$SPARE DS BLl (UNUSED) 
FDR2$XlPTR DS H FDXl BACK PTR 
FDR2$X1STRT DS FL3 EXTENT 1 
FDR2$X1END DS FL3 EXTENT 1 ENDING BLOCK 
FDR2$XLEN EQU *-FDR2$X1STRT ENTENT LEN 
FDR2$X2TOX9 DS 8FL6 EXTENT DEF 2 TO 9 
FDR2$XCNT EQU (*-FDR2$XlSTRT)/FDR2$XLEN 
FDR2CHAIN DS F (BL1,FL3) CHAIN TO NEXT FORMAT 2 FDR 
* FOR ADDITIONAL EXTENTS 
* (SEE FDRlCHAIN) 
FDR2END 
FDR2LENGTH 

Controlled Release Draft 

EQU * 
EQU FDR2END-FDR2BEGIN 

4-117 October, 1985 



4.2.27 FDR3 - Describe File Descriptor Record 3 CFDR3) 

Syntax 

FDR3 [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

This macro maps symbol names to an FDR3 record. The FDR3 record is 
present only for files on volume sets. It is chained from the file's 
FDRl record and may be chained to another FDR3 record. The FDRS record 
is stored on the root volume. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Structure 

FDR3 

BEGIN I 
+o 
+4 
+8 
+c 

+10 
+14 
+18 
+lC 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C 

Specification of NODSECT results in the FDR3 fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, the system generates a DSECT 
with the name FDR3 (plus the optional suffix). 

Provides for the optional specification of a register for 
which a USING statement for the FDR3 fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters FDR3, the user-provided SUFFIX Cone ASCII 
character in length) and the field name. 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

FORMAT FILENAME 

VSID FSN 
STRTBLK# 
2T09 

SPARE! 
CHAIN3 LENGTH = 50 

Controlled Release Draft 4-118 October, 1985 



Example 

FDR3 
FDR3 DSECT 
* * THE FORMAT 3 FILE DESCRIPTOR RECORD (FDR3) IS A NEW CONTROL 
* BLOCK (80 BYTES) FOR MULTIVOLUME FILES. IT CONTAINS ENTRIES FOR 
* THE SEGMENT NUMBER, VSID, STARTING BLOCK IN FILE FOR SEGMENT, 
* AND THE CHAIN TO ANOTHER FDR3. 
* IT IS CHAINED FROM THE FILE'S FORMAT 1 FILE DESCRIPTOR 
* RECORD. 
* 
* 
* 
* 
* 
FDR3BEGIN 
FDR3FORMAT 
FDR3FILENAME 
FDR3VSID 
FDR3FSN 
FDR3STRTBLKi 
FDR32T09 
FDR3SPARE1 
FDR3CHAIN3 
FDR3END 
FDR3LENGTH 

CSECT 

Controlled Release Draft 

DS OF 
DS CLl 
DS CLS 
DS BLl 
DS BL2 
DS FL4 
DS 8BL7 
DS CL4 
DS F (BL1,FL3) 
EQU * 

FULLWORD ALIGNMENT 
FORMAT (ASCII '3') 
COOKIE FILE NAME 
VOLUME ID IN A SET 
FILE SEGMENT NUMBER 
START BLOCK i IN A FILE 
2 TO 9 FILE SEGMENT ENTRIES 
UNUSED IN FDR3 
CHAIN TO NEXT FDR3 

EQU FDR3END-FDR3BEGIN 

4-119 October, 1985 



4.2.28 FMTLIST - Generate Parameter Group Control Block 

Syntax 

[label] FMTLIST [LABELPFX='prefix'][,PREVIEW={YES}] 
{NO} 

Function 

{'keyword',({'default-value' }[,CHAR][,line-advance] 
{ absolute-length}[ INT 

[ NUM 
[ MJ 

[,space-advance]) 

[ HEX ] 
[UCHAR] 
[ MJL ] 

}, 

{TEXT,('display-text'[,line-advance][,space-advance]) }, 
{textname,('display-text'[,line-advance][,space-advance])}, 

Generates a field format control block for use in a parameter group 
control list, which is required input to the GETPARM and the PUTPARM 
SVCs. The generated data structure is identical to the one generated by 
the KEYLIST macroinstruction, except that the first eight bytes of the 
parameter group control list are not generated. Thus, a prname may not 
be specified. 

Parameter Definitions 

LABELPFX 

PREVIEW 

keyword 

A character string in quotes which pref ix es each keyword name, 
resulting in a string used to label each corresponding field 
format control block. The label is placed on the line-advance 
byte. Thus, for the keyword/receiving field format control 
block, the flag byte is at the location specified by this label 
+2, and the receiving field ('default-value') is at this 
location +12. This parameter is optional. 

If YES is specified, a simulated screen display is printed in 
the source listing (via conunent level MNOTES) in the format 
specified by the macroinstruction parameters. If NO is 
specified, the display is not generated in the listing, and 
"CURRENT LINE LENGTH" messages are not generated. NO is the 
default. 

A name of one to eight alphanumeric characters enclosed in 
single quotes, which identifies a specific parameter within the 
group. Keyword specification is mutually_ exclusive with 
specification of TEXT or text name. 

Controlled Release Draft 4-120 October, 1985 



default-value A character string in single quotes containing the default 
value for this specific parameter. Single quotes to appear 
in the string must be represented by two consecutive single 
quotes. The receiving field length is then the length of 
this string. Specification of default-value is mutually 
exclusive with specification of absolute-length. 

absolute-length An absolute expression may be provided defining the length 
of the receiving field for this parameter. Specification of 
absolute-length is mutually exclusive with specification of 
default-value. 

CHAR 

INT 

NUM 

AN 

HEX 

UCHAR 

NOTE 

Leading and trailing blanks are accepted in any of the 
formats listed below except the alphanumeric (AN) and the 
limited alphanumeric (ANL) formats, where only trailing 
blanks are accepted. 

Any character is accepted as a valid response. 

Only unsigned integers are accepted as a valid response. 

Numbers (with optional decimal point or leading sign or both) 
are accepted as a valid response. 

Letters, including special characters #, @, and $, and numerals 
are accepted as a valid response. GETPARM converts lowercase 
letters to upper case. 

Only numerals and letters A-F are accepted as a valid response. 
Lowercase letters a-f are converted to uppercase. 

Any character is accepted as a valid response. 
letters are converted to uppercase. 

Lowercase 

ANL Letters, including special characters #, @, and $, and numerals 
are accepted as a valid response. GETPARM converts lowercase 
letters to uppercase. The first character may not be a number. 

line-advance The number of lines to advance before displaying the keyword and 
receiving field, or the embedded text. May be a value of 0 to 
18 and if not specified, defaults to 1. If value is not 0, the 
keyword or text is displayed starting on the current line plus 
the line advance value. If 0, line advancing does not occur. 

Controlled Release Draft 4-121 October, 1985 



space-advance The number of spaces to advance within a line before displaying 
the keyword. May be specified as a value between 0 and 78. The 
default is 0. If specified or omitted, the value of 
space-advance plus 1 is the number of spaces that appear on the 
workstation screen between either the previous field (if zero 
line-advance) or the left side (if nonzero line-advance) and the 
keyword or text of the current field. 

TEXT 

Textname 

displayed-text 

The space-advance may also be specified in three alternate 
formats: 

'Ann' 

'CENTER' 

The variables "nn" represent one or two digits 
with a value no less than 2 and no greater than 
80 and indicate the absolute column in which the 
field is to begin. The appropriate 
field-advance value is calculated and placed in 
the field format control block. 

The appropriate field-advance value is 
calculated and placed in the field format 
control block such that the field is centered 
within the 80 column workstation screen line. 

'RIGHT' The appropriate field-advance value is calculated 
and placed in the field format control block such 
that the field is right-justified on the 80 column 
workstation screen line. 

Regardless of how the space-advance is specified, an MNOTE 
is generated if an attempt is made to generate a workstation 
line over 80 characters in length or if an absolute, 
centering, or right-adjust request cannot be honored. 

Indicates that embedded text is supplied in the following 
parameter. 

A nonquoted text name used to symbolically address the 
beginning of the actual text field in the parameter group 
control list, i.e., the label 'textname' is generated for 
the specified text field. Specification of TEXT or textname 
is mutually exclusive with specification of keyword. 

A character string in quotes to be displayed as embedded 
text. 

Controlled Release Draft 4-122 October, 1985 



Example 

FMTl FMTLIST LABELPFX='XXX',PREVIEW=YES, 

+FMTl DC 
+ DC 
+TEXTl DC 
+ 
+ DC 
+ DC 
+ 
+XXXLIST DC 
+ DC 
+ 

TEXTl,('HEADING'), 
TEXT,('SUBHEADING'), 
I LIST ' , ( 'NO I , AN) 
HLl'0,3' 
ALl (1, 0 ,-1,6) 
C'HEADING' 
** CURRENT LINE LENGTH IS 8 
ALl ( l, 0 ,-1, 9) 
C'SUBHEADING' 
** CURRENT LINE LENGTH IS 11 
ALl (1, 0 , 4 , 1) 

CL8'LIST',CL2'NO' 
** CURRENT LINE LENGTH IS 14 

PF KEY & FIELD COUNT 
LINE I SPACE ADV, FLAGS, LGTH-1 
DISPLAYED TEXT 
•• 
LINE I SPACE ADV, FLAGS, LGTH-1 
DISPLAYED TEXT 
•• 

LINE I SPACE ADV, FLAGS, LGTH-1 
KEYWORD & DISPLAYED VALUE 
•• 

+************************************************************************ 
+ 1 2 3 4 5 6 7 
+123456789012345678901234567890123456789012345678901234567890123456789012 
+************************************************************************ 
+ HEADING 
+ SUBHEADING 
+ LIST = NO 
+ 
+************************************************************************ 
+ 1 2 3 4 5 6 7 
+123456789012345678901234567890123456789012345678901234567890123456789012 
+************************************************************************ 

Controlled Release Draft 4-123 October, 1985 



4.2.29 FREEALL - Free Resources (SVC 52) 

Syntax 

FREEALL [CANCEL={NO }][,ACK={NO }][{LEVELS={(Register)}}] 

Function 

{YES} {YES} {expression} 

{ALL={YES} 
{NO } 

} 

Releases all resources in all shared DMS files opened by this task. 
Under advanced sharing may be used to hold or free extension rights 
including held records, keys, and files. Ends the current transactions 
for DMS/TX which conuni ts updates and free locks. See the VS DMS/TX 
Reference for more information. 

Parameter Definitions 

CANCEL Optional parameter 
transaction on error. 

that specifies cancellation 
The default is NO. 

of the 

ACK Optional parameter that specifies production of a message when 
an error is encountered. The default is NO. 

LEVELS 

ALL 

Stack On Input 

O(SP) 

4(SP) 

Number of levels to be committed. The value can be specified as 
a register containing the address of a fullword initialized with 
the level number or an expression. If not specified, the 
maximtUn positive integer is asstUned. 

YES specifies that all levels are to be conunitted. 

I Lower 
I Address 
lo 1 2 3 
I 
I (1) (2) (3) 
I 
I 
I Higher 
I Address 
I Preceding 
I Stack Data 

Controlled Release Draft 4-124 October, 1985 



(1) Flag byte: 
Bit 0 1 = HOLD, 0 = RELEASE. 
Bit 1 1 = EXTENSION RIGHTS request. 
Bit 2 1 = RELEASE ALL and commit OMS/TX transaction. 
Bit 3 1 = TIME OUT in use. 
Bit 4 1 = Cancel on error. 
Bit 5 1 = Produce ACK GETPARM on error. 
Bit 6 Reserved for internal use, must be 
Bit 7 Reserved for internal use, must 

(2) Time out value in seconds from 0 - 255. 

(3) Reserved, must be 0. 

Stack On Output 

I 
I 
lo 1 2 

OCSP) I 
I (1) Return Code 
I 

4(SP) I 
I (2) User ID 
I 
I Preceding 
I Stack Data 

(1) Return code 

3 

(3) 

Lower 
Address 

Higher 
Address 

(2) User ID of user holding extension rights 
(3) Unused 

Output 

be 
o. 
o. 

A return code is issued in the topword of the stack, as follows: 

Code 

0 

4 

8 

12 

16 

Definition 

Success. 

Timeout. 

Invalid function sequence. 

Request to HOLD or FREE with no shared files open. 

System error - the sharer is not active or has run out 
of memory space. 

Controlled Release Draft 4-125 October, 1985 



Code Definition 

20 System error - before image journal (BIJ) error during 
end transaction. 

24 Invalid function parameter. 

28 Invalid subtransaction nesting. 

Examples 

FREEALL CANCEL=YES 
+ PUSHA 0,0 
+ PUSHA 0,0 
+ MVI 0(15),X'20' 
+ OI 0(15),X'OS' 
+ SVC 52 (FREEALL) 

FREEALL ACK=YES 
+ PUSHA 0,0 
+ PUSHA 0,0 
+ MVI 0(15),X'20' 
+ OI 0(15),X'04' 
+ SVC 52 (FREEALL) 

Controlled Release Draft 

FREE ALL SHARED RESOURCES 
SET UP CANCEL-ON-ERROR CONDITION 

FREE ALL SHARED RESOURCES 
SET UP ACKNOWLEDGE-ERROR CONDITION 

4-126 October, 1985 



4.2.30 FREEBUF - Free Buffer Space (SVC 6) 

Syntax 

[label] FREEBUF BUFLOC={(register)}[,LENGTH=(register)] 
{ address } 

Function 

[,LEVEL={<register)}] 
{ address } 

To deallocate a buff er area allocated by the GETBUF SVC. The buffer 
area at the address specified by the BUFLOC parameter and for the length 
specified by the LENGTH parameter is made available for reallocation by 
GETBUF. The contents of this area should be considered unreliable after 
the FREEBUF has been issued. 

Control register 2, the stack limit, may be modified. 

Restrictions 

For use by certain supervisor call routines and Data Management 
System routines only. 

Parameter Definitions 

BUFLOC The address of a buffer allocated by GETBUF. This must be 
presented as a register specification in parentheses, where the 
register is assumed to contain the buffer address, or as a buffer 
address expression not in parentheses. 

LENGTH A register specification in parentheses where the register 
contains the buffer length. The length must be a multiple of 
2048, and must be the same as that requested by GETBUF. A LENGTH 
of 2048 is assumed if no LENGTH parameter is supplied. 

LEVEL Process level at which to deallocate the block of memory. The 
default is the current process level. Available for privileged 
callers only. Specified as an address expression pointing to a 
1-byte binary field containing the process level. 

Controlled Release Draft 4-127 October, 1985 



Stack On Input 

OCSP) 
(1) 

4(SP) 
(2) 

(1) Address of 

Buff er Address 

Buff er Size 

Preceding 
Stack Data 

the buff er that is 

Lower 
Address 

Higher 
Address 

to be returned for use. 

(2) The size of the buffer which must be a multiple of the page size 
(2048). This SVC is called by the GETHEAP/FREEHEAP SVCs. In the case 
of calls by the GETHEAP/FREEHEAP SVC, the high-order byte of this 
word is set to X'04'. In the case of such calls, GETHEAP/FREEHEAP 
places the address of the corresponding Subpool Block ( SPB) in the 
third word from the top of the system stack. 

Stack On Output 

Q(SP) 

4(SP) 

Output 

Return Code 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

One of five return codes is issued in the topword on the stack. The 
return codes are as follows: 

Code 

0 
4 
a· 

12 
16 

Description 

Buffer deallocated. 
Invalid buffer address. 
Invalid buffer length. 
Process level requested is greater than caller's level. 
Internal system error. 

Controlled Release Draft 4-128 October, 1985 



Example 

+ 
+ 
+ 

FREEBUF BUFLOC=OUTBUF,LENGTH=CR3) 
PUSH O,R3 
PUSHA 0,0UTBUF 
SVC 6 (FREEBUF) 

Controlled Release Draft 4-129 October, 1985 



4.2.31 FREEHEAP - Deallocate Heap Storage (SVC 57) 

Syntax 

[label] FREEHEAP SIZE=(register),LINKLEV=address, 

Function 

BUFLOC={Cregister)},POOLNAME={expression}, 
{ address } { 'string' } 

[ROOTLEV][,SEARCH][,DELETE][,LEVEL={ address}] 
{(register)} 

To deallocate a block of memory which was previously allocated by the 
GETHEAP SVC. All block sizes, including zero, are legal but they are 
rounded to their nearest 8-byte multiple. This SVC calls FREEFBUF CSVC 
6) to deallocate blocks which are greater than or equal to one page 
length in size. An entire subpool can also be deleted in a single 
FREEHEAP call, through the use of the DELETE flag. On UNLINK, all the 
subpools belonging to that link level are automatically deleted. FREEBUF 
may modify the value in control register 2. 

Restrictions 

A stack with the stack top addressed by general register 15 must be 
available. 

Parameter Definitions 

SIZE 

BUFLOC 

LINKLEV 

The size of the block to be deallocated. Specified as a 
register in parentheses, where the register contains the size 
of the block in the low-order three bytes. When the deletion 
of an entire subpool is specified (i.e., the DELETE parameter 
is specified), the SIZE parameter is ignored. 

Start address of the buff er block to be deleted. The value 
can be specified as a register in parentheses that contains 
the start address of the buffer block in the low-order three 
bytes, or as an address expression pointing to a 4-byte field 
that contains the start address of the buffer block in the 
low-order three bytes. When the deletion of an entire subpool 
is specified (i.e., the DELETE parameter is specified), the 
BUFLOC parameter is ignored. 

Link level at which to start searching for the specified 
subpool. A value of '0' indicates the current link level, a 
value of 'l' is the parent, and so on. Specified as an 
address expression pointing to a 1-byte field containing the 
link level in binary. Default is 0 (i.e., current link level). 

Controlled Release Draft 4-130 October, 1985 

-------



LEVEL Process level at which to deallocate the block of memory. The 
default is the current process level. Available for 
privileged callers only. Specified as an address expression 
pointing to a 1-byte binary field containing the process level. 

POOLNAME Name of the subpool to be searched and deleted, up to eight 
bytes in length. Specified as a character string in quotes 
which is the name of the subpool, or as an address expression 
pointing to an 8-byte field containing the name of the 
subpool. Blank names are not permitted. Trailing blanks are 
insignificant. Default is '00000000'. 

ROOTLEV If specified, sets the LINKLEV parameter to 255 CX'FF'), which 
indicates the lowermost link level. Any other value specified 
with LINKLEV is ignored if ROOTLEV is specified. 

SEARCH If specified, a backward search for the subpool is to be 
initiated starting from the LINKLEV specified. Default is no 
backward search. 

DELETE If specified, asks for the deletion of an entire subpool. The 
SEARCH parameter is ignored if DELETE is specified. 

Stack On Input 

0 
O(SP) 

4(SP) 

8CSP) 

12CSP) 

16CSP) 

1 2 3 

(1) (2) Block Size 

(3) (4) Address of 
Start of Block 

(5) Pool name 

Preceding 
Stack Data 

Lower 
Address 

8 bytes 

Higher 
Address 

(1) Option flag: 
Bit O 0 = Search only at the link level specified in the 

LINKLEV operand of the FREEHEAP macro. 
1 = Search backward for the subpool name specified in 
the POOLNAME operand of the FREEHEAP macro, starting 
from the link level specified in the LINKLEV operand 
and going backwards until the subpool is found or all 
the link levels are exhausted. 

Controlled Release Draft 4-131 October, 1985 



Bit 1 1 = Delete an entire subpool with the name specified 
in bytes 8 - 15 of stack and at the link level 
specified in byte 4 of this input parameter list. A 
backward search is never initiated if the DELETE flag 
is set. The SEARCH flag, if specified, is ignored. 

Bits 2-7 Reserved; must be zero. 

(2) Block size - any length is allowed but the size is rounded up 
to the nearest 8-byte multiple. 

(3) LINK level from which to start searching for the subpool. 
0 = Current link level 
1 = Parent of the current link level 
2 = grandparent of the current link level, etc. 
255 = Lowermost link level 

(4) Starting address of the block to be deleted. 

(5) An 8-byte character string representing the subpool name. Blank 
names are not allowed. Trailing blanks are insignificant. When the 
deletion of an entire subpool is desired, the size and buff er 
location parameters have no meaning and are ignored. 

Stack On Output 

OCSP) 

Output 

Return Code 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

A return code is issued in the word on top of the stack. The return 
codes for this macro are as follows: 

Controlled Release Draft 4-132 October, 1985 

I~ 



'~ 

Code 

0 

4 

8 

12 

16 

20 

32 

Example 

Description 

A buff er area has been deallocated or an entire 
subpool has been deleted. 

Invalid buffer address specified. 

Nonexistent link level specified. 

Nonexistent subpool name specified. 

User has overwritten area used by FREEHEAP. User 
should CANCEL at this point. 

Error in parameter list. POOLNAME is specified as all 
blanks, or a nonzero value is in reserved fields. 

Invalid process level requested. 

LABl FREEHEAP SIZE=(3),POOLNAME=NAMELOC,BUFLOC=START,ROOTLEV 
+LABl PUSHN 0,16 RESERVE STACK SPACE FOR 
+* PARAMETERS 
+ XC (16,15),0(15) INITIALIZE PARAMETER SPACE 
+ MVC 8(8,15) ,NAMELOC MOVE POOLNAME TO STACK 
+ STCM 2,B'Olll' ,1(15) MOVE SIZE PARAMETER TO STACK 
+ MVC 5(3,15),START MOVE START ADDRESS TO STACK 
+ QI 4(15) ,X'FF' SET LOWERMOST LINK LEVEL 
+ SVC 57 CFREEHEAP) 

Controlled Release Draft 4-133 October, 1985 



4.2.32 FREESHR - Free Shared Resources (SVC 52) 

Syntax 

[label] FREESHR 

Function 

Releases all resources acquired by the user through the sharing task, 
including held files or records as well as extension rights. 

To deallocate a block of memory as requested. All block sizes, 
including zero, are legal but they are rounded to their nearest 8-byte 
multiple. This SVC calls FREEFBUF CSVC 6) to deallocate blocks which are 
greater than or equal to one page length in size. An entire subpool can 
also be deleted in a single FREEHEAP call, through the use of the DELETE 
flag. On UNLINK, all the subpools belonging to that link level are 
automatically deleted. FREEBUF may modify the value in control 
register 2. 

Stack On Input 

I 
lo 

OCSP) I 
I (1) 

I 
4CSP) I 

I 
I 
I 
I 

(1) Flag byte: 

1 2 

(2) (3) 

Preceding 
Stack Data 

3 

1 = HOLD, 0 = RELEASE. 

Lower 
Address 

Higher 
Address 

1 = EXTENSION RIGHTS request. 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

1 = RELEASE ALL and commit OMS/TX transaction. 
1 = TIME OUT in use. 
1 = Cancel on error. 
1 = Produce ACK GETPARM on error 
Reserved for internal use, must be 0. 
Reserved for internal use, must be O. 

(2) Time out value in seconds from 0 - 255. 

(3) Reserved, must be 0. 

Controlled Release Draft 4-134 October, 1985 



Stack On Output 

I 
lo 

OCSP) I 
I (1) 

I 
4CSP) I 

I (2) 
I 
I 
I 

Cl) Return code 

1 2 3 

Return Code 

User ID I (3) 
I 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(2) User ID of user holding extension rights 
(3) Unused 

Return Codes 

Code Description 

0 Success. 

4 Timeout holding extension rights. Current extension 
holder user ID follows. 

8 

12 

16 

20 

24 

28 

Example 

RITS 
+RITS 
+ 
+ 
+ 

FREES HR 
PUSHA 0,0 
PUSHA 0,0 

Invalid function sequence (will ·not occur under 
DMS/TX). 

No shared files open by user. 

Shared not active, or no memory, or XMIT failed. 

Failed to log transaction end to BIJ, FREEALL not 
done. 

Invalid function request parameter. 

Invalid subtransaction nesting. 

FREE SHARED RESOURCES 

MVI 0(15),X'20' 
SVC 52 CFREESHR) 

Controlled Release Draft 4-135 October, 1985 



4.2.33 FREEXRTS - Free Extension Rights (SVC 52) 

Syntax r-'\ 

[label] FREEXRTS 

Function 

A DMS function that releases extension rights that were previously 
acquired through the issuing of the GETXRTS. 

Stack On In12ut 

I 
I 
lo 

Q(SP) I 
I (1) 
I 

4(SP) I 
I 
I 
I 
I 

(1) Flag byte: 

1 2 3 

(2) (3) 

Preceding 
Stack Data 

1 = HOLD, 0 = RELEASE. 

Lower 
Address 

Higher 
Address 

1 = EXTENSION RIGHTS request. 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

1 = RELEASE ALL and conunit DMS/TX transaction. 
1 = TIME OUT in use. 
1 = Cancel on error. 
1 = Produce ACK GETPARM on error. 
Reserved for internal use, must be 0. 
Reserved for internal use, must be 0. 

(2) Time out value in seconds from 0 - 255. 

(3) Reserved, must be 0. 

Stack On Output 

I 
I 
lo 1 2 

OCSP) I 
I (1) Return Code 
I 

4CSP) I 
I (2) User ID 
I 
I Preceding 
I Stack Data 

Controlled Release Draft 

3 

(3) 

4-136 

Lower 
Address 

Higher 
Address 

October, 1985 



~I 

(1) Return code 
(2) User ID of user holding extension rights 
(3) Unused 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

Example 

FREEUM FREEXRTS 
+FREEUM PUSHA 0,0 
+ PUSHA 0,0 

Description 

Success. 

Timeout holding extension rights. Current extension 
holder user-id follows. 

Invalid function sequence (will not occur under 
DMS/TX). 

No shared files open by user. 

Shared not active, or no memory, or XMIT failed. 

Failed to log transaction end to BIJ, FREEALL not 
done. 

Invalid function request parameter. 

Invalid subtransaction nesting. 

FREE EXTENSION RIGHT 

+ MVI 0(15),X'40' 
+ SVC 52 (FREEXRTS) 

Controlled Release Draft 4-137 October, 1985 



4.2.34 GETBUF - Get Buffer Space (SVC 5) 

Syntax 

[label] GETBUF [LENGTH=(register)][,LEVEL={ address }] 
{(register)} 

Function 

To allocate a buffer area on a 2048-byte (page) boundary. Buffer 
space is allocated from the low-address end of modifiable data area. 
Maximum buffer size is restricted only by the size of the caller's 
modifiable data area, less the user stack size, plus two pages reserved 
by the Command Processor/Initiator/GETPARM SVC. Control register 2, the 
system stack limit, may be modified. 

Restrictions 

For use by certain supervisor call routines and Data Management 
System routines only. The GETHEAP macroinstruction and SVC have all the 
functionality of GETBUF, plus additional capabilities. Because blocks 
are automatically released at program termination when the GETHEAP 
facility is used, present GETBUF users are encouraged to use the GETHEAP 
facility. 

Parameter Definitions 

LENGTH A register specification in parentheses where the register 
contains the buff er length. Only lengths which are 
multiples of 2048 are valid. The default buffer length is 
2048. 

LEVEL 'Process level at which to allocate the block of memory. 

Stack On Input 

O(SP) 

4(SP) 

The default is the current process level. This parameter 
is available for privileged callers only. The value can be 
specified as an address expression pointing to a 1-byte 
binary field containing the process level. 

(1 ) I ( 2 ) Buffer 
I Length 

(3) Process Level 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Controlled Release Draft 4-138 October, 1985 



(1) Flag byte: X'80' = set process level 

(2) Requested buffer length must be a multiple of the page 
size ( 2048). 

(3) Process level if flag bit is set. Privileged callers only. 

Stack On Output 

Q(SP) 

4(SP) 

(1) Return Code 

(2) Buffer Address 

Preceding 
Stack Data 

(1) Return code. 

Lower 
Address 

Higher 
Address 

(2) Buffer starting address If the buffer allocation is 
unsuccessful, the content of this word is undefined. 

Output 

A return code is issued in the word on top of the stack, as follows: 
if the return code is equal to 0, then the next word on the stack 
contains the address of the buffer allocated. If the return code is 
nonzero, then the next word on the stack is undefined. 

Return Codes 

Code 

0 
4 
8 

12 
16 

Description 

Buffer is allocated. 
Buffer cannot be allocated. 
Requested length is not a multiple of 2K. 
Process level requested is greater than caller's level. 
Internal system error. 

Controlled Release Draft 4-139 October, 1985 



Examples 

METO 
+METO 
+ 
+ 

+ 
+ 
+ 

GETBUF 
PUSHA 0,0 
PUSHA 0,2048 
SVC 5 (GETBUF) 

GETBUF LENGTH=(R4) 
PUSHA 0,0 
PUSH 0,R4 
SVC 5 (GETBUF) 

Controlled Release Draft 

First parameter word 
Request default buffer length 

First parameter word 
Requested buff er length 

4-140 October, 1985 

r\ 



4.2.35 GETHEAP - Allocate Heap Storage (SVC 56) 

Syntax 

[label] GETHEAP SIZE=(register),[LINKLEV=address,] 

POOLNAME={ address}[,ROOTLEV][,ALIGN] 
{'string'} 

[,SEARCH][,CREATE][,LEVEL={ address }] 
{(register)} 

Function 

This macro provides a user-level memory management feature known as 
heap storage allocation. Heap storage is storage independent of the 
system stack that can be allocated dynamically. GETHEAP has all the 
functionality of GETBUF for allocating page-aligned buffers with the 
following additional features: 

• Any size block can be allocated. It is not necessary for the 
size to be a multiple of 2K. Any size is automatically rounded 
up to the nearest 8-byte multiple. 

• Blocks may be put into different subpools. Advantages of 
subpooling are that clustering of areas allocated from the same 
subpool tend to occur, and that blocks in a given subpool may be 
allocated in separate calls of the GETHEAP macro and then 
deallocated together by one FREEHEAP call. 

• All subpools associated with a specified link level are released 
automatically on UNLINK for that level. 

Because blocks are automatically released at program termination, 
present GETBUF users are encouraged to convert to GETHEAP. 

GETHEAP also allows for the sharing of subpools between link levels. 

When blocks of memory are allocated, all block sizes including zero 
are legal. If, however, the block size is not a multiple of eight bytes, 
the size is rounded up to the nearest 8-byte multiple. Maximum size is 
restricted only by the caller's modifiable data area size less the size 
used by the system stack. The space is taken from the low address end of 
the modifiable data area. The value in control register 2 may be 
modified. Both the creation of a new subpool and allocation of a block 
out of the subpool can be accomplished in a single GETHEAP call. 
Successful creation of a subpool does not guarantee that a block of 
proper size can be allocated. There is no fixed space associated with 
the creation of a subpool; the space is allocated as and when requested. 

Controlled Release Draft 4-141 October, 1985 



Restrictions 

A stack with the stack top addressed by general register 15 must be /"'\ 
available. 

Parameter Definitions 

SIZE 

LINKLEV 

POOLNAME 

ROOT LEV 

ALIGN 

SEARCH 

CREATE 

LEVEL 

The size of the block to be allocated, specified as a 
register in parentheses where the register contains the 
size of the block in the low-order three bytes. 

Link level at which to start searching for the specified 
subpool. A value of 0 indicates the current link level, a 
value of 1 is the parent, and so on. Specified as an 
address expression pointing to a 1-byte field containing 
the link level in binary. Default is 0 (i.e., current link 
level). 

The 8-byte name of the subpool to be searched/created. 
Blank names are not permitted. Trailing blanks are 
insignificant. Default is '00000000'. Specified as a 
character string in quotes, or as the address of an 8-byte 
field containing the name of the subpool. 

If specified, sets the LINKLEV parameter to 255 (X'FF'), 
which indicates the lowermost link level. Any other value 
specified with LINKLEV is ignored if ROOTLEV is specified. 

If specified, a 2048-byte aligned block is returned to the 
caller. The default is no alignment. 

If specified, a backward search for the 
initiated starting from the LINKLEV specified. 
is no backward search. 

subpool is 
The default 

If specified, asks for the creation of a new subpool with 
the name given by the POOLNAME parameter and at the link 
level given by LINKLEV. The SEARCH parameter is ignored if 
CREATE is specified. 

Process level at which to allocate the block of memory. 
The default is the current process level. Available for 
privileged callers only. Specified as an address 
expression pointing to a 1-byte binary field containing the 
process level. 

Controlled Release Draft 4-142 October, 1985 



~. 

Stack On In:12ut 

0 1 2 3 
Q(SP) 

(1) (2) Block Size 

4(SP) 
(3) (4) Reserved 

8(SP) 
(5) POOL Name 

12(SP) 

16(SP) Preceding 
Stack Data 

(1) Flag byte: 
X'80' =Backward search 
X'40' = Create subpool 

Lower 
Address 

8 bytes 

Higher 
Address 

X'20' = Align on page boundary 
X'lO' =Select process level 

(2) Block Size in bytes. 
( 3) Link Level. 
(4) Reserved. 
(5) POOLNAME (eight characters in length). 

Stack On Output 

O(SP) 

4(SP) 

(1) Return Code 

(2) Block Address 
or Block Size 

Preceding 
Stack Data 

(1) Return code. 

(2) Block address - block size: 

Lower 
Address 

Higher 
Address 

For return code = 0, beginning address of allocated block of 
memory. 
For return code = 4, size of the largest available block of 
memory. 
For return code > 4, contents are ignored. 

Controlled Release Draft 4-143 October, 1985 



Output 

A return code is issued in the top word of the stack. The return 
codes for this macro are as follows: 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

Example 

LABl 
+LABl 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Description 

A buffer area has been allocated. The next word on 
the stack contains the block starting address. If 
requested, a subpool has also been created. 

Not enough space in modifiable data area. The next 
word on the stack contains the size of the largest 
block available. If requested, a subpool has also been 
created. 

Nonexistent link level specified. 

Nonexistent subpool name specified. 

User has overwritten area used by GETHEAP. 
should CANCEL at this point. 

User 

Error in parameter list. POOLNAME all blank or a 
nonzero value in reserved fields. 

GETMEM failure. A new subpool cannot be created. This 
however does not prevent the user from allocating 
space from an existing subpool. 

CREATE failure. A subpool with the same name already 
exists at this link level. 

Invalid link level requested. 

GETHEAP SIZE=(2),POOLNAME='POOL',LINKLEV=LEVL,CREATE 
PUSHN 0,16 RESERVE STACK SPACE FOR PARAMETERS 
XC 0(16,15),0(15) INITIALIZE PARAMETER SPACE 
MVC 8(8,15),*+10 MOVE POOLNAME TO STACK 
B *+12 
DC CL8'POOL' 
STCM 2,B'Olll',1(15) 
MVC 4(1,15),LEVL 
OI 0(15),X'40' 
SVC 56 (GETHEAP) 

MOVE SIZE PARAMETER TO STACK 
MOVE LINK LEVEL PARAMETER TO +* STACK 
SET THE CREATE FLAG 

Controlled Release Draft 4-144 October, 1985 



4.2.36 GETPARM - Get Parameters (SVC 20) 

~. Syntax 

[label] GETPARM [! ,]FORM={REQUEST},KEYLIST={Cregister)}, 
[ID ] {SELECT } { address } 
[R ] {ACK } 
[RD ] {SYSHDR } 

{OPR } 

MSG={Cregister)}[,DEVICE={(register)}][,SHIFT={NO }] 
{ address } { address } {YES} 

Function 

[,{PFKEYS={ (register) } }] 
{ address } 
{CENTER, address)} 

{PFLIST=(PFKl,PFK2, .•. PFKn)} 

To solicit information from the user at a workstation or from a 
procedure body. Information may be obtained from the user in the 
following three ways as defined by the FORM parameter: 

• By requesting the user to key in necessary modifications to a 
keyword or a series of keywords. 

• By requesting the user to select from a list of functions by 
depressing the corresponding program function key. 

• By requesting the user to press the ENTER key to acknowledge a 
message. 

After displaying the data supplied by the KEYLIST parameter on the 
workstation screen, GETPARM performs the following actions: 

1. Waits for a response from the workstation. 

2. Validates the response according to the entry specifications 
contained in the field format control block for each keyword. 

3. If the entry is not valid, GETPARM issues a request for 
respecification of the invalid data. 

4. When all supplied values are valid, GETPARM stores the 
information in the receiving fields of the field format control 
block and returns control to the issuing program. 

Controlled Release Draft 4-145 October, 1985 



The user program may issue four different types of GETPARMS: 

• 
• 
• 
• 

Initial request 
Respecif ication 
Initial defaulted 
Respecification defaulted 

Fields for which values are requested are identified by a two-level 
name, prname and keyword, specified in a parameter group control list 
specified by the KEYLIST parameter. The procedure body, if any, in 
effect is the preferred source of values for a type I (initial) request. 
In the absence of a matching name in a procedure, the user is solicited 
at the workstation. A type ID (initial defaulted) request solicits from 
the procedure body only. A type R ( respecification) request solicits 
from the workstation only. A type RD request normally solicits no 
information from the workstation or from a procedure body, but updates 
the procedure's temporarily stored information for use by reference from 
a later procedure step. 

The MSGLIST macroinstruction is used to generate a message for 
display. The KEYLIST macroinstruction is used to generate the parameter 
group control list addressed by the KEYLIST parameter of GETPARM. 

The total number of lines used by KEYLIST and MSGLIST for display can 
not exceed 18. None of the lines can be longer than 79 characters, 
excluding the end-of-line character. 

The GETPARM SVC enables user programs to request and accept run time 
parameter information, and to display and wait for acknowledgment of run 
time messages. GETPARM requests the information or response either 
through direct interaction with the user through the workstation or by 
accessing supplied data in the procedure which invoked the program. The 
program that issues the GETPARM SVC need not be aware of the data source; 
any interactive program that communicates with the user exclusively, 
using GETPARM requests, can also be successfully run from a procedure. 

GETPARM functions are divided into three request types: 

• Request for information -- this request should be issued whenever 
the user is required to enter data for one or more modifiable 
receiving fields. The expected user response is to modify none, 
one, or all of the fields and to end the input of data by 
pressing the ENTER key. 

• Request for selection -- this request should be issued when a 
list of valid choices is to be displayed and the user is expected 
to identify a choice by pressing one of the program function keys 
or the ENTER key. 

Controlled Release Draft 4-146 October, 1985 



• Request for acknowledgement -- this request should be issued when 
the user is to take some operator action, or to acknowledge 
receipt of a message. In this mode, the user is expected to 
press the ENTER key as a ready signal. 

GETPARM creates and displays a screen full of information using the 
data structure generated by the KEYLIST macroinstruction whose address is 
supplied on the call to the SVC. GETPARM generates the screen in the 
following manner: 

• Lines 1 through 6 of the workstation screen, the header section, 
are reserved for system generated headers which assist the user 
in responding to the GETPARM request and vary according to 
request type. These lines include the display area for messages 
generated by the GETPARM SVC. 

• Lines 7 through 24 of the workstation screen contain a user 
message section and the modifiable fields and embedded text 
section. 

The message section is used to display the message supplied 
to the SVC through the MSG operand of the GETPARM 
macroinstruction. The message number and the issuer id in the 
fixed format section of the message are displayed on the 
screen beginning in column 1 of the first line. The message 
text is placed on the screen beginning with column 2 of line 
7. One additional line beginning in column 2 is displayed 
for each new-line character encountered. The new-line 
character is not displayed and does not use a character 
position. The maximum length of text which can be displayed 
on one line is 79 characters. The message section is 
completed with a blank line. 

The GETPARM SVC builds the rest of the screen according to 
how the KEYLIST data structure contains the information to be 
displayed. When GETPARM encounters a field format control 
block for a keyword/receiving field, it performs in the 
following manner: 

-- The receiving field display section begins with column 
2 of the next line after the message section. Each 
receiving field is displayed with its associated keyword 
as follows 

The screen line position advances the indicated number 
of lines from current position. If line advancement 
takes place the column position is set to 2. 

The screen column position advances the indicated 
number of spaces from the current position. 

Controlled Release Draft 4-147 October, 1985 



-- The 8-character keyword, followed by a blank, followed 
by an "=" character, followed by a blank, followed by the 
receiving field, followed by a blank is displayed. If 
any part of the receiving field is not on the screen, the 
keyword and field are not displayed and are not 
validated. Fields flagged as being in error are blinked 
to attract user attention. 

When GETPARM encounters a field format control block for 
embedded text, it performs in the following manner: 

-- The screen line position advances the indicated ntunber 
of lines from current position. If line advancement 
takes place the column position is set to 2. 

The screen column position advances the indicated 
ntunber of spaces from current position. 

-- The variable length text is displayed followed by a 
blank. If any part of the text is not on the screen, no 
text is displayed. 

The message text plus the receiving field display are truncated if 
they exceed 18 lines of information to be displayed. 

Default or current information in the receiving fields is displayed 
as is without regard for entry control information. However, this 
information is flagged for user correction if the format does not match 
when the user presses the ENTER key. 

After the display is generated, the cursor is placed at the beginning 
of the first receiving field, or on type R request, to the beginning of 
the first keyword field which has an error flag set. A read is then 
issued to wait for a legal user response. Upon signal from the user, the 
receiving fields are checked for legal contents, and if all are correct, 
are moved into the program's receiving fields. If any are in error, 
GETPARM automatically generates an error message in the header section, 
blinks the field in error and issues another read. When the user has 
successfully supplied the information of his choosing, control is 
returned to the user's program, and if the screen was in use, its 
contents are restored. 

The user can suspend GETPARM processing and enter the Help processor 
by pressing the HELP key. The screen is saved as is, and the issuance of 
a CONTINUE command returns control to GETPARM with a restored screen. 
The user can then reenter the program by completing his response to 
GETPARM. 

Controlled Release Draft 4-148 October, 1985 



. ~ 

The program using GETPARM cannot assume that the user's response (or 
the accessed procedure data) is valid. The displayable parameters 
presented to GETPARM include a parameter-group receiving section with 
embedded explanatory text, and a separate message section. The GETPARM 
user is expected to initiate a sequence of repeated requests until an 
acceptable response is received. During this sequence the requested 
information should be the same, while the message changes to best explain 
the difficulties encountered in the previous responses. 

The request sequence indicator, bit 6 of the request type indicator, 
is used by GETPARM to differentiate between an initial request and a 
request for correction of data which the user program did not consider 
valid. An initial request, request type I, is satisfied using 
procedure-specified data (located using the prname and keyword) if 
available, generating a user-interaction only if all such data has been 
exhausted. Each initial request with a given prname reads one equivalent 
specification statement in a procedure. A request for respecif ication, 
request type R, always generates a user-interaction regardless of whether 
or not the program is running from a procedure. 

If the user-interaction suppressor bit is set, initial requests 
access procedure-specified data if available, but do not ordinarily 
generate a user-interaction. However, if the user has selected the NO 
DEFAULT option when initiating his program or procedure all GETPARM 
requests, after accessing available procedure data, are displayed for 
user observation or modification. 

When the issuance of a GETPARM SVC results in a screen display, the 
contents of the screen (if in use) are saved, and are restored when the 
user indicates completion of his response. 

GETPARM parameters should always be coded with the assumption that 
they must be capable of generating a workstation screen that can be 
displayed. 

Parameter Definitions 

I 

R 

RD 

Indicates initial request for specification of information. 
'I' is the default. 

Indicates request for correction of information, selection, 
or response just received as a result of the previous 
request. 

Generates a workstation interaction even if the default 
data in the receiving fields of all field format control 
blocks satisfy lexical requirements for correctness . 

Controlled Release Draft 4-149 October, 1985 



FORM 

KEYLIST 

MSG 

DEVICE 

PFKEYS 

Valid options are shown in the syntax specification; these 
are 

REQUEST -- Request for information (default option). 

SELECT -- Request for selection. 

ACK -- Request for acknowledgment. 

SYSHDR 
displayed. 

Request for information with no prname 

QPR -- Request for operator action. 

The address of a parameter group control list in the format 
specified in the GETPARM SVC description. This format is 
produced by the KEYLIST macroinstruction. This parameter 
is presented in the same ways as the MSG parameter. A 
parameter group control list is always required, but, if 
the user desires, may have no field format control blocks. 

The address of a message to be displayed in the user 
program message section of the workstation screen. This is 
the form of message generated by the MSGLIST 
macroinstruction. It may be presented as a register 
specification in parentheses, where the register contains 
the message address, or as an expression not in 
parentheses, where the expression addresses the message. 
The MSG parameter is always required, but the message text 
may be of 0 length. 

Device number, in binary, in the low byte of the specified 
register or at the byte in memory specified by the 
expression. Required if FORM=OPR is specified; displayed 
when FORM=OPR only. 

The address of the program function key mask which 
indicates which PF keys are accepted with this GETPARM. 
The address is supplied as a single subparameter or as a 
subparameter preceded by the word ENTER, as shown in the 
syntax. When this expression is preceded by ENTER, the 
ENTER key is also accepted. Otherwise, if just the PFKEYS 
parameter is supplied, the ENTER key is not acc·epted. The 
4-byte program function key mask is constructed as 
follows: the high-order bit corresponds to PF key 1, the 
low-order bit corresponds to PF key 32. Bits set on 
indicate keys which are accepted. If specified as an 
address, the address must be in the code section. 

May also be specified by designating a register in 
parentheses where the register contains the PF key mask. 

Controlled Release Draft 4-150 October, 1985 



~' 

PFLIST 

SHIFT 

Stack On Input 

If the PFKEYS parameter is not supplied, the following keys 
are accepted: 

FORM=REQUEST -- ENTER key only 
FORM=SELECT -- All PF keys and ENTER key 
FORM=ACK -- ENTER key only 
FORM=SYSHDR -- ENTER key only 
FORM=OPR -- ENTER key and PF16 only 

A list of PF keys which are to be accepted with this 
GETPARM. PF keys are specified as digits from 1 - 32 
separated by commas and enclosed in parenthesis. 

YES specifies that uppercase PF key numbers should be 
converted to lowercase PF key numbers. NO specifies no 
case change and is the default. 

Parameter list of eight or twelve bytes on stack top, in the 
following format: 

0 
O(SP) 

(1) 

4(SP) 
( 3) 

8(SP) 
(5) 

1 2 3 

(2) Message 
Address 

(4) Address 
Control List 

PF Key Mask 
(Optional) 
Preceding 

Stack Data 

of 

Lower 
Address 

Higher 
Address 

(1) Request type indicator: 
Bits 0-3 -- Header type and acceptable response designator. 

0 = Request for information - Acceptable response is 
modification of variable fields with completion signaled 
by pressing the ENTER key or any enabled PF key. By 
default, all PF keys are disabled. 
1 = Request for selection - Acceptable response is 
selection indicated and signaled by pressing the ENTER 
key or any enabled PF key. By default, all PF keys are 
enabled. 
2 = Request for acknowledgement - Acceptable response is 
acknowledgement signaled by pressing the ENTER key or any 
enabled PF key. By default, all PF keys are disabled. 

Controlled Release Draft 4-151 October, 1985 



(2) 

Bit 4: 1 = Indicates that the ENTER key is accepted as a 
response to the GETPARM (ENTER key disabled), in addition to 
any keys specified in the PF key mask. This bit is ignored ~ 
unless bit 5 is set. 
Bit 5 -- PF key mask present indicator. 

0 = Default mode - PF keys are enabled or disabled 
according to default values. The PF key mask should not 
be present in the parameter list. 
1 = Override mode - PF keys are disabled as indicated by 
the PF key mask which must be present in the parameter 
list. 

Bit 6 -- Request sequence identifier. 
0 = Type I Initial request for specification of 
information, selection among alternatives, or response. 
1 = Type R - For correction of information, selection, or 
response just received as a result of the previous 
request. 

Bit 7 -- User-interaction suppressor. 
0 = Normal mode - This mode generates a workstation 
interaction even though the default data in the receiving 
fields of all field format control blocks are correct. 
No workstation interaction is generated when 
procedure-specified data is supplied and is sufficient in 
conjunction with the default data to completely satisfy 
the request. 
1 = Default mode - This mode is intended for use by OPEN 
only. This mode accepts procedure-supplied data if 
available, but does not generate a workstation .1'8"'\ 
interaction unless a field default value is lexically in 
error. 

Address of the message to be displayed. The message. is 
constructed as follows: 

(a) (b) (c) <d>- - - - I 
Message Number Issuer ID Length Text I 

- - _I 
0 4 10 12 N 

(a) A 4-byte message number in ASCII characters. This ntunber is 
displayed in the GETPARM header on any associated screen 
transactions. 

(b) A 6-byte issuer ID 
displayed in the GETPARM 
transactions. 

in ASCII 
header 

characters. This 
on any associated 

ID is 
screen 

( c) A 2-byte message length in binary. This is the length of 
the text that follows. 

Controlled Release Draft 4-152 October, 1985 



(d) Message text in ASCII characters. If the message is longer 
than 79 characters, (meaning multiple display lines) an end of 
line can be indicated by an ASCII new-line character (X' OD'). 
The message text is displayed on the workstation beginning in 
column 2 of line 7. Each new line begins in column 2 of the next 
line. Lines longer than 7 9 characters containing no new-line 
character are truncated. The last line does not require an 
end-of-line indicator. 

( 3) Zero, or for device action request only, the device number of 
the device requiring service. 

( 4) Address of a parameter group control list which is constructed 
as follows: 

+o 

+8 

+10 

+10 + BL 
1 

n-1 
+10 + BL 

i 
i=l 

(a) prname 

(b) PF Key (c) Number 
Field of fields 

(d) Field Format 
Control Block 1 

Cd) Field Format 
Control Block 2 

Cd) Field Format 
Control Block N 

where BL = length of Format Control Block 

Ca> An 8-character, left-justified parameter reference name 
Cprname). 

(b) A 1-byte receiving field for the corresponding AID character 
of the program function key received in a user response to a 
request for selection. This field may be set by a procedure 
specification of a function key number. 

Controlled Release Draft 4-153 October, 1985 



(c) A 1-byte binary count - number of field format control 
blocks. 

(d) Format control block (variable length field). There are two 
formats for the format control blocks: one for control of the 
keyword/receiving field pairs, the other to control the use of 
embedded text to be displayed. This field is repeated for each 
field to be displayed in the order they are to be displayed on 
the workstation screen. 

( 5) Optional 4-byte program function key mask. Each bit indicates 
whether the corresponding PF key should be enabled. The high-order 
bit corresponds to PFl. A value of 1 = PF key enabled; 0 = PF key 
disabled. 

Keyword/Receiving Field Format Control Block Structure 

Data Structure 
lo 1 2 3 I 
I I 
I (1) I 
I I 
I 
I (5) 
I 
I 
I (6) 
I 

I I 
(2)1 (3)1 

I I 

Keyword 

Receiving 
Field 

I 
< 4 > I 

I 
I 
I 
I 
I 
I 
I 

Lower 
Address 

Higher 
Address 

(1) Line-advance-count for display control. A 1-byte binary field. 

(2) Space-advance-count for display control. A 1-byte binary field. 
Line advance takes place before space advance. Both take place 
before display of keyword and receiving field. 

(3) Field error flag and receiving field entry restriction 
indicator. A 1-byte binary field, formatted as follows: 

Bit 0: Field error flag 
1 = Error - set by program to draw attention to fields in 
error. Reset by GETPARM. 

Bit 1: 1 = Norunodifiable field. 
Bits 5-7: Receiving field entry restrictions 

0 = Character string - no restrictions on content; 
maximum usable field length is 68 characters. 
1 = Positive integer - nonblank response need not be 
justified, but must consist entirely of the numerals 0-9 
with leading and trailing blanks ignored. All blanks are 
treated as a legitimate NULL specification. Field length 
is restricted to 16 characters. 

Controlled Release Draft 4-154 October, 1985 



(4) 

2 = Numeric - response must consist entirely of the 
numerals 0-9 optionally containing one decimal point and 
optionally preceded by a + or -. Leading and trailing 
blanks are ignored. An all blank response is treated as 
a legitimate NULL response. Field length is restricted 
to 16 characters. 
4 = Uppercase alphanumeric - all entered letters are 
converted to uppercase. Legal nonblank response must be 
left-justified and consist entirely of the numerals 0-9, 
the letters A-Z, the special characters (@, #, or$), and 
trailing blanks. An all blank response is treated as a 
legal NULL response indicator. Maximum usable field 
length is 68 characters. 
5 = Uppercase hexadecimal - all entered letters are 
converted to uppercase. Legal nonblank response need not 
be justified, but must consist entirely of the numerals 
0-9, and the letters A-F with leading and trailing blanks 
ignored. An all blank response is treated as a 
legitimate NULL specification. Maximum usable field 
length is 68 characters. 
6 = Uppercase character string all letters are 
converted on entry to uppercase; maximum usable field 
length is 68 characters. 
7 = Alphanumeric limited all entered letters are 
converted to uppercase. Legal nonblank response is 
left-justified, beginning with a letter A-Z, or one of 
the special characters (@, #, or $), and consists 
entirely of the numerals 0 through 9, the letters A 
through Z, the special characters, and trailing blanks. 
An all blank response is treated as a legal NULL response 
indicator. Maximum usable field length is 68 characters. 

1-byte binary receiving field length minus 1 (in characters). 

(5) An a-character, left-justified keyword used for display purposes 
(and to support noninteractive access via the procedure interpreter). 

(6) Variable-length receiving field with default or current value in 
place. 

Embedded Text Field Format Control Block Structure 

DATA STRUCTURE 
lo 1 2 3 
I I I I 
I < u I < 2 >I (3)1 (4) 
I I I I 
I 
I (5) Text 
I 
I 

Controlled Release Draft 4-155 

Lower 
Address 

Higher 
Address 

October, 1985 



(1) Line-advance-count for display control. A 1-byte binary field. 

(2) Space-advance-count for display control. A 1-byte binary 
field. Line advance takes place before space advance. Both take 
place before display of keyword and receiving field. 

(3) The value -1 <= 255). 

(4) Text field character length minus one. A 1-byte binary field. 

(5) Character string to be displayed. Variable length field. 

Stack On Output 

The stack on output is empty, except for the top word which contains 
a return code. When the return code equals 0, the operation was 
successful. If there was an error, the return code equals 04. 

O(SP) 

4(SP) 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(1) Receiving fields as modified by user interaction or procedure 
specified data. 

(2) Program Function key receiving field set to accepted AID byte or 
procedure specified value. 

(3) Field error flags in control list reset to 0. 

(4) Input parameters popped from stack upon return. 

Controlled Release Draft 4-156 October, 1985 



Example 

LABl 
LABl 

GETPARM KEYLIST=(R2),MSG=LAB2 
PUSH 0,R2 Put the KEYLIST address on the stack 
PUSHA 0,LAB2 Put the MSG address on the stack 
MVI 0(15),B'OOOOOOOO' Move in the GETPARM options byte 
SVC 20 (GETPARM) Issue the GETPARM SVC 

LAB2 MSGLIST '1234','TXTEDT','OPTIONS AS FOLLOWS:' 
LAB2 DC CL4'1234' MESSAGE NUMBER 

DC CL6'TXTEDT' ISSUER IDENTIFICATION 
DC AL2 ( 19) MESSAGE LENGTH 
DC C'OPTIONS AS FOLLOWS:' 

LAB3 KEYLIST PRNAME='OPT', X 
I LIST I , ( I NO I , AN, 1, 0 ) x 
'DISPLAY',('YES',AN,l,0) X 
'LINECNT' ,('50',INT,l,0) 

LAB3 DC CL8 I OPT I PRNAME 
DC HLl'0,1' PF KEY & FIELD COUNT 

DC ALl(l,0,4,1) LINE I SPACE ADV, FLAGS, LGTH-1 
DC CLS'LIST' ,CL2'N0' KEYWORD & DISPLAYED VALUE 
END BEGIN 

Controlled Release Draft 4-157 October, 1985 



4.2.37 GETXRTS - Hold Extension Rights (SVC 52) 

Syntax 

[label] GETXRTS TIMEOUT={(register)} 
{ integer } 

Function 

A OMS function that provides a way for a user to acquire more 
resources when already holding some resources. Only one user at a time 
may have extension rights. This avoids the possibility of deadlock 
occurring when more than one user requests the same resource at the same 
time. 

Parameter Definitions 

TIMEOUT Specifies the time Cin seconds) to wait for extension 
rights. An integer value from 0 to 2 55 seconds, where 0 
equals no limit on the time to wait. The value may also be 
specified as a register nwnber in parenthesis which 
contains the wait value. 

Stack On In2ut 

I Lower 
I Address 
lo 1 2 3 

OCSP) I I I 
I (1) I (2) I (3) 
I I I 

4CSP) I 
I Higher 
I Address 
I Preceding 
I Stack Data 

(1) Flag byte: 
1 = Hold; 0 = Release. 
1 = Extension rights request. 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

1 = Release all and conunit DMS/TX transaction. 
1 = Time out in use. 
1 = Cancel on error. 
1 = Produce ACK GETPARM on error. 
Reserved for internal use, must be 0. 
Reserved for internal use, must be 0. 

(2) Time out value in seconds from 0 - 255. 

(3) Reserved, must be 0. 

Controlled Release Draft 4-158 October, 1985 

~ 



'~ 

Stack On Output 

I 
I 
lo 

Q(SP) I 
I (1) 
I 

4(SP) I 
I (2) 
I 
I 
I 

( 1) Return code 

1 2 

Return Code 

User ID 

Preceding 
Stack Data 

3 

(3) 

Lower 
Address 

Higher 
Address 

(2) User ID of user holding extension rights 
(3) Unused 

Return Codes 

Code Description 

0 Success. 

4 Timeout holding extension rights. Current extension holder 
user ID follows. 

8 

12 

16 

20 

24 

28 

Example 

GETUM 
+GETUM 
+ 
+ 
+ 
+ 

Invalid function sequence (will not occur under OMS/TX). 

No shared files open by user. 

Shared not active, or no memory, or XMIT failed. 

Failed to log transaction end to BIJ, FREEALL not done. 

Invalid function request parameter. 

Invalid subtransaction nesting. 

GETXRTS TIMEOUT=3 
PUSHA 0,0 HOLD EXTENSION RIGHT 
PUSHA 0,0 
MVI 0(15),X'DO' 
MVI 1(15),3 
SVC 52 <HOLD) 

TIME-OUT IN USE 
SET UP TIME-OUT INTERVAL 

Controlled Release Draft 4-159 October, 1985 



4.2.38 HALTIO - Halt I/O Qperation (SVC 12) 

Syntax 

Format 1: 

[label] HALTIO PRINTER={(register)} 
{ integer } 
{ address } 

Format 2: 

[label] HALTIO OFB={Cregister)} 
{ address } 

Format 3: 

[label] HALTIO VCB={(register)} 
{ address } 

Function 

Stops an input/output operation that was initiated by the XIO SVC. 
The printer option terminates multiline (especially block-oriented) print 
I/O requests to a printer. The OFB option terminates an outstanding 
file-oriented I/O request which is not necessarily for a printer output 
file (especially for telecommunications files). The VCB option 
terminates an outstanding volume-oriented I/O request to or from a disk. 

If the I/O operation is in progress and the device supports HALT I/0, 
the SVC issues an HIO instruction to the device. If the I/O is not in 
progress, the !ORE is removed from the device's I/O queue. 

In either case, a WAIT must be issued after the call to HALTIO, to 
wait for the I/O completion, clean up the device status, and leave the 
completion semaphore at the correct value. 

HALTIO should be issued only if an XIO has been issued, but the CHECK 
has not been done. CHECK should be issued after HALTIO (as in a normal 
wait-for-completion). 

Restrictions 

HALTIO is intended for system routine use and those user programs 
which must control I/O operations through XIO (Execute Physical I/0). 
HALTIO is not to be used by programs using normal OMS for I/O. 

HALTIO must not be issued unless an unchecked XIO is currently 
outstanding. The user program must always insure the HALTIO is complete 
by issuing a subsequent CHECK I/O macroinstruction. 

Controlled Release Draft 4-160 October, 1985 



Parameter Definitions 

PRINTER 

OFB 

VCB 

Output 

The device number of the printer whose current I/O is to be 
terminated. This number must be in the range 0 - 255 and may be 
specified as a register in parentheses that contains the device 
number in binary in its low-order position, as an integer which 
is the device number in decimal, or as an expression that 
addresses a 1-byte binary field containing the device number. 

The address of the open file block COFB) for the outstanding 
I/O. This form is used for file-oriented (regular) I/O and may 
reference any file/device pairing. This parameter is specified 
as a register in parentheses containing the OFB address in the 
low-order three bytes, or as an address expression pointing to a 
4-byte field containing the OFB address in the low-order three 
bytes. 

The address of the volume control block CVCB) for the 
outstanding I/O. This form is used for volume-oriented CVOLIO) 
I/O on disk devices only. This parameter is specified as a 
register in parentheses containing the VCB address in the 
low-order three bytes, or as an address expression pointing to a 
4-byte field containing the VCB address in the low-order three 
bytes. The macroinstruction code appends +1 to the specified 
VCB address in order to differentiate (for HALTIO SVC 
processing) an OFB address from a VCB address. 

For the PRINTER option, the HALTIO SVC (SVC 12) issues a return code 
in the top word of the stack. This return code corresponds to the 
condition code set by the HIO machine instruction (refer to VS Principles 
of Operation). 

The HALTIO SVC does not issue a return code for the OFB or VCB forms 
of the macroinstruction. The stack is cleared by the SVC. 

Stack On Input 

Device Option 

Lower 
I Address 
lo 1 2 3 

CSP) I I 
I (1) I c2 > Higher 
I I Address 
I Preceding 
I Stack Data 

(1) Byte 0 = 0 
(2) Byte 3 = Device number 

Controlled Release Draft 4-161 October, 1985 



OFB and VCB Option 

I 
lo 1 2 3 

(SP) I I 
I 
I 

~~---~~~~~~ 

(1) (2) 

!
~~~~~~~~~-

Preceding
I Stack Data

(1) Byte 0 = X'80'

Lower
Address

Higher
Address

(2) OFB option: Bytes 1-3 = OFB address
VCB option: Bytes 1-3 = VCB address + 1

Stack On Output

(SP) I
(1) Condition Code

Preceding
Stack Data

Device Option

Lower
Address

Higher
Address

(1) Condition code returned from HIO instruction.

OFB or VCB Option

The SVC produces no output and pops the input parameters off the
stack.

Examples

LAB
+LAB
+*
+
+*
+

LAB
+LAB
+

HALTIO PRINTER=(R3)
PUSHA 0,0

STC R3,3(,15)

SVC 12 (HALTIO)

HALTIO PRINTER=3
PUSHA 0,3
SVC 12 (HALTIO)

Controlled Release Draft

GET ONE WORD OF ZEROS ON THE
STACK
PUT PRINTER NUMBER IN LOW
ORDER BYTE
ISSUE SVC

PUSH PRINTER NUMBER ONTO STACK
ISSUE SVC

4-162 October, 1985

-

LAB HALTIO PRINTER=PBLKID
+LAB PUS HA 0,0 GET ONE WORD OF ZEROS FROM THE
+• STACK
+ MVC 3 (1, 15) , PBLKID PUT PRINTER NUMBER IN
+• LOW-ORDER BYTE
+ SVC 12 (HALTIO) ISSUE SVC

LAB HALTIO OFB=(R4)
+LAB PUSH 0,R4 PUSH OFB ADDRESS ONTO STACK
+ MVI 0(15),X'80' FLAG AS OFB/VCB TYPE PARMLIST
+ SVC 12 (HALTIO) ISSUE SVC

LAB HALTIO VCB=VCBADDR
+LAB PUSHC 0(4),VCBADDR PUSH VCB ADDRESS ONTO STACK
+ OI 3(15),X'Ol' FLAG AS VCB
+ MVI 0(15),X' 80 I FLAG AS OFB/VCB TYPE PARMLIST
+ SVC 12 (HALTIO) ISSUE SVC

Controlled Release Draft 4-163 October, 1985

4.2.39 IPCB - Describe Interprocessor Control Block

Syntax

!PCB [NODSECT][,REG=expression][,SUFFIX=character]

Function

Describes the interprocessor control block (!PCB), a variable length
block. Its length is 4 + (8*N) , where N = number of devices. These
devices are used to communicate with a peripheral processor (DLP).

Parameter Definitions

NODSECT

REG

SUFFIX

Structure

IPCB

SLOT
+O
+4
+8
+c

Specification of NODSECT results in the IPCB fields being
assembled as part of the current CSECT, DSECT, or STATIC
section. If not specified, the system generates a DSECT
with the name IPCB (plus optional suffix).

Provides for the optional specification of a register for
which a USING statement for the !PCB fields is generated.

One ASCII character in length. If provided, all labels are
generated by the concatenation of the letters IPCB, the
user-provided SUFFIX and the field name.

BYTE 0 BYTE l BYTE 2 BYTE 3

DCNT
SPARE DEV
OFB

Controlled Release Draft 4-164 October, 1985

~'

Example

IPCB REG=3,SUFFIX=E
+IPCBE DSECT
+*
+* THE INTER PROCESSOR CONTROL BLOCK CIPCB) IS A VARIABLE LENGTH
+* BLOCK; ITS LENGTH IS 4+(8*N), WHERE N = NUMBER OF DEVICES.
+* THESE DEVICES ARE USED (BY TASKS IN THE VS) TO
+* COMMUNICATE WITH A PERIPHERAL PROCESSOR (OR 'OLP').
+•
+* DATE: JULY 16, 1980
+*
+IPCBEBEGIN (ALIGNMENT)
+
+IPCBEDCNT
+IPCBESLOT

DS OF
DS H
DS H
DS XLS

(RESERVED; MUST BE ZERO)
NUMBER OF DEVICES

+
+
+IPCBEDEV
+IPCBEOFB
+IPCBEEND
+IPCBELENGTH
+BEGIN
+

ORG IPCBESLOT
DS H SPARE
DS H VS DEVICE ADDRESS
DS A OFB ADDRESS
EQU * END OF !PCB
EQU IPCBEEND-IPCBEBEGIN
CODE
USING IPCBE,3

Controlled Release Draft 4-165 October, 1985

4.2.40 IPCLOSE - Close For I/O with Telecormnunications Devices or Data
Link Processor (SVC 50)

Syntax

[label] IPCLOSE IPCB={ address }
{ (register)}

Function

[,DEVICEADDR={ address }]
{ (register) }
{self-defining term}

[,NUMBER= { address }]
{ (register) }
{self-defining term}

[, RELEASE={YES}]
{NO }

The IPCLOSE macroinstruction would normally be used by cormnunication
control programs or emulator support programs to close the I/O facility
(i.e. , the channel devices) between the VS and the Data Link Processor
(OLP). The conceptual channels between the VS and the DLP that have been
opened by the !POP~ macroinstruction must be closed when I/O processing
has been completed by the task. The channel devices are closed by using
the IPCLOSE macroinstruction. If RELEASE=YES is specified, IPCLOSE is
also used to release any exclusive reservation of the devices that were
exclusively reserved through IPOP~.

IPCLOSE closes the specified number of devices in the specified IPCB,
starting with the specified device address. Thus, the caller can close
one or a m.unber of channel devices. The caller must have opened the
devices specified (using IPOP~), the !PCB must contain entries in the
proper format, and the devices specified must correspond to the device
address/OFB information in the IPCB. The information contained in the
!PCB is sufficient for the IPCLOSE SVC to close the devices previously
opened, therefore only the IPCB address need be specified by the user;
the DEVICEADDR and NUMBER parameters are optional.

A H:ALTIO is issued for any outstanding interprocessor I/O operations.

All OFBs and IOREs for the specified devices are unlinked and freed.
The entries in the IPCB corresponding to the closed devices are zeroed
out. If the last active device on the DLP is being closed, the OLP is
marked as not loaded.

Controlled Release Draft 4-166 October, 1985

When RELEASE=YES, the device(s) are released at IPCLOSE time. If
RELEASE=YES is specified, and any DLP for any of the devices has been
reserved by the user through UNITRES, then IPCLOSE does not complete the
operation. The UNITRES macroinstruction must be used to release the
devices of a DLP previously reserved by UNITRES.

No device is released when RELEASE is not specified as YES.
Therefore, a task retains exclusive reservation of the devices reserved
by IPOPEN even if the devices are not open any longer for I/O
processing. The user can subsequently open these devices with RESERVE=NO
(the default option) specified in the IPOPEN macroinstruction.

IPCLOSE does not CANCEL under any circumstances.

Parameter Definitions

!PCB

DEVICEADDR

NUMBER

RELEASE

A required parameter that defines the address of an
interprocessor control block (!PCB). The !PCB address need
not be the same as used in the corresponding IPOPEN macro
that initiated the I/O facility; this means that the user,
after IPOPEN, can move the !PCB to any other area in the
user modifiable area, and present this new address to
IPCLOSE. Also, many IPCBs can be combined in one !PCB, and
all devices in the combined IPCBs closed in one IPCLOSE
call; therefore, devices on different DLPs can be closed at
one time.

The value can be specified as an address expression, or as
a register in parentheses containing the address of the
!PCB in the low-order three bytes. This parameter is
required.

An optional parameter that defines the starting device
address. It can be specified as a self-defining term, as a
register in parentheses that contains the device address in
its low-order two bytes, or as an expression that addresses
a 2-byte field containing the device address. If not
specified, the starting device address is taken as the
first device in the specified !PCB.

An optional parameter that specifies the number of device
addresses to be closed. If NUMBER is not specified, then
the IPCLOSE uses the number of devices indicated in the
specified IPCB. Specified as a self-defining term, as a
register in parentheses containing the number in its
low-order two bytes, or as an expression addressing a
2-byte field containing this number.

When RELEASE=YES the devices are released as they are
closed; the default is NO.

Controlled Release Draft 4-167 October, 1985

Stack On Input

0 1 2 3
O(SP)

(1) (2) (3)

4(SP)
(4) (5)

8(SP)
(6) IPCB Address

12(SP)

16(SP)

(7) OLP Name

(8) Spare

Preceding
Stack Data

(1) Function code (1 byte)
X'OO' - Open
X' 01' - Close

(2) Option code (1 byte)
X'OO' - No RES/REL
X'Ol' - RES/REL

Lower
Address

Higher
Address

(3) Nwnber of device addresses (2 bytes)

(4) Reserved, must be zero (2 bytes)

(5) First device address or zero (2 bytes)

(6) IPCB address (4 bytes)

(7) DLP name (unused for CLOSE function) (4 bytes)

(8) Spare (4 bytes)

Controlled Release Draft 4-168

I~

October, 1985

Stack On Output

O(SP)

4CSP)

I
lo 1 2 3 I ~~.--~~~~~~-

I (1) (2) Device
I Address
,~~~~~~~~~-

' I
1

Preceding
I Stack Data

Lower
Address

Higher
Address

Cl) Return code
(2) Device address

Output

A return code is returned to the caller to indicate the overall
success or failure of the IPCLOSE processing. Any error causes nothing
to have occurred, that is, if successful, the operation is completely
successful. If the IPCLOSE processing is not successful, the first
device in error which caused the operation to be terminated without
completion is indicated in the low-order two bytes of the word returned
to the caller on the stack. The specific error condition is indicated by
the value of the high-order byte of the word returned to the caller on
the stack.

Return Codes

Code

0
4
8

12
16
20

Description

IPCLOSE successful.
Invalid device address for starting address.
Invalid IPCB (address or contents).
No devices OPEN or IPOPEN.
Device not OPEN or IPOPEN.
Invalid release option CIPCLOSE attempted with
RELEASE=YES and OLP reserved by the user; this return
code is intended to alert the user to release the OLP
by a call of the UNITRES SVC).

Controlled Release Draft 4-169 October, 1985

Exam:ele

IPCLOSE IPCB=IPCBLK,DEVICEADDR=(R2),NUMBER=CR3),RELEASE=YES ~
+ PUSHN 0,8 GET EIGHT BYTES ON THE STACK
+ xc 0(8,15),0(15) AND ZERO OUT SPARE BYTRS
+ PUS HA 0,IPCBLK PUSH ADDRESS OF THE "IPCB"
+ PUS HA 0,0 CLEAR 4 BYTES OF STACK SPACE
+ STH R2,2(,15) SET FIRST DEVICE ADDRESS
+ PUS HA 0,0 CLEAR 4 BYTES OF STACK SPACE
+ STH R3,2(,15) SET NUMBER OF DEVICES TO CLOSE
+ MVI 1(15) ,1 SET RELEASE = YES OPTION
+ MVI 0(15) ,1 INDICATE "IPCLOSE"
+ SVC 50 (IPOPEN/IPCLOSE)

Controlled Release Draft 4-170 October, 1985

4.2.41 IPOPEN - Open for I/O with Telecommunications Devices or Data
Link Processor (SVC 50)

Syntax

[label] IPOPEN IPCB={ address },DEVICEADDR={ address },

Function

{(register)} { (register) }
{self-defining term}

NUMBER={ address },
{ (register) }
{self-defining term}

DLPNAME={ address }
{ (register) }
{'character string'}

[,RESERVE={YES }]
{NO }

IPOPEN is used by communication control programs or emulator support
programs to open the I/O facility (i.e., channel devices) between the VS
and the data link processor <DLP). The conceptual channels between a
program in the VS and a DLP must be opened before any I/O is attempted.

!""-\ Prior to calling the IPOPEN SVC, the programmer is responsible for
allocating an area of the program's modifiable data area for the
interprocessor control block (!PCB). The user places the address of
previously-allocated IPCB in the IPCB parameter.

The caller designates what devices to open by specifying the starting
device address in the DEVICEADDR parameter, by specifying the number of
devices to be opened in the NUMBER parameter, and by specifying the
4-byte DLP name (assigned at system generation) in the DLPNAME
parameter. The channel device addresses associated with a OLP are
extracted using the EXTRACT macroinstruction.

If IPOPEN is success£ ul, it places the count of devices, device
addresses, and corresponding OFB addresses into the IPCB whose address is
specified in the IPCB parameter. If the RESERVE=YES option was
specified, IPOPEN also reserves the opened devices.

IPOPEN cancels if the IPCB address is invalid. The cancellation
condition and the corresponding message are "50#0: Invalid IPCB".

If IPOPEN fails for any reason, IPOPEN closes all devices that had
been opened up to the point the error condition was detected.

Controlled Release Draft 4-171 October, 1985

Parameter Definitions

IPCB

DEVICEADDR

NUMBER

DLPNAME

RESERVE

A required parameter that defines the address of the area
for the interprocessor control block (!PCB) which must be
allocated by the user prior to issuing the IPOPEN
macroinstruction. The value can be specified as an address
expression, or as a register in parentheses that contains
the address of the IPCB in the low-order three bytes.

An optional parameter that defines the starting device
address. The value can be specified as a self-defining
term which is the device address, as a register in
parentheses that contains the device address in its
low-order two bytes, or as an expression that addresses a
2-byte field containing the device address. If not
specified, the starting device address is taken to be the
first device configured on the DLP specified by the DLPNAME
parameter.

A required parameter that specifies the number of device
addresses to be opened. The value can be specified as a
self-defining term which is the number of devices, as a
register in parentheses that contains the number in its
low-order two bytes, or as an expression that addresses a
2-byte field containing this nwnber.

A required parameter that specifies the name of the DLP.
The value can be specified as a 4-byte character string in
single quotes, as a register in parentheses that contains
the name, or an expression that addresses a 4-byte field
containing this name.

The DLPNAME is associated with the DLP at SYSGEN.

When RESERVE=YES, the devices are exclusively reserved as
they are opened. The default is no reservation.

Controlled Release Draft 4-172 October, 1985

r-"'\,

Stack On Input

0 1 2 3
O(SP)

(1) (2) (3)

4CSP)
(4) (5)

8(SP)
(6) IPCB Address

12(SP)

16(SP)

(7) OLP Name

(8) Spare

Preceding
Stack Data

(1) Function code (1 byte)
X'OO' - Open
X'Ol' - Close

(2) Option code (1 byte)
X'OO' - No RES/REL
X'Ol' - RES/REL

Lower
Address

Higher
Address

(3) Nwnber of device addresses (2 bytes)

(4) Reserved, must be 0 (2 bytes)

(5) First device address or 0 (2 bytes)

(6) IPCB address (4 bytes)

(7) OLP name (unused for CLOSE function) (4 bytes)

(8) Spare (4 bytes)

Controlled Release Draft 4-173 October, 1985

Stack On Output

OCSP)

4CSP)

I
lo 1 2 3 I ~---.....-~~~~~~

I c1>
I ,-------
' I I
~~~~~~~~~~ 

Preceding 
I Stack Data 

Lower 
Address 

Higher 
Address 

(1) Return code 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

Description 

IPOPEN successful. 

Invalid device address (starting address). 

Specified number of devices is unavailable on the 
specified OLP. 

Invalid DLP name. ~ 

The OLP is ~eserved by another task. 

Insufficient system memory pool CGETMEM failure) for 
OFB or IORE allocation. 

Maximum number of OFBs exceeded. 

Invalid reserve option (IPOPEN attempted when 
RESERVE=YES and DLP already reserved by the user). 

Controlled Release Draft 4-174 October, 1985 



Example 

I PO PEN IPCB=IPCBLK,DEVICEADDR=CR2),DLPNAME=CR4),RESERVE=YES, 
NUMBER=IPNUM 

+ PUS HA 0,0 ZERO OUT SPARE BYTES 
+ PU SHA 0,0 CLEAR 4 BYTES OF STACK SPACE 
+ MVC 0(4,15),0(R4) SET DLPNAME 
+ PUS HA 0,IPCBLK PUSH ADDRESS OF THE "IPCB" 
+ PU SHA 0,0 CLEAR 4 BYTES OF STACK SPACE 
+ STH R2,2(,15) SET FIRST DEVICE ADDRESS 
+ PUS HA 0,0 CLEAR 4 BYTES OF STACK SPACE 
+ MVC 2(2,15),IPNUM SET NUMBER OF DEVICES TO OPEN 
+ MVI 1(15) ,l SET RESERVE = YES OPTION 
+ SVC 50 (IPOPEN/IPCLOSE) 

Controlled Release Draft 4-175 October, 1985 



4.2.42 KEYLIST - Generate Parameter Group Control List 

Syntax 

[label] KEYLIST PRNAME='name',[LABELPFX='prefix'][,PREVIEW={YES}] 
{NO } 

Function 

{'keyword',({'default-value'}[,{CHAR 
{absolute-length} { INT 

{ NUM 
{ AN 

}][,line-advance] 
} 
} 
} 

{ HEX } 
{UCHAR} 
{ ANL } 

[,space-advance]), 

{TEXT,('display-text'[,line-advance](,space-advance]), } 
{textname,('display-text'[,line-advance][,space-advance]),} 

} 

Generates a data structure suitable for use with the KEYLIST 
parameter of the GETPARM macroinstruction. The data structure, called a 
parameter group control list, is used by the GETPARM SVC to display a 
screen full of information on the workstation and to save the user 
response. The keyword, TEXT, and textname formats may be repeated as 
often as necessary to define the contents of the screen. 

Parameter Definitions 

PRNAME 

LABELPFX 

PREVIEW 

Parameter reference name, a name that identifies the 
parameter group which is associated with one screen of 
information. It can be up to eight characters in length; 
characters can be alphanumeric; the first character must be 
alphabetic . 

'A character string in quotes that prefixes each keyword 
name and the resulting string used to label each 
corresponding field format control block. The label is 
placed on the line-advance byte. Thus, for the 
keyword/receiving field format control block, the flag byte 
is at the location specified by this label +2, and the 
receiving field ('displayed-value') is at this location 
+12. This parameter is optional. 

If YES is specified, a simulated screen display is printed 
in the source listing (via comment level MNOTES), in the 
format specified by the macroinstruction parameters. If NO 
is specified, the display is not generated in the listing, 
and "CURRENT LINE LENGTH" messages are not generated. NO 
is the default. 

Controlled Release Draft 4-176 October, 1985 



keyword 

default-value 

absolute
length 

NOTE 

A name of one to eight alphanumeric characters enclosed in 
single quotes which identifies a specific parameter within 
the group. Specification of keyword is mutually exclusive 
with specification of TEXT or text name. 

A character string in single quotes containing the default 
value for the keyword parameter which is displayed with the 
keyword on the workstation screen. Single quotes to appear 
in the string must be represented by two consecutive single 
quotes. The receiving field length is then the length of 
this string. Specification of default-value is mutually 
exclusive with specification of absolute-length. 

An absolute expression defining the length of the receiving 
field for this parameter. Specification of 

absolute-length is mutually exclusive with specification of 
default-value. 

Leading and trailing blanks are accepted in any of the 
following formats except alphanumeric CAN) and limited 
alphanumeric (ANL), where only trailing blanks are accepted. 

CHAR 

INT 

NUM 

HEX 

UCHAR 

Any character is accepted as a valid response. 

Only unsigned integers are accepted as a valid response. 

