
Applications
Programmer’s

Tool Kit II
Volume I

Applications
Programmer’s

Tool Kit II
Volume I

COPYRIGHT

©1984 by VICTOR®.
©1983 by Microsoft Corporation.
©1983 by Computer Control Systems, Inc.

Published by arrangement with Microsoft Corporation and Computer Control
Systems, Inc., whose software has been customized for use on various desktop
microcomputers produced by VICTOR. Portions of the text hereof have been
modified accordingly.

All rights reserved. This manual contains proprietary information which is pro
tected by copyright. No part of this manual may be reproduced, transcribed,
stored in a retrieval system, translated into any language or computer language,
or transmitted in any form whatsoever without the prior written consent of the
publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS- is a registered trademark of Microsoft Corporation.
CP/M-86 is a registered trademark of Digital Research, Inc.
FABS/86 and AUTOSORT are trademarks of

Computer Control Systems, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatsoever with
respect to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. VICTOR shall not be liable
for errors contained herein or for incidental or consequential damages in connec
tion with the furnishing, performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time and to
make changes in the content hereof without obligation to notify any person of
such revision or changes.

Second VICTOR printing April, 1984.

ISBN 0-88182-115-2 Printed in U.S.A.

II APPLICATIONS PROGRAMMER’S TOOL KIT II—VOLUME I

Errata Sheet for the
Applications Programmer’s Tool Kit II

This page contains corrections and additions to the Applications Pro
grammer's Tool Kit II manual.

All PLINK and PLIB files have been updated.

Keyboard files have been added and existing files have been updated.

FABS and AUTOSORT have been removed. Any references to these
programs in the manual should be ignored.

Building an operating system with SYSELECT produces a VICTOR
MS-DOS 2.11, BIOS 2.93 operating system. This operating system
will provide all the functions contained in earlier versions of MS-DOS
2.11 plus these enhancements:

► You can now reboot your computer from the keyboard. To do so,
press and hold down the Alt key, the Caps Lock key, and the
Decimal key on the numeric keypad. You can press these three
keys in any order, but if you release one of the keys or press any
other key before the three-key sequence is complete, the reboot
command is canceled.

► A reboot interrupt has been added at interrupt 69h. You can
reboot the computer from within an application by issuing an inter
rupt 69h. No parameters are required for this interrupt.

► A hot key interrupt has been added at interrupt 68h. When the
keyboard scan codes are available from the hardware they are
passed in AX to interrupt 68h; interrupt 68h is called before any
processing of the scan code occurs. An application that is monitor
ing this interrupt can do one of the following:

— Return without changing any of the registers.

—Tell the BIOS to ignore the current key by returning zero in AX.

—Map the current key to another key by returning a different scan
code in AX.

CONTENTS

1. FABS/86M

2. AUTOSORT/86M

3. EFONT

4. KEYGEN

5. SYSGEN

6. MODCON

CONTENTS III

OVERVIEW

The Applications Programmer's Tool Kit II—Volume I is conceptually
divided into two Sections: Data Base Support, and System Config
uration.

Data Base Support consists of:

► Fabs/86M A Fast Access B-tree System used to organ
ize data for minimum retrieval time;
designed to be called from high-level
languages.

► AUTOSORT/86M A comprehensive sort utility that can be
used stand-alone or called from application
programs.

System Configuration consists of:

► EFONT A font editor used to define or modify the
characteristics of individual keys on the
keyboard.

► KEYGEN A keyboard generator used to define the
characteristics of individual keys on the
keyboard.

► SYSGEN A system generation program that lets you
generate a custom MS-DOS operating sys
tem.

MODCON A console modification utility
that allows you to set and save
keyboard tables and character
sets.

OVERVIEW IV

FABS/86M

COPYRIGHT

® 1983 by VICTOR®.
® 1982 by Computer Control Systems, Inc.

Published by arrangement with Computer Control Systems, Inc., whose
software has been customized for use on various desktop microcomput
ers produced by VICTOR. Portions of the text hereof have been
modified accordingly.

All rights reserved. This manual contains proprietary information which
is protected by copyright. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the
prior written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
FABS/86M is a trademark of Computer Control Systems, Inc.
CP/M-86 is a registered trademark of Digital Research, Inc.
MS- is a trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing January, 1983.
Second VICTOR printing November, 1983.
ISBN 0-88182-107-1 Printed in U.S.A.

II FABS/86

CONTENTS

1. An Overview of FABS/86
1.1 General Information.. 1-1
1.2 Data Storage and Retrieval... 1-1

1.2.1 The FABS/86 Difference..1-3
1.2.2 Using FABS/86 to Retrieve a Record...................... 1-4
1.2.3 Keys...1-5

2. FABS/86 Commands
2.1 Search-Next-After... 2-2
2.2 Build... 2-3
2.3 Close...2-4
2.4 Create..2-4
2.5 Delete..2-5
2.6 Get Maximum Key Length... 2-6
2.7 Get Next Record Number... 2-7
2.8 Get Number of Deletes...2-8
2.9 Get Number of Primary Keys.................. 2-8
2.10 Get Number of Records.. 2-9
2.11 Insert...2-10
2.12 Open...2-11
2.13 Replace...2-11
2.14 Search...2-12
2.15 Search First..2-13
2.16 Search Generic...2-14
2.17 Search Last.. 2-15
2.18 Search Next... 2-16
2.19 Search Previous...2-17
2.20 Write Page Map...2-17
2.21 Obsolete Node Buffers..2-18

CONTENTS lit

3. Using FABS/86 with Programming Languages
3.1 Interfacing the MS-BASIC Interpreter toFABS/86..........3-1

3.1.1 Loading the FABS86M.COM Module..................... 3-1
3.1.2 Linking FABS/86 to Compiled Languages..............3-2
3.1.3 Calling FABS/86 from MS-BASIC...........................3-2
3.1.4 Test Programs.. 3-3

3.2 FABS/86 and the MS-BASIC Compiler...............................3-5
3.2.1 Calling FABS/86 from the MS-BASIC Compiler.. 3-5
3.2.2 Test Programs for the MS-BASIC Compiler..........3-6

3.3 Using FABS/86 with MS-Pascal..3-8
3.4 FABS/86 and MS-FORTRAN.. 3-9
3.5 FABS/86 and MS-COBOL...3-10

4. FABS/86 Error and Warning Codes........ < 4-1

Appendix A: FABS/86 PUBLIC Interfaces and Absolute
Offset Entry Points.... -....................... -A-l

TABLES
1-1: Maximum Keys... 1-7
4-1: FABS/86 Error and Warning Codes.............. 4-1
A-1: FABS/86 PUBLIC Entry and Access..A-1
A-2: FABS/86 Absolute Offsets... A-5

IV FABS/86

CHAPTERS

1. An Overview of FABS/86

2. FABS/86 Commands

3. Using FABS/86 with Programming Languages

4. FABS/86 Error and Warning Codes

2

3

4

Appendix A: FABS/86 PUBLIC Interfaces and Absolute...
Offset Entry Points

CHAPTERS V

AN OVERVIEW OF FABS/86

GENERAL INFORMATION 1.1

When you compile data with a computer, a major problem is how to
retrieve it. How can you locate the information you want in the least
amount of time using the simplest search procedure? The FABS/86
(Fast Access Btree Structure) program can help you solve this problem.

FABS/86 is an assembly language program module that uses key files
for fast data retrieval with large data files. FABS/86 assigns input data to
key files, and arranges those files in balanced trees (Btrees) to speed data
retrieval. When you need to access a record in your data file, FABS/86
searches down the tree to locate that record. If necessary, FABS/86 rear
ranges the key files on that tree for easier access to your data base.

You should have at least a basic knowledge of programming in a high-
level language (such as Pascal or BASIC) before you start using
FABS/86. You should also have a rudimentary knowledge of how files
are maintained in a computer system. If you are a beginning program
mer, you should find FABS/86 easy to understand once you have
mastered the data file concepts in your programming language.

Note: FABS/86M may be incorporated into any application program
distributed on and for the VICTOR/SIRIUS machine without payment
of royalty.

DATA STORAGE AND RETRIEVAL 1.2
Whether you are using a computer or a file cabinet, the first step in the
process of storing data is about the same. You give each piece of data a
key name (an account number, subject, and so on) that distinguishes it
from other pieces of data in the same filing system. The difference

AN O J ER MEW OF FABS/86 1-1

n

between computers and file cabinets starts when you actually put the
new piece of data into the system. With a file cabinet, you shift all of the
other records in the cabinet to make room for the new data. When you’re
storing data on a diskette or hard disk, however, it takes too long for the
computer to move all the other records. This problem is generally over
come with one of the following techniques:

1. The new data is kept separate from the existing records until the
insertion process is complete. After you’ve entered all of the new
data, it is sorted into the existing data file.

2. An additional file (a key file) is created. This key file contains a field
(key) into which the data is sequenced. It also contains an associated
record pointer (the record number) of the data record that contains
the key. Using this system, only the smaller key file has to be
shuffled around each time you enter new data. Any data you enter
is easily retrievable: Once the key is found, the data record pointer is
used to access the data you want.

Both of these techniques have their problems, however. If you’re using
the first method, for example, your data is normally retrieved by using
a “binary search.” A binary search divides the data file in half, and
determines whether the desired field (key) is in the upper or lower half
of the file. Then, the search determines if the key is in the upper or
lower half of the half chosen in the first step, and so on, until the key is
found or the file is exhausted. With large data files, a binary search can
take a long time.

A binary search also causes problems during the insertion process,
because you need to make sure that none of the inserted records are
already in your file. In this case, all unsorted data inserts are searched
to ensure that they do not already exist in your file.

Another method maintains keys in a sorted key file and uses an
overflow file for inserted keys not yet sorted into the key file. The
binary search technique is used to find the key and the associated data
record pointer. If the key is not found in the sorted key file, the
overflow file is searched. As the overflow file gets bigger, retrieval gets
slower. Periodically, you must re-sort the key file to incorporate the
keys in the overflow file.

1-2 FAB S/86

THE FABS/86 DIFFERENCE 1.2.1

FABS/86 also maintains keys in a sequential key file. Instead of storing
data in a linear manner, however, the FABS/86 key file is a multi-path
balanced tree. This design makes FABS/86 well suited for the mainte
nance and manipulation of very large data files (the most difficult).

With FABS/86, the data file and key file space is dynamically
allocated—that is, the files grow as needed. Although FABS/86 does
not actually read or write to your data file, it does provide you with the
record number for all of your data file reads and writes.

Suppose you have a data file that you want to access by the name field. To
insert a new record (with a given name) into the file, you must call
FABS/86 with the Insert command and the key. In about two seconds,
FABS/86 returns the number of the data record where you must write the
data associated with that key. After another quarter-second or so, your
key file and data file are in perfect order. (These times assume that you are
using a floppy disk system. A hard disk is faster.)

If you have enough room on your diskette or hard disk (and you are
not limited by your programming language), you can insert 50
thousand keys or more without much effect on the access time. Typi
cally, this time is one second or less to search for the key and read the
data record. Repeated accesses normally take about a quarter of a
second each.

You should note that there are no overflow files associated with
FABS/86. The estimated insertion times include reorganizing the key
file (if necessary). Any portions of the key file that are changed during
insertion are saved on diskette (or hard disk) so that the key file is
always current. Sorting is not required at any time on either the data
file or the key file.

n

AN OVERVIEW OF FABS/86 1-3

1.2.2 USING FABS/86 TO RETRIEVE A RECORD

1

Since FABS/86 knows which data record has been attached to what
key, finding a record is easy—just tell FABS/86 to search for a particu
lar key. FABS/86 gives you the random data record number that you
must read to get the desired record. Each time you delete a record,
FABS/86 retains the record numbers for automatic re-use when you
insert more records.

FABS/86 also lets you look for groups of records, rather than just a
specific record. This is called a “generic” search. For example, you
could do a generic search for every record with a name field that starts
with the letter “M”. After you give the proper instructions, FABS/86
finds the record number of the first occurrence of a name field starting
with “M”. A Search Next command (see Chapter 2.18) continues the
search sequentially through the name field.

A generic search is also useful in accessing data that is sequenced in
several levels. For example, the data file you’re searching might be in
alphabetical order by state, then by city under each state, and by zip
code under each city. First, you concatenate the state, city, and zip
code fields to form the insert key. Then you use the Search Generic
command along with the Search Next command to access only those
records associated with a particular state, or a particular city and state.

With FABS/86, you can retrieve data sequenced on more than one key
by using a single key file. When the key file is created, you specify the
number of primary keys that you want for the data file. When inserting
or deleting, you must specify all the key values for the data record. When
searching your file, you specify which primary key number you want.

1-4 FABS/86

KEYS 1.2.3

FABS/86 lets you assign the same value to more than one key (“dupli
cate” keys). When you want to access a record assigned to a duplicate
key, FABS/86 supplies the number of the first occurrence of that key in
the index file. Use the Search Next command to find the next occurrence
of the key. To access a series of duplicate keys, test the key of each data
record you read against the original key to see if you are still in the block
of duplicates. This procedure is also used when you need to read through
a block to determine which keys are to be deleted.

Multiple Keys
FABS/86 also supports multiple primary keys—that is, an area of the
data file can be accessed in ascending or descending order by more than
one key. The number of primary keys you can use is limited only by the
length of the Insert and Delete command strings (255 bytes). Of course,
the more keys you use, the longer it takes to insert or delete them. The
search time should not be seriously affected, however.

When you create an index file, you must specify the number of pri
mary keys. When inserting and deleting keys, all of the primary keys
must be specified (except for the Replace command).

FABS/86 also lets you use duplicate multiple primary keys. You
should be aware, though, that using this type of key presents some
problems. If you want to delete a duplicate multiple key, you must
decide which of the records is to be deleted. Then, you have to extract
all of the primary keys from that record and use them to form the
Delete command.

ASCII Keys
Keys are normally maintained in the key file as ASCII characters.
(This mode is specified by entering an “A” for the KEYTYPE when
you create the key file.) Any key having less than the maximum length
is padded with zeros to bring it up to maximum length. When you
specify more than one primary key, the maximum length applies to all
keys. Each key occupies the maximum space.

AN OVERVIEW OF FABS/86 1-5

Integer Keys
When creating a key file, you can specify the KEYTYPE as I (for
integer). With an integer file, FABS/86 converts the keys to a 2-byte
integer numeric value. Some limitations must be observed when you use
integer keys: Any keys specified in the command string must be ASCII
strings with a range of 0 to 65535. They cannot contain nulls, signs, or
other characters. The maximum key length will be forced to 2 bytes.
When a key file is specified as integer, all the primary keys must be
integer. Also, generic searches are not permitted with integer keys.