Numbers, with optional decimal point or leading sign, or 
both, are accepted as a valid response. 

Letters, including the special characters #, @, and $, and 
numerals are accepted as valid response. GETPARM converts 
any lowercase letters to uppercase. 

Only numerals and letters A-F are accepted as a valid 
response. Lowercase letters a-f are converted to uppercase. 

Any character is accepted as a valid response. Lowercase 
letters are converted to uppercase. 

Letters, including the special characters #, @, and $; and 
numerals are accepted as a valid response. GETPARM 
converts lowercase letters to uppercase. The first 
character cannot be a number. 

Controlled Release Draft 4-177 October, 1985 



line-advance The number of lines to advance before displaying the 
keyword and receiving field, or the embedded text. Valid ~ 
range is from 0 to 18 and if not specified, defaults to 1. · 
If nonzero, the keyword or text is displayed starting on 
the current line plus the line advance value. If 0, line 
advancing does not occur. 

space-advance The number of spaces to advance within a line before 
displaying the keyword. Valid ranges is from 0 to 78. The 
default is 0. If specified or omitted, the value of 
space-advance plus 1 is the number of spaces that appear on 
the workstation screen between either the previous field 
(if 0 line-advance) or the left side (if nonzero 
line-advance) and the keyword or text of the current field. 

TEXT 

textname 

The space-advance may also be specified in three 
alternative formats: 

• 'Ann' , where "nn" represents one or two digits with a 
value no less than 2 and no greater than 80 that 
indicates the absolute coltunn in which the field is to 
begin. The appropriate field-advance value is 
calculated and placed in the field format control block. 

• 'CENTER', where the appropriate field-advance value is 
calculated and placed in the field format control block 
such that the field is centered within the 80-column 
workstation screen line. 

• 'RIGHT', where the appropriate field-advance value is 
calculated and placed in the field format control block 
such that the field is right-justified on the 80-column 
workstation screen line. 

Regardless of how the space-advance is specified, an MNOTE 
is generated if an attempt is made to generate a 
workstation line over 80 characters in length or if an 
absolute, centering, or right-adjust request cannot be 
honored. 

Indicates that embedded text is supplied in the next 
parameter. 

A nonquoted text lame used to symbolically address the 
beginning of the actual text field in the parameter group 
control list, i.e., the label 'textname' is generated for 
the specified text field. Specification of TEXT or 
textname is mutually exclusive with specification of 
'keyword'. 

display-text A character string in quotes to be displayed as embedded 
text. 

Controlled Release Draft 4-178 October, 1985 



Example 

PRl 

+PRlDC 
+ 
+ALI ST 
+ 
+ 
+ADI SPLAY 
+ 
+ 
+ 
+ 
+ 
+ALINECNT 
+ 
+ 
+ 
+KO PIES 
+ 
+ACOPIES 
+ 
+ 

KEYLIST PRNAME='OPT',LABELPFX='A',PREVIEW=YES, 
'LIST', ('NO I ,AN), 
'DISPLAY',('YES',AN,0,5), 
TEXT,('NUMBER OF LINES'), 
'LINECNT',('50',INT,0,5), 
KOPIES,('NUMBER OF COPIES',0,5), 
'COPIES',('1',INT,0,5) 

CL8'0PT' PRNAME 
DC HLl'0,6' PF KEY & FIELD COUNT 
DC ALl(l,0,4,2) LINE I SPACE ADV, FLAGS, LGTH-1 
DC CL8 'LIST' ,CL3 'NO ' KEYWORD & DISPLAYED VALUE 

** CURRENT LINE LENGTH IS 15 ** 
DC ALl(0,5,4,2) LINE I SPACE ADV, FLAGS, LGTH-1 
DC CL8 I DISPLAY I ,CL3 I YES I KEYWORD & DISPLAYED VALUE 

** CURRENT LINE LENGTH IS 35 ** 
DC ALl(l,0,-1,14) LINE I SPACE ADV, FLAGS, LGTH-1 
DC C'NUMBER OF LINES' DISPLAYED TEXT 

** CURRENT LINE LENGTH IS 16 ** 
DC ALl(0,5,1,1) LINE I SPACE ADV, FLAGS, LGTH-1 
DC CL8 I LINECNT I , CL2 I 50 I KEYWORD & DISPLAYED VALUE 

** CURRENT LINE LENGTH IS 35 ** 
DC ALl( 0, 5, -1, 15) LINE I SPACE ADV, FLAGS, LGTH-1 
DC C'NUMBER OF COPIES' DISPLAYED TEXT 

** CURRENT LINE LENGTH IS 57 ** 
DC ALl(0,5,1,0) LINE I SPACE ADV, FLAGS, LGTH-1 
DC CL8'COPIES',CL1'1' KEYWORD & DISPLAYED VALUE 

** CURRENT LINE LENGTH IS 75 ** 
+ PREVIEW OF KEYLIST "PRl" 
+************************************************************************ 
+ 1 2 3 4 5 6 7 
+123456789012345678901234567890123456789012345678901234567890123456789012 
+****************••······················································ 
+ 
+ 
+ LIST = NO 
+ NUMBER OF LINES 
+ 

DISPLAY = YES 
LINECNT = 50 NUMBER OF COPIES COPIES = 1 

+••······································································ + 1 2 3 4 5 6 7 
+123456789012345678901234567890123456789012345678901234567890123456789012 

+••······································································ 

Controlled Release Draft 4-179 October, 1985 



4.2.43 LINK - Link to Another Program (SVC 4) 

Syntax r-"'., 

[label] LINK [{EP='string' }][,SYSTEM][,NOFAIL][,LOADONLY][,XPARENT={YES}] 
{EPLOC=address} {NO } 

[,LIBRARY={address }][,VOLUME={address }][,RESTRICT={YES}] 
{'string'} {'string'} {NO} 

[,PERM={YES}][,NOPERM={YES}] 
{ NO} { NO} - -

Function 

The LINK macroinstruction initiates the execution of another program 
from within a currently active program. For example, the operating 
system's conunand processor uses LINK to initiate execution of requested 
programs and the system's procedure interpreter. 

The service performs the following functions: 

• Parameters to the LINK SVC are pushed onto the program stack and 
the LINK SVC code is executed. 

• If linking to a program, LINK searches the user's default library 
and volume (which have been specified by the SET or RUN conunand) 
for the executable program file for the program specified by the 
EP parameter. If the SYSTEM parameter is specified, LINK only 
searches the system disk for the file. An alternate library and 
volume may be specified through the LIBRARY and VOLUME parameters 
on the LINK macro. The invoked program returns to the invoker by 
means of the RETURN macroinstruction. Execution of the LINK 
rnacroinstruction pushes status information onto the stack, as 
well as creating the static areas for the linked-to program. 

• If the specified file exists but is not a program file, the file, 
library, and volume names are pushed onto the stack and LINK 
initiates execution of the system's procedure interpreter, which 
then attempts to interpret the file as a procedure. 

• A new program exception element is built for the new program 
indicating that no program exception exits are established 
(set). Any user program exception exit previously set by the 
PCEXIT SVC is restored when an UNLINK is issued to return to the 
linked-from program. 

• Static storage areas for the new program are allocated and 
register 14 points to the beginning of this area on entry to the 
linked-to program. Static areas, as defined, are static only 
within a group of program modules that are linked together, and 
are removed from the stack by execution of the UNLINK supervisor 
call routine. 

Controlled Release Draft 4-180 October, 1985 



• If linking to a subroutine, register l, by convention, addresses 
a standard argument list to be passed to the routine invoked as a 
result of the LINK and is preserved across the link. The 
argument list must not be in the reentrant code area. 

• For control purposes, the LINK SVC writes the address of the 
UNLINK routine, the return address to be executed on RETURN, on 
the stack. This is followed by a back link chain word and 
register save area for use with the RETURN macroinstruction which 
executes the RTC instruction. Control register 1 contains the 
address of this save area (as does general register 15) on 
completion of the LINK. 

• Register 14 addresses the first (doubleword-aligned) address of 
the newly created group of static areas. Other register contents 
(except register 15) are unchanged. 

Restrictions 

A stack with stack top addressed by general register 15 must be 
available to the issuer. 

Parameter Definitions 

EP 

EPLOC 

LIBRARY 

VOLUME 

The name of the program to be linked to, specified as a 
name of up to eight characters, enclosed in quotes, which 
is used in conjunction with the current program library 
name (as a member name in that library) to form a complete 
file name. The file name is then sought and the 
corresponding file invoked as a program if found. If not 
found, the supplied name is used in conjunction with the 
system library name, and the resulting file name is sought. 

The name of the program to be linked. Specified as a byte 
address, which must not be in ~ user's code section, at 
which there is an 8-byte character string giving the name 
of the member to be concatenated with the current program 
library name or system library name (as for the EP 
parameter). This must be specified in a form allowable in 
the D2(B2) fields of the SS-type assembly instruction 
format. 

A byte address at which there is an 8-byte character string 
giving an alternate user program library name for use on 
this LINK and LINKs nested below this link, or a character 
string in single quotes giving this name. The previous 
default library name becomes effective again upon UNLINK to 
this LINK issuer. 

Name of the volume containing an alternate user program 
library, specified as for the LIBRARY parameter. 

· Controlled Release Draft 4-181 October, 1985 



SYSTEM 

NOFAIL 

LOADONLY 

RESTRICT 

XPARENT 

PERM 

NO PERM 

Specifies that the user's program library is not searched 
for the requested member. Only the system library is 
searched. 

Specifies that the program is not terminated by the CANCEL 
SVC in the event that the requested program is not found, 
or cannot be acquired or executed, but rather that control 
is returned to the address of the LINK SVC instruction plus 
six bytes (next sequential instruction address plus four). 
This option is intended primarily for command processor 
use. A code is returned in the topword of the stack to 
indicate the specific error condition. 

Specifies that after the code section of the new program or 
subprogram is made addressable, and all initialization of 
rnodif iable data areas C including the link return list) is 
accomplished, control is returned to the address of the 
LINK SVC plus 10 bytes, instead of being passed to the new 
program. The new program's entry point address is in 
register 0 when control is returned to the LINK issuer. 
The LINK SVC must be issued from segment 0 if this option 
is used. 

Allows the access rights assumed by the linked-to program 
to be restricted to those of the user. The default is NO. 
The use of this operand does not prevent special rights of 
a linked-to program from being observed. 

Specifying YES makes this link level a transparent link 
level in respect to satisfying GETPARM requests. 
Transparent link levels facilitate sending runtime 
parameter values from PUTPARMs to GETPARMs issued at high 
link levels. GETPARM requests by a later link level may be 
satisfied by parameter information supplied by PUTPARMS of 
an earlier nontransparent link level. If NO is specified, 
GETPARM requests by a later link level will not be 
satisfied by parameter information beyond this link level. 

Specifying YES indicates that the program file is to be 
opened for an indefinite period of time and all system 
control blocks which are created to control the program 
file will not be deleted when the program completes 
execution of the current invocation. NO is the default. A 
performance enhancement for frequently run programs. 

Specifying YES indicates that an indefinitely opened 
program file is to be reset to remove the indefinitely open 
status. If the user count of the program file is zero, 
UNLINK is called to deallocate associated control blocks. 
NO is the default. 

Controlled Release Draft 4-182 October, 1985 



Stack On Input 

Four or eight words on top of the stack, as follows: 

0 
O(SP) 

4(SP) 

8(SP) 

12(SP) 

16(SP) 

20CSP) 

24CSP) 

28(SP) 

1 2 3 , 

(1) (2) Program 
Name 

(3) Unused 

(4) Alternate Volume 
Name 

l<S> 
I 

(5) Alternate Library 
Name 

1(6) 
I 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(1) Flag byte: 
Bit 0 
Bit 1 

Bit 2 

Bit 3 

1 =Search only system library for member (see below). 
1 = Report failure to find the specified member, 
member not executable, member already opened (other 
than shared read-only), or password for member or 
directory not provided, or other error by returning 
to location of SVC instruction plus 6 (next 
instruction plus 4), rather than by entering the Help 
processor. See outputs below for return codes in 
these cases. 
1 = Branch to location of LINK SVC plus 10 (next 
instruction plus 8) after setting up to enter new 
program or subprogram, with entry point address of 
new program in register 0. (See LOADONLY operand 
description of LINK macro in Chapter 4.) 
Must be 0. 

Controlled Release Draft 4-183 October, 1985 



Bit 4 1 = Alternate user program library and volume are 
specified in bytes 16-29. 

Bits 5-7 Must be O. 

( 2) Program name -- string of eight ASCII characters that contains 
the name of the program to be linked. This name is used with the 
current program library specification and the resulting file 
specification is sought. If the file is not found, the file name is 
used with the system library specification, and the resulting file 
specification is sought. If flag bit 0 above is set, only the system 
library specification is used. If flag bit 1 is not set, failure to 
find the program in either library causes abnormal termination of the 
issuing task. 

(3) Unused -- not examined. 

(4) Alternate search volume name -- character string that contains 
overriding user program library's volume serial. Not required unless 
flag bit 4 is set. 

(5) Alternate search library name -- character string that contains 
overriding user program library. Not required unless flag bit 4 is 
set. 

(6) Not used. Not required unless flag bit 4 is set. 

Stack On Entry to Linked to Program 

The stack on entry to the linked-to program is as follows: 

I 
CSP) I I ------------.-

(Rl4) I 

Controlled Release Draft 

SAVE AREA FOR 'RTC' TO 
UNLINK SVC 

STATIC AREA FOR LINKED-TO 
PROGRAM 
LIBRARY, MEMBER, VOLUME 
OF PROCEDURE FILE 
IF PROCEDURE INTERPRETER 
INITIATED 
USER PROGRAM LIBRARY 
AND VOLUME BEFORE LINK 
(RESTORED BY UNLINK) 

LINK SVC SAVE AREA 

ISSUING PROGRAM'S STACK 
AREA 

4-184 

Lower Address 

68 BYTES 

VARIABLE 

24 BYTES 

16 BYTES 

72 BYTES 

VARIABLE 

Higher Address 

October, 1985 



Stack on Output 

O(SP) I 
Preceding 

Stack Data 

Lower 
Address 
Higher 
Address 

If the specified member cannot be LINKed to, the above does not 
occur; but if parameter byte l, bit 1 was set, control passes to the 
location of the LINK SVC instruction plus 6 with binary return codes in 
the top word of the stack (replacing the input parameters) as follows 

Output 

A return code is issued in the top word of the stack. The return 
codes for this macro are as follows: 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

Description 

Not a program file, and the procedure interpreter 
cannot be invoked. 

Volume not mounted. 

Volume in exclusive use by another user. 

All buffers in use when one was required by LINK. 

Directory not found. 

File not found. 

Exceeded allowable link levels. 

Access to program's file-protection class denied. 

FDXl and FDX2 conflict detected by READFDR. 

FDX2 and FDR conflict detected by READFDR. 

Invalid parameter passed to READFDR (including NL 
volume type). 

I/O error on VTOC. 

Unable to read FDR2 record (additional extent 
specifications). 

Controlled Release Draft 4-185 October, 1985 



Code 

50 

52 

56 

60 

64 

68 

72 

Examples 

LNKTO 
+LNKTO 
+ 
+ 
+ 
+ 
+ 
+ 

LNKl 
+LNKl 
+ 
+ 
+ 
+ 
+ 
+ 

LNK2 
+LNK2 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Description 

Unable to complete static area formation. 

Invalid program file; unable to complete LINK. 

File open for other than shared read-only access. 

Insufficient address space for code section - check 
user modifiable area size. 

FDR3 could not be read on a volume set. 

File has more than one segment. 

Volume is not mounted. 

LINK EP='SORT' 
PUSHC 0(16,0),*+10 

B *+20 
DC B'OOOOOOOO' FLAGS 
DC CL8'SORT' NAME 
DC XL3'0' UNUSED 
DC CL4' I PASSWORD KEY 
SVC 4 (LINK) 

LINK EP='EDITOR',SYSTEM 
PUSHC 0(16,0),*+10 

B *+20 
DC B'lOOOOOOO' FLAGS 
DC CL8'EDITOR' NAME 
DC XL3'0' UNUSED 
DC CL4' I PASSWORD KEY 
SVC 4 (LINK) 

LINK EP='MAIL',LIBRARY='MAILLIB',VOLUME='WORK',NOFAIL 
PUSHC 0(32,0),*+10 

B *+36 
DC B'01001000' FLAGS 
DC CL8'MAIL' NAME 
DC XL3'0' UNUSED 
DC CL4' ' PASSWORD KEY 
DC CL6'WORK' VOLUME 
DC CL8'MAILLIB' LIBRARY 
DC XL2'0' UNUSED 
SVC 4 (LINK) 

Controlled Release Draft 4-186 October, 1985 

("I 



4.2.44 LINKPARM - Supply Program Parameters (SVC 33) 

Syntax 

Format 1: 

[label] LINKPARM 

Format 2: 

[label] LINKPARM 

Format 3: 

[label] LINKPARM 

Function 

PUT,{DISPLAY},PRNAME='string' ,LABEL={Cregister)} 
{ ENTER } { address } 

{,REFERLABEL={Cregister)}} 
{ 'string' } 
{ address } 

{,FMTLIST={Cregister)} } 
{ address } 

[,REPEAT={Cregister)}] 
{ 'string' } 
{ address } 

[{,PFKEY={Cregister)}] 
{ address } 
{ 'string' } 
{ string } { NO } 

{ YES } 

[{,AID={Cregister)}}] 
{ 'string' } 1 
{ address } 1 

CLEANUP[,REFERLABEL={Cregister)}] 
{ 'string' } 
{ address } 

REFER{, MERGE }[,REMOVE],FMTLIST={Cregister)} 
{,NOMERGE} { address } 

,REFERLABEL={Cregister)} 
{ 'string' } 
{ address } 

LINKPARM performs the following functions: 

• PUT supplies parameters to another program's GETPARMs before 
issuing the LINK SVC to invoke the other program. 

• CLEANUP cleans up the various internal data structures created by 
the PUT function. 

Controlled Release Draft 4-187 October, 1985 



• REFER allows the calling program access to any parameters which 
the user may have changed at GETPARM time, or to return the 
address of a previously created and labelled FMTLIST. 

Both the PUTPARM macro and the LINKPARM macro call the PUTPARM SVC. 
The PUTPARM macro allows only the use of parameters of another program 
(the PUT function), while the LINKPARM macro accesses all the functions 
of the PUTPARM SVC. 

The parameters to be supplied to the GETPARM are contained in a data 
structure, created with the FMTLIST macroinstruction. A FMTLIST is 
identical to a KEYLIST, except that a FMTLIST contains no prname. When a 
PUTPARM is issued, it verifies that the specified FMTLIST is in the 
proper format, then saves the FMTLIST in a buffer in the modifiable data 
area for subsequent GETPARM use. PUTPARM also constructs a parameter 
reference block (PRB) to save the label, prname, display option, and 
certain other information. The PRB is constructed in the user rnodif iable 
area allocated by the PUTPARM SVC and chained to the previously 
constructed PRBs. 

When a GETPARM in the linked-to program is issued, it searches 
through the current link level' s saved (and unused) PRBs for one whose 
prname matches the PRNAME of the GETPARM's KEYLIST. If one is found, the 
value for the keywords in the FMTLIST are copied to the GETPARM KEYLIST 
(left-aligned and truncated). To solicit modifications by the user, A 
GETPARM workstation interaction can be requested by selecting the DISPLAY 
option; otherwise, a workstation interaction is suppressed. The KEYLIST 
(possibly modified by the user) is merged back into the FMTLIST for later 
backward reference. 

If more than one GETPARM is issued with the same prname, the 
PUTPARM-saved FMTLISTs are used in the order in which they were supplied 
to the PUTPARM SVC. Normally, no two GETPARM requests access the same 
FMTLIST. FMTLIST may be declared to be for repeated use via the macro 
parameter REPEAT. 

FMTLIST may be labeled for later use through the use of the LABEL 
parameter. This backward reference facility allows a program to reuse 
the (possibly updated) parameters of a labeled FMTLIST. If a backward 
reference label is supplied to the PUTPARM SVC rather than an FMTLIST 
(e.g., via the REFERLABEL parameter of the LINKPARM macro), a pointer to 
the labeled FMTLIST is stored, causing GETPARM to reuse the labeled 
FMTLIST. 

As an example of the backward reference facility, suppose that the 
program requiring parameters requests the same set of parameters several 
times and that the calling program is suppressing the workstation 
interactions. The calling program could issue LINKPARM PUT several 
times, each specifying fully the GETPARM parameters. If one of the 
parameters was in error, the user would be forced to correct each 
interaction. If, instead, only the first LINKPARM PUT specified the 
parameters (and was labeled) and the others referred back to the first, 
the user would only have to correct the first interaction. 

Controlled Release Draft 4-188 October, 1985 



The PUTPARM SVC also supports an override facility. If the prname 
specified by the linking program matches the LABEL of FMTLIST specified 
by the linked-to program, the parameter values in the linking program's 
FMTLIST override those of the linked-to program's FMTLIST. Parameters 
not specified by the linking program retain the values specified by the 
linked-to program. 

For example, program 1 issues the following LINKPARM (FMTLl sets KEY2 
to PROGl): 

LINKPARM PUT, PRNAME='OVERRIDE',FMTLIST=FMTLl 

Program 1 then links to program 2. Program 2 issues the following 
LINKPARM (FMTL2 sets KEYl and KEY2 to 'PROG2): 

LINKPARM PUT,PRNAME='DEMO',LABEL='OVERRIDE', 
FMTLIST=FMTL2 

Program 2 then links to program 3. A GETPARM for PRNAME DEMO by program 
3 will set KEYl to PROG2 and KEY2 to PROGl. 

As well as passing parameters to GETPARMs, PUTPARM may also pass a PF 
key. This may be done in one of two ways, via either the PFKEY or AID 
parameter. Both can pass the full range of 32 PF keys plus ENTER. PFKEY 
takes either the actual key number Cl-32) or the keyword ENTER. AID 
takes the AID character of the PF key, where A-P correspond to PF keys 
1-16 respectively, a-p correspond to PF keys 17-32 respectively, and @ 

corresponds to the ENTER key. Both methods have the same result ( PFKEY 
values are translated into AID values for the SVC by the macro). The way 
in which the PF key is passed to GETPARM depends on whether the LINKPARM 
is a normal or a backward reference. In the normal case, the PF key is 
placed into the first byte of the FMTLIST addressed by FMTLIST by the 
LINKPARM macro. The original FMTLIST is modified. In the case of a 
backward reference, the PF key is placed onto the stack and then into the 
FMTLIST buffer. The original FMTLIST is not modified in this case. 

Parameter Definitions 

PUT 

CLEANUP 

Enables a program to supply parameters to a GETPARM issued 
by another program. The parameters supplied to the GETPARM 
are contained in a data structure created with the FMTLIST 
macroinstruction. The program issuing the LINKPARM PUT 
must 1 ink via the LINK SVC to the program issuing the 
GETPARM. A program can not use the LINKPARM PUT function 
to pass parameters to its own GETPARM. 

If CLEANUP is specified, the various internal structures 
created by the PUT function are deallocated. If no 
REFERLABEL is provided, all FMTLISTs created at this level 
and above are removed. If a REFERLABEL is provided, only 
the labeled FMTLIST is removed. If the CLEANUP option is 
used, REFERLABEL is the only other parameter supplied. 

Controlled Release Draft 4-189 October, 1985 



REFER 

DISPLAY 

ENTER 

PRNAME 

REFERLABEL 

FMTLIST 

AID 

Allows previously created and used FMTLISTs at the current 
link level to be accessed. 

If specified, requests a workstation transaction when the 
FMTLIST supplied to the linked-to program is accessed. 

If specified, suppresses 
this FMTLIST is accessed. 

a workstation transaction 
The default is ENTER. 

when 

A name of up to eight alphanumeric characters which 
identifies the prname to be associated with the FMTLIST 
being supplied to the linked-to program or the new prname 
to be used if this is a backward reference. Specified as a 
character string in quotes. 

A name of up to eight alphanumeric characters which 
identifies a previously labeled FMTLIST. This parameter is 
used to backward reference a previously created FMTLIST. 
This backward reference facility allows a program to reuse 
the (possibly updated) parameters of a labelled FMTLIST. 
The REFERLABEL parameter is specified as an expression that 
addresses an 8-byte field which contains the name of the 
FMTLIST, a register in parentheses that points to an 8-byte 
field containing the name of the FMTLIST, or as a character 
string in single quotes which is the name of the FMTLIST. 
For the PUT function, REFERLABEL and FMTLIST are mutually 
exclusive. For the CLEANUP function, REFERLABEL specifies 
a particular FMTLIST to be deallocated. For the MERGE 
option, REFERLABEL contains the name of the source FMTLIST, 
while FMTLIST contains the address of the destination 
FMTLIST. 

The address of an FMTLIST created by the FMTLIST macro 
which is to be used in this operation. The FMTLIST 
parameter is specified as (1) an expression that addresses 
a FMTLIST, or (2) as a register in parentheses that 
contains the address of the FMTLIST. Optionally, the 
address of KEYLIST+S may be supplied since a KEYLIST is 
identical to an FMTLIST with the exception that the first 
eight bytes of a KEYLIST contain a prname. For the PUT 
function, REFERLABEL and FMTLIST are mutually exclusive. 

The AID (Attention ID) character of a PF key passed to the 
GETPARM. AID characters are A-P (i.e., PF keys 1-16, 
respectively), a-p (i.e., PF keys 17-32, respectively), and 
@ (i.e., the ENTER key). The AID parameter is specified as 
an expression that addresses a 1-byte field which contains 
the AID character, a register in parentheses that points to 
a 1-byte field which contains the AID character, or a 
character string in single quotes which is the AID 
character. AID and PFKEY are mutually exclusive. 

Controlled Release Draft 4-190 October, 1985 



PFKEY 

LABEL 

REPEAT 

MERGE 

NOMERGE 

REMOVE 

A PF key passed to the GETPARM. PFKEY may be a number from 
1 through 32, or the word ENTER. PFKEY must be a character 
string not in quotes. PFKEY and AID are mutually exclusive. 

FMTLIST may be labelled for later use by the backward 
reference and override facilities. A name of up to eight 
alphanumeric characters is used to label the saved 
FMTLIST. The LABEL parameter is specified as an expression 
that addresses an 8-byte field which contains the label, or 
as a register that points to an 8-byte field which contains 
the label. 

Specifies whether the FMTLIST may be used again. Normally, 
no two GETPARM requests access the same FMTLIST. A FMTLIST 
is declared to be for repeated use via this parameter. If 
REPEAT=NO or the parameter is not coded, the FMTLIST is 
used only once. If REPEAT=YES, the FMTLIST is used until 
it is removed. If REPEAT=n, the FMTLIST is used n+l times 
(initial use + n repeats). The value of the repeat count 
can range from 1-32768. Also specified as an expression 
that addresses a 2-byte binary repeat count or as a 
register in parentheses pointing to a 2-byte binary repeat 
count. 

The MERGE option of the REFER function allows the merging 
of an updated, used, labelled FMTLIST with a 
program-designated FMTLIST in the user's address space. 
The contents of the FMTLIST addressed by REFERLABEL (the 
source) are merged into the FMTLIST addressed by FMTLIST 
(the destination). Fields which are present in the source, 
but not in the destination, are ignored. Fields present in 
the destination but not in the source are left unchanged. 

Requests LINKPARM to return the address (of the buffer in 
the modifiable data area) of the FMTLIST referenced by the 
REFERLABEL parameter (i.e., a previously created and 
labelled FMTLIST). The address is returned on the stack. 

Requests LINKPARM to remove C CLEANUP) the source FMTLIST 
after performing the merge. This option is only available 
with MERGE. 

Controlled Release Draft 4-191 October, 1985 



Stack On Input 

0 
O(SP) 

4(SP) 

8(SP) 

12(SP) 

16(SP) 

20(SP) 

24(SP) 

1 2 3 

(1) (2) (3) 

(4) Address FMTLIST 

(5) prname 

(6) LABEL 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(1) Flag byte: 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 

1 = DISPLAY type 
1 = Search for a BWR FMTLIST 
1 = Clean up all PRBs and their FMTLISTs 
1 = Merge into user FMTLIST 
1 = Use repeat count 
1 = Cleanup BWRed PRB and FMTLIST only 

(2) AID character for GETPARM 

(3) Repeat count: 
X'OO' = Never repeat 
X'Ol'-X'7FFF' =Repeat count 
X'8000' =Repeat indefinitely 

(4) Address of FMTLIST or backward referenced LABEL. The FMTLIST to 
be constructed is as follows: 

Controlled Release Draft 4-192 October, 1985 



~, 
+O 

+4 

+4 + BL 
1 

n-1 
+4 + BL 

i 
i=l 

(a) PF Key I <b> 
Field I 

(c) Field Format 
Control Block 

(c) Field Format 
Control Block 

(c) Field Format 
Control Block N 

Nwnber 
of fields 

1 

2 

where BL = length of format control block 

(a) A 1-byte receiving field for the corresponding AID 
character of the program function key received in a user 
response to a request for selection. This field may be set by a 
procedure specification of a function key number. 

(b) A 1-byte binary count - number of field format control 
blocks. 

(c) Format control block (variable length field). There are 
two formats for the format control blocks: one for control of 
the keyword/receiving field pairs, and the other to control the 
use of embedded text to be displayed. This field is repeated 
for each field to be displayed in the order they are to be 
displayed on the workstation screen. 

Controlled Release Draft 4-193 October, 1985 



Ke2!!ord/Receiving Field Field Format Control Block Structure 

DATA STRUCTURE 
lo 1 2 3 I 

I I I I I Lower 
I (1) I c2> I C3 >I (4)1 address 
I I I I I 

I I 
I (5) Keyword I 
I I 
I I 
I (6) Receiving I 
I Field I Higher 

address 

(1) Line-advance-count for display control. 1-byte binary field. 

(2) Space-advance-count for display control. 1-byte binary field. 
Line advance takes place before space advance. Both take place 
before display of keyword and receiving field. 

(3) Field error flag and receiving field entry restriction 
indicator. 1-byte binary field. 

Bit 0: Field error flag: 
1 = Error - set by program to draw attention to fields in 
error. Reset by GETPARM. 

Bits 5-7: Receiving field entry restrictions 
0 = Character-string. No restrictions on content; 
maximum usable field length is 68 characters. 
1 = Positive integer. Nonblank response need not be 
justified, but must consist entirely of the numerals 0-9 
with leading and trailing blanks ignored. An all blank 
response is treated as a legitimate NULL specification. 
Field length is restricted to 16 characters. 
2 = Numeric. Response must consist entirely of the 
numerals 0-9 optionally containing one decimal point and 
optionally preceded by a + or -. Leading and trailing 
blanks are ignored. An all blank response is treated as 
a legitimate NULL response. Field length is restricted 
to 16 characters. 
4 = Uppercase alphanumeric. All entered letters are 
converted to uppercase. Legal nonblank response must be 
left-justified and consist entirely of the numerals 0-9, 
the letters A-Z, the special characters (@, #, or$), and 
trailing blanks. An all blank response is treated as a 
legal NULL response indicator. Maximum usable field 
length is 68 characters. 

Controlled Release Draft 4-194 October, 1985 

'~ 



5 = Uppercase hexadecimal. All entered letters are 
converted to uppercase. Legal nonblank response need not 
be justified, but must consist entirely of the numerals 
0-9, and the letters A-F with leading and trailing blanks 
ignored. An all blank response is treated as a 
legitimate NULL specification. Maximum usable field 
length is 68 characters. 
6 = Uppercase character string. All letters are 
converted on entry to uppercase; maximum usable field 
length is 68 characters. 
7 = Alphanumeric limited. All entered letters are 
converted to uppercase. Legal nonblank responses are 
left-justified, beginning with a letter from A-Z, or one 
of the special characters (@, #, or $), and consist 
entirely of the numerals 0-9, the letters A-Z, the 
special characters, and trailing blanks. All blank 
responses are treated as a legal NULL response 
indicator. Maximum usable field length is 68 characters. 

(4) A 1-byte binary receiving field length minus one (in characters). 

(5) An a-character, left-justified keyword used for display purposes 
(and to support noninteractive access via the procedure interpreter). 

(6) Variable-length receiving field with default or current value in 
place. 

Embedded Text Field Format Control Block Structure 

lo 
I 
I 
I 
I 
I 
I 
I 

DATA STRUCTURE 
1 2 3 
I I I 

cu I (2) I C3> I (4) 
I I I 

(5) Text 

Lower 
address 

Higher 
address 

(1) Line-advance-count for display control. 1-byte binary field. 

(2) Space-advance-count for display control. 1-byte binary field. 
Line advance takes place before space advance. Both take place 
before display of keyword and receiving field. 

( 3 ) The va 1 ue "-1" ( =2 5 5 ) . 

(4) Text field character length minus 1. 1-byte binary field. 

(5) Character string to be displayed. Variable length field. 

Controlled Release Draft 4-195 October, 1985 



Stack On Output 

O(SP) 

4(SP) 

Return Codes 

Code 

0 
2 
8 

12 
16 
20 

Example 

Return Code 

FMTLIST Address 
of this PRB 
Preceding 

Stack Data 

Description 

Success. 

Lower 
Address 

Higher 
Address 

Backward Reference Error. 
Bad FMTLIST. 
PRB error. 
CLEAN-PARM error. 
MERGE-PARM error. 

LABl LINKPARM PUT,DISPLAY,PRNAME='OLDPRNAM',FMTLIST=FMTLl, 

+LABl 
+ 

DS 
LABEL='FOOl',AID='A' 
OH 

PUSHC 0(8),=CL8'F001' 
PLACE HOLDER FOR LABEL 
FMTLIST LABEL 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

OI 
SVC 

PUSHC 0(8),=CL8'0LDPRNAM' 
PUSHA 0,0 
PUSHA 0,FMTLl 
MVI FMTLl,C'A' 
PUSHA 0,0 
0(15) ,X' 80 I 

33 CPUTPARM) 

PRNAME 
UNUSED 
FMTLIST 
AID CHARACTER 
INITIAL FLAG BITS 
DISPLAY FLAG 

LAB2 LINKPARM PUT,PRNAME='NEWPRNAM',REFERLABEL='FOOl',PFKEY=l 
+LAB2 DS OH PLACE HOLDER FOR LABEL 
+ PUSHC 0(8),=CLB'' NULL LABEL FOR FMTLIST 
+ PUSHC 0(8),=CLS'NEWPRNAM' PRNAME 
+ PUSHC 0(8),=CL8'F001' REFERLABEL 
+ PUSHA 0,0 INITIAL FLAG BITS 
+ MVI 1(15),65 AID CHARACTER 
+ SVC 33 C PUTPARM) 

Controlled Release Draft October, 1985 



LAB3 LINKPARM REFER,NOMERGE,REFERLABEL='FOOl' 
+LAB3 PUSHC 0(16),=CL16' I NULL LABEL AND PRNAME 
+ PUSHC 0(8),=CLS'FOOl' REFERLABEL 
+ PUSHA 0,0 INITIAL FLAG BITS 
+ OI 0(15),X'40' REFER FLAG 
+ SVC 33 (PUTPARM) 

Controlled Release Draft 4-197 October, 1985 



4.2.45 LNKB - Describe Link Return List Block 

Syntax 

LNKB [NODSECT][,REG=expression][,SUFFIX=character][,PREFIX={NO }] 
{YES} 

Function 

Describes the link return block (LNKB) used with the LINK SVC. It is 
in the format of an SVC or JSCI stack item, and can be extended to 
contain information for procedure interpretation and debugging. 

Parameter Definitions 

NODSECT Specification of NODSECT results in the LNKB fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, a DSECT with the name LNKB (plus 
optional suffix) is generated. 

REG Provides for the optional specification of a register for which 
a USING statement for the LNKB fields is generated. 

SUFFIX If provided, all labels are generated by the concatenation of 
the letters LNKB, the user-provided SUFFIX (one ASCII character 
in length), and the field name. 

PREFIX 

Strucutre 

LNKB: 
START 

REGSV 

IF YES, the structure is extended to include the following 
information: library, file and volume of procedure to be run. 

BYTE 0 

+O PROCLIB 
+4 
+8 
+c 

+10 
+14 
+18 
+lC 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C 

PROCFIL 

PROCVOL 

SAVEVOL 

REGO 
REGl 
REG2 
REG3 
REG4 
REGS 
REG6 
REG7 
REGS 
REG9 

BYTE 1 BYTE 2 BYTE 3 

SPAREl 

SAVELIB 

SPARE2 

Controlled Release Draft 4-198 October, 1985 

.r-1\ 



BY'TE 0 BYTE 1 BYTE 2 BYTE 3 

+SO REGA 
+54 REGB 
+58 REGC 
+SC REGO 
+60 REGE 

TYPE I +64 CALLCHN 
RTNPTR I +68 OPCW 

+6C 
+70 FLAG PROGNAME 
+74 
+78 SPARE3 
+7C 
+80 PROGVOL 
+84 PROGLIB 
+88 
+BC SPARE4 

Example 

LNKB NODSECT 
*,* LNKB DEFINITION 
* 
* THE LINK RETURN LIST BLOCK (LNKB) IS ENSTACKED ON A 'LINK' SVC AND 
* LOCATED THROUGH THE PFB CHAIN, ROOTED IN ETCBPFB. IT IS IN THE 
* FORMAT OF AN SVC OR JSCI STACK ITEM, AND MAY BE EXTENDED 
* TO CONTAIN INFORMATION FOR PROCEDURE INTERPRETATION AND DEBUGGING. 

* * DATE 3/09/83 
* RELEASE 5.04 
* 
LNKBBEGIN 
LNKBREGSV 

LNKBREGO 
LNKBREGl 
LNKBREG2 
LNKBREG3 
LNKBREG4 
LNKBREGS 
LNKBREG6 
LNKBREG7 
LNKBREG8 
LNKBREG9 

Controlled Release Draft 

EQU * 
DS lSF 
ORG LNKBREGSV 
DS F 
DS F 
DS F 
DS F 
DS F 
DS F 
DS F 
DS F 
DS F 
DS F 

4-199 

START OF SVC/JSI SAVE AREA 
REGISTERS 0-14 SAVE AREA 

REGO SAVE 
REGl SAVE 
REG2 SAVE 
REG3 SAVE 
REG4 SAVE 
REGS SAVE 
REG6 SAVE 
REG7 SAVE 
REGS SAVE 
REG9 SAVE 

October, 1985 



LNKBREGA OS F REGA SAVE 
LNKBREGB OS F REGB SAVE .~ 
LNKBREGC OS F REGC SAVE 
LNKBREGD OS F REGO SAVE 
LNKBREGE OS F REGE SAVE 
LNKBTYPE OS OBLl TYPE OF CALL ('SVC' IF LINK) 
LNKBTYPESVC EQU X'Ol' . • • (SVC) 
LNKBTYPEJSCI EQU X'OO' . • . (JSCI) 
LNKBFLAGS OS OBLl Flags (expansion on type)02\ 
LNKBFLAGSSTAND EQU X' 80' Standard frame 02\ 
LNKBFLAGSEX EQU X'40' Created by exception hand02\ 
LNKBFLAGSMOD EQU X'20' Module frame 02\ 
* EQU X'lO' Reserved 02\ 
LNKBFLAGSLEVEL EQU X'OE' Proc Level (B'00001110') 02\ 
LNKBFLAGSSVC EQU X'Ol' SVC flag 02\ 
LNKBCALLCHN OS A CALL/LINK/SVC BACK CHAIN 
LNKBMASK OS OBLl Program mask 02\ 
LNKBRTNPTR DS A ADDRESS TO RETURN CONTROL 
* 
LNKBJSILENGTH EQU *-LNKBBEGIN 
* 

ORG LNKBRTNPTR 
LNKBOPCW DS BLB PCW SAVE AREA (LINK SVC) 
* 
LNKBSVCLENGTH EQU *-LNKBBEGIN 
* 
LNKBFLAG DS BLl FLAGS FOR LINK SVC: 
LNKBFLAGSYS EQU X'BO' SEARCH SYSTEM DIRECTORY ~ 
* ONLY 
LNKBFLAGNOFAIL EQU X'40' RETURN TO INVOKER AT NEXT 
* INSTRUCTION ADDRESS + 4 IF 
• 'LINK' FAILS (RETURN CODE 
• IN TOP WORD OF STACK) 
LNKBFLAGLOAD EQU X'20' RETURN TO INVOKER AT NEXT 
• INSTRUCTION ADDRESS + 8 
• INSTEAD OF INVOKING NEW 

* PROGRAM OR PROCEDURE 
* (ENTRY POINT ADDRESS 
• RETURNED IN RO) 
LNKBFLAGREST EQU X' 10' . Restrict Access Rights 
* to Logon Rights 
LNKBFLAGLLV EQU X'08' . LINK LIBRARY/VOLUME 

* SUPPLIED 
LNKBFLAGSUBP EQU X'04' . LINK TO 'SUBPROGRAM' 
LNKBFLAGXPARENT EQU X'02' • "TRANSPARENT LINK" 04\ 
LNKBPROGNAME DS CLS NAME OF PROGRAM OR 
• PROCEDURE TO BE RUN/LOADED 
LNKBSPARE3 OS BL7 (UNUSED) 
LNKBSEND EQU * 
LNKBPROGVOL OS CL6 OPTIONAL LINK VOLUME 

Controlled Release Draft 4-200 October, 1985 



LNKBPROGLIB 
LNKBSPARE4 
LNKBEND 
LNKBLENGTH 

Controlled Release Draft 

DS CL8 OPTIONAL LINK LIBRARY 
DS BL2 (UNUSED) 
EQU * 
EQU LNKBEND-LNKBBEGIN 

4-201 October, 1985 



4.2.46 LOADCODE - Load Microcode for Devices/IOPs (SVC 45) 

Syntax 

[label] LOADCODE 

Function 

FUNCTION={DEVICE },MCID={ address }, 
{PERIPHERAL } {(register)} 
{CONFIGTABLE} 
{(register) } 

DEVICE={ address },START={ address }, 
{(register)} {(register)} 

LENGTH={ address },INTERRUPT={YES}, 
{<register)} {NO } 

PLIST=(SP),CLOAD={YES},UNLOAD={YES}, 
{NO } {NO } 

MCFILE={(register)},MCLIB={(register)}, 
{ address } { address } 

MCVOL={(register)}[,MEMA={(register)}, 
{ address } { address } 

MCOPTS= ( { RENEWMC } , { SYSUINT } ) 
{NRENEWMC} {TASKUINT} 

Calls the LOADCODE SVC to load microcode into a programmable IOP or a 
device. 

NOTE 

The system maintains an a-character field which names the 
library in which all default microcode files reside. This 
library, which is set during the SYSGEN process, must be on 
the system volume. The default library name is @SYSTEM@. 

Restrictions 

An unprivileged caller can load microcode to a peripheral processor 
(data link processor) if that peripheral processor is exclusively 
reserved by the caller. LOADCODE returns a failure code if the 
peripheral processor is not reserved by the caller, or is reserved by 
another task. 

Controlled Release Draft 4-202 October, 1985 



Parameter Definitions 

FUNCTION 

MCID 

DEVICE 

START 

LENGTH 

INTERRUPT 

PLIST 

Coded as one of the following options: 

• DEVICE -- Used to load code into a device such as a 
workstation. 

• PERIPHERAL -- Used to load code into a peripheral 
processor CPP). 

• CONFIGTABLE -- Used to load a device configuration 
table. 

FUNCTION can also be coded as a register in parentheses 
containing a value. This parameter is required unless 
PLIST=(SP). 

The type of microcode to be loaded. Specified as an 
address expression pointing to a 1-byte field, or a 
register in parentheses containing the value. Required 
unless either INTERRUPT=YES or PLIST=(SP). 

The VS device number for the device where code is to be 
loaded. Specified as an address expression pointing to a 
1-byte field containing a value from 0 - 255, or a register 
in parentheses containing the value. Required unless 
PLIST=(SP). 

The address destination in the specified device where code 
is to be loaded. Specified as an address expression 
pointing to a 4-byte field, or a register in parentheses 
containing the address. Required unless either 
INTERRUPT=YES or PLIST=(SP). 

The length of the code which is to be loaded. Specified as 
an address expression pointing to a 4-byte field, or a 
register in parentheses containing the length in bytes. 
Required unless either INTERRUPT=YES or PLIST=CSP). Also 
not required if the load-by-name option is used (i.e. , 
MCFILE, MCLIB, and MCVOL are supplied). 

Coded either YES 
microcode type is 
particular DEVICE. 

or NO as shown. Indicates that the 
taken from the system entry for the 
Optional; the default is NO. 

Indicates that the parameter list is already on the stack. 
Code PLIST= (SP) only, since the LOADCODE SVC only accepts 
parameters on the stack. If supplied, all other parameters 
are optional. 

Controlled Release Draft 4-203 October, 1985 



CLO AD 

UNLOAD 

MCFILE 
MCLIB 
MC VOL 

MEMA 

MCOPTS 

If CLOAD=YES, microcode is conditionally loaded to a 
peripheral processor or device; that is, loading occurs 
only if the currently active microcode type is not the same. 
as the microcode type-ID provided in the MCID parameter. 
If these microcode types are identical, LOADCODE returns a 
return code that indicates success. If these microcode 
types are not identical, a normal LOADCODE results. The 
default is NO. 

If UNLOAD=YES, LOADCODE reloads the microcode type 
associated with a peripheral processor or programmable 
device. The UNLOAD function reloads this default microcode 
type into the device or peripheral processor (this option 
can be combined with "conditional load", so that the 
LOADCODE is only done if the current microcode type differs 
from the default microcode type). The default is to NO. 

These parameters allow both unprivileged and privileged 
callers to load-by-name, that is, to specify a file name, a 
library name, and a volume name from which LOADCODE is to 
read the microcode file. The file name (MCFILE) is always 
required if a "load by name" is to be done; the library 
name CMCLIB) and volume name (MCVOL) are optional and 
default to the system microcode library and volume. Volume 
specification is ignored if the library is not specified. 

MCFILE and MCLIB are specified as a register in parentheses 
pointing to an 8-byte field that contains the file or 
library name, or as an expression that addresses an 8-byte 
field containing the file or library name. MCVOL is 
specified as a register in parentheses that points to a 
6-byte field which contains the volwne name, or as an 
expression that addresses a 6-byte field which contains the 
volume name. 

This option is incompatible with the UNLOAD option. 

Specifies the starting address of a memory-resident 
microcode program to be loaded to a device. 

If RENEWMC is specified, the microcode is reloadable on an 
interrupt-driven call. If NRENEWMC is specified, the 
microcode is not reloadable on an interrupt-driven call; 
any error completion with the data link processor or the 
peripheral processor is passed back to the XIO issuer. The 
default is RENEWMC. 

If SYSUINT is specified, unsolicited interrupts are handled 
by the system. If TASKUINT is specified, all unsolicited 
interrupts are handled by the issuing task (including 
power-on and HELP interrupts). The default is SYSUINT. 

Controlled Release Draft 4-204 October, 1985 



Stack On Input 

Three or nine words are on top of the stack, as follows: 

OCSP) 

4(SP) 

BCSP) 

12CSP) 

16CSP) 

20(SP) 

24CSP) 

28CSP) 

32CSP) 

(1) Option 
X'Ol' 
X'02' 
X'04' 
X'08' 
X'lO' 
X'20' 
X'40' 
X'80' 

0 1 2 3 
I I I 

( 1) I (2) I (3) I (4) 
I I I 

( 5) Start Address 

(6) Microcode Length 

(7) File Name of 
User Microcode 

(8) Library Name of 
Microcode File 

(9) Volwne Name of 
Microcode File 

I c10> 
I 

Preceding 
Stack Data 

flags (byte 0) : 
Load device. 

Lower 
Address 

Higher 
Address 

Load peripheral processor CPP or IOP/IOC). 
Load configuration table. 
Load device routing table. 
Unload to the default microcode file. 
Load by name (Microcode file-library-volwne). 
Conditional load. 
Interrupt-driven entry - take file name from control 
blocks if set, otherwise the file name is taken from the 
input. 

(2) Microcode type ID (byte 1) 

Controlled Release Draft 4-205 October, 1985 



(3) Microcode option byte (byte 2) 
X' 80' : Nonrenewable microcode do not reload on 
interrupt-driven call. Any error completion with PP is r-"".. 
passed back to the XIO issuer. 
X' 40' : For workstations -- task will handle all interrupts 
(including power-on and HELP). 

(4) Device number (byte 3) 

(5) Start loading address of the device microcode (bytes 4-7) 

(6) Length of the microcode to be loaded (bytes 8-11) 

If X' 20' (Load by name) is set in the FLAG byte, the following 
parameters are expected on the stack: 

(7) File name in ASCII of private microcode file (CL8) (bytes 
12-19) If byte twelve is equal to X' 80' , then bytes 13-15 are the 
starting memory address of the microcode to be loaded. 

(8) Library name in ASCII for private microcode file (CL8) -- the 
system microcode library and volume are used if this field is XL8'00' 
(bytes 20-27). 

(9) Volume name in ASCII for private microcode file (CL6) -- the 
system microcode volume is used if this field is XL6'00'. Note that 
a microcode library must be provided if this field is to be 
referenced (bytes 28-33). ~ 

(10) Reserved, must be 0 (bytes 34-35). 

Stack On Output 

O(SP) 

Output 

Return Code 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

LOADCODE replaces the input parameters on the stack with a word 
indicating success or failure of the operation. 

Controlled Release Draft 4-206 October, 1985 



Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

Description 

Success. 

Device or peripheral processor specified is not 
programmable. 

Specified microcode file not found. Also set when the 
specified class and type of microcode is not included 
in the UCB MC list, or when the specified file name is 
not a valid alphanumeric string. 

Device or peripheral processor not exclusively 
reserved by the caller. 

Error in opening microcode file, or file not 
consecutive. 

I/O error when reading microcode file. 

(a) I/O error while loading device microcode, 
peripheral processor (PP) microcode, or 
configuration tables. 

(b) Error when restarting device or peripheral 
processor (PP) after loading microcode. 

(c) Unable to load device because peripheral 
processor CPP) code is missing, or attempt to 
load peripheral processor (PP) fails for any 
reason. 

Cd) Unable to load peripheral processor CPP) code 
because configuration tables are missing, or 
attempt to load tables fails for any reason. 

Insufficient memory pool (GETMEM failure). 

Reserved. 

Incompatible options: 
Ca) UNLOAD and load-by-name both specified. 
(b) CLOAD and INTERRUPT both specified. 

Other devices on cluster not all reserved by the 
calling task Cnoninterrupt-driven LOADCODE only). 

Forced cancel signal received Cloadcode incomplete). 

Unprivileged caller. 

Device on multi workstation cluster busy. 

No GETHEAP space on attempt to save multi workstation 
screens. 

Controlled Release Draft 4-207 October, 1985 



Examples 

LOADCODE FUNCTION=DEVICE,MCID=UCBMCTYPE,DEVICE=UCBADDR, 
START=(R8),LENGTH=(R9) 
OS OH 
PUSH 0,R9 
PUSH 0,R8 

MICROCODE LENGTH 
START ADDRESS 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

PUSHA 0,0 
MVI 0(15),4 

SPACE FOR MORE PARAMETERS 
FUNCTION FLAG 

MVC 3(1,15),UCBADDR DEVICE NUMBER 
MVC 1(1,15),UCBMCTYPE MICROCODE TYPE ID 
SVC 4 5 C LOADCODE) 

LOADCODE FUNCTION=DEVICE,INTERRUPT=YES,DEVICE=UCBADDR, 
PLIST=CSP) 

+ DS OH 
+ MVI 0(15),129 FUNCTION FLAG 
+ MVC 3(1,15),UCBADDR DEVICE NUMBER 
+ SVC 4 5 ( LOADCODE) 

LOADCODE PLIST=CSP) 
+ DS OH 
+ SVC 4 5 ( LOADCODE) 

!NIT LOADCODE FUNCTION=DEVICE,MCID=CR2),DEVICE=DEVADR,START=CR5), 
LENGTH=CODLTH 

+!NIT OS OH 
+ PUSHC 0(4,0),CODLTH Microcode Length 
+ PUSH 0,R5 Start Address 
+ PUSHA 0,0 Space For More Parameters 
+ MVI 0(15),l Function Flag 
+ MVC 3(1,15),0EVADR Device Number 
+ STC R2,l(,15) Microcode Type ID 
+ SVC 45 (LOADCODE) 

Controlled Release Draft 4-208 October, 1985 



4.2.47 LOCAL - Generate Local Symbols 

Syntax 

[label] LOCAL [count, .•. ][,PREFIX={LCL# }] 
{string} 

Function 

Automatic generation of unique local symbol names. 

Parameter Definitions 

count 

PREFIX 

Example 

&LOCALO 
&LOCAL! 
&LOCAL2 
&LOCAL3 

Specifies on which local symbol to generate a local symbol 
name. An integer from 0 to 9 may be specified and the 
parameter can be repeated as necessary. 

A character string used to generate the local symbol name. 
If not supplied, the macro uses the character string LCL#. 

MACRO 
LOAD 
COPY LOCALS 
GBLC &LOCALO,&LOCAL1,&LOCAL2,&LOCAL3,&LOCAL4 
GBLC &LOCAL5,&LOCAL6,&LOCAL7,&LOCAL8,&LOCAL9 
LOCAL 0,1,3,PREFIX=A 
LR Rl,R2 
LR R3,R4 
LR R5,R6 
LR R7,R8 
END LOCAL 
MEND 

Controlled Release Draft 4-209 October, 1985 



Controlled Release Draft 4-210 October, 1985 



4.2.48 LOGOFF - Log Off Interactive Terminal (SVC 43) 

Syntax 

[label] LOGOFF 

Function 

LOOOFF terminates a task by request of an active program. LOOOFF 
marks the task as being in logoff procedures and having no debugging 
privileges and then issues a CANCEL SVC with a message number of 0001, 
LOGOFF (SVC)43). LOGOFF returns to the calling program with error 
message 0002, "Invalid parameter list passed to LOGOFF", if the two words 
passed to the SVC do not contain binary zeroes. 

Stack On Input 

O(SP) I 

4(SP) 

Stack On Output 

O(SP) I 

Example 

LAB2 
+LAB2 
+ 
+ 

Must be zero 

Must be zero 

Preceding 
Stack Data 

Preceding 
Stack Data 

LOGO FF 
PUSHA 0,0 
PUSHA 0,0 
SVC 43 

Controlled Release Draft 

Lower 
Address 

Higher 
Address 

Lower 
Address 

Higher 
Address 

NULL 
PARAMETERS 
CLOOOFF) 

4-211 October, 1985 



4.2.49 MOUNT - Mount Disk or Tape Volume CSVC 30) 

Syntax 

Format 1: 

[label] MOUNT DISK={Cregister)},VOLUME={Cregister)} 

Format 2: 

{ integer } {'string' } 
{ address } { address } 

[,LABEL={SL}][,BLP={NO }][,USAGE={SH}] 
{NL} {YES} {RR} 

{PR} 
{EX} 

[,VOLTYPE={R}][,SPOOL={NO }][,WORK={NO }][,GENERIC={NO }] - - - -
{F} {YES} {YES} {YES} 

[,NSA={NO }][,NODISPLAY={NO }][,PAGING={NO }] 
{YES} {YES} {YES} 

[,NOMESSAGE={NO }][,SECURE={NO }][,VSID={Cregister)}] 
{YES} {YES} { integer } 

{ address } 

[label] MOUNT TAPE={Cregister)},VOLUME={Cregister)} 
{ integer } {'string' } 
{ address } { address } 

[,LABEL={AL}][,BLP={NO }][,USAGE={SH}] 
{NL} {YES} {EX} 
{IL} 

[,NOMESSAGE={NO }] 
{YES} 

Function 

Mount performs the following functions: 

• Requests a disk volume to be mounted on the indicated device with 
the specified label, usage, type, spool file, and work file 
attributes. 

• Requests a tape volwne to be mounted on the indicated device with 
the specified label attributes. 

Controlled Release Draft 4-212 October, 1985 



To perform a disk or tape mount operation, the input parameters are 
first validated, and if correct, a mount message is displayed on the 
user's workstation to mount the proper volume. If the NODISPLAY option 
is chosen, the message appears only on Workstation 0. When the volume is 
mounted and the device is ready, the new volume label will be read and 
checked. The volume control block is updated with the information. 

The NOMESSAGE option indicates that the volume to be mounted is 
already on the disk or tape drive. No mount message is displayed, and 
the VCB information is updated from that volume label. 

The Bypass-label-processing option (BLP) is used by the disk or tape 
initialization program and the floppy copy program (FLOPYDUP). 

NOTE 

A nonstandard addressing option is now supported that allows 
the user to format a soft-sectored diskette in any 
combination of sector size and density. The use of this 
option is intended to be limited to specialized utilities. 
User programs which employ this option are responsible for 
performing direct and sequential I/O on a physical-sector 
basis. The user program must calculate the sector size and 
addresses, set mode, and set density. When nonstandard 
addressing is specified, the XIO SVC does not perform extent 
validation or address translation, but simply passes the 
address to the firmware via the I/O control word (IOCW). 

Volume Set Mounts 

The MOUNT SVC also allows for mounting volumes that are part of a 
volume set. A volume set may have from 1 to 255 different volumes, each 
volume having the same volume name but its own volume set identification 
number (VSID) which is created with the DISKINIT utility. 

When mounting such a volume, or a single volume, on a specific 
device, only the volume name is required and any volume provided with the 
same name will satisfy the request. If you specify the VSID parameter, 
then the volume you mount must match the name and VSID combination. On a 
GENERIC mount, you must provide the VSID and the VOLUME name in the call 
to the MOUNT SVC. 

Not all volumes in a volume set need to be mounted at the same time. 
However for file access, the root volume (VSID=l) must be mounted as it 
contains the master directory for all files within the set. Each 
subsequent MOUNT command issued for a volume in the set must specify the 
same USAGE parameter value as specified on the first MOUNT. To change 
the USAGE parameter values for a set which is mounted, perform a remount 
of the root volume. 

Controlled Release Draft 4-213 October, 1985 



Parameter Definitions 

DISK 

TAPE 

VOLUME 

BLP 

LABEL 

USAGE 

A ntunber between 0 and 255 which is the system-defined 
device number of the disk unit on which the volume is to be 
mounted. 

A ntunber between 0 and 255 which is the system-defined 
device number for the tape unit on which the volume is to 
be mounted. 

DISK and TAPE may be specified as a register in parentheses 
containing the device number in binary in its low-order 
position, as an integer not in quotes which is the device 
number in decimal, or as an expression addressing a 1-byte 
field containing the device number in binary. One of these 
parameters is required and they are mutually exclusive. 

The name of the volume which is to be mounted. The name 
can be specified as a register in parentheses that points 
to the volume name, as a character string in single quotes 
which is the volume name, or as an expression that 
addresses a 6-byte field which contains the volume name. 
This parameter is required. 

This parameter instructs the system to bypass label 
processing and checking and should be specified with care. 
Valid values are YES and NO. The default is NO. 

Denotes the type of volume label present on a volume. 
Valid values are: 

• SL - Standard WANG VS labels. 
• NL - No labels are present on the volume. 
• AL - Standard ANSI-type labels. 
• IL - Standard IBM-type labels. 

The default for a disk volume is SL. For a tape volume the 
default is AL. SL is valid for disk volumes only; AL and 
IL are valid for tape volumes only. 

Denotes volume access and dismounting restrictions. 
Dismounting restrictions also apply to remounting with 
different attributes. Valid values are 

• SH -- Shared, the volume may be accessed and dismounted 
by any user. Default for disk and tape volumes. 

• RR -- Restricted removal, the volume may be accessed by 
any user but dismounted only by the user who mounted 
the volume. For disk volumes only. 

Controlled Release Draft 4-214 October, 1985 



VOLTYPE 

SPOOL 

WORK 

NSA 

NOD I SPLAY 

NOMESSAGE 

PAGING 

SECURE 

• PR -- Protected, files on the volume may be read by any 
user but updated and dismounted only by the user who 
mounted the volume. For disk volumes only. 

• EX -- Exclusive, the volume can be accessed and 
dismounted only by the user who mounted the volume. 

For volume sets that have more than one member volume 
mounted, these values may be changed by doing a remount of 
the root volume. 

Denotes the type of disk volume being mounted as either 
fixed or removable. Valid values are F and R respectively, 
with R being the default. This parameter is valid for disk 
volumes only. 

YES denotes that the volume is included in the list of 
volumes scanned when the system creates a spool (print) 
file for a user. The default is NO. This parameter is 
valid for disk volumes only. 

Denotes whether the volume is included in the list of 
volumes scanned when the system creates a work file for a 
user whose default work volume has not been defined. Valid 
values are YES and NO, with the default being NO. This 
parameter is valid for disk volumes only. 

If YES is specified, indicates that the volume to be 
mounted follows nonstandard addressing conventions. The 
default is NO. 

If YES is specified, indicates that no mount messages are 
to be displayed on the user's workstation; the operator 
console messages must be used to coordinate physical 
mounting. The default is NO. 

If YES is specified, indicates that the volume to be 
mounted is already on the disk or tape drive. No mount 
message is displayed, and the volume control block CVCB) 
information is updated from the volume label. The default 
is NO. 

If YES is specified, indicates whether a standard label 
disk volume accepts paging files. Only valid for standard 
label volumes. 

Allows the system to observe special program privileges for 
programs residing on the disk. Only security 
administrators can set this option. 

Controlled Release Draft 4-215 October, 1985 



GENERIC 

VSID 

YES specifies that the volume can be mounted on any 
appropriate available drive. NO specifies that the volume 
is to be mounted on the device specified by the DISK 
parameter. Specifying GENERIC is not valid for tape drives. 

Specifies the volume set identification number for the 
volume to be mounted. The number ranges from 0 to 255. A 
single volume has a VSID of 0. Not valid for tape mounts 
and not required for single volumes. 

Stack On Input 

The parameter list is either eight or sixteen bytes long depending 
upon whether the high bit of the third byte is set. 

(1) Flag byte 
For disk volwne: 

Bit 0 1 = Mount an unlabelled volume. 
Bits 1-2 0 = Mount for shared use. 

1 = Mount with restricted removal. 
2 = Mount with protected use, and restricted 
removal. 
3 = Mount for exclusive use. 

Bit 3 0 = Mount a removable volume. 
1 = Mount a fixed volume. 

Bit 4 1 = No message option. Mount volume on drive. 
Bit 5 1 = Mount volume for bypass-label-processing. 
Bit 6 1 = Volume allows spool files. 
Bit 7 1 = Volume allows work files. 

Controlled Release Draft 4-216 October, 1985 



.~ 

For tape volume: 
Bit 0 1 = Mount an unlabelled volume. 
Bit 1 0 = Mount for shared use. 

Bit 2 
Bit 3 

Bit 4 
Bit 5 
Bits 6-7 

1 = Mount for exclusive use. 
Unused. 
O = Mount an ANSI tape. 
1 = Mount an IBM tape. 
1 = No message option. Mount volume on drive. 
1 = Mount volume for bypass-label-processing. 
Unused. 

(2) Device number. Binary value in the range of 0 to 255. 

( 3) Volume name. 6-character volume name. If the high bit of the 
first byte of this field is set, an extension to the parameter list 
is included (bytes 8 - 15). 

(4) Parameter list extension. 
Bit 0 1 = Nonstandard addressing in effect (for soft 

sectored diskettes only). 
Bit 1 1 = No display option: do not display message on 

user's workstation. 
Bit 2 1 = Volume is eligible for paging files. 
Bit 3 1 = Special program rights are observed. 
Bit 4 1 = VSID is required. 
Bits 5-6 Unused, must be zero. 
Bit 7 1 = Generic mount - volume may be mounted on any 

available drive. 

(5) Volume set identification number (VSID) - a binary number from 0 
to 255. 

(6) Unused, must be 0. 

Stack On Output 

O(SP) I 

Output 

Return Code 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Return codes 16-84 are set without the mount message being shown on 
the workstation. 

Controlled Release Draft 4-217 October, 1985 



Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

Description 

Success. 

Successful mount, but new volume label type does not 
agree with input parameters. 

Successful mount, but new volume name is not the 
volume name requested. 

Disk or tape I/O error detected while reading the new 
volume label or the new volume has a bad VTOC. VCBSER 
is set to blank. This return code is set when the new 
volume is physically mounted on the drive, but the VCB 
cannot be filled in. 

Device is not a disk or a tape, or the device number 
is not valid. 

Device is detached. 

Disk does not have the requested volume type (fixed or 
removable). 

Request to mount an unlabelled volume on a disk unit 
other than an 2270V diskette. 

Input volume name is blank. 

Single volume already mounted. 

The volume is currently in use by the operating system 
or a user. 

The currently mounted volume is reserved by another 
user for exclusive use. 

Insufficient I/O buffer space to perform the mount. 

GETMEM pool failure. Unable to allocate space for 
tape I/O control blocks. 

Controlled Release Draft 4-218 October, 1985 

.__,· 



Code 

56 

60 

64 

68 

72 

76 

80 

84 

88 

92 

96 

100 

116 

124 

128 

Description 

Invalid request: work or spool filing or both 
requested in a nonlabelled volume. 

Invalid request: nonstandard addressing attempted with 
standard label option or on a hard-sectored device. 

Wrong media: soft-sectored diskette inserted into a 
device for hard-sectored diskettes only. 

Wrong media: hard-sectored diskette inserted into a 
device for soft-sectored diskettes only. 

Wrong media: hard-sectored diskette inserted for a 
nonstandard addressing request. 

Wrong addressing mode: caller requested MOUNT for 
standard addressing but diskette is nonstandard 
addressing. 

Device reserved by another user. 

Mount failed; aborted by user or operator request. 

Tape drive does not support the requested density. 

Success, but could not scratch paging library. 

Cannot use protected volume for paging. 

User not authorized for "SECURE" function. 

Volume set member with this VSID already mounted. 

SUCCESS but volume identification doesn't match. 

GENERIC mount is not valid on volume mounted for 
initialization. 

Controlled Release Draft 4-219 October, 1985 



Code 

132 

136 

140 

144 

148 

152 

Examples 

LABO 

+LABO 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

LABl 
+LABl 
+ 
+ 
+ 
+ 
+ 

LABEL 
+LABEL 
+ 
+ 
+ 
+ 
+ 

Description 

Request parameter not valid with GENERIC mount. 

No switch allowed on non-root set members. 

Generic mount requires VSID. 

Device must be reserved, set is reserved. 

Volume set is not reserved, disk on reserved device 
cannot be mounted as part of the set. 

NOVTOC volumes cannot be members of volume sets. 

MOUNT DISK=CRl),VOLUME='SYSTEM',LABEL=SL,USAGE=SH,VOLTYPE=F, X 
SPOOL=NO,WORK=YES 

DS OH 
PUSHN 0,8 GET TWO WORDS ON THE STACK 
STC Rl,l(,15) SET DEVICE NUMBER 
MVC 2(6,15),*+10 SET VOLUME NAME 
B *+10 BRANCH AROUND CONSTANT 
DC CLG'SYSTEM' VOLUME NAME 
MVI 0(15),B'OOOlOOOO' SET FLAGS 
SVC 30 (MOUNT) ISSUE SVC 

MOUNT DISK=DISKVOL,VOLUME=(R4) 
DS OH 
PUSHN 0,8 
MVC 1(1,15),DISKVOL 
MVC 2(6,15),0(R4) 
MVI 0(15),B'OOOOOOOO' 
SVC 30 (MOUNT) 

GET TWO WORDS ON THE STACK 
SET DEVICE NUMBER 
SET VOLUME NAME 
SET FLAGS 
ISSUE SVC 

MOUNT TAPE=28,VOLUME=TAPEVOL,LABEL=IL,USAGE=EX 
DS OH 
PUSHN 0,8 
MVI 1(15) ,28 
MVC 2(6,15),TAPEVOL 
MVI 0(15),B'OlOlOOOO' 
SVC 30 (MOUNT) 

GET TWO WORDS ON THE STACK 
SET DEVICE NUMBER 
SET VOLUME NAME 
SET FLAGS 
ISSUE SVC 

Controlled Release Draft 4-220 October, 1985 



MOUNT DISK=CRl),VOLUME='IRSSET',USAGE=SH,VSID=l 
+ PUSHN 0,8 GET 8 BYTES FOR PLIST EXTENSION 
+ XC 0(8,15),0(15) CLEAR PLIST EXTENSION 
+ MVI 9(15),l 
+ MVI 0(15),B'OOOOlOOO' SET EXTENSION FLAGS 
+ PUSHN 0,8 GET TWO WORDS ON THE STACK 
+ STC Rl,l(,15) SET DEVICE NUMBER 
+ MVC 2(6,15),*+10 SET VOLUME NAME 
+ B *+10 BRANCH AROUND CONSTANT 
+ DC CL6'IRSSET' VOLUME NAME 
+ OI 2(15),X'BO' SET 'PLIST EXTENSION' FLAG 
+ MVI 0(15),B'OOOOOOOO' SET FLAGS 
+ SVC 3 0 C MOUNT) ISSUE SVC 

MOUNT DISK=CR2),VOLUME='IRSSET',USAGE=SH,VSID=2 
+ PUSHN 0,8 GET 8 BYTES FOR PLIST EXTENSION 
+ XC 0(8,15),0(15) CLEAR PLIST EXTENSION 
+ MVI 9(15),2 
+ MVI 0(15),B'OOOOlOOO' SET EXTENSION FLAGS 
+ PUSHN 0,8 GET TWO WORDS ON THE STACK 
+ STC R2,1(,15) SET DEVICE NUMBER 
+ MVC 2(6,15),*+10 SET VOLUME NAME 
+ B *+10 BRANCH AROUND CONSTANT 
+ DC CL6'IRSSET' VOLUME NAME 
+ OI 2(15),X'SO' SET 'PLIST EXTENSION' FLAG 
+ MVI 0(15),B'OOOOOOOO' SET FLAGS 
+ SVC 30 (MOUNT) ISSUE SVC 

END BEGIN 

MOUNT DISK=5,VOLUME='IRRSET',USAGE=SH,VSID=l 
+ PUSHN 0,8 GET 8 BYTES FOR PLIST EXTENSION 
+ XC 0(8,15),0(15) CLEAR PLIST EXTENSION 
+ MVI 9(15) ,1 
+ MVI 0(15),B'OOOOlOOO' SET EXTENSION FLAGS 
+ PUSHN 0,8 GET TWO WORDS ON THE STACK 
+ MVI 1(15) ,5 SET DEVICE NUMBER 
+ MVC 2(6,15),*+10 SET VOLUME NAME 
+ B *+10 BRANCH AROUND CONSTANT 
+ DC CL6 I IRRSET I VOLUME NAME 
+ OI 2(15),X' 80' SET 'PLIST EXTENSION' FLAG 
+ MVI 0(15),B'OOOOOOOO' SET FLAGS 
+ SVC 30 (MOUNT) ISSUE SVC 

END BEGIN 

05\ 
05\ 

Controlled Release Draft 4-221 October, 1985 



MOUNT VOLUME='IRSSET' ,USAGE=SH,GENERIC=YES 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

PUSHN 0,8 GET 8 BYTES FOR PLIST EXTENSION 
XC 0(8,15),0(15) CLEAR PLIST EXTENSION 
MVI 0(15),B'OOOOOOOl' SET EXTENSION FLAGS 
PUSHN 0,8 GET TWO WORDS ON THE STACK 
MVC 2(6,15),*+10 SET VOLUME NAME 
B *+10 BRANCH AROUND CONSTANT 
DC CL6 t IRSSET I VOLUME NAME 
OI 2Cl5),X'80' SET 'PLIST EXTENSION' FLAG 
MVI 0(15),B'OOOOOOOO' SET FLAGS 
SVC 30 (MOUNT) ISSUE SVC 

Controlled Release Draft 4-222 October, 1985 



'~ 

4.2.50 MSGLIST - Generate Display Message 

Syntax 

[label] MSGLIST msg#,issuer,'message-segmentl'[,'message-segment2' .•. ] 

Function 

Generates a data structure suitable for use with the MSG parameter of 
the GETPARM and CANCEL macroinstructions. 

Restrictions 

Intended for use in conjunction with the GETPARM and CANCEL 
macroinstructions. See those macroinstructions and the corresponding 
supervisor call descriptions. 

Parameter Definitions 

msg# 

issuer 

'message
segment' 

Example 

LABl 
+LAB! 
+ 
+ 
+ 
+ 
+ 

Up to four alphanumeric characters enclosed in single 
quotes, normally a message number, to be displayed with the 
message. The message number is displayed on row 1 of the 
workstation screen. 

Up to six characters enclosed in single quotes, normally an 
identification of the issuing routine, to be displayed with 
the message. The issuer is displayed on row 1 of the 
workstation screen. 

Message text in single quotes (apostrophes) to be displayed 
on a single line. Message text can be repeated as often as 
required to define additional lines to be displayed. No 
line can be over 79 characters long. The message can 
contain single quotes. Message text is displayed beginning 
on row 3 of the workstation screen. 

MSGLIST '123','ISSUER','LINE 1', 'LINE 2 I 
oc CL4, '123' 
oc CL6'ISSUER' 
oc AL2(6+6+1) 
oc C'LINE l' 
oc X'OD' NEW LINE 
oc C'LINE 2' 

Controlled Release Draft 4-223 October, 1985 



4.2.51 OPEN - Open a File (SVC 0) 

Syntax ~ 

[label] OPEN 

Function 

UFB={Cregister)}[,MODE={OUTPUT}][,NODISPLAY] 
{ address } {INPUT } 

{IO } 
{EXTEND} 
{SHARED} 

[ ,NOGETPARM] [,EXIT={ (register) } ] 

[,PLOG={YES}] 
{NO } 

{absolute expression} 

Prepares a file for processing by Data Management System (OMS) 
functions. The user file block (UFB) is normally created prior to OPEN 
by means of the UFBGEN macroinstruction. The OPEN macroinstruction 
includes provision for optional modification of the open mode flags of 
the UFB. 

Opens a new or existing file for I/O processing by the OMS routines. 
Information from the file's file descriptor record (FDRl), located in the 
VTOC, is brought into memory. Devices and volumes are allocated and 
reserved as required. System control blocks, used to keep track of file 
information, are created. Buffer space is allocated in the user 
program's modifiable code area. The OPEN function may issue a GETPARM 
call to interact with the user at a workstation to request information 
(such as the file, library or volume name, retain days, etc.) which has 
not been supplied or to correct the information. 

Before opening a file, a data structure called a user file block 
(UFB) must exist for the file. The UFBGEN macroinstruction can be used 
to create the UFB and to initialize UFB fields. The following 
information in the UFB must be initialized depending upon the case: 

• New and existing files 
Parameter reference name CUFBPRNAME) 
Options (UFBFl, UFBF4) 
Mode (UFBF2) 
Device class (UFBDEVCLASS) 
Device dependant flags CUFBF4) 
OPEN modifier (UFBDXOM) (if OMS/TX section exists) 

• New files (mode = OUTPUT) 
File organization (UFBFORG) 
Logical record size (UFBRECSIZE) 

Controlled Release Draft 4-224 October, 1985 



• New magnetic tape files 
Physical block size (UFBBLKSIZE) 
Tape sequence number (UFBTSEQ) 
Logical record size (UFBRECSIZE) 

• New disk file 
Disk space requirement CUFBNRECS) 
File organization (UFBFORG) 
Logical record size (UFBRECSIZE) 
Compressed record option (UFBFLAGSCOMP) 

• New indexed disk file 
Key position CUFBKEYPOS) 
Key size (UFBKEYSIZE) 
Data/index block packing % (UFBPKD,UFBPKI) 
Alternate keys defined CUFBALTCNT) 
Recovery blocks (UFBDXRECBLK) 

• New alternate indexed disk files 
AXDl block address (UFBALTPTR) 
Alternate key definitions (AXDl) 

• New or existing file may optionally contain 
Complete actual file name and volume (UFBVOLSER, UFBDIRNAME, 
UFBFILENAME) 
Device number 
Unqualified name of member within library or volume 
(UFBFILENAME) 

The following fields may be preset as they are not modified during 
OPEN (except for TC files): UFBERRAD, UFBEODAD, UFBRECAREA, 
UFBKEYAREA. For TC files, UFBRECAREA contains the address of the TC 
connection parameters. 

For DMS/TX files, opened in I/O or Shared mode, initiates transaction 
processing on the file. See the VS OMS/TX Reference for more information. 

Disk Considerations 

For an existing disk file, if UFBFORG or UFBRECSIZE are supplied, 
they must agree with the values in the file's FDR. 

UFBBUFSIZE may be supplied as the maximum buffer size required. 

When creating an indexed file in Output mode, the packing density for 
both index blocks and data blocks may be set by the user. For example, 
if 20 records at 100 bytes each would normally fit into a data block, 
then at 80 percent packing, each data block would be loaded with only 16 
records. UFBPKD (data) and UFBPKI (index) cannot be set by the user 
before OPEN; OPEN uses the binary value as a percentage. A value of 
01-100 is accepted as the percentage value for packing. Any value 
outside this range is ignored; the default used produces full packing. 
UFBPKD and UFBPKI should not be modified after OPEN. 

Controlled Release Draft 4-225 October, 1985 



For Output mode disk files, UFBNRECS is to be supplied to OPEN as the 
basis for allocating file space on disk. OPEN saves the UFNRECS value in 
UFBOUTRECS and set UFBNRECS equal to zero. 

Tape Considerations 

For an existing tape file, if UFBFORG or UFBRECSIZE are supplied, 
they must agree with the values in the file's tape label. 

Either the file name must be supplied or UFBTSEQ must be nonzero. 

The user must specify a nonzero value for tape density in the case of 
7-track tape; OPEN issues a set density conunand to set the 
user-specified density. 

OPEN SVC rejects (with an explanatory respecify message) attempts to 
open a file on a device reserved by another task. 

Error Handling 

The OPEN macro EXIT parameter sets the high-order byte of the top 
word of the stack. This byte indicates the conditions listed below. If 
a condition arises for which the corresponding bit is set, then control 
returns to the program at the next instruction in sequence rather than 
the OPEN SVC issuing a GETPARM (RESPECIFY). If the exit is taken, UFBFSl 
is set to X'39', UFBFS2 is set to a mask for the appropriate condition; 
and UFBPREVO is set. The OPEN SVC may be reissued after an OPEN exit has 
been taken. 

Qpen Exit Conditions 

The open exit conditions for this macro are as follows: 

• UFBFS2XFILE (X' 80' ) Return if the file is not found 
(non-OUTPUT mode) or if a duplicate file name is found (OUTPUT 
mode). 

• UFBFS2XLIB (X'40') 
(non-OUTPUT mode). 

Return if the library is not found 

• UFBFS2XVOL (X'20') -- Return if the volume is not mounted. 

• UFBFS2XSPACE (X'lO') -- Return if there is insufficient space on 
the volume for a new file (OUTPUT mode). 

• UFBFS2XVTOC (X' 08' ) -- Return if there is no VTOC space on the 
volume (OUTPUT mode). 

• UFBS2XTAPELD (X' 08') -- Return if the tape label type or tape 
density is not acceptable to the program. 

Controlled Release Draft 4-226 October, 1985 



• UFBFS2XPOS (X'04') -- Return for possession conflict. Possession 
conflict includes file already open by current program, file 
opened by other program and open modes conflict, and volwne 
possession is exclusive for another user. Error further 
described in UFBXCODE. 

• UFBFS2XPROT (X' 02' ) -- Return if the user does not have access 
rights required to open the file. 

• UFBFS2XFORMAT ex• 01 1 > 

specification of file 
UFBXCODE. 

Return if there is an error in 
format. Error class is described in 

For the UFBXCODE, the values are described as follows: 

• X'OO' = No additional information 
• X'Ol' =Device in use. 
• X'02' =Device detached. 
• X'03' = Volwne exclusion. 
• X'04' = File possession conflict 
• X'05' = Paging file - system only. 
• X'06' = Image file 
• X'07' =Already open - this user. 
• X'08' =Already open - this user. 
• X'lO' = Program requires 7-track tape while drive is 9-track or 

vice versa. 
• X'll' = UFB FORG =PRINT while FDR FORG not equal to PRINT. 
• X'12' = UFB FORG = PROG while FDR FORG not equal to PROG. 
• X'13' = UFB FORG = CONSEC while FDR FORG not equal to CONSEC. 
• X'14' = UFB FORG =WP while FDR FORG not equal to WP. 
• X'15' = UFB FORG = INDEXED while FDR FORG not equal to INDEXED. 
• X'l6' = UFB FORG neither CONSEC nor INDEXED - error. 