Maximum Number of Keys
With a balanced tree, it is impossible to predict the maximum number
of keys you can use in a data file. This number depends on the length
of the key, and on the sequence in which your keys are inserted. How
ever, you can establish a "worst case” and a "best case” for each
length; the average tells you approximately how many keys of a partic
ular length you can probably use.

FABS/86 has a constant node length of 512 bytes and can have up to 5
levels. The root node can have anywhere from one key to the max
imum number of keys. All other nodes will be between half full and
full depending upon the insertion sequence.

The following table gives you an idea of how many keys can be used
with various key lengths. (N is the minimum number of keys per
node—512 bytes.)

1-6 FABS/86

Table 1-1: Maximum Keys

KEY LENGTH N_ WORST CASE BEST CASE AVERAGE

2 36 107,136 214,272 160,704
4 28 83,328 166,656 124,992
6 23 68,448 136,896 102,672
8 19 56,544 113,088 84,816

10 16 47,616 95,232 71,424
14 13 38,688 77,376 58,032
20 10 29,760 59,520 44,640
30 7 20,832 41,664 31,248
40 5 14,250 29,760 22,005
50 4 5,620 23,808 14,714

ANO] ER VIEW OF FA BS/86 1-7

2
FABS/86 COMMANDS

The following commands can be executed with FABS/86:

A Search-next-after
B Build key file
K Close key file
C Create key file
D Delete key(s)
M Get maximum key length
Q Get next record numberu Get number of open deletes
T Get number of records
I Insert key
0 Open key file
R Replace key
S Search for key
F Search for first key
G Search for generic key
L Search for last key
N Search for next key
P Search for previous key
W Write page map
Z Obsolete node buffers

2

This chapter discusses the functions of FABS/86 command strings.
Each string is described in the following manner:

► First, you are given the format to use when you enter the command.
Each element of the string is explained.

► Next, you are told the operation the command performs and when
the string should be used. When appropriate, you are referred to
other command strings that can be used with the one being
explained.

FABS/86 COMMANDS 2-1

► Last, any parameters returned by the string are explained. This tells
you the meaning of each parameter that FABS/86 returns when you
use the command string.

► FABS/86 allows you to change the delimiter in the command line
by putting the desired delimiter as the first character in the com
mand line. Any character with an ASCII code of 2F Hex or less will
work, periods excluded.

2

2.1 SEARCH-NEXT-AFTER (A)
The command string is:

CMND$ = "A\PKN\RN\FN\" + KEY$

where:

PKN is the primary key number.

RN is the record number.

FN is the file number.

KEY$ is the key to search after.

This command returns the next key in the key file with a value greater
than KEY$. In the case of duplicates, the record number of the next
duplicate with the next highest record number will be returned. This
command can be used after the key is deleted to place the pointer after
the key deleted, so a command like “NEXT” or “PREVIOUS” will
start at the correct place.

2-2 FABS/86

BUILD (B) 2.2
The command string is:

CMND$ = "B\FN\" + PK1$ + "\" + ... + "\" + PKn$

where:

B is the command.

FN is the file number (1 to 6).

PKn$ is the value of the nth primary key.

2

This command is identical to the Insert (I) command, except that
Build does not write the map file to your diskette. All other FABS/86
commands update the diskette before returning to the calling program.

Because the Build command does not write to the map file (as the
Insert command does), you save time if you use Build instead of Insert
when building key files for large data files.

The Write Map File command must be executed after a series of Build
commands to ensure that the correct map data has been entered on
diskette. No other FABS/86 command should be executed during this
procedure.

When in doubt use the Insert command.

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The date record number

ADRKEY = No significance

FABS/86 COMMANDS 2-3

2.3 CLOSE (K)
The command string is:

CMND$ = "K\FN"

where:

K is the command.

FN is the file number (1 to 6).

The Close command closes a key file when you reach the end of the
host language program. (This is the only time that you need to close a
key file.) The index file on your diskette is updated after each FABS/86
operation (unless you used the Build command).

Parameters returned:

ERRF% = Error/Warning code

RECNO — No significance

ADRKEY = No significance

2.4 CREATE (C)
The command string is:

CMND$ - zzC\[d:]filename[.ext]\MAXKL\NPK\KT\FNzz

where:

C is the command.

MAXKL is the maximum key length (100 bytes max). The usual
key length is 8 to 10 bytes.

NPK is the number of primary keys for this file.

2-4 FABS/86

KT is the key type (I = Integer, A = ASCII).

FN is the file number (1 to 6).

Parameters returned: 2

Use Create to create a key file (filename.ext) and a map file
(filename.MAP) with the attributes specified in the command string.
The key file is opened for access under the file number contained in
the command string. If a file with the same name already exists, that
file is deleted.

ERRF% = Err or/Warning code

RECNO = No significance

ADRKEY = No significance

DELETE (D) 2.5
The command string is:

CMND$ = "D\RN\SBDFL\FN\" + PK1$ + "\" + ... + "\" + PKn$

where:

D is the command.

RN is the record number of the data record containing the keys.

SBDFL is the prompt "Search Before Delete Flag (Y/N)”. If you
answer yes, all primary keys are searched to ensure their presence
before any are deleted. This process protects your key file against
faulty programs.

FN is the file number (1 to 6).

PKn$ is the value of the nth primary key.

FABS/86 COMMANDS 2-5

Use Delete to delete the specified keys from the key file and return the
associated data record number in the data file. You should put
"deleted" into some field of the data record if the key file is destroyed.
Doing so lets you rebuild the key file, excluding the deleted data
records.

FABS/86 maintains pointers to all deleted records and reclaims these
records on future inserts on a last-in, first-out basis.

2 Parameters returned:

ERRF% = Error/Warning code

RECNO = The deleted data record number

ADRKEY = No significance

2.6 GET MAXIMUM KEY LENGTH (M)
The command string is:

CMND$ = "M\FN"

where:

M is the command.

FN is the file number (1 to 6).

This command causes FABS/86 to return the maximum key length
permitted in the key file. (The maximum key length was specified by a
Create command.) Any attempt to insert a longer key causes a syntax
error.

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The maximum key length

ADRKEY = No significance

2-6 FABS/86

GET NEXT RECORD NUMBER (Q)
The command string is:

2.7

CMND$ = "Q\FN"

where:

Q is the command.

FN is the file number (1 to 6).

When you use the Get Next Record Number command, FABS/86
returns the record number to be assigned the next time you use the
Insert command. (This assumes that no Delete command is used prior
to the Insert command.) If there are no unreclaimed deleted data
records, this command returns the next available data record in the
file. If there are unreclaimed deletes, the record number of the last
delete is returned.

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The next data record number

ADRKEY = No significance

FABS/86 COMMANDS 2-7

2.8 GET NUMBER OF DELETES (U)
The command string is:

CMND$ = "U\FN"

where:

U is the command.

FN is the file number (1 to 6).

This command returns the number of unreclaimed deleted data
records. This number tells you how many records can be inserted
before your data file expands.

Parameters returned:

ERRF% = Error/Warning code

RECNO = The number of deleted records

ADRKEY = No significance

2.9 GET NUMBER OF PRIMARY KEYS (H)
The command string is:

CMND$ = "H\FN"

where:

H is the command.

FN is the file number (1 to 6).

This command returns the number of primary keys in the key file.
(This number is specified in the Create command.)

2-8 FABS/86

Parameters returned:

ERRF% = Error/Warning code

RECNO = The number of primary keys

ADRKEY = No significance

2
GET NUMBER OF RECORDS (T) 2.10
The command string is:

CMND$ --- "T\FN'Z

where:

T is the command.

FN is the file number (1 to 6).

Get Number of Records returns the total number of records in your
data file, including the unreclaimed deleted records. To determine the
number of active data records, subtract the value returned by Get
Number of Deletes (U).

Parameters returned:

ERRF% = Error/Warning code

RECNO = The number of records

ADRKEY — No significance

FABS/86 COMMANDS 2-9

2.11 INSERT (I)
The command string is:

CMND$ = 'l\FN\,, + PK1$4-,,\,, + »- + 'V + PKn$

where:

I is the command.

FN is the file number (1 to 6).

PKn$ is the nth primary key value.

Use this command to insert keys into the key file. The number of pri
mary keys included in the command must equal the number you
specified in the Create command. Duplicate keys are permitted. Vari
able length keys are also permitted, but are padded with zeros (not
spaces) to bring them up to the maximum key length. If you want the
keys padded with spaces, you must enter the spaces yourself. Each key
in your key file has the maximum length specified in the Create com
mand.

When control is returned to the calling program, you should write the
entire data record to the data file at the record number specified by
RECNO.

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The data record number

ADRKEY = No significance

2-10 FABS/86

OPEN (O)
The command string is:

2.12

CMND$ = "O\[d:]filename[.ext]\FN"

where:

O is the command.

FN is the file number (1 to 6).

Use this command to open an existing key and map file for access.
You can open up to six key files at a time.

Parameters returned:

ERRF% = Error/Warning code

RECNO = No significance

ADRKEY = No significance

REPLACE (R) 2.13
The command string is:

CMND$ = "R\PKN\RN\FN\" + OLDKEY$ + "\" + NEWKEY$

where:

R is the command.

PKN is the primary key number.

RN is the record number of OLDKEY$.

FN is the file number (1 to 6).

OLDKEY$ is the value of the key to be replaced.

NEWKEY$ is the new key value.

FABS/86 COMMANDS 2-11

Use this command to replace a single key with another key having the
same record number and primary key number. The returned record
number is the same as the specified record number.

2

Parameters returned:

ERRF% = Err or/Warning code

RECNO = Same as specified record number

ADRKEY = No significance

2.14 SEARCH (S)
The command string is:

CMND$ = "S\PKN\FN\" + KEYS

where:

S is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

KEY$ is the value of the key.

This command returns the record number of the specified key string
(KEY$). The record number associated with the first duplicate is
returned if there are duplicate keys with the value KEY$. You can use
the Search Next (N) command to access the others. (You should test
each time to see if the key value is equal to KEY$.)

2-12 FABS/86

Parameters returned:

ERRF°/o = Error/Warning code.

► If ERRF°/o = 0, KEY$ was found.

► If ERRF% = 12, KEY$ was not found and the value of KEY$ is
between the first key and the last key.

► If ERRF°/o = 13, KEY$ was not found and the value of KEY$ is
less than the value of all existing keys. The record number of the
first key is returned.

► If ERRF% = 15, KEY$ was not found and the value of KEY$ is
greater than the value of all existing keys. The record number of
the last key is returned.

► If ERRF°/o = 16, there are no keys in the key file.

RECNO = The appropriate record number

ADRKEY = The FABS/86 memory address where the key can be
found

SEARCH FIRST (F) 2.15
The command string is:

CMND$ = "F\PKN\FN"

where:

F is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

Search First returns the number of the data record containing the
smallest key value for the specified primary key.

FABS/86 COMMANDS 2-13

Parameters returned:

ERRF% = Error/Warning code

RECNO = The record number

ADRKEY = The FABS/86 memory address where the key can be
found

2

2.16 SEARCH GENERIC (G)
The command string is:

CMND$ = "G\PKN\FN\" + KEY$

where:

G is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

KEYS is a left-justified partial key.

Search Generic returns the number of the first occurrence of the left-
justified partial key. This number helps you find the start of a category
of keys. The Search Next (N) command can then be used to access the
remainder of the category of keys. Remember to test each time to see
if the key in the data file is the same as KEYS.

The Search Generic command cannot be used with integer keys.

See the discussion of the Search (S) command for the values of the
error/warning code (ERRF%) returned if KEYS is not found in the key
file.

2-14 FABS/86

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The record number

ADRKEY = The memory address (in FABS/86 segment) where
the key can be found

2
SEARCH LAST (L) 2.17
The command string is:

CMND$ = "L\PKN\FN"

where:

L is the command.

PKN is the primary key number.

FN is the file number (1 to 6).

Search Last returns the number of the data record that contains the
largest key value for the specified primary key.

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The record number

ADRKEY = The FABS/86 memory address where the key can be
found

FABS/86 COMMANDS 2-15

2.18 SEARCH NEXT (N)
The command string is:

2

CMND$ = "N\FN"

where:

N is the command.

FN is the file number (1 to 6).

Search Next returns the number of the data record containing the next
key in sequence. This command is reliable only if the last command
for the same file number was one of the Search commands. The Search
Next command does not cross over primary key boundaries. Error
code 15 appears when Search Next reaches the end of the group of pri
mary keys.

Parameters returned:

ERRF°/o = Error/Warning code

RECNO = The record number

ADRKEY = The FABS/86 memory address where the key can be
found

2-16 FABS/86

SEARCH PREVIOUS (P)
The command string is:

2.19

CMND$ = "P\FN"

where:

P is the command.

FN is the file number (1 to 6).

Search Previous returns the number of the data record containing the
previous key in sequence. This command is reliable only if the last
command for the same file number was one of the Search commands.
The Search Previous command does not cross over primary key boun
daries. Error code 13 appears when the bottom of the group of primary
keys is reached.

Parameters returned:

ERRF% = Error/Warning code

RECNO = The record number

ADRKEY = The memory address where the key can be found

2

WRITE PAGE MAP (W) 2.20
The command string is:

CMND$ = "W\FN"

where:

W is the command.

FN is the file number (1 to 6).

FABS/86 COMMANDS 2-17

Use this command to write the page map to your diskette (or hard
disk) after a series of Build (B) commands. The Write Page Map com
mand should be executed immediately after the Build commands; no
other FABS/86 command should be used between the Build com
mands.

Parameters returned:

ERRF% = Error/Warning code

RECNO = No significance

ADRKEY = No significance

2.21 OBSOLETE NODE BUFFERS (Z)
The command string is:

CMND$ = "Z\FN"

where:

Z is the command.

FN is the file number.

Any command following the Z command will reload the node buffers
and the map from the disk. This provides one user with the ability to
ensure updated key data after another user has changed the key file.

2-18 FABS/86

3
USING FABS/86 WITH
PROGRAMMING LANGUAGES

INTERFACING THE MS-BASIC 3.1
INTERPRETER TO FABS/86

LOADING THE FABS/86M.COM MODULE 3.1.1

The FABS/86M.COM module is loaded and fixed in memory (until
the next restart) by executing it as you would any transient program.
Type:

fabsSSm

This command loads the module and displays the sign-on message
along with the “FSEG = &HXXXX” statement showing the segment
where the module was loaded. This segment varies for different system
configurations.

When you use this procedure, FABS86M.COM should always be the
first program you load when your computer is powered up or restarted.
By doing this, you ensure that the FABS86M.COM module is loaded
in the same place.

WARNING: Don’t load FABS86M.COM more than once between
restarts. It will load higher each time you load it.