A NO-MESSAGE option is also available such that control returns to 
the program Cat the next instruction in sequence) whenever any condition 
arises for which a RESPECIFY (or C.MJCEL) message would normally be 
returned. If UFBF4NOMSG is set, then the MSG-ID ( 4 bytes) of any 
RESPECIFY or CANCEL message is stored in the first 4 bytes of the UFB and 
UFBFSl=X'36' and UFBFS2=X'O'. The NO-MESSAGE option is checked after any 
open-exit checking is performed. (Open-exits provide a more exact 
indication of the problem; the NO-MESSAGE option is useful for tasks with 
special processing requirements.) 

The following UFB fields are updated by OPEN: 

• Addresses of I/O function processing routines placed in UFBVREAD 
through UFBVSTART. 

• Nwnber of records in file placed in UFBNRECS for disk files or 
for magnetic tape files opened in EXTEND mode. 

Controlled Release Draft 4-227 October, 1985 



• Sequential record pointer initialized to first record of file 
(last record of file plus one record if EXTEND mode). 

• Buffer addresses and lengths placed in buff er control fields of 
UFB (UFBBUFADR, UFBBUFSIZE). The buffers marked CONTENTS NOT 
VALID (in UCBBCBFLAGS) and BUFFER IN PROTECTED MEMORY are also 
updated when required. 

• The file status bytes (UFBFSl, UFBFS2) are set to '00'; UFBLF is 
set to OPEN. 

• For existing files only 
File organization indicated (UFBFORG) 
Logical record size supplied (UFBRECSIZE) 
Block size supplied (UFBBLKSIZE) 

• For disk files only 
File attribute flags indicated CUFBFLAGS) 
Record size from label supplied (UFBLRECSAVE) 
Last block number in file supplied (UFBEBLK) 
Last record number in this block supplied CUFBEREC) 
Number of 2K blocks within file extents supplied CUFBNBCKS) 

• For indexed disk files only 
First data block number (relative - within file) supplied 
(UFBDABLK) 
Highest-level index block number (relative - within file) 
supplied CUFBHXBLK) ~ 

• For existing indexed disk files only 
Key position supplied CUFBKEYPOS) 
Key size supplied CUFBKEYSIZE) 

• For output mode, UFBF4RLSE is set. This setting can be 
overridden by the user when the OPEN-GETPARM is issued or the bit 
can be cleared by the program after OPEN. The bit causes unused 
space in the file to be released by CLOSE. 

• Program-supplied file, volume, and device information (as 
supplied through the OPEN parameter sections of the UFB) remains 
in the UFB, or is replaced with information acquired by OPEN 
through GETPARM. 

Parameter Definitions 

UFB The address of a user file block, which must be specified 
either as a register designation in parentheses, where the 
register is assumed to contain the UFB address, or as a UFB 
address expression not in parentheses. 

Controlled Release Draft 4-228 October, 1985 



~ 
MODE 

OUTPUT 

INPUT 

IO 

EXTEND 

SHARED 

NOGETPARM 

NOD I SPLAY 

EXIT 

PLOG 

Specifies a value to be placed in the UFB to designate an 
open mode. This is done before the OPEN SVC is issued. 
This parameter is optional. 

Mode that specifies that the file is opened for writing. 

Mode that specifies that the file is opened for reading. 

Mode that specifies that the file is opened for reading and 
updating. 

Mode that specifies that the file is opened for additions 
only. 

Mode that specifies that the file is opened for use by more 
than one user. Opening a file in Shared mode also 
specifies that it is opened for reading and updating CI/O 
mode). 

Causes a type RD GETPARM to be issued rather than a type I, 
suppressing user interaction and causing procedure-supplied 
parameters to be ignored. This option should be used only 
when run time parameters have already been obtained, as 
through a program-issued GETPARM. In this case, the 
progranuner should also use the OPEN exits which enable the 
program to handle error conditions. 

Causes a type ID GETPARM to be issued rather than a type I, 
suppressing user interaction as long as the values supplied 
in the UFB or through a procedure are syntactically 
correct. Even with the NOGETPARM or NOD I SPLAY options, a 
user interaction occurs if a field is semantically in error 
(e.g., an invalid device type). 

A value that indicates which file assigrunent problems 
should cause control to be returned to the issuing program 
rather than cause generation of a user interaction via a 
GETPARM (type R). See description of OPEN SVC in this 
chapter for possible values. May be specified as a 
register designation in parentheses, or as an absolute 
expression not in parentheses. The value in the low-order 
byte of the register, or the value of the expression, is 
stored in the high-order byte of the OPEN parameter word on 
the stack. 

If YES is specified, a file prologue is created when the 
file is opened. Valid only for word processing files. 
This parameter must be specified when the file is opened in 
Output mode CMODE=OUTPUT) in order for the file prologue to 
be identified with the file to be created. The default is 
NO. 

Controlled Release Draft 4-229 October, 1985 



Stack On Input 

One word on top of the stack, as follows: 

I 
lo 

0 (SP) I I 
I (1) 

I 
I 
I 

1 2 3 

(2) Address 
of UFB 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(1) EXIT condition mask - optional value specifying OPEN EXIT 
condition. 

(2) Bytes 1 to 3 - address of the user file block (UFB) for the file 
to be opened. 

Stack On Output 

0 (SP) I 

Example 

LABl 
+LABl 
+ 
+ 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

OPEN UFB=CR2),MODE=INPUT 
MVI 44(R2),X'20' INPUT MODE 
PUSH 0,R2 
SVC 0 (OPEN) 

Controlled Release Draft 4-230 October, 1985 



4.2.52 PCEXIT - Modify Program Exception Exit Status (SVC 31) 

Syntax 

Format 1: 

[label] PCEXIT SET,{Clist)},ADDRESS={Cregister)} 
{ ALL } { address } 

Format 2: 

[label] PCEXIT RESET 

Format 3: 

[label] PCEXIT CANCEL 

Function 

Allows the user program to execute a user-written exception handling 
routine for user-selected program exceptions. This program exception 
handling status may also be reset or canceled. 

When a program issues a LINK SVC, any current user program exception 
exit is eliminated, but the current status is preserved for restoration 
by UNLINK. 

~ Parameter Definitions 

SET 

RESET 

CANCEL 

ADDRESS 

To specify user-program exception handling for the listed 
program interruptions. The previous program exception 
handling status, if any, is saved for use by the RESET 
function. 

Restores user-program exception handling status to its 
state before the most recent SET function, if there was a 
PCEXIT SET issued in the current program. The most recent 
status is discarded. 

Removes all user-program exception handling in the current 
link level (since a LINK from another program or Conunand 
Processor program initiation). All such status is 
discarded. 

Specifies the address of the entry point into a user 
supplied exception handling routine to which program 
control is transferred. A register specification in 
parentheses signifies that the register contains the exit 
address. An expression not in parentheses is evaluated as 
the exit address directly. This and the (list) parameter 
may be specified only with the SET parameter. 

Controlled Release Draft 4-231 October, 1985 



ALL Specifies that all types of program exception interrupts 
are to be intercepted. 

(list) Where list may contain any of the following program 
exceptions separated by commas: 

• OP Operation 
• PO Privileged operation 
• EX Execute 
• PR Protection 
• AD Addressing 
• SP Specification 
• DA Data 
• FIO -- Fixed-point overflow 
• FID -- Fixed-point divide 
• DO Decimal overflow 
• DD Decimal divide 
• SR Supervisor call range 
• so Stack overflow 
• FPO -- Floating-point overflow 
• FPU -- Floating-point underflow 
• SI -- Significance 
• FPD -- Floating-point divide 

To specify that all types of program exception interrupts are to be 
intercepted, specify ALL instead of a (list). 

Stack On Input 

I 
lo 

O(SP) I I 
I 
I 

4CSP) I 
I 
I 
I 
I 

( 1) Option 
0 = 

I 
1 2 3 I 

I (2) Address I 
(1) I of Exit Routine! 

I or unused I 
I 

(3) Exception Mask I 
or unused I 
Preceding I 

Stack Data I 

flag: 
Set new exit status (SET) 

Lower 
Address 

Higher 
Address 

1 = Remove most recent exit status (RESET) 
2 = Remove all exit status to most recent LINK (CANCEL) 

(2) Exit address (SET option) 

(3) Exception mask CSET option) 

Controlled Release Draft 4-232 October, 1985 



Stack On Out12ut 

~. Lower 
Address 

OCSP) I Preceding Higher 
Stack Data Address 

Exam12les 

LAB2 PCEXIT SET,(OP,EX),ADDRESS=CR2) 
+LAB2 PUSHC 0(4,0),*+10 
+ B *+8 
+ DC BL4'01010000000000000000000000000000' 
+ PUSH O,R2 
+ SVC 31 (PCEXIT) 

PCEXIT RESET 
+ PUSHN 0,4 
+ MVI 0(15),l 
+ SVC 31 CPCEXIT) 

PCEXIT CANCEL 
+ PUSHN 0,4 
+ MVI 0(15),2 
+ SVC 31 (PCEXIT) 

Controlled Release Draft 4-233 October, 1985 



4.2.53 PROTECT - Protect a Disk File (SVC 42) 

Syntax ~ 

Format 1: 

[label] PROTECT PLIST={ address } 
{(register)} 

Format 2: 

[label] PROTECT {LIBRARY },LIBRARY={address }, 

Function 

{FILE={address }} {'string'} 
{'string'} 

VOLUME={address }[,OWNER={address }] 
{'string'} {'string'} 

[,FILECLAS={address }] 
{'string'} 

[,RETPD=address][,EXPRDT=address] 

[,RESTRICT={NO }] 
{YES} 

To update the protection information (protection class, owner of 
record, expiration date) for a disk file or a library of disk files on a 
volume. The structure of the Volume Table of Contents CVTOC) is not 
affected by the change. No file that is to have its protection 
information modified may be open when the PROTECT is attempted. 

Restrictions 

If the PLIST option is not utilized, PROTECT dynamically builds its 
parameter list on the stack, and it becomes the invoking program's 
responsibility to pop 32 bytes off the stack beyond the return code word 
on the stack. 

The PROTECT SVC updates the protection information (protection class, 
owner ID, expiration date) for a disk file or library on a volume The 
structure of the volume table of contents is not affected by the change. 
The file must not be in use Copen) when the protect is attempted or the 
SVC fails with a return code of 32. 

To protect a file or library on a volume set, the root volume must be 
mounted. If not mounted, a generic mount will be issued for that volume 
CVSID). 

Controlled Release Draft 4-234 October, 1985 



Parameter Definitions 

PLIST 

LIBRARY 

FILE 

LIBRARY 

VOLUME 

OWNER 

The address of a user-generated parameter list as used and 
described by the PROTECT SVC. If PLIST is specified, no 
other parameter may be specified. 

PLIST may be 
containing the 
list, or as an 
parameter list. 

specified as a register in parentheses 
address of the user-generated parameter 
expression addressing the user-generated 

If PLIST is not specified, the macro generates code to 
dynamically build a parameter list on the stack prior to 
issuance of the PROTECT SVC. 

Indicates that the protection attributes of all files 
within the specified library are to be modified. Use of 
this parameter is mutually exclusive with the FILE 
parameter. 

Specifies the name of the file whose protection attributes 
are to be modified. This parameter can be specified as a 
character string in single quotes which is the name of the 
file, or as an address expression pointing to an 8-byte 
field containing the file name. Use of this parameter is 
mutually exclusive with the LIBRARY parameter described 
above. 

Specifies the name of the library or the name of the 
library storing the file whose protection attributes are to 
be modified. This parameter can be specified as a 
character string in single quotes which is the name of the 
library, or as an address expression that points to an 
8-byte field containing the library name. This parameter 
is required if PLIST is not specified. 

Specifies the name of the volume containing the file or 
library whose protection attributes are to be modified. 
This parameter can be specified as a character string in 
single quotes which is the volume name, or as an address 
expression pointing to a 6-byte field containing the volume 
name. This parameter is required if PLIST is not specified. 

If specified, indicates that the 3-byte owner of record 
protection attribute is to be modified. May be specified 
as an address expression that points to a 3-byte field 
which contains the owner of record, or as a character 
string in single quotes. 

Controlled Release Draft 4-235 October, 1985 



FILECLAS 

RETPD 

EXPRDT 

RESTRICT 

Stack On Input 

0 CSP) I 

If specified, indicates that the 1-byte file class 
protection attribute is to be modified. This parameter can 
be specified as an address expression that points to a 
1-byte field which contains the new value, or as a 
character string in single quotes which is the new value. 

If specified, indicates that the expiration date protection 
attribute is to be modified and the address at which a 
retention period, in terms of days C 3-byte packed decimal, 
format OODDD+) is located. This parameter can be specified 
as a character string delimited by single quotes, in which 
case a constant is assumed. Use of this parameter is 
mutually exclusive with use of the EXPRDT parameter. 

If specified, indicates that the expiration date protection 
attribute is to be modified and the address at which the 
new value (3-byte packed decimal, format YYDDD+) is 
located. This parameter can be specified as a character 
string delimited by single quotes, in which case a constant 
is assumed. Use of this parameter is mutually exclusive 
with use of the RETPD parameter. 

Specifies whether or not to ignore any current special 
access rights which may have been granted to the invoking 
program. If current special access rights ignored, the 
program is restricted to the user's logon access rights in 
determining whether the user may protect the specified 
file(s). Valid values are YES or NO. The default is NO. 

(1) Address of 
Argument List 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Controlled Release Draft 4-236 October, 1985 



(1) Address of a parameter list constructed as follows: 

(2) 

(3) 

(4) 

(5) 

ARGUMENT LIST 
(2) Librar~ name 
( 3) File name-2 

or blank 
(4) Volume name 
(5) O:etion flag 
( 6) New protection 

class 
( 7) New owner ID 
( 8) New expiration 

or retention 

File name 1 

File name 2 

Volume name 

8 
8 

6 
1 
1 

3 
3 

bytes 
bytes 

bytes 
byte 
byte 

bytes 
bytes 

Lower 
Address 

Higher 
Address 

Option flag: A 1- byte flag constructed as follows: 
Bit 0 Must be O 
Bit 1 1 = Protect a library 
Bit 2 1 = Limit access rights to USER LOGON rights 
Bit 3 Must be 0 
Bit 4 1 = Retention date supplied 
Bit 5 1 = Expiration date supplied 
Bit 6 1 = Set protection class 
Bit 7 1 = set owner ID 

(6) New protection class 

(7) New owner ID 

(8) New expiration date and retention period 

Stack On Output 

0 CSP) I 
Return Code 

Preceding 
Stack Data 

Controlled Release Draft 4-237 

Lower 
Address 

Higher 
Address 

October, 1985 



Output 

Return codes in binary in the topword of the stack indicate the 
result of the request 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

Description 

The protection status for the specified file or 
library was successfully modified. 

The indicated volume is not currently mounted. 

The specified volume is currently being exclusively 
used by another user. 

Insufficient stack space for buffers to process the 
RENAME request. 

The specified library was not found. 

The specified file was not found. 

The user lacks update access for one or more of the 
files. 

Unused. 

The specified file is currently in use. 

A VTOC error was encountered during processing - FDXl 
and FDX2 do not agree. 

A VTOC error was encountered during processing - FDX2 
and FDR do not agree. 

The address presented for the parameter list is 
invalid. 

An I/O error occurred during processing - the VTOC is 
unreliable. 

Open or protected files bypassed in protecting library. 

Invalid new protection data. 

Cluster conununication failed. 

Controlled Release Draft 4-238 October, 1985 



Example 

LABl PROTECT FILE=PROFILE,LIBRARY=PROLIBR,VOLUME=PROVOLUME, 
OWNER='DOV' ,FILECLAS=PROCLAS,RETPD=PRORETPD 

+LABl PUSH.A 0,0 
+ PUSH.A 0,0 
+ MVC 3(3,15),PRORETPD 
+ MVC 0(3,15),=CL3'DOV' 
+ PUSHN 0,8 
+ MVC 7(1,15),PROCLASS 
+ MVI 6(15),B'OOOOllll' 
+ MVC 0(6,15),PROVOLUME 
+ PUSHC 0(8),PROFILE 
+ PUSHC 0(8),PROLIBR 
+ SVC 42 (PROTECT) 

Controlled Release Draft 4-239 

RETENTION PERIOD 
FILE OWNER OF RECORD 

FILE CLASS 

VOLUME 
FILE 
LIBRARY 

October, 1985 



4.2.54 PUTPARM - Supply Program Parameters (SVC 33) 

Syntax ~ 

[label] PUTPARM {DISPLAY},PRNAME='string' ,FMTLIST={Cregister)}, 

Function 

{ENTER } { address } 

{REFERLABEL={ address }}[,LABEL='string'] 
{ 'string' } 
{(register)} 

[{,PFKEY={ENTER } } 
{number} 

{,AID={ address }} 
{ 'string' } 
{(register)} 

PUTPARM enables a program to supply parameters to a GETPARM issued by 
another program. The PUTPARM issuer must dynamically link to the program 
issuing the GETPARM via the LINK SVC. A program can not use PUTPARM to 
supply parameters for its own GETPARMs. 

The parameters to be supplied to the GETPARM are contained in a 
format list (FMTLIST), created with a FMTLIST macroinstruction. When 
PUTPARM is issued, it verifies that the specified FMTLIST is in the 
proper format, then saves it in a buffer area in the program's modifiable 
data area for subsequent GETPARM use. PUTPARM also constructs a 
parameter reference block (PRB) to save the label, PRNAME, display 
option, and certain other information. 

When a GETPARM in the linked-to program is issued, it searches 
through the FMTLISTs in the buffer area. If a FMTLIST is found whose 
prname matches the prname of the GETPARM's KEYLIST, the FMTLIST parameter 
values are copied to the KEYLIST, thus supplying the required GETPARM 
parameters. A workstation transaction is suppressed if the ENTER option 
is selected; otherwise, a GETPARM screen is displayed. 

NOTE 

Both the PUTPARM macro and the LINKPARM macro call the 
PUTPARM SVC (SVC 33). The PUTPARM macro supplys parameters 
only to another program, while the LINKPARM macro accesses 
all the functions of the PUTPARM SVC. Users of the PUTPARM 
macro are encouraged to use the LINKPARM macro because 
LINKPARM has additional capabilities. The PUTPARM macro is 
kept solely for compatibility with existing programs. 

Controlled Release Draft 4-240 October, 1985 



The PUTPARM SVC has three major functions: 

• PUT supplies parameters to another program's GETPARMs before 
issuing the LINK SVC to invoke the other program. 

• CLEANUP cleans up the various internal data structures created by 
the PUT function. 

• REFER allows the calling program access to any parameters which 
the user may have changed at GETPARM time, or to return the 
address of a previously created and labelled FMTLIST. 

Both the PUTPARM macro and the LINKPARM macro call the PUTPARM SVC. 
The PUTPARM macro supplies parameters only to another program (the PUT 
function), while the LINKPARM macro accesses all the functions of the 
PUTPARM SVC. 

The parameters to be supplied to the GETPARM are contained in a data 
structure, created with the FMTLIST macroinstruction. A FMTLIST is 
identical to a KEYLIST, except that a FMTLIST contains no prname. When a 
PUTPARM is issued, it verifies that the specified FMTLIST is in the 
proper format, then saves the FMTLIST in a buff er in the program's 
modifiable data area for subsequent GETPARM use. PUTPARM also constructs 
a parameter reference block C PRB) to save the label, prname, display 
option, and certain other information. The PRB is constructed in the 
buffer area allocated by the PUTPARM SVC and chained to the previously 
constructed PRBs. 

When a GETPARM in the linked-to program is issued, it searches 
through the current link level' s saved (and unused) PRBs for one whose 
prname matches the PRNAME of the GETPARM's KEYLIST. If one is found, the 
value for the keywords in the FMTLIST are copied to the GETPARM KEYLIST 
(left-aligned and truncated). To solicit modifications by the user, A 
GETPARM workstation interaction may be requested by selecting the DISPLAY 
option; otherwise, a workstation interaction is suppressed. The KEYLIST 
(possibly modified by the user) is merged back into the FMTLIST for later 
backward reference. 

If more than one GETPARM is issued with the same prname, the 
PUTPARM-saved FMTLISTs are used in the order in which they were supplied 
to the PUTPARM SVC. Normally, no two GETPARM requests access the same 
FMTLIST. A FMTLIST may be declared to be for repeated use via the macro 
parameter REPEAT. 

A FMTLIST may be labeled for later use through the use of the LABEL 
parameter. This backward reference facility allows a program to reuse 
the (possibly updated) parameters of a labeled FMTLIST. If a backward 
reference label is supplied to the PUTPARM SVC rather than a FMTLIST 
(e.g., via the REFERLABEL parameter of the LINKPARM macro), a pointer to 
the labeled FMTLIST is stored, causing GETPARM to reuse the labeled 
FMTLIST. 

Controlled Release Draft 4-241 October, 1985 



As an example of the backward reference facility, suppose that the 
program receiving parameters requests the same set of parameters several 
times and that the calling program is suppressing the workstation 
interactions. The calling program could issue LINKPARM PUT several 
times, each specifying fully the GETPARM parameters. If one of the 
parameters was in error, the user would be forced to correct each 
interaction. If, instead, only the first LINKPARM PUT specified the 
parameters (and was labeled) and the others referred back to the first, 
the user would only have to correct the first interaction. 

The PUTPARM SVC also supports an override facility. If the prname 
specified by the linking program matches the LABEL of a FMTLIST specified 
by the linked-to program, the parameter values in the linking program's 
FMTLIST override those of the linked-to program's FMTLIST. Parameters 
not specified by the linking program retain the values specified by the 
linked-to program. 

For example, suppose program 1 issues the following LINKPARM ( FMTLl 
sets KEY2 to PROGl): 

LINKPARM PUT, PRNAME='OVERRIDE' ,FMTLIST=FMTLl 

Then, it links to program 2. Now suppose that program 2 issues the 
following LINKPARM CFMTL2 sets KEYl and KEY2 to 'PROG2): 

LINKPARM PUT,PRNAME='DEMO',LABEL='OVERRIDE', 
FMTLIST=FMTL2 

Then, it links to program 3. A GETPARM for PRNAME DEMO by program 3 
will set KEYl to PROG2 and KEY2 to PROGl. 

As well as passing parameters to GETPARMs, PUTPARM may also pass a PF 
key. This may be done in one of two ways, via either the PFKEY or the 
AID parameter. Both can pass the full range of 32 PF keys plus ENTER. 
PFKEY takes either the actual key number (1-32) or the keyword ENTER. 
AID takes the AID character of the PF key, where A-P correspond to PF 
keys 1-16 respectively, a-p correspond to PF keys 17-32 respectively, and 
@ corresponds to the ENTER key. Both methods have the same result CPFKEY 
values are translated into AID values for the SVC by the macro). The way 
in which the PF key is passed to GETPARM depends on whether the LINKPARM 
is a normal or a backward reference. In the normal case, the PF key is 
placed into the first byte of the FMTLIST addressed by FMTLIST by the 
LINKPARM macro. The original FMTLIST is modified. In the case of a 
backward reference, the PF key is placed onto the stack and then into the 
FMTLIST buffer. The original FMTLIST is not modified in this case. 

Controlled Release Draft 4-242 October, 1985 



Parameter Definitions 

PUT PUTPARM' s primary use is to enable a program to supply 
parameters to a GETPARM issued by another program. The 
program supplying the parameters must link to the program 
issuing the GETPARM via the LINK SVC. A program may not 
use PUTPARM to pass parameters to its own GETPARMs. 

CLEANUP The CLEANUP option deallocates all the PRBs (and their 
associated FMTLISTs) chained to the program file block 
CPFB) of the current link level and link levels above. 
This option enables the user to free the buffers allocated 
for PUTPARM use. If no REFERLABEL is provided on the call, 
all PRBs and FMTLISTs at the current link level and link 
levels above are removed. If a REFERLABEL is provided, 
only the PRB and associated FMTLIST referenced by 
REFERLABEL is removed. The CLEANUP option may be used 
concurrently with the REFER option via specification of the 
REFER,REMOVE option in the LINKPARM macro C see below). The 
CLEANUP function is useful for programs which use several 
LINKPARMs to prevent FMTLIST buffers from becoming full. 

REFER,NOMERGE The REFER,NOMERGE function of the PUTPARM SVC returns the 
address of a previously created and labeled FMTLIST without 
the overhead of creating a new FMTLIST or a reference 
pointer. This function is used primarily by the Procedure 
interpreter. 

REFER,MERGE This feature is used primarily by programs that keep track 
of any GETPARM parameters that a user might have 
overridden. This option allows the user of the LINKPARM 
macro to specify both a FMTLIST and a REFERLABEL. The 
contents of the FMTLIST addressed by the REFERLABEL C the 
source) are merged into the FMTLIST addressed by FMTLIST 
(the destination). Fields that are present in the 
destination but not the source are left unchanged. Fields 
that are present in the source but not the destination are 
ignored. The MERGE option may be combined with the CLEANUP 
option (the MERGE option is performed first) via the REMOVE 
operand. 

DISPLAY Requests GETPARM to display the screen for a workstation 
transaction. 

ENTER 

PRNAME 

Requests GETPARM to bypass the screen display. 
workstation transaction is suppressed. 

The prname of the FMTLIST. Specified as a character string 
in single quotes, up to eight bytes in length. 

Controlled Release Draft 4-243 October, 1985 



FMTLIST 

LABEL 

REFERLABEL 

AID 

PFKEY 

The address of the FMTLIST in the format specified for the 
GETPARM SVC. 

The label of the parameter reference block CPRB) to be used 
by the GETPARM SVC. Specified as a name of up to eight 
alphanumeric characters enclosed in single quotes. 

A name of up to eight alphanumeric characters that 
identifies a previously labeled FMTLIST. This parameter is 
used to backward reference a previously created FMTLIST. 
The backward reference facility allows a program to reuse 
the (possibly updated) parameters of a labelled FMTLIST. 
REFERLABEL can be specified as an expression that addresses 
an 8-byte field containing the name of the FMTLIST, as a 
register in parentheses that points to an 8-byte field 
which contains the name of the FMTLIST, or as a character 
string in single quotes which is the name of the FMTLIST. 
For the PUT function, REFERLABEL and FMTLIST are mutually 
exclusive. For the CLEANUP function, REFERLABEL specifies 
a particular FMTLIST to be deallocated. For the MERGE 
option, REFERLABEL contains the name of the source FMTLIST, 
while FMTLIST is the address of the destination FMTLIST. 

The AID (Attention ID) character of a PF key to be passed 
to the GETPARM. AID characters are A-P C PF keys 1-16 
respectively), a-p (PF keys 17-32 respectively), and@ (the 
ENTER key). AID can be specified as an expression that 
adresses a 1-byte field which contains the AID character, 
as a register in parentheses that points to a 1-byte field 
which contains the AID character, or as a character string 
in single quotes which is the AID character. Note that AID 
and PFKEY are mutually exclusive. 

A PF key to be passed to the GETPARM. PFKEY may be a 
number from 1 through 32, or the word ENTER. PFKEY must be 
a character string not in quotes. Note that PFKEY and AID 
are mutually exclusive. 

Controlled Release Draft 4-244 October, 1985 



Stack On Input 

0 
0 CSP) I 

4(SP) 

BCSP) 

12(SP) 

16(SP) 

20CSP) 

24CSP) 

1 2 3 

( 1) (2) (3) 

(4) Address FMTLIST 

(5) prname 

(6) LABEL 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

(1) Flag byte: 
Bit 0 1 = DISPLAY type 
Bit 1 1 = Search for a BWR FMTLIST 
Bit 2 1 = Clean up all PRBs and their 
Bit 3 1 = Merge into user FMTLIST 
Bit 4 1 = Use repeat count 

FMTLISTs 

Bit 5 1 = Cleanup BWRed PRB and FMTLIST only 

(2) AID character for GETPARM 

(3) Repeat count: 
X'OO' = Never repeat 
X'Ol'-X'7FFF' =Repeat count 
X'8000' =Repeat indefinitely 

Controlled Release Draft 4-245 October, 1985 



(4) Address of a FMTLIST or backward referenced LABEL. 

The FMTLIST to be constructed is as follows: 

+o 

+4 

+4 + BL 
1 

n-1 
+4 + BL 

i 
i=l 

(a) PF Key I <b> 
Field I 

(c) Field Format 
Control Block 

(c) Field Format 
Control Block 

(c) Field Format 
Control Block N 

Ntunber 
of fields· 

1 

2 

where BL = length of format control block 

(a) A 1-byte receiving field for the corresponding AID character of 
the program function key received in a user response to a request for 
selection. This field may be set by a procedure specification of a 
function key number. 

(b) A 1-byte binary count - number of field format control blocks. 

(c) Format control block (variable length field) -- There are two 
formats for the format control blocks: one for control of the 
keyword/receiving field pairs, and the other to control the use of 
embedded text to be displayed. This field is repeated for each field 
to be displayed in the order they are to be displayed on the 
workstation screen. 

Controlled Release Draft 4-246 October, 1985 



~ 

Keyword/Receiving Field Field Format Control Block Structure 

DATA STRUCTURE 
0 1 2 3 

I I I 
(1) I (2)1 C3 >I 

I I I 

(5) Keyword 

(6) Receiving 
Field 

(4) 
Lower 
address 

Higher 
address 

(1) Line-advance-count for display control. A 1-byte binary field. 

(2) Space-advance-count for display control. A 1-byte binary field. 
Line advance takes place before space advance. Both take place 
before display of keyword and receiving field. 

(3) Field error flag and receiving field entry restriction 
indicator - 1-byte binary field. 

Bit 0: Field error flag 
1 = Error - set by program to draw attention to fields in 
error. Reset by GETPARM. 

Bits 5-7: Receiving field entry restrictions 
0 = Character string - no restrictions on content; maximum 
usable field length is 68 characters. 
1 = Positive integer nonblank response need not be 
justified, but must consist entirely of the numerals 0-9 with 
leading and trailing blanks ignored. An all blank response 
is treated as a legitimate NULL specification. Field length 
is restricted to 16 characters. 
2 = Numeric - response must consist entirely of the numerals 
0-9 optionally containing one decimal point and optionally 
preceded by a "+" or "-". Leading and trailing blanks are 
ignored. An all blank response is treated as a legitimate 
NULL response. Field length is restricted to 16 characters. 
4 = Uppercase alphanumeric all entered letters are 
converted to uppercase. Legal nonblank response must be 
left-justified and consist entirely of the numerals 0-9, the 
letters A-Z, the special characters (@, #, or$), and trailing 
blanks. An all blank response is treated as a legal NULL 
response indicator. Maximum usable field length is 68 
characters. 
5 = Uppercase hexadecimal - all entered letters are converted 
to uppercase. Legal nonblank response need not be justified, 
but must consist entirely of the numerals 0-9, and the 
letters A-F with leading and trailing blanks ignored. An all 
blank response is treated as a legitimate NULL 
specification. Maximum usable field length is 68 characters. 

Controlled Release Draft 4-247 October, 1985 



6 = Uppercase character string - all letters are converted on 
entry to uppercase; maximum usable field length is 68 
characters. 
7 = Alphanumeric limited - all entered letters are converted 
to uppercase. Legal nonblank responses are left-justified, 
beginning with a letter from A-Z, or one of the special 
characters (@, #, or $), and consist entirely of the numerals 
0-9, the letters A-Z, the special characters, and trailing 
blanks. All blank responses are treated as a legal NULL 
response indicator. Maximum usable field length is 68 
characters. 

(4) A 1-byte binary receiving field length minus 1 (in characters). 

(5) An a-character, left-justified keyword used for display purposes 
(and to support noninteractive access via the procedure interpreter). 

(6) A variable-length receiving field with default or current value 
in place. 

Embedded Text Field Format Control Block Structure 

I DATA STRUCTURE 
lo 1 2 3 
I I I I Lower 
I cu I c2 >I C3 >I (4) address 
I I I I 
I 
I (5) Text 
I 
I Higher 
I address 

(1) Line-advance-count for display control. A 1-byte binary field. 

(2) Space-advance-count for display control. A 1-byte binary 
field. Line advance takes place before space advance. Both take 
place before display of keyword and receiving field. 

(3) The value "-1" <= 255). 

(4) Text field character length minus one. A 1-byte binary field. 

(5) Character string to be displayed. Variable length field. 

Controlled Release Draft 4-248 October, 1985 

~ 



Stack On Output 

0 CSP) I 

4CSP) 

Return Codes 

Code 

Return Code 

FMTLIST Address 
of this PRB 
Preceding 

Stack Data 

Description 

Success. 

Lower 
Address 

Higher 
Address 

Bad FMTLIST supplied to this SVC. 
0 
8 

12 Error detected in previously constructed parameter 
reference blocks. 

Examples 

THERE 
+THERE 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

HERE 
+HERE 
+ 
+ 
+ 
+ 
+ 
+ 

PUTPARM DISPLAY,PRNAME='ALIST',FMTLIST=CR2),LABEL='PBLOCK' 
DS OH Place holder for label 
PUSHC 0(8),=CLS'PBLOCK' PRB Label 
PUSHC 0(8),=CL8'ALIST' PRNAME 
PUSHA 0,0 Unused 
PUSHA 0,0(R2) FMTLIST 
PUSHA 0,0 Initial Flag bits 
OI 0(15),X'SO' Display Flag 
SVC 33 CPUTPARM) 

PUTPARM ENTER,PRNAME='ABCDE',FMTLIST=ADDRl,LABEL='XYZ' 
DS OH Place holder for label 
PUSHC 0(8),=CLS'XYZ' PRB Label 
PUSHC 0(8),=CLS'ABCDE' PRNAME 
PUSHA 0,0 Unused 
PUSHA 0,ADDRl FMTLIST 
PUSHA 0,0 Initial Flag bits 
SVC 33 (PUTPARM) 

Controlled Release Draft 4-249 October, 1985 



4.2.55 READ - Read a Record 

Syntax ~ 

[label] READ [HOLD 

Function 

[REL ] 
[KEYED ] 
[NODATA ] 
[TABS ] 
[MOD ] 
[ALTERED ] 
[CONNECTPARM] 
[STATUS ] 

],UFB={(register)}[,COND={ integer }] 
{ address } {absolute expression} 

{ 15 } 

Reads from any file or device for which READ is supported by the Data 
Management System. This includes the special workstation READ functions 
(READ TABS, READ MOD). The function of the READ macroinstruction depends 
on the value of its first parameter. Valid first parameters for various 
device and file types are as follows: 

• Fixed length consecutive disk files omitted, HOLD, 
CHOLD,NODATA), REL, (REL,HOLD), (REL,NODATA), (REL,HOLD,NODATA) 

• Variable length consecutive disk files -- omitted, (HOLD,NODATA) 

• Indexed disk files omitted, HOLD, CHOLD,NODATA), KEYED, 
CKEYED,HOLD), (KEYED,NODATA), (KEYED,HOLD,NODATA) 

• Telecommunications --omitted, CONNECTPARM, STATUS 

• Workstation files {omitted} 
{REL } 

{MOD } 
{(MOD,REL)} 

treated 
identically 

treated 
identically 

{ALTERED } treated 
{(ALTERED,REL)} identically 

TABS 

A file must have been opened in Input, IO, or Shared mode, or placed 
in temporary IO mode by the START IO function, before attempting to READ 
the file. The record or workstation line, fields, or tab position 
indications are returned in the user's record area, as addressed by field 
UFBRECAREA of the UFB. For READ REL or any workstation READ other than 
READ TABS, the record number within the file, or line numbers on the 
screen (from 1) to be read, is taken from the word addressed by 
UFBKEYAREA, and extends for the number of bytes specified by UFBKEYSIZE. 

Controlled Release Draft 4-250 October, 1985 

I~ 



NOTE 

Register 1 is loaded with the address of the UFB. 

Invalid key and end-of-data conditions on a READ, result in return to 
the address in UFBEODAD with the normal return point address in register 
0 and file status bytes (UFBFSl, UFBFS2) set to the following ASCII 
characters: 

• 
• 

10 
23 

End of data. 
Invalid key (no record found) on READ REL or READ KEYED. 

Other exceptional and error conditions result in return to the 
address in UFBERRAf) with the normal return point address in register 0 
and file status bytes (UFBFSl, UFBFS2) set to the following ASCII 
characters: 

e 30 

• 34 

• 95 
• 96 
• 97 
• 98 

Permanent I/O error 
Order check on workstation 
Invalid function 
Invalid data area location or alignment 
Invalid length for device 
Magnetic tape trailer label error (block count) 

If UFBEODAf) contains binary zero, the address in UFBERRAf) is used for 
invalid key and end-of-data returns. If UFBERRAf) is zero also, these 
conditions and I/O errors cause program terminations. 

Parameter Descriptions 

REL 

KEYED 

HOLD 

Indicates that the record or workstation line to be read is 
specified by the binary 
addressed by UFBKEYAREA. 
workstation files. 

number 
REL is 

(from 
the 

1) in 
default 

the 
value 

word 
for 

Indicates that the record to be read from an indexed disk 
file is specified by the key value in bytes beginning at 
the address in UFBKEYAREA, and extends for the number of 
bytes specified in UFBKEYSIZE. The user's program should 
not modify UFBKEYSIZE. 

Indicates that the record from a disk file may be rewritten 
by REWRITE or deleted by DELETE. Must be specified in 
order to successfully complete a REWRITE or DELETE of this 
record. For Shared open mode, indicates that the record 
read from a disk file is not to be made available to any 
other simultaneously executing program which is sharing the 
file. 

Controlled Release Draft 4-251 October, 1985 



NODATA 

CONNECT PARM 

STATUS 

TABS 

MOD 

ALTERED 

UFB 

COND 

Indicates that the record requested is to be read from the 
file in the manner indicated by other subparameters 
(including the HOLD subparameter), but that the record is 
not to be placed in the user's record area as addressed by 
UFBRECAREA. The address of the record in the Data 
Management System buff er is placed in register 1. This 
option is not valid in Shared open mode. 

Indicates that teleconununications line connection 
parameters are to be read. 

Indicates that telecommunications device status is to be 
read. 

Indicates that current tab settings for the specified 
workstation are to be placed in the fifth through 
fourteenth bytes of the user's record area as addressed by 
UFBRECAREA. Values are column numbers 1-80 in binary. 
Zeroes indicate unset tab positions. 

Indicates that the modifiable fields within the specified 
workstation line are to be placed in their corresponding 
positions in the user's record as addressed by UFBRECAREA. 
Protected fields may or may not be read and placed in the 
user's record area, depending on the workstation model. If 
protected fields are not transferred, the corresponding 
positions in the user's record area are not changed. 

Indicates that only those fields with selected field tabs 
set are to be placed in the user's record area, in 
positions corresponding to their screen positions. Other 
data on the user's record area remain unchanged. Field 
attribute characters of altered fields have their selected 
field tags set on the corresponding field attribute 
characters in the user's record area. 

The address of the user file block CUFB), which may be 
supplied as a register specification in parentheses, where 
the register contains the UFB address, or as an expression 
not in parentheses, where the word addressed is assllllled to 
begin the UFB. 

If specified, the number or absolute expression becomes the 
first parameter of the JSCI instruction by which the READ 
function is entered. READ is thus made conditional. 
COND=lS is the default. Register 1 is loaded with the UFB 
address even when the condition is not satisfied. 

Controlled Release Draft 4-252 October, 1985 



Examples 

LABl 
+LAB 
+ 
+ 

Ll\B2 
+LAB2 
+ 
+ 

READ (REL,HOLD),UFB=(R3) 
LR l,R3 
MVI 0(1),B'OOOOOlOl' 
JSCI 15 , 0 ( 1) 

READ UFB=UFBADDR 
LA l,UFBADDR 
MVI 0(1),B'OOOOOOOO' 
JSCI 15,0(,1) 

Controlled Release Draft 

SET REGISTER 1 
MODIFIERS 
READ FUNCTION 

SET REGISTER 1 
MODIFIERS 
READ FUNCTION 

4-253 October, 1985 



4.2.56 READFDR - Read File Descriptor Record CSVC 24) 

Syntax ~ 

Format 1: 

[label] READFDR PLIST={Cregister)} 
{ address } 

Format 2: 

[label] READFDR FILE={Cregister)},LIBRARY={Cregister)}, 
{ ' string ' } { ' string ' } 
{ address } { address } 

VOLUME={Cregister)},AREA={Cregister)} 
{ 'string' } { address } 
{ address } 

[,FDR={ 1 }][,ALTLIB={Cregister)} 
{ n } { ' string ' } 
{ BOTH } { address } 
{(register)} 

[,ALTVOL={Cregister)}][,VSID={ n }] 
{ 'string'. } { (register)} 
{ address } 

[,PLOG={NO },PAREA={Cregister)}][,FDR3={ 1 }] 

Function 

{YES } { address } { n } 
{ONLY} { BOTH } 

{(register)} 

[,FSN={ n }] 
{(register)} 

Allows user programs to locate a disk file on the specified volwne 
and copy its file descriptor record(s) CFDRs) into the memory location 
denoted by the AREA parameter. Also, READFDR allows the caller to read a 
file prologue Conly supported for word processing files) and to return 
the file prologue in a specified area. 

If PLIST is not specified, then all parameters except FDR, FDR3, 
ALTLIB, and ALTVOL are required. 

If an alternate search library CALTLIB) is specified, then the values 
of the LIBRARY and VOLUME parameters are modified as required to indicate 
the library in which the file was found. 

Controlled Release Draft 4-254 October, 1985 



For files that are members of volume sets, a third file descriptor 
record (FDR3) exists which may be read by specifying the FDR3 parameter. 

Parameter Descriptions 

PLIST 

FILE 

LIBRARY 

VOLUME 

AREA 

FDR 

'ALTLIB 

'A user-generated parameter list to be used by the RE'ADFDR 
SVC and in the form described in the SVC description. 
PLIST may be specified as a register in parentheses that 
points to the parameter list, or as an expression that 
addresses the parameter list. If this parameter is 
specified, then all other parameters are ignored. 

The name of the file whose file descriptor records (FDRs) 
are to be accessed. It can be specified as a register in 
parentheses that points to the file name, a character 
string in single quotes which is the file name, or an 
expression that addresses a character string whose value is 
the file name. 

The name of the primary library to be searched for the file 
in question. It may be specified as in FILE above. 

The name 
resides. 

of the volume on which the primary 
It may be specified as in FILE above. 

library 

'A user receiving area for storing the obtained file 
descriptor record(s). This must be 80 bytes if one FDR is 
requested and 160 bytes if FDR=BOTH or FDR3=BOTH is 
specified. It may be specified as a register in 
parentheses that points to the address of the receiving 
area, or as an expression that addresses a 4-byte field 
which contains the address of the receiving area. 

This parameter indicates which FDR(s) to access. Valid 
values and their meanings are as follows: 

• 1 Read the FDRl only. 

• n Read the (n-l)th FDR2 only, where n is an integer 

• 

greater than 1. For example, 3 indicates that the 
second FDR2 is to be read. 

BOTH Read both the FDRl and the first FDR2. 

This parameter is optional and, if omitted, defaults to 1. 
(read FDRl only). 

The name of a library to be searched if the file in 
question cannot be located in the primary library specified 
by the LIBRARY parameter. It may be specified as FILE 
above. This parameter is optional. However, if specified, 
then ALTVOL must also be specified. 

Controlled Release Draft 4-255 October, 1985 



ALTVOL 

PLOG 

PAREA 

VSID 

FDR3 

FSN 

The name of the volume on which the alternate search 
library resides. Specified as FILE above. This parameter 
is valid only in conjunction with ALTLIB. 

If YES is specified, then the caller requests that the file 
prologue be read, along with any other options set. If 
ONLY is specified, then the caller wants only the file 
prologue to be read. If NO is specified, then the caller 
does not request that the file prologue be read. The 
default is NO. 

If YES or ONLY is specified, then the caller must specify a 
receiving area for the file prologue by using the PAREA 
parameter. 

Indicates the address of the receiving area for the file 
prologue. This parameter can be specified as a register in 
parentheses that contains the address of the receiving 
area, or as an address expression that points to a 4-byte 
area whcih contains the address of the receiving area. 

Volume set identification number from 1 to 255. This 
parameter is only required when reading FDR2s for files 
contained in volume sets. For the root volume this value 
is one. 

This parameter specifies to read the FDR3 record for a file 
that is a member of a volume set. Valid values and their 
meanings are as follows: 

• 1 -- Read the first FDR3 record for the file. (default 
value) 

• n -- Read the nth FDR3 record (n >= 1). 

• BOTH -- Read the FDR! and the first FDR3. 

Specifies the file sequence number to be read. A file 
sequence nwnber represents a logically contiguous part of a 
file residing on a volume comprising one or more extents. 
When a file extends to a second (or third, etc.) volume, 
this nwnber increments by one and represents the extents on 
the disk for the particular portion of the file. This 
value may range from 1 to 65536 and only applies to files 
that are members of volume sets and is required only when 
reading FDR2 records. 

Controlled Release Draft 4-256 October, 1985 

I~ 



Stack On Input 

0 (SP) I 

4(SP) 

(1) Address of 
Parameter List 

(2) Reserved on 
input 
Preceding 

Stack Data 

Lower 
Address 

Higher 
Address 

(1) A pointer to a parameter list. 
constructed as follows: 

The parameter list is 

(2) Reserved, must be 0. 

PLIST I 
PARAMETER LIST 

(3) 
(4) 
(5) 
( 6) 
( 7) 
( 8) 

( 9) 

(10) 

Library Name 
File Name 
Volume Name 
Option Flag 
FDRN Number 
Memory Address 
Memory Address 
2 

Volume set 
information 
or Reserved 

(11) Alternate 
Library Name 

(12) Alternate 
Volume Serial Nmbr 

(2) Reserved on input. 

8 bytes Lower 
8 bytes Address 
6 bytes 
1 byte 
1 bytes 
4 bytes 
4 bytes 

4 bytes 

8 bytes 

6 bytes Higher 
Address 

(3) Primary search library name 

(4) File name 

(5) Volume name of primary search library 

Controlled Release Draft 4-257 October, 1985 



(6) Option flag: 
Bits 0 to 1 - Reserved. 
Bit 2 1 = Read FDRl and first FDR3 into the 160 bytes of 

user supplied area. For volume set. FDRN value is 
ignored. 

Bit 3 0 = Read FDR2 for multivolume files. 
1 = Read FDR3 only for multivolume files. 

Bit 4 1 = Alternate search library supplied. Last two 
words of the parameter list contain the alternate 
library and volume names. 

Bit 5 1 = Read FDRl and first FDR2 into the 160 bytes of 
user supplied area. FDRN value is ignored. 

Bit 6 1 = Read file prologue along with any FDR record 
(valid only for word processing files). 

Bit 7 1 = Read file prologue only (valid only for word 
processing files) 

(7) FDRN number. 

(8) Memory address to store requested information. 

(9) Memory address to store additional requested information. 

(10) For volume sets: 
VSID (1 byte) volume set identification number (1-255) 
FSN (2 bytes) 
Unused (1 byte) 

For single volumes: 
Reserved - must be 0. 

(11) Alternate search library name. 

(12) Alternate search volume name. 

Stack On Output 

OCSP) I 
(1) Return Code 

4CSP) 
(2) FDRl Pointer 

8CSP) 
(3) Internal Library 

Name 
16CSP) Preceding 

Stack Data 

Controlled Release Draft 4-258 

Lower 
Address 

Higher 
Address 

October, 1985 



(1) Return code - If the function was not successful, the content of 
the second word on the stack is undefined. 

(2) FDR! pointer - If the READFDR is successful, contains the FDR 
address in the following format: 

Byte 0 -- Record on block, from 0. 
Bytes 1 to 3 -- Block on volume, from 0. 

( 3) Internal 1 ibrary name - 8 bytes, for Read FDR3=BOTH option. 
Otherwise, not present. For system use. When the alternate library 
name is supplied, the library name and volume name entries in the 
parameter list are modified (if required) to indicate the library in 
which the specified file was found. The alternate library is 
searched after the normal library. 

Output 

READFDR issues a return code to the user program in the stack top 
word indicating the success or failure of the operation, and the disk 
address of the FDR! in the next stack word. 

If return code = 0 (successful operation), the next word on the stack 
contains the disk address of the FDR record read, in the following 
format: 

• Byte 0 -- Record on block, from 0. 
• Bytes 1 to 3 -- Block on volume, from 0. 

If the return code is not zero, then the contents of the next word on 
the stack are undefined. 

Return Codes 

Code 

0 
4 
8 

10 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 

Description 

File label copied into memory. 
Volume not mounted. 
Volume exclusively used by another user, no read. 
Library not found. 
All buffers in use, no read. 
Library not found. 
File label not found. 
Attempt to read a file prologue when none was present. 
Unused. 
VTOC error - FDXl and FDX2 do not agree. 
VTOC error - FDX2 and FDR do not agree. 
Invalid input parameters. 
Disk I/O error - VTOC unreliable. 
Read FDR2 but VSID, FSN not supplied. 
Read FDRl & FDR3 in single volume. 
Unused. 
GETHEAP failed. 
Cluster communication failed. 

Controlled Release Draft 4-259 October, 1985 



Examples 

LAB 
+LAB 
+ 
+ 

LABl 

+LABl 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

LAB3 
+LAB3 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

READFDR PLIST=(R4) 
PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK 
PUSH 0,R4 POINT TO PLIST WITH STACK TOP WORD 
SVC 24 (READFDR) ISSUE SVC 
READFDR FILE=(Rl),LIBRARY='SYSLIB' ,VOLUME=SYSVOL, 

AREA=MYAREA,FDR=BOTH,ALTLIB='SYSLIB2',ALTVOL=SYSVOL 
PUSHN 0,50 GET SPACE ON STACK FOR PLIST 01\ 
MVC 0(8,15),=CL8'SYSLIB' SET LIBRARY NAME 
MVC 8(8,15),0(Rl) SET FILE NAME 
MVC 16(6,15),SYSVOL SET VOLUME NAME 
MVI 22(15),X'04' SET FLAG TO READ FDRl AND lST FDR2 
MVI 23(15),X'OO' (THIS FIELD IGNORED FOR FDR=BOTH) 
MVC 24(4,15),MYAREA SET FDR RECEIVING AREA ADDRESS 
XC 32(4,15),32(15) (THIS FIELD RESERVED) 
OI 22(15),X'08' SET FLAG TO INDICATE ALTERNATES 
MVC 36(8,15),=CL8'SYSLIB2' SET ALTERNATE LIBRARY NAME 
MVC 44(6,15),SYSVOL SET ALTERNATE VOLUME NAME 
PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK 
PUSHA 0,4(,15) POINT TO PLIST WITH STACK TOP WORD 
SVC 24 (READFDR) ISSUE SVC 

READFDR FILE=MYFILE,LIBRARY=(Rl),VOLUME=SYSVOL,AREA=CR6) 
PUSHN 0,36 GET SPACE ON STACK FOR PLIST 01\ 
MVC 0(8,15),0(Rl) SET LIBRARY NAME 
MVC 8(8,15),MYFILE SET FILE NAME 
MVC 16(6,15),SYSVOL SET VOLUME NAME 
MVI 22(15),X'OO' CLEAR FLAGS 
MVI 23(15),0 INDICATE READ FDRl ONLY 
ST R6,24(,15) SET FDR RECEIVING AREA ADDRESS 
XC 32(4,15),32(15) (THIS FIELD RESERVED) 
PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK 
PUSHA 0,4(,15) POINT TO PLIST WITH STACK TOP WORD 
SVC 24 CREADFDR) ISSUE SVC 

Controlled Release Draft 4-260 October, 1985 



LAB4 READFDR FILE=MYFILE,LIBRARY=SYSLIB,VOLUME=SYSVOL,AREA=MYAREA, -

.~ 
FDR3=BOTH,VSID=2 

+LAB4 PUSHN 0,44 GET SPACE ON STACK FOR PLIST 01\ 
+ MVC 0(8,15),SYSLIB SET LIBRARY NAME 
+ MVC 8(8,15),MYFILE SET FILE NAME 
+ MVC 16(6,15),SYSVOL SET VOLUME NAME 
+ MVI 22(15) ,X'OO' CLEAR FLAGS 
+ MVI 23(15),0 INDICATE READ FDRl ONLY 
+ MVC 24(4,15),MYAREA SET .FDR RECEIVING AREA ADDRESS 
+ QI 22(15) ,X' 10 I SET READ FDR3 FLAG ON 01\ 
+ MVI 22(15),X'40' SET FLAG TO READ FDRl AND lST FDR3 01\ 
+ xc 32(4,15) ,32(15) (THIS FIELD RESERVED) 
+ PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK 
+ PUSHA 0 , 4 (, 15 ) POINT TO PLIST WITH STACK TOP WORD 
+ SVC 24 (READFDR) ISSUE SVC 

SYSVOL DC C'SYSTEM' 
SYS LIB DC C'@SYSTEM@' 
MYAREA DS 80F 
MYFILE DC C'TAXMAN' 

Controlled Release Draft 4-261 October, 1985 



4.2.57 READVTOC - Read Volume Table of Contents (SVC 19) 

Syntax ~ 

[label] READVTOC 

Function 

OPTION={LIBRARIES }[,PLIST={Cregister)}] 
{ATTRIBUTES} { address } 
{EXTENTS } 
{FILES } 
{BLOCKS } 

[,VOLUME={Cregister)}][,LIBRARY={(register)}] 
{ address } { address } 
{ ' string ' } { ' string ' } 

[,COUNT={Cregister)}][,START={Cregister)}] 
{ integer } { address } 

{ ! } 

[,OFB={(register)}][,VSID={Cregister)}] 
{ address } { address } 

{ Q } 

Provides information from a disk volume table of contents (VTOC). 
Specific functions are described under OPTION. 

To read information from the VTOC of a specified volume. 
options can be performed: 

Five 

• Read VTOC attributes: extents in use, number of unused blocks in 
the VTOC, total number of directories on the volume, total number 
of files on the volume, total number of free extents on the 
volume, total size of free extents, and the largest free extent. 

• List the free extents on the volume starting from a specified 
extent. 

• List the directories and the corresponding number of files on 
each volume starting from a specified directory in the VTOC. 

• List files in a specified directory starting from a specified 
file in the directory. 

• Read consecutive control blocks in the VTOC starting from a 
specified block and place them in the file pointed to by the OFB 
pointer. 

Restrictions 

The area addressed by PLIST must be in the user's modifiable data 
area. If any parameters are supplied as character strings (and in some 
other cases), the user must allow for generation of a literal pool. 

Controlled Release Draft 4-262 October, 1985 



Parameter Descriptions 

OPTION 

PLIST 

VOLUME 

One of the following options, coded as shown, that 
indicates the type of information is desired. This 
parameter is required, unless PLIST is specified. 

ATTRIBUTES 1. VTOC extents in use. 

EXTENTS 

LIBRARIES 

FILES 

BLOCKS 

Number of unused blocks in VTOC. 

2. Number of libraries on volume. 
Number of files on volume. 

3. Number of free extents on volume. 
Total size of free extents. 

4. Descriptions of m Cm=COUNT) largest free 
extents from nth Cn=START) free extent. 

Descriptions of m Cm=COUNT) free extents from 
nth Cn=START) free extent. 

Lists m Cm=COUNT) library names and number of 
files in each library listed, starting from nth 
Cn=START) library name on a single volume or 
the root volume of a volume set. 

Lists m (m=COUNT) file names starting from nth 
Cn=START) file in specified library on a single 
volume or the root volume of a volume set. 

Reads consecutive VTOC blocks starting from the 
block specified by the START parameter for the 
number of blocks specified by the COUNT 
parameter into the file specified by the OFB 
parameter. 

An expression, or a register in parentheses, pointing to an 
area to be used as the READVTOC parameter list. If PLIST 
is specified, no OPTION is required, nor are any of the 
other parameters (in this case, it is assumed that the user 
has placed values in the PLIST for parameters that would 
otherwise have been required). 

An expression, a register in parentheses that points to a 
6-byte name, or a literal in single quotes that indicates 
the volume from which VTOC information is desired. 
Required for all options (unless PLIST is specified). 

Controlled Release Draft 4-263 October, 1985 



LIBRARY An expression, a register in parentheses that points to an 
8-byte name, or a literal in single quotes that indicates 
the library about which VTOC information is desired. 
Required when OPTION=FILES (unless PLIST is specified). 
Not valid for non-root volumes of volume sets. 

COUNT A number or a register in parentheses that contains a 
number which indicates how many i terns (see OPTION 
description) are requested. Required for all options 
(unless PLIST is specified). 

START An expression, or a register in parentheses that contains a 
number which indicates which item (see OPTION description) 
is the first item requested. Required for all OPTIONs 
(unless PLIST is specified). START=l is the default. If 
PLIST is specified and the default START value is not 
desired, START= must also be coded (see examples). 

OFB The address or a register in parentheses that contains the 
address of the open file block. The file specified must be 
opened for output with enough space allocated to 
accommodate m VTOC blocks (as specified in BLOCKS). 

VSID Volume set identification number from 0 to 255. Must be 
supplied for volumes that are members of a volume set. 
Ignored for single volumes. 

Stack On Input r-"\ 

0 (SP) I 
(1) Address of 

Parameter List 
Preceding 

Stack Data 

Controlled Release Draft 4-264 

Lower 
Address 

Higher 
Address 

October, 1985 



(1) The address of a parameter list. The parameter list is 
constructed as follows: 

PLIST ADDR I (1) Volume name 

(2) Option number 

(3) VSID 

(4) Number of items 

(5) Starting item 
number 

(6) Library name or 
OFB EOinter 

(7) Variable length 
memory space for 
output inf orma-
ti on 

Preceding data 

(1) Volume name -- bytes 0-5 
(2) Option number -- byte 6 

0 = Read VTOC attributes. 

6 bytes Lower 
Address 

1 byte 

1 byte 

2 bytes 

2 bytes 

8 bytes 

Higher 
Address 

Ca) VTOC extents in use; number of unused blocks in 
VTOC. If the number of unused blocks is greater than 
or equal to 255, then 255 is returned. 
(b) Total number of directories on volume; total 
number of files on volume. 
(c) Total number of free extents on volume; total 
size of free extents. 
Cd) m largest free extents on volume. 

1 = List M free extents on volume starting from the nth 
free extent. 
2 = To list M directories and the corresponding number of 
files in each directory on the voltune starting from the 
nth directory in the VTOC. 
3 = To list M files in a specified directory starting 
from the Nth file in the directory. 
4 = To read M consecutive control blocks in the VTOC 
starting from the Nth block in VTOC and put them in the 
file specified by the given OFB pointer. 

( 3) VSID -- byte 7 is the volume set identification number 
(0-255) 

(4) Number of times Cm >= 1) bytes 8-9 

(5) Starting number Cn >= 1) bytes 10-11 

Controlled Rel.ease Draft 4-265 October, 1985 



(6) Directory name -- bytes 12-19, or 
OFB pointer bytes 12-15, or 
not used 

(7) Output area -- not used on input, bytes 20-X. The size 
depends on option specified in byte 6 and must be big enough to 
hold the desired output argument list. 

Stack On Output 

0 (SP) I 
Return Code 

Preceding 
Stack Data 

Lower 
address 

Higher 
Address 

When the return code equals 0, the input argument list is replaced by 
one of the following output argument lists, depending on the option 
specified: 

Controlled Release Draft 4-266 October, 1985 

(\. 



Option 0 

Option 1 

ARGUMENT LIST 
Nwnber of Unused 
Blocks In VTOC 
Nwnber of VTOC 
Extents in Use 
1st VTOC Extent Start 
and End Block Numbers 
2nd VTOC Extent Start 
and End Block Numbers 
3rd VTOC Extent Start 
and End Block Numbers 
Total Nwnber of 
Directories on Volwne 
Total Nwnber of 
Files on Volwne 
Total Nwnber of 
Free Extents 
Total Size of 
Free Extents 
1st Largest Free 
Extent Start and End 
Block Nwnbers 

mth Largest Free 
Extent Start and End 
Block Nwnbers 

ARGUMENT LIST 
Total Nwnber of Free 
Extents on Volwne 
Total Nwnber of Free 
Extents Listed 

I 
I 
I 
I 
I 

nth Free Extent Startl 
and End Block Numbers! 

(n+m-l)st Free 
Extent Start and End 
Block Nwnbers 

Controlled Release Draft 4-267 

1 byte 

1 byte 

6 bytes 

6 bytes 

6 bytes 

2 bytes 

2 bytes 

2 bytes 

4 bytes 

6 bytes 

6 bytes 

2 bytes 

2 bytes 

6 bytes 

6 bytes 

Lower 
Address 

Higher 
Address 

Lower 
Address 

Higher 
Address 

October, 1985 



Option 2 

Option 3 

Option 4 

ARGUMENT LIST I 
Total Number of I 
Directories on Volume I 
Total Number of 
Directories Listed 
Directory Name n 

Number of Files in 
Directory N 

Directory Name n+m-1 

Number of Files in 
Directory Name n+m-1 

ARGUMENT LIST 
Total Number of 
Files in Directory 
Total Number of 
Files Listed 
Filename n 

Filename n+m-1 

ARGUMENT LIST 
Total VTOC Size 
in Blocks 
Number of Blocks 
Read 
Unchanged 

I 
I 
I 
I 
I 
I 

2 bytes 

2 bytes 

8 bytes 

2 bytes 

8 bytes 

2 bytes 

2 bytes 

2 bytes 

8 bytes 

8 bytes 

2 bytes 

2 bytes 

16 bytes 

Lower 
Address 

Higher 
Address 

Lower 
Address 

Higher 
Address 

Lower 
Address 

Higher 
Address 

Additional output for option number 4: nth through (n+m-l)st VTOC 
control blocks copied to the file specified by the given OFB. 

Controlled Release Draft 4-268 October, 1985 

~ 

~ 



Output 

If PLIST is not specified, space for the parameter list is obtained 
from the stack; the length of the area is returned in general register 1 
(previous contents of the register are lost). 

If PLIST is specified, the designated area must be large enough to 
hold the desired output. 

A return code is issued in the word at the top of the stack. 

Return Codes 

Code 

0 
4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 
48 

Examples 

Description 

Requested operation performed. 
Invalid argwnent PLIST address. 
VOLUME not mounted. 
VOLUME used exclusively by another user or job. 
Insufficient buffer space to perform operation. 
Invalid OPTION request. 
LIBRARY not found. 
VTOC error; FDXl and FDX2 conflict. 
Disk I/O error; VTOC not reliable. 
Option not allowed across cluster. 
GETHEAP failed. 
Cross cluster conununication failed. 
Files and libraries not available for non-root volwnes. 

READl READVTOC OPTION=ATTRIBUTES,VOLUME='VOLVO',COUNT=32,START=CR8) 
+READl DS OH 
+ LA 1,222 SIZE OF PARAMETER LIST 
+ PUSHN 0,0(,l) SPACE FOR PARAMETER LIST 
+ MVC 8(2,15),=YC32) SET COUNT FIELD 
+ MVI 6(15),0 INSERT OPTION BYTE 
+ STH RS,10(15) SET START FIELD 
+ MVC 0(6,15),=CL6'VOLVO' MOVE IN VOLUME NAME 
+ PUSH 0,15 PARAMETER ADDRESS TO STACK 
+ SVC 19 CREADVTOC) ISSUE READVTOC SVC 

Controlled Release Draft 4-269 October, 1985 



READ2 READVTOC OPTION=EXTENTS,VOLUME=VSCBNAME,COUNT=CR7) 
+READ2 DS OH 

.~ + LR l,R7 COPY COUNT 
+ MH L=YC 6) TIMES ELEMENT SIZE 
+ LA 1,4(,1) PLUS MINIMUM SECTION LENGTH 
+ PUSHN 0, 0 (, 1) GET SPACE REQUIRED 
+ STH R7 ,8 (15) SET COUNT FIELD 
+ MVI 6(15),l INSERT OPTION BYTE 
+ MVC 10(2,15) ,=Y(l) SET START FIELD 
+ MVC 0(6,15),VCBSER MOVE IN VOLUME NAME 
+ PUSH 0,15 PARAMETER ADDRESS TO STACK 
+ SVC 19 (READVTOC) ISSUE READVTOC SVC 

READ3 READVTOC OPTION=LIBRARIES,VOLUME=CR6),COUNT=32 
+READ3 DS OH 
+ LA 1,340 SIZE OF PARAMETER LIST 
+ PUSHN 0 , 0 ( , 1) SPACE FOR PARAMETER LIST 
+ MVC 8(2,1S),=YC32) SET COUNT FIELD 
+ MVI 6(15) ,2 INSERT OPTION BYTE 
+ MVC 10(2,lS),=Y(l) SET START FIELD 
+ MVC 0(6,15),0(R6) MOVE IN VOLUME NAME 
+ PUSH 0,15 PARAMETER ADDRESS TO STACK 
+ SVC 19 CREADVTOC) ISSUE READVTOC SVC 

READ4 READVTOC OPTION=FILES,VOLUME='SYSTEM' ,LIBRARY='SYSS', 
COUNT=16 

+READ4 DS OH ~ + LA 1,148 SIZE OF PARAMETER LIST 
+ PUSHN 0,0(,1) SPACE FOR PARAMETER LIST 
+ MVC 8 ( 2, 1 S) , =Y (16) SET COUNT FIELD 
+ MVI 6(15),3 INSERT OPTION BYTE 
+ MVC 10(2,15) ,=Y(l) SET START FIELD 
+ MVC 0(6,15),=CL6'SYSTEM' MOVE IN VOLUME NAME 
+ MVC 12(8,15),=CL8'SYSS' MOVE IN LIBRARY NAME 
+ PUSH 0,15 PARAMETER ADDRESS TO STACK 
+ SVC 19 ( READVTOC) ISSUE READVTOC SVC 

READS READVTOC OPTION=BLOCKS,VOLUME=VSCBNAME,COUNT=(R3), 
START=CR4),0FB=CROFB) 

+READS DS OH 
+ LA l,20 SIZE OF PARAMETER LIST 
+ PUSHN 0, 0 (, 1) SPACE FOR PARAMETER LIST 
+ STH R3 ,8 (lS) SET COUNT FIELD 
+ MVI 6(15),4 INSERT OPTION BYTE 
+ STH R4, 10 (lS) SET START FIELD 
+ MVC 0(6,15),VCBSER MOVE IN VOLUME NAME 
+ ST ROFB,12(,15) SET OFB ADDRESS 
+ PUSH 0,15 PARAMETER ADDRESS TO STACK 
+ SVC 19 ( READVTOC) ISSUE READVTOC SVC 

Controlled Release Draft 4-270 October, 1985 



READG READVTOC PLIST=(RLIST),START=(R3) 
+READ6 OS OH 
+ STH R3,10CRLIST) SET START FIELD 
+ PUSH 0,RLIST 
+ SVC 19 (READVTOC) 

PARAMETER ADDRESS TO STACK 
ISSUE READVTOC SVC 

READVTOC OPTION=EXTENTS,START=,PLIST=CR2) 
+ DS OH 
+ MVI 6CR2),l . INSERT OPTION BYTE . 
+ PUSH 0,R2 . PARAMETER ADDRESS TO STACK . 
+ SVC 19 ( READVTOC) . ISSUE READVTOC SVC . 

END BEGIN 

Controlled Release Draft 4-271 October, 1985 



4.2.58 RECEIVE - Receive Telecommunications I/O (SVC 3) 

Syntax ~ 

[label] RECEIVE DATA,OFB={ address },RECAREA={ address }, 
{(register)} {<register)} 

LENGTH={ address }[,IOCWOPTS={ address }] 
{ (register) } {(register)} 
{self-defining term} 

[,COMMAND={ address } ] 
{ (register) } 
{self-defining term} 

FWlction 

Initiates a data reception operation between the operating system and 
the data link processor (OLP). The RECEIVE macroinstruction invokes the 
XIO SVC (SVC 3) to perform the physical I/O operation. XIO SVC checks 
that the specified communication channel is opened, and that the 
communication channel and the OLP are not reserved by another task. A 
CHECK for completion of the I/O operation is not implicit, and must be 
affected by waiting for reception of the I/O status word (IOSW) using the 
TCIO option of the CHECK facility. See the XIO macro for further 
information. 

Parameter Definitions 

OFB 

COMMAND 

A required parameter that defines the address of the open 
file block (OFB) for the VS-OLP I/O channel to be used in 
the I/O operation. The OFB address can be obtained from 
the interprocessor control block (!PCB). The OFB address 
for the VS/OLP I/O channel device is stored in the IPCB by 
the IPOPEN SVC when the communication channel is opened. 
The OFB parameter can be specified as an address expression 
that points to a 4-byte field which contains the OFB 
address in its low-order three bytes, or as a register in 
parentheses that contains the address of the OFB in the 
low-order three bytes. 

A required parameter which enables the user to supply a 
value for the conunand byte (byte 0) of the I/O Conunand Word 
CIOCW) constructed by the XIO SVC. The conunand byte 
defaults to X' 40' (the READ command) for the RECEIVE DATA 
macro. COMMAND can be specified as an address expression 
that points to a 1-byte field which contains the command 
byte, as a register in parentheses that contains the 
conunand byte in its low-order byte, or as a self-defining 
term. 

Controlled Release Draft 4-272 October, 1985 



~I 

REC.AREA A required parameter that defines the address of the 
reception area for the receipt of the input from the READ 
operation. The RECAREA parameter is the value placed by 
the XIO SVC in the data address field of the IOCW (bytes 
1-3). This parameter can be specified as an address 
expression, or as a register in parentheses that contains 
the address of the reception area in the low-order three 
bytes. 

LENGTH A required parameter that defines the maximum length of the 
input from the READ operation. The LENGTH parameter is the 
value placed by the XIO SVC in the data count field of the 
IOCW (bytes 4-5). This parameter can be specified as an 
address expression that points to a 2-byte area which 
contains (in binary) the length in bytes, as a register in 
parentheses that contains the length in bytes in its 
low-order two bytes, or as a self-defining term. 

IOCWOPTS Values for the last three bytes (bytes 6-8) of the 9-byte 
I/O command word (IOCW) can be supplied with the IOCWOPTS 
parameter. The last three bytes default to zeroes. This 
parameter can be specified as an address expression that 
points to a 3-byte field which contains the option bytes, 
or as a register in parentheses that contains the three 
option bytes in its low-order three bytes. 

Output 

High-order halfword of return code field contains residual block 
counts: 

• Return codes 4, 8 -- Specified block size minus number of bytes 
actually read or written. 

• Other return codes -- Always zero. 

NOTE 

If return codes 0, 4, or 8 are set, the I/O operation is 
queued for initiation and a CHECK must be issued to test for 
completion. If other return codes are set, the operation has 
been suppressed. 

A return code is issued by the XIO SVC in the stack top word. The 
low-order halfword of the return code field contains binary return codes. 

Controlled Release Draft 4-273 October, 1985 



Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

Description 

Success. 

Truncation at end-of-extent Cnon-VOLIO disk only). 

Truncation at end-of-cylinder or end-of-track (disk 
only). 

Starting block number beyond end-of-file (non-VOLIO 
disk) or beyond end-of-volume CVOLIO disk). 

Invalid data address or data length. Data address for 
disk must be page-aligned; for other devices, 
word-aligned. Virtual memory area encompassed by the 
area from data address through 
data-address-plus-block-size-minus-one must be either 
in the I/O buffer area or entirely above the XIO 
parameter list on the stack if the XIO is issued from 
unprivileged state. The specified length must not 
imply spanning of more pages than there are indirect 
address list entries for the device. 

Second XIO on file without intervening CHECK. 

TC XIO attempted on an OFB that was not created as the 
result of an IPOPEN on an !PCB. 

TC XIO attempted on a device reserved exclusively by 
another task. 

XIO has been issued to an inoperative workstation and 
the I/O has not been issued (bit 5 of option flag must 
be set for issuance of this return code). 

TC XIO attempted on a peripheral processor COLP) 
reserved exclusively by another task. 

WRITE XIO attempted to file OPENed in WPSHARE mode, 
file not locked. 

READ XIO attempted to file OPENed in WPSHARE mode, 
file locked by another user. 

Controlled Release Draft 4-274 October, 1985 



Example 

GETDATA RECEIVE DATA,OFB=FlOFB,COMMAND=CMDBYTE,RECAREA=INBUF, 

+GETDATA PUSHA 
+ PU SHA 
+ MVC 
+ PU SHA 
+ MVC 
+ PUS HA 
+ MVC 
+ MVI 
+ SVC 

LENGTH=BUFLNGTH 
0,0 
0,0 
0(2,15),BUFLNGTH 
0,INBUF 
0(1,15) ,CMDBYTE 
0,0 
0(4,15),FlOFB 
0(15) ,X'Ol' 
3 CXIO) 

Controlled Release Draft 

CLEAR IOCW OPTIONS AREA 
CLEAR NEXT 4 BYTES OF SPACE 
SET DATA LENGTH 
SET DATA TRANSFER ADDRESS 
SET IOCW COMMAND CODE BYTE 
SPACE FOR OFB ADDRESS 
PUSH ADDRESS OF THE "OFB" 
MARK AS 'TC XIO' 

4-275 October, 1985 



4.2.59 REGS - Register Equation 

Syntax 

REGS FP={YES} 
{NO } 

Function 

The REGS macroinstruction equates register numbers with the standard 
symbolic names used by all other system macroinstructions which ref er to 
general registers. It should be included in all program assemblies that 
make use of system macroinstructions. Register names are as follows: 

General Floating: Point 
Register Numbers Names Register Numbers Names 

0 RO 0 FO 
1 Rl,~P 2 F2 
2 R2 4 F4 
3 R3 6 F6 
4 R4 5 RS 
6 R6 7 R7 
8 RB 9 R9 
10 RlO 10 Rll 
12 R12 13 Rl3,EP 
14 R14 15 R15,SP 

Parameter Definitions 

FP If NO is specified, symbolic names for the floating-point 
registers are not generated. The default is YES. 

Controlled Release Draft 4-276 October, 1985 



ExamEle 

fl REGS 
+RO EQU 0 
+Rl EQU 1 
+AP EQU 1 
+R2 EQU 2 
+R3 EQU 3 
+R4 EQU 4 
+RS EQU 5 
+RG EQU 6 
+R7 EQU 7 
+RB EQU 8 
+R9 EQU 9 
+RlO EQU 10 
+Rll EQU 11 
+R12 EQU 12 
+Rl3 EQU 13 
+EP EQU 13 
+R14 EQU 14 
+R15 EQU 15 
+SP EQU 15 
+FO EQU 0 
+F2 EQU 2 
+F4 EQU 4 
+F6 EQU 6 

r-1 

Controlled Release Draft 4-277 October, 1985 



4.2.60 RENAME - Rename a Disk File (SVC 26) 

Syntax 

Format 1: 

[label] RENAME PLIST={address } 
{(register)} 

Format 2: 

[label] RENAME LIBRARY,LIBRARY={address } 
{'string'} 

,VOLUME={address },NEWNAME={address } 
{'string'} {'string'} 

[,RESTRICT={NO }][,BYPASS={NO }] 
{YES} {YES} 

Format 3: 

[label] RENAME FILE={address },LIBRARY={address } 

Function 

{'string'} {'string'} 

,VOLUME={address },NEWNAME={address } 
{'string'} {'string'} 

[,NEWLIB={address }][,RESTRICT={NO }] 
{'string'} {YES} 

[ , BYPASS={NO } ] 
{YES} 

To rename a disk file or a library on a volume. A full RENAME 
(renaming both library and file) may alter the volume table of contents 
(VTOC); otherwise, the structure of the VTOC is not altered. Unless the 
OPEN=YES option is specified, no file that is to be renamed may be open 
when the RENAME is attempted. A full RENAME is equivalent to moving a 
file from one library to another on the same volume. 

Restrictions 

If any of the parameters are specified as a character string in 
single quotes, then the issuing program must provide for the generation 
of a literal pool. 

Controlled Release Draft 4-278 October, 1985 



RENAME now examines all of the bits of the option byte in the input 
parameter list. Previously, bits 3-7 were not examined. Therefore, 
previously coded invocations of RENAME may fail or produce undesired 
results if bi ts 3-7 are set. Bi ts 5-7 of the option byte are reserved 
and must be zeroes. 

RENAME requires a minimum of 2K bytes of stack for buffer space to 
rename a library or a file. RENAME required a minimum of 9K of stack for 
buffer space to rename both a library and a file (full RENAMED. 

Parameter Definitions 

PLIST 

NOTE 

The address of a user-generated parameter list to be used 
by the RENAME SVC as described in the RENAME SVC. If PLIST 
is specified, no other parameter may be specified. 

PLIST may be 
containing the 
list, or as an 
parameter list. 

specified as a register in parentheses 
address of the user-generated parameter 
expression addressing the user-generated 

If PLIST is not specified, the macro generates code to 
dynamically build a parameter list on the stack prior to 
issuance of the RENAME SVC. 

If the PLIST option is not utilized, then RENAME dynamically 
builds its parameter list on the stack, and it becomes the 
invoking program's responsibility to pop 32 bytes ( 40 bytes 
if full RENAME!) off the stack beyond the return code word. 

LIBRARY Indicates that the library specified in the LIBRARY 
parameter is to be renamed. This operation is equivalent 
to moving all the files in that library to a new library on 
the same volume. Libraries can not, however, be merged in 
this manner: the library specified by the NEWNAME 
parameter cannot exist when the RENAME SVC is issued. Use 
of this parameter is mutually exclusive with the FILE and 
NEWLIB parameters. 

FILE Specifies the name of the file to be renamed. This 
parameter can be specified as a character string in single 
quotes that is the name of the file, or as an address 
expression that points to an 8-byte field which contains 
the file name. Use of this parameter is mutually exclusive 
with the LIBRARY parameter described above. 

Controlled Release Draft 4-279 October, 1985 



LIBRARY 

VOLUME 

NEWLIB 

RESTRICT 

BYPASS 

Stack On Input 

0 (SP) I 

Specifies the name of the library to be renamed or the name 
of the library containing the file to be renamed. This 
parameter may be specified as a character string in single 
quotes that is the name of the library, or as an address 
expression that points to an 8-byte field which contains 
the library name. 

Specifies the name of the volwne that contains the file or 
the library to be renamed. This parameter may be specified 
as a character string in single quotes that is the volwne 
name, or as an address expression that points to a 6-byte 
field which contains the volwne name. This parameter is 
required if PLIST is not specified. 

Specifies the new name of the file or library being 
renamed. This parameter can be specified as a character 
string in single quotes that is the new file name or 
library name, or as an address expression that points to an 
8-byte field which contains the new file name or library 
name. This parameter is required if PLIST is not specified. 

The name of the library in which the renamed file is to be 
placed. If omitted, then the same library as specified by 
the LIBRARY parameter is asswned. This parameter can be 
specified as a character string in single quotes that is 
the new file name or library name, or as an address 
expression that points to an 8-byte field which contains 
the new file name or library name. 

Specifies whether the RENAME SVC is to ignore any special 
access rights that may have been granted to the invoking 
program. If special access rights are ignored, program is 
restricted to the user's logon access rights in determining 
whether the user can RENAME the specified file(s). Valid 
values are YES or NO; the default is NO. 

Specifies whether the RENAME SVC is to bypass checking the 
expiration date of the file(s) being renamed. Valid values 
are YES or NO; the default is NO. 

(1) Address of 
Parameter List 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Controlled Release Draft 4-280 October, 1985 



~ 

(1) Address of an argument list constructed as follows: 

PARAMETER LIST 
(2) Old lib name 8 bytes Lower 
(3) Old file name 8 bytes Address 
(4) New file name 8 bytes 
(5) Volume name 6 bytes 
( 6) Option flag: 1 byte 
(7) Not used 1 byte 
(8) New library 8 bytes Higher 

name Address 

(5) Option flag byte: 
Bit 0 1 = Bypass file expiration date check. 
Bit 1 1 = Access rights limited to user LOGON rights. 
Bit 2 1 = Allow rename when open for exclusive I/O by the 

caller. 
Bit 3 1 = Rename both file and library. 
Bit 4 Reserved, must be 0. 
Bit 5 Reserved, must be 0. 
Bit 6 Reserved, must be 0. 
Bit 7 Reserved, must be 0. 

Stack On Output 

0 CSP) I 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

Return Code 

Preceding 
Stack Data 

Description 

Lower 
Address 

Higher 
Address 

The specified file or library was successfully renamed. 

The indicated volume is not currently mounted. 

The specified volume is currently being exclusively 
used by another user. 

Insufficient stack space for buffers to process the 
RENAME request. 

The specified library was not found. 

The specified file was not found. 

Controlled Release Draft 4-281 October, 1985 



Code 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68, 72, 

80 

Example 

LAB 
+LAB 
+* 
+ 

76 

RENAME 
PUSH 

SVC 26 

Description 

The user lacks update access for one or more of the 
files to be renamed. No files were renamed. 

One or more specified files were not past expiration 
date. No files were renamed. 

The specified file is currently in use and no rename 
occurred. 

'A VTOC error was encountered during processing. FDXl · 
and FDX2 do not agree. 

'A VTOC error was encountered during processing. FDX2 
and FDR do not agree. 

The address presented for the parameter list is 
invalid. 

'An I/O error occurred during processing. The VTOC is 
unreliable. 

The new file name or library name already exists. 

The new filename is invalid or a number sign (#) is 
the first character. 

The VTOC is currently full. Insufficient space exists 
for the new FDX1/FDX2 (full RENAME only). 

The reserved bits (bits 5-7) in the parameter list 
options byte are nonzero. 

Unused. 

Cluster communication failed. 

PLIST=CRl) 
0,Rl 

(RENAME) 

POINT TO USER-DEFINED 
PARAMETER LIST 

Controlled Release Draft 4-282 October, 1985 



4.2.61 RESETIME - Remove Timer Interval CSVC 32) 

Syntax 

[label] RESETIME 

Function 

Cancels an interval timing request previously established by SETIME 
which has not been the subject of a CHECK INTERVAL or previous RESETIME. 
A programming error is assumed and the issuing program cancelled if there 
is no such request. 

Stack On Input 

CSP) I 

I 
lo 
I 

1 2 3 

I ( 1) I ( 2) Interval or 
I I Time of day 

'
--------

Preceding 
I Stack Data 

Lower 
Address 

Higher 
Address 

(1) Type of request - byte O 
High bit: 0 = Set interval 

1 = Reset interval 
Next bit: 0 = Interval supplied 

1 = Time of day supplied 

(2) Interval or time of day - bytes 1-3. In hundredths of a 
second. (Ignored for RESET. ) A time value less than the present 
time results in inunediate expiration. When referring to a time 
earlier than the current time (in order to ref er to the next day), 
specify the time plus 24 hours. 

Stack On Output 

0 (SP) I 

Example 

LABl 
+LAB! 
+ 
+ 

Preceding 
Stack Data 

RESET I ME 
PUSHN 0,4 
MVI OC15),X'80' 
SVC 32 

Controlled Release Draft 4-283 

Lower 
Address 

Higher 
Address 

RESET 
CRESETIME) 

October, 1985 



4.2.62 RETURN - Return to Invoker 

Syntax ~ 

[label] RETURN [UNLINK][,CODE={(register)}][,COND={integer}] 
{ address } { 15 } 
{ Q } 

Function 

The RETURN macroinstruction is used to (conditionally) exit from a 
program to the system where normal termination of the run is required. 
It is also used to exit from a subprogram and return to the calling 
program. The stack top pointer (register 15) and control register 1 are 
restored to their values before the CALL or LINK which resulted in entry 
to the program or subprogram. The contents of general registers 1-14 are 
restored to their state before the CALL, LINK, or program invocation. A 
return code, if requested, is set in register 0. Otherwise, register 0 
is set to zero. (RETURN CODE=CO) leaves register 0 unchanged.) 

Restrictions 

A CALL, LINK, or program invocation must have occurred for the 
issuing task. 

Parameter Definitions 

UNLINK 

CODE 

COND 

Example 

LABl 
+LABl 
+ 

Specifies return to the most recent LINK issuer, conunand 
processor, or procedure interpreter, thus terminating all 
routines invoked by a sequence of calls. COND must not be 
specified with this parameter. 

If the CODE parameter is supplied, register 0 is loaded 
with the nwnber specified, or from the register specified. 
In this case, the following instruction is generated: 

LA 0,number or LR O,Rn 

If supplied, specifies the condition codes under which the 
return is to be made, as for a machine instruction. If 
omitted, COND=15 is assumed. Invalid if UNLINK parameter 
is specified. 

RETURN CODE=ZERO,COND=7 
LA RO,ZERO 

RTC 7 

Controlled Release Draft 4-284 October, 1985 



4.2.63 REWRITE - Rewrite a Record 

Syntax 

[label] REWRITE [{TABS },]UFB={(register)}[,COND={integer}] 
{SELECTED} { address } { 15 } 
{ REL } 

Function 

Rewrite a disk record or workstation line. The file must be open in 
IO or Shared mode, or placed in temporary IO mode by the START IO 
function. The last successful function addressed to the file must have 
been a READ with HOLD option unless the file is a workstation file. In 
Shared mode, the program must be holding the record to be rewritten (as a 
result of a preceding READ with the HOLD option not released by an 
intervening operation on any other shared file). Record or line is taken 
from the user's record area as addressed by field UFBRECAREA of the 
specified user file block (UFB). 

Additional control information (order area) precedes the line to be 
written in the record area for workstation line REWRITEs. Refer to the 
specific device description for details on this area. 

For indexed disk file REWRITES, the key field in the record to be 
rewritten is validated. REWRITE may not change this field. 

NOTE 

Register 1 is loaded with the address of the UFB. 

An error condition discovered on REWRITE results in nonzero ASCII 
digit settings of the file status bytes (UFBFSl, UFBFS2) and return to 
the address in UFBEODAD or UFBERRAD, with the normal return address in 
register 0. 

Possible file status codes indicating errors are: 

• 00 -- Normal return, success 

• 23 Return to UFBEODAD, block beyond end of file for 
block-level I/O or invalid key (REWRITE REL). 

• 30 Return to UFBERRAD, permanent I/O error . 

• 34 Return to UFBERRAD, order check on workstation. 

• 95 -- Return to UFBERRAD, invalid function or function sequence 
(includes key validation failure for indexed file REWRITE). 

Controlled Release Draft 4-285 October, 1985 



If UFBERRAD is binary zeroes, these conditions cause program 
termination. 

Parameter Descriptions 

TABS 

SELECTED 

REL 

UFB 

COND 

Example 

LABl 
+LABl 
+ 
+ 

Indicates that bytes 5-14 of the user's record area contain 
tab position settings for the workstation (in ascending 
order, terminated by the first zero item, binary column 
numbers 1-80), and that the purpose of the REWRITE is to 
set these tabs. 

Indicates that only those fields with selected-field tags 
set in their field attribute characters are to be written 
to a workstation screen. 

Rewrites a record for a relative file. A READ HOLD 
operation is not required before performing the rewrite. 
For relative files only. 

The address of a user file block CUFB), which may be 
supplied as a register specification in parentheses, where 
the register contains the UFB address, or as an expression 
not in parentheses, where the word addressed is asswned to 
begin the UFB. 

If specified, the number or absolute expression becomes the 
first parameter of the JSCI instruction by which the 
REWRITE function is entered. Thus the REWRITE is made 
conditional. COND=15 is the default. Register 1 is loaded 
with the UFB address even when the condition is not 
satisfied. 

REWRITE 
LR 
MVI 
JSCI 

UFB=CR2) 
l,R2 
8(1),B'OOOOOOOO' 
15,8( ,1) 

SET REGISTER 1 
MODIFIERS 
REWRITE FUNCTION 

Controlled Release Draft 4-286 October, 1985 

,r-"1\ 



4.2.64 ROLLBACK - DMS/TX Transactions Rollback (SVC 76) 

Syntax 

ROLLBACK RETCODE={(register)}[,CANCEL={NO }][,ACK={NO }] 
{ address } {YES} {YES} 

[,{LEVELS={(Register)}}] 
{ address } 

{ALL={YES} } 
{NO } 

Function 

The ROLLBACK macro provides a means for undoing a OMS/TX transaction 
or subtransaction. Rolls back the current DMS/TX transaction which 
restores all updated records to their previous values. Applies to all 
databases in use by this task. See the VS OMS/TX Reference for more 
information. 

Parameter Definitions 

ACK 

CANCEL 

RETCODE 

ALL 

LEVELS 

YES specifies that an acknowledge GETPARM is to be issued 
for errors. NO specifies that no acknowledge GETPARM is to 
be issued for errors. NO is the default. 

YES specifies that the update is to be cancelled when an 
error is detected. NO is the default. 

The address at which to store the return code. 

YES specifies rollback all levels. If NO is specified and 
LEVEL is not specified, one level will be rolled back. 

Identifies the number of levels to rollback. This 
parameter can be specified as either a register 
specification or the address of a storage location that 
contains the number of levels. 

Input To The SVC 

Register 1 points to a 2-word argument list constructed as follows: 

(Rl) I (1) Lower 
Address of Address 
Return Code 
(2) 
Address of Higher 
Function Code Address 

Controlled Release Draft 4-287 October, 1985 



C 1) Address of a fullword structure that indicates where to store 
the return code from the ROLLBACK SVC. 

(2) Address of a 1-word structure that contains the error handling 
code and function code constructed as follows: 

I 
lo 1 2 3 
I 
I Cl> c2> ( 3) 

I ,-------
(1) Error handling code, byte 0: 

Bit 0 1 = Cancel. 
Bit 1 1 = Issue acknowledge GETPARM on error. 
Bit 2 Reserved, must be 0. 
Bit 3 Reserved, must be 0. 
Bit 4 Reserved, must be 0. 
Bit 5 Reserved, must be o. 
Bit 6 Reserved, must be 0. 
Bit 7 Issue database name message header. 

(2) Reserved, must be 0 (bytes 1,2) 
(3) Function code, byte 3 

Bit 1 1 = Rollback transaction. 

Output 

The return code is stored in the address supplied on input to the SVC. 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

Description 

Success. 

No recovered files are open. 

OMX/TX not supported on this system. 

Invalid function request. 

Invalid parameter or parameter list. 

Unable to process before image journal for this task. 
Run DMSTX utility on this database. 

Error encountered on this file during rollback. Run 
DMSTX utility on this file. 

Controlled Release Draft 4-288 October, 1985 



Code 

28 

32 

36 

40 

44 

Example 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

Description 

Specified mark not found. The entire transaction has 
been rolled back. 

Unable to set file crash status. File may contain 
uncommitted updates. 

Unable to set database crash status. Database may 
contain uncommitted updates. 

Error freeing locks. 

Bad nesting (returned by VSETX). 

ROLLBACK RETCODE=CR2),CANCEL=YES,ACK=YES 
PUSHA 0,=A(-2147483647) 
PUSH 0,R2 return code 
LR 1,15 
SVC 76 (ROLLBACK) 
POPN 0,2*4 
ROLLBACK RETCODE=CR2),CANCEL=YES 
PUSHA 0,=A(-2147483647) 
PUSH 0,R2 return code 
LR 1,15 
SVC 76 (ROLLBACK) 
POPN 0,2*4 

Controlled Release Draft 4-289 October, 1985 



4.2.65 SCRATCH - Scratch a File (SVC 27) 

Syntax 

Format 1: 

[label] SCRATCH PLIST={ address } 
{(register)} 

Format 2: 

[label] SCRATCH {LIBRARY },LIBRARY={address }, 

Function 

{FILE={address } {'string'} 
{'string' } 

VOLUME={ address}[,RESTRICT={NO }] 
{'string'} {YES} 

[,BYPASS={ NO}] 
{YES} 

Deletes a disk file or a library of disk files from a volume, making 
the space utilized by the file ( s) available for reallocation. Removes 
all references to the file Cs) from the volume table of contents CVTOC). 
No file that is to be deleted may be open when the SCRATCH is attempted. 

When deleting files from volume sets, the system issues a mount 
request for all volumes which have extents for the file. If SCRATCH 
terminates abnormally, any volwne which has not been mounted up to this 
time will have lost space. That is, the disk space allocated to the file 
will not be returned to the volume's list of free extents. Lost space 
cannot be retrieved. Compress-in-place CCIP) cannot retrieve it. 

Restrictions 

If the PLIST option is not utilized, it is the program's 
responsibility to pop 24 bytes off the stack beyond the return code word 
on the stack. 

Parameter Definitions 

PLIST 

LIBRARY 

The address of a SCRATCH parameter list. If PLIST is 
specified, no other parameter may be specified. If PLIST 
is not specified, the macro generates code to dynamically 
build a parameter list on the stack prior to issuance of 
the SCRATCH SVC. 

Indicates that all files within the specified library are to 
be deleted. Use of this parameter is mutually exclusive with 
the FILE parameter. 

Controlled Release Draft 4-290 October, 1985 



'~ 

FILE 

LIBRARY 

VOLUME 

RESTRICT 

BYPASS 

Output 

Specifies the address at which the file's name is located. 
This parameter can be specified as a character string 
delimited by single quotes, in which case a constant is 
assumed. Use of this parameter is mutually exclusive with the 
LIBRARY parameter described above. 

Specifies the address at which the library's name is located. 
This parameter can be specified as a character string 
delimited by single quotes, in which case a constant is 
assumed. This parameter is required if PLIST is not specified. 

Specifies the address at which the volume's name is located. 
This parameter can be specified as a character string 
delimited by single quotes, in which case a constant is 
assumed. This parameter is required if PLIST is not specified. 

If NO is specified, or the parameter is omitted, the SCRATCH 
operation proceeds to utilize current file access rights. If 
YES is specified, the operation is restricted, assuming only 
the file access rights of the user and ignoring any special 
access rights of the program. 

If NO is specified, or the parameter is omitted, the SCRATCH 
operation performs an expiration date check. For any 
unexpired file(s), the SCRATCH is not performed. If YES is 
specified, the expiration date check is bypassed. 

A return code is issued in the top word of the stack. If space on 
the volume is lost during SCRATCH because there is no room in the VTOC to 
record released extents, the high-order three bytes of the return code 
word contain the number of blocks lost. Otherwise the three high-order 
bytes are zeroed. 

When the last file in a library is deleted, the library is eliminated. 

Stack On Input 

OCSP) I 
(1) Address of 

Argument List 
Preceding 

Stack Data 

Controlled Release Draft 4-291 

Lower 
Address 

Higher 
Address 

October, 1985 



(1) The address of an argument list constructed as follows: 

ARGUMENT LIST 
(2) Library Name 8 bytes Lower 
(3) File Name 8 bytes Address 
(4) Volume Name 6 bytes 
(5) Option Flag 1 byte 
(6) Not used 1 byte Higher 

Address 

(5) Option flag: 

Stack On Output 

I 
lo 

OCSP) I I 
I 
I 
I 
I 

Bit 0 1 = Bypass expiration date check. 
Bit 1 1 = Delete all closed and expired files in 
library for which update access is allowed. Delete 
library if all files are closed and expired. 
Bit 2 1 = File access rights limited to user LOGON 

Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

1 

(1) 

rights. 
Reserved. 
Reserved. 
Reserved. 
Reserved. 
Reserved. 

2 3 

Lost 
Extents 
Preceding 

Stack Data 

Lower 
I Address 
I 
I 

c 2 > I Higher 
I Address 
I 
I 

(1) Total size of lost extents in blocks during scratch. No extent 
lost if size equals O. 

(2) Return code. 

Controlled Release Draft 4-292 October, 1985 

~ 



Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

Description 

File or library successfully deleted. 

Volume not mounted. 

Volume used exclusively by other user. 

All buffers in use, no deletion. 

Library not found. 

File not found. 

Update access denied, 
deletion only) . 

no deletion (single-file 

Unexpired file, no deletion (single-file deletion 
only). 

File in use, no deletion. 

VTOC error, FDXl and FDX2 do not agree. 

VTOC error, FDX2 and FDR do not agree. 

Invalid argument list address. 

I/O error, VTOC unreliable. 

Open, protected, or unexpired file bypassed in library 
being deleted. 

Link down or unable to allocate resources. 
file or library not deleted. 

Success, but same volumes skipped. 

Remote 

Controlled Release Draft 4-293 October, 1985 



Example 

SCRFILE DC CL8'MYFILE' 
SCRLIBR DC CL8'0URLIBRY' 
SCRVOL DC CL6'SYSTEM' 

SCRATCH FILE=SCRFILE,LIBRARY=SCRLIBR,VOLUME=SCRVOL 
+ PUSHN 0,8 
+ MVI 7(15),0 
+ MVI 6(15),B'OOOOOOOO' 
+ MVC 0(6,15),SCRVOL VOLUME 
+ PUSHC 0(8),SCRFILE FILE 
+ PUSHC 0(8),SCRLIBR LIBRARY 
+ PUSH 0,15 
+ SVC 27 (SCRATCH) 

SCRATCH FILE='MYFILE' ,LIBRARY='MYLIB' ,VOLUME='MYVOL' 
+ PUSHN 0,8 
+ MVI 7(15),0 
+ MVI 6(15),B'OOOOOOOO' 
+ MVC 0(6,15),=CL6'MYVOL' VOLUME 
+ PUSHC 0(8),=CLB'MYFILE' FILE 
+ PUSHC 0(8),=CLB'MYLIB' LIBRARY 
+ PUSH 0,15 
+ SVC 27 (SCRATCH) 

Controlled Release Draft 4-294 October, 1985 



4.2.66 SET - Set Task-Related Defaults (SVC 35) 

Syntax 

[label] SET [FILECLASS={(register)}] 
{ 'string' } 
{ address } 

(,INLIB= {(register)}] 
{ 'string' } 
{ address } 

[,JOBCLASS={Cregister)}] 
{ 'string' } 
{ address } 

[,JOBQUEUE={(register)}] 
{ 'string' } 
{ address } 

[,OUTLIB= {(register)}] 
{ 'string' } 
{ address } 

[,PRINTER= {(register)}] 
{ 'string' } 
{ address } 

[,PROGLIB= {(register)}] 
{ 'string' } 
{ address } 

[,PRTCLASS={Cregister)}] 
{ 'string' } 
{ address } 

[,RUNLIB= {(register)}] 
{ 'string' } 
{ address } 

[,SPOOLIB= {(register)}] 
{ 'string' } 
{ address } 

[,FORM#={Cregister)}] 
{ 'string' } 
{ address } 

[,INVOL={Cregister)}] 
{ 'string' } 
{ address } 

[,JOBLIMIT={Cregister)}] 
{ 'string' } 
{ address } 

[,LINES={Cregister)}] 
{ 'string' } 
{ address } 

[,OUTVOL={Cregister)}] 
{ 'string' } 
{ address } 

[,PRNTMODE={(register)}] 
{ 'string' } 
{ address } 

[,PROGVOL={Cregister)}] 
{ 'string' } 
{ address } 

[,PRTFILECLAS={(register)}] 
{ 'string' } 
{ address } 

[,RUNVOL={Cregister)}] 
{'string'} 
{ address } 

[,SPOOLSYS={Cregister)}] 
{ address } 

[,SPOOLSYSRC={Cregister)}] (,SPOOLVOL={Cregister)}] 
{ I string I } { I string I } 

{ address } { address } 

[,WORKVOL= {(register)}] 

Controlled Release Draft 

{ 'string' } 
{ address } 

4-295 October, 1985 



Function 

Allows user programs to set default values for task related r-'\. 
parameters according to the parameters specified. These values which are 
stored in a tasks' ETCB are used by the various system utilities and 
SVCs. None of the parameters have defaults and any unspecified 
parameters are unaffected. 

Restrictions 

All library and volume name specifications (except literals) must 
reference 8- and 6-byte fields respectively, as the SET SVC cannot 
determine the length of the character string and assumes the maximum. 

Parameter Definitions 

NOTE 

All parameters are optional (although at least one should be 
specified). 

Parameters can be specified as 

• A register in parentheses that points to a character string that 
is the desired value. If the item is numeric (PRINTER, LINES, or 
FORM#), then the value is assumed to be in binary. 

• A character ·string in single quotes that is the desired value, 
except for the numeric items (PRINTER, FORM#, and LINES) which 
use an integer (not in quotes) that is the desired value in 
decimal. 

• An expression that addresses a character string that is the 
desired value. If the item is numeric (PRINTER, LINES, or 
FORM#), then the value is assumed to be in binary. 

FILECLASS Default file protection class. The following values are 
valid: 

• # -- Accessible only by system security administrators 
and the owner-of-record. 

• $ -- READ-only files. READ access granted to all users 
regardless of the individual's access privileges. 

• @ -- EXECUTE only files. EXECUTE access granted to all 
users as above. 

Controlled Release Draft 4-296 October, 1985 



FORM# 

INLIB 

INVOL 

JOBCLASS 

JOBLIMIT 

JOBQUEUE 

LINES 

OUT LIB 

OUTVOL 

PRINTER 

• A-Z -- Accessible by users with class access privileges 
matching the type of access desired. 

• blank -- Unprotected file . 
all users regardless of 
privileges. 

WRITE access implied for 
their individual access 

Default form number for print files. The association of a 
form number with a specified form is installation-defined. 
This number becomes part of the queue record for a print 
file and is examined by the system task. This nwnber must 
be in the range 0 to 254. 

Default input library name. This pair of parameters is 
used primarily by the OPEN SVC to locate files opened as 
input files. 

Default input volume name. 

Default job class for a background job. Background jobs 
are processed according to the job class priority hierarchy 
specified from Workstation 0. Within a given job class, 
background jobs are processed in order of submittal. 
Possible values are A-Z. 

Default CPU time limit for job execution. The time limit 
is specified in seconds. Possible values are 0-35999 (thus 
the maximum time limit is 99:59:59). If zero is specified, 
then the job has no time limit. 

Default job status for a background job. Determines when 
the submitted background job is executed. Possible values 
are: 

• R -- Run, the job is executed as soon as possible. 
• H -- Hold, the job is held in the job queue until 

released for execution. 

Default number of lines-per-page. This parameter is used 
primarily by the print functions of system utilities. This 
number must be in the range 0 to 255. 

Default output library name. This pair of parameters is 
used primarily by the OPEN SVC to assign files opened as 
output files. 

Default output volume name. 

Default printer device m.unber for on-line printing. This 
parameter in no way affects printer assignment for spooled 
files. This number must be in the range 0 to 255. 

Controlled Release Draft 4-297 October, 1985 



PRNTMODE 

PROGLIB 

PROGVOL 

PRTCLASS 

PRTFILECLAS 

RUNLIB 

RUNVOL 

SPOOLIB 

SPOOLSYS 

Default print mode. Permissible values are as follows: 

• 0 -- ONLINE, printing is done using the printer as a 
direct output device; a print file is not created. 

• S -- SPOOL, print files are created and are queued by 
the system task C@SYSTSK@) for printing at the earliest 
opportunity. 

• K -- KEEP, print files are created but are not queued 
for printing by the system task. 

• H -- HOLD, print files are placed in the user's print 
library and are queued by the system task, but are not 
printed until. requested by the system operator or the 
user. 

Default program/procedure library name. This pair of 
parameters is used only in procedures, for programs run by 
those procedures. These parameters identify the library 
and volume that are to serve as the default user program 
library and volume for all programs run by a procedure. 

Default program/procedure volume name. 

Default print class. This parameter determines the class 
to which print requests sent to the system task are 
assigned. Printer assignment, scheduling priority, and 
header page options are set for each class by the system 
operator and, as such, may vary from time to time. Valid 
values are the letters A-Z. 

Default spool file class. 

Default program/procedure execution library name. The 
RUNVOL and RUNLIB parameter pair are used by the command 
processor RUN command to locate programs and procedures to 
be executed. 

Default program/procedure execution volume name. 

Default spool library name constructed from user ID or 
background task number. 

Default system name for remote print routing. 

Controlled Release Draft 4-298 October, 1985 



SPOOLSYSRC 

SPOOL VOL 

WORKVOL 

Required if SPOOLSYS is specified. 
code for setting SPOOLSYS with one 
possible values: 

• 0 = Successful 
• 4 = System name not found 
• 8 = GETMEM failure 
• 12 = XMIT failure 

Contains the return 
of the following 

Default volume for assignment of spooled (print) files. 

Default volume for assignment of work files. 

Initializes corresponding entries in the issuing task's extended task 
control block (ETCB) with values supplied by a parameter list placed on 
the stack. 

Stack On Input 

Lower 
Address 

Q(SP) Addr of PROGVOL value 
4CSP) Addr of PROGLIB value 
8CSP) Unused 

12CSP) Addr of INVOL value 
16CSP) Addr of INLIB value 
20CSP) Unused 
24CSP) Addr of OUTVOL value 
28CSP) Addr of OUTLIB value 
32CSP) Addr of SPOOLVOL value 
36(SP) Addr of WORKVOL value 
40CSP) Addr of PRINTER value 
44CSP) Addr of PRNTMODE value 
48CSP) Addr of FILECLAS value 
52CSP) Addr of LINES value 
56(SP) Addr of PRTCLASS value 
60(SP) Addr of FORM# value 
64CSP) Addr of RUNVOL value 
68(SP) Addr of RUNLIB value 
72 CSP) Addr of JOBQUEUE value 
76CSP) Addr of JOBCLASS value 
80CSP) Addr of JOBLIMIT value 
84CSP) Addr of SPOOLIB value 
88CSP) Addr of PRTFILECLAS 
92(SP) Addr of LOGBLKPTRvalue 
96 CSP) Addr of SPOOLSYS value Higher 

lOOCSP) Addr of SPOOLSYSRC Address 
Preceding 

Stack Data 

Controlled Release Draft 4-299 October, 1985 



The parameter list contains addresses of the values used to 
initialize the ETCB symbols. A zero placed in the corresponding parameter 
list position indicates that the ETCB symbol is not to be initialized. 
The following list contains the procedure keyword for ETCB symbols that 
may be initialized and the expected length of the data: 

Procedure Keyword Length 

PROOVOL 6 
PROOLIB 8 
SPARE 0 
INVOL 4 
INLIB 8 
SPARE 0 
OUTVOL 6 
OUTLIB 8 
SPOOLVOL 6 
WORKVOL 6 
PRINTER 1 
PRNTMODE 1 
FILECLAS 1 
RESERVED 1 
PRTCLASS 1 
FORM# 1 
RUNVOL 6 
RUNLIB 8 
JOBQUEUE 1 
JOBCLASS 1 
JOBLIMIT 4 
SPOOLIB 4 
PRTFILECLAS 1 
LOGBLKPTR 4 
SPOOLSYS 8 
SPOOLSYSRC 4 

Stack On Output 

On completion, the SVC removes the parameter list from the stack. 

O(SP) I Preceding 
Stack Data 

Controlled Release Draft 4-300 

Lower 
Address 

Higher 
Address 

October, 1985 

~ 



Example 

LAB SET PROGVOL=CR2),PROGLIB='MYLIB',PRINTER=PRTID,FORM#=CR5),LINES=55 
+LAB PUSH 0,0 SAVE REGISTER ZERO IN THE STACK 
+ PUSHN 0,64 PUSH AREA FOR SVC PLIST 
+ XC 0(64,15),0(15) INITIALIZE AREA TO ZEROES 
+* 
+* 
+ ST 
+* 
+* 
+ LA 
+ ST 
+* 
+* 
+ LA 
+ ST 
+* 

SET DEFAULT PROGRAM VOLUME NAME 
R2,0(,15) PLACE ADDRESS IN PLIST 

SET DEFAULT PROGRAM LIBRARY NAME 
RO,=CL8'MYLIB' POINT TO LITERAL 
R0,4(,15) SET ADDRESS IN PLIST 

SET DEFAULT PRINTER NUMBER 
RO,PRTID POINT TO DATA ITEM 
R0,40(,15) PLACE ADDRESS IN PLIST 

+* SET DEFAULT LINES-PER-PAGE 
+ LA RO,=AL1(55) POINT TO LITERAL75 
ST R0,52(,15) PLACE ADDRESS IN PLIST 
+* 
+* SET DEFAULT FORM NUMBER 
+ ST RS,60(,15) PLACE ADDRESS IN PLIST 
+ OI 60(15),X'BO' FLAG END OF PLIST 
+ SVC 35 (SET) ISSUE SVC 
+ POP 0,0 RESTORE REGISTER ZERO FROM STACK 

Controlled Release Draft 4-301 October, 1985 



4.2.67 SETIME - Set Interval Timer (SVC 32) 

Syntax .~ 

Format 1: 

[label] SETIME UNTIL={(register)} 
{ address } 

Format 2: 

[label] SETIME CSEC={Cregister)} 
{ address } 

Function 

Sets a timer interval for the issuing task to expire at the time 
specified, or after the nwnber of 1/100 second units specified. If a 
previous interval timing request was active for this task, it is 
cancelled and the new one is set. 

Parameter Definitions 

UNTIL 

CSEC 

Stack On Input 

CSP) 

Either a register specification in parentheses, where the 
register contains a binary time value in 1/100 second units 
into a day (from midnight), or an address expression, where 
the four bytes starting at that address contain the time as 
above. To request expiration at some time tomorrow, the 
value supplied must be 24 hours plus the required 
time-of-day. A requested time less than the current 
time-of-day results in inunediate expiration. 

Either a register specification in parentheses, containing 
the nwnber (in binary) of 1/100-second units to delay 
processing, or an expression, not in parentheses, for the 
required nwnber of 11100-second units. The value cannot 
exceed one day. 

I 
lo 
I 
I (1) 

I 
I 
I 

1 2 3 

I (2) Interval 
I Time of 
Preceding 

Stack Data 

or 
day 

Lower 
Address 

Higher 
Address 

Controlled Release Draft 4-302 October, 1985 



(1) Type of request - byte O 
Bit 0: 0 = Set interval 

1 = Reset interval 
Bit 1: 0 = Interval supplied 

1 = Time of day supplied 

(2) Interval or time of day 0 - bytes 1 to 3, in hundredths of a 
second. <Ignored for RESET. ) A time value less than the present 
time results in inunediate expiration. If requesting a time of day 
earlier than the current time (in order to ref er to the next day), 
specify the time plus 24 hours. 

Stack On Output 

0 CSP) I Preceding 
Stack Data 

Example 

LABl 
+LABl 
+ 
+ 

SETIME CSEC=55 
PUSHA 0,55 
MVI 0(15),0 UNITS 
SVC 32 (SETIME) 

Controlled Release Draft 4-303 

Lower 
Address 

Higher 
Address 

October, 1985 



4.2.68 SETRECOV - DMS/TX Set File Recovery Options (SVC 82) 

Syntax 

SETRECOV {ATTACH },RETCODE={(register)},FILE={Cregister)}, 
{DETACH } { address } { address } 
{RESETCRASH} { 'string' } 

VOLUME={(register)},LIBRARY={(register}}, 
{ address } { address } 
{ I string I } { I string I } 

[,DATABASE={(register)}][,CANCEL={NO }][,ACK={NO }] 
{ address } {YES} {YES} 
{ 'string' } 

Function 

Attaches or detaches a file with recovery blocks to a DMS/TX 
database, or clears a crash status. The file must be an indexed file, 
with recovery blocks to which the user has update rights. The file must 
be closed at the time of the request. For the ATTACH function, the file 
must not be already attached to a database, and the database must exist. 
For the DETACH and RESET CRASH STATUS functions, the file must be 
attached to some database. See the VS DMS/TX Reference for more 
information. 

Parameter Definitions 

ATTACH 

DETACH 

RESET CRASH 

DATABASE 

VOLUME 

LIBRARY 

FILE 

RETCODE 

Function request attach file to database. 

Function request detach file from database. 

Function request clear crash status. 

A 6-character database name. 
ATTACH. 

Optional, only used with 

A 6-character field designating the volume name of the file 
to be attached or detached. 

An 8-character field designating the library name of the 
file to be attached or detached. 

An a-character field designating the file name to be 
attached or detached. 

The address at which to store a fullword binary return code 
indicating the success or failure of the function. 

Controlled Release Draft 4-304 October, 1985 



CANCEL 

ACK 

An optional parameter that specifies whether to cancel the 
transaction on error. The default is NO. 

An optional parameter that specifies whether to produce a 
message when an error is encountered. The default in NO. 

Input To The SVC 

Register 1 points to .an 8-word argument list that is constructed as 
follows: 

(Rl) I (1) 

Address of the 
Return Code 
(2) 
Address of the 
File Name 
(3) 
Address of the 
Library Name 
(4) 
Address of the 
Volume Name 
(5) 
Address of the 
Function Request 
( 6) 

Address of the 
Error Option 
( 7) 

Address of the 
RECOPTS 
(a) 

Address of the 
Database Name 

Lower 
Address 

Higher 
Address 

(1) Address of where to store the return code from SETRECOV. 

(2) Address of an a-character file name. 

(3) Address of an a-character library name. 

(4) Address of a 6-character volume name. 

(5) Address of the function request code which is one character that 
has one of the following values: 

A - Attach 
D - Detach 
R - Reset crash status 

Controlled Release Draft 4-305 October, 19a5 



( 6) Address of the error option code which is a 1-character field 
that has one of the following values: 

blank - No special handling 
C - Cancel on error 
A - Issue acknowledge GETPARM with return code 

(7) Pointer to a 4-byte structure which must contain zeros. 

(8) Address of a 6-character database name. (Attach function only) 

Output From SVC 

The return code from the SETRECOV SVC is stored in the address 
supplied on input to the SVC. 

Output 

A return code is issued in the topword of the stack. 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

Description 

Success. 

OMS/TX not supported on this system. 

Invalid recovery option value. 

Invalid function request value. 

Invalid parameter or parameter list. 

Database option library @DMSTX@ not found on the IPL 
volume. 

Database option file not found. 

Unexpected READFDR error when trying to find database 
option file. 

File has no recovery blocks allocated. 

File is already attached to a database. 

File is not attached to a database. 

Recovery on consecutive files not supported. 

File not properly closed, reorganization recommended. 

Controlled Release Draft 4-306 October, 1985 



I~ 

!"""'\, 

Code 

52 

56 

60 

64 

68 

72 

76 

80 

84 

88 

92 

96 

100 

104 

108 

112 

116 

Description 

Errors in alternate index structures 
reorganization required. 

File possession conflict. 

Volume not mounted. 

Library not found. 

File not found. 

User has insufficient access rights to file. 

probable, 

File contains uncornmi tted updates, must be recovered 
or reset before detach. 

Unexpected OPEN error. 

Unexpected UPDATFDR error. 

Unexpected CLOSE error. 

Unexpected UPDATLSB error. 

Insufficient buffer space. 

VTOC error on IPL volume. 

I/O error encountered on file. 

Spare bytes in recovery option must be zero. 

Communication with Message Handler failed. 

Cross-cluster communication failed. 

Controlled Release Draft 4-307 October, 1985 



Examples 

SETRECOV ATTACH,DATABASE=TRANS,VOLUME=(R2),LIBRARY=(R3), 
FILE='TODAY' ,RETCODE=CRS) 

+ PUSHA 0,TRANS Database 
+ MVI 0(15),X'80' SET 'LAST' PARAMETER BIT 
+ PUSHA 0,=A(O) File Recovery Option 
+ PUSHA 0,=A(4) PUSH FUNCTION PARAMETER 
+ PUSH 0,R2 Volume 
+ PUSH 0,R3 Library 
+ PUSHA 0,=CL8 'TODAY' File 
+ PUSH 0,R5 return code 
+ LR l,15 
+ SVC 82 CSETRECOV) 
+ POPN 0,7*4 

SETRECOV DETACH,VOLUME=(R2),LIBRARY=(R3),FILE='YSTRDAY', 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

RETCODE=(R5) 
PUSHA 0,=A(8) PUSH FUNCTION PARAMETER 
MVI 0(15),X'80' SET 'LAST' PARAMETER BIT 
PUSH 0,R2 Volume 
PUSH 0,R3 Library 
PUSHA 0,=CL8'YSTRDAY' File 02 
PUSH 0,R5 return code 
LR l,15 
SVC 82 (SETRECOV) 
POPN 0,5*4 

SETRECOV RESETCRASH,VOLUME=CR2),LIBRARY=(R3),FILE='TODAY', 
RETCODE=(R5) 

+ PUSHA 0,=A(16) PUSH FUNCTION PARAMETER 
+ MVI 0(15),X'80' SET 'LAST' PARAMETER BIT 
+ PUSH 0,R2 Volume 
+ PUSH 0, R3 Library 
+ PUSHA 0,=CL8'TODAY' File 
+ PUSH 0,R5 return code 
+ LR 1,15 
+ SVC 82 (SETRECOV) 
+ POPN 0,5*4 

Controlled Release Draft 4-308 October, 1985 



4.2.69 START - Start File Processing in Specified Mode or at Specified 
Record Location 

Syntax 

[label] START { IO },UFB=(register)[,COND={integer}] 

Function 

{OUTPUT } {address} 
{EXTEND } { 15 } 
{ BEGIN } 
{ END } 
{ SKIP } 
{ EQ } 
{ GT } 
{ GE } 
{ LT } 
{ LE } 
{ ATTNT } 
{ WAIT } 
{HOLD }[,RANGE][,RETRIEVAL][,LIST] 
{RELEASE} 
{TCWAIT }[,MULTIPLE ][,TIMEOUT={(register)}] 

[(MULTIPLE,ATTN][ { address }] 
{HALTIO } 

The function of START differs for the following various file types: 

• Consecutive disk files (normal DMS) -- START IO, OUTPUT or EXTEND 
are valid for files opened in IO, OUTPUT or EXTEND modes and 
alter the current open mode. START IO writes any remaining 
buffered records to disk, and then enters temporary IO mode, with 
the next record to be read set to the first record of the file. 
START OUTPUT places the file in OUTPUT mode, after effectively 
deleting all records in the file (but not necessarily releasing 
space allocated for them on a disk file). The next WRITE then 
puts a new first record in the file. START EXTEND places the 
file in EXTEND mode (thus having significant effect only when 
START IO has been previously issued). The next WRITE then adds a 
record to the end of the file. Possible error indications in the 
file status bytes CUFBFSl, UFBFS2) are as follows: 

30, permanent I/O error 
95, invalid function or function sequence 

START END is val id in IO mode, whether opened in IO mode or 
subsequently started in IO mode. START END sets the end of file 
to the current position within the file, effectively deleting all 
records in the file past that point. For example, a READ of the 
Nth record in the file followed by a START END leaves N records 
in the file. 

Controlled Release Draft 4-309 October, 1985 



• Consecutive disk files (normal DMS.) -- START BEGIN and START SKIP 
are valid in INPUT and IO modes. A READ NEXT issued after START 
BEGIN reads the first record of the file. A READ NEXT issued 
after a START SKIP (with a signed binary number n in the word 
addressed by UFBKEYAREA) skips over n records and reads the 
record after them (n greater than 0), merely reads the next 
record (n=O), rereads the current record (n=-1), or reads a 
preceding record (n -1). 

• Consecutive disk and magnetic tape files (physical access method) 
-- START WAIT is valid in INPUT, OUTPUT, or IO modes. The 
program pauses until a preceding READ or WRITE operation is 
completed. START IO and START OUTPUT have the same function as 
for normal consecutive DMS. Possible error indications in the 
file status bytes (UFBFSl, UFBFS2) are as follows: 

30, permanent I/O error 
95, invalid function or function sequence (including START 
WAIT issued without preceding block-level READ, REWRITE, or 
WRITE) 

• Indexed and relative disk files -- START is valid in INPUT, IO, 
or SHARED modes only. Valid options are EQ, GT, and GE. The 
START function is essentially a READ (KEYED, NODATA) operation 
(key from area addressed by UFBKEYAREA, with length UFBKEYSIZE) 
with the following additional options: 

EQ -- If a record with the specified key is not found in the 
file, invalid-key, and no-record-found conditions are 
indicated (similar to READ KEYED). 

GT -- The first record with key greater than the supplied key 
is sought. (Collating sequence is normal ASCII.) If no such 
record is found, invalid-key and boundary-violation 
conditions are indicated. 

GE -- The first record with key greater than or equal to the 
supplied key is sought, otherwise like the GT option. 

LT -- The first record with a key less than the supplied key 
is sought. For relative disk files only. 

LE -- The first record with a key less than or equal to the 
supplied is sought. For relative disk files only. 

After a successful START function, a succeeding READ (without 
KEYED option) reads the record located by START. Successive 
READs then read successive records. 

Controlled Release Draft 4-310 October, 1985 



If UFBGKSIZE is not all binary zeroes, the binary value in 
UFBGKSIZE is used as the key length for the above searches in 
place of UFBKEYSIZE. UFBGKSIZE may be set by the user's program 
before issuing a START. It must always be less than or equal to 
UFBKEYSIZE. If not, a fatal error resulting in program 
termination occurs. UFBGKSIZE is set to zero by every such START 
function. 

Possible invalid-key and error conditions in the file status 
bytes (UFBFSl, UFBFS2) are as follows: 

23, invalid-key, no record found 
24, invalid-key, boundary violation 
30, permanent I/O error 
95, invalid function or function sequence 

• Workstation files -- the only valid option is ATTNT. Only the 
file status bytes are modified. They are set as follows: 

UFBFSl -- 0 
UFBFS2 -- AID character as indicated on the most recent 
interruption for this workstation; hexadecimal values as 
follows: 

20, keyboard unlocked. 
21, keyboard locked by REWRITE function or other WRITE to 
workstation. 
3F, display screen, tab positions, or other workstation 
status lost. 
Other, indication of last AID character (e.g., ENTER, 
PROGRAM FUNCTION) received. See specific device 
descriptions in the VS Principles of Operation manual. 

• Disk files (IO or Shared open modes only) -- START HOLD acquires 
temporary exclusive control of the entire file addressed. It has 
no significant effect in IO mode. 

START RELEASE may be used to remove a record or file from HOLD 
status without issuing a REWRITE, DELETE, or another READ with 
the HOLD option. It has no significant effect in IO mode. 

For all START functions and all file types, an invalid-key 
condition results in return to the address in UFBEODAD, with the 
normal return point address in register 0. Other exceptional and 
error conditions result in return to the address in UFBERRAD with 
the normal return point address in register 0. If UFBEODAD is 
zero, UFBERRAD is used in its place. If UFBERRAD is zero as 
well, any exceptional condition results in abnormal termination 
of the program. 

Controlled Release Draft 4-311 October, 1985 



• Teleconununications devices START TCWAIT waits for the 
completion of current READ or WRITE operations issued on this TC 
file (this UFB). 

START TCWAIT, MULTIPLE waits for completion on all TC devices for 
which this program has an outstanding READ or WRITE operation. 

START TCWAIT, (MULTIPLE,ATTN) waits for unsolicited interrupts 
for any TC lines, which this program controls, in addition to 
START TCWAIT, MULTIPLE. 

The TIMEOUT parameter can be used in conjunction with either of 
the above options. The expression field is an unsigned integer 
with value less than or equal to 255. If (register) is 
specified, the right-most byte of the register is used. In 
either case, TIMEOUT specifies the time interval in seconds. 

Table 5-1 summarizes the uses of START. 

Controlled Release Draft 4-312 October, 1985 



Table 5-1. START - Modes of Use with Disk Files 

OPEN OPEN OPEN OPEN OPEN 
for for for for for 
Input Output I/O Extend Shared 

I/O 

SKIP SKIP 
Consecutive SKIP IO END IO END 
RAM BEGIN OUTPUT BEGIN OUTPUT BEGIN 

EXTEND IO EXTEND 
OUTPUT 
EXTEND 

Indexed I EQ EQ EQ 
RAM I GT GT GT 

I GE GE GE 
HOLD 
RELEASE 

BAM IO IO 
OUTPUT OUTPUT 
EXTEND EXTEND 

PAM WAIT WAIT WAIT 
IO 
OUTPUT 

EQ IO IO IO 
Relative GT OUTPUT OUTPUT OUTPUT 
RAM GE EXTEND EXTEND EXTEND 

LT EQ 
LE GT 

GE 
LT 

J LE 

Controlled Release Draft 4-313 October, 1985 



Parameter Definitions 

IO 
OUTPUT 
EXTEND 
BEGIN 
SKIP 
END 
EQ 
GT 
GE 
ATTNT 
WAIT 
HOLD 
RELEASE 
TCWAIT 
HALT IO 

UFB 

COND 

Example 

OUTPUT 
+oUTPUT 
+ 
+ 

As described above. 

The address of a user file block (UFB) which may be 
presented as a register specification in parentheses where 
the register contains the UFB address, or as an expression 
not in parentheses, where the word at the address 
designated is assumed to begin the UFB. 

If specified, the number or absolute expression becomes the 
first parameter of the JSCI instruction by which the START 
function is entered. Thus the START is made conditional. 
COND=l5 is the default. Register 11 is loaded with the UFB 
address even when the condition is not satisfied. 

START GE,UFB=(R2) 
LR l,R2 
MVI 16(1),X'03' 
JSCI 15 , 16 Cl ) 

SET REGISTER 1 
GREATER THAN OR EQUAL TO 
START FUNCTION 

Controlled Release Draft 4-314 October, 1985 



4.2.70 START HOLD/RELEASE - Hold/Release Resource 

Syntax 

Format 1: 

[label] START HOLD, { RANGE } , 
{ RETRIEVAL } 
{ LIST } 
{ (RANGE,RETRIEVAL) } 
{ (RANGE,LIST) } 
{ (RETRIEVAL, LIST) } 
{(RANGE,RETRIEVAL,LIST)} 

UFB={(register)} 
{expression} 

Format 2: 

[label] START RELEASE,UFB={(register)} 
{expression} 

Function 

The START HOLD function requests holds on resources in a data file 
and also requests extension rights. The options are as follows: 

• The RANGE option indicates that a range of records in a file is 
to be held. 

• The RETRIEVAL option allows more than one user to hold the same 
resource for retrieval only. If this option is not specified, 
the default is hold for update; in this case only one user can 
hold the resource. 

• The LIST option allows the user to set up a list of resources to 
be held, and later add to the list by issuing another START 
HOLD. The programmer indicates that the list is complete by 
issuing a START HOLD without the list option; the actual hold of 
all the resources in the list then takes place. 

The START RELEASE function releases all held resources in the 
specified file. 

Parameter Definitions 

UFB A register in parentheses or an address expression pointing 
to the UFB of the data file whose records are being held. 

Controlled Release Draft 4-315 October, 1985 



Examples 

LABl START HOLD,(RANGE,RETRIEVAL,LIST),UFB=RSUFB 
+LABl LA l,RSUFB SET REGISTER 1 
+ MVI 16(1),B'llOlOlOO' OPTIONS 
+ JSCI 15,16(1) START FUNCTION 

LAB2 START HOLD,UFB=(Rl) 
+LAB2 MVI 16(1),B'lOOOOOOOO' 
+ JSCI 15,16(1) 

LABl START RELEASE,UFB=RSUFB 
+LABl LA l,RSUFB 
+ MVI 16(1),B'OOlOOOOO' 
+ JSCI 15,16(1) 

LAB2 START RELEASE,UFB=(Rl) 
+LAB2 MVI 16(1),B'OOlOOOOO' 
+ JSCI 15,16(1) 

Controlled Release Draft 

OPTIONS 
START FUNCTION 

SET REGISTER 1 
OPTIONS 
START FUNCTION 

OPTIONS 
START FUNCTION 

4-316 October, 1985 



4.2.71 SUBMIT - Submit Job or Print Request (SVC 46) 

Syntax 

Format 1: 

[label] SUBMIT JOB[,PLIST={(register)}][,PROCNAME={(register)}] 

Format 2: 

{address } {'string' } 
{ address } 

[,LIBRARY={Cregister)}][,VOLUME={Cregister)}] 
{ ' string ' } { ' string ' } 
{ address } { address } 

[,JOBNAME={Cregister)}][,JOBCLASS={(register)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,STATUS={'RUN' }][,DISP={'REQUEUE'}] 
{'HOLD' } {address} 
{ address} { } 

[,CPULIMIT=({(register)}[,{'CANCEL'}])] 
{address } {'PAUSE' } 

{'WARN' } 
{ address} 

[,CPUSECONDS=({(register)}[,{'CANCEL'}])] 
{address } {'PAUSE' } 

{'WARN' } 
{ address} 

[ , DUMP={ I YES' } ] [ , PERMANENT={ YES}] 
{'NO' } {NO} 
{'PROO' } 
{'string'} 

[label] SUBMIT PRINT[,PLIST={Cregister)}][,FILENAME={(register)}] 
{ address } { 'string' } 

{ address } 

[,LIBRARY={(register)}][,VOLUME={(register)}] 
{'string' } {'string' } 
{ address } { address } 

[,PRTCLASS={Cregister)}][,FORM#={(register)}] 
{'string' } { integer } 
{ address } { address } 

Controlled Release Draft 4-317 October, 1985 



Function 

[,COPIES={(register)}][,STATUS={'SPOOL' }] 
{ integer } {'HOLD' } 
{ address } { address} 

[,DISP={'REQUEUE'}] 
{'SAVE' } 
{ address } 

' Dynamically requests the queuing of a print file for printing, a 
procedure file for execution, and the transmitting or retrieving of files 
from one computer system to another. 

If the initial parameter is JOB, SUBMIT requests the queuing of a 
procedure file for execution as a noninteractive job. 

If initial parameter is PRINT, SUBMIT requests the queuing of a print 
file for printing. 

Parameter Definitions 

PLIST 

PROCNAME/ 
FILENAME 

LIBRARY 

VOLUME 

A 44-byte user-supplied parameter list (fullword aligned) 
for use by the SUBMIT SVC and constructed as shown in the 
Stack on Input section. 

If PLIST is specified, then the remaining parameters are 
optional and, if present, are used to modify the parameter 
list in place. The default values of any omitted 
parameters are not recognized so as not to override the 
value set in the user's parameter list. 

If PLIST is not specified, then the remaining parameters 
are used to build a parameter list on the stack. The 
default values of omitted parameters are used in this 
case. The user is responsible for popping off the 44 bytes 
beyond the stack top word (SVC return code) on return. 

PROCNAME/FILENAME, LIBRARY, VOLUME, JOBCLASS/ PRTCLASS, and 
FORM# are required by their respective functions unless 
PLIST is also specified. All other parameters are always 
optional. 

The name of the procedure to be run or the file to be 
printed. 

The name of the library in which the procedure/file resides. 

The name of the volume on which the procedure/file resides. 

Controlled Release Draft 4-318 October, 1985 



JOBNAME 

JOBCLASS/ 
PRTCLASS 

FORM# 

COPIES 

CPULIMIT 

CPUSECONDS 

An optional user-supplied name for the job to be submitted 
(limited to 8 characters). 

The class to which the job or print request is to be 
assigned. Valid values are the letters A-Z. 

The number of the form on which to print this file. This 
number must be in the range 0-254 (decimal). 

The number of copies of this file to be printed. This 
number must be in the range 1-32767 (decimal). The default 
value is 1. 

The total amount of CPU time that this job may use is 
specified by the first parameter and the action to be taken 
if that limit is exceeded is specified by the second 
parameter. 

The actual CPU time may be specified as a register in 
parentheses or an expression that addresses a 4-byte field 
which contains the limit in timer units. A value of 0 
implies that the job has no limit and any action indicated 
by the second parameter will be ignored. The default is 
zero (no limit). 

The action to be taken upon completion may be specified 
either as one of the following character strings in single 
quotes, or as an expression that addresses a 1-byte field 
which contains the appropriate flag value (see PLIST entry 
for byte 37 (JOB) above): 

• CANCEL Force abnormal termination of the procedure. 

• PAUSE Suspend execution of the procedure until 
resumed by the operator. 

• WARN -- Issue a warning message to the operator. 

The default is WARN. CPULIMIT can be specified without the 
action to take upon completion parameter. The action to 
take upon completion parameter can be specified without 
CPULIMIT only when PLIST is also specified. 

This parameter specifies, in seconds, the total amount of 
CPU time that a job can take. The second parameter 
specifies the action to be taken. See CPULIMIT for a 
description of the valid values for the second parameter. 
CPUSECONDS and CPULIMITS are mutually exclusive. 

Controlled Release Draft 4-319 October, 1985 



STATUS 

DISP 

RE QUEUE 

SAVE 

DUMP 

PERMANENT 

The initial status of the request when it is placed on the 
queue. It may be specified either as one of the following 
character strings in single quotes or as an expression that 
addresses a 1-byte field which contains the appropriate 
flag value (see PLIST entry for byte 36 (JOB) or byte 26 
(PRINT) above): 

• RUN -- Eligible for scheduling upon submission of the 
request (JOB only). 

• SPOOL -- Eligible for printing upon submission of the 
request (PRINT only). 

• HOLD -- Not eligible for print/execution scheduling 
until released by the operator or the submitter. 

The default is RUN/SPOOL. 

The action to be taken at completion of the request. It 
may be specified as a character string in single quotes or 
as an expression that addresses a 1-byte field which 
contains the appropriate flag value (see PLIST entry for 
byte 37 (JOB) or byte 27 (PRINT) above). The default is to 
not set these options (do not requeue or save). 

Place the request back onto the queue for re-execution or 
re-printing (for PRINT requests, this implies SAVE). 

Do not delete this file after printing (PRINT only). 

The action to be taken in the event of an abnormal 
termination. It may be specified as one of the following 
character string in single quotes or as an expression that 
addresses a 1-byte field which contains the appropriate 
flag value (see PLIST entry for byte 31 above): 

• YES -- Produce a dump for this job. 

• NO -- Do not produce a dump for this job. 

• PROG Produce a dump only if requested by the program 
that is terminating abnormally. 

The default is PROG. 

For background jobs, if YES is specified, the system 
re-initiates the job when the system is re-IPLed. The 
initial SUBMIT parameter values will still be in effect. 
NO is the default. 

Controlled Release Draft 4-320 October, 1985 



Stack On Input 

Lower 
I I Address 
lo 1 2 3 I 

OCSP) I I 
I (1) (2) Address I Higher 
I Parameter Listi Address 
I Preceding I 
I Stack Data I 

(1) Operation code - binary value from 0 - 255. 

(2) Address of a parameter list constructed in the following manner 
for the particular type of request: 

SUBMIT JOB 

(1) 

(2) 

(3) 

(4) 

(5) 

The 

The 

The 

ARGUMENT LIST 
(1) Procedure Name 8 
(2) Library Name 8 
(3) Volwne Name 6 
(4) Job Name 8 
(5) Job Class 1 
(6) DwnJ2 Options 1 
(7) CPU Time Limit 4 
(8) Job Type 1 
(9) Hold/Active 1 
(10) Other Flags 1 
(11) Reserved 5 

name of the procedure 

bytes 
bytes 
bytes 
bytes 
byte 
byte 
bytes 
byte 
byte 
byte 
bytes 

Lower 
Address 

Higher 
Address 

(PROCNAME) to be run. 

name of the library in which the procedure resides. 

name of the volwne on which the procedure resides. 

A user-supplied job name or spaces. 

The job class to which this job is to be queued. 

(6) The action to be taken in case of an abnormal termination of 
this job: 

X'CO' - Produce a dwnp for this job (DUMP=YES). 
X'80' - Do not produce a dwnp for this job CDUMP=NO). 
X' 00' - Produce a dump only if requested by the program 
terminating abnormally (DUMP=PROG). 

Controlled Release Draft 4-321 October, 1985 



(7) The CPU time limit (in timer units) imposed upon this job. 
If zero, then the job has no time limit. 

(8) Job type: 
X'80' - Permanent 
X'OO' - Not permanent 

(9) The initial status of this job when it is queued. 
X'80' STATUS=HOLD. Not eligible for scheduling until 
released by the operator or the submitter. 
X'OO' - STATUS=RUN. Eligible for scheduling upon submission 
of the request. 

(10) Whether or not to check for a CPU time limit, the action to 
be taken in case the limit is exceeded, and whether or not the 
job should be requeued after execution. 

(11) 

X' 80' - check for timer limit expiration. (If a CPU time 
limit is specified then this bit must be on.) 
X'40' - CANCEL this job if the CPU time limit is exceeded. 
X' 20' - PAUSE this job if the CPU time limit is exceeded. 
(If neither CANCEL nor PAUSE is specified and a CPU time 
limit has been set, then a warning is issued.) 
X'04' - REQUEUE this job after execution. 
X'Ol' - CPU limits are in seconds. 

Reserved, must be 0. 

SUBMIT PRINT 
Lower 
Address 

ARGUMENT LIST 
(1) Print File 8 bytes 

Name 
(2) Library Name 8 bytes 
(3) Volwne Name 6 bytes 
(4) Print Class 1 byte 
(5) Form Nwnber 1 byte 
(6) # of CoEies 2 bytes 
(7) Hold/Active 1 byte 
(8) Options 1 byte 
(9) Reserved 16 bytes Higher 

Address 

(1) The name of the file (FILENAME) to be printed. 

(2) The name of the library in which the file resides. 

(3) The name of the volume on which the file resides. 

(4) The print class (PRTCLASS) to which this file is to be 
queued. 

Controlled Release Draft 4-322 October, 1985 

'~ 



('61'., 

(5) The form number (FORMi), in binary, of this file to be 
printed. 

(6) The number of COPIES (in binary) of this file to be printed. 

(7) The initial status of this file when it is queued. 

(8) Options. 
X'80' - HOLD, not eligible for printing until released by the 
operator or the submitter. 
X' 00' - SPOOL, eligible for printing upon submission of the 
request. 

( 9) Whether or not this file should be requeued, saved, or 
scratched after printing: 

X'40' - REQUEUE this file after printing. 
X'20' - SAVE this file after printing. 

(10) Reserved, should be 0. 

SUBMIT TRANSMIT or SUBMIT RETRIEVE 

A 224-byte data structure that is constructed as follows: 

(1) Local file 
information 

(2) Remote file 
information 

(3) File Name Format 
(4) Remote File Type 
(5) Location 
(6) GrouE 
(7) ReElace 
(8) Status 
(9) Dis:eosition 
(10) Transfer Di SEO 

(11) Options 

71 bytes 

71 bytes 

1 byte 
1 byte 

16 bytes 
16 bytes 

1 byte 
1 byte 
1 byte 
1 byte 

28 bytes 

Lower 
Address 

(1) Local file information can be one of three different formats 
depending upon the type of file specified in (3) below. 

Controlled Release Draft 4-323 October, 1985 



(a) Format for VS file: 

Lower 
Address 

(a) File Name 8 bytes 
(b) Library 8 bytes 
Cc) Volume 6 bytes 
(d) Reserved 49 bytes 

(b) Format for word processing document: 

I 
(a) Document ID I 
(b) Document Library! 
(c) Password I 
( d) Reserved I 
Ce) Document Volume I 
(f) Reserved I 

I 

(c) Format for OIS file: 

(a) OIS File Name 

4 
1 
6 
5 
6 

49 

Lower Address 

bytes 
byte 
bytes 
bytes 
bytes 
bytes 

Lower 
Address 

71 bytes 

(2) Remote file information can be any of the formats described 
below. 

(a) Format for VS file: 

(a) File Name 
Cb) Library 
(c) Volume 
Cd) Reserved 

Controlled Release Draft 

Lower 
Address 

8 bytes 
8 bytes 
6 bytes 

49 bytes 

4-324 October, 1985 

r'\ 

r'\, 



(b) Format for word processing document: 

I 
I 

(a) Document ID I 
(b) Document Library I 

I (c) Password 
(d) Volume 
(e) Reserved 

(c) Format for OIS file: 

(a) OIS File Name 

(3) File name format 
X'OO' - undefined 
X'Ol' - VS file 

(4) 

(5) 

(6) 

( 7) 

(8) 

( 9) 

X'02' - WP document file 
X'03' - VS/OIS file 
X'04' - OIS file 

Remote file type 
X'OO' - undefined 
X'Ol' - VS file 
X'02' - WP document file 
X'03' - VS/OIS file 
X'04' - OIS file 

Location 

Group 

Replace 
X'OO' - No 
X'80' - Yes 

Status 
X'OO' - Active 
X' 80' - Hold 

Disposition 
X'OO' - Save 
X'80' - Delete 

I 
I 
I 

Lower 
Address 

4 bytes 
1 byte 
6 bytes 
8 bytes 

52 bytes 

Lower 
Address 

71 bytes 

Controlled Release Draft 4-325 October, 1985 



(10) Transfer disposition 
X'OO' - Store . 
X'Ol' - Print 
X'02' - Run 

( 11) Options specifies print files or run options for procedure 
files. One of the following two formats must be supplied: 

(a) Print options 

(12) Print Class 1 byte 
(13) Form# 1 byte 
(14) # of Co12ies 2 bytes 
(15) Print Dis12 1 byte 
(16) Prnt Mode Status 1 byte 
(17 Print from Page 1 byte 
(18) Print thru Page 1 byte 
(19) Start Page # 1 byte 
(20) First Header Pg 1 byte 
(21) First Footer Pg 1 byte 
(22) Bgn Footer Line 1 byte 
(23) Page Length 1 byte 
(24) Character Set 1 1 byte 
(25) Character Set 2 1 byte 
(26) Printer Number 1 byte 
(27) Left Margin 1 1 byte 
(28) Left Margin 2 1 byte 
(29) Pitch l byte 
(30) Format 1 byte 
(31) Forms 1 byte 
(32) Style 1 byte 
(33) Summary 1 byte 
(34) Lines 1 byte 
(35) Reserved 4 bytes 

Items 17 - 34 above are word processing document file print 
options. For other file types, values supplied for these items 
are ignored. However, the total space must be allocated. 

(15) Print disposition 
X'OO' - Scratch 
X'20' - Save 
X'40' - Requeue 

(16) Print mpde status 
X'OO' - Spool 
X'80' - Hold 

Controlled Release Draft 4-326 October, 1985 

~ 
----



(29) Pitch 
X'Ol' - 10 
X'02' - 12 
X' 03' - PS 
X'04' - 15 

(30) Format 
X'OO' - Unjustified 
X'40' - With notes 
X'80' - Justified 

( 31) Forms 
X'OO' - Continuous 
X'20' - Form 2 
X'40' - Form 1 
X'80' - Standard 

C 32) Style 
X'OO' - Final 
X' 80' - Draft 

(33) Summary 
X'OO' - Omit 
X' 80' - Print 

( 34) Lines 
X'OO' - 6 per inch 

I""""'.., X' 80' - 8 per inch 

Cb) Run Options 

(12) Job Name 
(13) Job Mode 
(14) Job Disposition 
(15) Job Action 
(16) Job Class 
(17) CPU Time Limit 
(18) Dump Options 
(19) Reserved 

(13) Job mode 
X'OO' - run 
X' 80' - hold 

(14) Job disposition 
X' 80' - requeue 

(15) Job action 
X'OO' - Warn 
X'04' - Pause 
X'80' - Cancel 

8 bytes 
1 byte 
1 bytes 
1 byte 
1 byte 
4 byte 
1 byte 
11 bytes 

Controlled Release Draft 4-327 October, 1985 



Stack On Output 

O(SP) 

Output 

(18) Dump options 
X'OO' - Program specified 
X'CO' - Dump 
X' 80 ' - No dump 

Return Code 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

A return code is placed in the top word of the stack. 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

Description 

Success. 

Volume not mounted. 

Volume in exclusive use. 

All buffers in use. Unable to perform verification. 

Library not found. 

File not found. 

Improper file type (or zero records as indicated in 
label. 

File access denied. 

VTOC error, FDXl and FDX2 do not agree. 

VTOC error, FDX2 and FDR do not agree. 

Invalid specification of file/library/volume. 

VTOC unreliable. 

Controlled Release Draft 4-328 October, 1985 



Code 

48 

52 

56 

Examples 

Description 

System task not running, no spooled printing or 
noninteractive jobs. 

Error in performing XMIT to system task. 

Invalid options specified in parameter list. 

LAB SUBMIT JOB,PROCNAME='MYPROC' ,LIBRARY=PROCLIB,VOLUME=CR5), 
JOBCLASS='A',CPULIMIT=CCR3),'PAUSE'),DISP='REQUEUE' 

+LAB PUSHN 0,44 GET SPACE ON STACK FOR "PLIST" 
+ XC 0(44,15),0(15) AND CLEAR IT TO ZEROES 
+ MVC 0(8,15),*+10 SET PROCEDURE NAME 
+ B *+12 BRANCH AROUND LITERAL 
+ DC CL8'MYPROC' PROCEDURE NAME 
+ MVC 8(8,15),PROCLIB SET LIBRARY NAME 
+ MVC 16(6,15),0(R5) SET VOLUME NAME 
+ MVPC 22(8,15),*+2(1),C' ' DEFAULT JOBNAME TO SPACES 
+ MVI 30(15),C'A' SET JOB CLASS 
+* (STATUS OPTION DEFAULTED TO 

+ 
+ 
+ 
+* 
+* 
+* 
+ 

+* 
+* 
+ 
+* 
+ 
+* 
+ 

ST 
MVI 
OI 

OI 

R3,32(,15) 
37C15),X'80' 
37 (15) ,X' 20' 

37(15) ,X' 04' 

PUSHA 0,0(,15) 

MVI 0(15), 1 

SVC 46 (SUBMIT) 

Controlled Release Draft 4-329 

'RUN') 
SET CPU TIME LIMIT 
FLAG CPU TIME LIMIT SET 
SET CPU LIMIT EXPIRE OPTION 
X'40 I - CANCEL 
X' 20 I - PAUSE 
X'OO' - WARN 

SET JOB DISPOSITION TO 
'REQUEUE' 
(DUMP OPTION DEFAULTED TO "ON 
PROGRAM REQUEST ONLY") 
POINT TO "PLIST" WITH STACK 
TOPWORD 
FLAG REQUEST TYPE: 1 = JOB 

2 = PRINT 
ISSUE SVC 

October, 1985 



LAB 

+LAB 
+* 
+ 
+• 
+ 
+ 
+ 
+ 
+* 
+* 
+• 
+ 
+ 

LAB 

+LAB 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+* 
+* 
+* 
+ 
+* 
+ 
+* 
+ 
+* 
+ 

SUBMIT JOB,PLIST=MYPLIST,LIBRARY=PROCLIB,JOBNAME=MYJOB, 
JOBCLASS=(R5),CPULIMIT=(,'CANCEL'),DUMP=DUMPOPT 

PUSHA 0,MYPLIST POINT TO "PLIST" WITH STACK 
TOPWORD 

MVI 

MVC 
MVC 
MVC 
or 

0(15),l 

MYPLIST+8(8),PROCLIB 
MYPLIST+22(8),MYJOB 
MYPLIST+30(1),0(R5) 
MYPLIST+37,X'40' 

FLAG REQUEST TYPE: 1 - JOB 
2 - PRINT 

SET LIBRARY NAME 
SET JOB NAME 
SET JOB CLASS 
SET CPU LIMIT EXPIRE OPTION 
X'40' - CANCEL 
X' 20 I - PAUSE 
X'OO' - WARN 

MVC MYPLIST+31(1),DUMPOPT SET DUMP OPTION 
SVC 46 (SUBMIT) ISSUE SVC 

SUBMIT PRINT,FILENAME='MYFILE",LIBRARY=PRINTLIB, 

PUSHN 
XC 
MVC 
B 
DC 
MVC 
MVC 
MVC 
MVI 
MVI 

VOLUME=(R5),PRTCLASS=CR2),FORM#=27,DISP='SAVE' 
0, 44 GET SPACE ON STACK FOR "PLIST" ... 
0(44,15),0(15) ... AND CLEAR IT TO ZEROES 
0(8,15),*+10 SET FILE NAME 
*+12 BRANCH AROUND LITERAL 
CLS'MYFILE' FILE NAME 
8(8,15),PRINTLIB SET LIBRARY NAME 
16(6,15),0(R5) SET VOLUME NAME 
22(1,15),0(R2) SET PRINT CLASS 
23(15) ,27 SET FORM NUMBER 
25(15),l DEFAULT NUMBER OF COPIES TO 1 

(HIGH ORDER BYTE ALREADY CLEARED) 
(STATUS OPTION DEFAULTED TO 
'SPOOL') 

MVI 27Cl5),X'20' SET DISPOSITION: X'40' - REQUEUE 

PUSHA 0,0(,15) 

MVI 0(15),2 

SVC 46 (SUBMIT) 

X'20' - SAVE 
POINT TO "PLIST" WITH STACK TOP 
WORD 
FLAG REQUEST TYPE: 1 - JOB 

2 - PRINT 
ISSUE SVC 

Controlled Release Draft 4-330 October, 1985 

.~ 



4.2.72 SUBMIT - Submit Transmit or Retrieve Request (SVC 46) 

Syntax 

Format 1: 

[label] SUBMIT {TRANSMIT}[,PLIST={Cregister)}] 
{RETRIEVE} { address } 

[,FILENAME={Cregister)}] 
{ 'string' } 
{ address } 

[,LIBRARY={Cregister)}][,VOLUME={(register)}] 
{ 'string' } {'string' } 
{ address } {address } 

[,RFILENAME={(register)}][,RLIBRARY={Cregister)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,RVOLUME={Cregister)}][,FILE={Cregister)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,RFILE={Cregister)}][,LCX::ATION={Cregister)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,GROUP={Cregister)}][,STATUS={'ACTIVE'}] 
{ 'string' } { 'HOLD' } 
{ address } {address } 

[,DISP={ 'SAVE' })][,XFERDISP={'STORE'})] 
{'SCRATCH'} {'PRINT'} 
{ address } { 'RUN' } 

[,PRNTMODE={'SPOOL'})][,PRTDISP={'SCRATCH'})] 
{'HOLD' }' {'REQUEUE'} 
{address} { 'SAVE' } 

{ address } 

[,FORM#={Cregister)}][,COPIES={Cregister)}] 
{ integer } { integer } 
{ address } { address } 

[,JOBMODE={ 'RUN' }][,JOBDISP={'REQUEUE'}] 
{ HOLD } { address } 
{address} 

Controlled Release Draft 4-331 October, 1985 



[,PRTCLASS={Cregister)}] 
{ 'string' } 
{ address } 

[,ACTION={ 'WARN' }][,JOBCLASS={Cregister)}] 
{'CANCEL'} { 'string' } 
{'PAUSE' } { address } 
{address } 

[,CPULIMIT={(register)}][,DUMP={ 'PROG'}] 
{address } { 'NO' } 

{ 'YES' } 
{address} 

[,JOBNAME={(register)}][,DOCID={(register)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,PASSWORD={Cregister)}][,DOCVOL={(register)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,RDOCID={(register)}][,RPASSWORD={(register)}] 
{ 'string' } { 'string' } 
{ address } { address } 

[,RDOCVOL={(register)}][,REPLACE={ 'YES' }] 
.{ 'string' } { 'NO' } 
{ address } {address} 

[,START={(register)}][,FINISH={Cregister)}] 
{ integer } { integer } 
{ address } { address } 

[,NUMBER={(register)}][,HEADER={(register)}] 
{ integer } { integer } 
{ address } { address } 

[,FOOTER={<register)}][,LINE={(register)}] 
{ integer } { integer } 
{ address } { address } 

[,LENGTH={Cregister)}][,CHARSETl={(register)}] 
{ integer } { integer } 
{ address } { address } 

[,CHARSET2={(register)}][,PRINTER={Cregister)}] 
{ integer } { integer } 
{ address } { address } 

Controlled Release Draft 4-332 October, 1985 

-.........__ __ ..,,.,. 



~\ 

I~ 

[,MARGINl={<register)}][,MARGIN2={<register)}] 
{ integer } { integer } 
{ address } { address } 

[,PITCH={Cregister)}][,FORM={ (register) }] 
{ '10' } {'CONTINUOUS'} 
{ I 12 ' } { 'STANDARD I } 

{ 'PS' } { 'FORMl I } 

{ I 15 I } { I FORM2 I } 

{ address } { address } 

[,FORMAT={ (register) }][,SUMMARY={(register)}] 
{'UNJUSTIFIED'} { 'OMIT' } 
{ 'JUSTIFIED' } { 'PRINT' } 
{ address } { address } 

[,STYLE={(register)}][,LINES={Cregister)}] 
{ t FINAL I } { I 6 ' } 
{ t DRAFT I } { I 8 I } 

{ address } { address } 

[,PRTDISP={'SCRATCH'}][,COPIES={(register)}] 
{'REQUEUE'} { integer} 
{ 'SAVE' } { address } 
{ address } 

Function 

SUBMIT transfers files from one computer system to another over the 
WangNet communications link. If the initial parameter is TRANSMIT, 
SUBMIT requests the queuing of a VS file or a WP document for 
transferring to the target system. If the initial parameter is RETRIEVE, 
SUBMIT requests the queuing of a VS file or a WP document for retrieval 
from the specified location. 

The following parameters are required for the specified operations. 
All others are optional. 

• TRANSMIT VS file -- one of the following parameters is required: 

FILENAME, LIBRARY, VOLUME and LOCATION 
FILE and LOCATION 
PLIST 

• TRANSMIT VS WP document -- DOCID and LOCATION are required, 
unless PLIST is specified. 

Controlled Release Draft 4-333 October, 1985 



• RETRIEVE VS file -- one of the following parameters is required: 

RFILENAME, RLIBRARY, RVOLUME and LOCATION 
RFILE and LOCATION 
PLIST 

• RETRIEVE WP DOCUMENT -- DOCID and LOCATION are required unless 
PLIST is specified. 

Restrictions 

If the PLIST option is not used, the program issuing the SUBMIT must 
pop off the stack the additional 224 bytes that were pushed on the stack 
when the SUBMIT was issued. 

Parameter Definitions 

PL I ST 

FILENAME 

LIBRARY 

VOLUME 

FILE 

RFILENAME 

RLIBRARY 

A 224-byte user-supplied parameter list (fullword aligned) 
for use by the SUBMIT SVC. If PLIST is specified, then the 
remaining parameters are optional and, if present, are used 
to modify the parameter list in place. The default values 
of any omitted parameters are not recognized so as not to 
override the value set in the user's parameter list. If 
PLIST is not specified, then the remaining parameters are 
used to build a parameter list on the stack. The default 
values of omitted parameters are used in this case. The 
user is responsible for popping off 224 bytes beyond the 
stack topword (SVC return code) on return. See the 
previous section, SUBMIT JOB OR PRINT REQUEST, for the 
structure of PLIST. 

The name of the file to be queued for transfer to or 
retrieval from a remote location. 

The name of the library in which the file resides. 

The name of the volume on which the file resides. 

The name of the file CVS-OIS filename format) to be queued 
for transfer with the following format: 
'/VOLUME:LIBRARY.FILENAME/'. 

For a TRANSMIT, the name of the file to be assigned on the 
remote system. RFILENAME is an optional parameter that is 
valid for only XFERDISP store option. For a RETRIEVE, this 
is the name of the file to be retrieved from the remote 
location. 

For a TRANSMIT, the name of the library to be assigned on 
the remote system in which the file resides. RLIBRARY is 
an optional parameter that is valid for only XFERDISP store 
option. For a RETRIEVE, this is the name of the library in 
which the file resides on the remote system. 

Controlled Release Draft 4-334 October, 1985 



RVOLUME 

RFILE 

DOCID 

PASSWORD 

DOC VOL 

RDOCID 

RPASSWORD 

For a TRANSMIT, the name of the volume to be assigned on 
the remote system on which the file resides. RVOLUME is an 
optional parameter that is valid for only XFERDISP store 
option. For a RETRIEVE, the name of the volume on which 
the file resides on the remote system. 

For a TRANSMIT, the name of the file CVS-OIS file name 
format) to be assigned on the remote system with the 
following format: '/VOLUME:LIBRARY.FILENAME/'. RFILE is an 
optional parameter that is valid for only XFERDISP store 
option. For a RETRIEVE, the name of the file CVS-OIS file 
name format) to be retrieved from the remote location with 
the following format: '/VOLUME:LIBRARY.FILENAME/'. 

For a TRANSMIT, the name of the WP document to be queued 
for transfer. The document name consists of a 4-digit 
document number, followed by the document library, which is 
designated by one lowercase or uppercase letter. For a 
RETRIEVE, the name of the WP document to retrieve from the 
remote location. This is an optional parameter that is 
valid for only XFERDISP store option. 

For a TRANSMIT, the password for the WP document to 
trans£ er C if the document is password protected) . For a 
RETRIEVE, the password given to the retrieved docwnent Cif 
the document is to be password protected, or if the 
document is to be protected with a new password if it was 
already password protected.) This is an optional parameter 
that is valid for only XFERDISP store option. 

For a TRANSMIT, the name of the volwne on which the 
document resides. For a RETRIEVE, the name of the volume 
on which the retrieved document will be placed. This is an 
optional parameter that is valid for only XFERDISP store 
option. 

For a TRANSMIT, the name of the WP document that the file 
is given at the remote location. The file name consists of 
a four-digit document number, followed by the document 
library, which is designated by one letter (uppercase or 
lowercase). This is an optional parameter that is valid 
for only XFERDISP store option. For a RETRIEVE, the name 
of the WP document to retrieve from the remote location. 

For a TRANSMIT, the password that protects the document at 
the remote location (if the document is to be protected by 
a new password). This is an optional parameter that is 
valid for only XFERDISP store option. For a RETRIEVE, the 
password of the document to be retrieved from the remote 
location. 

Controlled Release Draft 4-335 October, 1985 



RDOCVOL 

LOCATION 

GROUP 

REPLACE 

STATUS 

DISP 

XFERDISP 

PRTCLASS 

FORM# 

COPIES 

PRTDISP 

PRNTMODE 

JOBNAME 

For a TRANSMIT, the name of the volume on which the 
document is placed at the remote location. This is an 
optional parameter that is valid for only XFERDISP store 
option. For a RETRIEVE, the name of the volume on which 
the document resides on the remote system. 

The name of the location to which or from which the file or 
document is to be transferred. 

The name of the transfer group. 

The option to replace a duplicate file. If YES, the 
existing file is deleted providing the user has write 
access and the transfer completes normally. If NO, if a 
file with the same name exists, the transfer is aborted. 
NO is the default. 

The initial status of the transfer. If ACTIVE, the request 
is scheduled at the earliest possible time. If HOLD, the 
request is held until released by either the user or the 
operator. 

If SAVE, the source file is not scratched after the 
transfer has completed. If SCRATCH, the source file is 
scratched upon completion of the transfer. 

The transfer disposition determines whether or not the file 
or document is to be executed, printed or stored. If 
PRINT, the file or document is printed. If STORE, the file 
or document is stored. If RUN, the file is executed. 

The print class (A-Z) to be used. 

The form number, in binary C0-255), to be used. 

The number of copies, in binary, to be printed. 

The disposition of the print file after printing. SCRATCH, 
REQUEUE or SAVE after printing. 

Initial status of this file when queued. SPOOL signifies 
that the file is eligible for printing upon submission of 
the request. HOLD signifies that the file is not eligible 
for print scheduling until released by the operator or the 
submitter. 

The JOBNAME or blanks to be assigned to the job to be 
executed. 

Controlled Release Draft 4-336 October, 1985 



JOBMODE 

JOBDISP 

ACTION 

JOBCLASS 

CPULIMIT 

START 

FINISH 

NUMBER 

HEADER 

FOOTER 

LINE 

LENGTH 

CHARSETl 

CHARSET2 

PRINTER 

MARGIN! 

MARGIN2 

PITCH 

FORMAT 

Initial status of job when queued. RUN signifies that the 
job is eligible for scheduling upon arrival at the 
specified location. HOLD specifies that the job is not 
eligible for scheduling until released by the operator or 
the submitter. 

The disposition of the job after processing. REQUEUE after 
execution. 

The system action to be taken if the CPU time limit 
expires. WARN specifies that a warning message is displayed 
on Workstation 0. CANCEL specifies that the job is to be 
force cancelled if the time limit expires. PAUSE signifies 
a forced pause or HELP if the CPU time limit expires. 

The job class (A-Z) of the job to be executed. 

CPU time limit in seconds that is stored as a binary 
value. If zero is supplied, no time limit is enforced. 

First page (in binary) of document to be printed. 

Last page (in binary) of document to be printed. 

Starting page number (in binary) of the document. 

Page nwnber (in binary) for first header in the document. 

Page number (in binary) for first footer in the document. 

Line nwnber (in binary) where footer begins. 

Page length (in binary) for the document. 

Printer character set (in binary) to be used in printing 
the document. 

Alternate character set (in binary) to be used in printing 
the document. 

Printer number (in binary) to be used to print the document. 

Left margin (in binary) to be used when printing the 
document. 

Alternate margin (in binary) to be used when printing the 
document. 

Character pitch to be used when printing the document. 

Print format to be used when printing the document. Either 
unjustified, justified or with notes. 

Controlled Release Draft 4-337 October, 1985 



FORM Type of form to be used when printing the document. 

STYLE Printing style to be used when printing the document. 

SUMMARY Determines whether or not to print the document statistics. 

LINES Determines printer lines per inch for the document. 

Output 

SUBMIT issues a return code in the stack top word that indicates the 
success, failure, or status of the operation. 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

Description 

Success. 

Volume not mounted. 

Volume in exclusive use. 

All buffers in use, unable to perform verification. 

Library not found. 

File not found. 

Improper file type. 

File access denied. 

VTOC error, FDXl and FDX2 do not agree. 

VTOC error, FDX2 and FDR do not agree. 

Invalid specification of file, library or volume. 

VTOC unreliable. 

System task not running. 

Error during XMIT SVC. 

Invalid options specified in parameter list (reserved 
bytes not zero). 

Invalid document (document number or document library 
identifier. 

Controlled Release Draft 4-338 October, 1985 



~' 

~ 

64 

68 

72 

76 

80 

84 

88 

92 

96 

100 

104 

108 

112 

Example 

SEND 

+SEND 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+* 
+* 

Invalid remote document C document number or document 
library identifier. 