USING FABS/86 WITH PROGRAMMING LANGUAGES 3-1

FABS/86M.COM
FABS/86M.COM
FABS86M.COM
FABS86M.COM
FABS86M.COM

3.1.2 LINKING FABS/86 TO COMPILED
LANGUAGES

The FABS86M.OBJ file is a relocatable module used to link FABS/86 to
compiled (.OBJ) files generated by the MS-BASIC Compiler, MS-
COBOL, MS-Pascal, and other compiled languages. Public declarations
in the FABS86M.OBJ module provide linkages to the calling programs.

3.1.3 CALLING FABS/86 FROM MS-BASIC

Before you can begin the FABS/86 calling subroutine, your MS-BASIC
program must have the FSEG statement declared. This statement is
displayed when the FABS86M.COM module is loaded:

FSEG kHxxxx

where xxxx is the load segment.

Your MS-BASIC program must contain the following FABS/86 calling
subroutine:

D E F S E G ™: F S E I?
FABSS6M ----- &H5
C A L!.... F A B S 8'3 M C 1'1 N D S , E R R F X .. R E C N 0 , A D R K E Y)
DEF SEG
EEC: ND ----- REC NO?;
11"- R E L N U D f H E N R E U N U ----- R E L- N U + L> b 5 3 £
RETURN

(Chapter 2 defines the CMND$, ERRF%, RECNO%, and ADRKEY%
parameters for each FABS/86 command string.)

3-2 FABS/86

FABS86M.COM

The value of the key can be returned after a First, Last, Next, or Previ
ous command if you use the following subroutine:

RKEY$= ""
A DRKEY ----- A DR KEY":;
I F A D R K E Y < 0 T H E N A D R K E Y ----- A D R K E Y + 6 5 5 . i 6 !
F 0 R I ----- A D R K E Y T 0 A D R K E Y + M A X KE N - 1
DI I ‘.I i. I ' < I i >
R U H A R ----- !"•' I:::. E K 1)
DEI S E G
RKEYS ----- RKE Y$ ----- CHR$ < RCH AR)
NEXT I

where:

MAXKLEN is the maximum key length (specified in the Create
command).

RKEY$ is the key value.

To execute FABS/86, you simply define a command string (CMND$)
for the particular command you desire and then GOSUB to the calling
subroutine which actually calls FABS/86.

TEST PROGRAMS 3.1.4

The following test programs are included on the FABS/86 program
diskette to show the capabilities of FABS86M:

► : The FABS/86 module.FABS86M.COM

► FABSBLD.BAS: Builds test key and data files.

► FPRINT.BAS: Displays the data file.

► FABSTEST.BAS: Demonstrates the execution of FABS/86 com
mands.

The FABSBLD.BAS program constructs the FTEST.DAT,
FTEST.KEY, and FTEST.MAP files needed by the FABSTEST.BAS

USING FABS/86 WITH PROGRAMMING LANGUAGES 3-3

FABS86M.COM

program. If they are not already present on your diskette, run
FABSBLD.BAS to create them.

Follow these steps to run the test programs:

1. Copy the test programs from the FABS/86 program diskette to a
diskette that contains the MS-DOS operating system. Save the ori
ginal for backup.

2. Reboot your computer with the MS-DOS diskette in drive A. Load
FABS/86 by typing FABS86M after the A > prompt.

3. Ensure that the FSEG statement displayed when FABS/86 is loaded
is the same as the one at the beginning of the FABSBLD.BAS,
FPRINT.BAS, and FABSTEST.BAS programs. If the FSEG state
ment is not the same, change the others to reflect the segment where

 was loaded.FABS86M.COM

4. Transfer your (hereafter called MS-BASIC) to the
MS-DOS diskette.

MSBASIC.COM

5. Enter:

msbasic fabsbld

to build the test files. It takes about 20 minutes to insert the 1000
keys (500 records of two primary keys each). About half of this
time is used to generate the keys randomly. The keys have a max
imum length of 10 bytes. The data file contains the two primary
keys and a 12-byte string.

6. Enter:

msbasic fprint

to run the FPRINT.BAS program. When prompted, select key
. sequence, primary key 1, and ascending order. The data record

number is displayed on the right.

3-4 FABS/86

FABS86M.COM
MSBASIC.COM

7. Run the FABSTEST.BAS program by entering:

msbasic fabstest

The list of FABS/86 commands is displayed.

When prompted, select Generic search, primary key 1, and “R” for
the key value. The data record for the first key beginning with “R”
is returned. Use the Previous and Next commands to verify the
key.

You can insert and delete records at will. Remember that deleted
records are reused on a last-deleted, first-reused basis.

FABS/86 AND THE MS-BASIC 3.2
COMPILER

CALLING FABS/86 FROM THE MS-BASIC 3.2.1
COMPILER

The FABS86M.OBJ object file lets you link FABS/86 with compiled
programs using the LINK.EXE program. The compiled MS-BASIC
program must contain the following FABS/86 calling subroutine:

C A L L. F A B S 1*1 B C C M N D $, E R R F a , R E C N 0";, A D R K E Y)
RECNO ----- REC NO 4
IF RECNO<0 THEN RECNO = RECNO + 65536!

See Chapter 2 for an explanation of CMND$, ERRF%, RECNO°/o, and
ADRKEY% for each command string.

USING FABS/86 WITH PROGRAMMING LANGUAGES 3-5

The actual key value can be returned after any Search command by
using the following subroutine:

A DRKEY -- ADR KEY>:
IF ADRKEY<S THEN ADRKEY = ADRKEY+65536!
CALL GF'SEGCFSEG:-:)
FSEG = F S E G':
IF FSEG < ® THEN FSEG = FSEG + 65536!
RKEY$ -- ""
FOR I = ADRKEY TO ADRKEY+MAXKLEN-1

DEF SEG = FSEG
ROHAR = PEEK(I)
DEF SEG
IF ROHAR = 0 THEN YYY
RKEY$ = R K E Y $ = CHR$<RCHAR>

NEXT I
YYY REM RKEY$ = ACTUAL KEY VALUE

3.2.2 TEST PROGRAMS FOR THE MS-BASIC
COMPILER

The following example programs are included on the distribution
diskette:

► FABS86M.OBJ: The FABS/86 relocatable object module

► MCBUILD.BAS: The test build program

► MCBUILD.OBJ: The object file

► MCTEST.BAS: The FABS/86 test program

► MCTEXT.OBJ: The object file

► MCPRINT.BAS: Prints the files

► MCPRINT.OBJ: The object file

► FTEST.KEY: The test key file

► FTEST.MAP: The test map file

► FTEST.DAT: The test data file

3-6 FABS/86

Follow these steps to run a test program:

1. Copy the test programs from the distribution diskette to another
diskette that contains the MS-DOS operating system. Save the ori
ginal for backup.

2. Using LINK.EXE, link the following .OBJ files to form the indi
cated RUN (.EXE) files. (See the Systems Programmer's Tool Kit
II, Volume /, for instructions on using LINK.EXE.)

RUN FILES _______ OBJECT FILES________

MCPRINT.EXE
MCTEST.EXE
MCBUILD.EXE

MCPRINT.OBJ + FABS86M.OBJ
MCTEST.OBJ + FABS86M.OBJ
MCBUILD.OBJ + FABS86M.OBJ

3. Run the MCPRINT.EXE program by entering:

mcprint

Answer the prompts that follow by selecting key sequence, primary
key 1, and ascending order. Observe the speed with which FABS/86
displays the data file in key sequential order. The data record is
displayed on the right.

4. Run the MCTEST.EXE program by entering:

mctest

The key and data files are opened and the list of FABS/86 com
mands is displayed. When prompted, select Generic search, pri
mary key 1, and "R" for the key value. The data record for the first
key beginning with R is returned. Use the Previous and Next com
mands to verify the key. You can insert and delete records at will.
Remember that deleted records are reused on a last-deleted, first-
reused basis.

5. If you want to build a larger set of test files, change the FOR-NEXT
loop in the MCBUILD.BAS program to reflect the number of
records you desire. Then, use to compile it and
obtain the MCBUILD.OBJ file for linking with the FABS86M.OBJ
file to form MCBUILD.EXE. Then, run MCBUILD.EXE to build
the new set of test programs.

BASCOM.COM

USING FABS/86 WITH PROGRAMMING LANGUAGES 3-7

BASCOM.COM

3.3 USING FABS/86 WITH MS-PASCAL
The following is a typical calling program from MS-Pascal:

pr og i- am past es t i
t y p i-::'

c ri'i d s t r i ng = 1 s t r i ng 2 5 5 >
V -31 "

e f + I- ! w o I- d .!
i- e c ! "l o : o i- d
cm nd : cmds t r i ng

I- u n c t i o n I" b s p a s < v a r s c m d : 1 s t r i ng :
V a r s e i " r : w o r d) : w o i' d e x t >3 i " n 3 1

beg i n
cmnd ! = " CX'FTEST . KEY\1 9\2\fi\'3 "
i' i”? c n o ! I b s p -3 e >c m i "> d .. e i " i' t
end ,

This program creates the FTEST.KEY and FTEST.MAP files. The
key file is set for two primary keys with a maximum key length of 10
bytes. Both keys are ASCII keys; the key file is opened as file number
3.

The returned parameter (recno) has no significance with a Create com
mand. The error code (errf) should be tested for zero to ensure that
there was no error.

An additional entry point (FBPAS1) is provided. It returns the key
address (in the FABS segment) in addition to the preceding
parameters. The function call is:

!- '3n o ! ::::: I" b p a s 1 (c m n d , >3 r r 1”, k >3 y a d r) .!

To get the KEY ADR segment, enter:

fseg: = gfsegl

You can access the key if you know the segment and the offset of the
key.

Link FABS86M.OBJ to your MS-Pascal object file using LINK.EXE.

3-8 FABS/86

FABS/86 AND MS-FORTRAN 3.4
To call FABS/86 from MS-FORTRAN, you must define the command
string (CMND) and execute an external function as follows:

C TEST PROGRAM FOR CALLING I 11 NT NE

PROGRAM FBSTST
CHARACTER *86 CMND
I N 7 E G E R * 2 E R R F , R E C N 0 , K E Y A D R , F B S F 0 R

CMND- ' C:\TEST . KEYM 0\2\A\3 1
R E C N 0 = F B S F 0 R (C M N D , E R R F , K E Y A D R)

W R I T E < * , 2 8 0) ' E R C 0 D E = ' E R R F
2 0 0 F 0 R M A T (1A 8 .> I b)

STOP
END

This program creates empty FABS/86 key and map files (TEST.KEY
and TEST.MAP) which are ready for keys to be inserted. The key file
has two primary ASCII keys of 10 bytes each; it is opened for access as
file number 3.

With MS-FORTRAN, the command string must be terminated with
an up-arrow f) because no length byte is passed with the string. The
returned parameter RECNO (normally record number) is returned in
the AX register as the returned function. FABS/86 treats RECNO as a
16-bit positive number with a range of 0 to 65535. MS-FORTRAN
may return a negative number if greater than 32767. In this case, you
would add 65536 to RECNO to place it in the range of 0 to 66535.

The error code is returned in ERRF. This will be zero if there is no
error or warning.

USING FABS/86 WITH PROGRAMMING LANGUAGES 3-9

The pointer to the actual key in memory after any Search command is
returned in KEYADR. This is the temporary address of the key in the
FABS segment. You can get the FABS segment by using the following
external function:

FSEG=GFSEG1

where FSEG is the FABS segment.

The FABS86M.OBJ module is linked to your FORTRAN object file
using LINK.EXE.

3

3.5 FABS/86 AND MS-COBOL
To call FABS/86 from MS-COBOL, you must define the command
string (CMND) and call an external procedure as shown by the follow
ing sample program.

STOP RUN

YADR TO KA.
' ERRF ----- 1 ERC .

•’REGNO ----- ' RN.
’ KEY ADR ----- 1 KA .

IDENTIFICATION DIVISION.
PROGRAM--ID . COST ST .
ENVIRONMENT DIVISION.
DATA DIVISION,
W 0 R K I N G - S T 0 R A G E S E C T I 0 N .

MOVE KE
DISPLAY
DISP LAY
DI SPLAY

.....
C M N D PI C X c 8 0 V RLUE I s ' CM EST.KE Y \d 0\2\ R\ 1
ERRF' PIC 99999 COMP-0 VALUE 0...... REC N0 P I C 99 999 C 0MP-0 VRLUE 0.

..... KEYRDR PIC 99999 COMP-0 VALUE 0,
7 7 E R C P I C 9 9 9 9 9 R N PIC 9 9 999 >..........

K A P I C 9 9 9 9 9 ,
PROC EDURE DIV IS I ON.
MAIN .
CALL ' F B S C 0 B ’ U S I N G C M N D E R R F , R E C N 0 , K E Y A D R
MOVE E R R I - 1 U E R!...' .
MOVE REONO TO RN.

3-10 FABS/86

This program creates a TEST.KEY and TEST.MAP file on the disk
and opens the key file for access as file number 1. The key file has two
ASCII primary keys of 10 bytes each.

The command string (CMND) must be terminated with an up-arrow
o since MS-COBOL does not provide a length byte.

The KEY ADR pointer gives the offset of the actual key in the FABS
segment. It is important for all Search commands. The FABS seg7
ment is returned by the following external procedure:

CALL 'Ll ‘ I'.G ' USING FSEG

where FSEG is the FABS segment.

The FABS86M.OBJ module is linked to your MS-COBOL object file
using LINK.EXE.

USING FABS/86 WITH PROGRAMMING LANGUAGES 3-11

FABS/86 ERROR AND WARNING
CODES

Table 4-1 describes the error and warning codes displayed by
FABS/86. Except for 0, any error code numbered 12 or less is nor
mally a fatal error. The same is true of error codes numbered 16 or
higher. All error and warning codes are returned from the calling sub
routine in the variable ERRF%.

Table 4-1: FABS/86 Error and Warning Codes

WARNING
NUMBER DESCRIPTION

0 The FABS/86 operation was successful.
4 Improper key for integer key file.
5 Attempted Generic search on integer key.
6 Key not found on Delete.
7 Incorrect number of primary keys.
8 Syntax error in command string.
9 No more key space.

10 Input key larger than maximum.
11 Tried to access unopened file.
12 Key specified was not found, but smaller and larger keys were found.
13 Key not found. Key smaller than all keys.
15 Key not found. Key larger than all keys.
16 Key not found. No keys in key file.
22 File not present when opened.
23 Out of directory space.
24 Diskette full.
25 Write error.
26 File not present when closed.
27 Read error. End of file.
29 Cannot close current extent (CP/M-86).
30 Random record out of range (CP/M-86).