Document volume not alphanumeric. 

Invalid replace option. 

Invalid status (not ACTIVE or HOLD). 

Invalid disposition (not SAVE or SCRATCH). 

Invalid transfer disposition. 

Invalid file class (must be zero). 

Invalid file type. 

Invalid remote file type. 

No access rights CREPLACE=NO and file exists or 
REPLACE=YES and no WRITE access)(RETRIEVE option). 

Invalid location name. 

No system task queue entry available. 

GETMEM error during message port CREATE. 

SUBMIT TRANSMIT,FILENAME='TRANSFILE' ,LIBRARY='DAILY', 
VOLUME='ACCOUNTS',LOCATION='SYSTEM' 

PUSHN 0,224 * GET SPACE ON STACK FOR "PLIST" ... 
XC 0(224,15),0(15) * ... AND CLEAR IT TO ZEROES 
MVC 0(8,15),*+10 SET FILE NAME 
B *+12 BRANCH AROUND LITERAL 
DC CL8'TRANSFILE' FILE NAME 
MVC 8(8,15),*+10 SET LIBRARY NAME 
B *+12 BRANCH AROUND LITERAL 
DC CL8'DAILY' LIBRARY NAME 
MVC 16(6,15),*+10 SET VOLUME NAME 
B *+10 BRANCH AROUND LITERAL 
DC CL6'ACCOUNTS' VOLUME NAME 
MVI 142(15),l SET LOCAL FILENAME TYPE 
MVC 144(8,15),*+10 SET LOCATION 
B *+12 BRANCH AROUND LITERAL 
DC CL8 I SYSTEM I LOCATION 

(GROUP OPTION WILL GET DEFAULT 
VALUES) 

Controlled Release Draft 4-339 October, 1985 



+ 
+* 
+ 
+* 
+ 
+* 
+ 

MVI 192(15),X'OO' 

MVI 193(15),X'OO' 

MVI 194(15),X'OO' 

MVI 195(15),X'OO' 

(REPLACE OPTION DEFAULTED TO 
"NO") 

(STATUS OPTION DEFAULTED TO 
"ACTIVE") 

(DISPOSITION OPTION DEFAULTED TO 
"SAVE") 

(TRANSFER DISPOSITION OPTION 
+* DEFAULTED TO "STORE") 
+ PUSHA 0,0(,15) POINT TO "PLIST" WITH STACK TOP 
+* WORD 
+ MVI 0(15).,3 FLAG REQUEST TYPE: 1 - JOB 
+* 2 - PRINT 
+* 3 - TRANSMIT 
+* 4 - RETRIEVE 
+ SVC 46 (SUBMIT) ISSUE SVC 
GET SUBMIT RETRIEVE,RDOCID='0160A' ,LOCATION=CR5),DOCID='0063H' 
+GET PUSHN 0,224 * GET SPACE ON STACK FOR "PLIST" ... 
+ XC 0(224,15),0(15) * ... AND CLEAR IT TO ZEROES 
+ MVI 142(15),2 SET LOCAL FILENAME TYPE 
+ MVI 143(15),2 SET REMOTE FILENAME TYPE 
+ MVC 0(5,15),*+10 SET DOCUMENT ID 
+ B *+10 BRANCH AROUND LITERAL 
+ DC CL5'0063H' DOCUMENT ID 
+ DS OH 

MVC 71(5,15),*+10 
B *+10 
DC CL5'0160A' 
OS OH 

+* 
+* 
+ 
+ 
+ 
+ 
+* 
+* 
+* 
+ 
+* 
+* 
+ 
+* 

MVC 144(8,15),0(R5) 

+ 
+* 
+ 
+* 

MVI 192(15),X'OO' 

MVI 193(15),X'OO' 

MVI 194(15),X'OO' 

+ MVI 195(15),X'OO' 
+* DEFAULTED TO 
+ PUSHA 0,0(,15) 
+* WORD 
+ MVI 0 Cl 5 ) , 4 
+• 
+* 
+* 
+ SVC 46 (SUBMIT) 

"STORE") 

(DOCUMENT NOT PASSWORD PROTECTED) 
(DOCUMENT VOLUME DEFAULTED) 
SET REMOTE DOCUMENT ID 
BRANCH AROUND LITERAL 
REMOTE DOCUMENT ID 

(REMOTE DOCUMENT NOT PASSWORD 
PROTECTED) 

(REMOTE DOCUMENT VOLUME DEFAULTED) 
SET LOCATION 

(GROUP OPTION WILL GET DEFAULT 
VALUES) 

(REPLACE OPTION DEFAULTED TO 
"NO") 

(STATUS OPTION DEFAULTED TO 
"ACTIVE") 
(DISPOSITION OPTION DEFAULTED TO 
"SAVE") 
(TRANSFER DISPOSITION OPTION 

POINT TO "PLIST" WITH STACK TOP 

FLAG REQUEST TYPE: 1 - JOB 
2 - PRINT 

ISSUE SVC 

3 - TRANSMIT 
4 - RETRIEVE 

Controlled Release Draft 4-340 October, 1985 



SUBMIT TRANSMIT,FILENAME=TRANSFLE,LIBRARY=LIBNAME, 
VOLUME='SYSTEM' ,LOCATION='MYSYS' 

+ PUSHN 0,224 * GET SPACE ON STACK FOR "PLIST" •.• 
+ XC 0(224,15),0(15) * ... AND CLEAR IT TO ZEROES 
+ MVC 0(8,15),TRANSFLE SET FILE NAME 
+ MVC 8(8,15),LIBNAME SET LIBRARY NAME 
+ MVC 16(6,15),*+10 SET VOLUME NAME 
+ B *+10 BRANCH AROUND LITERAL 
+ DC CL6'SYSTEM' VOLUME NAME 
+ MVI 142(15),l SET LOCAL FILENAME TYPE 
+ MVC 144(8,15),*+10 SET LOCATION 
+ B *+12 BRANCH AROUND LITERAL 
+ DC CL8 I MYSYS I LOCATION 
+* (GROUP OPTION WILL GET DEFAULT 
+* VALUES) 
+ MVI 192(15),X'OO' (REPLACE OPTION DEFAULTED TO 
+* "NO") 
+ MVI 193 (15) ,X' 00 I (STATUS OPTION DEFAULTED TO 
+* "ACTIVE") 
+ MVI 194(15) ,X' 00 I (DISPOSITION OPTION DEFAULTED TO 
+* "SAVE") 
+ MVI 195 (15) ,X' 00 I (TRANSFER DISPOSITION OPTION 
+* DEFAULTED TO "STORE") 
+ PUSHA 0,0(,15) POINT TO "PLIST" WITH STACK TOP 
+* WORD 
+ MVI 0(15) ,3 FLAG REQUEST TYPE: 1 - JOB 
+* 2 - PRINT 

~\ +* 3 - TRANSMIT 
+* 4 - RETRIEVE 
+ SVC 46 (SUBMIT) ISSUE SVC 

Controlled Release Draft 4-341 October, 1985 



4.2.73 SYSERROR - System Error Code Definitions 

Syntax 

SYS ERROR 

Function 

Establishes symbolic names and their equivalent numeric codes for 
common system error conditions. 

Example 
SYS ERROR 

+SYS ERROR DSECT 
+* SYSTEM ERROR CODE DEFINITIONS 
+* 
+SYSEREND DS CLl 
+@ERSUCC EQU 0 
+@ERIPVAL EQU 1 
+@ERIPTYP EQU 2 
+@ERPROT EQU 3 
+@ERUNPRIV EQU 4 
+@ERTHEAP EQU 5 
+@ERSHEAP EQU 6 
+@ERVNM EQU 7 
+@ERVACC EQU 8 
+@ERFDE EQU 9 
+@ERACC EQU 10 
+@EROPQ EQU 11 
+@ERLLQ EQU 12 
+@ERSUBQ EQU 13 
+@ERVEO EQU 14 
+@ERBIU EQU 15 
+@ERODE EQU 16 
+@ERFIU EQU 17 
+@ERIOERR EQU 18 
+@ERDINFO EQU 19 
+@ERIPROG EQU 20 
+@ERNOTIME EQU 21 
+@ERVIU EQU 22 
+@ERUNEXP EQU 23 
+@ERFILENAME EQU 24 
+@ERHNAME EQU 26 
+@ERTID EQU 27 
+@ERDEV EQU 28 
+@ERFILTYP EQU 29 
+@ERINV EQU 30 
+@ERDOCNAME EQU 31 
+@ERSYS EQU 32 
+@ERNODIAG EQU 33 

Controlled Release Draft 

SUCCESS 
ILLEGAL PARAMETER VALUE 
ILLEGAL PARAMETER TYPE 
ATTEMPTED PROTECTION VIOLATION 
UNPRIVILEGED CALLER 
TASK HEAP EXHAUSTED 
SYSTEM HEAP EXHAUSTED 
VOLUME NOT MOUNTED 
VOLUME ACCESS DENIED 
FILE DOES NOT EXIST 
FILE ACCESS DENIED 
OPEN FILE QUOTA EXHAUSTED 
LINK LEVEL QUOTA EXHAUSTED 
SUBTASK QUOTA EXHAUSTED 
VOLUME EXCLUSIVELY OPENED 
ALL BUFFERS IN USE 
DIRECTORY DOES NOT EXIST 
FILE IN USE 
I/O ERROR 
DISK INFORMATION MISMATCH 
INVALID PROGRAM FILE 
NO INTERVAL DEFINED 
VOLUME IN USE 
UNEXPIRED FILE 
ILLEGAL FILENAME 
HEAP NAME ERROR 
ILLEGAL TASK ID 
ILLEGAL DEVICE 
ILLEGAL FILE TYPE 
ILLEGAL OPTIONS COMBINATION 
ILLEGAL DOCUMENT NAME 
SYSTEM TASK ERROR 
NO DIAGNOSTIC PAGES AVAILABLE 

4-342 October, 1985 

--· 



!""'\ 

+@ERDIAGUSE 
+@ERVOLNAME 
+@ERV.AM 
+@ERDTYP 
+@ERRES 

EQU 34 
EQU 35 
EQU 36 
EQU 37 
EQU 38 

+@ERMTYPE EQU 39 
+@ERVLM EQU 40 
+@ERVTM EQU 41 
+@ERADDRS EQU 42 
+@ERDETACH EQU 43 
+@ERNOTPR(X} EQU 44 
+@ERFNOTEXC EQU 45 
+@EROPEN EQU 46 
+@ERVND EQU 47 
+@ERTIMEOUT EQU 48 
+@ERNPF EQU 49 
+@ERVRES EQU 50 
+@ERDEVNUM EQU 51 
+@ERDEVNAME EQU 52 
+@ERFOPEN EQU 53 
+@ERTASK EQU 54 
+@ERTASKCR EQU 55 
+@ERDEVACT EQU 56 
+@ERNOTRES EQU 57 
+@ERSPACE EQU 58 
+@ERNOCODE EQU 59 
+@ERBUSY EQU 60 
+@ERVSPACE EQU 61 
+@ERFILMAP EQU 62 
+@ERMODECON EQU 63 
+@ERMODENS EQU 64 
+@EREOF EQU 65 
+@ERNOTSUP EQU 66 
+@ERCLOSE EQU 67 
+@ERDIRACC EQU 68 
+@ERNDE EQU 69 
+@ERDUP EQU 70 
+@ERDIRFULL EQU 71 
+@ERINS EQU 72 
+@ERPATH EQU 73 
+@ERINP EQU 74 
+@ERMISALIGN EQU 75 
+@ERVNAME EQU 7 6 
+@ERUREJECT EQU 77 
+@ERINSUFMBO EQU 78 
+@ERINSUFPCN EQU 79 
+@ERINSUFQ EQU 80 
+@ERINSUFMEM EQU 81 
+@ERNOTFOUND EQU 82 

Controlled Release Draft 

DIAGNOSTIC PAGES USE ERROR 
ILLEGAL VOLUME NAME 
VOLUME ALREADY MOUNTED 
ILLEGAL DEVICE TYPE 
DEVICE RESERVED 

MEDIA TYPE ERROR 
VOLUME LABEL MISMATCH 
VOLUME TYPE MISMATCH 
ADDRESSING TYPE ERROR 
DEVICE IS DETACHED 
DEVICE IS NOT PROGRAMMABLE 
FILE NOT EXCLUSIVELY OPENED 
ERROR ON OPEN 
VOLUME NOT DISMOUNT.ABLE 
TIMEOUT ON REQUEST 
ERROR FROM @PROC@ 
VOLUME RESERVED 
NUMBER OF DEVICES NOT AVAILABLE 
ILLEGAL DEVICE NAME 
FILE NOT OPEN 
TASK IN PR(X}RESS 
TASK CREATE/DELETE ERROR 
DEVICE ACTIVE 
DEVICE NOT RESERVED 
NO SPACE ON VOLUME 
PP NOT LOADED 
IOP BUSY 
NOT ENOUGH VIRTUAL SPACE 
FILE ALREADY MAPPED/NOT MAPPED 
MODE CONFLICT WITH PREVIOUS OPEN 
MODE NOT SUPPORTED ON THIS DEVICE 
I/O ATTEMPTED PAST END OF FILE 
SVC NOT SUPPORTED ON THIS SYSTEM 
ERROR ON CLOSE 
DIRECTORY ACCESS ERROR (CB.AM) 
NODE DOES NOT EXIST 
DUPLICATE 
NO MORE INDICES IN DIRECTORY 
INSERT FAILED 
INVALID PATH NAME 
ILLEGAL NUMBER OF PARAMETERS 
PARAMETER NOT PROPERLY ALIGNED 
VOL MOUNTED, BUT NAME DIFFERS 
USER REJECTED OPERATION 
INSUFFICIENT MAILBOX RESERVE 
PROCESS CHILD QUOTA EXHAUSTED 
QUOTA EXHAUSTED 
INSUFFICIENT MEMORY 
ARGUMENT OR VALUE NOT FOUND 

4-343 October, 1985 



+@ERTRUNC EQU 83 
+@ERNAE EQU 84 
+@ERTERM EQU 85 
+@ERADE EQU 86 
+@ERPARAMNOT EQU 87 
+@ERSERVNOTA EQU 88 
+@ERSTRTRUNC EQU 89 
+@ERNVSEDIR EQU 90 
+@ERDIRIOERl EQU 91 
+@ERDIRIOER2 EQU 92 

+@ERDIRUNREL EQU 93 
+@ERDIRSPEXH EQU 94 
+@ERBADIOCOM EQU 95 
+@ERRUNPRIV EQU 96 
+@ERTRANFUL EQU 97 
+@ERBOUNDARY EQU 98 
+@ERMODULE EQU 99 
+@ERNOTINMOD EQU 100 
+@ERINVGARG EQU 101 
+@ERPBLANK EQU 102 
+@ERBADPID EQU 103 
+@ERNOTPAUSED EQU 104 
+@ERBGPROC EQU 105 
+@ERMAXTRAPS EQU 106 
+@ERBUFEMPTY EQU 107 
+@EROUTRANGE EQU 108 
+@ERDBGNOTACT EQU 109 
+* 
+* Security Logging Return Codes: 
+* 
+@ERGETSETEVENTS EQU 120 
+* 
+@ERGETRSTEVENTS EQU 121 
+* 
+@ERGETSETVIOLS EQU 122 
+* 
+@ERGETRSTVIOLS EQU 123 
+* 
+@ERSTATCNTRL EQU 124 
+* 
+@ERINACTNOTNEW EQU 125 
+* 
+@ERNEWLIBNOTNEW EQU 126 
+* 
+@ERLOGGINGON EQU 127 
+@ERLOGINACTIVE EQU 128 
+@ERNOREPLY EQU 129 
+@ERWRONGMSG EQU 130 
+@ERLOGNOTPRIV EQU 131 
+* 

Controlled Release Draft 

Value truncation detected 
NODE ALREADY EXISTS 
TERMINAL NODE 
ATTRIBUTE DOES NOT EXIST 
REQUIRED PARAMETER NOT FOUND 
SYSTEM SERVICE NOT AVAILABLE YET 
String truncation detected 
VSE DIRECTORY NOT PRESENT ON VOL 
DIRECTORY I/O ERROR COPY 1 
DIRECTORY I/O ERROR COPY 2 

DIRECTORY UNRELIABLE:MULT I/OERR 
DIRECTORY SPACE ON VOL EXHAUSTED 
BAD IO COMMAND ISSUED 
ATTEMPT TO RUN PRIV CODE WHILE UNPRIV 
BAD BLOCK TRANSLATION TABLE FULL 
Process level boundary/EOstack found 
Module frame encountered 
Signal invalid outside module 
Invalid Getarg call 
DATA = BLANKS OR GARBAGE 
PROCESS ID NOT FOUND 
PROCESS NOT PAUSED 
PROCESS LIVES IN BACKGROUND 
TOO MANY TRAPS SPECIFIED 
Buffers empty 
OUT OF RANGE 
No debugging active for this task 

Can't do both Get and Set Events 
on same CNTROLOG call 

Can't do both Get and Reset Events 
on same CNTROLOG call 

Can't do both Get and Set Violations 
on same CNTROLOG call 

Can't do both Get and Rst Violations 
on same CNTROLOG call 

Can't do both Control and Getstatus 
on same CNTROLOG call 

Can't request Inactfile when not 
doing a Newlog on CNTROLOG call 

Can't specify Newlib and Control 
if Control not = Newlog 

Logging is already active 
Logging is not active 
No reply message from Systsk 
Invalid message sent back by Systsk 
Caller not authorized to log this 

Event Type 

4-344 October, 1985 



+@ERLOGEVNTNOTSET EQU 132 
+* 
+@ERLOGVIOLNOTSET EQU 133 
+* 
+@ERNOLOOGING EQU 134 
+* 

+* Synchronous object error codes 
+* 
+* 
+@ERALRDYHAS 
+@ERSOUNAV 
+@ERSOACCDIS 
+@ERSONOTOWN 
+@ERMKDEL 
+* 

EQU 135 
EQU 136 
EQU 137 
EQU 138 
EQU 139 

Controlled Release Draft 

Event specified on PUTLOG is not 
set to be logged 

Violation specified on PUTLOG is 
not set to be logged 

Logging task has been terminated 

User already has this sync object 
Sync object unavailable CNOWAIT opt) 
Sync object access disallowed 
Sync object not owned by caller 
Sync object marked for delete 

4-345 October, 1985 



+* Errors for Font Services 
+@ERFTFDE EQU 283 
+@ERFTNONE EQU 284 
+@ERFTNUM EQU 285 
+* 

Font entry doesn't exist 
No fonts installed for the device 
Font number already exists 

+* File Format Manager Errors 
+@ERUSERID EQU 286 * User ID invalid on remote system 
+@ERUSRLST EQU 287 * Unable to read USERLIST 
+@ERUNKWN EQU 288 * Unable to INVOKE a File Server 
+* 
+SYSERLENGTH EQU *-SYSERROR 
+ CSECT 

Controlled Release Draft 4-346 October, 1985 



.l"""t\, 

4.2.74 TCOPTION - Set Telecommunications Stream Options 

Syntax 

[label] TCOPTION 

Function 

UFB={(register)}[,STREAM={READER} ] 
{ address } {PUNCH } 

{PRINTER} 

[,DEVTYPE={2780 }][,RECSIZE=integer] 
{3780 } 
{TCDIAG} 

[,COMP={YES}][,PRINT={NO }][,BLOCKED={YES}] 
{NO } {YES} {NO } 

[,TRANSMISSION=({TRANSPARENT ,} 
{NONTRANSPARENT,} 

{ BLOCKED, } 
{UNBLOCKED, } 

{UNPADDED, } 
{PADDED, } 

{COMPRESSED, } 
{UNCOMPRESSED,} 

{EBCDIC})] 
{ASCII } 

Sets the teleconununications (TC) stream options in the user file 
block (UFB). The UFB TC stream options consist of the data option, the 
transmit/receive option, and the maximum record size option. They are 
stored in the UFBTCDATAOPT, UFBTCXMITOPT, and UFBTCMAXRECSZ. 

The stream options are defined as follows: 

• TC data option: 
Bit 0 = 1 Print format VS records in use 
Bit 1 = 1 Compressed VS record format 
Bit 2 = 1 Blocked VS record format 
Bits 3-5 Reserved 
Bits 6-7 = 00 For card reader stream 

= 01 For card punch stream 
= 10 For printer stream 
= 11 Reserved 

Controlled Release Draft 4-347 October, 1985 



• TC transmit/receive option: 
Bit 0 = 1 Perform code translation from EBCDIC to ASCII 
Bit 1 = 1 Compress transmitted record data 
Bit 2 = 1 Pad transmitted records to exact length with space 
codes 
Bit 3 = 1 Block transmitted records 
Bit 4 = 1 Transmit in transparent mode 
Bits 5-7 Reserved 

The third byte in the TC stream option is equal to the maximum or 
exact transmitted record length minus one. 

Parameter Definitions 

UFB 

STREAM 

DEVTYPE 

PRINT 

BLOCKED 

COMP 

The address of a user file block CUFB), which may be 
supplied as a register specified in parentheses that 
contains the UFB address, or as an address expression not 
in parentheses, where the word addressed is assumed to 
begin the UFB. 

To identify the stream of the TC line, valid values are 
READER for card reader, PUNCH for card puncher, or PRINTER 
for printer. 

To identify the device type of the TC line, valid values 
are 2780, 3780 for IBM-2780, IBM-3780 batch TC stream, and 
TCDIAG for TC diagnostic use. This option does not take 
effect until the addressed UFB has been opened again 
(unlike the other options of TCOPTION, which are effective 
on the next OMS function request). 

If YES, the corresponding bit in the data option is set to 
1; otherwise, the bit is set to 0. 

If NO, the corresponding bit in the data option is set to 
O; otherwise, to 1. 

If NO, the corresponding bit in the data option is set to 
O; otherwise to 1. 

TRANSMISSION The bits in the transmit/receive option are set according 
to the parameter specified. For example, if TRANSPARENT is 
specified, the corresponding bit 4 in the transmit/ receive 
option is set to 1; if NONTRANSPARENT is specified, bit 4 
in the transmit/receive option is set to 0. 

RECSIZE The third byte in the TC stream option is set to the 
integer value minus 1. 

Controlled Release Draft 4-348 October, 1985 



Example 

.~ LABl TCOPTION UFB=(R2) ,STREAM=PUNCH,BLOCKED=NO,RECSIZE=lO, 
TRANSMISSION=(NONTRANSPARENT,PADDED) 

+LABl LR l,R2 SET REGISTER 1 
+ MVI 85(1),65 SET TC DATA OPTIONS 
+ MVI 86(1),B'OllllbOO' SET TC XMIT OPTIONS 
+ MVI 87(1),10-1 SET TC MAXIMUM RECORD SIZE 

Controlled Release Draft 4-349 October, 1985 



4.2.75 TIME - Get Date and Time (SVC 2) 

Syntax ~ 

[label] TIME 

Function 

[JUL][ ,HMS] 
[YMD] [ ,CLK] 

The current date and time are returned to the calling routine in one 
of two forms. The date is returned in either Julian or year-month-day 
format and the time is returned in hours-minutes-seconds or clock ticks 
format. 

Parameter Definitions 

JUL 

YMD 

HMS 

CLK 

The date is returned in Julian format in the 
higher-addressed word of the two-word area pushed onto the 
stack as follows: A packed number in the format OOYYDDDF, 
where YY is the year, DOD is the day of the year, and F a 
hexadecimal 'F' (positive sign). 

The date is returned in the standard format in the 
higher-addressed word of the two-word area pushed onto the 
stack as follows: A packed number in the format OYYMMDDF, 
where YY is the year, MM is the month, DD is the day, and F 
a hexadecimal 'F'. 

If HMS is specified (or by default), the current time is 
returned in the lower-addressed word of the two-word area 
pushed onto the stack in packed digits in the format 
HHMMSSth, where: · 

• HH is hours in day 
• MM is minutes in hour 
• SS is seconds in minute 
• t is tenths of second in second 
• h is hundredths of second in tenth of second 

The minimum time value is 00000000; the maximum is 23595999. 

If CLK is specified, the current clock value is returned in 
the lower-addressed word of the two-word area pushed onto 
the stack, in binary, in 1/100 second units from the 
previous midnight. 

Controlled Release Draft 4-350 October, 1985 



Stack On Input 

Q(SP) 

4(SP) 

(1) Requested Time 
Format 

(2) Requested Date 
Format 

Preceding Stack Data 

(1) Requested time format: 

Lower 
Address 

Higher 
Address 

0 = Decimal format, hours, minutes, seconds, CSECs 
1 = Binary format, CSECs 

(2) Requested date format: 
0 =JUL (Julian); year, day-in-year 
1 = YMD; year, month, day 

Stack On Output 

O(SP) 

4(SP) 

(1) Time 

(1) Time 

(2) Date 

Preceding Stack Data 

Lower 
Address 

Higher 
Address 

Decimal - Time of day in hours, minutes, seconds, CSECs 
Binary - Time of day in CSECs 

(2) Date in one of two formats: 
YMD - packed, in the format OYYMMDDF, where 

YY is the year 
MM is the month 
DD is the day 
F is a hexadecimal F for unpacking 

JUL - Packed, in the format OOYYDDDF, where 
YY is the year 
DOD is the day of the year (1-365) 
F is a hexadecimal F for unpacking 

Controlled Release Draft 4-351 October, 1985 



ExamEles 

TIME JUL ('i 
+ PUSHA 0,0 ,_. 

+ PUSHA 0,0 
+ SVC 2 (TIME) 

TIME YMD,CLK 
+ PUSHA 0,1 
+ PUSHA 0,1 
+ SVC 2 (TIME) 

Controlled Release Draft 4-352 October, 1985 



4.2.76 TPLAB - Describe Magnetic Tape File Header, Trailer and 
End-of-Volume Labels 

Syntax 

TPLAB [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

Describes the magnetic tape file header, trailer, and end-of-volume 
labels in ANSI standard format. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Structure 

TPLAB 
BEGIN 

+o 
+4 
+8 
+c 

+10 
+14 
+18 
+18 
+lC 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C 

Specification of NODSECT results in the TPLAB fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, a DSECT with the name TPLAB 
(plus optional SUFFIX) is generated. 

Provides for the optional specification of a register for 
which a USING statement for the TPLAB fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters TPLAB, the user-provided SUFFIX (one ASCII 
character in length), and the field name. 

BYTE 0 BYTE 1 BYTE Z BYTE 3 

ID I 
FILE I 

I 
I 
I 

VOL ISER I 
IFILESECTIONI 
I SECTION I 
I FILESEQ I 
!GENERATION I 
I VERSION I 

CREATION I 
I EXPIRATION I 

I 
ACCESS BLKCOUNT I 

I 
SYSTEM I 

I 
I 

CREATOR I 
SPAREl I LENGTH = 50 

Controlled Release Draft 4-353 October, 1985 



Example 

+TPLAB 
+* 

TPLAB REG=S 
DSECT 

+* MAGNETIC TAPE FILE HEADER, TRAILER, AND END OF VOLUME 
+* LABELS CONFORM TO ANSI STANDARDS, AND ARE AS DESCRIBED HERE 
+* ONLY ID AND BLKCOUNT FIELDS ARE REQUIRED IN EOVl AND EOFl. 
+* 
+* 
+* 

DATE 3/28/79 
VERSION 4.00 

+* 
+TPLABBEGIN 
+TPLABID 
+TPLABFILE 
+* 
+* 
+TPLABVOLlSER 
+* 
+* 
+* 
+TPLABFILESECTION 
+* 
+* 
+TPLABFILESEQ 
+* 
+* 
+TPLABGENERATION 
+* 
+TPLABVERSION 
+* 
+TPLABCREATION 
+* 
+* 
+* 
+TPLABEXPIRATION 
+* 
+TPLABACCESS 
+* 
+TPLABBLKCOUNT 
+* 
+* 
+* 
+TPLABSYSTEM 
+* 

EQU * 
DS CL4 
DS CL17 

DS CL6 

OS CL4'0001' 

DS CL4 

DS CL4'0001' 

DS CL2'00' 

OS CL6 

DS CL6 

OS CLl' I 

DS CL6 

OS CL13 

DS CL3 
DS CL4 
EQU * 

'HDRl', 'EOVl', OR 'EOFl' 
UP TO 17 ASCII CHARACTERS, 
LEFT ADJUSTED AND PADDED 
WITH BLANKS, NAMING THE FILE 
VOLUME SERIAL NUMBER MATCHIN 
'VOLlSER' IN VOLUME LABEL (OF THE 
FIRST VOLUME, IF A MULTIVOLUME 
FILE) 
ORDER OF VOLUME IN A MULTI
VOLUME FILE (ASCII '0001' FOR A 
SINGLE-VOLUME FILE) 
FILE SEQUENCE NUMBER 
ON MULTIFILE VOLUME (lST FILE 
IS ASCII I 0001 I ) 

GENERATION NUMBER (CURRENTLY 
ALWAYS '0001', USE DEFERRED) 
VERSION IN GENERATION, 
CURRENTLY ALWAYS ZERO 
CREATION DATE IN THE FORM 
BYYDDD, WHERE B IS A BLANK, 
YY IS YEAR INTO CENTURY, 
DOD IS JULIAN DAY (001 TO 366) 
EXPIRATION DATE IN THE 
ABOVE FORMAT 
ACCESS PROTECTION (FILE 
PROTECTION CLASS OR BLANK) 
BLOCK COUNT IN TRAILER LABEL 
AS SIX ASCII DIGITS. ALWAYS 
PLACED IN I EOVl I AND I EOFl I 

LABELS. ASCII ZEROS IN HDR LABEL. 
CHARACTERS IDENTIFYING 
THE CREATING SYSTEM 
FILE CREATOR ID OR BLANKS 
RESERVED - MUST BE BLANKS 

+TPLABCREATOR 
+TPLABSPAREl 
+TPLABEND 
+TPLABLENGTH EQU TPLABEND-TPLABBEGIN 
+BEGIN CODE 
+ USING TPLAB,5 

Controlled Release Draft 4-354 October, 1985 



4.2.77 TPLB2 - Describe Magnetic Tape Secondary Header, Trailer, and 
End-of-Volwne Labels 

Syntax 

TPLB2 [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

Describes the structure of a secondary magnetic tape header, trailer 
and end of voltune label in ANSI standard format. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Structure 

TPLB2 

BEGIN 
+o 
+4 
+8 
+c 

+10 
+14 
+18 
+lC 
+20 
+24 
+28 
+2C 
+30 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C 

Specification of NODSECT results in the TPLB2 fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, a DSECT with the name TPLB2 
(plus optional SUFFIX) is generated. 

Provides for the optional specification of a register for 
which a USING statement for the TPLB2 fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters TPLB2, the user-provided SUFFIX (one ASCII 
character in length), and the field name. 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

ID 
REC FM BLKI 

REC! 
ORG 

OISl OIS2 OIS3 OISSYS 
OISBLS SPARE! 

BOFF 
SPARE2 

LENGTH = 50 

Controlled Release Draft 4-355 October, 1985 



Example 

TPLB2 REG=2,SUFFIX=L 
+TPLB2L DSECT 
+* 
+* MAGNETIC TAPE SECONDARY HEADER, TRAILER, AND END OF 
+* VOLUME LABELS CONFORM TO ANSI STANDARDS, AS FOLLOWS 
+* 
+* DATE 8/28/81 
+* VERSION 5.01.01 
+* 
+TPLB2LBEGIN EQU * 
+TPLB2LID DS CL4 'HDR2', 'EOV2', OR 'EOF2' 
+TPLB2LRECFM DS CLl 'F' - FIXED LENGTH RECORDS 
+* 
+* 'F' - FIXED LENGTH RECORDS 
+* 'D' - VARIABLE LENGTH RECORDS 
+* IBM FORMAT 
+* 'W' - VARIABLE LENGTH RECORDS 
+* WANG FORMAT 
+* 'X' - VARIABLE LENGTH COMPRESSED 
+* RECORDS WANG FORMAT 
+* 'U' - UNDEFINED LENGTH RECORDS 
+TPLB2LBLKL DS CLS BLOCK LENGTH (ASCII) 
+TPLB2LRECL DS CLS RECORD LENGTH (ASCII) 
+TPLB2LORG DS BLl FILE ORGANIZATION 
+TPLB2LORGCONSEC EQU X'Ol' CONSECUTIVE 
+TPLB2LORGWP EQU X'04' WP FILE ~ +TPLB2LORGPRINT EQU X'40' PRINT FILE 
+TPLB2LORGPROG EQU X'80' PROGRAM FILE 
+TPLB2LOIS1 DS BLl RESERVED FOR VS/OIS FILE TRANSFER 
+TPLB2LOIS2 DS BLl RESERVED FOR VS/OIS FILE TRANSFER 
+TPLB2LOIS3 DS BLl RESERVED FOR VS/OIS FILE TRANSFER 
+TPLB2LOIS3PLOG EQU X'Ol' FILE PROLOGUE SECTOR PRESENT 
+TPLB2LOISSYS DS BLl OIS SYSTEM INDICATOR 
+TPLB2LOISSYS100 EQU X' 01' OIS-100 FILE 
+TPLB2LOISSYS200 EQU X'02' OIS-200 FILE 
+TPLB2LOISBLS DS BLl OIS BYTES IN LAST SECTOR 
+TPLB2LSPARE1 DS CL29 RESERVED FOR OPERATING 
+* SYSTEM USE 
+TPLB2LBOFF DS CL2 BUFFER OFFSET 
+TPLB2LSPARE2 DS CL28 RESERVED - MUST BE ASCII 
+TPLB2LEND EQU * 
+TPLB2LLENGTH EQU TPLB2LEND-TPLB2LBEGIN 
+BEGIN CODE 
+ USING TPLB2L,2 

Controlled Release Draft 4-356 October, 1985 



4.2.78 TRANSMIT - Transmit Telecommunications I/O CSVC 3) 

Syntax 

Format 1: 

[label] TRANSMIT DATA,OFB= { address }, 
{(register)} 

COMMAND= 

RECAREA= 

{ address }, 
{ (register) } 
{self-defining term} 

{ address }, 
{(register)} 

LENGTH= { address }, 

Format 2: 

[label] TRANSMIT 

Function 

IOCWOPTS= 

{ (register) } 
{self-defining term} 

{ address } 
{(register)} 

CONTROL,OFB={ address }, 
{(register)} 

COMMAND= 

IOCWOPTS= 

{ address }, 
{ (register) } 
{self-defining term} 

{ address } 
{(register)} 

TRANSMIT DATA initiates a WRITE SIO operation directed to the OLP on 
the addressed communication channel device. TRANSMIT CONTROL initiates 
a CONTROL SIO operation directed to the DLP on the addressed 
communication channel device. 

The TRANSMIT macroinstruction invokes the XIO SVC (SVC 3) to initiate 
the I/O operation. The XIO SVC checks that the specified communication 
channel is opened, and that the communication channel and the OLP are not 
reserved by another task. A CHECK for completion of the I/O operation 
is not implicit, and must be produced by waiting for reception of the 
IOSW using the TCIO option of the CHECK facility. See the XIO macro for 
further information. 

Controlled Release Draft 4-357 October, 1985 



Parameter Definitions 

OFB 

COMMAND 

RECAREA 

LENGTH 

IOCWOPTS 

A required parameter that defines the address of the open 
file block COFB) for the VS-DLP I/O channel device to be 
used in the I/O operation. The address can be obtained 
from the interprocessor control block (!PCB). Specified as 
an address expression that points to a 4-byte field which 
contains the OFB address in its low-order three bytes, or 
as a register in parentheses that contains the address of 
the OFB in the low-order three bytes. 

A required parameter which enables the user to supply a 
value for the command byte (byte 0) of the IOCW constructed 
by the XIO SVC. The default for the TRANSMIT DATA option 
is X' 80' . The default for the TRANSMIT CONTROL option is 
X'CO'. The parameter value may be specified as an address 
expression that points to a 1-byte field which contains the 
command byte, as a register in parentheses that contains 
the command byte in its least significant byte, or a 
character string which is the command byte. 

A required parameter that defines the address of the area 
which contains the data to be transferred. The value 
specified in the RECAREA parameter is the value placed by 
the XIO SVC in the data address field of the IOCW (bytes 
1-3). The parameter can be specified as an address 
expression, or as a register in parentheses which contains 
the address of the reception area in the low-order three 
bytes. 

A required parameter that defines the length of the data to 
be transferred in the I/O operation. The value specified 
is the value placed by the XIO SVC in the data count field 
of the IOCW (bytes 4-5). This parameter can be specified 
an address expression that points to a 2-byte area which 
contains in binary the length in bytes, a register in 
parentheses that contains the length in bytes in its 
low-order two bytes, or a character string in single quotes 
which is the length in bytes. 

Optional nonzero values for the last three bytes (bytes 
6-8) of the 9-byte IOCW may be supplied with the IOCWOPTS 
parameter. The last three bytes default to zeroes. This 
parameter can be specified as an address expression that 
points to a 3-byte field which contains the option bytes, 
or as a register in parentheses that contains the three 
option bytes in its low-order three bytes. 

Controlled Release Draft 4-358 October, 1985 

I~ 



Output 

f""'... A return code is issued by the XIO SVC in the stack top word, as 

l""'-\1 

follows: 

• Low-order halfword of return code field - binary return codes. 

• High-order halfword of the return code field contains the 
residual block counts: 

For return codes 4, 8 - specified block size minus number of 
bytes actually read or written. 

Other return codes - always zero. 

If return codes 0, 4, or 8 are set, the I/O operation is queued for 
initiation and a CHECK must be issued to test for completion. If other 
return codes are set, the operation has been suppressed. 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

Description 

Success. 

Truncation at end-of-extent (non-VOLIO disk only). 

Truncation at end-of-cylinder or end-of-track (disk 
only). 

Starting block number beyond end-of-file Cnon-VOLIO 
disk) or beyond end-of-volume (VOLIO disk). 

Invalid data address or data length. (Data address 
for disk must be page-aligned; for other devices, 
word-aligned. Virtual memory area encompassed by the 
area from data address through data address plus block 
size minus one must be either in the I/O buffer area, 
or entirely above the XIO parameter list on the stack 
if the XIO is issued from unprivileged state. The 
specified length must not imply spanning of more pages 
than there are indirect address list entries for the 
device.> 

Second XIO on file without intervening CHECK. 

TC XIO attempted on an OFB that was not created as the 
result of an IPOPEN on an !PCB. 

TC XIO attempted on a device reserved exclusively by 
another task. 

Controlled Release Draft 4-359 October, 1985 



32 

36 

40 

44 

Example 

XIO has been issued to an inoperative workstation and 
the I/O has not been issued (bit 5 of option flag must 
be set for issuance of this return code). 

TC XIO attempted on a peripheral processor (OLP) 
reserved exclusively by another task. 

WRITE XIO attempted to opened file in WPSHARE mode, 
file not locked. 

READ XIO attempted to opened file in WPSHARE mode, 
file locked by another user. 

GO TRANSMIT CONTROL,OFB=CTRLBLK 
+GO PUSHA 0,0 CLEAR IOCW OPTIONS AREA 
+ PUSHA 0,0 CLEAR NEXT 4 BYTES OF SPACE 
+ MVI 1(15),8 SET DATA LENGTH TO 8 
+ PUSHA 0,0 CLEAR DATA TRANSFER ADDRESS 
+ MVI 0(15),192 SET DEFAULT IOCW COMMAND CODE 
+ PUSHA 0,0 SPACE FOR OFB ADDRESS 01\ 
+ MVC 0(4,15),CTRLBLK PUSH ADDRESS OF THE "OFB" 01\ 
+ MVI 0(15),X'Ol' MARK AS 'TC XIO' 
+ SVC 3 CXIO) 

Controlled Release Draft 4-360 October, 1985 



4.2.79 UFB - Describe User File Block CUFB) 

Syntax 

UFB [NODSECT][,REG=expression][,SUFFIX=character] 

Function 

Describes the structure of a user file block CUFB). A user file 
block must be present in the user's modifiable program area before 
opening a file. The address of this block is stored in the open file 
block COFB) by the OPEN SVC and the address of the OFB is placed in this 
block. 

One UFB control block must exist for every file that a user program 
accesses. The OPEN SVC uses this structure to generate necessary system 
control blocks which control access to the file. Once a file is opened, 
the user program may read and write to the file through the use of OMS 
routines. Once access is no longer needed, the file must be closed by 
issuing the CLOSE SVC. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Structure 

UFB 

BEGIN 0 
+4 
+8 
+c 

+10 

Specification of NODSECT results in the UFB fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, a DSECT with the name UFB (plus 
optional SUFFIX) is generated. 

Provides for the optional specification of a register for 
which a USING statement for the UFB fields is generated. 

If provided, all labels are generated by the concatenation 
of the letters UFB, the user-provided SUFFIX (one ASCII 
character in length), and the field name. 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

VECT 

Controlled Release Draft 4-361 October, 1985 



ORG 

v I 0 VREAD ~ 
+4 VWRITE 
+8 VREWRITE 
+c VDELETE 

+10 VSTART 
BYTE 0 BYTE 1 BYTE 2 BYTE 3 

ORG 

+4 FLAGSD 
+8 
+c 

+10 
+14 ERRAD 
+18 EODAD 
+lC RECAREA 
+20 KEYAREA 
+24 FSl IFS2 BLKSIZE 
+28 RECSIZE FORG Fl 
+2C F2 I DEVCLASSI FLAGS DEVADDR 

F3 +30 PRTCLASSIFORMNO PRNAME 

ORG 
+30 SLOT SIZE ~ +34 
+38 VOLSER 
+3C 
+40 DIRNAME 
+44 
+48 FILENAME 
+4C 
+so FPCLASS CREATOR 

ALTCNT +54 ALTPTR 

ORG 

+54 I LOGRECCNT 

ORG 

+54 I RELPOS 

ORG 

+54 MCTYPE ITCDATAOPTITCXMITOPTITCMAXRECSZI 

Controlled Release Draft 4-362 October, 1985 



ORG 

+54 WP.AID 

BYTE 0 BY TE 1 BYTE 2 BYTE 3 

ORG 

+58 F4 NRECS 
+SC LRECSAVE IRETPD 
+60 BCBl 
+64 
+68 
+6C 

ORG 

XIOFLAGSl+GO OFB 
BUFCMD +64 BUFADR 

+68 BUFDATAL IBUFOFFSET 
+6C BUFBLOCK IBCBFLAGS 

ORG 

+68 TIMEEXIT 
+6C HOLD ID ITIME 

ORG 

+68 SHROPNCODE I 
+6C SHROPNRCSZ lsHROPNFORGISHROPNSPAREI 
+70 BUFSIZE I CHKSIZE I 
+74 RES3 I 

ORG 

+ 
+74 I XO.ATE 

ORG 

+74 I OUTRECS 

ORG 

+78 I SPB INBLKS 

ORG 

+74 IDMSGID 
+78 MAXTFR 

r~ 

Controlled Release Draft 4-363 October, 1985 



ORG 

+7S RESl OPFLAGS ~ 

+7C LF LFMOD 

ORG 

+7C XCODE EREC 
+so VERSION EBLK 
+84 BUFSTART 
+SS RDLTH PRTCOPIES 

ORG 

+SS IWPBLKSIZEI WPBLS 

ORG 

+84 PTRB 
+SS PTRC 

ORG 

+88 I SFBVERSION 

Indexed Disk File Extension Section 

~ 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 

+SC KEYPOS KEYSIZE GKSIZE 
+90 HXBLK DABLK 
+94 PKI 
+98 PTRD 
+9C PTRI 
+AO PTRN 

ORG 

+90 SHRAXDl 
+94 
+9S 
+9C 
+AO 
+A4 BCBIOUT 
+AS 
+AC 
+BO 

Controlled Release Draft 4-364 October, 1985 



ORG 

+A4 
+A8 
+AC 
+BO 
+B4 

BIRECAREA 
BIRECSIZE BIAXDlMASK 

PKD SPAREINX 

DMS/TX Disk File Extension Section 

BYTE 0 BYTE l BYTE 2 BYTE 3 

+BB DXOM I DXRECBLKI DXDBNAME 
+BC 

DXFV# +co DXFV#SEQ# 
+c4 DXFV#DT 
+ca 
+cc DXRECO IDXLSBREC IDXREORGLFI oxes 
+DO DX#BIJS IDXFLAGS IDXPSBBUF 
+D4 IDXSPARE 
+D8 DXMSB 

Magnetic Tape File Extension Section 

ORG 

+SC TSPAREl 
+90 _T_BC~B~~~~~~~~~~~~~~
+94 
+98 
+9C 
+AO TLABELS TDEN TSEQ 
+A4 TFLG TVOLSEQ TSAVEVOL 
+AB 
+AC TPARITY TSPARE2 
+BO 
+B4 

Controlled Release Draft 4-365 October, 1985 



Example 

+UFBA 
UFB REG=CR2),SUFFIX=A 

DSECT 
+******************************************************************** 
+* 
+* THE USER FILE BLOCK CUFB) IS SUPPLIED IN THE USER'S 
+* MODIFIABLE AREA BY THE USER'S PROGRAM BEFORE OPENING 
+* A FILE, AND IS ADDRESSED TO REQUEST EACH OPERATION 
+* ON THAT FILE. THE ADDRESS OF THIS BLOCK IS PLACED 
+* IN THE OPEN FILE BLOCK BY 'OPEN' , AND THE ADDRESS OF 
+* THE OPEN FILE BLOCK IS PLACED IN THIS BLOCK. 
+* 
+* DATE 03-18-83 
+* VERSION 6.00.32 
+* 
+******************************************************************** 
+UFBABEGIN DS OF (FULLWORD ALIGNMENT REQUIRED 
+* *********************************************************** 
+* ACCESS METHOD SECTION 
+* NO FIELDS NEED BE SUPPLIED BEFORE 'OPEN', BUT UFBERRAD 
+* UFBEODAD, UFBRECAREA, AND UFBKEYAREA MAY BE PRESET 
+*IF DESIRED. AFTER 'OPEN', THE USER'S PROGRAM NORMALLY 
+* HAS OCCASION TO MODIFY ONLY THIS SECTION OF THE UFB. 
+* THE FIRST BYTES OF EACH OF UFBVREAD, UFBVWRITE, UFBVREWRITE, 
+* UFBVDELETE AND UFBVSTART ARE ZEROED BY 'OPEN' AND SET 
+* THEREAFTER TO FUNCTION MODIFIER VALUES BY THE USER'S PROGRAM. 
+* THE SUCCEEDING BYTES OF THESE FIELDS CONTAIN ADDRESSES 
+* SUPPLIED BY 'OPEN' WHICH SHOULD NOT BE ALTERED BY THE 
+* USER'S PROGRAM WHILE THE FILE IS OPEN. 
+* UFBFSl AND UFBFS2 ARE SET TO X'30' BY 'OPEN' AND MODIFIED 
+* THEREAFTER BY DATA MANAGEMENT FUNCTIONS. 
+* *********************************************************** 
+UFBAVECT DS SA BRANCH POINTS TO ACCESS 
+* METHOD ROUTINES 
+* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 
+* THE FOLLOWING FUNCTION MODIFIER VALUES ARE PLACED IN THE FIRST 
+* BYTE OF THE WORD CONTAINING THE ADDRESS OF THE FUNCTION TO BE 
+* PERFORMED FOR A USER PROGRAM BEFORE BRANCHING TO THE ROUTINE 
+* ADDRESS. 
+ ORG UFBAVECT 
+UFBAV DS OF (PREFIX TO EQUATE LABELS) 
+* MODIFIERS FOR READ: 
+UFBAVHOLD EQU X'Ol' (HOLD BLOCK EXCLUSIVELY) 
+UFBAVREL EQU X'04' (RELATIVE READ) 

+UFBAVKEYED EQU X'04' (KEYED READ) 
+UFBAVNODATA EQU X'08' COO NOT MOVE DATA TO WORK 
+* AREA ON READ) 
+UFBAVBATCH EQU X'02' (BATCH READ) 

+UFBAVRESET EQU X'lO' (RESET READ) 

+UFBAVMODAGAIN EQU X'20' (READ AGAIN) 
+* MODIFIER FOR WRITE/DELETE (RELATIVE DISK ONLY) 

Controlled Release Draft 4-366 October, 1985 



~ 
( ' 

+UFBAVEOF EQU X'02' (WRITE OR DELETE EOF) 
+*MODIFIERS FOR READ OR REWRITE (WORKSTATION ONLY): 
+UFBAVTABS EQU X' 10 I (READ OR REWRITE TABS - WS) 
+*MODIFIERS FOR READ (WORKSTATION ONLY): 
+UFBAVMOD EQU X' 02 I (READ MODIFIABLE - WS) 
+UFBAVALTR EQU X' 40 I (READ ALTERED - WS) 
+*MODIFIERS FOR REWRITE CWORDSTATION ONLY): 
+UFBAVSELW EQU X'40' (REWRITE SELECTED - WS) 
+*MODIFIERS FOR STARTCDISK ONLY:CINDEXED:CINPUT, IO, SHARED MODES))): 
+* (CONSECUTIVE:CSHARED MODE)): 
+UFBAVEQ EQU X'Ol' (EQUAL TO) 
+*MODIFIERS FOR STARTCDISK ONLY:CINDEXED:CINPUT, IO, SHARED MODES))): 
+UFBAVGT EQU X'02' (GREATER THAN) 
+UFBAVGE EQU X'03' (GREATER THAN OR EQUAL TO) 
+*MODIFIERS FOR START(DISK ONLY:(RELATIVE:(INPUT, IO))): 
+UFBAVLT EQU X'lO' (LESS THAN) 
+UFBAVLE EQU X'll' (LESS THAN OR EQUAL TO) 
+*MODIFIER FOR START (SHARED MODE; IGNORED FOR INPUT & IO MODES): 
+UFBAVHFILE EQU X'80' (HOLD FILE) 
+UFBAVRLS EQU X'20' (RELEASE HELD FILE) 
+UFBAVRANGE EQU X'04' (HOLD REQUEST FOR A RANGE) 
+UFBAVRETRIEVAL EQU X' 40 I (HOLD CLASS IS RETRIEVAL) 
+UFBAVLIST EQU X'lO' (LIST OPTION) 
+*MODIFIERS FOR START (CONSECUTIVE OUTPUT & EXTEND MODES ONLY): 
+UFBAVINPUT EQU X'04' (CHANGE TO TEMPORARY IO MODE 
+UFBAVOUTPUT EQU X'08' (CHANGE TO OUTPUT MODE) 
+UFBAVEXTEND EQU X'20' (CHANGE TO EXTEND MODE) 
+*MODIFIERS FOR START(CONSECUTIVE:(INPUT, I/0, SHARED MODES ONLY)): 
+UFBAVBEGIN EQU X'lO' (BEGINNING OF FILE) 
+UFBAVSKIP EQU X'40' (FROM CURRENT RECORD 
+* USING SIGNED WORD 
+* ADDRESSED BY KEYAREA) 
+*MODIFIERS FOR START(CONSECUTIVE:(I/O, SHARED MODES ONLY)): 
+UFBAVEND EQU X'02' RESET END OF FILE 
+*MODIFIERS FOR START (PHYSICAL ACCESS METHOD ONLY): 
+UFBAVCMD EQU X'80' (***VAGUE NOTE***) 
+UFBAVWAIT EQU X'40' (WAIT FOR I/O COMPLETION) 
+UFBAVWAITS EQU X'41' WAIT FOR TC I/O COMPLETION 
+* ON THIS DEVICE ONLY 
+UFBAVWAITM EQU X'42' WAIT FOR TC I/O COMPLETION 
+* ON ALL DEVICES OPENED BY 
+* THIS PROGRAM 
+UFBAVWAITA EQU X'43' WAIT FOR TC I/O COMPLETIONS 
+* AND TC UNSOLICIT INTERRUPTS 
+UFBAVHALTIO EQU X'20' HALT TC IO OPERATION 
+*MODIFIERS FOR START (WORKSTATION ONLY): 
+UFBAVATTNT EQU X'lO' (TEST FOR ATTENTIONS RECEIVE 
+* *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

Controlled Release Draft 4-367 October, 1985 



+ 
+UFBAVREAD 
+UFBAVWRITE 
+UFBAVREWRITE 
+UFBAVDELETE 
+UFBAVSTART 
+ 

ORG UFBAVECT 
DS A 
DS A 
DS A 
DS A 
DS A 
ORG UFBAVWRITE 

.. FOR READ 

.. FOR WRITE 

.. FOR REWRITE 

.. FOR DELETE 

.. FOR START 

+UFBAFLAGSD 
+UFBAFLAGSDNEWAXD 
+UFBAFLAGSDCONVPR 
+UFBAFLAGSDMULTIO 
+UFBAFLAGSDXCASE 
+UFBAFLAGSDIODONE 

DS BLl RUNTIME FLAGS FOR DISK PROCESSING 
EQU X'80' ALT-INX FILE IS NEW FORMAT 
EQU X'40' AK/PK CONVERTED TO PSEUDO-REC 
EQU X'20' PSB WRITTEN WITH MULTIO FLAG ON 
EQU X'lO' 3-WAY BLOCK SPLIT INDICATOR 
EQU X'08' LAST ALTERNATE INDEX PROCESSED 

+* 
+UFBAFLAGSDPSBALL EQU X'04' 
+UFBAFLAGSDINIT EQU X'02' 

(USED ONLY IF DFLAGSMULTIO ON) 
PSB BUFFER TEMPORARILY ALLOCATED 
PSB BUFFER INITIALIZED 

+UFBAFLAGSDCHECK EQU X'Ol' 
+ DS AL3 

CHECK OFB ISSUED FOR THIS USER 
RESET ASSEMBLY COUNTER 

+ DS 3A 
+* THE FOLLOWING FOUR FIELDS MAY BE SET BEFORE 'OPEN' OR 
+*BEFORE THE FIRST FUNCTION AFTER 'OPEN'. THEY MAY BE CHANGED 
+* BY THE USER'S PROGRAM BEFORE ANY FUNCTION. IF UFBEODAD IS 0, 
+* UFBERRAD WILL BE USED FOR END OF DATA AND INVALID-KEY CONDITIONS. 
+* IF UFBERRAD IS 0, ABNORMAL TERMINATION WILL OCCUR ON ANY 
+*ERROR (AND ON THE ABOVE CONDITIONS IF UFBEODAD IS 0 ALSO). 
+UFBAERRAD OS A I!O UNUSUAL CONDITION USER 
+* ROUTINE ENTRY POINT, OR ZERO 
+UFBAEODAD DS A END OF DATA AND INVALID KEY 
+* USER ROUTINE 
+* ENTRY POINT, OR ZERO. 
+UFBARECAREA DS A ADDRESS IN USER-MODIFIABLE S 
+* OF RECORD WORK AREA 
+UFBAKEYAREA DS A ADDRESS OF AREA CONTAINING 
+* SUPPLIED KEY OR RECORD NUMBER 
+* FOR START OR READ FUNCTIONS 
+* (IF ZERO FOR WORKSTATION FILES, 
+* LINE NUMBER CROW) TAKEN FROM ORDER 
+* AREA) 
+UFBAFSl DS CLl FILE STATUS BYTE 1 FOR DMS 
+UFBAFSlSUCCESS EQU X'30' SUCCESSFUL COMPLETION 
+UFBAFSlATEND EQU X'31' AT END 
+UFBAFSlINVKEY EQU X'32' INVALID KEY OR RECORD NO. 
+UFBAFSlIOERR EQU X'33' PERMANENT I/O ERROR 
+UFBAFSlCANCEL EQU X'36' CANCEL CODE STORED 
+* FOR UFBFlNOMSG COPEN,DMS,CLOSE); UFBFS2=C'O' 
+* MSGID AT UFBVREAD FOR O/C; NO MSGID IF OMS 
+UFBAFSlTIME EQU X'37' TIME-OUT CONDITION ON 
+* SHARED MODE RESOURCE WAIT 
+UFBAFSlSHARE EQU X'38' FS FOR SHARER CONDITION 
+* RESOURCE WAIT 

Controlled Release Draft 4-368 October, 1985 



+UFBAFSlOTHER 
+** 
+UFBAFS2 
+* 
+UFBAFS2NOINFO 
+** 

EQU X'39' OTHER CONDITIONS 

DS CLl FILE STATUS BYTE 2 FOR OMS 

EQU X'30' NO FURTHER INFO 

+*THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFSlINVKEY (X'32') 
+** 
+UFBAFS2SEQERR 
+UFBAFS2DUPKEY 
+UFBAFS2NOREC 
+UFBAFS2BYVIOL 
+** 

EQU X' 31' 
EQU X'32' 
EQU X' 33' 
EQU X'34' 

SEQUENCE ERROR 
DUPLICATE KEY 
NO RECORD FOUND 
BOUNDARY VIOLATION 

+* UFBFS2BDYVIOL IS ALSO USED WITH UFBFSlIOERR (FS = C'34') 
+** 
+*THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBSlSHARE (X'38') 
+** 
+UFBAFS2ACC 
+* 
+* 
+UFBAFS2RESERR 
+UFBAFS2DEADLOCK 
+** 

EQU X' 35' 

EQU X' 36' 
EQU X'37' 

UPDATE ACCESS DENIED FOR 
USER WITH READ-ONLY RIGHTS 
IN SHARED MODE 
RESOURCE CONTROL ERROR 
DEADLOCK 

+*THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFSlOTHER (X'39') 
+** 
+UFBAFS2ROLLBK 
+* 
+UFBAFS2INVFUN 
+* 
+UFBAFS2INVCMD 
+* 
+UFBAFS2INVLTH 
+UFBAFS2MASK 
+* 
+UFBAFS2TRLERR 
+* 
+* 
+UFBAFS2FMTERR 
+* 
+* 
+** 

EQU X'33' CURRENCY LOST DURING 
ROLLBACK 

EQU X'35' INVALID FUNCTION OR 
FUNCTION SEQUENCE 

EQU X' 36' INVALID COMMAND (ALIGNMENT 
OR ADDRESS ERROR FOR DIRECT 1/0) 

EQU X'37' INVALID LENGTH 
EQU X'38' INVALID ACCESS MASK 

(ALTERNATE INDEXED FILES) 
EQU X'38' TRAILER COUNT NOT EQUAL 

TO BLOCKS READ (SET BY SVC 
CLOSE ONLY) 

EQU X'39' FORMAT ERROR (BLOCK PREFIX, 
RECORD PREFIX,EXPANSION ERROR OR 
INVALID CHAIN FIELD) 

+* NOTE: UFBFS2 CONTAINS THE TERMINATING ATTENTION CHARACTER (AID BYTE) 
+* ON WORKSTATION READ SUCCESSFUL COMPLETION. 
+** 
+* NOTE: THE FOLLOWING UFBFS2 VALUES ARE SET ONLY IF AN SVC OPEN 
+* EXIT IS TAKEN. THESE VALUES ARE ALSO USED WHEN CREATING 
+* THE OPEN EXIT MASK TO BE SUPPLIED TO THE OPEN SVC. 
+UFBAFS2XFILE EQU X'80' DUPLICATE FILE OR 
+* FILE NOT FOUND 

Controlled Release Draft 4-369 October, 1985 



+UFBAFS2XLIB 
+UFBAFS2XVOL 
+UFBAFS2XSPACE 
+UFBAFS2XVTOC 
+UFBAFS2XTAPELD 
+UFBAFS2XPOS 
+UFBAFS2XPROT 
+UFBAFS2XFORMAT 
+* 

EQU X'40' 
EQU X'20' 
EQU X'lO' 
EQU X'08 I 

EQU X'08 I 

EQU X'04' 
EQU X'02' 
EQU X'Ol' 

+UFBMMEND EQU * 

LIBRARY NOT FOUND 
VOLUME NOT MOUNTED 
NO SPACE ON VOLUME 
NO VTOC SPACE ON VOLUME 
WRONG TAPE LABEL/DENSITY 
POSSESSION CONFLICT 
PROTECTION CLASS VIOLATION 
OPEN FORMAT ERROR - ERROR 
CLASS DESCRIBED IN UFBXCODE 

+UFBMMLENGTH EQU (UFBMMEND-UFBABEGIN) 
+* *********************************************************** 
+* FILE LOCATION AND ATTRIBUTE SECTION 
+* ALL FIELDS IN THIS SECTION MUST BE SET (SOME OF THEM POSSIBLY 
+* TO 'NULL' VALUES) BY THE USER'S PROGRAM BEFORE INITIALLY 
+* ADDRESSING AN 'OPEN' TO THE UFB. 
+* ALL RELEVANT FIELDS AND FLAGS SET NULL BEFORE 'OPEN' ARE SUPPLIED 
+* HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S 
+* PROGRAM. THE PROGRAM SHOULD NOT MODIFY THESE FIELDS BETWEEN 
+* 'CLOSE' AND A SUCCESSIVE 'OPEN' IF THE SAME FILE IS REQUIRED 
+* (WITHOUT REPROMPTING). 
+* *********************************************************** 
+UFBABLKSIZE DS H MAGNETIC TAPE - MUST CONTAIN 
+* PHYSICAL BLOCK SIZE BEFORE OPEN 
+* IF OUTPUT MODE OR UNLABELLED 
+* TAPE. 
+* DISK OR DISKETTE - ALWAYS 2048 
+* AFTER OPEN EXCEPT WHEN USING 
+* PHYSICAL ACCESS METHOD (PAM) 
+UFBARECSIZE DS H LOGICAL RECORD SIZE 
+* (MUST BE SUPPLIED BEFORE OPEN FOR 
+* OUTPUT OPEN MODE) 
+* 
+UFBAFORG 
+UFBAFORGCONSEC 
+UFBAFORGINDEXED 
+UFBAFORGWP 
+UFBAFORGVIBM 
+UFBAFORGREL 
+UFBAFORGU 
+UFBAFORGVLEN 
+UFBAFORGPRINT 
+UFBAFORGPROG 
+* 

DS BLl 
EQU X'Ol' 
EQU X'02' 
EQU X'04' 
EQU X'08 I 

EQU X'08 I 

EQU X'lO' 
EQU X'20' 
EQU X'40' 
EQU X'80' 

FILE ORGANIZATION 
CONSECUTIVE 
INDEXED 
WORD PROCESSING FILE 
IBM VARIABLE-LENGTH RECORDS 
RELATIVE 
UNDEFINED RECORD FORMAT 
VARIABLE-LENGTH RECORDS 
PRINT FILE 
PROGRAM FILE 

+UFBAFl DS BLl OPTION FLAGS 
+UFBAFlNOGET EQU X'80' USE GETPARM =TYPE RD 
+UFBAFlNODISP EQU X'40' USE GETPARM = TYPE ID 
+* UFBFlNOGET AMD UFBFlNODISP USED BY SVC OPEN ONLY; NOT RESET BY OMS 
+UFBAFlPAM EQU X'20' PHYSICAL ACCESS METHOD 
+UFBAFlBAM EQU X'lO' BLOCK ACCESS METHOD 

Controlled Release Draft 4-370 October, 1985 



+UFBAFlPREVO EQU X'08 I THIS UFB PREVIOUSLY OPENED 

~ 
+UFBAFlWORK EQU X'04' SCRATCH THIS WORK FILE ON 
+* CLOSE IF SET & FILE HAS A 
+* TEMPORARY NAME 
+UFBAFlPOOL EQU X'02' BUFFER POOLING FOR RAM 
+* (UFBBUFSTART MUST CONTAIN 
+* BCT ADDRESS AT OPEN TIME) 
+UFBAFlOPEN EQU X'Ol' THIS UFB OPEN IF SET 
+UFBAF2 DS BLl OPEN MODE FLAGS 
+UFBAF2DML EQU X' 80' DML in progress 
+UFBAF20UT EQU X'40' TO OPEN FOR OUTPUT MODE 
+UFBAF2IN EQU X'20' TO OPEN FOR INPUT MODE 
+UFBAF2IO EQU X'lO' TO OPEN FOR IO MODE 
+UFBAF2EXTEND EQU X'08' TO OPEN FOR EXTEND MODE 
+UFBAF2SHARED EQU X'04' TO OPEN FOR SHARED MODE 
+UFBAF2DALT EQU X'02' DELETIONS IN PROGRESS 
+* ON ALT-INDEX FILE 
+UFBAF2SPCL EQU X'02' TO OPEN FOR SPECIAL IO 
+* 
+UFBAF2PLOG EQU X'Ol' FILE PROLOGUE PRESENT 
+* 
+UFBADEVCLASS DS BLl DEVICE CLASS (REQUIRED 
+* BY 'OPEN') 
+UFBADEVCLASSWS EQU X'Ol I WORKSTATION 
+UFBADEVCLASSTAPE EQU X'02' MAGNETIC TAPE 
+UFBADEVCLASSDISK EQU X'03' DISK 
+UFBADEVCLASSPRT EQU X'04' PRINTER 
+UFBADEVCLASSTC EQU X'OS' TC DEVICE 
+UFBADEVCLASSVC EQU X'OG I VOICE DEVICE 
+UFBADEVCLASSDUMM EQU X'FF' DUMMY FILE 
+UFBAFLAGS DS BLl FILE ATTRIBUTE FLAGS 
+UFBAFLAGSUPDAT EQU X' 80' FILE HAS BEEN CLOSED 
+UFBAFLAGSCOMP EQU X'40' DATA RECORDS IN COMPRESSED 
+* FORMAT 
+* ******* UFBFLAGSRECOV - RECOVERY=YES FOR BIT = ZERO *********** 
+UFBAFLAGSRECOV EQU X'20' USE PREFORMAT AND RECOVERY 
+* PROCEDURES IF ZERO (INDEXED ONLY) 
+UFBAFLAGSALTX EQU X' 10' ALTERNATE INDICES IN FILE 
+UFBAFLAGSLOG EQU X'08' CONSEC LOG FILE FLAG 
+UFBAFLAGSALTP EQU X'08' ALTERNATE-TREE PROCESS FLAG 
+UFBAFLAGSPART EQU X'04' PARTIAL BACKUP FILE 
+* PROGRAM SETS BIT BEFORE OPEN OUTPUT 
+* (BAM OR PAM) TO SET BIT IN FILE 
+* LABEL, OR SETS BIT BEFORE NON-OUTPUT 
+* OPEN (BAM OR PAM) IF ABLE TO PROCESS 
+* PARTIAL FILES. INVALID FOR RAM. 
+UFBAFLAGSXLCLS EQU X'02' SHARED FILE EXCLUSIVE 
+* LOCK ON CLOSE FLAG 
+UFBAFLAGSPRIV EQU X'Ol' PROGRAM FILE CARRIES 
+* ADDITIONAL ACCESS PRIVILIGES 

Controlled Release Draft 4-371 October, 1985 



+UFBADEVADDR 
+* 
+* 
+* 
+* 
+* 
+UFBAF3 
+UFBASLOTSIZE 
+ 
+UFBAPRTCLASS 
+* 
+UFBAFORMNO 
+UFBAPRNAME 
+* 
+* 
+UFBAVOLSER 
+* 
+* 
+* 
+* 
+* 
+* 
+* 
+• 
+UFBADIRNAME 
+• 
+* 
+* 
+• 
+* 
+• 
+• 
+UFBAFILENAME 
+* 
+* 
+* 
+• 
+• 
+• 
+• 
+• 
+• 
+UFBAFPCLASS 
+• 
+* 
+• 
+* 
+UFBACREATOR 
+• 
+UFBAALTCNT 
+* 

Controlled Release Draft 

DS HLl DEVICE ADDRESS (FOR PRINTERS 
AND WORKSTATIONS ONLY. 
USED IF SUPPLIED 
AND PLACED HERE BY 'OPEN' IF 
NOT SUPPLIED. HEX FF IF 
NOT SUPPLIED. ) 

DS OBLl (* NAME KEPT FOR COMPATIBILITY *) 
DS H RELATIVE FILE SLOT SIZE 
ORG UFBAF3 
DS CLl PRINT CLASS (A-Z) 

DS HLl PRINTER FORM NUMBER (BINARY) 
DS CLS PARAMETER REFERENCE NAME 

(MUST ALWAYS BE SUPPLIED HERE 
FOR 'OPEN') 

DS CL6 VOLUME SERIAL NUMBER FOR 

DS CLS 

DS CLS 

VOLUME-ORIENTED FILES (TAPE 
OR DISK) 
(IF 6 ASCII BLANKS, TAKEN FROM 
PROCEDURE SPECIFICATION OR 
'OPEN'-TIME PROMPT. IF SPECIFIED 
IN NEITHER OF THESE WAYS, 
TAKEN FROM DEFAULT IN 
ETCB) 

DIRECTORY NAME (IF 8 ASCII 
BLANKS, DIRECTORY NAME TAKEN 
FROM PROCEDURE SPECIFICATION 
OR 'OPEN'-TIME PROMPT. 
IF SPECIFIED IN NEITHER PLACE 
AND VOLUME SERIAL ALSO 
OMITTED, DEFAULT IN ETCB 
USED) 

FILE NAME (UNDER DIRECTORY) 
(IF 8 BLANKS, FILE NAME TAKEN 
FROM PROCEDURE SPECIFICATION 
OR 'OPEN'-TIME PROMPT. 
WORK FILE SPECIFICATION IF 
ASCII '#' OR '$' FOLLOWED BY 
FOUR ALPHAMERICS - LAST 
3 CHARACTERS THEN MUST BE 
BLANKS - SEE WORK FILE 
DOCUMENTATION) 

OS CLl FILE PROTECTION CLASS 
VALUE TO LABEL IF OUT-MODE; 
TAKEN FROM USER 'SET' DEFAULTS IF 
X'OO' IS SUPPLIED; 
VALUE FROM LABEL IF EXISTING FILE 

DS CL3 FILE CREATOR FOR NEW OR 
EXISTING DISK FILES 

DS OBLl COUNT OF ALTERNATE INDICES 
IN FILE AFTER SVC OPEN 

4-372 October, 1985 

,/""'\ 



+UFBMLTPTR 
+* 

DS A POINTER TO AXDl-AREA FOR DMS 

+* 
PROCESSING (~L REFERENCE TO THE 
AXDl-AREA MUST USE UFBALTPTR) 

+* 
+* FOR CONSEC FILES, THE ALTPTR FIELD HOLDS LOG!~ RECORD COUNT 
+ ORG UFBAALTPTR 
+UFBALOGRECCNT DS F LOGICAL RECORD COUNT FOR START END 
+* FOR RELATIVE FILES, THE ALTPTR FIELD HOLDS CURRENCY INFORMATION 
+ ORG UFBAALTPTR 
+UFBARELPOS DS F RELATIVE FILE LOGICAL CURRENCY PTR 
+* FOR DEVICES OTHER THAN DISK, THE ALTCNT FIELD IS FOR MICROCODE TYPE 
+ ORG UFBAALTCNT 
+UFBAMCTYPE DS XLl 
+UFBAMCTYPE2780 EQU X'Ol' 
+UFBAMCTYPE3780 EQU X'02' 
+UFBAMCTYPETCD EQU X'03' 
+* 

DEVICE TYPE 
2780 BATCH TC 
3780 BATCH TC 
TC DIAGNOSTICS 

+* FOR TC2780, TC3780 FILES, THE ALTPTR FIELD IS USED FOR THE TC 
+* BATCH STREAM OPTIONS 
+UFBATCDATAOPT DS BLl TC STREAM DATA OPTION 
+UFBATCXMITOPT DS BLl TC STREAM TRANSMIT/RECEIVE 
+* OPTION 
+UFBATCMAXRECSZ DS XLl TC STREAM MAXIMUM RECSIZE 
+* MINUS 1 
+* FOR WORD PROCESSING WORKSTATIONS, THE ALTPTR FIELD IS USED FOR 
+* EXTENDED WS-ATTENTION INFORMATION 
+ ORG UFBAALTPTR+l 
+UFBAWPAID DS XL3 EXTEND WS-ATTN INFORMATION 
+** 
+UFBAF4 
+* 
+UFBAF4NOVTOC 
+UFBAF4RLSE 
+* 
+UFBAF4BLKAL 
+* 
+* 
+UFBAF4VERIFY 
+* 
+UFBAF4NOMSG 
+* 
+* 
+* 
+UFBAF4NOACK 
+* 
+* 
+UFBAF4PMSG 
+* 
+* 

Controlled Release Draft 

DS BLl 

EQU X'80' 
EQU X'40' 

EQU X'20' 

EQU X' 10' 

EQU X'08' 

EQU X'04' 

EQU X'02' 

4-373 

ADDITIONAL DEVICE-DEPENDENT 
FLAGS 
UNSTRUCTURED DISKETTE 
RELEASE UNUSED SPACE 
ON CLOSE 
ALLOCATE SPACE FOR NEW 
DISK FILE IN BLOCKS, 
FROM UFBNBLKS 
VERIFY OPTION ON ALL 
DISK WRITES 
NO RESPECIFY OR CANCEL 
MESSAGE FOR SVC OPEN 
ALSO NO CANCEL ON CLOSE; NO 
ACK/CANCEL FOR DMS. 
NO EXCEPTIONAL CONDITION 
ACKNOWLEDGMENT MESSAGES 
FOR DMS FUNCTIONS 
FOR INTERNAL USE BY DMS -
CLOSE SENDS MESSAGE TO 
UNSPOOLER IF SET 

October, 1985 



+UFBAF4ALLOWT EQU X'Ol' USED BY SVC OPEN. PRcx;RAM 
+* SUPPLIES BIT=l TO ALLOW DEV=TAPE. 
+* COPEN SETS=l IF UFBDEV=TAPE ALSO) 
+* OTHERWISE, DEV=TAPE NOT ACCEPTED. 
+UFBANRECS DS FL3 NUMBER OF DATA RECORDS IN 
+* FILE (EXAMINED BY 'OPEN' FOR 
+* OUTPUT OPEN MODE ONLY. 
+* EXCLUDES INDEX RECORDS, ETC) 
+UFBANRECSUPDAT EQU X'80' HI BIT SET IN NRECS HI 
+* BYTE (RETURNED BY LOCK) 
+* IF ON IN OFB AT LOCK TIME 
+UFBALRECSAVE OS H RECSIZE SAVED HERE 
+* BY OPEN (BAM) 
+UFBARETPD OS H RETENTION PERIOD IN DAYS 
+* (MAXIMUM 999) 
+UFBALOCEND· EQU * 
+UFBALOCLENGTH EQU CUFBALOCEND-UFBABEGIN) 
+* *********************************************************** 
+* DATA MANAGEMENT SYSTEM SECTION 
+* *********************************************************** 
+UFBABCBl OS BL16 BUFFER CONTROL BLOCK 
+* (CORRESPONDS TO SVC XIO PARAMETER 
+* LIST) 
+ ORG UFBABCBl 
+UFBAXIOFL.AGS DS OBLl FLAG BYTE FOR SVC XIO 
+UFBAXIOFLAGSRLS EQU X'80' RELEASE BUFFER AFTER WRITE 
+UFBAOFB OS A OFB ADDRESS 
+UFBABUFCMD OS OBLl COMMAND BYTE FOR OPERATION 
+UFBABUFADR DS A BUFFER MEMORY ADDRESS 
+* (BLOCK ADDRESS WITHIN 
+* BUFFER IF BUFFER LARGER 
+* THAN 2K) 
+UFBABUFDATAL DS H LENGTH IN BYTES FOR 
+* OPERATION 
+UFBABUFOFFSET DS H OFFSET OF NEXT RECORD 
+* IN BUFFER 
+UFBABUFBLOCK DS FL3 (STARTING) BLOCK WITHIN 
+* FILE OF BUFFERED DATA 
+UFBABCBFL.AGS OS BLl FLAGS 

, +UFBABCBFLAGSLOD EQU X'Ol' BUFFER CONTENTS VALID 
+UFBABCBFLAGSTOR EQU X'02 I BUFFER TO BE REWRITTEN 
+UFBABCBFLAGSIO EQU X'04' BUFFER I/O IN PRcx;RESS 
+UFBABCBFLAGSPROT EQU X'lO' BUFFER IN PROTECTED MEMORY 
+UFBABCBFLAGSEOB EQU X'20' END OF BLOCK REACHED 
+UFBABCBFLAGSEOF EQU X'40' EOF BLOCK IN BUFFER 
+** 

Controlled Release Draft 4-374 October, 1985 

~ 

.~. 



+* THE FOLLOWING FIELDS ARE USED FOR THE TIME-OUT OPTION IN SHARED 
+* MODE ONLY. 
+ 
+UFBATIMEEXIT 
+* 
+UFBAHOLDID 
+* 
+UFBATIME 
+* 
+** 

ORG UFBABUFDATAL 
DS A EXIT ADDRESS FOR TIME-OUT 

RETURN (0 = NO TIME-OUT) 
DS CL3 INITIALS OF HOLDER OF 

RESOURCE 
DS XLl WAIT TIME IN SECOND 

(0 = NO WAIT) 

+* THE FOLLOWING FIELDS ARE USED TO RETURN STATUS INFORMATION FROM THE 
+* SHARER WHEN USER'S OPEN OF A SHARED FILE FAILS WITH FILE STATUS '60' 
+*AND AN OPEN ERROR CODE OF 'E029'. 
+ ORG UFBABUFDATAL 
+UFBASHROPNCODE DS CL4 SHARER'S OPEN ERROR MSG # 
+UFBASHROPNRCSZ DS XL2 TRUE FILE RECORD SIZE 
+UFBASHROPNFORG DS X TRUE FILE ORGANIZATION BYTE 
+* (AS PER UFBFORG) 
+UFBASHROPNSPARE DS X UNUSED 
+** 
+UFBABUFSIZE DS H BUFFER SIZE 
+UFBACHKSIZE DS H RESIDUAL COUNT FROM XIO 
+* (DMS USE ONLY) 
+* UFBXDATE OR UFBOUTRECS IS AVAILBLE AFTER SVC OPEN AND BEFORE THE 
+* FIRST DMS REQUEST; UFBRES3 IS AN INTERNAL OMS FIELD AFTERWARDS. 
+UFBARES3 DS BL3 RESERVED FOR INTERNAL DMS 
+ ORG UFBARES3 
+UFBAXDATE 
+ ORG UFBARES3 
+UFBAOUTRECS 
+ ORG UFBARES3 
+UFBASPB 
+* 
+UFBANBLKS 
+* 
+ ORG UFBANBLKS 
+UFBADMSGID 
+UFBAMAXTFR 
+* 
+ ORG UFBAMAXTFR 
+UFBARESl 
+UFBAOPFLAGS 
+UFBAOPFLAGSPFA 
+UFBAOPFLAGSPFS 
+UFBAOPFLAGSWKA · 
+UFBAOPFLAGSPVS 
+UFBAOPFLAGSSCAN 
+** 

Controlled Release Draft 

DS BL3 

DS FL3 

DS AL3 

DS FL3 

DS BL3 
DS H 

DS BLl 
DS BLl 
EQU X'80' 
EQU X'40' 
EQU X'20' 
EQU X'lO' 
EQU X'08' 

4-375 

EXPIRATION DATE (EXIST FILE) 

NUMBER OF RECORDS REQUESTED 

ID OF CURRENT OPEN FOR 
MULTIPLE SHARED OPENS 
NUMBER OF 2048-BYTE BLOCKS 
IN THE FILE 

STORED MSG-ID(DMS NOMSG EXIT) 
MAXIMUM DATA TRANSFER IN 
BYTES FOR DISK (SET BY OPEN) 

FUTURE SPARE BYTE 
INTERNAL OPEN FLAGS 

PRINT-FILE ASSIGNMENT TO DISK 
PF - USER SUPPLIED FILE NAME 
WORK-FILE ASSIGNMENT BY OPEN 
PF - USER SUPPLIED VOLUME 
IN SCAN BIT (WORK/SPOOL) 

October, 1985 



+UFBALF 
+UFBALFOPEN 
+UFBALFREAD 
+UFBALFWRITE 
+UFBALFREWRITE 
+UFBALFDELETE 
+UFBALFSTART 
+UFBALFCLOSE 
+UFBALFNOOP 
+UFBALFMOD 
+* 
+* 
+ ORG 
+UFB.AXCODE 

UFBALFMOD 

LAST FUNCTION PERFORMED 
OPEN 
READ 
WRITE 
REWRITE 
DELETE 
START 
CLOSE 

OS BLl 
EQU X'OO' 
EQU X'04' 
EQU X'08' 
EQU X'OC' 
EQU X' 10' 
EQU X' 14 I 

EQU X'18' 
EQU X'50' 
OS BLl 

Noop(shared files) 
LAST FUNCTION MODIFIER 

(DOESN'T CHANGE ON 'REWRITE') 
(SEE UFBV ABOVE) 

OS BLl EXTENDED OPEN EXIT CODE 
+* UFBXCODE VALUES 
+UFB.AXCODENOINFO 
+UFB.AXCODEUSE 
+UFB.AXCODEDET 
+UFB.AXCODEVOLX 
+UFB.AXCODEPOSS 
+UFB.AXCODEPAGE 
+UFB.AXCODEIM.AG 
+UFB.AXCODEAOPEN 
+UFB.AXCODEAUSE 

1-8 SET FOR POSSESSION CONFLICT 

+* 
+* UFBXCODE VALUES X'lO' 
+UFB.AXCODETRACK 
+* 
+* 
+UFB.AXCODEDNPRT 
+* 
+UFB.AXCODEDNPRG 
+* 
+UFB.AXCODEDNCSC 
+* 
+UFB.AXCODEDNWP 
+* 
+UFB.AXCODEDNINX 
+* 
+UFB.AXCODEDFGR 
+* 
+UFB.AXCODENREL 
+* 
+UFB.AXCODENSIO 
+* 
+UFBAEREC 
+* 
+UFBAVERSION 
+UFBAEBLK 
+* 

Controlled Release Draft 

EQU X'OO' NO FURTHER INFORMATION 
EQU X'Ol' DEVICE IN USE 
EQU X'02' DEVICE DETACHED 
EQU X'03' VOLUME EXCLUSIVE 
EQU X'04' FILE POSSESSION CONFLICT 
EQU X'OS' PAGING fILE - SYSTEM ONLY 
EQU X'06' IM.AGE FILE (INPUT MODE ONLY) 
EQU X'07' ALREADY OPEN - THIS USER 
EQU X'08' ALREADY IN USE - THIS USER 

- X'lF' SET FOR OPEN FORM.AT ERROR 
EQU X'lO' PROGRAM REQUIRES 7 TRACK 

TAPE WHILE DRIVE IS 9 TRACK 
OR VICE VERSA 

EQU X'll' UFB FORG=PRINT, WHILE 
FDR FORG NOT= PRINT 

EQU X'12' UFB FORG=PROG, WHILE 
FDR FORG NOT= PROG 

EQU X'13' UFB FORG=CONSEC, WHILE 
FDR FORG NOT= CONSEC 

EQU X'l4' UFB FORG=WP, WHILE 
FDR FORG NOT= WP 

EQU X'15' UFB FORG=INDEXED, WHILE 
FDR FORG NOT= INDEXED 

EQU X'l6' UFB FORG NEITHER CONSEC 
NOR INDEXED---ERROR 

EQU X'17' UFB FORG=REL, WHILE 
FDR FORG NOT= REL 

EQU X'18' UFB FORG=ANY,MODE=SHARED 
WHILE FDR FORG NOT=INX 

OS H LAST RECORD NUMBER WITHIN 

OS HLl 
DS FL3 

LAST BLOCK 

FROM 0 

4-376 

UFB VERSION NUMBER ******* 
LAST BLOCK NO. WITHIN FILE 

October, 1985 



+UFBABUFSTART 
+* 
+* 
+* 
+* 
+UFBARDLTH 
+* 
+UFBAPRTCOPIES 
+* 
+ 
+UFBAWPBLKSIZE 
+UFBAWPBLS 
+* 
+ 
+UFBAPTRB 
+* 
+* 
+UFBAPTRC 
+* 
+* 
+ 
+UFBASFBVERSION 
+* 
+UFBADMSEND 
+UFBADMSLENGTH 

DS A BUFFER MEMORY ADDRESS; 
BUFFER CONTROL TABLE 
ADDRESS BEFORE 'OPEN' 
IF BUFFER POOLING 
SPECIFIED CUFBFlPOOL SET) 

DS H LENGTH IN BYTES OF 
DATA IN BUFFER 

DS H NUMBER OF PRINT COPIES 
CFOR PRINTER FILES ONLY) 

ORG UFBAPRTCOPIES 
DS X WORD PROCESSING FILE CONTROL 
DS X FIELDS, WP FILES BLKSIZE 

AND BYTES IN LAST SECTOR 
ORG UFBABUFSTART 
DS FL4 FIRST BLOCK IN INDEX 

AREA OF PRIMARY EXTENT 
(INDEXED FILES) 

DS FL4 LAST BLOCK IN INDEX AREA 
OF PRIMARY EXTENT 
(INDEXED FILES) 

ORG UFBAPTRC 
DS FL4 LOCAL COPY OF SFB FILE VERSION # 

EQU * 
EQU (UFBADMSEND-UFBABEGIN) 

+* *********************************************************** 
+* END OF UFB FOR ALL FILES/DEVICES EXCEPT TAPE FILES, INDEXED DISK 
+* FILES, and DMS/TX disk files. 
+* *********************************************************** 
+* INDEXED DISK FILE EXTENSION SECTION: 
+* UFBKEYPOS AND UFBKEYSIZE SHOULD BE FILLED IN BY THE PROGRAM BEFORE 
+* 'OPEN' FOR A NEW INDEXED FILE (UFBF20UT AND UFBFORGINDEXED SET). 
+* THEY ARE SET BY 'OPEN' FOR AN EXISTING INDEXED FILE. 'OPEN' 
+* WILL SET UFBGKSIZE TO ZERO. THE USER'S PROGRAM MAY SET IT NON-ZERO 
+* BEFORE A 'START' FUNCTION. 'START' WILL ZERO IT AGAIN. THE 
+* USER'S PROGRAM MUST NOT MODIFY ANY OTHER FIELDS THAN 
+* UFBGKSIZE IN THIS SECTION WHILE THE FILE IS OPEN. 
+* *********************************************************** 
+UFBAKEYPOS DS H KEY POSITION IN LOGICAL RECO 
+UFBAKEYSIZE DS HLl KEY SIZE IN BYTES 
+UFBAGKSIZE DS HLl GENERIC KEY LENGTH OVERRIDE 
+* 
+* 
+* 
+• 
+UFBAHXBLK DS FL3 
+* 
+UFBADABLK DS FL3 
+UFBAPKI DS H 
+* 

Controlled Release Draft 

MAY BE SET BEFORE 'START'; 
USED ONLY BY 'START' FUNCTION; 
RESET TO BINARY 0 BY 'OPEN' AND 
EVERY 'START' FUNCTION 

HIGHEST-LEVEL INDEX BLOCK 
ADDRESS FOR KEYED ACCESS 

FIRST DATA BLOCK ADDRESS 
INDEX ITEMS PER BLOCK 

FOR OUTPUT MODE 

4-377 October, 1985 



+UFBAPTRD 
+* 
+* 
+UFBAPTRI 
+* 
+* 
+UFBAPTRN 
+* 
+* 
+* 

DS FL4 FIRST BLOCK BEYOND 
PRIMARY EXTENT 
(INDEXED FILES) 

DS F NEXT AVAILABLE INDEX 
BLOCK WITHIN PRIMARY EXTENT 
INDEX AREA 

DS F NEXT AVAILABLE INDEX 
OR DATA BLOCK IN A SECONDARY 
EXTENT (INITIALLY ZERO) 

+ 
+UFBASHRAXDl 
+* 

ORG UFBAHXBLK 
DS XL20 partial AXDl area for shared 

alternate indexed files 
+* 
+UFBABCBIOUT DS BL16 BCB FOR INDEX CREATION, 
+* 
+* 
+* 
+* 

DMS/TX Before Image control 
(internal system use only) 

+ 
+UFBABIRECAREA 
+UFBABIRECSIZE 
+UFBABIAXDlMASK 
+* 
+ 
+UFBAPKD 
+* 

ORG UFBABCBIOUT 
DS A 
DS H 
DS BL2 

DS BX 
DS H 

DS XL2 
EQU * 

OUTPUT MODE 

area for shared indexed files 

Before Image Recarea Address 
Before Image Record Size 
Before Image Record AXDl Mask 

RESET ASSEMBLY COUNTER 
RECORDS PER BLOCK FOR 

OUTPUT MODE 
(RESERVED) +UFBASPAREINX 

+UFBAINXDISKEND 
+UFBAINXDISKLGTH EQU (UFBAINXDISKEND-UFBABEGIN) 
+* *********************************************************** 
+* OMS/TX DISK FILE EXTENSION SECTION: 
+* 
+* Existence of this extension section is determined by 
+* UFBVERSION = 2 or greater and UFBDEVCLASSDISK set 
+* 
+* Input fields to the Open SVC are: 
+* UFBDXOM - Open Modifiers 
+* UFBDXRECBLCK - controls Recovery Block allocation in Output 
+* mode only 
+* UFBDXSPARE - must be zero 
+* 
+* All other fields are returned by a successful Open; input values 
+* are ignored. 
+* 
+* *********************************************************** 

Controlled Release Draft 4-378 October, 1985 



'""' 

+UFBADXOM 
+* 

DS X DMS/TX Open Modifier Flags 

+* 
+* 

Modifiers for general use on ANY disk file. (Their use is NOT 
restricted to files under DMS/TX). 

+* 
+UFBADXOMNOMODVOL 
+* 
+UFBADXOMNOMODLIB 
+* 
+* 
+* 
+UFBADXOMNOMODFIL 
+* 
+* 
+* 
+UFBADXOMCKACCESS 
+* 
+* 
+* 
+UFBADXOMNOACK 
+* 
+* 

EQU X'80' No modification of Volume 
in Open getparms 

EQU X'40' No modification of Library 
in Open getparrns. 

Open exit for xlib must be set 
(except output mode) 

EQU X'20' No modification of Filename 
in Open getparms. 

Open exit for xfile must be set. 

EQU X'lO' 

EQU X'08' 

Restrict user access rights 
to logon privileges (ignore 
special program privileges) 

suppress acknowledge 
getparrns in OPEN 

+* Modifiers for system use only for DMS/TX files opened in non-
+* shared modes. 
+* Warning: Improper use can compromise the integrity of a file. 
+* 
+UFBADXOMREORGKEY 
+* 
+* 
+UFBADXOMNOREC 
+UFBADXOMNOCHK 
+* 
+* 

EQU X'04' 

EQU X'02' 
EQU X'Ol' 

if file requires reorg, set 
UFBDXREORGLF, UFBKEYAREA to 
incomplete function values 
No Recovery 
No Check for file softcrash 
or reorganization required 

+UFBADXRECBLK DS C Recovery Blocks flag 
+* Output mode: set to RECBLKALLO to allocate Recovery Blocks 
+* set to RECBLKNO to not allocate Recovery Blocks 
+* Value is returned for all other modes. 
+UFBADXRECBLKNO EQU C'N' No Recovery Blocks 
+UFBADXRECBLKALLO EQU C'A' Recovery Blocks Allocated 
+* but not used 
+UFBADXRECBLKUSED EQU C'U' Recovery Blocks allocated & 
+* used (file is under DMS/TX) 
+* 
+UFBADXDBNAME 
+* 
+UFBADXFV# 
+UFBADXFV#SEQ# 
+UFBADXFV#DT 
+* 

Controlled Release Draft 

DS CLG 

DS OXL12 
DS F 
DS PL8 

Database Name 

File version # 
sequence # 
date/time stamp 

4-379 October, 1985 



+UFBADXRECO 
+ 
+ 
+UFBADXRECONO 
+UFBADXRECOSOFT 
+* 

DS C 

EQU C'N' 
EQU C'S' 

Recovery option after Open + 
(usually the Database option) + 
Not an input parameter. 

No Recovery 
Sof tcrash Recovery 

+* *********************************************************** 
+* The following fields are for internal system use only: 
+* 
+UFBADXLSBREC 
+* 
+UFBADXREORGLF 
+* 
+* 
+* 
+UFBADXCS 
+* 
+UFBADXCSSOFT 
+UFBADXCSREORG 
+* 
+UFBADX#BIJS 
+* 
+* 
+UFBADXFLAGS 
+UFBADXFLAGSTXON 
+* 
+UFBADXFLAGSRDNLY 
+* 
+UFBADXFLAGSNODXE 
+* 
+UFBADXFLAGSRSN 
+* 
+UFBADXFLAGSGE 
+* 
+UFBADXFLAGSWAIT 
+* 
+UFBADXPSBBUF 
+* 
+UFBADXSPARE 
+UFBADXMSB 
+* 
+UFBADXEND 
+UFBADXLGTH 

DS X 

DS X 

DS X 

EQU X'Ol' 
EQU X'02' 

DS H 

LSB File Recovery Option 

UFBLF value from incomplete 
function (if UFBDXOMREORGKEY 
set and file requires reorg) 

Crash Status of OMS/TX files 
(input mode or DXOMNOCHK set) 

Softcrash Recovery required 
Reorganization required 

# BIJS accessing crashed file 
(if DXOMNOCHK set) 

DS X Extra flag bits 
EQU X'80' Turn on dmstx locking 

protocol on file OPEN 
EQU X'20' Open for shared read-only 

EQU X'40' Ignore DXE's 

EQU X'lO' Record Sequence Numbers Used 

EQU x I 0 8 I LF WAS START ( SPCL RD NXT) 

EQU X'04' SFB WAIT FLAG HAS BEEN SET 

DS AL3 

DS XL2 
DS A 

EQU * 

Address of PSB buff er 

Pointer to MSB(multithreading) 

EQU (UFBADXEND-UFBABEGIN) 
+* *********************************************************** 
+* MAGNETIC TAPE FILE EXTENSION SECTION: 
+* FIELDS UFBTLABELS, UFBTDEN, UFBTSEQ AND UFBTFLAGS MAY BE SET 
+* BEFORE 'OPEN' TO REQUEST OUTPUT LABELING OPTIONS, DENSITY 
+* AND FILE POSITIONING. 
+* ALL RELEVANT FIELDS AND FLAGS NOT SET BEFORE 'OPEN' ARE SUPPLIED 
+* HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S 
+* PROGRAM. 
+* *********************************************************** 

Controlled Release Draft 4-380 October, 1985 



+ ORG UFBADMSEND 

~ 
+UFBATSPAREl DS BL4 (RESERVED) 
+UFBATBCB DS BL16 ADDITIONAL BUFFER CONTROL 
+* BLOCK FOR TAPE DOUBLE 
+* BUFFERING 
+UFBATLABELS DS BLl REQUESTED LABELING (OUTPUT) 
+* OR LABEL TYPE ON TAPE 
+* (INPUT) 
+UFBATLABELSNL EQU X'Ol' UNLABELLED 
+UFBATLABELSANY EQU X'02 I ANY TYPE OF LABEL 
+UFBATLABELSAL EQU X'04' ASCII LABELS 
+UFBATLABELSIL EQU X'OB I IBM LABELS 
+UFBATDEN DS BLl TAPE DENSITY 
+UFBATDENBOO EQU X'Ol' 800 BPI 
+UFBATDEN1600 EQU X'02 I 1600 BPI 
+UFBATDEN556 EQU X'03' 556 BPI 
+UFBATDEN6250 EQU X'OB' 6250 BPI 
+UFBATDEN6400 EQU X' 10' 6400 bpi 
+* 
+UFBATSEQ DS H TAPE FILE SEQUENCE NUMBER 
+* (SET BEFORE OR DURING 
+* OPEN TO REQUEST POSITIONING 
+* AND AVAILABLE AFTER OPEN) 
+UFBATFLG DS BLl TAPE-RELATED FLAGS 
+UFBATFLGALLOWNL EQU X' 80' *** OBSOLETE *** 
+UFBATFLGSWITCH EQU X'40' TAPE VOLUME SWITCH REOPEN 
+* IN PROGRESS 
+UFBATFLGEODEOV EQU X'20' TAKE EOVl TRAILER LABEL AS 
+* EOFl LABEL 
+UFBATFLG7TRACK EQU X'lO' USE 7 TRACK TAPE DRIVE FOR 
+• THIS FILE 
+UFBATFLGNOHDR2 EQU X'08' NO HDR2 FILE LABEL 
+UFBATVOLSEQ DS BLl TAPE VOLUME SEQUENCE NUMBER 
+* CORDER OF VOLUME IN A 
+* MULTIPLE VOLUME FILE) 
+UFBATSAVEVOL DS CL6 VOLUME NAME OF FIRST 
+* VOLUME OF A MULTI-VOLUME 
+* FILE SAVED HERE 
+UFBATPARITY DS BLl TAPE PARITY (7 TRACK TAPE 
+* ONLY) 
+UFBATPARITYODD EQU X'Ol' ODD PARITY 
+UFBATPARITYEVEN EQU X'02 I EVEN PARITY 
+UFBATSPARE2 DS BLll (RESERVED - MUST BE 0) 
+UFBATAPEEND EQU * 
+UFBATAPELGTH EQU (UFBATAPEEND-UFBABEGIN) 
+ ORG UFBADXEND 
+UFBAEND EQU * 
+UFBALGTH EQU (UFBAEND-UFBABEGIN) 
+ CSECT 
+ USING UFBA, ( R2) 

Controlled Release Draft 4-381 October, 1985 



4.2.80 UFBGEN - Generate a User File Block 

Syntax ~ 

[label] UFBGEN [ , ALLOWNL={NO } ] 
{YES} 

[,ALTAREA={Cregister)}] 
{ address } 
{ 0 } 

~ ,BAM={NO } ] 
{YES} 

[ ,BLKAL={NO } ] 
{YES} 

[,BUFSIZE={integer}] 
{ 2048 } 

[,CKACCESS={NO }] 
{YES} 

[ ,DEVCLASS={DISK } ] 
{ PRT } 
{ ws } 
{MTAPE} 

[,DMSTXSECTION={NO }] 
{YES} 

[ ,EOD=EOV] 

[,ERRAD={Cregister)}] 
{ address '} 

[,ALLOWTAPE={NO }] 
{YES} 

[ ,ALTCNT={ Q } ] 
{0-16} 

[,BCT={(register)}] 
{ address } 

[,BLKSIZE={integer}] 

[ ,COMP={NO } ] 
{YES} 

[,DEN={556 }] 
{800 } 
{1600} 
{6400} 

[,DEVNO=integer] 

[,DPACK={lOO } ] 
{l-100} 

[,EODAD={Cregister)}] 
{ address } 

[,FILECLAS={ 0 }] 
{#,A-Z} 

[,FILENAME={Cregister)}] [,FORG={CONSEC }] 
{ address } {INDEXED} 

{ ANY } 

[,FORM={ Q }] [,FSEQ=integer] 
{l-255} 

[,HEADER={PARTIAL}] [,IPACK={lOO }] 
{FULL } {1-99} 

[,KEYAREA={Cregister)}] [,KPOS={Cregister)}] 
{ address } { address } 

Controlled Release Draft 4-382 October, 1985 



l""i., 

[,KSIZE={(register)}] [,LABEL={NL }] 
{ address } {AL } 

{IL } 
{ANY} 

[,LIBRARY={Cregister)}] [,MCTYPE={2780 }] 
{ address } {3780 } 

{TCDIAG} 

[,MODE={ OUT }] [,NBLKS={(register)}] 
{ IN } { address } 
{ IO } 
{EXTEND} 
{SHARED} 

[,NODISPLAY={NO }] [,NOVTOC= {NO }] 
{YES} {YES} 

[,NRECS={(register)}] [,OPENNOACK={NO }] 
{ address } {YES} 
{ Q } 

[;PAM={NO ] [,PARITY={EVEN}] 
{YES} {ODD } 

[,PLOG={NO }] [,POOL={NO }, 
{YES} {YES} 

[,PRINT={NO }] [,PROG={NO }] 
{YES} {YES} 

[ ,PRNAME={ (register)}] [ ,PRTCLASS={~ } ] 
{ address } {B-Z} 

[,RECAREA={(register)}] [,RECBLKS={NO }] 
{ address } {YES} 

[,RECSIZE={integer}] [,STREAM={READER }] 
{ ANY } {PUNCH } 

{PRINTER} 

[,TRANSMISSION={TRANPARENT }][,TRACK7={NO }] 
{NONTRANSPARENT} {YES} 
{UNBLOCKED } 
{BLOCKED } 
{UNPADDED } 
{COMPRESSED } 
{PADDED } 
{UNCOMPRESSED } 
{EBCDIC } 
{ASCII } 

Controlled Release Draft 4-383 October, 1985 



Function 

[, VERIFY={NO } ] 
{YES} 

[, VLEN={NO } ] 
{YES} 

[,VSEQ={integer}] 
{ ! } 

[,VOLSER={Cregister)}] 
{ address } 

Generates a user file block CUFB) with the specified fields 
initialized. This macroinstruction does not produce executable code. 

Parameter Definitions 

ALLOWNL 

ALLOWTAPE 

ALTAREA 

ALTCNT 

BAM 

BCT 

BLKAL 

BLKSIZE 

BUFSIZE 

COMP 

CKACCESS 

Allows nonlabelled tape. Default is NO. 

If set to YES, OPEN allows tape as an alternative device 
for disk file. 

Address of AXDl block, as generated by the AXDGEN 
macroinstruction. 

An integer between 0 and 16. If not 0, ALTAREA parameter 
must be supplied. This is the number of alternate indices 
processable for the file. 

Optional request to process a disk file as if it had 
2048-byte logical records, regardless of the record size 
recorded in its file descriptor record. Defaults to BAM=NO. 

Address of the buff er control table generated by BCTGEN. 
Must be specified if POOL=YES is specified. 

Allocate space for a new disk file in number of blocks, as 
specified in UFBNBLKS (see NBLKS parameter), rather than in 
number of logical data records. 

Sizes are used for existing files to verify the file 
attribute. A RECSIZE CBLKSIZE) of zero is used to accept 
any record (block) size. 

The buffer size option is used to increase efficiency for 
sequential processing. Ref er to the OMS Reference Manual 
for details. 

Specifies whether records are to be compressed or not. 

YES restricts access to user's logon 
Ignores special program privileges. 
DMSTXSECTION=YES is specified. 

access rights. 
Only legal if 

Controlled Release Draft 4-384 October, 1985 



DEN Magnetic tape density, 556 for 556 BPI tape, 800 for 800 
BPI tape, 1600 for BPI tape, 6400 for 6400 BPI tape. 

DEVCLASS Valid options are DISK, MTAPE, WS, TC, or PRT. 

DEVNO The device number option can be used for print files to 
request printing on a specific printer. 

DMSTXSECTION Specifying YES allocates UFB with DMSTX section. 

DPACK Used to specify the relative percentage of used to unused 
space (packing) desired for data blocks on a new indexed 
file. If not specified, system default values are used. 

EOD Forces EOD exit when a data management operation reaches 
the end of a tape volume in INPUT mode and an EOVl trailer 
label is detected. 

EODAD Specifies the address in the user program where control is 
returned to in an end-of-data situation. 

ERRAD Specifies, the address where control is returned to when a 
OMS fatal error is encountered. 

FILECLAS Specifies the file protection class. 

FILEN.l\ME Specifies the file name. 

FORG The file organization parameter is used for existing files 
to verify file organization. If FORG=ANY is specified, any 
file organization is accepted. FORG=ANY can be specified 
for tape in INPUT mode. For unlabelled tape, FORG is set 
to consecutive. 

FSEQ Tape file sequence number. 

HEADER This parameter supports IBM DOS labelled tapes. If FULL is 
specified, then both HDRl and HDR2 file labels are present 
on the tape. If PARTIAL is specified, then only HDRl is 
present. If HEADER=FULL is specified, and no HDR2 is found 
on the tape, OPEN cancels with an indication of an invalid 
label type. If HEADER=PARTIAL is specified, but a HDR2 
label is found on the tape, OPEN proceeds to open the file 
using structural information from the HDR2. When only HDRl 
is present, the user must provide valid information about 
file organization, record length, and block size in the UFB. 

IPACK Specifies the relative percentage of used to unused space 
(packing) desired for index blocks on a new indexed file. 
If not specified, system default values are used. 

Controlled Release Draft 4-385 October, 1985 



KEYAREA 

KPOS 

KSIZE 

LABEL 

LIBRARY 

MC TYPE 

MODE 

NBLKS 

NOD I SPLAY 

NOVTOC 

NRECS 

OPENNOACK 

PAM 

PARITY 

PLOG 

These parameters must be acceptable in "DC A(pn)" assembler 
statements. They may be written only when the UFB is 
generated in a data static area. 

Specifies the key position. 

Specifies the key size. 

Magnetic tape label types allowed: NL for no label, AL for 
ANSI label, IL for IBM label. None, one, or more than one 
can be specified. 

Specifies the library where the file exists or is to be 
created. 

Sets the microcode type for programmable devices. 
Currently valid options are 2780 and 3780 for IBM=2780 and 
IBM-3780 batch telecommunications emulation, and TCDIAG for 
telecommunications diagnostic use. 

Specifies the mode in which the file is to be opened, 
Output, Input, Input/Output, Extend or Shared. 

Only used with Output mode in PAM or BAM. Specifies how 
many blocks to allocate to the file. 

If YES is specified, then the OPEN SVC does not issue a 
GETPARM to the user's workstation for CANCEL messages or 
for respecification messages. 

Optional file attribute for diskette only. Specify only 
for unstructured diskette. 

The number of records. Used for Output mode only for RAM. 
Specifies the number of records used to calculate the 
number of extents necessary for the file. 

Used only with DMSTXSECTION=YES. 
acknowledge GETPARM. 

Suppresses OPEN 

Optional request for physical access method support or 
multiple-line printing. Defaults to PAM=NO. 

If EVEN is specified, then the tape uses even parity. If 
ODD is specified, then the tape uses odd parity. EVEN is 
the default. 

If YES is specified, indicates that a file prologue is 
present. Valid only for word processing files. This 
parameter is applicable only when OPEN mode is OUTPUT, and 
is ignored for any other OPEN mode. The default is NO. 

Controlled Release Draft 4-386 October, 1985 



POOL 

PRINT 

PROO 

PRNAME 

PRTCLASS 

RECAREA 

RECBLKS 

Buff er pooling requested. The BCT parameter addresses a 
buffer control table in the user-modifiable data area, as 
created by the BCTGEN macroinstruction. 

Specifies that the file in question is to be a PRINT file. 
On input reads the file as a print file. On output creates 
the file in PRINT file organization. 

These attributes are used for existing files to limit 
acceptance to files of the indicated attributes. 

The parameter reference name is the fundamental identifier 
used to locate or solicit run-time parameter information. 
The prnames used should be indicative of function. 

Used to specify the print queue class. 

Used to specify the address of the user record area. 

Used only for Output mode when DMSTXSECTION=YES. RECBLKS 
specifies whether to allocate recovery blocks. 

RECSIZE The record size (or maximwn record size) and block. 

STREAM Sets the TC STREAM DATA option in UFBTCDATAOPT. 

TRANSMISSION Sets the TC STREAM TRANSMIT/RECEIVE options in UFBTCXMITOPT. 

TRACK? If YES is specified, then 7-track tape is indicated. The 
default is NO. The user must specify a nonzero value for 
tape density in the UFB in the case of a 7-track tape. 

VERIFY Request read-after-write verification on a disk file. 

VLEN Specifies whether record length is variable or not. 

VOLSER Specifies the name of the volwne on which the file resides. 

VSEQ Tape volume sequence number for multiple voltune tape file. 

The following UFBGEN parameters are only used for physical access 
method (PAM) or block access method CBAM): 

• PAM= YES 
• BAM= YES 
• BLKALS=YES 
• NBLKS=pl3 

Controlled Release Draft 4-387 October, 1985 



The other UFBGEN parameters are for the random record access method 
(RAM). Table 4-2 summarizes the use of the parameters used with RAM. 
The legend for using Table 4-2 is as follows: 

R Required for OPEN processing. Can optionally be set by 
1 the program prior to OPEN. 

0 Optional for OPEN processing. Can also be set by the 
1 program before OPEN. 

R Required for DMS functions. Can be set by the program 
2 before use. 

0 Optional for DMS functions. Can be set by the program 
2 before use. 

Underlines are used to identify default values. 

Controlled Release Draft 4-388 October, 1985 



) 

PARAMETER 

PRNAME 

DEVCLASS 

MODE 

FORG 

VLEN 

COMP 

PRINT 

PROG 

NRECS 2 

RECSIZE 

BUFSIZE 

FORM5 

) 
Table 4-2 

PARAMETER USAGE TABLE 
RECORD ACCESS METHOD 

COMMONLY USED PARAMETERS 
FOR FILES 

NEW I EX!STING I 
I CONSECUTIVE I INDEXED I WORK OR TEMP I DISK I NEW PRINT I WORKSTATION 
I DISK FILES J_ DISK FILE_S I Dl_SK FILES __ I £ILES_ L_E_IL£S F'l_ilS 
I R 1-8 CHAR I R 1-8 CHAR I R 1-8 CHAR I R l-8 CHAR I R 1-8 CHAR I R 1-8 CHAR 
I 1 ALPHA I 1 ALPHA- I 1 ALPHA - ! l ALPHA - I 1 ALPHA- I 1 ALPHA-
1 NUMERIC I __ NUMERIC _I NUMERIC I NUMERIC I NUMERIC I _NUMERIC 
I R I R I R l R : R PRT I R WS 
I 1 DISK I 1 DISK I 1 DISK I 1 DISK ' 1 I 1 
I I I I I I 
I R I R I R I R IN, IO, ~ R I R 
I 1 OUT I 1 OUT I 1 OUT I ~ EXTEN!) ! 1 Q.UI I 1 IQ 
I I I I SHARED ' I 
I R I R I R I R ~. R I R 
I 1 CQNfil I l INDEXED I 1 CQ.Nfil7 I 1 INDEXED, 1 ~ I 1 ~ 
I I I INDEXED ! ANY J 
10 lli IONQ I NQ I ONO I Rill I 
I 1 NO I 1 YES I YES I 1 YES I 1 NO I 
I I I I I I 
I 0 ltO I 0 till I .N.Q I NO I R lli I 
I 1 YES I 1 YES I YES I YES I 1 NO I 
I I I I I ! 
I 0 N.0 I I NQ ! 0 .N.Q I R lli I 
I 1 YES I I YES I l YES I 1 NO I 
I I I I I I 
I 0 NO ' I .tiQ I 0 NO I I 
I l YES I I YES I 1 YES I I 
I I I I I i 
I R I R I R I I R 1 , 000 l 
I l NUMERIC I 1 NUMERIC I 1 NUMERIC I I 1 NUMERIC 
I I l ! ! ! 
I R I R I R I R ANY. I R ill. ' R 1924 I 

I 1 NUMERIC I l NUMERIC I 1 NUMERIC I ~ NUMERIC I NUMERIC ' NUMERIC 
I ! I I I ! 
I O I O I O ! O I O 
I l n"'2k I 1 n"'2k ! 1 n"'2k I l n"'2k ~ 1 n"'2k 
I I I ; I ! 
I I I ' I 0 ( 0., -255) ! 
I I I ! I 1 I 
I I I I ! I 

Controlled Release Draft 4-389 October, 1985 

) 



Table 4-2 
PARAMETER USAGE TABLE 

RECORD ACCESS METHOD (continued) 

1- NEW I EXI_SI_ING I 
PARAMETER I CONSECUTIVE I INDEXED I WORK OR TEMP I DISK INEW PRINT I WORKSTATION 

_l___D_ISK__E_I_LES I D_ISK FilES _ ___l_DISK FI_L_ES I FIJ.._E_S LEIL£S ___ I FILES 

PRTCLASS 5 I I I I 10 CA.B-Z) I 
I I 

1 
I I 1 I 
I I I 

I I I I 10 I 
DEVNO I I I I 11 NUMERIC I 

I I I I I I 
I I R I I I I 

KPOS I I R NUMERIC I I I I 
I I I I I I 
I I R I I I I 

KSIZE I I 1 NUMERIC I I I I 
I I I I I I 
I I 0 NUMERIC I I I I 

DPACK I I 1 1-100 I I I I 
I I I I I I 
I I 0 NUMERIC I I I I 

I PACK I I 1 1 - 1 O O I I I I 
I I I I I I 
Io rm I I 1orm I I 

NOVTOC 3 I 1 YES I I I 1 YES I I 
I I I I I I 
I 0 till I 0 rm I 0 fill I 10 rm 

VERIFY4 I 1 YES I 1 YES I 1 YES I I 1 YES 
I I I I l~~~~---~~~~~-
1 0 1-8 CHAR5 I 0 1-8 CHARI R 1-8 CHAR I 0 #AAAA or I 

FILENAME5 I 1 ALPHA- I 1 ALPHA- I 1 ALPHA- I 1 ##AAA SEEi 
I NUMERIC I NUMERIC I ___ N_UMERIC I NOIE_ 1 _ I 
I 0 1-8 CHAR I 0 1-8 CHAR I I 0 1-8 CHAR I 

LIBRARY5 I 1 ALPHA- I 1 ALPHA- I I 1 ALPHA- I 
I NUMERIC I NUMERIC I I NUMEJUC I _ __I 
I 0 1-6 CHAR I 0 1-6 CHAR I I 0 1-6 CHAR I 

VOLSER5 I 1 ALPHA- I 1 ALPHA- I I 1 ALPHA- I 
I NUMERIC I NUMERIC I I NUMERJ_C__ I 
I 0 (#,A-Z) I 0 (#,A-Z) I R (#,A-Z) I IR (#,A-Z) 

FILECLAS 5 I 1 I 1 I 1 I I 1 
I I I I I _____ l 

Controlled Release Draft 4-390 October, 1985 

) 1) ) 



) ) 

Table 4-2 
PARAMETER USAGE TABLE 

RECORD ACCESS METHOD (continued) 

NEW I EXISTING I 
PARAMETER I CONSECUTIVE I INDEXED I WORK OR TEMP I DISK I NEW PRINT I WORKSTATION 

I DISK FILE_S___l DISK FILES I DI_SK_El_LES_~L_______f lLES I FILES _l FILES 
I 0 YES I 0 YES I R YES I 0 YES I R I R 

NODISPLAY 6 I 1 I 1 I 1 I 1 I 1 YES I 1 YES 
I I I I I I 
I R ADDRESS I R ADDRESS I R ADDRESS I 0 ADDRESS I R ADDRESS I R ADDRESS 

RECAREA I 2 IN DATA I 2 IN DATA I 2 IN DATA I 1 IN DATA I 2 IN DATA I 2 IN DATA 
L SECTION I __ S_ECilOtL _ J __ S_E.C.I.ION _I ____SECTIO_N _ _l__ SECTION L SECJION 
I ADDRESS I R ADDRESS I ADDRESS I 0 ADDRESS I I ADDRESS 

KEYAREA I IN DATA I 2 IN DATA I IN DATA I 2 IN DATA I I IN DATA 
L SECTION ___ I _S.ECU01L I SECJ_ION I __SECTION I_ _ I SECJION 
I 0 INSTRUCTION! 0 INSTRUCTION I 0 INSTRUCTION I 0 INSTRUCTION! 0 INSTRUCTION! 0 INSTRUCTION 

ERRAD I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS 
I I I I I I 
I 0 INSTRUCTION! 0 INSTRUCTION I 0 INSTRUCTION I 0 INSTRUCTION! 0 INSTRUCTION! 0 INSTRUCTION 

EODAD I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS I 2 ADDRESS 
I I I I I I 

Controlled Release Draft 4-391 October, 1985 

) 



Notes on Table 4-2 

( 1) The escape characters # and ## are used to request unique name 
generation and to identify work files (#) and temporary files (##) to the 
system. Work files and temporary files are placed in the user's work 
file library regardless of what is supplied for library and volume. The 
work files are automatically scratched when the file is closed. The 
temporary files are automatically scratched at the end of the run. 

(2) NRECs should preferably be set by the program as a value determined 
after opening the associated input file(s) and learning its (their) size. 

(3) See the description of the NOVTOC files. When NOVTOC is used, the 
FORG=CONSEC, VLEN=NO, COMP=NO, and FILENAME, LIBRARY, and FILECLAS are 
ignored. 

( 4) The use of the VERIFY option significantly degrades performance. 
Its use, unless specifically intended, is not recorrunended. 

(5) These parameters represent run-time parameters ultimately determined 
via GETP.ARM. Unless required to identify WORK or TEMP files, these 
parameters serve only to provide default values. If left unspecified, 
defaults are provided by OPEN using values supplied via the SET command 
or via system conventions. 

(6) Causes a GETPARM type ID to be issued, thus suppressing user 
interaction. Should be used to minimize transactions for fixed file 
specifications only. ~ 

(7) Other file organizations including INDEXED, VLEN, COMP, PRINT, and 
PROO are supported but apparently not very useful. If these 
organizations are used, other supplied parameters must be consistent. 

Example 

UFBGEN EODAD=CLFILES,PRNAME=INPUT,BUFSIZE=18*1024, 
FORG=ANY,MODE=IN,DEVCLASS=DISK 

+* USER FILE BLOCK FOR PRNAME 'INPUT' 

+* ACCESS METHOD SECTION 
+ DS 5A(0) 
+ DC ACO) 
+ DC A(Q) 
+ DC A(Q) 
+ DC A(Q) 
+ DS 2C 

DATA MANAGEMENT ROUTINES VECTOR 
ERROR EXIT NOT SPECIFIED 
END OF DATA AND INVALID KEY EXIT OMITTED 
RECORD WORK AREA ADDRESS OMITTED 
KEY AREA ADDRESS OMITTED 
FILE STATUS BYTES 

x 

Controlled Release Draft 4-392 October, 1985 



+* FILE LOCATION AND ATTRIBUTES SECTION 
+ DC AL2(0) PHYSICAL BLOCK SIZE 
+ DC AL2(0) RECORD SIZE OMITTED 
+ DC ALl(O) FILE ORGANIZATION 
+ DC ALlCO) FLAG BYTE (ATTRIBUTES) 
+ DC AL1(32) OPEN MODE 
+ DC XL1'03' DISK DEVICE CLASS 
+ DC ALl(Q) FLAGS 
+ DC XLl'FF' DEVICE ADDRESS NOT SUPPLIED 
+ DC CLl' I PRTCLASS OMITTED 
+ DC AL1(255) FORM NUMBER OMITTED 
+ DC CL8 I INPUT' PRNAME 
+ DC CL6' I VOLUME SERIAL NOT SPECIFIED 
+ DC CL8' I LIBRARY NAME NOT SPECIFIED 
+ DC CL8' ' ACTUAL FILE NAME NOT SPECIFIED 
+ DC X'OO' FILECLASS OMITTED 
+ DC CL3' I USER ID 
+ DC ALl(Q) ALTCNT 
+ DC AL3(0) ALTPTR 
+ DC ALl(Q) DEVICE-DEPENDENT FLAGS 
+ DC AL3(0) NUMBER OF DATA RECORDS 
+* DATA MANAGEMENT SYSTEM SECTION 
+ DC 20X' Off' (UNSET BEFORE OPEN) 
+ DC AL2(18*1024) BUFFER SIZE 
+ DC 5X'00' (UNSET BEFORE OPEN) 
+ DC AL3(0) NUMBER OF DATA BLOCKS 
+ DC 6X'00' (UNSET BEFORE OPEN) 

~. 
+ DC X'Ol' VERSION NUMBER 
+ DC llX'OO' (UNSET BEFORE OPEN) 
+* 
+* INDEXED DISK FILE EXTENSION SECTION 
+ DC H'O' KEY POSITION NOT SPECIFIED 
+ DC HLl'O' KEY SIZE NOT SPECIFIED 
+ DC HLl'O' KEY SIZE OVERRIDE 
+ DC FL3'0' HXBLK 
+ DC FL3'0' DABLK 
+ DC H'lOO' INDEX BLOCK PACKING 
+ DC 28BL1'0' PTRD,PTRI,PTRN,BCBIOUT 
+ DC H'lOO' DATA BLOCK PACKING 
+ DC BL2'0' (RESERVED) 

+ DC CL6' t VOLUME SERIAL NOT SPECIFIED 
+ DC CL8' t LIBRARY NAME NOT SPECIFIED 
+ DC CL8' t ACTUAL FILE NAME NOT SPECIFIED 
+ DC X'OO' FILECLASS OMITTED 
+ DC CL3' ' USER ID 
+ DC ALl(Q) ALTCNT 
+ DC AL3(0) ALTPTR 
+ DC ALl(Q) DEVICE-DEPENDENT FLAGS 
+ DC AL3(0) NUMBER OF DATA RECORDS 

Controlled Release Draft 4-393 October, 1985 



+* DATA MANAGEMENT SYSTEM SECTION 
+ DC 20X' 00 I (UNSET BEFORE OPEN) 
+ DC AL2(2048) BUFFER SIZE 
+ DC 5X'OO' (UNSET BEFORE OPEN) 
+ DC AL3(0) NUMBER OF DATA BLOCKS 
+ DC 6X'OO' (UNSET BEFORE OPEN) 
+ DC X'Ol' VERSION NUMBER 
+ DC llX'OO' (UNSET BEFORE OPEN) 
+* 
+* INDEXED DISK FILE EXTENSION SECTION 
+ DC H'O' KEY POSITION NOT SPECIFIED 
+ DC HLl'O' KEY SIZE NOT SPECIFIED 
+ DC HLl'O' KEY SIZE OVERRIDE 
+ DC FL3'0' HXBLK 
+ DC FL3'0' DABLK 
+ DC H'lOO' INDEX BLOCK PACKING 
+ DC 28BL1'0' PTRD,PTRI,PTRN,BCBIOUT 
+ DC H'lOO' DATA BLOCK PACKING 
+ DC BL2'0' (RESERVED) 
+ DC BL2'0' (RESERVED) 

I~ 

Controlled Release Draft 4-394 October, 1985 



4.2.81 UNITRES - Reserve/Release Teleconununications Devices, Lines, and 
Peripheral Processors (SVC 51) 

Syntax 

[label] UNITRES 

Function 

{RESERVE},DEVICE={ address }[,DIAGNOSTICS] 
{RELEASE} { (register) } 

{self-defining term} 

PP={ address } 
{ (register) } 
{self-defining term} 

IOP={ address } 
{ (register) } 
{self-defining term} 

The UNITRES macro is used to reserve and release exclusive use of 
non-shareable devices, peripheral processors C PPs) , and I/O processors 
(IOPs). 

The RESERVE option checks to see if the device can be acquired. In 
the case of a processor (either a peripheral or I/0), the RESERVE option 
checks to see if all the devices associated with the processor can be 
acquired, and if so, allocates them for exclusive use so that I/O can be 
initiated to the processor. A processor may be reserved if it is not 
already reserved by another task, if none of its associated devices are 
opened or reserved, or if it is already reserved by the user. 

For reservation of a particular device, the RESERVE parameter is 
specified along with the DEVICE parameter. The DEVICE parameter value is 
the device number associated with the device through the SYSGEN process. 

In reserving a processor, the RESERVE parameter is specified, 
together with the PP or IOP parameter. The value for either of these 
parameters is the device number of any one of the devices associated with 
the processor through the SYSGEN procedure. 

Reservation is exclusive and remains in effect until a UNITRES 
RELEASE is performed. To release a device, the RELEASE option is 
specified with the DEVICE parameter. The value of the DEVICE parameter 
should be the device number specified in the UNITRES RESERVE statement 
that initially reserved the device. 

To release a previously reserved processor, the RELEASE option is 
specified, together with the PP or !OP parameter. The value for the PP 
or IOP parameter should be the device number specified in the UNITRES 
RESERVE statement that initially reserved the processor. 

Controlled Release Draft 4-395 October, 1985 



A processor can be released only if it and all associated devices 
were previously reserved exclusively by the caller. 

Parameter Definitions 

RESERVE 

RELEASE 

DEVICE 

PP 

IOP 

DIAGNOSTICS 

Output 

Allows reservation of a device or a peripheral processor. 

Releases the device or peripheral processor. 

Device number of the device to be reserved or released. 
This parameter can be specified as a self-defining term 
which is the device address, as a register in parentheses 
that contains the device address in its low-order byte, or 
as an expression that addresses a 1-byte field which 
contains the device address. 

Device address of a device associated with the peripheral 
processor to be reserved or released. This parameter can 
be specified as a self-defining term which is the device 
address, as a register in parentheses that contains the 
device address in its low-order byte, or as an expression 
that addresses a 1-byte field which contains the device 
address. 

Device number of any one of the devices associated with the 
I/O processor to be reserved or released. This parameter 
can be specified as a self-defining term which is the 
device number, as a register in parentheses that contains 
the device number in its low-order byte, or as an 
expression that addresses a 1-byte field which contains the 
device number. 

Used with the RESERVE DEVICE option to reserve a 
workstation for diagnostic purposes. Diagnostic privilges 
must be acquired through the Security program for this 
function to work at runtime. Specifying DIAGNOSTIC is not 
required on the RELEASE option. 

UNITRES returns a fullword at the top of the stack, indicating the 
success or failure of the RESERVE or RELEASE operation. 

Controlled Release Draft 4-396 October, 1985 



Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

Examples 

DONE 
+DONE 
+ 
+ 
+ 
+ 

FINISH 
+FINISH 
+ 
+ 
+ 
+ 

Description 

Success. 

Invalid unit address. 

Invalid function code. 

Invalid unit type. 

Reserved. 

PP specified for nonprogrammable device. 

PP reservation conflict. 

Reserved. 

Release specified for a device or PP that the caller 
does not own. 

Specified device is a disk. 

Device reservation conflict. 

Invalid device specified for diagnostics. 

No privileges for diagnostics. 

UNITRES RESERVE,DEVICE=TERM 
PUSHA 0,0 CLEAR 4 BYTES OF STACK SPACE 
MVI 0(15) ,X'Ol' SET FUNCTION = "RESERVE" 
MVI 1(15),X'Ol' SET UNITTYPE =DEVICE 
MVC 3(1,15),TERM SET UNIT ADDRESS 
SVC 51 (UNITRES) 

UNITRES RELEASE,DEVICE=TERM 
PUSHA 0,0 CLEAR 4 BYTES OF STACK SPACE 
MVI 0 ( 15) ,x I 02 I SET FUNCTION = "RELEASE" 
MVI 1(15),X'Ol' SET UNITTYPE =DEVICE 
MVC 3(1,15),TERM SET UNIT ADDRESS 
SVC 51 (UNITRES) 

Controlled Release Draft 4-397 October, 1985 



DSTART UNITRES RESERVE,DEVICE=CR2),DIAGNOSTICS 
+DSTART PUSHA 0,0 CLEAR 4 BYTES OF STACK SPACE 
+ MVI 0(15),X'Ol' SET FUNCTION = "RESERVE" ~ 
+ MVI 2(15),X'Ol' SET FLAG = DIAGNOSTICS 02\ ~ 

+ MVI 1(15),.X'Ol' SET UNITTYPE = DEVICE 
+ STC R2,3(15) SET UNIT ADDRESS 
+ SVC 51 (UNITRES) 

END BEGIN 

I~ 

Controlled Release Draft 4-398 October, 1985 



4.2.82 UPDATFDR - Update File Descriptor Record (SVC 25) 

I"""\. Syntax 

[label] UPDATFDR [PLIST={(register)}][,VOLUME={(register)}] 
{ address } { address } 

{ 'string' } 

[,LIBRARY={(register)}][,FILE={(register)}] 
{ address } { address } 
{ 'string' } { 'string' } 

[,CLOSE={YES}][,RELEASE={YES}] 
{NO } {NO } 

[,RESTRICT={YES}] 
{NO } 

[,NRECS={(register)},EBLK={(register)}, 
{ address } { address } 

EREC={(register)}][,WPBLKSIZ={(register)}, 
{ address } { address } 

WPBLS={<register)}][~HXBLK={(register)}, 
{ address } { address } 

DABLK={(register)},PTRD={Cregister)}] 
{ address } { address } 

[,EXTCOUNT={(register)},SECEXT={Cregister)}, 
{ address } { address } 

EXTPTR={Cregister)}][,WTFLGS={(register)}, 
{ address } { address } 

EXFLGS={Cregister)},RDFLGS={(register)}] 
{ address } { address } 

[,FPCLASS={(register)},CREATOR={Cregister)}, 
{ address } { address } 
{ 'string' } { 'string' } 

CREDATE={Cregister)},MODDATE={Cregister)} 
{ address } { address } 

EXPDATE={(register)}][,FGPRIORITY={(register)}] 
{ address } { address } 

[,BGPRIORITY={(register)}] 
{·address } 

Controlled Release Draft 4-399 October, 1985 



Function 

Updates an existing file descriptor record (FDR) in the volwne table 
of contents CVTOC) of the specified volwne. The file descriptor record 
of the file is modified with the data given in the argwnent list. 

The modifiable FDRl entries are organized into six option groups. 
Each option group exists in the argwnent list only if the corresponding 
bit in the option flag is set to 1. All option groups can be combined in 
any way as specified in the option flag. The argwnent list is 
interpreted in the group order of l, 2, 3, 4, 5, 6. 

• Group 1 updates the following items: 

Number of data records 
Last record's block within the file 
Last record's nwnber in last block for consecutive files with 
fixed-length record (For indexed files, number of primary 
index levels) 

• Group 2 updates the following items for indexed files: 

Block in file of root block of primary index 
Block in file of starting block of available-block chain 

First data block in file 

• Group 3 updates the following information: 

Count of extents in use 
Number of blocks in secondary extent 
Extent list pointer 

• Group 4 updates the following information: 

Expiration date of the file 
Modified date 
Creation date 
User ID of the creator 

• Group 5 updates the following items for program files: 

Access privileges 
Write privileges 
Read privileges 
Extend privileges 

• Group 6 updates the following items from program files: 

Foreground priority 
Background priority 

Controlled Release Draft 4-400 October, 1985 



Restrictions 

Group 1 or 2, or both, can be updated if the specified file is opened 
in an exclusive mode (IO, OUTPUT, EXTEND) by the issuer. 

The user must be privileged to update group 3. Group 3 should not be 
specified in conjunction with release unused space in extents. If this 
is done, the release option is ignored. 

To update group 4 or group 5, the specified file must be closed. 

If group 4 is to be updated, either the issuing program or user must 
be the file creator as named in (the previous value of) FDRlCREATOR, or 
the issuing program or user must have protection system administrator 
access rights to files. 

If group 5 is specified and is set to all zeroes, FDRlFLAGSPRIV is 
set to 0. If group 5 is specified and is not all zeroes, FDRlFLAGSPRIV 
is set to 1. 

If group 5 or 6 is to be updated, the issuing user must have system 
administrator access rights. Option bit 7 may be used to limit access 
rights to the user's logon rights (for all groups). 

The area addressed by PLIST must be in the user's data section. If 
any parameters are supplied as character strings (and in some other 
cases), the user must allow for generation of a literal pool. 

Parameter Definitions 

PL I ST 

VOLUME 

LIBRARY 

An address or a register in parentheses, pointing to a 
user-generated parameter list to be used by the UPDATFDR 
SVC. If PLIST is specified, no other parameter is 
required, and it is assumed that the user has placed 
appropriate values in the PLIST for parameters omitted 
which would have been required. 

Indicates the volume that contains the FDR to be updated. 
This parameter can be specified as an address expression, a 
register in parentheses that points to a 6-byte field which 
contains the volume name, or a character string in single 
quotes. Required unless PLIST is specified. 

Indicates the library that contains the file whose FDR is 
to be updated. This parameter can be specified as an 
address expression, a register in parentheses that points 
to an 8-byte field which contains the library name, or a 
character string in single quotes. Required unless PLIST 
specified. 

0 

Controlled Release Draft 4-401 October, 1985 



FILE 

CLOSE 

RELEASE 

RESTRICT 

NRECS 

EBLK 

EREC 

WPBLKSIZ 

WPBLS 

Indicates the file whose FDR is to be updated. This 
parameter can be specified as an address expression, a 
register in parentheses that points to an 8-byte field 
which contains the library name, or a character string in 
single quotes. Required unless PLIST is specified. 

If YES is specified, the update bit in FDRlFLAG is set. 
Required unless PLIST is specified. The default is NO. 

If YES, unused space in the file is released. Required 
unless PLIST is specified. The default is NO. Ignored if 
EXTCOUNT, SECEXT, or EXTPTR is specified. 

If NO, then any current special access rights granted to 
the invoking program are honored. If YES, file access is 
restricted to the user's LOGON access rights. Required 
unless PLIST is specified. The default is YES. 

Indicates the number of records in the file. This 
parameter can be specified as an address that points to a 
4-byte binary number, or a register in parentheses that 
contains a number. Required if PLIST is not specified, and 
either EBLK or EREC is specified. The file must be open in 
Exclusive mode. 

Indicates the last record's block number within the file. 
This parameter can be specified as an address that points 
to a 3-byte binary number, or a register in parentheses 
that contains the number. Required if PLIST is not 
specified, and either NRECS or EREC is specified. The file 
must be open in Exclusive mode. 

Indicates the number of the last record in the last block 
of the file. This parameter can be specified as an 
expression that points to a 2-byte binary number, or a 
register in parentheses that contains the number. Required 
if PLIST is not specified, and either NRECS or EREC is 
specified. The file must be open in exclusive mode. 

Indicates the block size of a word processing file. This 
parameter can be specified as an expression that points to 
a 1-byte binary number, or a register in parentheses that 
contains the number. Optional. Ignored if the file is not 
a word processing file. 

Indicates the number of bytes in the last sector of a word 
processing file. This parameter can be specified as an 
expression that points to a 1-byte binary number, or a 
register in parentheses that contains the number. 
Optional. Ignored if the file is not a word processing 
file. 

Controlled Release Draft 4-402 October, 1985 



HXBLK 

DABLK 

PTRD 

EXT COUNT 

SEC EXT 

EXTPTR 

Indicates the block-in-file of the root block of the 
primary index of the file. This parameter can be specified 
as an expression that points to a 3-byte binary number, or 
a register in parentheses that contains the number. 
Required if PLIST is not specified, and if either DABLK or 
PTRD is specified. The file must be open in exclusive mode. 

Indicates the block in the file of the starting block of 
the available block chain. This parameter can be specified 
as an expression that points to a 3-byte binary number, or 
a register in parentheses that contains a number. 
Required if PLIST is not specified, and if either HXBLK or 
PTRD is specified. The file must be open in exclusive mode. 

Indicates the first data block in file (primary key 
sequence) . This parameter can be specified as an 
expression that points to a 3-byte binary number, or a 
register in parentheses that contains a number. Required 
if PLIST is not specified, and if either HXBLK or DABLK is 
specified. The file must be open in Exclusive mode. 

Indicates the count of extents in use by the file. This 
parameter can be specified as an expression that points to 
a I-byte binary number, or a register in parentheses that 
contains a number. Required if PLIST is not specified, and 
if either SECEXT or EXTPTR is specified. The file must be 
open in Exclusive mode. RELEASE=YES is ignored. This 
parameter is only valid if UPDATFDR issued from privileged 
code. 

Indicates the number of blocks in a secondary extent. This 
parameter can be specified as an expression that points to 
a 2-byte binary number, or a register in parentheses that 
contains the number. Required if PLIST is not specified, 
and either EXTCOUNT or EXTPTR is specified. The file must 
be open in Exclusive mode. RELEASE=YES is ignored. This 
parameter is only valid if UPDATFDR issued from privileged 
code. 

Indicates a list of extent pointers. An extent pointer 
is a pair of three-byte binary numbers: the first contains 
the block number starting the extent; the second contains 
the block number plus one ending the extent. The list 
contains (in order) pairs for the primary, second, and 
third extents. If pairs for additional extents are 
appended, the FDR2 is created/modified as necessary. This 
parameter can be specified as an expression or a register 
in parentheses that points to the address of the list of 
pointers. Required if PLIST is not specified, and if 
either EXTCOUNT or SECEXT is specified. FILE must be open 
in Exclusive mode. RELEASE=YES is ignored. This parameter 
is only valid if UPDATFDR is issued from privileged code. 

Controlled Release Draft 4-403 October, 1985 



WTFLGS 

RDFLGS 

EXFLGS 

FPCLASS 

CREATOR 

CREDATE 

MOD DATE 

EXP DATE 

Indicates the extra write privileges to be granted to the 
file. This parameter can be specified as an expression or 
a register in parentheses that points to a 4-byte bit map. 
Required if PLIST is not specified, and either EXFLGS or 
RDFLGS is specified. The file must be closed. 

Indicates the extra read privileges to be granted to the 
file. This parameter can be specified as an expression or 
a register in parentheses that points to a 4-byte bit map. 
Required if PLIST is not specified, and either WTFLGS or 
EXFLGS is specified. The file must be closed. 

Indicates the extra execute privileges to be granted to the 
file. This parameter can be specified as an expression or 
a register in parentheses that points to a 4-byte bit map. 
Required if PLIST is not specified, and either WTFLGS or 
REFLGS is specified. The file must be closed. 

Indicates the file protection class. This parameter can be 
specified as an expression or a register in parentheses 
that points to a 1-byte character field, or as a character 
string in single quotes, Required if PLIST is not 
specified, and if CREATOR, CREATE, MODDATE, or EXPDATE 
specified. The file must be closed. 

Indicates the file's owner-of-record. This parameter can 
be specified as an expression or a register in parentheses 
that points to a 3-byte User ID, or as a character string 
in single quotes. Required if PLIST is not specified, and 
if FPCLASS, CREDATE, MODDATE, or EXPDATE is specified. The 
file must be closed. 

Indicates the creation date of the file. This parameter 
can be specified as an expression or a register in 
parentheses that points to a 3-byte packed Julian date 
field (YYDDD+). Required if PLIST is not specified, and if 
FPCLASS, CREATOR, MODDATE, or EXPDATE specified. The file 
must be closed. 

Indicates the file's date of last modification. This 
parameter can be specified as an expression or a register 
in parentheses that points to a 3-byte packed Julian date 
field CYYDDD+). Required if PLIST is not specified, and if 
FPCLASS, CREATOR, CREDATE, or EXPDATE is specified. The 
file must be closed. 

Indicates the expiration date of the file. An expression 
or a register in parentheses that points to a 3-byte packed 
Julian date field (YYDDD+). Required if PLIST is not 
specified, and if FPCLASS, CREATOR, CREDATE, or MODDATE 
specified. The file must be closed. 

Controlled Release Draft 4-404 October, 1985 



~ 

FGPRIORITY 

BGPRIORITY 

Indicates the priority at which the foreground job runs Ca 
value from 1 to 4 with 1 being the highest priority). 

Indicates the priority at which the background job runs (a 
value from 1 to 4 with 1 being the highest priority). 

One word on top of the stack, as follows: 

0 (SP) I 
(1) Address of 

Parameter List 
Preceding 

Stack Data 

Lower 
Address 

Higher 
Address 

(1) The address of the argument list. The format of the argument 
list is as follows: 

ARGUMENT LIST 
PLIST (1) Library Name 8 bytes Lower 

(2) File Name 8 bytes Address 
(3) Volume Name 6 bytes 
(4) More Options 1 byte 
(5) Unused 7 bytes 
(6) Option Flag 1 byte 
(7) FDRlNRECS 4 bytes 
(8) FDRlEBLK 3 bytes 
(9) FDRlEREC 2 bytes 

(10) FDRlWPBLKSIZE 1 byte 
.< 11) FDRlWPBLS 1 byte 
(12) FDRlHXBLK 3 bytes 
(13) FDRlDABLK 3 bytes 
(14) FDRlPTRD 3 bytes 
(15) Unused 3 bytes 
(16) FDRlXTNTCOUNT 1 byte 
(17) FDRlSECEXT 2 bytes 
(18) EXTENT LIST PRT 4 bytes 
(19) FDRlFPCLASS 1 byte 
(20) FDRlCREATOR 3 bytes 
(21) FDRlCREDATE 3 bytes 
(22) FDRlMODDATE 3 bytes 
(23) FDRlEXPDATE 3 bytes 
(24) FDRlWTFlGS 4 bytes 
(25) FDRlRDFLGS 4 bytes 
(26) FDRlEXFLGS 4 bytes 
(27) FGPRIORITY 1 bytes 
(28) BGPRIORITY 1 bytes Higher 
(29) RESERVED 10 bytes Address 

Controlled Release Draft 4-405 October, 1985 



Group 1 consists of items 7 - 11 above 
Group 2 consists of items 12 - 15 
Group 3 consists of items 16 - 18 
Group 4 consists of items 19 - 23 
Group 5 consists of items 24 - 26 
Group 6 consists of items 27 - 29 

(4) More options: 
Bit 0 1 = If the FDRlTXINUSE flag is to be set (ATTACH) 
Bit 1 1 = If the FDRlTXINUSE flag is to be turned off 

(DETACH) 
Bit 2 1 = If EXCL LOCK on CLOSE should be set 
Bit 3 1 = To update group #6. 
Bit 4 Reserved 
Bit 5 Reserved 
Bit 6 Reserved 
Bit 7 Reserved 

(5) Unused, must be O 

(6) Option flag: 
Bit 0 1 = Set FDRlFLAGSUPDAT (file-closed flag) 
Bit 1 1 = Release unused space in extents 
Bit 2 1 = Update group 5 
Bit 3 1 = Update group 4 
Bit 4 1 = Update group 3 
Bit 5 1 = Update group 2 
Bit 6 1 = Update group 1 
Bit 7 1 = Limit file access rights to user's logon 

access rights for this request 

The date of last modification CFDRlMODDATE) is updated in the 
label whenever a successful UPDATFDR is performed. 

(17) The extent list pointer points to a list that contains all 
the extent information of the file as indicated by 
FDRlXTNTCOUNT. FDR2 records are created as required to hold this 
information. The list is constructed as follows: 

FDRlXlSTRT 
FDRlXlEND 
FDR1X2STRT 
FDR1X2END 

FDRlXNSTRT 
FDRlXNEND 

Controlled Release Draft 

3 bytes 
3 bytes 
3 bytes 
3 bytes 

3 bytes 
3 bytes 

4-406 October, 1985 

~ 

~ 



. ~ 

Output 

A return code is placed in the top word of the stack replacing 
input. 

Q(SP) I 

Output 

Return Code 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

UPDATFDR issues a return code in the stack top word, indicating 
success, or the reason for failure, of the operation. 

Return Codes 

Code 

0 
4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 

76 

Description 

Success. 
Insufficient buff er space to perform operation. 
Volume not mounted. 
Volume used exclusively by another user or job . 
Volume has no VTOC. 
File was not open in Exclusive mode. 
Library not found. 
File not found. 
Insufficient file access rights. 
FILE was not closed. 
VTOC full, no space for FDR2. 
VTOC full, no space for freed extent; extent lost. 
VTOC error; FDXl and FDX2 conflict. 
VTOC error; FDX2 and FDR conflict. 
VTOC error; FDXl and FDR conflict. 
VTOC error; bad data in FDRl or FDR2. 
VTOC/system error; FLUB and FDR! conflict. 
Disk I/O error; VTOC not reliable. 
Group 5 update attempted on a file that is not a 
program file. 
DMS/TX attach or detach requested and target file is 
not a DMS/TX file. 

Controlled Release Draft 4-407 October, 1985 



Code Description 

80 Remote volwne specified. 
84 Unused. 
88* Group #3 not valid for volume sets. 
92* Group #7 not valid for single volwnes. 
96* Group #8 not valid for single volwnes. 

100* Group #9 not valid for single volwnes. 

* These groups are not available to user programs; they are 
available to privileged code only. 

Examples 

UPDATFDR PLIST=(RLIST),VOLUME='SYSTEM' ,LIBRARY='@SYSOOl', 
FILE='SOOO',DABLK=DABLK,PTRD=PTRD,HXBLK=HXBLK, 
NRECS=NRECS,EREC=EREC,EBLK=EBLK, 
EXTCOUNT=EXTCOUNT,SECEXT=SECEXT,EXTPTR=EXTPTR 

+ DS OH 
+ XC 23(7,RLIST),23(RLIST) . Reserved . 
+ MVC 16(6,RLIST),=CLG'SYSTEM' . MOVE IN VOLUME NAME . 
+ MVC 0(8,RLIST),=CL8'@SYS001' . MOVE IN LIBRARY NAME . 
+ MVC 8(8,RLIST),=CL8'SOOO' . MOVE IN FILE NAME . 
+ MVC 31(4,RLIST),NRECS . NRECS . 
+ MVC 35(3,RLIST),EBLK . EBLK. 
+ MVC 38(2,RLIST),EREC • EREC. 
+ MVC 42 ( 3 , RLIST) , HXBLK • HXBLK . 
+ MVC 45(3,RLIST),DABLK • DABLK. 
+ MVC 48(3,RLIST),PTRD . PTRD . 
+ MVC 54(1,RLIST),EXTCOUNT . EXTCOUNT . 
+ MVC 55(2,RLIST),SECEXT • SECEXT. 
+ MVC 57(4,RLIST),EXTPTR . EXTPTR . 
+* UPDATFDR RESTRICTED TO USER LOGON ACCESS RIGHTS 
+ OI 30(RLIST),15 . OPTION FLAG. 
+ PUSH 0,RLIST . PARAMETER ADDRESS TO STACK . 
+ SVC 25 CUPDATFDR) . ISSUE UPDATFDR SVC . 

Controlled Release Draft 4-408 October, 1985 

I~ 



UPDATFDR PLIST=(RLIST),VOLUME=VSCBNAME,LIBRARY=TESTLIB, 
FILE=FDR1FILENAME,FPCLASS='$',CREATOR=FDR1CREATOR, 
MODDATE=(8),CREDATE=(9),EXPDATE=FDR1EXPDATE 

+ DS OH 
+ XC 23(7,RLIST),23(RLIST) . Reserved . 
+ MVC 16 ( 6 ,RLIST), VCBSER . MOVE IN VOLUME NAME • 
+ MVC 0 ( 8 , RLIST) , TESTLIB . MOVE IN LIBRARY NAME . 
+ MVC 8(8,RLIST),FDRlFILENAME . MOVE IN FILE NAME . 
+ MVI 31(RLIST),C'$' • FPCLASS . 
+ MVC 32(3,RLIST),FDRlCREATOR . CREATOR . 
+ MVC 35(3,RLIST),0(9) . CREDATE . 
+ MVC 38(3,RLIST),0(8) . MODATE . 
+ MVC 41( 3 ,RLIST) ,FDRlEXPDATE . EXPDATE • 
+* UPDATFDR RESTRICTED TO USER LOGON ACCESS RIGHTS 
+ OI 30(RLIST),17 • OPTION FLAG . 
+ PUSH 0,RLIST . PARAMETER ADDRESS TO STACK . 
+ SVC 25 (UPDATFDR) . ISSUE UPDATFDR SVC . 

UPDATFDR PLIST=(R2),VOLUME=VCBSER,LIBRARY=TESTLIB, 
FILE=FDR1FILENAME,EXFLGS=FDR1EXFLAGS,RDFLGS=FDR1RDFLAGS,
WTFLGS=(4) ,CLOSE=YES,RESTRICT=NO,RELEASE=YES 

+ DS OH 
+ xc 23(7,R2),23(R2) 
+ MVC 16(6,R2),VCBSER 
+ MVC 0(8,R2),TESTLIB 
+ MVC 8(8,R2),FDR1FILENAME 
+ MVC 31(4,R2),0(4) 
+ MVC 3 5 ( 4, R2 ) , FDRlRDFLAGS 
+ MVC 39(4,R2),FDR1EXFLAGS 
+ OI 30(R2),224 
+ PUSH 0,R2 
+ SVC 25 (UPDATFDR) 

FDRlEXFLAGS DC B'10000100' 
FDRlRDFLAGS DC B'lllOOOOO' 

. Reserved • 03\ 
• MOVE IN VOLUME NAME . 
. MOVE IN LIBRARY NAME • 
. MOVE IN FILE NAME • 
. WTFLGS . 
. RDFLGS . 
. EXFLGS • 
. OPTION FLAG . 
. PARAMETER ADDRESS TO STACK • 
. ISSUE UPDATFDR SVC • 

UPDATFDR VOLUME='VOLUME' ,LIBRARY='LIBRARY',FILE='FILE', 
HXBLK=(6),DABLK=(7),PTRD=(8),NRECS=(9),EREC=(l0), 
EBLK=(ll) 

+ DS OH 
+ PUSHN 0,53 • SPACE FOR PARAMETER LIST . 
+ xc 22(8,15) ,22(15) . Reserved . 03\ 
+ MVC 16(6,15),=CL6'VOLUME' . MOVE IN VOLUME NAME . 
+ MVC 0(8,15),=CL8'LIBRARY' . MOVE IN LIBRARY NAME . 
+ MVC 8(8,15),=CLS'FILE' • MOVE IN FILE NAME . 
+ STCM 9,B'llll' ,31(15) . NRECS . 
+ STCM 11,B'Olll',35(15) • EBLK . 
+ STCM 10,B'OOll',38(15) • EREC . 
+ STCM 6,B'Olll' ,42(15) . HXBLK . 
+ STCM 7,B'Olll' ,45(15) . DABLK . 
+ STCM 8,B'Olll' ,48(15) • PTRD . 

Controlled Release Draft 4-409 October, 1985 



+* UPDATFDR RESTRICTED TO USER LOGON ACCESS RIGHTS 
+ MVI 30(15),7 . OPTION FLAG • 
+ PUSH 0, 15 . PARAMETER ADDRESS TO STACK . 
+ SVC 25 (UPDATFDR) ISSUE UPDATFDR SVC • 

....__.. 

·__-·' 

Controlled Release Draft 4-410 October, 1985 



4.2.83 VOLl - Describe Volume Label 

Syntax 

VOLl [NODSECT][,REG=expression](,SUFFIX=character] 

Function 

Describes the standard volume label for disk or magnetic tape. This 
data structure is the standard volume label for disk or magnetic tapes. 
The volume table of contents is the primary data structure that leads to 
the location of files on the storage medium. 

Parameter Definitions 

NODSECT 

REG 

SUFFIX 

Specification of NODSECT results in the VOLl fields being 
assembled as part of the current CSECT, DSECT, or STATIC 
section. If not specified, a DSECT with the name VOLl 
(plus optional SUFFIX) is generated. 

Provides for the optional specification of a register for 
which a USING statement for the VOLl fields in generated. 

If provided, all labels are generated by the concatenation 
of the letters VOLl, the user-provided SUFFIX Cone ASCII 
character in length), and the field name. 

Controlled Release Draft 4-411 October, 1985 



Structure 

BYTE 0 BYTE 1 BYTE 2 BYTE 3 ~ 
VOLl 

BEGIN I +o ID 
+4 SER 
+a ACCESS VSID 
+c TOTALEXT 

+10 FLAGS I RESRVl 
+14 
+18 
+lC 
+20 
+24 I CREATOR +25 = OWNER 
+28 
+2C 
+30 RESRV2 
+34 
+38 
+3C 
+40 
+44 
+48 
+4C LEVEL 
+50 SYSTEM 
+54 
+58 CREDATE XlSTRT ~ 
+SC XlEND 
+60 X2STRT 
+64 X2END X3STRT 
+68 X3END 
+6C FLGl FLG2 UCBTYPE 
+70 VCBBC VCBMAXTFR 
+74 VCBCV VCBCVP 
+78 MARKER Pl SURF PlCYL 
+7C Pl BLOCK 
+80 P2TOP4 
+84 
+88 
+BC VCBCVD XLMTOPENI XLMTTOTL 
+90 DSBKNUM 
+94 OS LENGTH 
+98 PXSTRT 
+9C PXEND 

ORG 

+9C PLOC 
+AO SDBLK# 
+A4 SDOFFSET 
+AB SDENTRYLNGTH 
+AC RES RVS 

Controlled Release Draft 4-412 October, 1985 



/,,,.,,,, 
Example 

+VOLl 
+* 

VOLl REG=2 
DSECT 

+* 
+* 
+* 
+* 

THE VOLl RECORD IS THE STANDARD VOLUME LABEL FOR DISK OR 
MAGNETIC TAPE. ALL FIELDS ARE IN ASCII CHARACTERS.EXCEPT THE 
FDIR EXTENTS AND CREATION DATE. THIS RECORD ON DISK IS AT 
ADDRESS F'l', FOLLOWING THE IPL TEXT RECORD. 

+* 
+* 
+* 
+* 

DATE 11-12-74 
VERSION 1. 01 

+VOLlBEGIN 
+VOLlID 
+VOLlSER 
+VOLlACCESS 
+* 
+VOLlVSID 
+VOLlTOTALEXT 
+VOLlFLAGS 
+VOLlMULTIVOL 
+VOL1$RESRV1 
+VOLlCREATOR 
+* 
+ 
+VOLlOWNER 
+* 
+VOL1RESRV2 
+VOLlLEVEL 
+VOLlTAPEEND 
+VOLlTAPELENGTH 
+VOLlSYSTEM 
+VOLlCREDATE 
+* 
+VOLlXlSTRT 
+* 
+* 
+VOLlXlEND 
+* 
+VOL1X2STRT 
+* 
+* 
+VOL1X2END 
+* 
+VOL1X3STRT 
+* 
+* 
+VOL1X3END 
+* 

Controlled Release Draft 

EQU * 
OS CL4'VOL1' 
OS CL6 

CHARACTERS 'VOLl' 
VOLUME SERIAL NUMBER 
FILE PROTECTION CLASS 
OR BLANK 

OS C' I 

OS BLl 
OS F 
DS X 
EQU X' 80' 
OS BL20 
DS CL3 

VOL ID (1-255) IN A SET 
TOTAL EXT LIMIT FOR FILE IN MVF 

ADDITIONAL FLAG 
MULTI-VOL FLAG 
RESERVED - ASCII BLANKS 
FILE CREATOR ID OR BLANKS 
FOR MAGNETIC TAPE ONLY 

ORG VOLlCREATOR 
OS CL14 OWNER ID (OPTIONAL) 

FOR DISK AND TAPE VOLUMES 
OS BL28 
DS CLl'l' 
EQU * 

RESERVED - ASCII BLANKS 
MUST BE AN ASCII '1' FOR TAP 

EQU VOLlTAPEEND-VOLlBEGIN 
DS CL8 SYSTEM IDENTIFICATION 
DS PL3 VOLUME INITIALIZATION DATE 

DS FL3 

DS FL3 

(PACKED YYDDD+) 
VOLUME TABLE OF CONTENTS lST 

EXTENT STARTING BLOCK ON 
VOLUME FROM 0 

FDIR lST EXTENT ENDING BLOCK 
PLUS 1 

DS FL3 VOLUME TABLE OF CONTENTS 2ND 
EXTENT STARTING BLOCK ON 
VOLUME FROM 0 

DS FL3 FDIR 2ND EXTENT ENDING BLOCK 
PLUS 1 

DS FL3 VOLUME TABLE OF CONTENTS 3RD 
EXTENT STARTING BLOCK ON 
VOLUME FROM 0 

DS FL3 FDIR 3RD EXTENT ENDING BLOCK 
PLUS 1 

4-413 October, 1985 



+* (EXTENTS 2 AND 3 RESERVED. X2STRT THOUGH X3END MUST CONTAIN 
+*BINARY ZEROES.) 

~ +VOLlFLGl DS x Flag byte 1 
+VOLlFLGlCTV EQU X'80' Crash tolerant volume 
+VOLlFLGlMDTV EQU X'40' Media tolerant volume 
+VOLlFLGlOLD EQU X'20' Old-format volume; all 
+VOLlFLGXLMT EQU X'lO' XTNT limits are set 
+* other flags invalid 
+VOL1FLG2 DS x Flag byte 2 
+VOLlUCBTYPE DS ALI UCB TYPE 
+VOLlVCBBC DS AL2 BLOCKS PER CYLINDER 
+VOLlVCBMAXTFR DS AL2 MAX TRANSFER (BYTES) 
+VOLlVCBCV DS AL2 CYLINDERS PER VOLUME 
+VOLlVCBCVP DS AL2 CYLINDERS PER PHYS VOLUME 
+VOLlMARKER DS ALI VS25 pointers follow 
+VOLlPlSURF DS ALl Platter # for 1st sector 
+* of diagnostic file 
+VOLlPlCYL DS AL2 Cylinder # of same 
+VOLlPlBLOCK DS ALl And block within track 
+VOL1P2TOP4 DS 3A Pointers for remaining 
+* three sectors 
+VOLlVCBCVD DS AL2 Cylinders/volume incl. 
+* diagnostic. cylinder 
+VOLlXLMTOPEN DS XLl Extent limit for OPEN 
+VOLlXLMTTOTL DS XLl Total extent limit 
+VOLlDSBKNUM DS F Dump slot block number 
+VOLlDSLENGTH DS F Dump slot length 
+VOLlPXSTRT DS A Start addr of Page Pool ~ +VOLlPXEND DS A End+l addr of Page Pool 
+ ORG VOLlPXEND 
+VOLlPLOC DS x Rel. loc. of page pool 
+ ORG , 
+VOLlSDBLK# DS F Simple Directory Block # 
+VOLlSDOFFSET DS H Off set into block of 1st 
+* entry 
+VOLlSDENTRYLNGTH DS F Length of single SD entry 
+VOL1RESRV5 DS (256-(*-VOLlBEGIN))C Filler to endO 
+VOLlDISKEND EQU * 
+VOLlLENGTH EQU 256 
+ CSECT 
+ USING VOLl,2 

Controlled Release Draft 4-414 October, 1985 



4.2.84 WPCALL - Call VS Document Access Subroutines 

Syntax 

[label] WPCALL {OPEN } 
{CLOSE } 

(,DFB={Cregister)}] [,SUFFIX=character] 
{ address } 

Function 

{READ } 
{REWRITE} 
{DELETE } 
{WRITE } 
{SEARCH } 
{PRINT } 
{DOCLIB } 
{STRING } 
{USCORE } 
{XSCORE } 
{UPCASE } 
{LOCASE } 

[,TEXT=string,TEXTLENGTH={Cregister)}] 
{ address } 

[,TEXTOFFSET={Cregister)}] 
{ address } 

Calls VS document access routines to perform I/O operations on a word 
processing document. 

Parameter Definitions 

OPEN 

CLOSE 

READ 

REWRITE 

DELETE 

WRITE 

SEARCH 

PRINT 

Calls the OPEN access subroutine to open a WP file. 

Calls the CLOSE access subroutine to close a WP file and 
updates document summary/header and print information. 

Calls the READ access subroutine to read an element or a 
page of a file. 

Calls the REWRITE access subroutine to rewrite an element 
or a page of a file. 

Calls the DELETE access subroutine to delete a file. 

Calls the WRITE access subroutine to write to a file. 

Calls the SEARCH access subroutine to perform a character 
search on a file. 

Calls the PRINT access subroutine to place a WP file on the 
queue for printing. 

Controlled Release Draft 4-415 October, 1985 



DOCLIB 

STRING 

US CORE 

XS CORE 

UPCASE 

LOCASE 

DFB 

SUFFIX 

TEXT 

Calls the DOCLIB access subroutine to produce a listing of 
the document IDs in a document library. 

Calls the STRING access subroutine to perform string 
manipulation on a file. 

Calls the USCORE access subroutine to underscore a string 
of text. 

Calls the XSCORE access subroutine to remove underscoring 
from a string of text. 

Calls the UPCASE access subroutine to convert a string of 
text to all uppercase characters. 

Calls the LOCASE access subroutine to convert a string of 
text to all lowercase characters. 

The address of a data file block CDFB) which is used to 
pass parameters for the user program to the document access 
subroutines. If not specified, one DFB with the label DFB 
is assumed. 

One character value that is appended to the DFB to create a 
unique DFB label. 

Address of a text buff er that contains the text to be 
manipulated. Used with the READ, REWRITE, WRITE, SEARCH, 
STRING, USCORE, XSCORE, UPCASE, LOCASE functions. 

TEXTLENGTH Contains the number of characters in the text buffer. 

TEXTOFFSET Contains the offset from the beginning of the text. 

Examples 

WPCALL CLOSE 

+* Wang VS Document Access Subroutines - Release 2.00 
+* Program Request for "CLOSE" Function 

+ 
+ 
+ 
+ 
+ 

PUSHA 0,DFB 
OI 0(15),X'BO' 
LR 1,15 
JSI =VCWPCLOSE) 
POPN 0,4 
WPCALL OPEN 

DFB Pointer in Parameter List 
Denote Last Parameter 
Official Parameter List Pointer 
Call Appropriate Subroutine Entry 
Eliminate Parameter List 

+* Wang VS Document Access Subroutines - Release 2.00 
+* Program Request for "OPEN" Function 

Controlled Release Draft 4-416 October, 1985 

~I 



+ 
+ 
+ 
+ 
+ 

PUSHA O,DFB 
OI 0(15),X'BO' 
LR 1,15 
JS! =V(WPOPEN) 
POPN 0,4 

DFB Pointer in Parameter List 
Denote Last Parameter 
Official Parameter List Pointer 
Call Appropriate Subroutine Entry 
Eliminate Parameter List 

DOC WPCALL OPEN,DFB=DOCMNTF,SUFFIX=A 

+* Wang VS Document Access Subroutines - Release 2.00 
+* Program Request for "OPEN" Function 

+DOC 
+ 
+ 
+ 
+ 

PUSHA O,DOCMNTFA 
OI 0(15),X'SO' 
LR 1,15 
JSI =V(WPOPEN) 
POPN 0,4 

Controlled Release Draft 

DFB Pointer in Parameter List 
Denote Last Parameter 
Official Parameter List Pointer 
Call Appropriate Subroutine Entry 
Eliminate Parameter List 

4-417 October, 1985 



4.2.85 WRITE - Write a Record 

Syntax 

[label] WRITE [{EOM},]UFB={(register)}[,COND=integer] 
{EOT} { address } 15 
{EOF} 

Function 

Writes one of the following pieces of information: 

• The next sequential record to a consecutive or indexed file 
opened in Output or Extend mode. 