FABS/86 ERROR AND WARNING CODES 4-1

FABS/86 PUBLIC INTERFACES
AND ABSOLUTE ENTRY
OFFSET POINTS

PUBLIC INTERFACES A. I
The following are the FABS/86 PUBLIC entry and access locations.

Table A-l: FABS/86 PUBLIC Entry and Access

PUBLIC SYMBOL NORMALLY USED BY

FABSMB
FBSPAS
FBPAS1
FBSFOR
GFSEG
GFSEG1
KEYADR

MS-BASIC Compiler
MS-Pascal (doesn’t return key address)
MS-Pascal (returns key address)
MS-FORTRAN
General
General
General

Each location is discussed in the following sections.

FABSMB Entry Point
On entering at FABSMB, nonsegmented pointers representing the
addresses of CMND, ERROR CODE, RECNO, and KEYADR (in
that order) must have been pushed on the stack.

All pointers are assumed to be offsets to the Data Segment register
(DS) at entry. CMND must be four bytes: the first two bytes contain
the length of the command string; the next two bytes contain the offset
of the command string relative to the DS register at entry.

PUBLIC INTERFACES AND ABSOLUTE ENTRY OFFSET POINTS A-l

At exit from FABS/86, the four pointers (8 bytes) are removed from
the stack and the returned parameters are placed in the specified
addresses. The segment associated with the key address can be
obtained by calling either GFSEG or GFSEG1.

FBSPAS Entry Point
On entering at FBSPAS, segmented pointers (8 bytes) representing the
addresses of CMND and ERROR CODE (in that order) must have
been pushed on the stack. The first byte of CMND must contain the
length followed by the actual string of characters.

At exit from FABS/86, the two pointers (8 bytes) are removed from
the stack and the error code is placed in the specified offset and seg
ment. The returned parameter (RECNO) is placed in the AX register
as the returned function.

If the key address is needed, use the FBPAS1 entry point.

FBPAS1 Entry Point
On entering at FBPAS 1, segmented pointers representing the addresses
of CMND, ERROR CODE, and KEYADR (in that order) must have
been pushed on the stack.

The first byte of CMND must contain the length of the command
string followed by the actual string of characters.

At exit from FABS/86, the three pointers (12 bytes) are removed from
the stack, and the error code and key address are placed in the specified
segment and offset. You must use either GFSEG or GFSEG 1 to get the
FABS segment (same as the KEYADR segment) if you want to access
the key. The returned parameter (RECNO) is returned in the AX regis
ter.

A-2 FABS/86

FBSFOR Entry Point
On entering at FBSFOR, segmented pointers representing the
addresses of CMND, ERROR and KEYADR (in that order) must
have been pushed on the stack. The CMND pointer must point to the
first actual byte of the command string. The command string must be
terminated with an up-arrow f), so that FABS/86 can determine the
string length.

At exit, the three segmented pointers (12 bytes) are removed from the
stack, and ERROR CODE and KEY ADR are placed in the specified
addresses. You must use either GFSEG or GFSEG1 to get the
KEY ADR segment (same as the FABS segment) to access the key
value. The returned parameter (RECNO) is returned in the AX regis
ter.

FBSCOB Entry Point
On entering at FBSCOB, nonsegmented pointers representing the
addresses of CMND, ERROR CODE, RECNO, and KEYADR (in
that order) must have been pushed on the stack. All pointers are
assumed to be offsets to the Data Segment register (DS) at entry. The
command string (CMND) must be terminated with an up-arrow f) so
that FABS/86 can determine the string’s length.

At exit the parameters ERROR CODE, RECNO, and KEYADR are
placed in the specified addresses. You must use either GFSEG or
GFSEG 1 to get the KEYADR segment (same as the FABS segment) to
access the actual value of the key.

GFSEG Entry Point
This procedure returns the FABS segment in the specified variable as
follows:

CALL GFSEG(FSEG)

On entering at GFSEG, a nonsegmented pointer must have been
pushed on the stack. The FABS segment is placed in the specified
address relative to the Data Segment register (DS) at entry.

PUBLIC INTERFACES AND ABSOLUTE ENTR Y OFFSET POINTS A-3

At exit, the pointer (2 bytes) is removed from the stack.

GFSEG1 Entry Point
This is used as an external function to return the FABS segment as fol
lows:

FSEG = GFSEG1

When this function is called, FABS/86 returns the FABS segment in
the AX register.

KEYADR Public Variable
The FABS/86 internal variable KEYADR contains the temporary
address of the actual key value (in the FABS segment) after any nor
mal Search command.

KEYADR resides at offset 28 (hex) in the FABS segment. It consists
of a 2-byte offset pointer followed by a 2-byte variable containing the
KEYADR segment (same as the FABS segment).

A.2 ABSOLUTE OFFSET ENTRY POINTS
Absolute entry points let compiled languages call an absolute offset in
the FABS/86 segment, instead of a PUBLIC entry point. The
FABS.COM module can then be loaded and fixed in memory, as is
normally done with the MS-BASIC Interpreter. By loading this
module, you eliminate the need to link the FABS.REL file into all pro
grams that use large amounts of disk space.

The FABS.COM file is loaded by typing:

fabs86m

following the A > prompt.

A-4 FABS/86

FABS.COM
FABS.COM

The FABS segment is displayed when the FABS module is loaded.
The absolute entry points are offsets in the FABS segment. Table A-2
shows the absolute offsets to call for the various languages.

Table A-2: FABS/86 Absolute Offsets:

LANGUAGE
EQUIVALENT

PUBLIC SYMBOL
OFFSET

(DECIMAL)

MS-BASIC Interpreter None 5
MS-BASIC Compiler FABSMB 8
MS-Pascal FBSPAS 11
Any GFSEG 14
MS-FORTRAN FBSFOR 17
MS-COBOL FBSCOB 20
MS-Pascal FBPAS1 23
Any GFSEG 126

If you are using the MS-BASIC Compiler, for example, you load the
FABS module and note the load segment:

F S E (----- &Hxxxx

where xxxx is the start segment of the beginning of the FABS module.

The following statement must be included in your MS-BASIC program
just prior to calling FABS/86:

01 I 1 I i. I ’.I i

Then execute an absolute call with an offset of 8. You return to the
MS-BASIC segment DEF SEG.

PUBLIC INTERFACES AND ABSOLUTE ENTR Y OFFSET POINTS A-5

INDEX

Absolute offset entry points, A-1,
, A-4 to | A-5

Binary search, 1-2
Build (B), 2-3

Close (K), 2-4
Codes

error, 4-1
warning, 4-1

Command strings, 2-1 to 2-2
Commands, 2-1

Build (B), 2-3
Close (K), 2-4
Create (C), 2-4 to 2-5
Delete (D), 2-5 to 2-6
Get maximum key length (M), 2-6
Get next record number (Q), 2-7
Get number of deletes (U), 2-8
Get number of primary keys (H),

2-8 to 2-9
Get number of records (T), 2-9
Insert (I), 2-10
Obsolete node buffers (Z), 2-18
Open (O), 2-11
Replace (R), 2-11 to 2-12
Search (S), 2-12
Search first (F), 2-13 to 2-14
Search generic (G), 2-14 to 2-15
Search last (L), 2-15
Search next (N), 2-16
Search-next-after (A), 2-2
Search previous (P), 2-17
Write page map (W), 2-17

Create (C), 2-4 to 2-5

Data
accessing, 1-3
entering, 1-2
retrieval, 1-2, 1-4
storage, 1-1, 1-3

Delete (D), 2-5 to 2-6

Entering data, 1-2
Entry point

FABSMB, A-l to A-2
FBPAS1, A-2
FBSCOB, A-3
FBSFOR, A-3
FBSPAS, A-2
GFSEG, A-3 to A-4
GFSEG1, A-4
KEYADR PUBLIC, A-4

Error codes, 4-1

FABS86M.COM, 3-1
Files

data, 1-3
key, 1-3, 2-5
overflow, 1-3

Generic search, 1-4
Get maximum key length (M), 2-6
Get next record number (Q), 2-7
Get number of deletes (U), 2-8
Get number of primary keys (H),

2-8 to 2-9
Get number of records (T), 2-9

Insert (I), 2-10
Interfacing, 3-1

INDEX Index-1

FABS86M.COM

Keys, 1-5 to 1-7
ASCII, 1-5
duplicate, 1-5
integer, 1-6
length, 1-6 to 1-7, 2-6
maximum, 1-7
maximum number of, 1-6
multiple, 1-5

Linking, 3-2

MS-BASIC Compiler, 3-5 to 3-6, 3-7
MS-BASIC Interpreter, 3-1
MS-COBOL, 3-10 to 3-11
MS-FORTRAN, 3-9 to 3-10
MS-Pascal, 3-8

Obsolete node buffers (Z), 2-18
Open (O), 2-11
Overview, 1-1

Predicting, 1-6
Programming languages, 3-1
Public interfaces, A-l

Replace (R), 2-11 to 2-12

Search (S), 2-12 to 2-13
Search first (F), 2-13 to 2-14
Search generic (G), 2-14 to 2-15
Search last (L), 2-15
Search next (N), 2-16
Search-next-after (A), 2-2
Search previous (P), 2-17

Test programs, 3-3 to 3-5, 3-6 to 3-7

Warning codes, 4-1
Write page map (W), 2-17 to 2-18

Index-2 FABS/86

AUTOSORT/86M

COPYRIGHT

®1983 by VICTOR®.
® 1982 by Computer Control Systems, Inc.

Published by arrangement with Computer Control Systems, Inc., whose
software has been customized for use on VICTOR computers. Portions
of the text hereof have been modified accordingly.

All rights reserved. This manual contains proprietary information which
is protected by copyright. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the
prior written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
AUTOSORT is a trademark of Computer Control Systems, Inc.
MS- is a trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.
Second VICTOR printing December, 1983.

ISBN 0-88182-109-8 Printed in U.S.A.

II AUTOSORT/86

CONTENTS

1. General Information
1.1 AUTOSORT/86 Features..1-1
1.2 Getting Started...1-3

2. AUTOSORT/86 Command Strings
2.1 AUTOSORT/86 Modes...2-2

2.1.1 Mode Parameters.. 2-2
2.1.2 Mode Description... 2-3
2.1.3 Parameter String Description..................................2-10

2.2 Sample Command String... 2-12

3. Sort Parameters
3.1 Parameter File Overview.. 3-1
3.2 Sort Parameter Definition.. 3-1

4. Record Select Features..4-1

5. Using AUTOSORT/86 with
Programming Languages
5.1 AUTOSORT/86 and MS-BASIC..................................... ..5-1
5.2 AUTOSORT/86 and the MS-BASIC Compiler............... 5-3
5.3 AUTOSORT/86 and MS-Pascal... 5-6
5.4 AUTOSORT/86 and MS-FORTRAN.............................. 5-9
5.5 AUTOSORT/86 and MS-COBOL.................................... 5-10

6. Error Indications...6-1

CONTENTS III

APPENDIXES
A. AUTOSORT/86 PUBLIC Interfaces...........................A-l
B. Stand-Alone Sorting...B-l

TABLES

2-1: Order of Parameters in Parameter String.................................... 2-11

2-2: Sample Command String Parameter Description..................... 2-13

A-l: AUTOSORT/86 PUBLIC Entry and Access Locations.........A-l

B-l: TEST.DAT Field Description.............................. B-2

IV AUTOSORT/86

CHAPTERS

1. General Information

2. AUTOSORT/86 Command Strings

3. Sort Parameters

1

2
I z

4. Record Select Features ...

5. Using AUTOSORT/86 with Programming Languages..

6. Error Indications

Appendix A: AUTOSORT/86 PUBLIC Interfaces

Appendix B: Stand-Alone Sorting B

CHAPTERS V

GENERAL INFORMATION

AUTOSORT/86 is a sort/merge/select utility designed for use with very
large files that have fixed-length fields within fixed-length records. It is
compatible with the MS-DOS operating system, but it does not support
path names. It supports string fields and the MS-BASIC integer, single
precision, and double-precision fields.

Note: AUTOSORT/86M may be incorporated in any application and
distributed for use on VICTOR/SIRIUS machines without payment of
royalties.

AUTOSORT/86 FEATURES 1.1
Nine modes of sort/merge/select are available. The mode is specified in
the command string (CMND$).

► Mode 0: Full record sort/select using an existing parameter file.

► Mode 1: Merges two sorted files into one sorted file using an exist
ing parameter file to specify the sort keys.

► Mode 2: Full record sort/select using the parameters specified in the
command string; does not write the parameter file to the disk.

► Mode 3: Full record sort/select using the parameters specified in the
command string; writes the parameter file to the disk.

► Mode 4: Sort/select using a parameter file. The output file contains
only the Data Record pointer and sort keys.

► Mode 5: Sort/select using a command string. The output file contains
only the Data Record pointer and sort keys.

GENERAL INFORMATION 1-1

► Mode 6: Sort/select using a parameter file. The output file contains
only the 2-byte Data Record pointer.

► Mode 7: Sort/select using a command string. The output file contains
only the 2-byte Data Record pointer.

► Mode 8: Creates a parameter file on the disk from the command
string. No sort/select is done.

AUTOSORT/86 can be used as a stand-alone sort routine, or it can be
called from the MS-BASIC Interpreter, the MS-BASIC Compiler, MS-
Pascal, MS-FORTRAN, or MS-COBOL. However, MS-COBOL ISAM
files are not supported by AUTOSORT/86. Multiple users can sort
simultaneously as long as each user’s program specifies a different user
number in the command string. AUTOSORT/86 creates unique tem
porary files for each user, eliminating the possibility of conflicting tem
porary filenames.

Record lengths can be 5000 bytes or more if the specified sort buffer is
at least 40K. File size is determined by your operating system and the
available disk work file space. The logical record counter overflows at
65536.

In a 128K system, a typical default buffer size is about 60K if the sort
module is loaded low enough to permit a 60K buffer. AUTOSORT/86
creates up to 30 work files; each file is a little smaller than the sort buffer
size. When you still have more to sort after these 30 work files are filled,
AUTOSORT/86 temporarily merges the work files into a single file and
creates up to 29 more work files. This process continues until either the
input file or work space is depleted. The worst-case requirement for work
space is about twice the size of the input file, if temporary merges are
required. The temporary merge occurs when there are less than 30 work
files and the specified buffer size is too small to allow 30 work files to be
merged. A maximum of 10 sort keys is permitted, either ascending or
descending (independently) on each key.

1-2 AUTOSORT/86

AUTOSORT/86 deletes or retains records by comparing up to four
independent select keys with any fields in the record (fixed, variable,
string, or numeric). AUTOSORT/86 checks whether the select key is
“less than”, “equal to”, or “greater than” the selected fields. A select
OR function (if activated) lets records be retained if any one of several
select keys matches the fields.