• The next sequential record for a consecutive file opened in 
Shared mode. 

• The specified record to an indexed file opened in IO or Shared 
mode. 

Fo~ indexed disk files, open in Output mode, the key in the record to 
be written is checked to insure that it is greater than any key already 
in the file. If not, a record sequence error is indicated. 

NOTE 

The address of the UFB is loaded into register 1. 

Parameter Definitions 

EOM 

EOT 

EOF 

UFB 

Data transmitted by the WRITE function is to be followed 
with a telecommunications end-of-message character 
(pertains only to batch telecommunications devices). 

Telecommunications end-of-transmission signal is to be 
transmitted, following any data specified (pertains only to 
batch telecommunications devices). 

Write end of file for relative files. 

The address of a user file block (UFB), which may be 
presented as a register specification in parentheses, where 
the register contains the UFB address, or the address of 
the UFB. 

Controlled Release Draft 4-418 October, 1985 



~' 

COND 

Output 

If specified, the number or absolute expression becomes the 
first parameter of the JSCI instruction by which the WRITE 
function is entered. Thus the WRITE is made conditional. 
The default is COND=lS. Register 1 is loaded with the UFB 
address even when the condition is not satisfied. 

The following values are possible result conditions which can be 
indicated in UFBFSl, UFBFS2 (file status bytes): 

• 00 -- Normal completion, success 

• 20, 22, and 24 -- Possible invalid-key conditions 

21 -- Record sequence error (indexed files only) 
22 -- Duplicate key (indexed or relative files only) 
24 Boundary violation (primary extent size exceeded in 
output mode - indexed files (or relative files in any mode) 

• 30, 34, 95, 96, 97 -- Possible error conditions 

30 -- Permanent I/O error 
34 -- Boundary violation (consecutive files in OUTPUT or 
Extend mode; indexed files in I/O or Shared mode) 
95 Invalid function or function sequence 
96 Invalid data area location or alignment 
97 Invalid length for device 

An invalid key condition results in return to the address in 
UFBEODAD, with the normal return address in register 0. Other 
exceptional and error conditions result in return to the address in 
UFBERRAD, with the normal return point address in register 0. If 
UFBEODAD is zero, UFBERRAD is used in its place. If UFBERRAD is zero as 
well, any exceptional condition results in abnormal termination of the 
program. 

Example 

OT PUT WRITE EOM,UFB=(Rl) 
+OT PUT MVI 4 (1) ,BI 00000001' TC WRITE WITH EOM 
+ JSCI 15,4(1) WRITE FUNCTION 

WRITE EOT,UFB=(Rl) 
+ MVI 4 (1) ,BI 00100000 I WRITE TC EQT SIGNAL 
+ JSCI 15,4(1) WRITE FUNCTION 

Controlled Release Draft 4-419 October, 1985 



4.2.86 WV46MAP - Describe Parameter List 

Syntax ~ 

WV46MAP [NODSECT][,SUFFIX=character] 

Function 

Maps the parameter list supplied to the SUBMIT SVC and provides 
information for use by the SUBMIT macro when using the PLIST option. 

Parameter Definitions 

NODSECT Specification of NODSECT results in the WV46MAP fields 
being assembled as part of the current CSECT, DSECT, or 
STATIC section. If not specified, a DSECT with the name 
WV46MAP (plus optional SUFFIX) is generated. 

REG Provides for the optional specification of a register for 
which a USING statement for the WV46MAP fields in generated. 

SUFFIX If provided, all labels are generated by the concatenation 
of the letters WV46MAP, the.user-provided SUFFIX (one ASCII 
character in length), and the field name. 

Example 

WV46MAP 
+WV46MAP DSECT 
+* 
+* WV46MAP maps the parameter list supplied to the SUBMIT SVC 
+* (WV46), and provides information for use by the SUBMIT MACRO 
+* when used with the "PLIST" option. WV46 Uses this map, as 
+* should all callers using the "PLIST" option. 
+* 
+* Date 12/03179 Version 5.00.00 
+• 
+********************************************************************* 
+* 
+WV46MAPBEGIN OS OF (Word Alignment Required) 
+• 
+WV46MAPFILENAME 

+WV46MAPLIBRARY 
+WV46MAPVOLUME 
+WV46MAPCOMDATA 
+WV46MAPCOMLEN 
+* 

Controlled Release Draft 

OS CLS Filename of PROC/PRINT File 

OS CLS Library containing FILENAME 
OS CL6 Volume containing LIBRARY 
EQU * (End of Conunon Section) 
EQU *-WV46MAPBEGIN 

4-420 October, 1985 



+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
+* J 0 B REQUESTS * 
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
+* 
+WV46MAPJOBNAME 
+WV46MAPJOBCLASS 
+WV46MAPDUMP 
+* 
+WV46MAPDUMPPROG 
+WV46MAPDUMPDUMP 
+WV46MAPDUMPNONE 
+* 
+WV46MAPLIMIT 
+* 
+* 
+WV46MAPJSTAT 
+WV46MAPJSTATR 
+WV46MAPJSTATH 
+* 
+WV46MAPJFLG 
+WV46MAPJFLGCHEK 
+WV46MAPJFLGCNCL 
+WV46MAPJFLGPAUS 
+WV46MAPJFLGREQ 
+WV46MAPJFLGSEC 
+* 
+* 
+* 
+* 
+WV46MAPJTYPE 
+WV46MAPPERMANENT 
+WV46MAPJSPARE 
+* 

** Note ** 

DS CL8 
DS C 
DS X 

EQU X'OO' 
EQU X'CO' 
EQU X'80' 

OS F 

DS X 
EQU X'OO' 
EQU X'80' 

OS X 
EQU X'80' 
EQU X'40' 
EQU X'20' 
EQU X'04' 
EQU X'Ol' 

DS X 
EQU X'80' 
OS XLS 

(Optional) Job Name 
Job Class 
Dump Options: (Action at 

(Abnormal Termination) 
Let Program Decide 
Produce a Dump 
Do Not Produce a Dump 

CPU Execution Time Limit 
(No Limit if Zero -

Mode 
Run 
Hold 

Flag Data 

see FLAGS for Units) 

Must Be On for LIMIT 
Cancel (at Expiration) 
Pause Cat Expiration) 
REQUEUE after execution 
LIMIT Units are in Seconds 

(Else units are in Clock Units 
** NOTE ** Starting with 

Release 6.0 Clock Units will 
no longer be acceptable) 

Job Type 02\ 
Permanent job 02\ 

* Reserved * Must Be Zero 01\ 

+WV46MAPJLENGTH EQU *-WV46MAPBEGIN Map Length (Job) 
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
+* P R I N T R E Q U E S T S * 
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
+* 
+ ORG WV46MAPCOMDATA 
+* 
+WV46MAPPRTCLASS 
+WV46MAPFORM# 
+WV46MAPCOPIES 
+* 
+WV46MAPPSTAT 
+WV46MAPPSTATH 
+WV46MAPPSTATS 
+* 
+WV46MAPDISP 
+WV46MAPDISPSCR 

OS C 
OS BLl 
OS BL2 

DS X 
EQU X'80' 
EQU X'OO I 

DS X 
EQU X'OO' 

Print Class 
Form # 
# Copies 

Status Indicator 
Hold 
Spool 

Disposition 
Scratch 

Controlled Release Draft 4-421 October, 1985 



EQU X'40' 
EQU X'20' 

DS XL16 

Re queue 
Save 

* Reserved * Must Be Zero 

+WV46MAPDISPREQ 
+WV46MAPDISPSAV 
+* 
+WV46MAPPSPARE 
+* 
+WV46MAPPLENGTH EQU *-WV46MAPBEGIN Map Length (Print) 
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
+* T R A N S M I T I R E T R I E V E R E Q U E S T S * 
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
+ ORG WV46MAPBEGIN 
+* 
+WV46MAPOISNAME 
+* 
+WV46MAPDOCID 
+WV46MAPDOC# 
+WV46MAPDOCLIB 
+WV46MAPPASSWRD 
+* 
+WV46MAPRESVD1 
+* 
+WV46MAPDOCVOL 

DS OCL71 OIS File Namestring 

+* 

OS OCLS 
DS CL4 
DS CLl 
DS CL6 

DS CLS 

DS CL6 

+ ORG WV46MAPCOMDATA 
+* 
+WV46MAPRESVF1 
+* 

DS CL49 

Document ID Name 
Document Number 
Document Library 
Document Password 

Reserved - must be zero 

Document Volume 

Reserved - must be zero 

+WV46MAPROISNAME 
+* 
+WV46MAPRDOCID 
+WV46MAPRDOC# 
+WV46MAPRDOCLIB 
+WV46MAPRPASSWRD 
+WV46MAPRDOCVOL 
+* 

DS OCL71 Remote OIS File Namestring 

+WV46MAPRESVR1 
99 

DS OCLS 
DS CL4 
DS CLl 
DS CL6 
DS CLB 

DS CL52 

+ ORG WV46MAPROISNAME 
+WV46MAPRFILENAME DS CLB 
+WV46MAPRLIBRARY DS CLB 
+WV46MAPRVOLUME DS CL6 
+WV46MAPRESVR2 DS CL49 
+* 
+WV46MAPNAMTYPE 
+WV46MAPNAMUNDEF 
+WV46MAPNAMVS 
+WV46MAPN.AMDOC 
+WV46MAPNAMVSOIS 
+WV46MAPNAMOIS 
+WV46MAPRNAMTYPE 
+WV46MAPRNAMUNDEF 

Controlled Release Draft 

DS X 
EQU X'OO' 
EQU X'Ol' 
EQU X'02' 
EQU X'03' 
EQU X'04' 
DS X 
EQU X'OO' 

4-422 

Remote Document ID Name 
Remote Document Number 
Remote Document Library 
Remote Document Password 
Remote Document Volwne 

Reserved - must be zero 

Remote Filename 
Remote Library 
Remote Volwne 
Reserved - must be zero 

Local Filename Format 
Undefined 
VS Format 
Document Format 
VS COIS) Format 
OIS Format 

Remote Filename Format 
Undefined 

October, 1985 



~. 

+WV46MAPRNAMVS 
+WV46MAPRN.AMDOC 
+WV46MAPRN1\MVSOIS 
+WV46MAPRNAMOIS 
+* 
+WV46MAPLOCATION 
+ 
+WV46MAPGROUP 
+ 
+* 
+WV46MAPREPLACE 
+WV46MAPREPLACEN 
+WV46MAPREPLACEY 
+* 
+WV46MAPSTATUS 
+WV46MAPSTATUSA 
+WV46MAPSTATUSH 
+* 
+WV46MAPDISPOS 
+WV46MAPDISPSAVE 
+WV46MAPDISPSCRA 
+* 
+WV46MAPXFERDISP 
+WV46MAPXFERDST 
+WV46MAPXFERDPR 
+WV46MAPXFERDRN 
+* 
+WV46MAPCOMDATA1 
+* 

EQU X'Ol' 
EQU X'02' 
EQU X'03' 
EQU X'04' 

DS CL8 
DS CL8 
DS CL16 
DS CL16 

DS X 
EQU X'OO' 
EQU X'80' 

DS X 
EQU X'OO' 
EQU X' 80' 

DS X 
EQU X'OO' 
EQU X' 80' 

DS X 
EQU X'OO' 
EQU X'Ol' 
EQU X'02' 

EQU * 

+ ORG WV46MAPCOMDATA1 
+* 
+* FILE TRANSFER PRINT OPTIONS 
+* 
+WV46MAPRPRTCLAS DS c 
+WV46MAPRFORM# DS BLl 
+WV46MAPRCOPIES DS BL2 
+WV46MAPRPRTDISP DS x 
+WV46MAPRPRTSCR EQU X'OO' 
+WV46MAPRPRTREQ EQU X'40' 
+WV46MAPRPRTSAV EQU X'20' 
+WV46MAPPRTMODE DS x 
+WV46MAPPRTMODES EQU X'OO' 
+WV46MAPPRTMODEH EQU X'80' 
+* 

VS Format 
Docwnent Format 
VS COIS) Format 
OIS Format 

Local or Remote Location Name 
Reserved - must be zero 
Transfer Group 
Reserved - must be zero 

Replace 
Abort on Duplicate File 
Scratch on Duplicate File 

Queue Status 
Active 
Hold 

Disposition 
Save 
Scratch 

Transfer Disposition 
Store 
Print 
Run 

(End of common section) 

Print Class 
Form# 
# Copies 
Print Disposition 

Scratch 
Requeue 
Save 

Print Mode Status 
Spool 
Hold 

+* ADDITIONAL WP DOCUMENT PRINT OPTIONS 
+* 
+WV46MAPSTART DS x Print from Page 
+WV46MAPFINISH DS x Print thru Page 
+WV46MAPNUMBER DS x Start as Page Number 
+WV46MAPHEADER DS x First Header Page 

Controlled Release Draft 4-423 October, 1985 



+WV46MAPFOOTER 
+WV46MAPLINE 
+WV46MAPPGLTH 
+WV46MAPCSET1 

+WV46MAPCSET2 
+WV46MAPPRINTER 
+WV46MAPMARGIN1 
+WV46MAPMARGIN2 
+WV46MAPPITCH 
+WV46MAPPITCH10 
+WV46MAPPITCH12 
+WV46MAPPITCHPS 
+WV46MAPPITCH15 
+WV46MAPFMAT 
+WV46MAPFMATUNJ 
+WV46MAPFMATJUS 
+WV46MAPFMATNOT 
+WV46MAPFRMS 
+WV46MAPFRMSCON 
+WV46MAPFRMSSTD 
+WV46MAPFRMSFM1 
+WV46MAPFRMSFM2 
+WV46MAPSTYLE 
+WV46MAPSTYLEFIN 
+WV46MAPSTYLEDRF 
+WV46MAPSUM 
+WV46MAPSUMOMIT 
+WV46MAPSUMPRT 
+WV46MAPLINES 
+WV46MAPLINES6 
+WV46MAPLINES8 
+WV46MAPRESVS2 
+* 

DS X 
DS X 
DS X 
OS X 

DS X 
OS X 
OS X 
OS X 
OS X 
EQU X'Ol' 
EQU X'02' 
EQU X'03' 
EQU X'04' 
OS X 
EQU X'OO' 
EQU X'80' 
EQU X'40' 
OS BLl 
EQU X'OO' 
EQU X' 80' 
EQU X'40' 
EQU X'20' 
OS X 
EQU X'OO' 
EQU X'80' 
OS X 
EQU X'OO' 
EQU X' 80' 
OS X 
EQU X'OO' 
EQU X'80' 
OS XL4 

+ ORG WV46MAPCOMDATA1 
+* FILE TRANSFER RUN OPTIONS 
+* 
+WV46MAPJNAME 
+WV46MAPJMODE 
+WV46MAPJMODER 
+WV46MAPJMODEH 
+WV46MAPJDISP 
+WV46MAPJDISPRQ 
+WV46MAPACT 
+WV46MAPACTWARN 
+WV46MAPACTCNCL 
+WV46MAPACTPAUS 
+WV46MAPJCLASS 
+WV46MAPJLIMIT 
+* 

DS CL8 
OS X 
EQU X'OO' 
EQU X'80' 
OS X 
EQU X'80' 
DS X 
EQU X'OO' 
EQU X' 80' 
EQU X'40' 
DS C 
DS F 

First Footer Page 
Footer begins on Line 
Page Length 
Character Set 1 

Character Set 2 
Printer Number 
Left Margin 1 
Left Margin 2 
Pitch 

10 
12 
PS 
15 

Format 
Unjustified 
Justified 
With Notes 

Forms 
Continuous 
Standard 
Form 1 
Form 2 

Style 
Final 
Draft 

SUllllnary 
Omit 
Print 

Lines 
6 Per Inch 
8 Per Inch 

Reserved - must be zero 

Job Name 
Job Mode 

Run 
Hold 

Job Disposition 
Requeue 

Job Action 
Warn 
Cancel 
Pause 

Job Class 
CPU Execution Time Limit 
(No Limit if Zero) 

Controlled Release Draft 4-424 October, 1985 



+WV46MAPJDUMP 
+* 
+WV46MAPJDMPPROG 
+WV46MAPJDMPDUMP 
+WV46MAPJDMPNONE 
+WV46MAPRESVD2 
+ ORG 
+WV46MAPLENGTH 

Controlled Release Draft 

DS X 

EQU X'OO' 
EQU X'CO' 
EQU X' 80' 
DS XLll 

Dump Options: (Action at 
(Abnormal Termination) 

Let Program Decide 
Produce a Dump 
Do Not Produce a Dump 

Reserved - must be zero 

EQU *-WV46MAPBEGIN Map Length (T/R) 

4-425 October, 1985 



4.2.87 XIO - Execute Physical I/O (SVC 3) 

Syntax 

Format 1: 

[label] XIO PLIST={ address } 
{(register)} 

Format 2: 

[label] XIO OFB={ address },COMMAND={ address }, 
{(register)} {(register)} 

MEMA={ address },BLKNUM={ address }, 
{(register)} {(register)} 

BLKSIZE={ address }[,RELEl\SE] 
{(register)} 

[,VOLIO={YES},VCB={ address }] 
{ NO} {<register)} 

[,MLPRINT={YES},FORM={LIST}] 
{NO } {EXEC} 

[,UCPRINT={YES}][,DEVSTATUS={CLEAR }] 
{NO } {CHECK } 

{NOCHECK} 

[,DIAG={YES}][,PRIORITY={YES}][,PAGEMARK={YES}] 
{NO } {NO } {NO } 

Function 

XIO performs the following functions: 

• Validates disk extents. 

• Acquires available physical pages of memory for input operations 
if the virtual pages referenced are not in main memory. 

• Short-term fixes the virtual data page(s) in physical pages 
during the I/O operation. 

• Constructs the IOCW. 

• Constructs indirect data address lists for workstation and disk 
operations. 

Controlled Release Draft 4-426 October, 1985 



• Insures that the change bit in the page frame table for each 
modified page is set when the read-type I/O is accomplished. 

• Enters the system start I/O routine to initiate the operation. 

• Validates volume control block address, disk block numbers, and 
data address. 

• Validates that usage of the VOLIO option is to be allowed; 
translates memory address. 

• Converts block on volume to disk address. 

• Constructs the IOCW (from COMMAND parameter, converted MEMA 
parameter, converted BLKNUM parameter) in the !ORE contained in 
this VCB. 

• Fixes data page if required, as described above. 

• Sets change bit if required. 

• Enters system start I/O routine to initiate the operation. 

NOTE 

For both normal disk file I/O and for VOLIO, under the 
nonstandard addressing CNSA) option for soft-sectored 
diskettes, the user program calculates sector sizes and 
addresses, and passes to the XIO SVC the sector addresses for 
each I/O operation. Under the NSA option, the XIO SVC skips 
address (extent) validation and the usual block-to
pseudo-sector translation. 

Restrictions 

XIO is intended for use by Data Management System routines. XIO with 
the VOLIO option is allowed only when requested from within system mutual 
exclusion CSME) state or when addressed to a disk volume placed in 
initialization state by the issuing task. 

The following restrictions on general I/O capability are enforced by 
the XIO routine: 

• All 

All memory addresses for a READ or WRITE operation must be 
valid (present in main memory or page faulted) and must be in 
the user-modifiable data area (unless the requesting routine 
is privileged) as an I/O buffer area or entirely above the 
XIO parameter list on the stack. 

Controlled Release Draft 4-427 October, 1985 



• Disk 

A block to be read or written must fall within the current 
extent limits of the specified file (except for VOLIO disk 
requests). 

The specified memory address must be on a page boundary. 

The VOLIO option (FLAG bit 1 = 1) is allowed only when 
requested from within System Mutual Exclusion CSME) state. 

The length specified for a READ or WRITE operation must be a 
multiple of the page size. 

Indirect data addressing is always used for disk I/O. 

• Library-structured diskette 

All restrictions as for other disk. 

• Unstructured diskette 

NOTE 

A block to be read or written must fall within the bounds of 
the diskette platter (blocks 0 through 153); otherwise, 
return code 16 is set. 

The VOLIO option is ignored. 

A nonstandard addressing option is now supported which allows 
the user to format a soft-sectored diskette in any 
combination of sector size and density. The use of this 
option is intended to be limited to specialized utilities. 
User programs which employ this option are responsible for 
performing direct and sequential I/O on a physical-sector 
basis. The user program must calculate the sector size and 
addresses, set mode, and set density. When nonstandard 
addressing is specified, the XIO SVC does not perform extent 
validation or address translation, but simply passes the 
address to the firmware via the I/O control word CIOCW). 

• Tape 

The maximum size permitted for tape records is 32K. 

Controlled Release Draft 4-428 October, 1985 



• Printer 

Bit 2 of the first byte of the XIO parameter list 
distinguishes between print operations through a resident 
print buffer and multiple-line (block) print operations. The 
data length for single-line print operations cannot be less 
than 2 or more than 134. The data for a block print 
operation must be on a single page. 

The data for a block print operation must include record 
length bytes. The data for single-line print operations 
through a resident buffer should include only the printer 
control characters and the characters to be printed. 

• Workstation 

An attention identification (AID) character is stored in the 
current status portion of the device's Unit Control Block 
(UCB) on successful completion of each I/O operation. (See 
the VS Principles of Operation manual or VS Operating System 
Services Pocket Guide for a listing of these characters. ) 
The AID character also serves to indicate whether the 
workstation keyboard is in locked or unlocked state after the 
operation. 

If the device's UCB indicates that the keyboard is unlocked 
when a READ operation is requested, the XIO routine waits for 
an attention interruption from this device. When such an 
interruption is received, the interrupt service routine marks 
the UCB keyboard locked and then allows XIO to initiate the 
read operation. 

Indirect data addressing is always used by XIO for 
workstation I/O. 

Parameter Definitions 

PL I ST 

OFB 

COMMAND 

The address of a 16-byte area that contains the parameter 
list for XIO. If this parameter is supplied, any other 
parameters are used to modify the parameter list after it 
has been moved to the stack. The original copy is not 
modified. 

The address of the open file block COFB) for file involved 
in the I/O operation. The OFB is supplied when the file is 
opened. The VOLIO parameter is not used with this 
parameter. 

The address of the value to be placed in the command byte 
of the I/O command word (IOCW) constructed by the XIO SVC. 
The collUlland byte specifies the operation to be performed. 
Possible values are contained in descriptions of the IOCWs 
for the various conunands. 

Controlled Release Draft 4-429 October, 1985 



MEMA 

BLKNUM 

BLKSIZE 

RELEASE 

VOLIO 

VCB 

MLPRINT 

FORM 

A virtual data address to be translated to a physical 
address and then placed in the IOCW for the I/O operation. 
This parameter can be specified as an address expression 
that points to a 4-byte area which contains the virtual 
address in its low-order three bytes, or as a register 
specification in parentheses where the register contains 
the virtual address. 

For disk I/O, the address of a 3-byte area that contains 
the number of the block to be read from the file. If the 
VOLIO option is specified, or if an unstructured diskette 
device is being referenced, this is to be the block on 
volume, from block 0. 

The address of a halfword that contains the length in bytes 
of the data to be transferred (or maximum length, as for 
magnetic tape). 

Specified on a disk or tape write operation when it is 
desired to make the fixed page frames available after the 
operation without preserving their contents (i.e., without 
pageout). 

If YES is specified, then perform volume-oriented disk I/O 
without extent limitations, as described above. Valid only 
for disk volumes, and only when requested by system 
routines in system mutual exclusion (SME) state or when the 
accessed volume is mounted for initialization by the 
issuing task. 

Address of volume control block for a disk volume. 
Required with VOLIO option unless PLIST is supplied or the 
FORM=EXEC option is specified. Allowed only with VOLIO 
option. Register 1 is modified if the value of the 
parameter is an address. 

YES requests a block I/O operation to the printer of one or 
more lines. Record-length bytes must be provided in the 
data area if this option is not specified. Ignored if the 
operation is not directed to a printer. Data must be 
2K-aligned and is not moved to the device's resident print 
buffer. 

If EXEC is specified, the parameter list is assumed to 
already be stacked. The supervisor call is generated. If 
other parameters are supplied, they are used to modify the 
existing parameter list. The VOLIO=YES and RELEASE 
parameters must be specified if required, even if the 
parameter list already contained these options. 

Controlled Release Draft 4-430 October, 1985 



UCPRINT 

DEVSTATUS 

DIAG 

PRIORITY 

PAGEMARK 

If LIST is specified, the parameter list is created on the 
stack, but the supervisor call is not generated. The 
RELEASE parameter is normally not useful on an XIO 
macroinstruction with FORM=LIST. 

If YES is specified, then uppercase printing is used. The 
default is NO. 

This parameter is intended for the use of hardware 
diagnostics personnel when simulating error conditions on 
serial workstations and printers. 

If CLEAR is specified, XIO resets two fields in the unit 
control block CUCB), i.e., UCBSTATNOTOP and UCBSTATNOCODE, 
thus permitting I/O to a device which is being simulated to 
malfunction. 

If CHECK is specified and an 
inoperative workstation, then a 
generated and the I/O is not issued. 

XIO is issued 
return code of 

to 
32 

an 
is 

If NOCHECK is specified, any attempts at I/O to a 
malfunctioning workstation cause the task to wait for the 
device to become operational. NOCHECK is the default value. 

When DIAG=YES, diagnostic mode and READ/WRITE ECC are 
enabled. Then, the control commands SEEK and FORMAT will 
be permitted in the command byte of the IOCW. Before 
issuing the XIO, the user must issue a call to GETHEAP to 
allocate a 2-page buffer. The XIO MEMA parameter must also 
be specified with the address of the buffer. Caller must 
be privileged and have diagnostic authorization specified 
through the Security program. 

Specyifying YES marks this I/O as a priority I/O. This 
allows the reading of the label of a newly spun-up disk 
without letting regular I/O through. This is a privileged 
function and is only valid for a VOLIO operation. 

Specifying YES causes the related pages in memory to be 
marked as having no valid information only if the I/O 
operations was successful. The pages will not be swapped out 
to the paging file. 

Controlled Release Draft 4-431 October, 1985 



Stack On Input 

The top 16 bytes of the stack are a parameter list that contains: 

(1) Flag byte: 

Lower 
Address 

Bits 0-7 = X'FF', then there are two flag bytes (Notes 6 and 
7 below). If bits 0-7 do not equal X'FF', the flag byte is 
as follows: 

Bit 0 Reserved, must be zero 
Bit 1 1 = Special block-on-volume-oriented disk I/O 

request (VOLIO) valid only when requested by 
system routines in system mutual exclusion state 
or when the accessed volume is mounted for 

Bit 2 

Bit 3 

Bit 4 

Bit 5 

Bit 6 
Bit 7 

initialization by the issuing task. 
1 = Block print operation. Data must be 
2K-aligned and is not moved to the device's 
resident print buffer. 
1 = Halt I/O queue option (for disk mount 
operation). 
1 = Reset UCBSTATNOTOP and UCBSTATNOCODE to allow 
I/O to device being simulated to malfunction. 
1 = Issue return code = 32 if I/O issued to 
inoperative workstation. 
1 = Force uppercase printing. 
1 = Telecommunications option 
RECEIVE. 

TRANSMIT or 

(2) OFB address: address of open file block (OFB) for file. When 
bit 7 of the flag bit (described in Note 1) = 1 for 
telecommunications option, this value contains the address for the 
VS-OLP communication path. When bit 1 of the flag bit (described in 
Note 1) = 1 for VOLIO option, this value is the address of the volume 
control block (VCB) for the disk volume. 

Controlled Release Draft 4-432 October, 1985 



(3) Command byte for I/O command word (ICX!W). 

(4) Memory address (virtual) for IOCW if a read or write command is 
in byte 4. 

( 5) Length in bytes for operation (read or write command, all 
devices). 

(6) Flag byte 1 -- if (1) above contains X'FF', then this byte is 
the first flag byte and is formatted as shown above in (1). 
Otherwise this byte is unused. 

(7) Flag byte 
second flag 

as follows: 
the 

2 -- if ( 1) above contains X' FF' , then this byte is 
byte (otherwise the byte is unused) and is formatted 

1 = Diagnostic option Bit 0 
Bit 1 1 = Mark the pages related to the I/O operation as NO 

VALID INFORMATION if and only if the I/O operation was 
successful. 

( 8) Block m.unber within file (in binary) of the first block to be 
read or written (where the first block of a file is block 0). If the 
VOLIO option is selected, this value contains the block m.unber (in 
binary) within the volume of first block to be read or written, 
(where first block of a volwne is block 0). If the 
telecommunications option is selected, then this value contains bytes 
6-8 of ICX!W (for disk files only). 

(9) Unused. 

Stack On Output 

Return codes are placed in the top word of the stack (replacing the 
input parameters. 

• Low-order halfword of return code field - binary return codes 

• High-order halfword of return code field - residual block counts 

Return codes 4, 8 specified block size minus number of 
bytes actually read or written. 

Other return codes -- always 0. 

NOTE 

If return codes 0, 4, or 8 are set, the I/O operation is 
queued for initiation and a CHECK must be issued to test for 
completion. If other return codes are set, the operation has 
been suppressed. 

Controlled Release Draft 4-433 October, 1985 



0 (SP) I 

4(SP) 

Return Codes 

Code 

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

Return Code 

Preceding 
Stack Data 

Description 

Success. 

Lower 
Address 

Higher 
Address 

Truncation at end-of-extent (non-VOLIO disk only). 

Truncation at end-of-cylinder or end-of-track (disk 
only). 

Starting block number beyond end-of-file (non-VOLIO 
disk) or beyond end-of-volume (VOLIO disk). 

Invalid data address or data length (data address for 
disk must be page-aligned; for other devices, 
word-aligned. Virtual memory area encompassed by the 
area from data address through data address plus block 
size minus one must be either in the I/O buffer area 
or entirely above the XIO parameter list on the stack 
if the XIO is issued from unprivileged state. The 
specified length must not imply spanning of more pages 
than there are indirect address list entries for the 
device.) 

Second XIO on file without intervening CHECK. 

TC XIO attempted on an OFB that was not created as the 
result of an IPOPEN on an !PCB. 

TC XIO attempted on a device reserved exclusively by 
another task. 

XIO has been issued to an inoperative workstation and 
the I/O has not been issued (bit 5 of option flag must 
be set for issuance of this return code). 

TC XIO attempted on a peripheral processor (DLP) 
reserved exclusively by another task. 

Controlled Release Draft 4-434 October, 1985 



Code 

40 

44 

48 

52 

Example 

LABl 
+LABl 
+ 
+ 

LAB2 

+LAB2 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

Description 

WRITE XIO attempted to file opened in WPSHARE mode, 
file not locked. 

READ XIO attempted to file opened in WPSHARE mode, 
file locked by another user. 

Diagnostic pages are not fixed in physical memeory. 

Unable to complete remote XIO request. 

XIO COMMAND=RDCMD,PLIST=XIOPARM 
PUSHC 0(16,0),XIOPARM 
MVC 4(1,15),RDCMD 
SVC 3 (XIO) 

XIO OFB=(Rl),MEMA=(R2),BLKNUM=UFBBUFBLOCK, 
BLKSIZE=UFBBLKSIZE,COMMAND=WRCMD,RELEASE 

PUSHN 0,16 
xc 0(16,15),0(15) 
MVC 8(2,15),UFBBLKSIZE 
MVC 12(3,15),UFBBUFBLOCK 
STCM R2,7,5(15) 
MVC 4(1,15),WRCMD 
STCM Rl , 7 , 1( 15 ) 
MVI 0(15),B'lOOOOOOO' 
SVC 3 (XIO) 
XIO COMMAND=RDCMD,PLIST=XIOPARM,VOLIO=YES 
PUSHC 0(16,0),XIOPARM 
MVC 4(1,15),RDCMD 
OI 0(15),B'OlOOOOOO' 
SVC 3 (XIO) 

x 

Controlled Release Draft 4-435 October, 1985 



4.2.88 XMIT - Transmit Intertask Message (SVC 36) 

Syntax ~ 

[label] XMIT MESSAGE={Cregister)},PORT={(register)} 
{ address } { address } 
{ 'string' } 

[,NOWAIT][,OTHERTASK] 

Function 

Transmits a message between user tasks, or between a user task and a 
specific subsystem of the operating system. The message supplied on 
input to the SVC is placed in a system message buff er. The message is 
then copied from the system message buffer to the address specified by 
the receiver as a result of the CHECK SVC routine with the MESSAGE 
option. The CHECK macroinstruction is used to accept receipt of a 
message. 

Parameter Definitions 

MESSAGE 

PORT 

NOWAIT 

OTHERTASK 

The address of a message, which may be stored anywhere in 
the issuer's address space. The first two bytes of the 
message area must contain the length of the message in 
binary, including these bytes, and may not be greater than 
2048. This parameter can be specified as a register in 
parentheses that contains the address of the message, or as 
an expression that addresses the message. 

The 4-character name of the receiving message port. The 
value of this parameter can be an address expression, a 
register designation where the register contains the 
address of the four characters in memory, or a character 
string in quotes. 

If specified, control returns to issuer immediately if 
there is insufficient space in the receiving port's message 
buffer to insert the message. 

If specified, control returns to issuer immediately if the 
designated receiving message port belongs to the 
transmitting task. 

Controlled Release Draft 4-436 October, 1985 



Stack On Input 

I 
lo 

O(SP) I I 
I (1) 

I 
4(SP) I 

I (3) 
I 
I 
I 

(1) Flag byte: 

1 2 3 

I < 2 > Message 
I Address 

Name of Message 
Recei12t Port 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Bit 0 0 = WAIT until there is enough buffer space if there 
is not enough at the time. 
1 = NOWAIT option, return to caller if there is not 
enough buffer space. 

Bits 2-7 0 = OTHERTASK option, transmit only to other tasks. 

(2) Address of a message to be transmitted -- the first two bytes of 
the supplied message indicate its length, including those bytes, and 
can not be greater than 2048. 

(3) Name of the message receipt port -- 4-character string. 

Stack On Output 

0 (SP) I 

4(SP) 

Out12ut 

Return code 

Unused 

Preceding 
Stack Data 

Lower 
Address 

Higher 
Address 

Return codes are placed in the top word of the stack. 

Controlled Release Draft 4-437 October, 1985 



Return Codes 

Code 

0 

4 

a 

12 

16 

20 

Example 

LABl XMIT 
+LABl PUSHC 
+ B 
+ DC 
+ PUSH 
+ MVI 
+ SVC 

Description 

Success. 

No receiving message port with the specified name. 

Unable to insert message in receiving port's message 
buffer CNOWAIT option only). 

Unable to insert message in receiving port's message 
buffer due to receiving port's use of PRIVILEGED 
option. 

Message not transmitted; OTHERTASK option was 
specified and the designated message port belongs to 
the transmitting task. 

Port is too small to accept this message. 

PORT='DBMS',MESSAGE=CR2) 
0(4,0),*+10 
*+8 
C'DBMS' 
0,R2 
0(15),B'OOOOOOOO' 
36 (XMIT) 

Controlled Release Draft 4-438 October, 1985 

~ 



CHAPTER 5 
THE USER PROORAM 

5.1 INTRODUCTION 

This chapter discusses the user program and the concepts that relate 
to the development of programs within the VS operating system 
environment. The term "user program" refers to all programs that are 
developed with the VS operating system. This includes application 
programs such as general ledger systems, order entry/inventory systems, 
payroll/personnel systems, as well as Wang-supplied system programs. 

All programs must follow the program development procedure before 
they can be run on the system. Included in this procedure is the 
translation of the source language statements into machine language, 
resolution of addresses, linking of independently written modules, and 
generation of runtime information. Once these steps are accomplished, 
the program is ready to run. However, completion of these steps does not 
guarantee that the program will produce the desired results. A testing 
and debugging phase is always necessary. 

A program is a sequence of coded statements properly prepared to run 
on the operating system, that the command processor or the LINK SVC can 
invoke. The following sections describe the structure of the user 
program, its development, and its running environment. 

5.2 THE PROORAM DEVELOPMENT PROCESS 

No matter what language a program is written in, there are steps that 
must be accomplished before the program can run on the VS operating 
system. The steps include 

• Problem definition and coding. 

• Translation of the code into an object module that may include 
linking independent modules. Several code modules may be linked 
together to produce a program. 

• Running, testing, and debugging the code. 

Controlled Release Draft 5-1 October, 1985 



5.2.1 Problem Definition and Coding 

Every computer program is created to solve a problem. For example, a 
payroll package solves the problem of how to quickly and efficiently 
issue payroll checks and maintain employee salary records. 

In this phase of the program development process, the software 
developer must clearly define the problem, design a solution that solves 
the problem, and then code the solution in the language best suited to 
the application. An Editor is used to create a source file that contains 
the code for the program. 

5.2.2 Translation of the Code 

The source file is then processed through a language translator (for 
example, an assembler or a compiler) which checks for syntax errors, 
translates the source code into machine language, and creates a program 
listing file. This file, which contains the program object module that 
is formatted for execution, also contains machine instructions, data 
storage areas, and other information that pertains to the program. 

A program can be constructed of individually assembled or compiled 
source files, called modules, or may be complete in one source module. 
If the program is comprised of more than one module, the modules must be 
linked together using the VS LINKER utility. The Linker defines pointer 
addresses and provides information for proper transfer of control from 
one module to another. 

5.2.3 Running, Testing, and Debugging the Program 

Once the program is coded and the object module created, the 
programmer must run the program to be sure that the program is logically 
correct. If the program fails to perform the function for which it was 
designed, it must be debugged. When the problem is found and a solution 
decided upon, the process begins again. The programmer enters the 
changes to the source code using the Edi tor, reassembles or recompiles 
it, links it, and then reruns and retests the program. 

5.3 STRUCTURE OF THE PROGRAM FILE 

The language translator generates an object program with two 
sections: a reentrant section and a modifiable section. 

5.3.1 The Reentrant Section 

The reentrant section contains the machine instructions that comprise 
the logic of the program. It contains no modifiable code or data. This 
means that many users can share one copy of the code loaded into memory 
without affecting the results of another user. When a program is run, 
the reentrant section of the program object file is mapped into a task's 
program code area address space. 

Controlled Release Draft 5-2 October, 1985 



5.3.2 The Modifiable Section 

Although many users may share the same code, each user has a separate 
modifiable area used to store variable data and dynamically initialized 
variables. This area is called the modifiable data area. It contains 
the program stack, and an I/O buffer area (or heap). Section 5. 4 
describes the user's modifiable data area. 

5.4 THE USER'S MODIFIABLE DATA AREA 

When a program is run, the reentrant section of the program object 
file is mapped into a task's program code area address space. The 
modifiable section of the object program maps into the task's modifiable 
data area and is used for the program stack and buffer areas. 

The user's modifiable data area is divided into two sections, a stack 
area and a buffer area. The stack area starts at the highest address and 
grows downward. The buffer area (or heap area) starts at the lowest 
address and grows upwards. Figure 5-1 shows the layout of the modifiable 
data area. 

The VS instruction set includes several stack-oriented instructions 
that can affect the modifiable data area stack. A push operation 
decrements the stack pointer (register 15, known as SP) as long as the 
resulting stack pointer does not cross the control register 2 value. 
Control register 2 CCR2) indicates the end of the buffer area; therefore, 
the stack pointer cannot go b~yond it. Attempts to push the stack 
pointer beyond Clower than) the stack limit results in a stack overflow 
program check, which usually cancels the program. 

The area between the stack limit and the stack pointer should never 
be referenced, since it lies neither in the stack area nor in the buffer 
area. 

Controlled Release Draft 5-3 October, 1985 



---> 

---> 

Stack Pointer ---> 

Control ---------> 
Register 2 

Link SVC parameters 

Link Save Area 

Program "A" static area 

Stack frame pointer to previous 
link save area (for unlink use) 

Program "A" stack 

JSCI Save area for call to subroutine 

Program "B" stack area 

-- Gap between stack and buff er --

Buff er (heap) area 

Higher Addresses 

<--- Stack Area 

J <--- Buff er Area---

Lower Addresses 

Figure 5-1. The User's Modifiable Data Area 

5.4.1 JSCI, SVC, and LINK Save Areas 

In addition to program data, the stack is used to save linkage 
information such as registers or the PCW (program control word) at each 
program, procedure, or subroutine invocation. 

The JSCI (Jump to Subroutine on Condition Indirect) instruction is 
used for subroutine calls. The information pushed onto the stack by the 
JSCI instruction is shown in Figure 5-2. Control register 1 is used to 
maintain a chain of save areas, also known as stack frames. The 
subroutine can modify the stack pointer (SP) by pushing additional 
information onto the stack. The RTC (return) instruction resets the 
stack pointer to point to the area following the stack frame (the save 
area) by setting it to the value in control register 1. It then pops the 
registers and control register 1 off the stack and branches to the return 
address, thus returning from the subroutine. 

Controlled Release Draft 5-4 October, 1985 



Lower Address 
Re~ister 0 Save 
Re ister 1 Save 

. 
Re_g_ister 14 Save 
OOOOPPPO Control Re_g_ 1 Save (Call Chain) 
MASK Return Address Higher Address 

Figure 5-2. JSCI Save Area 

The SVC instruction manages the stack somewhat differently. The 
entire program control word CPCW) is pushed onto the stack, rather than 
just the return address (See Figure 5-3). The SVCX instruction pops all 
the information from the stack and returns control to the SVC caller. 
Most SVC calling sequences push parameter information onto the stack 
before the SVC instructions are issued. The SVCX instruction pops these 
parameters off the stack by letting the SVC routine specify the new stack 
pointer before issuing the SVCX instruction. 

Lower Address 
Re~ister 0 Save 
Re ister 1 Save 

. 
Re_g_ister 14 Save 
OOOOPPPl Control Re__g_ 1 Save (Call Chain) 
SVC # Old PCW Address 
Old PCW Status Bits 
SVC Parameters Higher Address 

Figure 5-3. SVC Save Area 

One program can call another by invoking the LINK SVC. In this case, 
the called program's static area is pushed onto the stack and initialized 
with information from the object file. This area is called static 
because it remains for the life of the program, whereas the program can 
allocate temporary (dynamic) storage by pushing data onto the stack and 
popping it when done. When control is given to the program, register 14 
points to the static area. 

After pushing and initializing the static area, the LINK SVC 
constructs a JSCI-type save area, where the return address points to an 
instruction that calls the UNLINK SVC. This allows programs and 
subroutines to issue an RTC instruction (or RETURN macro) to return to 
their caller. Finally, LINK constructs a SVC-type save area so that it 
can return to the new program via SVCX. 

Controlled Release Draft 5-5 October, 1985 



At UNLINK time, program resources are deallocated, control register 1 
is set to point to the LINK save area, and SVCX is used to return to the 
previous program. 

The VS DEBUGGER utility provides a Trace conunand which allows the 
user to examine the chain of CALL (JSCI), LINK, and SVC save areas. 

5.4.2 Buffer Management 

The low end of the modifiable data area is used as a buffer and heap 
area. Buffer and heap management is provided by the GETBUF, FREEBUF, 
GETHEAP, and FREEHEAP SVCs. 

GETBUF and FREEBUF allocate page-aligned buffers which are multiples 
of 2 KB (kilobytes) long. 

GETHEAP and FREEHEAP are the reconunended SVCs for buff er and heap 
management. They provide a flexible and efficient memory management 
system because blocks or heaps of any size may be allocated. Also, 
blocks are organized into subpools, to allow blocks in the same subpool, 
obtained via separate calls to GETHEAP, to be freed with one call to 
FREEHEAP. Finally, subpools are associated with a link level (usually 
the current one) and are automatically freed when unlinking from that 
link level. 

5.5 TRANSFER OF PROGRAM CONTROL 

An assembly program invokes subroutines and programs in the following 
ways: 

• The BAL, BALR, BALCI, BALS, JSCI, or JSI instructions are used 
within a program to save a return point in a register or on the 
stack and then enter a subroutine. The BC, BCR, BCS, or RTC 
instructions are used to return. 

• The SVC instruction is used to request services from the 
supervisor and save the general registers on the stack before 
initiating the service routine. When the supervisory service has 
been performed, the supervisor executes an SVCX instruction to 
return to the user program. The user program does nothing more 
than place the address of required arguments, or in some 
instances the arguments themselves, on the top of the stack and 
issue the SVC instruction. Routines entered by the SVC 
instruction normally remove their input arguments and leave 
output information on the top of the stack. 

Controlled Release Draft 5-6 October, 1985 



• The JSCI or JSI instruction is used to start a transfer of 
control between routinesj that are linked into a single program 
either before runtime (statically) or during runtime 
(dynamically). The CALL macroinstruction generates the JSCI 
instruction. Refer to Chapter 4 for an example of the expanded 
CALL macroinstruction showing the sequence of instructions that 
perform this transfer of control. Figure 5-2 shows the save area 
placed on the stack by the JSCI instruction. 

• The LINK SVC is used to transfer control between programs that 
were not bound together by the VS LINKER utility. The linked-to 
program should return to the issuing program by means of the 
RETURN macroinstruction. When the LINK SVC is invoked, the 
linked-to program's static area is placed on the stack area of 
the linking program (Ref er to Figure 5-1) • Figure 5-3 shows 
additional information that is placed on the stack in the SVC 
save area. 

5.6 INTERACTING WITH THE WORKSTATION 

The workstation is the primary data entry and display device used 
with the VS operating system. It is also used as a system console device 
for the presentation of and response to solicited or unsolicited system 
messages. Conununication between the user and the workstation is managed 
through the GETPARM SVC. 

~ In addition to sending messages to the workstation, the GETPARM 
facility accesses runtime parameters such as device or file assignments, 
batch-oriented runtime option lists, or interactive program data. These 
runtime parameters are either obtained directly from the user at the 
workstation or come from a procedure file. Each parameter requested from 
the user must be labeled with a parameter reference name (prname). 
Programs that require a more flexible level of interaction than that 
provided by GETPARM should access the user workstation using the standard 
data management f aci 1 i ties. However, to be usable with the procedure 
language, programs must access all runtime parameters using the GETPARM 
SVC. Also, the PUTPARM macroinstruction allows a program to pass GETPARM 
parameter values to another program that is being invoked through the 
LINK SVC. 

Whenever the user enters GETPARM processing, the workstation screen, 
its resident buff er contents, its status (keyboard locked or unlocked, 
attentions received, etc.), and its tab settings are saved in the task's 
current stack. Before resuming user program processing, this screen and 
status are restored. This process also occurs when the user enters the 
Help Processor by pressing the HELP key on the workstation. 

Messages sent to the workstation must be in the format specified in 
the CANCEL and GETPARM SVC descriptions described in Chapter 4. Messages 
that relate to background program runs (programs running without an 
associated workstation) are sent to the operator console. 

Controlled Release Draft 5-7 October, 1985 



Workstation processing can also be achieved by treating the 
workstation as a file. By using the VS Data Managment System CDMS), 
users can write applications that can read and write to the workstation. 
DMS workstation screen interaction is supported in BASIC, COBOL, PL/I, 
RPGII, and Assembler. You must establish a User File Block (UFB) in your 
program for each file accessed by DMS. Refer to the VS Data Management 
System Reference for more information on DMS and on creating a UFB. 

5.7 STANDARD PRNAMES 

The parameter reference names (prnames) used to identify file 
specifications and other parameter groups solicited through GETPARM 
should be chosen to assist the user in easy identification of parameter 
functions. Within groups of related programs, naming conventions should 
be established to enhance recognition and predictability. 

The following list contains standard prnames used by system utility 
programs and compilers: 

INPUT 

INPUTl-INPUT(n) 

OUTPUT 

LIBRARY 

WORK 

WORKl-WORK(n) 

OPTIONS 

DISPLAY 

PRINT 

The input file 

Multiple input files used for related purposes 

The output file 

A library used for input purposes 

An I/O file used for temporary storage 

Multiple I/O files used for temporary storage 

The batch-oriented option list used to define 
runtime parameters 

The user's workstation 

An output file formatted for printing. 

5.8 RUNTIME DEVICE AND FILE ASSIGNMENT 

All action that relates to device and file allocation, file lookup, 
and control block generation is performed by the OPEN SVC. OPEN uses a 
number of parameters whose values must be specified in the user file 
block (UFB) or obtained through the GETPARM SVC. The UFB must be coded 
into the user's program or the user can take advantage of the UFBGEN 
macro (see Section 4.2). 

Controlled Release Draft 5-8 October, 1985 



The parameters solicited by the OPEN SVC through GETPARMS are used to 
assign device and file names to the internal file names within the user 
program. Some of these parameters are supplied only through the UFB when 
coded. Others are solicited using the GETPARM facility. Default values 
for solicited parameters may be stored in the UFB. GETPARM then enables 
the user to modify the default values; thus, the solicited GETPARM values 
override the UFB information. 

5.9 DEFAULT FILE SPECIFICATIONS 

The user can place default file specification information in the UFB 
at any time before a file is opened by using the UFBGEN macro. This 
facility should be used to minimize the amount of information to be 
entered by the user. Defaulted information includes the file name, 
library name, volume name, and the file size. 

The disk space requirements of all output files (including print 
files) should be specified in the UFB if possible. In general, the size 
of an output file is related to the size of the input file for the 
application. The size of a file is available in the UFB for any open 
input file. Thus, opening the input file first supplies the information 
needed to calculate default space requirements for the output file. 

All information necessary to specify work files should be supplied in 
the UFB. Space requirements may be developed in the same manner as 
described for output files. File specification values, consisting of the 
file name and volume name, should be developed as follows: 

• The volume location of the work file can be left blank in the 
UFB, to be supplied by means of a command language SET command. 

• The library name for work files is ignored in the UFB before the 
file is opened. It is set to a special user work library 
associated with the logged on user by OPEN processing. 

• The default file name should be formed using the characters "#" 
or "##" as a pref ix to a maximum 4-character name which is unique 
to the program. OPEN appends a 4-character suffix to guarantee a 
unique temporary file name. Work files whose names begin with 
"#" are deleted when they are closed. Files whose names begin 
with "##" are not deleted by the operating system until the user 
returns to the command processor. 

5.10 OPTIONS PRNAME 

The OPTIONS parameter reference name should be used when a general 
list of parameter values is to be requested of the user. Care should be 
taken in supplying reasonable defaults values for these parameters. 

Controlled Release Draft 5-9 October, 1985 



5.11 ERROR HANDLING 

There are several classes of errors that the operating system may 
encounter. Each requires a different response: 

• Program exceptions in user programs are handled by the operating 
system's program check interrupt handler. This routine passes 
control to the VS DEBUGGER utility or to an exception handler 
(for example, the PCEXIT SVC) that the user program specifies. 

• Program exceptions and other unrecoverable errors in system 
routines may result in a message displayed by the CANCEL SVC. If 
the cause can be traced to the user's program, CANCEL disallows 
continuation of program processing. (However, the program may 
continue running if CEXIT handlers have been defined.) If the 
problem is considered a probable system failure, CANCEL 
automatically initiates a system dump. 

• If a system service receives invalid parameters, the routine 
should be able to detect this during initial validation of the 
parameters (before using them for further processing) and to 
return an error return code. Some services will issue cancels in 
this situation. Return codes are documented in the description 
of the system service (Chapter 3). 

• There are three kinds of I/O errors: soft, hard, or logical file 
processing errors. 

Soft errors signify that an I/O operation was 
successfully completed after retry by the I/O processor 
(!OP). 

Hard errors signify failure of 
including memory parity errors 
operation. 

an I/O 
detected 

operation, 
on an I/O 

Logical file processing errors do not reflect any errors 
that occur during an actual I/O operation. 

Soft errors are passed to the CHECK SVC to be logged in a system 
error logging file, and are otherwise ignored. Hard errors are passed in 
the same way. The task responsible for the I/O either issues a CHECK to 
wait for completion of the associated I/O request or makes reference to 
the file again by another Data Management System (OMS) function request, 
a CLOSE, or an implied CLOSE on program termination. At that time, error 
indications are examined and the user's I/O error routine is entered for 
hard errors (if such a routine was provided). In the absence of an error 
routine, the user's program may be abnormally terminated at the 
discretion of the OMS routines, via issuance of a CANCEL SVC. Memory 
parity errors detected by I/O processors are logged in the same manner as 
other I/O errors. 

Controlled Release Draft 5-10 October, 1985 



The user's I/0 error processing routine and end-of-data and invalid 
key condition routines are specified in the UFB. These routines are 
entered after interpretation of the I/O status word (IOSW) by the DMS 
routines. The I/O error routine is entered on logical file processing 
errors (such as invalid function requests), as well as on actual hard I/O 
errors. 

Entrance to the above routines is from the unprivileged DMS routines 
as if the data management function had returned normally, but with the 
return address modified to be one of the addresses (the user's I/O error 
processing routine or end-of-data and invalid key condition routine) from 
the UFB. All register contents are restored except register 0, which is 
set to contain the normal return address from the function. Register 1 
continues to address the UFB, which may be used to determine the nature 
of the unusual occurrence, as indicated in fields UFBFSl and UFBFS2 of 
this block. The I/O error processing routine is entered for all unusual 
conditions, including end-of-data and invalid key conditions, in the 
absence of a separate routine. The end-of-data and invalid key routine 
address, when supplied, overrides the I/O error routine in the case of 
end-of-data and invalid key conditions. 

These routines are entered with the same addressability and 
protection status as any other part of the user's program. 

Controlled Release Draft 5-11 October, 1985 



~~--.,,_~ 1·~~..:~:: -- - . -~· .. -- : ;--:--~.--



CHAPTER 6 
VS OPERATING SYSTEM DESCRIPTION 

6.1 INTRODUCTION 

The VS operating system is a multiprograrruning, time-sharing, virtual 
storage system that supports many users running programs at the same 
time. The operating system controls user programs and I/O devices and 
serves as a resource allocator. These activities include 

• loading programs into memory 

• scheduling work 

• performing input and output operations on peripheral devices 

• controlling print queues, file transfer queues, and background 
job queues 

The operating system performs these functions in a manner that not 
only provides each user with all computer resources but also protects 
each user from the activities of other users on the system. This chapter 
briefly describes the basic functions of the operating system: 

• How tasks are created (Tasks) 

• How the operating system provides support for designing, 
implementing, testing, and executing tasks efficiently (System 
Support) 

• How programs communicate with one another (Communication) 

• How the operating system determines program execution priorities 
(Scheduling) 

• How the operating system allocates resources, such as memory and 
I/0 devices among programs requesting their use (Resource and 
Memory Management) 

• How the operating system prevents unauthorized access to program 
and data (Security and Ring Memory Protection) 

• How I/O subsystem routines communicate with peripheral devices 
CI/O Subsystem) 

• The VS file structure 

Controlled Release Draft 6-1 October, 1985 



6.2 TASKS 

The most basic unit of work in the VS operating system is the ~ 
task. A task is the environment within which users and the system 
perform functions and run programs. The task environment is controlled 
by the Task Manager. 

There are two categories of tasks: system tasks and user tasks. 
Among the system tasks are the printer task, the sharer, the file 
transfer manager, and the session manager. A user task is created 
whenever a user logs on, and is removed from the system when the user 
logs off. 

Tasks do not perform all aspects of a function alone. To make the 
software more modular, tasks are often broken down into several subtasks. 
For example, when a user logs on the system, a task is created. If the 
user creates another task, that task becomes a subtask. 

The following operating system tasks are always present: 

• Task Manager: Creates user tasks. 

• System task: Performs operator functions (for example, task 
statuses) and manages queue print procedure. 

• Printer task: Manages spooling. 

• Sharer task: Manages shared file access . 

6.2.1 Task States 

The VS operating system creates system and user tasks dynamically. 
During the IPL procedure, the operating system generates control blocks 
which are used to maintain information regarding the many tasks active 
within the system. 

From the time a task is created until the task is destroyed, it 
exists in one of four task states. Tasks move among these states as they 
are created, begin execution, and finally complete their functions. 
Table 6-1 describes the four task states. 

Controlled Release Draft 6-2 October, 1985 



State 

Active 

Runnable 

Waiting 
(blocked) 

Suspended 

6.2.2 Task Scheduling 

Table 6-1. Task States 

Description 

Task is currently running 

Task is ready to be executed 
on the CPU 

Task waiting for a resource 

Task is stopped 

Exam_.Q_le 

Executing on the 
CPU 

On one of the 
internal 
queues 

priority 

Waiting for disk 
access, or blocked 
on a semaphore 

Occurs when there 
is a task crash 

One of the functions of the operating system in a multiprogramming 
environment is to apportion central processor time for runnable tasks. 
This function is handled by the scheduler and the dispatcher. 

The scheduler determines the order in which runnable tasks will be 
given control of the processor (for more information on the scheduler, 
refer to Section 6.5). When switching between tasks, the dispatcher must 
save the state of a task which has been blocked, choose the next task to 
run, and restore the running state of the chosen task. Runnable tasks 
are given control of the CPU by the dispatcher in the priority order 
determined by the scheduler. The operating system maintains a data 
structure known as the Ready List. The Ready List contains descriptions 
of tasks which are ready to be executed by the CPU. The dispatcher 
determines which task on the Ready List should be executed next and the 
maximum amount of time it should execute. 

While a task is executing, various types of events can cause the task 
to suddenly stop executing. For example, a task may need to wait for the 
completion of an I/0 operation, the expiration of a timing interval, or 
the receipt of a message from another task. When a task stops executing 
because it is waiting for an event, it is said to be blocked. A task 
remains in this blocked state until the event for which the task is 
waiting occurs. A task may also be interrupted by an unsolicited 
interrupt from a workstation, printer, or telecommunications device. 

Controlled Release Draft 6-3 October, 1985 



To track the status of a task, each task has a context and some task 
control blocks associated with it. The task context is the information 
that specifies the complete status of a task (for example, the registers, 
the point in the program when removed from the CPU, instruction pointers, 
and memory locations). The task context is saved in a task control block 
which also contains other information such as the task ID, priority, and 
the current state of the task. When a task is interrupted, the context 
information is saved to allow the operating system to resume execution of 
that task at some later point without error. 

6.2.3 Event Scheduling 

An event is a significant occurrence to a task such as an I/O 
interrupt, the arrival of a message at a task's mailbox, or the 
occurrence of an exception condition. To control task execution, the 
operating system uses semaphores. Semaphores act like gates into 
critical areas of software to protect shared data or I/O. 

Section 6.4.1 contains more information about semaphores. 

6.2.4 System Task Queue Verification Routine 

At IPL time, the System Task automatically invokes the queue file 
verification routine, @QUEVER@, if an existing queue file is on the 
system disk. This task runs in the background and verifies the 
correctness of the entries within the queue file. Upon completion of the 
routine, the task displays the following message on the operator screen: 

Msg From QVR: Queue verification routine complete. 

If a program check occurs, the @QUEVER@ routine is automatically 
invoked in order to rebuild the system queue file. The @QUEVER@ routine 
recovers as much good data as possible from the corrupt version. During 
appropriate times in the process, the routine displays the following 
messages on the operator screen: 

Msg from QVR: Cancel condition in SYSTSK - Rebuilding System 
Queue. 

Msg from QVR: Queue verification error - Bad entries in Q 
file. 

Msg from QVR: Queue verification routine complete. 

The error handling logic within the System Task enables the module to 
continue running in spite of any arising queue corruption. 

Controlled Release Draft 6-4 October, 1985 



6.3 SYSTEM SUPPORT 

.t"""'\ System support includes programs and tasks that enable a user to 
design, implement, test, and execute tasks efficiently. The programs and 
tasks that support software development are called utilities. Unlike the 
system services, these utilities are not part of the basic operating 
system. However, these utilities are invaluable in making the VS system 
easy to use. 

The VS provides the following categories of support functions: 

• Language Translators 

• Program Editing and Linking 

• Debugging 

• System Configuration 

• Performance Monitoring 

6.3.1 Language Translators 

To support the development of new applications, the VS operating 
syste~ provides two types of language translators, an assembler and 
various compilers. The assembler produces machine code from a very low 
level input language. The programmer can directly access the VS machine 

~. instructions through assembly language. 

System programs known as compilers accept progam text written in a 
high-level language (such as COBOL or PL/I) and translate this text into 
actual machine instructions. The compilers and assembler for all 
VS-supported languages automatically check for syntax errors on all 
source code that progammers enter into the system. To help programmers 
easily identify and eliminate program bugs, the VS operating system 
displays clear diagnostic error messages. 

6.3.2 Programming Editing and Linking 

The VS EDITOR utility ·fully integrates all functions needed to 
create, edit, compile and run programs written in any language supported 
on the VS. The VS LINKER utility provides the capability to link seve.ral 
individually compiled program modules, which may be written in different 
languages, into a single executable load module. 

6.3.3 Debugging 

Debugging is the process of identifying and correcting errors in the 
program code to ensure that the program is logically correct. The VS 
operating system provides an Interactive Symbolic Debugger, a powerful 
facility that allows programmers to examine and modify data in memory, 
referring to memory location names rather than absolute addresses. 

Controlled Release Draft 6-5 October, 1985 



The Debugger also includes an optional trap handler that allows you 
to set various break points in the program. Programmers can then step 
through program execution, stopping at predetermined addresses or 
instructions to examine data structures and register contents, and modify 
data where appropriate. 

6.3.4 System Configuration 

Because of variations in different installation envirorunents, it is 
often necessary to tailor the system for a particular installation. The 
VS Operating System GENEDIT utility allows you to specify hardware and 
operating system options for your system by enabling you to create or 
edit a configuration file. You can run GENEDIT at any time after the 
system is IPLed, even while other users are on the system. 

Because the configuration information is stored in a file, you can 
have several files that correspond to different configurations on the 
system at one time. During IPL, a screen will request the name of the 
configuration file to use. 

6.3.5 Performance Monitoring 

Good performance monitoring is a critical factor in any 
multiprogramming envirorunent. On the VS system, the System Activity 
Monitor (SAM) utility (if is available on your system) collects data on 
the use of three primary resources: the CPU, disks, and main memory. 
With this information, users can take steps to improve a system's 
performance, such as repriori ti zing user programs, redi.stributing disk 
files, or adding devices. SAM also monitors the performance of (""""-\ 
individual tasks and programs. This individual monitoring provides a 
significant tool for analyzing and improving program efficiency. 

SAM is a menu-driven utility that operates in both Interactive and 
Background modes. In Interactive mode, a user can investigate a 
performance problem as it occurs, allowing for an immediate adjustment to 
the system. In Background mode, SAM provides extended, concurrent 
monitoring of multiple activities. 

To monitor paging activity, users can evaluate the paging rate by 
using the Control Interactive Tasks (Paging and I/0) screen of Operator 
mode or the SAM utility. For more information, refer to the VS System 
Operator's Guide and the VS System Activity Monitor (SAM) Reference. 

To monitor page pools, users can access the POOLSTAT utility. The VS 
system monitors the use of page pools and issues warnings when a page 
pool nears capacity. Through the POOLSTAT utility, users can view page 
pool statistics at any time. Current and peak usage statistics can help 
users determine if the VS system's current page pool capacity is adequate 
for the paging requirement of the tasks assigned to the page pool. 

To display statistics that the Sharer collects as it processes user 
requests, use the SHRSTAT utility. For more information on POOLSTAT, and 
SHRSTAT, refer to the VS System Utilities Reference. 

Controlled Release Draft 6-6 October, 1985 



6.4 COMMUNICATION AND SYNCHRONIZATION 

To coordinate system operation, tasks communicate with one another in 
the VS operating system environment. Tasks conununicate with each other 
by exchanging both conunands and data. This information can be 
transmitted through main memory or secondary storage. 

When data is transferred, the receiving task must be ready for it, 
and the newly transferred data cannot be allowed to invalidate previously 
transmitted data. To ensure the coordination of these specific events in 
the transmission process, the VS Operating System uses various 
synchronization techniques: semaphores, the Intertask Messaging CITM) 
facility, and the User Synchronization facility. The following sections 
describe these techniques. 

6.4.1 Semaphore 

The semaphore is a general synchronization technique that is not 
available to user-level code. Semaphores act like gates into critical 
areas of software to protect shared data or I/O. All semaphores are in 
protected memory locations. 

A semaphore permits only a single task to access shared data at any 
given time. All other tasks are locked out until the first task unlocks 
the shared data. Initially, the gate is open, but when the first task 
enters the restricted area, it automatically closes the gate to lock out 
any other tasks. Once the task enters the critical section, it may 
access the shared data and no other task is permitted access until the 
current task is finished. 

User programs do not have the ability to modify semaphores directly. 
However, they can use the CHECK routine to wait for notification that the 
event has occurred and that the gate is open. 

6.4.2 Intertask Messaging CITM) 

Blocks of data and commands that are communicated from one task to 
another are called messages. The Intertask Messaging CITM) facility 
performs the following services: 

• Creates and destroys a message receipt port for communicating 
with other tasks 

• Transmits a message to another task 

• Checks for an event occurrence 

Communication between tasks is provided through the CREATE, XMIT and 
CHECK SVCs. To receive intertask messages, an application program must 
use the CREATE SVC to create a message port. A message port is a buffer 
that is used to hold messages and resides in memory. This message buffer 
can be either resident or nonresident. 

Controlled Release Draft 6-7 October, 1985 



Associated with the message port is a 4-character port name. The 
XMIT SVC is used to send messages to the named port. XMIT searches the 
message port chain, looking for the specified port name. If it finds it, 
XMIT copies the message to the end of the message port. If no space is 
available, XMIT either waits for space to become available, or returns to 
the caller if NOWAIT is specified. 

The task owning the port receives a message by issuing CHECK 
MESSAGE. CHECK waits for a message if none is available (or optionally, 
the user may use the NOWAIT or multiple event option). When the message 
is received, CHECK copies it to the caller's modifiable data area. To 
remove the port, the receiving task uses the DESTROY SVC. 

6.4.3 User Synchronization Facility 

The VS Operating System supports a user synchronization facility that 
allows you to control resources, such as access to a database, so that 
only one task at a time is in control of the resource. 

The user synchronization facility provides a fast, simple 
synchronization technique for controlling access to shared data in 
user-level code. System services that can be called from a user program 
allow a user to create, delete and use a synchronization object to 
coordinate the access to shared data. The synchronization object is used 
most often for resource control -- that is, to update a database or 
access a particular piece of code. However, it may be used to satisfy 
other application needs as well. 

The operating system has no knowledge of what is being controlled by 
the synchronization object; it only provides single user access to the 
synchronization object. It is up to the user to ensure that all users of 
the resource go through the synchronization facility. Note that the 
operating system does not clean up the user synchronization facility 
control blocks if the synchronization object creator cancels itself or is 
cancelled before explicitly destroying the synchronization object. 

For more information on the user synchronization facility, refer to 
Section 1. 2. 4. For a description of the associated calling sequences, 
refer to System Services in Part II of this manual. 

Controlled Release Draft 6-8 October, 1985 



6.5 SCHEDULING 

The scheduler determines the order in which runnable tasks will be 
given control of the processor. Control passes to the scheduler under 
the following conditions: 

• When a task must wait for an event to occur 

• When a task becomes ready as a result of the occurrence of an 
event 

• When an interrupt has occurred, and preliminary processing of the 
interrupt is complete, (e.g., on exit from the I/O interrupt 
service routine or clock interrupt service routine) 

• When a System Must Complete state exists, and the user presses 
the HELP key 

When a task is ready to execute (i.e. , not blocked waiting for 
resources), the scheduler determines the priority at which it should be 
dispatched. The dispatcher then determines the highest priority 
ready-to-run task, and sets a timer expiration value to ensure that this 
task does not monopolize the processor at the expense of other tasks. 

6.5.1 Categories of Tasks 

Some tasks are usually considered more important than others. As a 
result, the scheduler must use a priority system to allocate time. 
Higher priority tasks can access the CPU more frequently. Lower priority 
tasks access the CPU less frequently. 

Some tasks, known as I/0-bound tasks, require short bursts of CPU 
time intermixed with many long waits for I/O completions. Tasks tend to 
become I/0-bound when you run programs such as WP, EDITOR, DISPLAY, COPY, 
PRINT, and some applications programs. 

Other tasks, known as CPU-bound tasks, require long periods of CPU 
time intermixed with a few long waits for I/O completions. Tasks become 
CPU-bound when you run programs such as the compilers, the Linker, and 
specific commercial applications that require extensive CPU resources. 

In addition, tasks can go through phases in which they become 
I/0-bound and phases in which they become CPU-bound, while running the 
same program. 

It is generally desirable to allow I/0-bound tasks, which have light 
CPU needs, to be given priority over CPU-bound tasks. However, once 
CPU-bound tasks gain access to the CPU, they can retain it for a longer 
period of time. 

Controlled Release Draft 6-9 October, 1985 



There are two categories of tasks: system tasks and user tasks. 
System tasks exist as part of the operating system to serve various user 
needs. These system tasks perform functions such as 

• soliciting and accepting user logons 

• managing telecommunications links 

• running background jobs 

• providing some operator functions 

• managing virtual and physical storage 

• printing DP and WP docwnents. 

When a user task makes a request to a system task, the user task must 
usually wait until the system task completes the service. Because there 
are frequent requests for system tasks, effective scheduling of these 
tasks is a critical performance issue. 

6.5.2 Scheduling Formula 

System tasks get the highest priority, followed by user tasks. 
Within the system task group, tasks which service user tasks, such as the 
pager, the system task, and the Task Manager, are given higher priority 
than tasks which run independently, such as printer tasks. 

The system maintains sixteen dispatch queues for tasks. Systems 
tasks are placed into queues 0-7. User tasks are placed into queues 8-15. 

To improve user-response time, the VS Operating System uses a 
scheduling formula that allows users to assign priorities to user 
programs (users cannot assign priorities to system tasks). This 
scheduling formula is based on a set of priority levels. 

Within the user task group, users can set the following priorities: 
high, mediwn-high, mediwn-low, and low. Within each priority level, 
I/0-bound tasks are given higher priority than CPU-bound tasks. This 
means that the user retains good response time while editing a program 
source file, even if several compiles or links are running. 

This scheduling formula allows the operating system to make better 
distinctions between I/0-bound tasks and CPU-bound tasks within each 
priority group. The option to set priorities for individual user 
programs allows users to tune the scheduling according to their business 
needs. This tuning ability gives users a significant advantage. They 
can receive quick turnaround on the more critical jobs and thus respond 
more effectively to their business objectives. 

Controlled Release Draft 6-10 October, 1985 



To specify program priorities, the user must select the program 
priorities option in the GENEDIT utility and then IPL the system using 
that configuration file. To actually set or change a priority for an 
individual program, the user must run the SECURITY utility. By default, 
user foreground tasks are assigned medium-high priority, and user 
background tasks are assigned medium-low priority. For a complete 
description on how to use these options in GENEDIT and SECURITY, refer to 
the VS System Administrator's Reference. 

6.6 MEMORY MANAGEMENT 

Memory management includes a combination of hardware and software 
that controls the allocation and use of physical memory for VS systems. 

The VS memory management scheme is designed to: 

• Provide a large address space for instructions and data 

• Provide efficient sharing of instructions and data 

• Contribute to software reliability 

In the VS multiprogramming environment, the code and data required by 
several tasks may reside in physical memory at the same time. Therefore, 
one of the functions of memory management is to provide memory protection 
and to control access to memory (refer to Ring Memory Protection in 
Section 6. 7) . To accomrnodate many VS users with simultaneous access to 
main memory, a virtual addressing scheme provides programs with a much 
larger address space than the actual physical memory supported by the 
hardware configuration. 

Before virtual addresses can be used to access instructions and data, 
they must be translated to physical addresses. Memory management 
maintains page tables that keep track of where each 2-KB virtual page is 
located in physical memory. Memory management uses this mapping 
information to translate virtual addresses to physical addresses. This 
process is called address translation. For a complete description of 
address translation, ref er to the VS Principles of Operation. 

6.6.1 Virtual Address Space 

The VS Operating System uses the memory management functions 
described in this section to provide each user with a potential 8 million 
bytes of virtual address space on 16-MB systems. 

Depending upon the hardware configuration, a VS system may have from 
1 MB to 16 MB of physical memory. Physical memory is limited to a 
maximum of 16 MB on both the VS300 and the VS85/90/100, 4 MB on the VS65, 
and 2 MB on the VS15/25/45. 

Controlled Release Draft 6-11 October, 1985 



Through the use of on-line disk storage and an addressing mechanism 
which is part of the operating system, the amount of memory available to 
the user is extended beyond the amount of physical memory actually 
installed on the system. The availability of 24-bit virtual addressing 
allows the programmer to write a program which could exceed the amount of 
physical memory on the system. For example, with 16-MB virtual 
addressing support, the user can address up to 8128 KB of user address 
space. 

The user is not aware of the specific functions involved in providing 
virtual memory and need not be concerned when programming an application 
for the system. However, an understanding of the mechanism involved aids 
the user in understanding the protection mechanism and the functioning of 
the operating system. 

Figures 6-1 and 6-2 illustrate how address space is allocated on 8-MB 
and 16-MB VS Operating Systems, respectively. 

800000 

System 
Space 

400000 
*Modifiable 
Data Area 

*SSLs 
*Ma_QJ2__ed Files 
*Unused 

100000 *Pro_g_ram Code 

Operating System 
000000 

* User Address Space (variable size) 

Figure 6-1. VS 8-MB Address Space Allocation 

Controlled Release Draft 6-12 October, 1985 

I~ 



1000000 

System 
Space 

900000 

*Modifiable 
Data Area 

*SSLs 

*Mapped Files 

*Unused 

*Program Code 
100000 

Operating System 
000000 

* User Address Space (variable size) 

Figure 6-2. VS 16-MB Address Space Allocation 

Controlled Release Draft 6-13 October, 1985 



The organization of internal memory allows programmers to run larger 
programs than they could on previous releases of the operating system. 
In addition, users now have more flexibility in defining their virtual 
address space. 

Users can modify the size of various areas in their virtual address 
space, which gives them greater flexibility in defining the appropriate 
address space for an individual program. Each user's virtual address 
space is divided into the following areas: 

• User modifiable data area 

• Optional address space area (can be used for shared subroutine 
libraries or mapped files) 

• User program code area 

System administrators can specify the size of each user's modifiable 
data area using the GENEDIT and SECURITY utilities. The default size for 
the modifiable data area can be specified through the GENEDIT utility. 
This size can be overridden by using the SECURITY utility. Both the 
GENEDIT and the SECURITY utilities are described in the VS System 
Administrator's Reference. 

Users have more than 1 MB of memory address space for code, and more 
than 1 MB of memory address space for data. The VS system provides each 
user with up to 3008 KB of contiguous logical address space on 8-MB 
systems and up to 8128 KB of contiguous, logical address space on 16-MB 
systems. When the size of the modifiable data area is pre-allocated, 
this area remains dedicated to the program stack, buffer, and static 
data, even if it is not completely utilized. All remaining space in the 
user's address area is available for program code. If there is 
additional space in the user address area after the user program code is 
loaded, this remaining space can be used for shared subroutine libraries, 
or for mapped files. 

In essence, users can mix and match code and data space. By 
manipulating data and program code space, address space can be used more 
effectively. For example, users can assign 1/2 MB of memory to data and 
2 1/2 MB to code, or assign 2 MB for code and 1 MB for data, depending on 
the needs of the application. 

6.6.2 Relationship of Virtual Memory to Physical Memory 

The operating system and 
a way that each user appears 
available for programs and 
addresses is ref erred to as 
individual virtual address 
physical memory. 

Controlled Release Draft 

the microcode manage physical memory in such 
to have a large, contiguous area of memory 
data. The memory that the user program 
virtual memory, and constitutes the user's 
space; the actual main memory is called 

6-14 October, 1985 



The virtual address space of all users of a system collectively 
exceeds the amount of physical memory available on the system. So memory 
management provides the mechanism to map the part of each user's address 
space into physical memory. The VS Operating System controls the 
addressing mechanism (i.e., page tables) that map virtual addresses into 
physical memory addresses. Parts of a user's virtual address space that 
are temporarily inactive are mapped onto external disks by the operating 
system. 

6.6.3 Regions 

Virtual address space is divided into uni ts known as regions. A 
region is a contiguous portion of a task's virtual address space that 
begins on a page boundary and contains a variable number of pages. The 
number of regions can vary, al though there is a maximum number of 64 
regions per virtual address space. 

6.6.4 Pages, Page Faults, and Address Translation 

A region is mapped to coincide block for block with a paging file 
(either a program or a data file) on disk. When the operating system 
runs a program, it retrieves the program or data from the disk and loads 
it into main memory. (System tasks are also programs and are loaded in 
the same way. ) 

Programs and data files are stored externally in 2-KB segments called 
pages. Physical memory is partitioned into 2-KB areas to receive these 
pages. These areas of contiguous memory are called page frames. The 
process of loading pages into and out of main memory is called "paging." 
Certain page frames are dedicated to operating system routines and data 
which must be resident in memory at all times. Other page frames may 
contain parts of any other program, parts of the operating system, or 
data. 

When a program is submitted to the operating system to be run, the 
operating system loads pages of the program as they are needed. The 
operating system attempts to maintain as many pages of the program as it 
can (depending upon system processing demands) into main memory. When 
loading a program, the operating system records in a task's page tables 
the number of the physical page frame that receives each page. Using a 
task's page tables, the CP translates virtual addresses into physical 
memory addresses from the time a program is loaded into memory until it 
completes running and exits. 

An executing program may address any one of sixty-four contiguous 
regions. The high-order bi ts of the virtual address, which specify the 
virtual page number, are used to select the particular region (Figure 
6-3). 

Controlled Release Draft 6-15 October, 1985 



0 12 13 23 

l ___ v_i_r-tua--1--Pa_g_e __ N_wnb __ e_r __ __.l ___ Byt __ e __ I_nd_e_x ___________ I 

Figure 6-3. The 24-bit Virtual Address 

The hardware uses bits 0-12 (Figure 6-3) to select a region (and 
hence a page table), each i tern of which addresses a page frame in 
physical main memory. The same bits of the original address are used to 
select table items within a page table, and thereby select a physical 
page. The last eleven bi ts of the original address are then used to 
address a byte location within this page. The resulting addressed 
location is referred to as the translated address. 

Al though table i terns may be addressed within a page table, not all 
may fit into the available physical memory. Some page table items are 
therefore marked with a special indication that the referenced page is 
missing from physical memory. The hardware, finding this indication set 
during an address translation, performs a program check interruption 
known as a page fault. Then, it supplies to the program interrupt 
service routine the region and page nwnbers of the missing page. 

The pager task, initiated by the interrupt service routine, attempts 
to locate a page frame, the contents of which may be replaced with the 
required page from a disk file. When a page frame containing a 
replaceable page has been selected, the paging task reserves this page by 
indicating that it is in use for page-in or page-out. It then initiates 
the page-in or page-out, followed by page-in operations. The task which 
needs the page is forced to wait on a queue of tasks attached to the page 
frame being used for the paging operation. It is then reactivated after 
the page-in operation is completed and the paging task has updated the 
page table to allow normal addressability of the page. 

If the page that is paged-out had been modified, that page is placed 
into a paging area on the disk. This paging file will either be assigned 
by the system, or to a page pool that was previously defined with the 
DISKINIT utility. 

When a page pool is allocated, an area on the disk is specified where 
modified pages are placed if main memory is needed for other tasks. The 
page pool is a temporary location for pages that are being modi£ ied 
during the processing of a task or program. 

Specifying the location, size, and commitment ratio for the page pool 
is important for efficient system performance. For detailed information 
on these topics, refer to the VS System Utilities Reference. 

Controlled Release Draft 6-16 October, 1985 



6.6.5 User Program Efficiency and Paging 

Designing a program for a virtual memory environment requires a new 
outlook toward program and data organization. Although one is freed from 
the task of managing small physical storage by overlay or other manual 
segmentation techniques, the user cannot ignore the issue of program 
organization. A major aim of the programmer should be to increase the 
reference locality of his program's code. That is, the programmer should 
avoid referencing many pages of code or data within a short span of 
program execution. This reduces the likelihood of many page faults 
occurring. 

6.7 RING MEMORY PROTECTION 

The VS operating system supports a hierarchical, "ring" memory 
protection scheme to provide greater internal security. Ring memory 
allows the operating system to internally implement several levels of 
protection. These levels of protection are designed to control access to 
memory, and to further contribute to the integrity of the system. 

6.7.1 Process Levels 

Under the ring memory scheme, access to memory and privileged 
instructions is controlled by a series of process levels, or rings. Ring 
assignment ranges from 0 to 7 as described in Table 6-2. 

Table 6-2. Internal Memory Process Levels 

Process 
Level Meaning Use 

0 Corresponds to current user state For all program 
execution 

1-6 Expanding levels of protection For system support 
facilities 

7 Corresponds to current privileged For OS kernel 
state 

Process level 0 is reserved for all user program execution. The 
intermediate process levels, 1 through 6, define increasing levels of 
privilege. Any location accessible to a less privileged process level is 
also accessible to all more privileged levels. Process levels in the 
intermediate range permit tasks to access level 0 or the next highest 
level in the range. Currently, level 1 is used for system facilities, 
such as the Command Processor and the Debugger. Level 3 is reserved for 
OMS routines. 

Controlled Release Draft 6-17 October, 1985 



Memory protection is on a regionwide basis. Each region of virtual 
address space has a minimum read level and a minimum write level (two 
numbers associated with every region). Access to a region is controlled .~ 
by the region's protection levels and the current process level which is 
recorded in the PCW (Program Control Word) privilege bit. Bits 61-63 of 
the PCW contain the process level (for example, that level of privilege 
at which the user application or service is running). To determine the 
access rights of a piece of code, the system microcode compares the 
process level value in the PCW to the Read and Write levels in the region 
node table (RNT) for the logical address that the program is trying to 
access. For more information concerning the region node table, refer to 
the VS Principles of Qperation. 

6.7.2 System Stacks 

To further enhance system security, the VS ring memory protection 
scheme supports a separate system stack for every process level. Each 
stack is protected from being accessed by a lower process level. A stack 
maps into a paging file that is opened exclusively by the task. When the 
process level of a task changes, the system microcode activates the new 
level's stack. 

Also, each stack supports a buffer Cheap) area. The GETHEAP and 
FREEHEAP SVCs allocate and deallocate space in the currently active 
stack, but may be directed to the stack of a lower process level. The 
buffer area is used for protected data by the system services. 

For more information on system stacks, refer to the VS Principles of 
Operation. 

6.7.3 JSI-type System Services 

The ring memory protection scheme supports JSI-type system services, 
which are system instructions with a process level of 1 or higher. 
JSI-type system services check for protection, as opposed to SVC's, which 
do not. During task initialization, shared files containing JS I-type 
system services are mapped into every task's address space. 

JSI-type system services have the following characteristics: 

• Can be called directly by any language 

• Allow entry to protected address space Cring level 1 - 7) using 
JSI (Jump To Subroutine) instructions 

• Can have a static area and can allocate buffer storage. Both the 
static and buffer areas are read-protected and write-protected 
from user code 

Access to JSI-type system services is controlled by system microcode, 
which tests for the process level required for entry. If a task has a 
lower process level number, access to a JSI-type system service is not 
permitted. 

Controlled Release Draft 6-18 October, 1985 



For more information on JSI-type system services, refer to Chapters 2 
and 3. 

6.8 THE I/O SUBSYSTEM 

The I/O subsystem allows the user to perform I/O operations to a 
variety of devices (for example, magnetic tapes, disk files, 
telecommunications devices, printers). The I/O subsystem routines can be 
divided into three areas which interact to effectively communicate with 
the peripheral devices. These three areas include 

• The I/O initiation routines, including the XIO SVC, LOADCODE SVC, 
and the system physical start I/O routine 

• The I/O completion routines, including the I/O interrupt handler, 
together with CHECK SVC, and HALTIO SVC 

• The asynchronous system I/O monitoring task 

The XIO SVC is the user-accessible I/O initiation routine which 
allows the user to read or write data to a device on the system. The 
system STARTIO routine actually issues the SIO instruction to initiate 
the I/O request. 

The LOADCODE SVC is used to load microcode to programmable devices 
and IOPs. This routine can also be called by the user and inyokes the 
system STARTIO routine. It can be automatically invoked through the 
CHECK SVC when a device or !OP is found to be lacking microcode that is 
needed to successfully complete an I/0 operation. 

The CHECK SVC is a routine used to self-suspend the user's task while 
awaiting the I/O completion. This routine uses the OFB address as input, 
so that it can locate the appropriate semaphore address to wait upon. 
IIO is synchronized by semaphores shared with I/O completion routines. 
The HALTIO SVC cancels an I/O operation initiated by XIO. 

Refer to Chapter 4 for more information on these SVCs. 

6.9 VS FILE STRUCTURE 

The operating system maintains a 2-level file structure (library name 
and file name) on a disk volume, stored in a volume table of contents 
(VTOC) which maintains information for the location of files within 
libraries. 

Disk volumes are divided into 2048-byte blocks, numbered from zero. 
Files on a volume are written in one or more contiguous areas, called 
extents. Each extent spans one or more consecutively numbered blocks. 
The presence of a file is indicated in the VTOC, located through the 
volume label. 

Controlled Release Draft 6-19 October, 1985 



6.9.1 Volume Label 

The voltune label occupies block 0 of a disk volume. It contains the 
name of the volume (the volume serial number), the location of the 
volume's table of contents, and other descriptive information defining 
the size and physical organization of the volume. 

6.9.2 Extent Organization 

Each block on a volume, with the exception of the first block and the 
blocks containing the VTOC, is part of an extent. Each extent is either 
part of the available space record in the volume table of contents or 
part of the file space which is recorded in file descriptor records 
(FDRs), also in the VTOC. FDRs contain information specific to a 
particular file. 

The first FDR for a file is referred to as FDRl. All data management 
and historical system information is contained in the FDRl record. For 
files which reside on independent volumes (not part of a volume set), the 
FDR! record contains the first three extents of the file. Additional 
extents (up to 255) occupied by a file are described by FDR2 entries. 

For files which reside on volume sets, the FDRl record contains 
pointers to the FDR2 and FDR3 records. FDR2 records contain extent 
information; FDR3 records contain segment information. The information 
in these records is used to locate the volume which contains a particular 
file-relative block number. FDR3 records contain segment descriptors, 
consisting of a volume ID number, a segment sequence number, and a 
starting block number. 

When a file is initially allocated space, an attempt is made to 
acquire a single extent of sufficient size on the volume. If such an 
extent is not available, up to 255 extents may be allocated and are 
described in the FDR! and FDR2s. For multivolume file support, the first 
nine extents are described in the first FDR2, and the remaining extents 
are described in subsequent FDR2s and FDR3s. For volume sets, the extent 
allocation may be unlimited. 

The system administrator can specify the maximum number of extents 
that are allocated to a file upon creation and upon extention by using 
the DISKINIT utility. Refer to the VS System Utilities Reference for 
more information on file extents and volume sets. 

NOTE 

For files which reside on volume sets, the extents allocated 
at creation time must fit on one member of the set. These 
extents will not span multiple volumes. 

Controlled Release Draft 6-20 October, 1985 

'~ 



6.9.3 Volume Table of Contents 

way: 
The volume table of contents (VTOC) is structured in the following 

• The first block of the VTOC is an available space block. When 
searching for space on the voltUne to store a new file, the 
operating system searches this block first (followed by its chain 
of unused blocks) for a sufficiently large area of space. 

• The second block of the VTOC is an index block. This first-level 
index block, which describes a user library, may be chained to 
additional first-level index blocks. The first-level index block 
contains a pointer to second-level index blocks. 

• The third block of the VTOC is a second-level index block which 
describes a file within a library. This block is the first in a 
chain of additional second-level index blocks. 

• The fourth block of the VTOC is a block containing File 
Descriptor Records (FDRs). 

• The fifth and additional blocks of the VTOC are used for 
available space blocks, index blocks, or file descriptor blocks. 

User programs create files by invoking the OPEN SVC and can create 
any file in any library providing that the combination of file and 
library do not already exist. Files may be removed from a disk by 
invoking the SCRATCH SVC. 'Any user can delete any file in any library 
providing the security constraints are obeyed. Deleting a file consists 
of removing the FDR(s) which describe the file and freeing the space 
which it contained. If a file is the last one in its library, the 
library must also be removed by deleting the corresponding index block. 
A file name may be changed by updating the FDR! to reflect the new name. 
File and library names are obtained by invoking the READVTOC SVC. 

Controlled Release Draft 6-21 October, 1985 



n 
·-~-



APPENDIX A 
PROGRAM FILE STRUCTURE AND PROCESSING 

A.I THE PROGRAM FILE STRUCTURE 

A program object file is partitioned into blocks of information. 
Each block represents common information that is needed either when the 
program is running or when the program is processed by the Linker. As 
shown in Figure A-1, a program consists of three blocks: the run block, 
the symbolic block, and the linkage block. This is standard for the two 
possible object file formats that can be processed by the Linker. Object 
format Version 0 is the format used for Release 6. 00 series of the VS 
Operating System. This format is documented in the Section A.2. Object 
format Version 1 is the native format for Release 7.00 series of the VS 
Operating System. It is described in Section A.3. 

1--------·· -- -···--·····-··---, 

I RUN BLOCK I 
I I , -------------···· .. -----, 
I SYMBOLIC BLOCK I 
I I 
I I 
I LINKAGE BLOCK I 
I I 

Figure A-1. Program File Structure 
Object Versions 0 and 1 

A.2 OBJECT FILE FORMAT FOR RELEASE 6.00 SERIES 

Object file format 0 for Release 6. 00 series of the VS Operating. 
System is described in this section. Refer to Section A. 3 for the 
description of object file format 1 used for the Release 7. 00 series of 
the VS Operating System. 

Controlled Release Draft A-1 October, 1985 



A.2.1 The Run Block, Version O 

The run block contains the information needed by the system to run a 1~ 
program. It is used by the operating system as a paging file when the 
program is running. It contains the actual instructions to be run and 
the information needed to format the static area on the stack when the 
program starts. The first location of the run block has a virtual 
address of X'lOOOOO' (1024k). 

Bytes NOTES 

I LENGTH OF CODE 
CODE PROLOGI AND PROLOG BLOCK 4 bytes 1 
AND BLOCK I ENTRY POINT 
PRO LOG I ADDRESS 4 bytes 2 
BLOCK CODE I 3, 4 

BLOCK I CODE SECTION (variable) 
LENGTH OF STATIC BLOCK 
OBJECT TIME 4 bytes 5 

RUN LENGTH OF STATIC BLOCK 
BLOCK LENGTHS RUN TIME 4 bytes 6 

BLOCK 
RESERVED MUST BE ZERO 4 bytes 

RESERVED MUST BE ZERO 4 bytes 

STATIC 
BLOCK SEE FIGURE A-3 

7 
(variable) 

Figure A-2. The Run Block, Version 0 

Notes on Figure A-2: 

1. The length of the code and prolog block is used to find the start 
of the static and lengths blocks. 

2. The entry point address is the 
when the program is started. 
name in the code sections. 
program has been assembled to 
utilities and operating system 

Controlled Release Draft A-2 

address to which control is passed 
It is the address of any external 

If the high-order bit is l, the 
run in Segment 0 (as for standalone 
routines). 

October, 1985 

~ 



3. The code block may contain any number of code sections. This 
block contains all of the executable instructions in the program 
and may contain unmodified data. It is composed of any number of 
sections, where a section is a contiguous area of code that can 
be moved as a whole by the Linker program. There is no 
requirement for a particular order of the sections within the 
code block. 

4. The code section is a block externally identified by its name. 
It is an independent contiguous area of code supplied by the 
language translator. The first location is on a doubleword 
boundary, and the length is di visible by eight. All address 
constants that are resolvable are resolved so that the program 
can be run without changing any locations in the section. 

5. The length of the static block in bytes reflects the length of 
data in the static area at object time. If the length is not 
divisible by 4, up to three bytes of slack are added after the 
end of the block to make the following block start on a word 
boundary. These slack bytes are not counted in the length. 

6. This is the length of the static area in bytes at run time. 

7. The static block contains 
There can be any number 
including zero. 

sections of initial value records. 
of static sections in this block, 

The Static Block, Version 0 

The static block contains initial value records that are to be 
processed by the program startup facility in the operating system. These 
records cause initial values to be assigned to locations in the static 
area. There can be any number of static sections within this block. All 
address constants in the static sections that reference locations in the 
code sections are resolved by Linker or Translator programs as if they 
were in a code section. Address constants that address locations within 
the static sections are resolved as if the start of the static block were 
location zero. 

NOTES 

I LENGTH OF DATA 
I IN DATA FIELD 1 byte l, 2, 3, 4 

INITIAL I 
STATIC STATIC VALUE I RECORD TYPE 4 bits 5 
BLOCK SECTION RECORD I RUN TIME 

I DISPLACEMENT 2 bytes 6 
I DATA FIELD 
I SEE FIGURE A-4 1-256 bytes 7 

Figure A-3. The Static Block, Version 0 

Controlled Release Draft A-3 October, 1985 



Notes on Figure A-3: 

1. The static block may contain any number of static sections, 
including zero. 

2. A static section can be any length, including zero. The section 
contains only the compressed initial value records for this 
section. If no locations in the static section have initial 
values, there are no records for that section and the object time 
length is zero. The length of these static sections does not 
correspond to the length of the expanded static section at run 
time. In order to distinguish between the two, the following 
naming convention is used. Locations in the object code file 
are referred to as object time locations or are specified by 
their object time address. Locations that are used during 
running of a program are ref erred to as run time locations or are 
specified by their run time addresses. Because the code block is 
without change at run time, this distinction is normally not made 
for any locations in the code block. When descriptions apply to 
both static and code areas, run time and object time may be used 
interchangeably to refer to the code area. 

3. Initial value records specify locations that are to have initial 
values in the named static section. The initial value records 
also specify the values the program startup mechanism is to 
assign to these locations. There are five types of initial value 
records: 

• The origin record, which specifies how far from the start 
of the expanded run time static area this section starts. 

• The value record, which specifies the value to be placed 
in the static area. 

• The relocation record, which specifies that program 
startup is to supply the address of a run time location 
in a static area. 

• The repeated record, which specifies a value and a 
repetition factor to indicate how many occurrences of the 
value are to be placed in the static area. 

• The compressed record, which specifies the compressed 
value to be expanded and placed in the static area. 

4. Length of data within the data field in this record minus one. 
This field is not used for the compressed record type. 

Controlled Release Draft A-4 October, 1985 



5. The record type: 

• 0 = Value 
• 1 = Origin 
• 2 = Relocation 
• 4 = Repeated 
• 8 = Compressed 

6. Run time displacement. This field has two interpretations. For 
origin records (record type 1), this field indicates the 
displacement from the start of the static area of this static 
section. For all other record types, this field indicates the 
run time displacement from the start of the static section of the 
record's data. 

7. Data field. The length and format of this field vary depending 
on the record type. 

Controlled Release Draft A-5 October, 1985 



The Data Field for: 

Value Record: 

DATA I DATA TO BE MOVED TO THE STATIC 
FIELD! SECTION 

Origin Record: 

DATA I 
FIELDI DUMMY DATA 

Relocation Record: 

I ______ l_RE __ S-ER_VE __ D_;_MU __ S_T--BE~Z-E-R0-------------1 

DATA I LENGTH OF TARGET ADDRESS CONSTANT I 
FIELDI DIRECTION OF RELOCATION I 

I DO NOT RELOCATE FLAG I 
I INITIAL VALUE OF THE ADDRESS CONSTANT! 

Repeated Record: 

I REPETITION FACTOR 
DATA I DATA TO BE REPEATED WITHIN THE 
FIELDI STATIC AREA 

Compressed Record: 

DATA I LENGTH OF COMPRESSED DATA 
FIELDI COMPRESSED DATA 

1 - 256 bytes 

1 byte 

4 bits 
1 bit 
1 bit 
1 bit 

25 bits 

2 bytes 
1 - 256 bytes 

2 bytes 
1 - 2048 bytes 

Figure A-4. The Data Field, Version 0 

Notes on Figure A-4: 

1. This data is moved unchanged to the run time static area. 

2. Length of target address constant 

• 0 = three bytes 
• 1 = four bytes 

NOTES 

1 

2 
3 
4 
5 

6 
7 

8 
9 

Controlled Release Draft A-6 October, 1985 



3. Direction of relocation: 

• 0 = Positive 
• 1 = Negative 

4. The do-not-relocate flag is used if the address is unresolved, if 
the address referenced a code location, or if this is an R type 
address constant. 

• 0 = Relocate the address constant. 
• 1 = Move the address constant to the specified location 

but do not relocate with respect to the static area. 

5. Initial value of the address constant. If the target is three 
bytes long, only the last three bytes are moved to the target 
area and the high-order bit is ignored. If the target is four 
bytes long, the high-order bit is propagated through the seven 
remaining bits of the high-order target byte. 

6. The repetition factor may have a value from 2 - 32767. 

7. The data to be repeated within the static area. 

8. The length of the compressed data may have a value from 1 - 2048. 

9. The compressed data is expanded before being moved to the static 
area. 

Controlled Release Draft A-7 October, 1985 



A.2.2 The Symbolic Block, Version 0 

The symbolic block is a pool of information used by the system's 
debugging program. The block is partitioned into a length field and any 
number of section-related blocks. 

LENGTH OF SYMBOLIC BLOCK 
FULLWORD ALIGNED 

LENGTH IN BYTES OF 
DATA IN THIS SECTION 
EXTERNAL NAME OF 
CORRESPONDING CODE SECTION 
OBJ TIME LENGTH OF 
SECTION IN RUN BLOCK 
OOUBLEWORD ALIGNED 

SOURCE I ;;_F,;;;_;IL;;;;..;E;,___N__;AME;;,,,;;,,;;;;;_ _____ _ 
FILE I 
LOCATION! LIBRARY NAME 

I 
I VOLUME NAME 

SYMBOLIC LISTING I __;F_I_L_E_NAME_;._;.;__ _____ _ 
SYMBOLIC SECTION FILE I 
SECTION AREA LOCATION! LIBRARY NAME ,-----------

1 VOLUME NAME 

EXTERNAL I LENGTH OF POOL 
REFERENCE I ------------
POOL I 

I 
I 

ANY # OF 
EXTERNAL 
NAME 
ENTRIES 

SYMBOLIC! SYMBOLIC 
SUBBLOCKI SUBBLOCK 
AREA I 

I 
I 

EXTERNAL 
NAME 
CODE SEC DIS
PLACEMENT 

SUBBLOCK TYPE 
DATA LENGTH 
IN SUBBLOCK 
SUBBLOCK 
INFORMATION 

Figure A-5. The Symbolic Block, Version 0 

Controlled Release Draft A-8 

NOTES 

4 bytes l, 2 

4 bytes 3, 4 

8 bytes 5 

4 bytes 6 

8 bytes 7 

8 bytes 

6 bytes 

8 bytes 8 

8 bytes 

6 bytes 

4 bytes 9, 10 

8 bytes 11, 12 

4 bytes 13 

1 byte 14, 15 

3 bytes 16 
17 

(variable) 

October, 1985 

.~\ 



Notes on Figure A-5: 

1. The symbolic block contains all of the program 1 s special 
debugging information. 

2. The length of the symbolic block is fullword aligned. If there 
are no symbolic sections, the block is four bytes long. 

3. The section area can contain any number of symbolic sections. 
Every code section can have a symbolic section. If it does, 
these sections are in the same order as the corresponding code 
sections. 

4. The length reflects the length of data in the area. If the 
length is not di visible by four, up to three bytes of X' 00' 
filler are added after the end of the section to make the 
following section start on a word boundary. These slack bytes 
are not counted in the length. 

S. The external name of the corresponding code section. 

6. Doubleword-aligned object time length of the corresponding 
section block in the run block. 

7. Location of the source file at compilation time. 

8. Location of the listing file at compilation time (or blank). 

9. The external reference pool lists all labels that are externally 
referenced. Each label is listed only once, no matter how many 
times it is used in the program. There is no order in the list, 
but the position of an entry in the list represents the internal 
nwnber used for referencing that label. This structure allows 
modules to be added or dropped by the Linker program without 
changing any locations in the symbolic section (other than adding 
or dropping the whole section). 

10. Length of the external reference pool (in bytes), including this 
word. 

11. External reference entry of which there may be any nwnber. 

12. External name in ASCII with trailing blanks. 

13. Displacement within the code section to a 4-byte RCON. 

14. The symbolic subblock area may contain any number of subblocks. 
Each subblock is composed of only one type of debugging 
information (i.e., statement nwnber block). 

Controlled Release Draft A-9 October, 1985 



15. The subblock types are language independent codes and are 
interpreted the same way for all languages. ~ 

16. The length of data in the subblock, which includes the first four 
bytes of the subblock. If this length is not divisible by four, 
up to three bytes of X' 00' filler are added at the end of the 
subblock to make the following subblock start on a fullword 
boundary. These filler bytes are not counted in the length. 

17. Collected information about this section. These subblocks are 
processed by a common language-independent program. 

Statement Number Subblock 

This subblock is generated by all high-level language translators, 
and contains language-independent information identifying individual 
statements in the program's section. One statement number subblock must 
be present in each symbolic section. 

NOTES 

I 1 1 byte 1 
I I LENGTH OF DATA IN DATA FIELD 3 bytes 2 
I STATEMENT I I I LINE NUMBER 
I NUMBER IANY # I STATEMENT I 2 bytes 3, 4 
I BLOCK IOF I ENTRY I CHARACTER 
I I STATEMENT I I STRING 5 bytes 5 
I I ENTRIES I I CODE SECTION 
I I I I DISPLACEMENT 3 bytes 6 

Figure A-6. Statement Number Block, Version 0 

Notes on Figure A-6: 

1. 1 = statement number type subblock. 

2. The length of data in the subblock including this word. If this 
length is not divisible by four, up to three bytes of X' 00' 
filler are added to the end of the subblock to make the following 
subblock start on a fullword boundary. 

3. Any number of statement entries may follow. Each entry 
represents one statement in the source program. The definition 
of statement is language-dependent, but is consistent within any 
one language (i.e., in COBOL there is one entry per verb in the 
COBOL source) . The entries are in order of increasing 
displacements. 

Controlled Release Draft A-10 October, 1985 



I~ 

~ 

4. The line number in binary (no negative values) or zero to 
indicate the inl ine nonsymbolic code. The exact def ini ti on of 
this entry is language-dependent, but normally indicates the 
statement line number. 

5. The character string (in ASCII with trailing blanks) performs 
paragraph header linkage. The use of this field is 
language-dependent, but can be used either for the statement 
label or the command starting at the specified displacement. (In 
COBOL this is used for an abbreviation of the COBOL verb.) 

6. The run-time displacement into the section of the start of the 
statement. 

Data Name Subblock 

The data name subblock is generated by all high-level language 
translators to support symbolic access to data items at run time through 
command language facilities. One dataname subblock must be present in 
each symbolic section. 

NOTES 

I I 2 = DATA NAME SUBBLOCK 1 byte 1 
I I LENGTH OF DATA IN DATA FIELD 3 byte 2 
I I NUMBER OF INDEX ITEMS 4 bytes 3,4 
I I DATA ANY# I 
I I NAME OF POS. I INDEX ITEM 
I I INDEX INDEX I 
I I ITEMS I 4 bytes 5 
I I !LENGTH OF ENTRY -1 1 byte 6,7 
IDATA I I I INDEX OF EXTERNAL SECTION 1 byte 8 
!NAME I I DATAI PATH TYPE OF DATA ITEM 1 byte 9 
I BLOCK I I PATHI DISPLACEMENT TO THE DATA ITEM 3 bytes 10 
I I DATA ,--, VARI-I INDICATOR 1 bit 11 
I I NAME I DATAI ABLE I INDICATOR 1 bit 12 
I I ANY# ENTRY! DES-I TYPE I FORMAT INDICATOR 6 bit 13 
I loF DATAI I CRIPI SCALE 1 byte 14 
I I NAME I I TIONI DATA ITEM LENGTH 1 byte 15 
I I ENTRIES I I DATA NAME LENGTH - 1 1 byte 
I I I I DATA NAME variable 16 
I I I I OPTIONAL OFFSET 2 bytes 17 
I I I I I NUMBER OF SUBSCRIPTS REQUIRED 1 byte 18 
I I I IARRAYI NUMBER OF DIMENSION DESCRIPTIONS 1 byte 19 
I I I IDESCRI DIMENI HIGH BOUND OF SUBSCRIPT 2 bytes 20 
I I I IIPTORI SION I 
I I I I I DESCRI LENGTH OF SUBSCRIPT ITEM 2 bytes 

Figure A-7. Data Name Subblock, Version 0 

Controlled Release Draft A-11 October, 1985 



Notes on Figure A-7: 

1. 2 = Data name type subblock. 

2. Length of data in subblock (including this word). If this length 
is not divisible by four, up to three bytes of X' oo·• filler are 
added at the end of the subblock to make the next section start 
on a fullword boundary. 

3. This index contains compiler-dependent information used to 
efficiently search the subblock for a given symbol. 

4. Number of index items. 

5. Index item = displacement within symbolic section to first 
dataname entry with the compiler-dependent indexed attribute. 

6. Any number of data name entries. These can be in any order. It 
is expected that any one compiler orders these such that when the 
compiler is identified they can be efficiently searched. 

7. Length of entry minus one. 
, 

8. Index of the external section that the displacement references. 
This is the number of the entry in the external reference pool in 
the symbolic section. 

9. Type of path to the data item: 

• O = Displacement locates the data constant in the 
corresponding code section. 

• 1 = Displacement locates the data item in the referenced 
external section. 

• 2 = Displacement locates a 4-byte ACON in the referenced 
external section which should be used as a base address. 
The displacement from this address is found in the off set 
field. 

• 3 =Displacement equals value (right-justified). 

10. Displacement from the indexed external section to the data i tern 
(for type 2 path, this is the displacement to the address 
constant). 

11. Indicator -- referenced item (whether referenced using subscripts 
or not) is an elementary data item if equal to 1. 

12. Indicator -- subscripts required if equal to 1. 

Controlled Release Draft A-12 October, 1985 



13. Format indicator: 
0 = Mixed (applies to nonelementary i terns only and implies 
that the scale is to be used as the high-order byte of the 
variable-length fields). 
1 = Character (this implies that the scale is to be used as 
part of the variable length). 
2 = Binary. 
3 = Packed decimal. 
4 = Bit string (value always interpreted as full bytes) 
5 = Floating point. 
6 = Display field attribute character. 
8 = Zoned number with no high or low order sign zones but may 
contain either a leading or trailing sign character and one 
decimal point character. 
9 = Binary COBOL halfword index value. (Length per 
occurrence number is in data i tern length; length is stored 
in 2 bytes: scale and data i tern length. Length stored is 
the length per occurrence number.) 
10 = Zoned numeric with high-order sign zone. 
11 = Zoned numeric with low-order sign zone. 
12 = Zoned numeric with leading sign character. 
13 = Zoned numeric with trailing sign character. 
14 = Unsigned zone numeric. 
15 = BASIC array. 
16 = COBOL group item. 
17 = BASIC string scalar. 
18 = Binary COBOL fullword index value. (Length per 
occurrence number is in data item length. Length is stored 
in two bytes: scale and data item length. Length stored is 
the length per occurrence number.) 
19 =Logical (FORTRAN). 
20 =Complex (FORTRAN). 

14. Scale -- A signed binary number indicating how far left of the 
rightmost digit the decimal point is to be relocated. Relocation 
is to the right for negative numbers. (For character type 1 
fields, this byte is considered part of the item length.) 

15. Data item length -- Specifies the length of the data time. If 
the data is character type, both this and the preceding byte are 
used for the length. 

16. Data name -- If the data name must be qualified, all necessary 
levels of the name are listed with highest level first and the 
levels of qualifications separated by a point (. ) . If the name 
is qualified but is unique in the program, only the lowest level 
of the name should be listed. 

17. Optional offset (present with data path 2 only). 

Controlled Release Draft A-13 October, 1985 



18. Number of subscripts required. 
description for each subscript. 

There is one dimension 

19. Indicated number of dimension descriptions. 

20. Dimension description -- There is one entry for each subscript 
indicated in the maxirnwn subscript value (entry for leftmost 
subscript first). The first element of each dimension of the 
array is asswned to be 1. 

A.2.3 The Linkage Block, Version 0 

The linkage block is a pool of information required for the Linker 
program to add or delete sections of the program. It is partitioned into 
a length field followed by any number of blocks of section information. 

NOTES 

LENGTH OF LINKAGE BLOCK (FULLWORD ALIGNED) 
I LENGTH OF DATA IN THIS SECTION 
I SECTION BLOCK IN BYTES 
I BLOCK EXTERNAL N~ OF SECTION (ASCII) 
I TYPE OF BLOCK O=CODE !=STATIC 
I OBJECT TIME LNGTH OF CORRESPONDING 

CODE I SECTION BLOCK IN THE RUN BLOCK 
SECTION DOUBLEWORD ALIGNED 
AREA COMPILER/ASSEMBLER NAME 

COMPILER/ASSEMBLER VERSION 
DATE OF COMPILATION OF THIS 
SECTION PACKED DECIMAL FORMAT 
LENGTH OF SYMBOLIC SECTION OR 

LINKAGE LINKAGE RUN TIME LENGTH OF STATIC AREA 
BLOCK SECTION ENTRYI LENGTH OF ENTRY POINT LIST 

BLOCK POINT I ANY # I ENTRY POINT NAME 
(PADDED LIST IOF ENTRY! (ASCII) 

-'-~~~~~~~-

TO FULL- I POINT I RUN-TIME OFFSET OF 
WORD) I ITEMS I ENTRY PT IN SECTION I 

LENGTH OF RELOCATION I 
RELOC- REFERENCE BLOCK I 

STATIC ATION I LENGTH OF EXTERNAL! 
SECTION! REFER- EXTER-1 NAMES BLOCK I 
AREA I ENCE NAL I ANY # I 

I BLOCK NAMES I OF EX- EXTERNAL I 
I BLOCK I TERNAL NAME I 
I I NAMES I 
I RELOC-1 ANY # I 
I ATION I OF RE- RELOCATION! 
I ITEM I LOCATION ITEM I 

4 bytes 1,2 

4 bytes 3,4,5 
8 bytes 6 
1 byte 7 

3 bytes 8 
2 bytes 9 
3 bytes 10 

3 bytes 11 

4 bytes 12 
4 bytes 13,14 
8 bytes 15,16 

4 bytes 17 

4 bytes 18 

4 bytes 19,20 

8 bytes 21,22 

I LIST I ITEMS I 5 bytes 23 

Figure A-8. The Linkage Block, Version 0 

Controlled Release Draft A-14 October, 1985 

~ 



Notes on Figure A-8: 

1. The fullword aligned length of the linkage block. 

2. The code section block area is composed of one section block for 
each code section in the program. The blocks are in the order in 
which the code sections appear in the code block of the run block. 

3. The static section block area is composed of exactly one section 
block for each static section. The blocks are in the order in 
which the static sections appear in the static block. 

4. The code and static section blocks in the linkage area have 
sufficient information so sections can be added or deleted from a 
program, and so all addresses can be correctly resolved after 
this operation is complete. With minor exceptions, both the 
code and the static blocks have the same basic skeleton. One 
skeleton is presented, and ·the differences are noted in the 
skeleton. 

5. The length of data in the section block in bytes reflects the 
length of data in the area. If the length is not di visible by 
four, up to three bytes of X'OO' filler are added after the end 
of the block to make the following block start on a word 
boundary. These filler bytes are not counted in the length. 

6. The external name of the section in ASCII with trailing blanks. 

7. The type of block: 

• 0 = Code 
• 1 = Static 

8. The object-time length of the corresponding section block in the 
run block. Doubleword aligned. 

9. Compiler name or designation in ASCII with trailing blanks. 

10. Version and modification level of the compiler in packed decimal. 

11. Date of compilation of this section in packed decimal CYYDDD). 

12. For a code section block, this is the length of the corresponding 
symbolic section (or 0 if there is no corresponding symbolic 
section), fullword-aligned. 

For a static section block, this is the run-time length of the 
program static area, doubleword-aligned. 

13. The entry point list is a list of all names in this section that 
are known outside of the section. This list may have any number 
of entries. 

Controlled Release Draft A-15 October, 1985 



14. The length of the entry point list including this word. 

15. The list may contain any number of names ,and address pairs. They 
may be in any order, but must not be repeated. 

16. The entry point name in ASCII with trailing blanks. 

17. The run-time displacement into the section for this entry point. 

18. The relocation reference block lists all locations within the 
section that need to have addresses changed if the relative 
location of the section within the program is changed or if the 
location of specified external labels changes. 

19. External names block -- This block contains a list of all 
external names referenced by this section. An external reference 
is an address constant that references a label that is not part 
of the current section. The label must be the name of a section 
or an entry type symbol in a section. 

20. Length of the external names block including this word. 

21. List of external reference names. These names can be in any 
order, but they are referenced by their position in the list. 
The first name is ntunber one. 

22. External name in ASCII with trailing blanks. 

23. List of relocation i terns. This list is in order of increasing 
displacement. There can be any number of entries in this list. 

The Relocation Reference Block 

All address constants in the section that would be relocated if 
either the starting location of the section or the location of an 
external name was changed are listed in the relocation reference block. 
The block is composed of two main parts: a list of external names and a 
list of addresses in the section to be relocated. 

Controlled Release Draft A-16 October, 1985 



NOTES 

RESERVED; MUST BE ZERO 2 bits 
RCON IF =l 1 bit 1 
ADDRESS IS RELOCATION RCD 1 bit 2 

FLAG LENGTH OF ADDRESS CONSTANT 1 bit 3 
RELOCA- BYTE DIRECTION OF RELOCATION 1 bit 4 
TION UNRESOLVED FLAG 1 bit 5 
ITEM RESERVED; MUST BE ZERO 1 bit 

OBJECT TIME DISPLACEMENT INTO THE 
SECTION OF THE TARGET ADDRESS 
CONSTANT OR RELOCATION RECORD. 3 bytes 6 

NUMBER OF EXTERNAL NAME REFERENCED 1 byte 7 

Figure A-9. Relocation Reference Block, Version 0 

Notes on Figure A-9: 

1. If the reference is an RCON, the referenced name must be in a 
static section. If the address constant is in a static section, 
the relocation record is the do-not-relocate bit set. 

2. Address is a relocation record C 8 bytes) . If this is set, the 
following bit of length of target is ignored. All i terns in a 
static section except origin records, and none in a CODE section, 
have this bit set. 

3. If the target is within a code section, this bit indicates the 
length of the target address constant: 

• O = Three bytes 
• 1 = Four bytes 

If the target is a relocation record, this bit is ignored. 

4. Direction of relocation: 

• 0 = Positive {add the address of the start of the section 
to the specified location) 

• 1 = Negative {subtract from the location) 

5. Unresolved flag. If set, the address is resolved relative to an 
address of X'FOOOOO'. 

6. Object time displacement into the section of the target address 
constant or relocation record. 

Controlled Release Draft A-17 October, 1985 



7. Order number of external name referenced. This number is either 
zero (if the item is to be relocated relative to the start of 
this section) or is the number of the external name in the ~ 
external names block (the first name in the list is one). 

A.3 OBJECT FILE FORMAT FOR RELEASE 7.00 SERIES 

This section describes Version 1 of the object file format for the 
Release 7.00 series of the VS Operating System. Refer to Section A.2 for 
a description of Version O. 

A.3.1 The Run Block 

The run block contains the information needed by the system to run a 
program. It is used by the operating system as a paging file when the 
program is running. It contains the actual instructions to be run and 
the information needed to format the static area when the program starts. 

BYTES NOTES 

CODE IPROLOGI 
AND IBLOCK I SEE FIGURE A-11 
PRO LOG ICODE I 
BLOCK IBLOCK I CODE SECTION variable 

LENGTHS SEE FIGURE A-12 
RUN BLOCK 
BLOCK 

STATIC See FIGURE A-13 
BLOCK Padded to fullword 

MODULE SEE FIGURE A-14 
BLOCK 

Figure A-10. The Run Block, Version 1 

Notes on Figure A-10: 

1. The code block can contain any number of code sections. This 
block contains all of the executable instructions in the program 
and can contain no modifiable data. The code block is composed 
of any number of sections, where a section is a contiguous area 
of code that can be moved as a whole by the Linker. There is no 
requirement for a particular order of the sections within the 
code block. 

Controlled Release Draft A-18 October, 1985 

l, 2 



2. The code section is a block externally identified by its name. 
It is an independent contiguous area of code supplied by the 
language translator. The first location is on a doubleword 
boundary, and the length is divisible by eight. Address 
constants must be resolved prior to execution so that the program 
can be run without changing any locations in the section. 

The Prolog Block 

PRO LOG 

64 Bytes BLOCK 

r-
LENGTH OF CODE AND PROLOG 

OBJECT FORMAT NUMBER 

PROGRAM ENTRY POINT ADDRESS 

PROGRAM BASE ADDRESS 

I INTERPRETER FLAG 
I 

INTERPRETER! RESERVED (0) 
INF'ORMATION I 

I INTERPRETER DEBUG 
I ENTRY ADDRESS -- -· ··- ---- ------ -

I NAME (ASCII) 
I -·----, 
I VERSION # (E_acked dee) I 
I I 

PROGRAM I PATCH FLAG I 
INFORMATION I I 

!CODE RELOCATABILITY FLAGI 
I I 
I RESERVED (0) I 
I I 
I RELEASE DATE * I 

~~~~~~~~~--~~~~-

* Packed decimal

BYTES NOTES

3.5 1

0.3 2

4.0 3

4.0 4

0.1 5

0.7

3.0 6

40.0 7

4.0 8

0.1 9

0.1 10

0.6

3.0 11

Figure A-11. The Prolog Block, Version 1

Controlled Release Draft A-19 October, 1985

Notes on Figure A-11:

1. The length of the code and prolog block is used to find the start
of the static and lengths blocks. The length field of the
combined code and prolog block is the number of bytes in the
combined block.

2. In format Version 0, the value of the length was kept in bytes
but required to be a multiple of eight indicating doubleword
alignment. By placing the object version number adjacent to this
length field and assigning the value of 0 to the original format,
all older object code files do have an object version number and
it is implicitly 0.

3. The entry point address is the address to which control is passed
when the program is started. It is the address of any external
name in the code sections. If the high-order bit is 1, the
program has been assembled to run in segment 0 (as for standalone
utilities and operating system routines). The entry point
address indicates the starting point for the execution of the
program. A value of X'100040' (asswning a base address of
X' 100000') points to the first byte in the CODE block. This
value is the default program entry point address.

4. The program base address follows the program starting address in
the extended prolog block. It indicates the absolute address of
the first byte of the program file.

5. The interpreter flag indicates whether (=1) or not (=0) the
program is an interpreter.

6. This is the initialization entry address for the Debugger. It is
valid only when the interpreter flag is set. The Debugger uses
the initialization entry to set up for debugging the interpretive
language source program.

7. This field is a 40-byte field for the program name. The default
value of the field is a string of blanks.

8. The program version number in packed decimal. The default value
of the field is 0 in packed decimal.

9. This field is a flag to indicate whether (=l) or not (=O) the
program has been patched.

10. This field is a flag to indicate whether (=1) or not <=O> the
code segment can be relocated, that is, it contains no absolute
address references within the code itself. This is required of
all code files in order to qualify for use as an SSL.

Controlled Release Draft A-20 October, 1985

r-"'i

11. The program release date in packed decimal. The default values
of the date field is the system date at the time of creation in
packed decimal. The format is YYDDD.

The Lengths Block

BYTES NOTES

LENGTHS
BLOCK

OBJECT TIME STATIC BLOCK LENGTH
LESS PAD

RUNTIME STATIC BLOCK LENGTH
MULTIPLE OF EIGHT

MODULE BLOCK LENGTH;
FULLWORD LENGTH;
0 IF EMPTY

RESERVED;
ONE FULLWORD;
MUST BE 0

Figure A-12. The Lengths Block, Version 1

Notes on Figure A-12:

4

4

4

4

1. Length of the static block in bytes of the file reflects the
length of data in the static area at object time. If the length
is not di visible by four, up to three bytes of slack are added
after the end of the block to make the following block start on a
word boundary. These slack bytes are not counted in the length ..

2. Length of the runtime memory image of the static area when mapped.

3. Length of the module block which follows the static block. The
module block can have a length of 0.

The Static Block

The static block contains initial value records that are to be
processed by the program startup facility in the operating system. These
records cause initial values to be assigned to locations in the static
area. There can be any number of static sections within this block. All
address constants in the static sections that reference locations in the
code sections are resolved by Linker or Translator programs as if they
were in a code section. Address constants that address locations within
the static sections are resolved as if the start of the static block were
location 0.

Controlled Release Draft A-21 October, 1985

1

2

3

Bytes NOTES

I LENGTH OF DATA I
I IN DATA FIELD I 1 l, 2, 3, 4

INITIAL I I
STATIC STATIC VALUE I RECORD TYPE I 4 5
BLOCK SECTION RECORD I RUN TIME I

I DISPLACEMENT I 2 6
I DATA FIELD I
I SEE FIGURE A-141 1-256 7

Figure A-13. The Static Block, Version 1

Notes on Figure A-13:

1. The static block may contain any number of static sections,
including zero. The static block contains sections of initial
value records.

2. A static section can be any length, including zero. The section
contains only the compressed initial value records for this
section. If no locations in the static section have initial
values, there are no records for that section and the object time
length is zero. The length of these static sections does not
correspond to the length of the expanded static section at
runtime. In order to distinguish between the object time
locations and runtime locations, the following naming convention
is used: locations in the object code file are referred to as
object time locations or are specified by their object time
address; locations that are used during running of a program are
referred to as runtime locations or are specified by their
runtime addresses. Because the code block is without change at
runtime, this distinction is normally not made for any locations
in the code block. When descriptions apply to both static and
code areas, runtime and object time may be used interchangeably
to refer to the code area.

3. Initial value records specify locations that are to have initial
values in the named static section. The initial value records
also specify the values the program startup mechanism is to
assign to these locations. There are five types of initial value
records:

• The origin record, which specifies how far from the start
of the expanded run time static area this section starts

• The value record, which specifies the value to be placed
in the static area

Controlled Release Draft A-22 October, 1985

• The relocation record, which specifies that program
startup is to supply the address of a run time location
in a static area

• The repeated record, which specifies a value and a
repetition factor to indicate how many occurrences of the
value are to be placed in the static area

• The compressed record, which specifies the compressed
value to be expanded and placed in the static area

4. Length of data within the data field in this record minus one.
This field is not used for the compressed record type.

5. The record type:

• 0 = Value
• 1 = Origin
• 2 = Relocation
• 4 = Repeated
• 8 = Compressed

6. Runtime displacement. This field can be interpreted in two
ways. For origin records (record type 1) , this field indicates
the displacement from the start of the static area of this static
section. For all other record types, this field indicates the
runtime displacement from the start of the static section of the
record's data.

7. Data field. The length and format of this field vary depending
on the record type. Refer to Figure A-14 for the different data
fields.

Controlled Release Draft A-23 October, 1985

Controlled Release Draft A-24 October, 198:

Notes on Figure A-14:

1. This data is moved unchanged to the runtime static area.

2. The code relocation count. This count indicates whether or not
the associated initial value is based on the address of the start
of the code area. If a nonzero count is indicated (=1, =2, or
=3), the static item must be relocated with respect to any change
to the program base address at either link or execution time. If
the count is reset C=O), there is no code relocation required. A
code direction flag has been added to indicate whether the code
relocation is to be applied as a positive C=O> or negative C=l)
factor.

3. Length of target address constant:

• 0 = three bytes
• 1 = four bytes

4. Direction of relocation (applies to both code and static
direction flags):

• 0 = positive
• 1 = negative

5. The do-not-relocate flag is used if the address is unresolved, if
the address referenced a code location, or if this is an R type
address constant.

• 0 = Relocate the address constant.
• 1 = Move the address constant to the specified location

but do not relocate with respect to the static area.

6. Initial value of the address constant. If the target is three
bytes long, only the last three bytes are moved to the target
area and the high-order bit is ignored. If the target is four
bytes long, the high-order bit is propagated through the seven
remaining bits of the high-order target byte.

7. The repetition factor may have a value from 2 through 32767.

8. The data to be repeated within the static area.

9. The length of the compressed data may have a value from 1 through
2048.

10. The compressed data is expanded before being moved to the static
area.

Controlled Release Draft A-25 October, 1985

The Module Block

The module block is a new block designed to support the SSL feature
and the subroutine library search by entry name feature of VS Operating
System Release 7 (See Figure A-15) . The block holds three tables. The
first table, the Entry Point Reference table, contains an ordered list of
entries, each being the information about an entry point in the program.
The second table, the Global External Name table, holds all the external
names referenced from a static section which are as yet unresolved in the
program and also have an alias assigned. The third table, the Global
Reference Index table, contains the locations where these static
references to the external names are made.

BYTES

I EPR TABLE SIZE (4 IF EMPTY) I 4.0
I.ANY # OF I ENTRY POINT NAME I

ENTRY I LEXICALLY I (ASCII) I 40.0
POINT I ORDERED 11• I 3 bits I 4 bits ** I

REFERENCE ENTRY PT I I Resrvd. I I 1.0
TABLE REFERENCE! RUN TIME OFFSET OF ENTRY

MODULE ENTRIES I POINT/PGM BASE ADDRESS 3.0
BLOCK GEN TABLE SIZE (4 IF EMPTY) 4.0

GLOBAL ANY # OF I EXTERNAL NAME (ASCII) 40.0
EXTERNAL LEXICALLY I ALIAS
NAME ORDERED I 40.0
TABLE GLBL EXTERN. I INITIAL GR! INDEX

NAME ENTRIES! 4.0
GR! TABLE SIZE (4 IF EMPTY) 4.0

GLOBAL ANY # OF I RUN TIME OFFSET OF
REFERNCE GLOBAL I EXTERNAL REFERENCE IN

NOTES

1

2

3

4
5
6

7

8
9

ITEMS REFERENCE! STATIC AREA 4.0 10
TABLE ITEMS I NEXT GRI INDEX

I COR END OF LIST)

* 1 bit -- initialization intercept
0 = indicates not an intercept;

4.0 11

1 = indicates entry point is an initialization intercept.

** Relative process level (default value = 0)

Figure A-15. The Module Block, Version 1

Controlled Release Draft A-26 October, 1985

~

Notes on Figure A-15:

1. Entry Point Reference table (EPR): When a program file is
utilized as an SSL, the EPR table is used by the operating system
to resolve references to this SSL from a user program. When an
SSL file is created, any subset of the program entry points may
be designated for inclusion in the EPR. A second use of the EPR
is to determine whether a program file contains an entry point
which will resolve an, as yet unresolved, external reference
during Linker processing. This is the Subroutine Library search
process. An EPR table entry consists of three fields: Entry
Point Name, Flags Byte and Entry point offsets. The entries are
lexically ordered according to the entry point names. If the EPR
table has no entries, the length of the EPR table is 4 bytes.

2. A 40-byte field that contains the entry point name in ASCII.

3. The second field is one byte long. The first half of the byte is
a set of flags. The most significant bit is an initialization
intercept flag. The remaining bits are unassigned and set to 0.
When set (=l), the initialization intercept flag indicates to the
operating system that at the time of mapping the SSL, the
operating system executes the code at the entry point to
initialize the SSL. The second half of the byte holds the
relative process level of the entry point for the use of the
operating system when creating the SSL.

4. The offset of the entry point relative to the program base
address. The field is 3 bytes long.

5. Global External Name table (GEN): The purpose of this table is
to enable the operating system to determine which shared
subroutines are referenced by a program. If the program does not
have any SSL references (unresolved locally within the program
and no alias assigned to the external reference name) , then the
GEN table will be empty. The table can hold any number of
entries. The entries are lexically ordered according to the
names in the entries. Each entry consists of three subfields:
External name, Alias and GRI Index.

6. External name referenced by the program. The name field is 40
bytes long.

7. The alias name that is used to determine the correct SSL to
resolve all references to the external name. The alias field has
a length of forty bytes.

8. The initial GRI index that is used to find the first member of
the GRI table for this external name. This field is 4 bytes
long. The value is an 'index' rather than an 'offset'.

Controlled Release Draft A-27 October, 1985

9. GRI table: The GRI table is designed to enable the operating
system to resolve all references to an external name after the
SSL associated with the name has been located and mapped. The ~
first item of the table is a 4-byte length field. When the table
is empty, the value in the length field is 4.

10. Global reference items CGRI). An item uniquely identifies the
position (runtime offset) in the static section where an external
reference is made. For every entry in the GEN table, there is at
least one GRI table entry. Since an external name can be
referenced more than once, there may be more than one GRI entry
associated with a GEN entry. The GEN entry points to the first
GRI entry which is the first of the linked list of other GRI
entries for the same name.

11 Next GRI index used for chaining the list. For every GEN entry,
there is a linked list of GRI entries.

A.3.2 The Symbolic Block, Version 1

The symbolic block is a pool of information used by the system's
debugging program. The block is partitioned into a length field and any
number of section-related blocks.

Controlled Release Draft A-28 October, 1985

~'

~

BYTES NOTES

LENGTH OF SYMBOLIC BLOCK
FULLWORD ALIGNED 4 l, 2

LENGTH IN BYTES OF
DATA IN THIS SECTION 4 3, 4
EXTERNAL NAME OF
CORRESPONDING CODE SECTION 8 5
OBJ TIME LENGTH OF
SECTION IN RUN BLOCK
DOUBLEWORD ALIGNED 4 6

SOURCE I FILE NAME 8 7
FILE I
LOCATION I LIBRARY NAME 8

I
I VOLUME NAME 6

SYMBOLIC LISTING I FILE NAME 8 8
SYMBOLIC SECTION FILE I
BLOCK AREA LOCATION I LIBRARY NAME 8

I
I VOLUME NAME 6

EXTERNAL I LENGTH OF POOL 4 9, 10
REFERENCE I ANY =It OF EXTERNAL
POOL I EXTERNAL NAME 8 11, 12

I NAME CODE SEC DIS-
I ENTRIES PLACEMENT 4 13

SYMBOLIC I SYMBOLIC SUBBLOCK TYPE 1 14, 15
SUBBLOCKI SUBBLOCK DATA LENGTH
AREA I IN SUBBLOCK 3 16

I SUB BLOCK 17
I INFORMATION variable

Figure A-16. The Symbolic Block, Version 1

Notes on Figure A-16:

1. The symbolic block contains all of the program's special
debugging information.

2. The length of the symbolic block is fullword aligned. If there
are no symbolic sections, the block is four bytes long.

3. The section area can contain any number of symbolic sections.
Every code section can have a symbolic section. If the code
section does have a symbolic section, the symbolic sections are
in the same order as the corresponding code sections.

Controlled Release Draft A-29 October, 1985

4. The length reflects the length of data in the area. If the
length is not di visible by four, up to three bytes of X' 00'
filler are added after the end of the section to make the ~
following section start on a word boundary. These slack bytes
are not counted in the length.

5. The external name of the corresponding code section.

6. Doubleword-aligned object time length of the corresponding
section block in the run block.

7. Location of the source file at compilation time.

8. Location of the listing file at compilation time (or blank).

9. The external reference pool lists all labels that are externally
referenced. Each label is listed only once, no matter how many
times it is used in the program. There is no order in the list,
but the position of an entry in the list represents the internal
number used to reference that label. This structure allows
modules to be added or dropped by the Linker program without
changing any locations in the symbolic section (other than adding
or dropping the whole section).

10. Length of the external reference pool (in bytes), including this
word.

11. External reference entry of which there may be any number.

12. External name in ASCII with trailing blanks.

13. Displacement within the code section to a 4-byte RCON.

14. The symbolic subblock area may contain any number of subblocks.
Each subblock is composed of only one type of debugging
information (i.e., statement number block).

15. The subblock types are language-independent codes and are
interpreted the same way for all languages.

16. The length of data in the subblock, which includes the first four
bytes of the subblock. If this length is not divisible by four,
up to three bytes of X' 00' filler are added at the end of the
subblock to make the following subblock start on a fullword
boundary. These filler bytes are not counted in the length.

17. Collected information about this section. These subblocks are
processed by a conunon language-independent program.

Controlled Release Draft A-30 October, 1985

~I

Statement Number Subblock

This subblock is generated by all high-level language translators,
and contains language-independent information identifying individual
statements in the program's section. One statement number subblock must
be present in each symbolic section.

BYTES NOTES

I 1 1 1
I I LENGTH OF DATA IN DATA FIELD 3 2
I STATEMENT I I I LINE NUMBER
I NUMBER IANY # I STATEMENT! 2 3, 4
I BLOCK IOF I ENTRY I CHARACTER
I I STATEMENT I I STRING 5 5
I !ENTRIES I I CODE SECTION
I I I I DISPLACEMENT 3 6

Figure A-17. Statement Number Block, Version 1

Notes on Figure A-17:

1. 1 = Statement number type subblock.

2. The length of data in the subblock including this word. If this
length is not di visible by four, up to three bytes of X' 00'
filler are added to the end of the subblock to make the following
subblock start on a fullword boundary.

3. Any number of statement entries may follow. Each entry
represents one statement in the source program. The definition
of statement is language-dependent, but is consistent within any
one language (i.e., in COBOL there is one entry per verb in the
COBOL source) . The entries are in order of increasing
displacements.

4. The line number in binary (no negative values) or zero to
indicate the inline nonsymbolic code. The exact definition of
this entry is language-dependent, but normally indicates the
statement line number.

5. The character string (in ASCII with trailing blanks) performs
paragraph header linkage. The use of this field is
language-dependent, but can be used either for the statement
label or the command starting at the specified displacement. (In
COBOL this is used for an abbreviation of the COBOL verb.)

6. The runtime displacement into the section of the start of the
statement.

Controlled Release Draft A-31 October, 1985

Data Name Subblock

The data name subblock is generated by all high-level language ~.
translators to support symbolic access to data i terns at runtime through
command language facilities. One dataname subblock must be present in
each symbolic section.

BYTES NOTES

I 2 = DATA NAME SUBBLOCK ·------------1 1 1 I _L_E_N_G_T_H_O_F_D-AT_A_I_N_D_A_T_A_F_I-ELD ----- ----- . , 3 2
I I NUMBER OF INDEX.ITEMS -, 4 I DATA I ANY # I --·----·--·- ---- I 3,4

I NAME I OF POS. I INDEX ITEM I
I INDEX I INDEX I I
I I ITEMS I I 4 5
,---....-----.--L-EN_G_T_H_OF-EN-TRY -1 I 1 6,7

DATA I I INDEX OF EXTERNAL SECTION _____ I 1 8
NAME I DATA I PATH TYPE OF DATA ITEM 1 9
BLOCK! PATH I DISPLACEMENT TO THE DATA ITEM 3 10

I DATA IVARI-1 REFERENCE INDICATOR .1 11
I NAME DATA I ABLE I ARRAY FLAG INo_I_C-AT_O __ R __ _ .1 12
I ANY # ENTRY DES- ITYPE I FORMAT INDICATOR ----·- .6 13 ----- ·- ---·--
IOF DATA CRIP !SCALE 1 14
I NAME TION I DATA _!TE~LE~GTH_ _____ ·- ·---·
!ENTRIES DATA NAME LENGTH - 1

1 15
1 I ---- - ---------- ---·-

I ~_'!'-~NAM~_(~Ee_!l_ingL ____ . . _ variable 16

I OPTIONAL ADDITIONAL INFORMATION
____ L __ _ ______ (S_E_E_FI_G_URE A-:.~-~l ______ ·-· ______ _

Figure A-18. Data Name Subblock, Version 1

Notes on Figure A-18:

1. 2 = Data name type subblock.

2. Length of data in subblock (including this word). If this length
is not divisible by four, up to three bytes of X'OO' filler are
added at the end of the subblock to make the next section start
on a fullword boundary.

3. This index contains compiler-dependent information used to
efficiently search the subblock for a given symbol.

4. Number of index items.

Controlled Release Draft A-32 October, 1985

~

5. Index item = displacement within symbolic section to first
dataname entry with the compiler-dependent indexed attribute.

6. 'Any number of data name entries. These can be in any order. It
is expected that any one compiler orders these such that when the
compiler is identified they can be efficiently searched.

7. Length of entry minus one.

8. Index of the external section that the displacement references.
This is the ntunber of the entry in the external reference pool in
the symbolic section.

9. Type of path to the data item:

• 0 = Displacement locates the data constant in the
corresponding code section.

• 1 = Displacement locates the data item in the referenced
external section.

• 2 = Displacement locates a 4-byte ACON in the referenced
external section which should be used as a base address.
The displacement from this address is found in the off set
field.

• 3 =Displacement equals value (right-justified).

• 4 = Inunediate halfword integer value in two low-order
bytes of runtime displacement field. These symbols are
procedure or function names and the value indicates the
line number in the listing where the procedure or
function starts. Additional information follows the
spelling fields (see below).

• 5 = Automatic/dynamic variable.

• 6 = CLE standard parameter.

• 7 = PL/1-based variable.

• 8 = Inunediate parameter C'C')

• 9 = Register variable runtime displacement field
contains the register number.

• 10 = C-based variable (using '*' prefixes)

10. Displacement from the indexed external section to the data i tern
(for type 2 path, this is the displacement to the address
constant).

Controlled Release Draft A-33 October, 1985

11. Indicator -- Referenced item (whether referenced using subscripts
or not) is an elementary data item if equal to 1.

12. Indicator -- Subscripts required if equal to 1.

13. Format indicator:

• 0 = Mixed (applies to nonelementary items only and
implies that the scale is to be used as the high-order
byte of the variable-length fields).

• 1 = Character (this implies that the scale is to be used
as part of the variable length).

• 2 = Binary.

• 3 = Packed decimal.

• 4 = Bit string (value always interpreted as full bytes)

• 5 = Floating-point.

• 6 = Display field attribute character.

• 8 = Zoned nwnber with no high- or low-order sign zones
but may contain either a leading or trailing sign
character and one decimal point character.

• 9 = Binary COBOL halfword index value. (Length per
occurrence number is in data i tern length; length is
stored in 2 bytes: scale and data item length. Length
stored is the length per occurrence number.)

• 10 = Zoned numeric with high-order sign zone.

• 11 = Zoned numeric with low-order sign zone .

• 12 = Zoned numeric with leading sign character.

• 13 = Zoned numeric with trailing sign character .

• 14 = Unsigned zone numeric .

• 15 = BASIC array.

• 16 = COBOL group item.

• 17 = BASIC string scalar.

Controlled Release Draft A-34 October, 1985

• 18 = Binary COBOL . fullword index value. (Length per
occurrence number is in data i tern length. Length is
stored in two bytes: scale and data item length. Length
stored is the length per occurrence number.)

• 19 = Logical (FORTRAN).

• 20 = Complex (FORTRAN).

• 21 = Floating decimal

• 22 = Pointer

• 23 = Unsigned binary integer

14. Scale -- A signed binary number that indicates how far left of
the rightmost digit the decimal point is to be relocated.
Relocation is to the right for negative numbers. (For character
type 1 fields, this byte is considered part of the item length.)

15. Data item length -- Specifies the length of the data time. If
the data is character type, both this and the preceding byte are
used for the length.

16. Data name -- If the data name must be qualified, all necessary
levels of the name are listed with highest level first and the
levels of qualifications separated by a point (.). If the name
is qualified but is unique in the program, only the lowest level
of the name should be listed.

Controlled Release Draft A-35 October, 1985

Qption Additional Information for:

Path type = 2:

I ADDITIONAL INFO

Path type - 4:

ADDITIONAL
INFORMATION

Path type = 6:

I ADDITIONAL INFO

OPTIONAL OFFSET

END
LEVEL
SON
BROTHER

OFFSET

All other path cases when array flag indicator is on:

I OPTIONAL OFFSET
I I NUMBER OF SUBSCRIPTS REQUIRED

ADDITIONAL I ARRAY I NUMBER OF DIMENSION DESCRIPTIONS
INFORMATION IDESCRI DIMENI HIGH BOUND OF SUBSCRIPT

I IPTORI SION I
I I DESCRI LENGTH OF SUBSCRIPT ITEM

Figure A-19. Optional Information, Version 1

Notes on Figure A-19:

1. Optional offset.

BYTES

2

2
1
3
3

2

2
1
1
2

2

NOTES

1

2
3
4
5

1

1
6
7
8

2. The integer value that indicates the line number of last
statement in procedure or function.

3. The binary value that indicates the nesting level of this
procedure Cl=outermost)

4. Indicates offset from start of symbolic section to dataname entry
for first procedure internal to this procedure; 0, if none.

5. Indicates offset from start of symbolic section to dataname entry
for next procedure at the same level as this; 0, if none.

6. Number of subscripts required.
description for each subscript.

Controlled Release Draft A-36

There is one dimension

October, 1985

~

7. Indicates number of dimension descriptions.

8. Dimension description -- There is one entry for each subscript
indicated in the maximum subscript value (entry for leftmost
subscript first). The first element of each dimension of the
array is assumed to be 1 (For the C programming language, assumed
to be zero).

A.3.3 The Linkage Block, Version 1

The linkage block is a pool of information required for the Linker
program to add or delete sections of the program. It is partitioned into
a length field followed by any number of blocks of section information.

Controlled Release Draft A-37 October, 1985

BYTES NOTES

LENGTH OF LINKAGE BLOCK (FULLWORD ALIGNED) 4.0 1,2
LINKAGE SECTION BLOCK LENGTH (LESS PAD) 4.0 3,4,5

ALL
LINKAGE
SECTIONS

LINKAGE ARE IN
BLOCK THE SAME

ORDER AS
THE COR
RESPOND
ING CODE
STATIC
SECTIONS
IN THE
RUN
BLOCK

LINKAGE
SECTION
BLOCK
(PADDED
TO FULL
WORD)

CODE/STATIC SECTION NAME (ASCII)
SECTION TYPE

OBJECT TIME LENGTH
IN RUN BLOCK
COMPILA-1 COMPILER NAME
TION IN-I COMPILER VERSION (**)
FORMA - I COMPILATION TIME (*)
TION I COMPILATION DATE (*)

SYMBOLIC SECTION FULLWORD /RUN
TIME STATIC SECTION
LENGTH

ENTRYI LENGTH OF ENTRY POINT LIST
POINTIANY # I ENTRY POINT NAME
LIST IOF ENTRYI (ASCII)

I POINT , -R-UN---TI_ME_O_F_F_S-ET_O_F
IITEMS IENTRY PT IN SECTION
I LENGTH OF RELOCATION

RELOC-1 REFERENCE BLOCK
ATION I I LENGTH OF EXTERNAL
REFER-I EXTER-1 NAMES BLOCK
ENCE I NAL I ANY # I
BLOCK I NAMES I OF EX- I EXTERNAL

I BLOCK I TERNAL I NAME

40.0 6
1.0 7

3.0 8
12.0 9
4.0 10
4.0 11
4.0 12

4.0 13

4.0 14, 15

40.0 16, 17

4.0 18

4.0 19

4.0 20, 21

I I NAMES I 40.0 22, 23

* Packed decimal
** Unsigned packed

I RELOC-1 ANY # I
I ATION I OF RE- !RELOCATION
I ITEM I LOCATION I ITEM
I LIST I ITEMS I

Figure A-20. The Linkage Block, Version 1

Notes on Figure A-20:

1. The fullword aligned length of the linkage block.

5.0 24

2. The code section block area is composed of one section block for
each code section in the program. The blocks are in the order in
which the code sections appear in the code block of the run block.

Controlled Release Draft A-38 October, 1985

~

~

3. The static section block area is composed of exactly one section
block for each static section. The blocks are in the order in
which the static sections appear in the static block.

4. The code and static section blocks in the linkage area have
sufficient information so sections can be added or deleted from a
program, and so all addresses can be correctly resolved after
this operation is complete. With minor exceptions, both the
code and the static blocks have the same basic skeleton. One
skeleton is presented, and the differences are noted in the
skeleton.

5. The length of data in the section block in bytes reflects the
length of data in the area. If the length is not divisible by
four, up to three bytes of X'OO' filler are added after the end
of the block to make the following block start on a word
boundary. These filler bytes are not counted in the length.

6. The external name of the section in ASCII with trailing blanks.

7. The type of block:

• 0 = Code
• 1 = Static

8. The object-time length of the corresponding section block in the
run block. Doubleword aligned.

9. Compiler name or designation in ASCII with trailing blanks.

10. Version and modification level of the compiler in packed decimal.

11. A 4-byte field which holds the time of compilation in packed
decimal format.

12. Date of compilation of this section in packed decimal CYYDDD).

13. For a code section block, this is the length of the corresponding
symbolic section (or 0 if there is no corresponding symbolic
section), fullword-aligned.

For a static section block, this is the runtime length of the
program static area, doubleword-aligned.

14. The entry point list is a list of all names in this section that
are known outside of the section. This list may have any number
of entries.

15. The length of the entry point list including this word.

Controlled Release Draft A-39 October, 1985

16. The list may contain any number of names and address pairs. They
may be in any order, but must not be repeated.

17. The entry point name in ASCII with trailing blanks.

18. The runtime displacement into the section for this entry point.

19. The relocation reference block lists all locations within the
section that need to have addresses changed if the relative
location of the section within the program is changed or if the
location of specified external labels changes.

20. External names block This block contains a list of all
external names referenced by this section. An external reference
is an address constant that references a label that is not part
of the current section. The label must be the name of a section
or an entry type symbol in a section.

21. Length of the external names block including this word.

22. List of external reference names. These names can be in any
order, but they are referenced by their position in the list.
The first name is number one.

23. External name in ASCII with trailing blanks.

24. List of relocation i terns. This list is in order of increasing
displacement. There can be any number of entries in this list.

The Relocation Reference Block

All address constants in the section that would be relocated if
either the starting location of the section or the location of an
external name was changed, are listed in the relocation reference block.
The block is composed of two main parts: a list of external names and a
list of addresses in the section to be relocated.

Controlled Release Draft A-40 October, 1985

RELOCA
TION
ITEM

RESERVED; MUST BE ZERO
RCON IF =1
ADDRESS IS RELOCATION RCD

FLAG LENGTH OF ADDRESS CONSTANT
BYTE DIRECTION OF RELOCATION

UNRESOLVED FLAG
RESERVED; MUST BE ZERO

OBJECT TIME DISPLACEMENT INTO THE
SECTION OF THE TARGET ADDRESS
CONSTANT OR RELOCATION RECORD.

NUMBER OF EXTERNAL NAME REFERENCED

Figure A-21. Relocation Reference Block

Notes on Figure A-21:

2 bits
1 bit
1 bit
1 bit
1 bit
1 bit
1 bit

3 bytes

1 byte

NOTES

1
2
3
4
5

6

7

1. If the reference is an RCON, the referenced name must be in a
static section. If the address constant is in a static section,
the relocation record has the do-not-relocate bit set.

2. Address is a relocation record (8 bytes) . If this is set, the
following bit of length of target is ignored. All items in a
static section except origin records, and none in a code section,
have this bit set.

3. If the target is within a code section, this bit indicates the
length of the target address constant:

0 = three bytes
1 = four bytes

If the target is a relocation record, this bit is ignored.

4. Direction of relocation:

• 0 = Positive (add the address of the start of the section
to the specified location)

• 1 = Negative (subtract from the location)

5. Unresolved flag. If set, the address is resolved relative to an
address of X'FOOOOO'.

6. Object time displacement into the section of the target address
constant or relocation record.

Controlled Release Draft A-41 October, 1985

7. Order number of referenced external name. This number is either
0 (if the item is to be relocated relative to the start of this
section) or is the number of the external name in the external
names block (the first name in the list is 1).

A.4 TRANSLATOR PROCESSING

The object program is produced by a language translator. At this
time, all address constants are resolved, or marked as unresolved. The
program can then optionally be processed by the Linker program. The
Linker adds, rearranges or deletes sections in the program. After either
a language translator has produced an object program or a Linker program
has processed it, the program can be invoked by the operating system.

The language translator creates a complete object program that can be
run by the operating system if no sections are unresolved at translation
time. This program must have linkage information for the Linker program
to resolve addresses after adding or deleting sections. The translator
also generates the symbolic section of information for debugging.

• The run block -- Contains all of the information required to run
the program. The operating system uses this part of the file for
the code section of the running program. This area contains the
code sections and the initial value records used to initialize
the static areas when the program is started.

• The symbolic block -- Contains information to aid in runtime
debugging of the program. This area is used by the debugging
facilities in the Help processor.

• The linkage block -- Contains information used by the Linker
program. After adding or deleting sections, the Linker program
relocates the address constants in the program using this
information.

A.5 LINKER PROCESSING

A program file may be viewed as an ordered collection of named
program sections. When the Linker operates on program files, it merely
rectifies all address references of all input program sections and
combines them into a new program file. Exceptions are that only one
section of any unique section name may appear in the output file. The
selection rule may be by input order or other selection criteria,
depending upon the section types involved. Replacement is usually
accomplished by preceding the program input with those sections that the
user wants to replace. Explicit deletion of a section is also provided.

The order of the output sections is (1) all included code sections in
the order in which they were input, followed by (2) all static (including
named and blank common) sections in the order in which they were input.
The order is reflected in each of the three resultant program blocks
(run, symbolic, and linkage).

Controlled Release Draft A-42 October, 1985

When the Linker program processes an object program, it performs the
following operations to the basic parts of the object program:

• The run block -- Locations within the sections are not inspected
or changed other than relocatable address constants having their
values adjusted by the Linker. In some circumstances, the Linker
may have to change a flag in one of the relocation records. When
a section is replaced from a program, all relocation records that
reference external symbols no longer present in that section must
be adjusted. If a section is added, all references to it must be
adjusted.

• The linkage block -- When a code or static section is added or
replaced, the Linker adds or replaces the corresponding linkage
section. It also adjusts the object time and runtime starting
address of the sections that follow. When adding a section, all
references to it are marked as resolved and relocated. If a
section is deleted, all references are marked as unresolved and
are relocated relative to hexadecimal FOOOOO.

• The symbolic block -- If a section is added or replaced the
Linker adds or replaces the corresponding symbolic section. It
does not inspect or change any of the records within a section
for any reason. The user has the option to exclude all symbolic
sections.

A.6 RUN PRcx:!ESSING

A program is invoked by the conunand processor or by another program
using the LINK facility of the operating system. First, the run portion
of the program is made addressable as the code section. The first
location is location 1,048,576 (hexadecimal 100000). The system then
doubleword-aligns the stack, determines the runtime length of the static
area, and pushes this much space onto the stack. The start of this area
is passed to the program in register 14. The initial value records are
then processed. When an origin record is encountered, the origin
displacement is added to the value in register 14 and this is used as the
starting location of the section. When either text or relocation records
are read, their displacement is added to this value and moved to the
location calculated. If a relocation record has the relocate flag on,
the value in register 14 is to be added to the initial value in the
record.

Controlled Release Draft A-43 October, 1985

:.'

~.
~! ')

APPENDIX B
GLOSSARY

Address constant
A value, or an expression that represents a value, used in the
calculation of storage addresses.

Address translation
Translation of a virtual address to its corresponding physical
address.

Alias
A name of up to 40 characters that is assigned to each shared
subroutine library. The system administrator does the assignment.

Alignment
The storing of data in relation to certain machine-dependent
boundaries.

Alphanumeric
Pertaining to a character set that contains letters, digits, and
usually other characters, such as punctuation marks.

American National Standards Institute (ANSI)
An organization created to establish voluntary industry standards.

Assistance ID (AID)
A special control character generated by a system communication key
(HELP, PF key, or ENTER), which identifies the key used to initiate a
program interrupt.

Background processing
A time-independent, noninteractive processing environment that
consists of one or more programs and procedures run by a controlling
procedure.

Block
A nwnber of physical records, each 2048 (2k) bytes in length, which
make up a disk volume.

Buff er
A memory area that temporarily holds blocks of data retrieved from
disk.

Controlled Release Draft B-1 October, 1985

Call
The action of bringing a computer program, a routine, or a subroutine
into effect, usually be specifying the entry conditions and jumping
to an entry point.

Child task
A task that has been created by another task through the TINVOKE
system service. The child task must be completed before the parent
task can be terminated.

Clock
A device that measures and indicates time. A register value that
changes at regular intervals in such a way as to measure time.

Clock comparator
A hardware feature that causes an interruption when the time-of-day
clock has equaled or exceeded the value specified by a program or
virtual machine.

Contiguous
Touching or joining at the edge or boundary; adjacent. For example,
an unbroken consecutive series of storage locations.

Control blocks
A series of tables used by the operating system for data storage.

Control section CCSECT)
That part of a program specified by
relocatable unit, all elements of which
adjoining main storage locations.

Currency symbol

the
are

programmer to
to be loaded

be a
into

A graphic character used to designate monetary quantities, for
example $.

Cylinder
In a disk pack, the set of all tracks with the same nominal distance
from the axis about which the disk pack rotates. The tracks of a
disk storage device that can be accessed without repositioning the
access mechanism.

Data Management System CDMS)
The VS file management system that allows developers to create, read,
update and copy data files on a variety of storage media.

Deadlock
Unresolved contention for the use of a resource. An error condition
in which processing cannot continue because each of two elements of
the process is waiting for an action by or a response from the other.

Controlled Release Draft B-2 October, 1985

Default
An alternative value, attribute, or option that is asswned when none
has been specified.

Delimiter
A flag that separates and organizes items of data.
punctuation symbol or separator. A character
separates words or values in a line of input.

Diagnostic

Synonymous with
that groups or

Pertaining to the detection and isolation of a malfunction or mistake.

Diagnostic program
A computer program that recognizes, locates and explains either a
fault in equipment or a mistake in a computer program.

Direct address
An address that designates the storage location of an item of data to
be treated as an operand. Synonymous with one-level address.

Dual density
A feature that allows a program to use a tape unit in either 800- or
1600-byte-per-inch recording.

Dummy control section (DSECT)
A control section that an assembler can use to format an area of
storage without producing any object code.

Dwnp
To write the contents of storage, or of part of storage, usually from
an internal storage to an external medium, for a specific purpose
(such as to allow other use of the storage as a safeguard against
faults or errors, or in connection with debugging).

Dynamic allocation
Assignment of system resources to a program at the time the program
is executed rather than at the time it is loaded into main storage.
An allocation technique in which the resources assigned for the
execution of computer programs are determined by criteria applied at
the moment of need.

Event
An occurrence of significance to a task; typically, the completion of
synchronous operation, such as an input/output operation.

Exception
An abnormal condition such as an I/O error encountered in processing
a data set or a file.

Controlled Release Draft B-3 October, 1985

Executable program
A program that has been link-edited and can therefore be run in a
processor.

Expression
In assembler programming, one or more operations represented by a
combination of terms and paired parentheses. A notation, within a
program, that represents a value: a constant or a reference
appearing alone, or combinations of constants and references with
operators.

File
A set of related records treated as a unit.

File access mode
A mode that determines whether the file can be used as read-only or
read/write.

File attribute
Any of the attributes that describe the characteristics of a file.

File descriptor record (FDR)
A file system data structure located within the VTOC that describes
the attributes of a file. There is at least one FDR (format 1) for
each file on a volulme.

Foreground job
A hih~h-pdr_ior1ity _jobb, husuhally a . redalf-:-t~me job.. An. intdera~tive . or ~,
grap ic isp ay JO t at as an in e inite running time uring which
communication is established with one or more users at local or
remote terminals.

General register
A register used for operations such as binary addition, subtraction,
multiplication and division. General registers are used primarily to
compute and modify addresses in a program.

Global
Pertaining to that which is defined in one subdivision of a computer
program, and used in at least one other subdivision of that computer
program.

Halfword
A contiguous sequence of bits or characters that comprise half a
computer word and can be addressed as a unit.

Halfword boundary
Any storage position address which, in decimal form, is evenly
divisible by 2.

Controlled Release Draft B-4 October, 1985

lnunediate instruction
An instruction that contains within itself an operand for the
operation specified, rather than an address of the operand.

Indirect address
An address that designates the storage location of an item of data to
be treated as the address of an operand, but not necessarily as its
direct address.

Intertask message system (!TM)
A group of supervisor calls that enable one task to dynamically
exchange data with another task.

Invoke
To activate a program or procedure at one of its entry points.

I/O status word (IOSW)
A system control word located in memory location X'OO' which reflects
the result of an I/O operation. From one to eight bytes of
information may be stored, depending upon the device type.

I/O processor CIOP)
The processor that controls the transfer of data between devices and
main memory.

JSCI instruction
An assembly language instruction, jump to subroutine on condition
indirect. A specified condition must be met before this instruction
is executed.

JSI instruction
An assembly language instruction, jump to subroutine on any
condition. This instruction is similar to the JSCI instruction,
except that the jump to the subroutine is always made.

Link level
The environment associated with an invocation of the LINK system
service.

Macroinstruction
A user-defined assembler instruction that expands into one or more
machine instructions.

Modifiable data area
The area that each user is assigned to store variable data and
dynamically initialized variables. This area is divided into the
program stack and an I/O buffer area. The default modifiable data
area size is set with the GENEDIT utility, but can be overridden with
the SECURITY utility.

Controlled Release Draft B-5 October, 1985

Module
A program unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading; for example, the ~
input to, or output from, an assembler, compiler, linkage editor, or
executive routine.

Object code
Output from a compiler or assembler which is itself executable
machine code or which can be processed to produce executable machine
code.

Object module
The machine language code that results from a program compilation.

Op code
The mnemonic representation of an assembler language instruction.

Parent task
A task which invokes a subtask through issuing the TINVOKE system
service.

Port
An access point for data entry or exit. That part of a processor
that is dedicated to a single data channel for the purpose of
receiving data from or transferring data to one or more external or
remote devices.

Process
A unique, finite course of events defined by its purpose or by its
effect, achieved under given conditions. An executing function, or a
function that is waiting to be executed.

Process level
A PCW field which determines the level of privilege for executing
code. The process level determines the access rights to certain
areas of the virtual address space.

Program
A set of actions or instructions that a machine can interpret and
execute.

Ready list
A chain of elements that represents the work to be performed.

Ready state
A state in which a task is ready to be activated and is contending
for processor execution time.

Controlled Release Draft B-6 October, 1985

Recursive routine
A routine that may be used as a routine of itself, calling itself
directly or being called by another routine. The use of a recursive
routine usually requires that records are kept for example, in a
pushdown list) on the status of its unfinished uses.

Reentrant
The attribute of a program or routine that allows the same copy of
the program or routine to be used concurrently by two or more tasks.

Region
A contiguous portion of a task's virtual address space that begins on
a page boundary and contains a variable number of pages. Although
the number of regions can vary, a system's virtual address space is
broken up into a maximum of 64 regions.

Relocatable
The attribute of a set of code whose address constants can be
modified to compensate for a change in origin.

Return code
A code used to influence the execution of succeeding instructions.

Ring memory protection
A VS operating mechanism that controls access to memory and
privileged instructions by a series of process levels or rings.

Scheduler
The part of the operating system that determines the order in which
runnable tasks will be given control of the processor.

Security logging facility
A facility that allows the VS system to record security-related
system events in a log file. These events can be captured in a
report by using the LOGPRINT utility.

Semaphore
A variable stored in memory that is used to synchronize parallel
processes. When a process is said to be waiting on a semaphore, it
means that the process is waiting for another process to complete
some activity.

Shared subroutine library
A single VS file that contains subroutines which are selectively
accessed at runtime as opposed to linktime.

Stack
An area in memory that stores data i terns in consecutive locations.
The stack is used to hold temporary i terns in a program and to hold
linkage information.

Controlled Release Draft B-7 October, 1985

Subroutine

SVC

A sequenced set of statements that may be used in one or more
computer programs and at one or more points in a computer program.

A VS instruction that interrupts the program being executed and
passes control to the operating system which performs the service
indicated by the instruction.

System service
Operating system code that provides a function for applications
programs.

Task
An environment (which may or may not be associated with a workstation
or user logon id) under which a program runs and for which resources
are allocated.

User address space
The access that a user has to physical and virtual storage.

Virtual address space
In virtual storage systems, the virtual storage assigned to a system
task or a task initiated by a command.

Virtual region
A subdivision of the dynamic area that is allocated (in segment-size
blocks) to a job step or a system task. r-".

Virtual storage
The ability of the VS to address a storage space much larger than
that available in physical memory.

Volume
A portion of a single unit of storage that is accessible to a single
read/write mechanism, for example a disk pack or a floppy disk.

Volume table of contents CVTOC)
A table stored on a direct access volume that describes each data set
in the volume.

Controlled Release Draft B-8 October, 1985

~
~·)

. ~-

NOTES

!

~:

t)
. " --

! .

WANG

ONE INDUSTRIAL AVENUE
LOWELL. MASSACHUSETTS 01851
TEL. (617) 459-5000
TWX 710-343-6769. TELEX 94-7421

.Printed in U.S.A.
715-0423

10-86