An alpha option translates all lowercase alpha characters to uppercase
for sorting. This causes “a” and “A” to sort as the same character.

The disk change capability is directed by the sort parameters. This
capability lets you change the work file disk or the output disk during
the sort process. (A screen prompt appears when you must change a
diskette.) If the output file is given the same name as the input file, the
input file is deleted after the work files are created. This saves disk
space; however, a power loss or malfunction during the final merge can
cause you to lose the data file. For this reason, you should always back
up your data files.

GETTING STARTED 1.2
Before using AUTOSORT/86, you should read the manual and then
run the stand-alone test programs in Appendix B. Then, Chapter 5
explains how to call the sort as a subroutine.

GENERAL INFORMATION 1-3

2
AUTOSORT/86 COMMAND
STRINGS

Mode and sort parameters are passed to the AUTOSORT/86 module
in a single command string (CMND$) with each parameter separated
by a backslash (\). AUTOSORT/86 allows the user to change the de
limiter in the command by putting the desired delimiter as the first
character in the command line. Any character with an ASCII code of
2F Hex or less will work, periods excluded.

For simplicity, the command string
separated by a backslash. The “\”
between the adjacent parameters
catenated.

(CMND$) is shown as two strings
indicates a backslash is necessary
when the two strings are con-

The AUTOSORT/86 command string format is:

CMND$ = AMODE$ + "\" + PARM$

where:

AMODE$ contains parameters that must be defined during run
time, and are associated with the sort mode.

PARM$ represents the sort parameters defined during run time or
specified as parameters in a parameter file that has been previously
stored on disk.

The sort parameter string (PARM$) begins with the input filename.
String elements are in the same order as they were entered into the sort
parameter file created by the parameter file generator program,
PFG86M.COM. (See Chapter 2.1.3, "Parameter String Description,”
for a description of these parameters.) To call AUTOSORT/86, you
create the command string (CMND$) for the desired mode. Then, call
the AUTOSORT/86 module according to the procedure specified for
your higher-level language.

AUTOSORT/86 COMMAND STRINGS 2-1

PFG86M.COM

2.1 AUTOSORT/86 MODES

2.1.1 MODE PARAMETERS

The first parameter in the mode parameter string (AMODE$) defines
the mode of operation of the sort module. (See Chapter 2.1.2 for an
explanation of the various modes.)

The second parameter is the user number—a single character inserted
into all temporary files to make them unique. Any normal filename
character is permitted. The user number lets several users sort simul
taneously on the same disk using different user numbers.

The third parameter sets the drive where the sort buffer memory area
is saved during the sort process. Drives A through Z can be specified.
(Use “0” for the default drive.)

The fourth parameter sets the sort buffer size (in bytes). You should
make this size as large as possible; a zero defaults to the maximum size
(approximately 60K for a 128K system). The sort buffer is above the
sort module in memory. Its contents are written to disk before the sort
and restored to disk after the sort. If you have limited disk space, you
might want to set the sort buffer size to some smaller value. If you
have very large records, be sure to leave enough room for the parallel
merge. Work files, if needed, require additional disk space.

Some modes may have additional parameters in the mode parameter
portion (AMODE$) of the command string (CMND$).

Sort parameters can be defined dynamically during run time as a sort
parameter string (PARM$); or they can be defined external to the pro
gram by using the PFG86M.COM program. Also, certain modes let
you define the sort parameters dynamically and write them to the disk
as a sort parameter file for later use.

2-2 AUTOSORT/86

PFG86M.COM

The parameter file generator (PFG86M.COM) creates the parameter
files for modes 0, 1,4, and 6. It is also useful when creating the param
eter string (PARM$) for modes 2, 3, 5, 7, and 8. PFG86M.COM
requests the identical parameters (starting with the input filename) in
the same order as are needed to form the sort parameter string
(PARM$). Remember that the parameters in PARM$ must be
separated by backslashes.

To create a parameter file using PFG86M.COM, enter:

pfg86m

and then answer the questions. (See Chapter 3, "Sort Parameters,” for
a detailed description of PFG86M.)

MODE DESCRIPTION 2.1.2

Mode 0
The command string format is:

AM0DE$ = "O\Un\Dm\Bufsize"

PARM$ = "D:PFNAME"

CMND$ = AM0DE$ + "\" + PARM$

where:

0 is the mode.

Un is the user number. For a single user, enter 1.

Dm is the temporary memory storage drive. Drives A through Z can
be specified. (Use zero for default drive.)

Bufsize is the number of bytes in the buffer. 0 defaults to maximum.

AUTOSORT/86 COMMAND STRINGS 2-3

PFG86M.COM
PFG86M.COM
PFG86M.COM

D is the drive containing PFNAME (optional).

PFNAME is the name of the parameter file. The extension must be
.SRT.

In mode 0, a full record sort/select is performed using sort parameters
from a parameter file previously created by PFG86M.COM or by using
modes 3 or 8.

See Chapter 2.1.3, “Parameter String Description.”

Mode 1
The command string format is:

AMODE$ = "1 \Un\Dm\Bufsize"

PARM$ = ,ZD:PFNAME\D:INPUT1\D:INPUT2\D:OUTPUT"

CMND$ = AMODE$ + zz\" PARM$

where:

1 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (Q is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the appropriate drives (optional).

PFNAME is the parameter filename with extension .SRT.

INPUT 1 is the name of the first input file.

INPUT2 is the name of the second input file.

OUTPUT is the name of the output file.

This mode merges two sorted files into one sorted file. A previously
created parameter file must exist on disk to provide the sort/select key
information. If the parameter file is set to skip records, the records in
the first input file (INPUT 1) are skipped.

2-4 AUTOSORT/86

PFG86M.COM

The input and output filenames specified in the parameter file on the
disk are ignored since they are already specified in the command
string. For a correctly ordered merge, the sort keys must specify the
same order as the sorted input files; otherwise, the sorted results are
unpredictable.

If select keys are specified in the parameter file, the appropriate records
are selected.

Mode 2
The command string format is:

AMODE$ = "2\Un\Dm\Bufsize"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

where:

2 is the sort/select mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to maximum.

PARM$ is the sort parameter string beginning with the input
filename.

This mode does a full record sort/select using the parameters specified
in the command string. No parameter file is written to disk.

See Chapter 2.1.3.

AUTOSORT/86 COMMAND STRINGS 2-5

Mode 3
The command string format is:

AMODE$ = "3\Un\Dm\Bufsize\D:PFNAME"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

where:

3 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to maximum.

D is the drive on which to put the parameter file.

PFNAME is the name to give the parameter file.

PARM$ is the sort parameter string beginning with the input
filename.

This mode writes a parameter file to the disk for later use and then
does a full record sort using the parameters specified. The name you
give the parameter file is inserted as parameter number 5 in AMODE$.

See Chapter 2.1.3.

Mode 4
The command string format is:

AMODE$ = "4\Un\Dm\Bufsize"

PARM$ = "D:PFNAME"

CMND$ = AMODE$ + "\" + PARM$

2-6 AUTO SORT/86

where:

4 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the drive containing the sort parameter file to use.

PFNAME is the sort parameter filename. (The extension is assumed
to be .SRT.)

This mode uses a previously created sort parameter file. It creates an
output file with records containing only the data record number (2
bytes) and the sorted fields in the order specified:

output record = [rec. no.Meld #1]..[field #n]

2

The output record length equals 2 plus the sum of the sort key lengths.

Mode 5
The command string format is:

AMODE$ = "5\Un\Dm\Bufsize"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

where:

5 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

PARM$ is the sort parameter string beginning with the input file
name.

AUTOSORT/86 COMMAND STRINGS 2-7

This mode uses a sort parameter string (PARM$). Mode 5 creates, an
output file which contains only the data record pointer (2 bytes) and
the sort keys in the order specified:

output record = [rec. no.][field #1]..[field #n]

Mode 6
The command string format is:

output record = [rec. no. (2 bytes)]

AMODE$ = "6\Un\Dm\Bufsize"

PARM$ = "D:PFNAME"

CMND$ = AMODE$ + "\" + PARM$

where:

6 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the drive containing the sort parameter file to use.

PFNAME is the sort parameter filename. (The file extension is
assumed to be .SRT.)

This mode uses a sort parameter file to do the sort/select. Then, it pro
duces an output file consisting of only the input data record pointers (2
bytes per data record).

2-8 AUTOSORT/86

Mode 7
The command string format is:

output record = [rec. no.(2 bytes)]

AMODE$ = "7\Un\Dm\Bufsize"

PARM$ = The sort parameters

CMND$ = AMODE$ + "\" + PARM$

2
where:

7 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

PARM$ is the sort parameters beginning with the input filename.

This mode uses a sort parameter string (PARM$) to do the sort/select,
and produces an output file containing only the input data record
pointers (two bytes per record).

Mode 8
The command string format is:

AMODE$ = " 8\Un\Dm\Bufsize\D:PFNAME"

PARM$ = The sort parameters

CMND$ - AMODE$ + "\" + PARM$

AUTOSORT/86 COMMAND STRINGS 2-9

where:

2

8 is the mode.

Un is the user number. Use 1 for a single user.

Dm is the temporary memory storage drive. (0 is the default.)

Bufsize is the buffer size. 0 defaults to the maximum.

D is the drive on which to put the sort parameter file.

PFNAME is the name to give the parameter file. (The extension is
assumed to be .SRT.)

PARM$ is the sort parameter string beginning with the input
filename.

Note: Although Un, Dm and Bufsize are not used, each must still be
set to an acceptable value.

This mode only creates a sort parameter file on a disk. No sort/select is
done.

2.1.3 PARAMETER STRING DESCRIPTION

Table 2-1 shows the order of the parameters in the parameter string
(PARM$) for modes 2, 3, 5, 7 and 8. This is the same order in which
the parameters are requested when building a parameter file on disk.

2-10 AUTO SORT/86

Table 2-1: Order of Parameters in Parameter String

INPUT
MAXIMUM

CHARACTERSPARAMETER

INPUT FILE d:filename.ext 14
OUTPUT FILE d:filename.ext 14
NUMBER RECS TO SKIP nnn 3
LOGICAL RECORD LENGTH nnnn 4
CHANGE WORK FILE DISK Y/N 1
CHANGE OUTPUT FILE DISK Y/N 1
WORK FILE DRIVE

Sort Key 1

A-Z or 0 1

FIELD STARTING POSITION 0 or nnnn (0 to stop
key input)

4

FIELD LENGTH nnn 3
ASCEND OR DESCEND FLAG A or D 1
ALPHA/HEX/INTEGER/SGL/DBL A/H/I/S/D

(Repeats the last 4 for
next key. Enter 0 to
stop key input, except
when all 10 keys are
used, then go to the
next input.)

1

ACTIVATE SEL “OR” FUNCTION

Select Key 1

Y/N 1

DELETE OR RETAIN 0 or D or R
(0 to stop key input)

1

FIELD STARTING POSITION nnnn 4
FIELD LENGTH nnn 3
ALPHA/HEX/INTEGER/SGL/DBL A/H/I/S/D 1
LESS-EQUAL-GREATER L or E or G
DELETE-RETAIN KEY (Repeats the last 6 for 135
(Sum of all keys next key. Enter 0 to
must not exceed 135.) stop key input if all 4

keys are not used;
otherwise input is
complete.)

AUTOSORT/86 COMMAND STRINGS 2-11

2.2 SAMPLE COMMAND STRING
The following command string (CMND$) sorts the input file
TEST.DAT. TEST.DAT contains 128 byte records in ascending order
on the field starting at byte 4; each byte record has a length of 8 bytes
in ascending order. The command string deletes all records that have
“DELETED” at byte position 4. Mode 2 is used for a full record sort,
so the parameter file is not written to the disk. The output file is
named SORTED.

See Chapter 3, “Sort Parameters,” for the definition of each parameter.

AMODE$ =? "2\1\A\0" (mode parameter string)

PARM1$ = "TEST.DAT\SORTED\0\128\N\N\B"
PARM2$ = "4\8\A\A\0" (sort keys)

PARM3$ = "N\D\4\7\A\E\DELETED\0" (sei keys)

PARM$ = PARM1$ + 'V + PARM2$ + ,V + PARM3$
(sort parameter string)

CMND$ = AMODE$ + "\" + PARM$ (final command string)

Table 2-2 explains the parameters contained in the sample command
string.

2-12 AUTOSORT/86

Table 2-2: Sample Command String Parameter
Description

PARAMETERS DESCRIPTION

(AMODE$)

2
1
A

Mode
User number
Memory storage drive is “A”
Default to maximum buffer size

(PARM1$)

TEST.DAT Input file (default drive)
SORTED Output file (default drive)
0 Skip 0 header records
128 Record length = 128 bytes
N Do not change work diskette
N Do not change output diskette
B Work file drive is “B”

(PARM2$) SORT KEYS

4
8
A

Sort key starts at byte 4
Sort key is 8 bytes long
Ascending order
Alpha (make upper/lowercase same)
End of sort keys (repeat the last 4 if more sort keys)

(PARM3$)

Do not use select “OR” function

SELECT KEYS

D
4
7
A
E
DELETE
0

Delete option (0 if no select keys)
Select key starts at byte 4
Select key is 7 bytes long
Alpha (upper/lowercase same)
Select on “EQUAL”
Select key value = “DELETED”
No more select keys (repeat last 6 if more select keys)

AUTOSORT/86 COMMAND STRINGS 2-13

3
SORT PARAMETERS

PARAMETER FILE OVERVIEW 3.1
The sort parameter files contain three types of parameters: file, key, and
control. The file parameters specify the drive, filename, and file type of
the output and input files. The allowable drives are A through Z.

The sort and select key parameters are specified by the byte position in
the record and the number of bytes in the key. Up to ten ascending or
descending keys are allowed. The keys are sorted on the hex value of
each byte if the Hex (H) control character is selected. If the Alpha (A)
control character is selected, upper- and lowercase characters sort as
the same value. The Integer (I), Single-precision (S), and Double
precision (D) control characters expect to find fields that are compati
ble with MS-BASIC integer, single-precision, and double-precision
fields. Negative numbers are considered smaller than positive; a larger
negative number sorts smaller than a lesser negative number.

If the disk change options are used, a screen prompt asks you to insert
either the work file diskette or the output diskette, and tells you the drive
in which to place it.

SORT PARAMETER DEFINITION 3.2
Generally, parameter files are created dynamically (if needed) during
run time; however, they can also be created by the PFG86M.COM
program.

When the command string (CMND$) is used to specify the sort
parameters, the actual sort parameters begin with the input filename

SORT PARAMETERS 3-1

PFG86M.COM

contained in the command string. The first four parameters specify the
mode, the user number, the memory storage drive, the sort buffer size,
and possibly additional parameters.

The parameter file generator program is executed by entering
“PFG86M” after the system prompt. Then the following prompts
appear. (The action you need to take is described following each
prompt.)

ENTER PARAMETER FILE TO CREATE (D:FILENAME), DO
NOT ENTER FILE EXTENSION (ASSUMED .SRT).

Enter the desired name.

ENTER “INPUT” FILE (D:I ILENAME.EXT)

Enter the input file.

ENTER “OUTPUT” FILE (D:FILENAME.EXT)

Enter the output file.

ENTER NUMBER OF RECORDS TO SKIP

Enter the number of header records to skip.

ENTER LOGICAL RECORD LENGTH

Enter the record length.

CHANGE WORK FILE DISKETTE?

Enter Y or N.

CHANGE OUTPUT FILE DISKETTE?

Enter Y or N.

ENTER WORK FILE DRIVE

Enter drive names from A to Z. Enter 0 to use default drive.

3-2 AUTOSORT/86

ENTER KEY #1 STARTING POSITION (0 TO STOP)

Enter starting byte (0 if no more keys). Enter 0 for the first key if
there are no select keys.

ENTER KEY #1 LENGTH

Enter the length (1 to 255).

ENTER ASCEND/DESCEND FLAG

Enter A or D.

ENTER ALPHA/HEX/INTEGER/SGL/DBL FLAG

Enter A to sort upper/lowercase as the same value. Enter H to sort
on the hex value. Enter I to sort integer fields. Enter S to sort
single-precision fields. Enter D to sort double-precision fields.

The sort keys repeat until a 0 is entered for the FIELD
#/STARTING POSITION, or until 10 keys are used.

ACTIVATE THE SELECT KEY "OR" FUNCTION?

Enter N to use multiple select keys as an AND function and Y to
use multiple keys as an OR function. For single select keys, use N.
If there are no select keys, use either.

DELETE OR RETAIN RECORD?

Enter D to delete or R to retain the records whose fields match the
select key. Enter 0 if no more select keys. Entering 0 for the first
select key results in no select function being applied.

ENTER SELECT FIELD STARTING POSITION

Enter the starting byte number.

ENTER SELECT FIELD LENGTH

Enter the length of the select field in the data record.

SORT PARAMETERS 3-3

ALPHA/HEX/INTEGER/SGL/DBL FLAG

Enter A to treat upper/lowercase the same. Enter El to use actual
hex value. Enter I to sort integer fields. Enter S to sort single
precision fields. Enter D to sort double-precision fields.

DELETE ON “LT, EQ, GT’’ THE SELECT KEY?

Enter L for less than; enter E for equal; enter G for greater than.

ENTER D/R (DELETE/RETAIN) KEY D/R KEY:

Enter the actual select key value.

The select keys repeat until a 0 is entered for the DELETE or
RETAIN parameter, or until four select keys are used. The parame
ter file is created on the specified drive.

3-4 AUTOSORT/86

_______________4
RECORD SELECT FEATURES

AUTOSORT/86 can create an output file that contains only selected
records from the input file. The select can occur during the sort pro
cess, or it may occur independent of a sort (if no sort keys are
specified).

Four independent select keys can be specified. This lets you delete or
retain records if the specified fields are less than, equal to, or greater
than the DELETE/RETAIN select keys.

If Y is entered for the select key OR function and more than one select
key is used, records that match any of the keys can be deleted or
retained.

If N is entered for the select key OR function and more than one select
key is used, all fields must match for the record to be retained (AND
function).

The select keys are totally independent of the sort keys. Selects can be
performed on the same keys or on different keys than the sorts.

For additional flexibility, the characters <, =, > can be inserted at
any place in the select key, with the following results:

► When a < is encountered in the select key, the select key character
is considered “less than” the corresponding character in the data
field.

► When a > is encountered in the select key, the select key character
is considered “greater than” the corresponding character in the data
field.

► When an = is encountered in the select key, the select key charac
ter is considered “equal to” the corresponding character in the data
field.

4

RECORD SELECT FEA TURES 4-1

If the select key is longer than the data field, it is truncated to the
length of the data field. If the select key is shorter than the data field,
the data field is compared only for the length of the select key. The
select key is considered a "match" if all characters in the select key
match the data field for the length of the select key.

The select characters can be used only with string fields. They are not
permitted with integer, single-precision, or double-precision fields.

4

4-2 A UTOSORT/86

5
USING AUTOSORT/86 WITH
PROGRAMMING LANGUAGES

Read Appendix B and run the stand-alone tests before continuing with
this chapter.

AUTOSORT/86 AND MS-BASIC 5.1
To call AUTOSORT/86 from an MS-BASIC program, the
AS86M.COM module must be resident at a known segment in
memory. To load the AS86M.COM module, type:

as86m

after the A > prompt. The MS-BASIC Interpreter and programs are
loaded above the AS86M.COM module by MS-DOS. When the
AS86M.COM module is loaded, the load segment is displayed as:

ASSEG = &Hnnnn

where nnnn is the segment where the AS86M.COM module is loaded.

This statement must be placed at the beginning of all MS-BASIC pro
grams that call the AUTOSORT/86 program (AS86M.COM). Also,
you need the following subroutine in your MS-BASIC program:

DEF’ SEG ----- ASSEG
ASORT ----- &H3
C A L L Fl S 0 R T (C M N 0 $, S 0 R T E R R R E C C N T)
DI: I SE G
RECENT ----- RECCNT
I F R E C C N T < 0 T H E N R E C C N T ----- R E C C N T +6 5 5 3 6 !
RETURN

USING AUTOSORT/86 WITH PROGRAMMING LANGUAGES 5-1

AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM

To call a sort, simply declare a command string (CMND$) and GOSUB
to the preceding subroutine. After a Return, you should test the returned
variable SORTERR%. If it is not zero, there was an error. The variable
RECCNT is equal to the number of logical records in the output file.

Follow these steps to run the test programs:

1. Copy the following programs from your AUTOSORT/86 disk to a
new, formatted disk:

► AS86M.COM

► TEST.DAT

► TEST.BAS

► PRINT. BAS

2. Copy your file to the new diskette.MSBASIC.COM

3. Place the new diskette in drive A and type AS86M so that the
 module is loaded and fixed in memory.AS86M.COM

4. Record the ASSEG statement displayed when was
loaded.

AS86M.COM

5. Edit the TEST.BAS and PRINT.BAS programs so that the ASSEG
statement is replaced with the one displayed for your system
configuration.

6. Run the test program by entering:

msbasic test

after the A > prompt. A mode 2 (full record) sort is done on 500
25-byte records. See Appendix B for a description of the parameters
used in this sort.

7. Run the PRINT.BAS program to display the TEST.DAT (input) file
or the SORTED (output) file.

8. List the TEST.BAS program and use it as an example of how this
particular command (CMND$) was formed.

5-2 AUTOSORT/86

AS86M.COM
MSBASIC.COM
AS86M.COM
AS86M.COM

You can change the mode from 2 to 5 or 7 to do different kinds of sorts.
If the mode is changed to 5, the output records consist of a 2-byte integer
field (the data record pointer) and an 8-byte string field (10-byte record
length). If you set the mode to 7, the output records consist of a 2-byte
integer field for a total record length of 2 bytes. The PRINT.BAS pro
gram must be modified to print the output file for mode 5 or 7 because it
expects a 25-byte record and the same fields as in the input file.

AUTOSORT/86 AND THE MS-BASIC 5.2
COMPILER
Follow these steps to combine AUTOSORT/86 with a compiled MS-
BASIC program:

1. Put this subroutine in the MS-BASIC program:

C HS 0 R T M C < C M! -! D $, S 0 R T E R R ”:, R E C C N 7)
RECENT = RECCNT/i
I F R E C C H T < 9 T H E! -! R E C C H T - R E C C N T +6 5 5 3 6 !
RETURN

2. To call a sort, you simply define a command string (CMND$) and
GOSUB to the preceding subroutine. The command string provides
the sort attributes.

3. Compile your MS-BASIC program using the BASCOM program.
(See the MS-BASIC Compiler Reference Manual.) You now have an
.OBJ file for your program.

4. Using LINK.EXE, link your .OBJ file with the AS86M.OBJ file to
form the executable program. (See MS-LINK in the Systems
Programmer's Tool Kit II, Volume /.)

Note: When linking the AS86M.OBJ module to your programs, the
AS86M.OBJ module must be specified for linking after the .OBJ file
you have created with the MS-BASIC Compiler.

5. Execute your program.

USING AUTOSORT/86 WITH PROGRAMMING LANGUAGES 5-3

Follow these steps to run the MS-BASIC Compiler test program:

1. Copy the following programs from your AUTOSORT/86 disk to a
new, formatted disk:

► AS86M.OBJ: Sort module

► TEST.DAT: Test data file

► TESTBC.BAS: MS-BASIC test program

► TESTBC.OBJ: Object file for test program

► PRINT.BAS: Program for printing files

► PRINT.OBJ: Object file for PRINT.BAS

2. Copy your BASRUN.EXE file to the new diskette.

3. Link the following object files to form the indicated executable files.

EXECUTABLE FILES OBJECT FILES

TESTBC.EXE TESTBC.OBJ + AS86M.OBJ
PRINT.EXE PRINT.OBJ

4. Run the test program by entering:

testbc

after the system prompt.

A mode 2 (full record) sort is done on 500 25-byte records. The sort
field starts at byte 4 and is 8 bytes long. See Appendix B for a
description of the parameters used in this sort.

5. Run the PRINT.EXE program to display the TEST.DAT (input)
file or SORTED (output) file.

6. List the TESTBC.BAS program and use it as an example of how
this particular command CMND$) was formed.

5-4 AUTOSORT/86

You can change the mode to 5 or 7 for different kinds of sorts. If the
mode is 5, the output records consist of a 2-byte integer field (the data
record pointer) and an 8-byte string field (10 byte record length). If the
mode is 7, the output records consist only of a 2-byte integer field for a
total record length of 2 bytes. The PRINT.BAS program must be
modified to print the output file for mode 5 or 7 because the program
expects a 25-byte record and the same fields as in the input file.

In order to call AUTOSORT/86 using an absolute call from the MS-
BASIC Compiler, AS86M.COM must be resident at a known memory
location. The AUTOEXEC.BAT file delivered on the distribution disk
will automatically load AS86M.COM. When AS86M.COM is loaded,
the segment is displayed as:

ASSEG = &Hnnnn

where nnnn is the segment where it is loaded (in hexadecimal).

This statement must appear in your MS-BASIC program to set the
variable “ASSEG” equal to the segment of AUTOSORT/86. Another
method of setting the value of ASSEG is by reading the value of the
file ASSEG with:

5

0 P E N " D : A S S E G " F 0 R I N P U"!" Fl S # 1
INPUT #1 AS EG
C L 0 C-1 #1

The file ASSEG was written to disk when AS86M.COM was loaded.

In addition, you will need the following subroutines in your MS-
BASIC Compiler program:

|J E I" E!..? -- j-| y y E U
AS ORT"; = I HS
C A!....!.... A B S 0!.... U T E < C M N D $, S 0 R T E R R":, R E C C N T'1 , i J ' ,)
REC G NT = RECENT";;
IF RECCNT<0 THEN

R E C C N T =. R E C C N T +6 5 5 3 6 !
RETURN

To call a sort, you simply declare a command string (CMND$) and
GOSUB to the above subroutine.

USING AUTOSORT/86 WITH PROGRAMMING LANGUAGES 5-5

AS86M.COM
AS86M.COM
AS86M.COM
AS86M.COM

5.3 AUTOSORT/86 AND MS-PASCAL
The following sample Pascal program does a mode 0 (zero) sort (full
record sort using a parameter file from the disk), saves the buffer area
on the default drive, and uses the maximum buffer space.

p r 09 !- Ill p Hs pI" 09 '..-I p '-! 1:
t y p e

c ifi d s t r i ng ::::: 1 s t1- i ng < 2 5 5 .!
v a i-

I " C O d ’:::* I W O I " d ,!
r e n t : o I " d
c o m m a n d : c m d s t r i n g

I" u n c t i on s or t p s’ C va r s c m d : 1 s t r i ng
a i " s e r r : w o r d) : w o r d e x t e r n a 1

E
P R 0 C E D U R E e r r t n < c o d e ; w o r d)
I L (I N

I.-.- r i t e 1 n < o u t p >.. i t ! F a t a '!. e r r o r n >„ i m b e r ' , c o d e)
END;

P l i:! (J I...' I:::.U R !:::. I " c I "I t I"| I ' ----- 'I:---: ! o I'" d .!
!"'s I IN

!.-.i r i t e 1 n (o u t p u t , ' N u m b e r o f r e c o r d s i s 1 , n r e c s >
END.;

beg i n
c o m m a n d : ----- ' 0 1 0 2 0 0 0 0 T E S T 1
r e c c n t : ----- s o r t p s (c o m rn a n d , ----- r c o d -----)
i - i "i t < i" ----- c: n t)
i f ----- r >::: o d ----- < > 0 t h ----- n ----- r r t n ----- r c o d e)

end .

To call a sort, simply define a command string and execute the ex
ternal procedure (sortps). Remember to use an Istring for the command
string and segmented variables (vars) where indicated.

5-6 AUTOSORT/86

To link AUTOSORT/86 to the Pascal program, you must first compile
your Pascal program using the directions given in the MS-Pascal
Reference Manual. This will produce an object version of your pro
gram (Y OURPROG.OB J).

Then, you must link your program with the AS86M.OBJ module
using the instructions given for linking modules using LINK.EXE. (See
MS-LINK in the Systems Programmer's Tool Kit II, Volume /.)

Note: The AS86M.OBJ module must not be the first module specified
for linking.

When requested by the linker, enter the object modules as shown:

Object Modules: YOURPROG,AS86M

AUTOSORT/86 assigns buffer space above its location in memory.
The contents of this buffer area are written to the specified diskette
during the sort procedure and are replaced before returning to the
Pascal program. This lets you sort large files (several megabytes) from
within the Pascal program in a reasonable time without the overhead
of dedicated buffer space.

A sample Pascal program (PASTEST.PAS and PASTEST.OBJ) is pro
vided on the distribution diskette. (The sample Pascal program on the
disk is not the same as that in the last example.) Follow these steps to
run the sample program:

1. Copy the following programs to a new, formatted diskette:

► PASTEST.PAS: The sample source file

► PASTEST.OBJ: The sample object file

► TEST.DAT: The test data file

► AS86M.OBJ: The AUTOSORT/86 module

► PRINT.BAS: An MS-BASIC file used to display the TEST.DAT
and SORTED files.

USING AUTOSORT/86 WITH PROGRAMMING LANGUAGES 5-7

2. Link PASTEST.OBJ and AS86.OBJ to create PASTEXT.EXE. (See
the MS-Pascal Reference Manual.)

3. Run the PASTEST.EXE program.

A mode 2 (full record) sort is done on 500 25-byte records. The sort
field starts at byte 4 and is 8 bytes long. See Appendix B for a
description of the parameters used in this sort.

4. If you have the MS-BASIC Interpreter, run the PRINT.BAS pro
gram to display the TEST.DAT (input) file or the SORTED (out
put) file. If you do not have the Interpreter, use the PRINT.BAS
program as a guide to constructing a Pascal program that displays
the files.

5. List the PASTEST.PAS program and use it as a guide to incorporate
AUTOSORT/86 into your Pascal program.

You can change the mode (the first parameter) in the command string
to produce different types of output files. If the mode is 5, the output
records consist of a 2-byte integer field, the data record pointer, and an
8-byte string field (for 10 byte total record length). If the mode is 7, the
output records consist only of a 2-byte integer field (for a total record
length of 2 bytes). The PRINT.BAS program must be modified to print
the output file (SORTED) for mode 5 or 7 because the program
expects a 25-byte record and the same fields as the input file
(TEST.DAT).

5-8 AUTOSORT/86

AUTOSORT/86 AND MS-FORTRAN 5.4
The following sample FORTRAN program does a mode 0 sort (full
record sort using a parameter file from the disk), saves the buffer area
on the default drive, and uses the maximum buffer space.

T E S T P R 0 G R A M F 0 R AUTO > 0 F I A N D F 0 R "I" R Fl N

PROGRAM FORTEST
CHARACTER *80 CMND
I! -! T E G E R * 2 R E C C N "I", E R C 0 D E , S 0 R T F 0
CMND ===== ! 0x 1 x0x0TEST '
RECENT ===== SORTED (CMND, ! R(ODf

R I T E (:=l=:, 1 0 0) 5 E R C 0 D E ===== ! , E R C 0 D E
W R I T E (:=!=:, 2 O O) 5 R E C C N T ===== 1 , R E C C N T

1 0 0 F 0 R M A T (1 R, Fl 8 , I 6)
2 0 0 F 0 R M Fl T (1 X , A 8 , I 6)

STOP
E ND

The CMND character string must be terminated with an up-arrow.
This is because no length byte is passed with a FORTRAN string. See
the description of mode 0 in Chapter 2 for an explanation of this com
mand string.

To link AUTOSORT/86 with your FORTRAN program, first compile
your program to produce the object file. Using LINK.EXE, link your
program with AS86M.COM when requested by the linker:

Object Modules: Y0URPR0G+AS86M

Do not load the AS86M.OBJ module first.

USING AUTOSORT/86 WITH PROGRAMMING LANGUAGES 5-9

AS86M.COM

AUTOSORT/86 assigns buffer space above its location in memory.
The contents of this buffer area are written to the specified diskette
during the sort procedure and are replaced before returning to the
FORTRAN program. This lets you sort large files (several megabytes)
from within the FORTRAN program in a reasonable time without the
overhead of dedicated buffer space.

5.5 AUTOSORT/86 AND MS-COBOL
The following sample COBOL program does a mode 0 sort (full record
sort using a parameter file from the disk), saves the buffer area on the
default drive, and uses the maximum buffer space.

!DENTIFICATION DI VISION.
PROGRAM-ID. COBTEST,
ENVIRONMENT DIVISION.
DATA DIVISION.
N 0 R K I N G -- S"!" 0 R A G E S E C T I 0! -! .
7 7 C M N D P I C X (S 0) V A L U E I S 1 O 1 0 0 x T E S "I" '
7r ERC0DI: PIC 999 99 COMP 0 VALUE 0,
7 7 R E C 0 N T P I C ''' 9 9'' 9 C 0 M P - 0 V A I.... U E O .
77 ERC PIC 99999.
7 7 R 0 N"I" P I C 9 9 9 9 9 .
PROCEDURE DIVISION .
MAIN .

C A L1 S 0 R T C 0 ' U S I N G C M N D , E R C 0 D E R E C C N T
MOVE ER CO DE: TO ERC,
MOVE RECONT TO RCNT,
DISPLAY 'ERCODE =1 ERC .
DISPLAY !RECONT =1 RCNT .
STOP RUN

The CMND character string must be terminated with an up-arrow so
that AUTOSORT/86 can find the length of the string. See the discus
sion of mode 0 in Chapter 2 for an explanation of this command
string.

5-10 AUTOSORT/86

To link AUTOSORT/86 with your COBOL program, first compile
your program to produce the object file. Using LINK.EXE, link your
program with AS86M.OBJ when requested by the linker:

Object Modules: Y0URPR0G+AS86M

Do not load the AS86M.OBJ module first.

AUTOSORT/86 assigns buffer space above its location in memory.
The contents of this buffer area are written to the specified diskette
during the sort procedure, and are replaced before returning to the
COBOL program. This lets you sort large files (several megabytes)
from within the COBOL program in a reasonable time without the
overhead of dedicated buffer space.

USING AUTOSORT/86 WITH PROGRAMMING LANGUAGES 5-11

6
ERROR INDICATIONS

When an error is detected, the error number is returned to the calling
program. If the returned error number is 0, no error occurred. These
error numbers are generated by AUTOSORT/86. Each is followed by
an explanation and suggestions for correcting the error condition.

1 READ PAST END OF FILE

This error should not occur. It probably indicates a system or
diskette malfunction.

2 READ ERROR OR BAD FILE

Same as error 1.

3 FILE NOT PRESENT WHEN OPENED

A file was not present on a specified drive. Check the directory.

4 OUT OF DIRECTORY SPACE

Too many directory entries. Delete unnecessary files.

5 NOT USED

6 NOT USED

7 FILE NOT PRESENT WHEN CLOSED

Same as error 1.

8 INSUFFICIENT DISK SPACE

Delete unnecessary files.

6

ERROR INDICATIONS 6-1

9 SORT BUFFER SPACE TOO SMALL

Set larger buffer size in the command string.

11 NOT USED

13 SYNTAX ERROR IN THE COMMAND STRING

Check the command string carefully.

14 SELECT KEY LENGTH IS ZERO

Select key length cannot be zero.

15 SYNTAX ERROR IN THE COMMAND STRING

Check the command string carefully.

6-2 AUTOSORT/86

AUTOSORT/86 PUBLIC
INTERFACES

Table A-1 shows the PUBLIC entry and access locations used by
AUTOSORT/86.

Table A-l: AUTOSORT/86 PUBLIC Entry
and Access Locations

PUBLIC SYMBOL NORMALLY USED BY

SORTMC
SORTPS
SORTFO
SORTCO

MS-BASIC Compiler
MS-Pascal
MS-FORTRAN
MS-COBOL

SORTMC ENTRY POINT A. 1
On entering at SORTMC, three nonsegmented pointers must be
pushed on the stack. These represent the addresses of the command
string descriptor, sort error code, and record count, in that order. All
pointers are assumed to be offsets to the Data Segment register (DS) at
entry.

The command string descriptor must be 4 bytes. The first 2 bytes con
tain the length of the command string; the next 2 bytes contain the
offset of the command string relative to the DS register at entry.

AUTOSORT/86 PUBLIC INTERFACES A-l

At exit from AUTOSORT/86, the three pointers (6 bytes) are removed
from the stack and the returned parameters are placed in the specified
addresses.

A.2 SORTPS ENTRY POINT
On entering at SORTPS, two segmented pointers (8 bytes) must be
pushed on the stack. These represent the addresses of the command
string descriptor and error code, in that order. The segment is pushed
on the stack first, followed by the offset. The first byte of the command
descriptor must contain the length, followed by the actual string of
characters.

At exit from AUTOSORT/86, the two pointers (8 bytes) are removed
from the stack and the error code is placed in the specified offset and
segment. The returned parameter (RECCNT) is placed in the AX
register as the returned function.

A. 3 SORTFO ENTRY POINT
On entering at SORTFO, two segmented pointers must have been
pushed on the stack. These represent the addresses of the command
string descriptor and error code, in that order.

The command string segmented pointer must point to the first actual
byte of the command string. The command string must be terminated
with an up-arrow so that AUTOSORT/86 can determine the length.

At exit, the two segmented pointers (8 bytes) are removed from the
stack and the error code is placed in the specified address. The
returned parameter (RECCNT) is returned in the AX register.

A-2 AUTOSORT/86

SORTCO ENTRY POINT A.4
On entry at SORTCO, three nonsegmented pointers must be pushed
on the stack. These represent the addresses of the command string
descriptor, error code, and RECCNT, in that order.

All pointers are assumed to be offsets to the Data Segment register
(DS) at entry. The command string must be terminated with an up-
arrow, so that AUTOSORT/86 can determine the length.

At exit, the parameters ERROR CODE and RECCNT are placed in
the specified addresses.

AUTOSORT/86 PUBLIC INTERFACES A-3

STAND-ALONE SORTING

To do a stand-alone sort/select, the following files must be available on
one of the drives:

► : This program requests some information and then
loads and calls the sort module.
SORTM.COM

► : The sort module.AS86M.COM

► A previously created sort parameter file.

Follow these steps to run a sample stand-alone sort:

1. Copy , , TEST.DAT, and TEST.SRT
from the distribution disk to a newly formatted disk in drive A.

SORTM.COM AS86M.COM

2. Execute the sort caller by entering “SORTM” after the system
prompt. A series of prompts appears.

3. When the sort program driver is requested, enter:

a:

4. When the sort mode is requested, enter:

0

5. When the user number is requested, enter:

1

6. When the paraineter filename is requested, enter:

test

The sort begins and will complete in 10 to 15 seconds.

STAND-ALONE SORTING 8-1

SORTM.COM
AS86M.COM
SORTM.COM
AS86M.COM

The TEST.DAT file consists of 500 records of 25 bytes each. Table B-l
shows the fields contained in TEST.DAT.

Table B-l: TEST.DAT Field Description

START LENGTH DESCRIPTION

1 1 Constant “R”
2 2 2-character string
4 8 8-character string

12 2 Integer
14 4 Single-precision
18 8 Double-precision

The parameter file (TEST.SRT) specifies a sort on the string field,
starting at byte position 4. The field is 8 bytes long. Mode 0 is selected
for a full record sort. The output file is named SORTED.

Important Note: Since the record is less than 128 bytes long and the
file was created using MS-BASIC, you may have enough null bytes at
the end of the file for them to appear as additional null records. In an
ascending sort, these null records migrate to the beginning of the file.
To avoid this problem, a single byte field with a constant "R" is placed
at the beginning of each record. Then, a select key that retains only
those fields having an "R" at position 1 is defined in the parameter
file.

If you have MS-BASIC, run the PRINT.BAS program to display the
TEST.DAT and SORTED files. Here is how the parameter file
TEST.SRT is created using PFG86M.COM.

8-2 AUTOSORT/86

PFG86M.COM

First, “PFG86M” is entered after the system prompt. Then, the follow
ing answers are given in response to prompts:

PARAMETER FILE NAME: TEST
INPUT FILE NAME: TEST.DAT
OUTPUT FILE NAME: SORTED
NO. OF RECS TO SKIP: 0
LOGICAL REC LENGTH: 25
CHANGE WORK DISK? N
CHANGE OUTPUT DISK? N
WORK FILE DRIVE: 0
KEY #1 START POSITION: 4
KEY #1 LENGTH: 8
KEY #1 ASCEND/DESCEND: A
KEY #1 ALPHA/HEX/INTEGER/SGL/DBL: A

KEY #2 START POSITION: 0

SEL KEY “OR” FUNCTION: N

SELECT KEY #1

DELETE OR RETAIN: R
SEL FIELD START: 1
SEL FIELD LENGTH: I
ALPHA/HEX/INTEGER/SGL/DBL: A
LT,GT,EQUAL: E
ACTUAL SELECT KEY: R

SELECT KEY #2

DELETE OR RETAIN: 0

When all of these prompts are answered, AUTOSORT/86 creates
parameter file TEST.SRT.

STAND-A LONE SOR TING B- 3

INDEX

Alpha option, 1-3
AUTOSORT/86

features, 1-1 to 1-3
and programming languages,

Chapter 5

Command strings, Chapter 2
format, 2-1
sample, 2-12 to 2-13

Control characters
Alpha, 3-1
Double-precision, 3-1
Hex, 3-1
Integer, 3-1
Single-precision, 3-1

Disk change option, 1-3, 3-1

Error indications, 6-1 to 6-2

Mode parameters, 2-2 to 2-3
Modes, 1-1 to 1-2

descriptions, 2-4 to 2-13
MS-BASIC Compiler, 5-3 to 5-5
MS-BASIC Interpreter, 5-1 to 5-3
MS-COBOL, 5-10 to 5-11
MS-FORTRAN, 5-9 to 5-10
MS-Pascal, 5-6 to 5-8

Parameter files, 2-3
generator, 2-3
overview, 3-1
prompts, 3-2 to 3-4

Parameter string description,
2-10 to 2-11

Programming languages and
AUTOSORT/86, Chapter 5

PUBLIC entry and access locations,
A-l to A-3

Record select features, Chapter 4

Select keys, 1-3, 4-1
Sort buffer size, 2-2 to 2-3
Sort parameters, 2-3, Chapter 3

definition, 3-1
SORTCO, A-3
SORTFO, A-2
SORTMC, A-l
SORTPS, A-2
Stand-alone sort/select, Appendix B

Work files, 1-2 to 1-3

INDEX Index-1

ALTERING CHARACTER SETS WITH EFONT

From Michael Wishnietsky's PUB Bulletin Board

#290 (of 290) JAN EWING, on 31-MAR-86 03:16
Subject: ALTERING CHARACTER SETS

Re: NIGHT OWL'S message of March 9, 1986

Any of the 4200 byte character sets you asked
about can be loaded with the extended characters
from any other set by this process:

1. If you're using the 2.11 version of EFONT and
you're not comfortab1e with the provisions for
moving about in subdirectories, make sure the
character sets you want to manipulate are both on
the same directory (or disk) as EFONT.

2. Load EFONT, select the DISK OPTION (#5) from
the menu, then load the special character set
you're interested in (we'll call it SPECIAL.CHR).

3. Loading the character set will return you to
the MAIN MENU. As soon as the set is loaded,
select DISK (#5) again.

4. From DISK, select the HEADER OPTION (#4).

5. You'll note that one of the lines on the
HEADER listing says "Number of Records (4
chars/record)" and next to that, high!ighted in
reverse video wi11 be a number. It's likely that
this number wi11 be "0032." This number controls
the number of characters you can load into a set.
If it says "0032" then use the cursor keys to move
the cursor down and type in "0064". Then return
to the MAIN MENU (#1).

6. Once back at the main menu, hit the "+" key
once or twice, unti1 you have a blank space in the
character set area. (Whether you hit it once or
twice depends on whether the extended characters
are a 1 ready installed. If the number in the

- 2 -

header was 0032 when you began working, you'll
only have to hit it once. This all assumes the
number was 0032.

7. Again select DISK (#5) and load the second
character set, the one from which you wish to take
the control characters. I suggest you use
AMERWP.CHR, although it probably wouldn't matter
since the extended characters are usually the
same. This isn't ALWAYS true, however, since the
characters are easily manipulated and may have
been at one time or another, soooooooooooo, to be
on the safe side, use AMERWP.CHR. Taking the
characters from it won't change it any.

8. You have now 1oaded AMERWP.CHR into your
working area on the two blank pages after
SPECIAL.CHR. BOTH sets are loaded. Your task,
shou1d you choose to accept it (a snap), is to
move the second page of AMERWP.CHR into the second
page position of SPECIAL.CHR.

9. In the upper right hand corner of the screen
you'11 see a 1ine that says "CHARACTER SET
NUMBER". This number wi11 be "0" when you first
load SPECIAL.CHR. It wi11 increase each time you
hit the "+" key.

10. Use the »-" key to go back to CHARACTER SET
NUMBER 1 (thi s wi11 be the 1st page of
AMERWP.CHR). Use the cursor keys to go to the
lower right hand corner of the working area.

11. Select the COPY OPTION (#3). The command
line wi11 change and you'11 see an option called
RANGE and an option called COPY. Press RANGE.
Then use the "right-arrow" cursor key to move the
cursor. It wi11 take you to the next page.
Continue pressing that key and move the cursor
through the entire page (this wi11 be CHARACTER
SET NUMBER 2 now, the second page of AMERWP.CHR).
Pressing RANGE selects the first character to be
put into the copy buffer. As you move the cursor,
each character it passes over wi11 be added to the
buffer.

- 3 -

12. Move the cursor until you again have a blank
page. Then press RANGE again, and the buffer will
be closed. The characters are inside just
Waaaaaaaiting to be copied out into a new
pos i t i on.

13. Use the «+« or key to go to CHARACTER SET
NUMBER 0. Position the cursor at the lower right
hand corner of the area. Press COPY. Voila!! The
second page of AMERWP.CHR will appear magically
over it's first page. This is SUPPOSED to happen.

14. You now have two pages of characters.
CHARACTER SET NUMBER 0 is the SPECIAL.CHR you
wanted to use, and CHARACTER SET NUMBER 1 is the
page of control characters (the ones from 128 up)
you wanted from AMERWP.CHR.

15. Beware, however, it must now be saved. Make
SURE (by using the "+" and keys) that
CHARACTER SET NUMBER 0 is showing.

16. AGAIN, select DISK (#5). When the command
1ine changes select SAVE. The screen should tel 1
you that the name of the character set is the same
as the SPECIAL.CHR set. If you want to use the
same name, select the option that says NAME OK.
If not, type in a new name. The program
automatically adds ".CHR."

That's it. Exit EFONT arid your new set is ready
to use. It's about a tenth as complicated to do
it as it appears to be from all these directions.
It takes no time at al 1. The method wi 11 be
obvious once you've done it once, and the command
1ine makes it almost foolproof. Nothing is
changed unti1 you save your set, so you can play
around without fou1ing anything up.

EFONT

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This manual contains proprietary information
which is protected by copyright. No part of this manual may be repro
duced, transcribed, stored in a retrieval system, translated into any
language or computer language, or transmitted in any form whatsoever
without the prior written consent of the publisher. For information
contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
EFONT is a trademark of Victor Technologies, Inc.
MS- is a trademark of Microsoft Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

Second VICTOR printing November, 1983.

ISBN 0-88182-101-2 Printed in U.S.A.

II EFONT

CONTENTS

1. Introduction.. 1-1

2. The Work Screen and the Main Menu........................2-1

3. Functions Accessed Through the Main Menu
3.1 Exit..3-1
3.2 Cell Mode...3-1
3.3 Copy..3-2
3.4 Line Mode.. 3-3
3.5 Disk Mode..3-4
3.6 Width Mode...3-7

4. Editing Keys
4.1 Cursor Keys.. 4-1
4.2 Dot Edit Modes...4-2

5. Sample EFONT Editing Session...................................5-1

CONTENTS III

CHAPTERS

1. Introduction

2. The Work Screen and the Main Menu

3. Functions Accessed Through the Main Menu

4. Editing Keys

5. Sample EFONT Editing Session

CHAPTERS V

1
INTRODUCTION

If you take a close look at your screen, you will see that each letter or
character on the screen is made up of many small dots. The arrange
ment of these dots gives each character its distinctive shape. If you could
change the arrangements of the dots, you could create letters and char
acters that are not found in any of the character sets supplied with your
operating system. The EFONT font editor lets you create these custom
characters.

With EFONT, you can change the appearance of the letters and charac
ters that appear on the screen, or you can design your own character sets
from scratch. You can load the characters that you create into your
operating system so they appear onscreen as you work with an applica
tion or language program. (EFONT is especially useful with the graphics
package, GRAFIX.) In addition, you can print your edited character set
if you have a dot-matrix printer.

Before running EFONT, make sure that your operating system includes
a standard keyboard and character set. (If you want to load your edited
character set onto a program or application diskette, you also need to
have a copy of the operating system configuration program.)

INTRODUCTION 1-1

EFONT CAPABILITIES

The EFONT font editor is a menu-driven program. The following menu
options are available:

► Cell mode: Makes changes to the currently displayed character. The
character can be rotated, mirrored, put into reverse video, or erased.

► Copy: Moves a range of characters from one place to another within
a character set, or from one character set to another.

► Line mode: Controls the insertion and deletion of horizontal and
vertical lines. Using this mode, you can change the horizontal size of
a character or change that character’s position within the character
matrix display.

► Disk mode: Loads and stores your new or modified character sets
onto a diskette. Disk mode is also used to edit the header. (The
header contains important information used by the operating system
configuration program.)

► Width mode: Constructs proportionally sized characters.

► Exit: Takes you from the Disk or other editing menu back to the
Main menu. If you press the Exit key at the Main menu, you return
to the operating system.

1-2 EFONT

2
THE WORK SCREEN
AND THE MAIN MENU

To start EFONT, boot your operating system. When the A > prompt
appears on your screen, type EFONT and press Return. EFONT
displays:

0123456789RBCDEF

81234567B9RBCDEF

CHARACTER FONT EDITOR U2.1

:eei
FILE NONE = SfflPLE CHR
CHARACTER SET NUNBER 0
POSITION NODE
EMPTY COPY BUFFER
CHARACTER WIDTH 1

8123456789:;<:>n
lABCDgFGHIJKLNNd
pqrstuuwxyzixfj

akcdefghi jkl»no]
pqrsiuvwxgz{! l~a|

|1 EXIT i aw i3 COPY 1HEINE. ||5 DISK ||6 WIDTH ||7 HELP |

This display is the “work screen”—the place where you edit an existing
character set or create a new one. The work screen has the following
parts:

► Character cell—An enlarged view of the character being edited. It
contains one of the two cursors present in the work screen. The char
acter is displayed on a grid with 16 columns and 16 rows (for 256
possible positions). A period marks each spot where a row and a
column intersect. If you put the cursor on one of these periods, you

THE WORK SCREEN AND THE MAIN MENU 2-1

can enter a dot that becomes part of the character you’re editing. You
can also remove a dot.

► Character set table—Consists of two parts: the character set display
and the attribute field.

2

The character set display shows the character set you are editing
(character set 0, unless you change it). Each time you change the
character set, the work screen and the characters in the character set
display also change. The character set display also contains the other
cursor present in the work screen. The position of this cursor* deter
mines which character is displayed in the character cell and in the
attribute field.

The attribute field shows the character pointed to by the cursor in the
character set display. That character is shown in several ways: reverse
video, underlined, half-intensity, and all combinations of the three.
Two additional displays of the character being edited are at the right
side of the attribute field: one in normal video and the other in
reverse video. These displays are larger than the others, and are used
to view characters larger than the normal text mode. (Characters up
to 16 dots wide by 16 dots high can be displayed; the normal size is
10 by 16 dots.)

► Status area—Consists of the five lines of information you see at the
center right of your screen. Each line tells you something about the
current edit.

The first line is the filename of the character set being edited; the
second is the number of that character set; the third line shows the
edit mode; the fourth line tells the status of the copy buffer; and the
last line tells you the width of the character under edit (useful when
making proportionally spaced character sets).

► The Main menu—The row of numbered functions at the bottom of
the screen. The Main menu is the first one you see when you begin a
session with EFONT; each of the other menus returns you to the
Main menu.

Each function on the Main menu is controlled by a like-numbered
key at the top of your keyboard (the function keys). Each function
displays its own menu when you press its function key.

2-2 EFONT

FUNCTIONS ACCESSED
THROUGH THE MAIN MENU

EXIT 3.1
The Exit key is at the left of the Main menu. If you press it, the screen
clears and displays two new function keys:

NO YES

If you press no, the Main menu reappears. If you press yes, you exit
EFONT and return to the operating system.

CELL MODE 3.2
The Cell key is the second function key on the Main menu. It lets you
alter the character displayed in the character cell. When you press the
Cell key, this menu appears at the bottom of the screen:

MENU REVERSE MIRROR ROTATE CLEAR HELP

The Menu key is an exit key; it returns you to the Main menu. (This is
true for the Menu key on each of the menus.) The last function key on
this (and any other) menu is a Help key. When you press it, the work
screen disappears and you will see a screen of directions on how to use
the function keys in the current menu.

FUNCTIONS ACCESSED THROUGH THE MAIN MENU 3-1

The Reverse key reverses the display in the character cell—all of the
“on” dots turn off, and all of the “off” dots turn on.

The Mirror key rotates the character in the character cell on its verti
cal axis, producing a “mirror image” of that character.

If you press the Rotate key, the character in the character cell rotates
90 degrees clockwise. You can use the Rotate function to create side
ways character sets.

The Clear key erases the character in the character cell.

3.3 COPY
The third function key on the Main menu is the Copy key. It lets you
move characters from one location to another. You can use Copy to
move characters from one character set to another, for example, or
within a character set to exchange the positions of the upper- and
lowercase letters.

When you press Copy, the Main menu is replaced by the Copy menu:

MENU RANGE COPY HELP

The Menu key returns you to the Main menu.

The Range key lets you identify a group of characters (range) that you
want to copy to another location. To do this, you must define the
starting character of the range and limit the range with an ending
character.

3-2 EFONT

Copy moves a range of characters from one place to another. To use
Copy:

1. Define the range of characters to be moved. Mark the first charac
ter of the range with the Range key. Then mark the end of the
range by moving the character set cursor to the character immedi
ately after the last character in the range. Then press Range again.
The range you’ve marked is highlighted with bright video. Make
sure that it includes all the characters you want to move; if it
doesn’t, redefine the range.

2. After you define the range, the fourth line in the status area of the
work screen tells you that the copy buffer is full. (The copy buffer
holds up to 256 characters.) An error message appears if you try to
move a larger range of characters.

3. When the range is correctly defined, move the character set cursor
to the place to which you want to move the range of characters.
Then, press Copy to copy your range to the new location.

The remaining key on the Copy menu displays Help information.

LINE MODE 3.4
The Line key controls the insertion and deletion of horizontal or vert
ical lines. It lets you change the horizontal size of a character or that
character’s position within the character cell. When you press the Line
key, the Line menu appears:

MENU INSERT H DELETE H INSERT V DELETE V HELP

The Menu key returns you to the Main menu.

The Insert H key scrolls the lines between the cursor location and the
bottom of the character cell matrix down one position. At the same

FUNCTIONS ACCESSED THROUGH THE MAIN MENU 3-3

time, it inserts a row of periods at the cursor location.

The Delete H key deletes the row of dots at the cursor position and
scrolls up all the rows below the cursor position. At the same time, it
adds a row of periods at the bottom of the character cell.

Insert V inserts a column of periods at the cursor position. All
columns to the right of the cursor position scroll one position to the
right. The rightmost column is erased.

The Delete V key erases the column of periods including the cursor
position and all columns to the right of the cursor scroll left one posi
tion. At the same time, this key adds a column of periods at the right
edge of the cell.

3.5 DISK MODE
The fifth key on the Main menu is the Disk key. It lets you load and
store any character set you create onto diskette. The Disk key also lets
you edit the header. When you press the Disk key, the Disk menu
replaces the Main menu:

MENU LOAD SAVE HEADER CHDIR HELP

As before, the Menu key returns you to the Main menu.

The Load key loads any existing character into the active character set
shown on the work screen. To load a character set:

1. Return to the Main menu and choose a number for the character
set you want to load. (To do this, press the plus (+) key or minus
(—) key until the desired number appears in the status area of the
work screen. These numbers range from 0 to 7; in most cases, 2
through 7 are empty.)

3-4 EFONT

WARNING: Don’t select character set 0 unless you actually want
to replace the system character set.

2. Press the Disk key to call the list of filenames of the available char
acter fonts.

3. Use the cursor movement keys (described in Chapter 4) to move
the highlight to the name of the character set you want to load.
Then, press the Load key. The new character set loads, and you
return to the Main menu.

The Save key saves any new or edited character set on disk. If you
press Save, the screen clears, displays the filename of the character set
being edited, and then replaces the Disk menu with the following:

DISK NAME OK HELP

If you want to change the filename of your character set, use the cur
sor keys to position the cursor in the filename field and type new
characters. (The Backspace and Delete keys erase characters preceding
the cursor.) When the name is correct, press the Name OK key to
save the character set on the disk. When the set is saved, you return to
the Disk menu.

If you don’t want to save your character set, press the Disk key to
return to the Disk menu.

FUNCTIONS ACCESSED THROUGH THE MAIN MENU 3-5

The Header key allows you to edit the header block. (This block is
saved at the same time you save a character set file. It contains impor
tant information for the system configuration program and the
GRAFIX package.) Pressing the Header key clears the current screen
display and replaces it with the header form and the Header menu:

Set Type (Character)
Format Version
Display Class .
Banner Nave
Banner Version
Convent
Originator
Date (yy/vn/dd)
Hunter of Records (4 chars/record) ...
Character Height (I-16)
Super/Suhscript Shift (B~7)
Horizontal/Vertical Printing
User/Systev Charset
Stock/Special Flag
Width Flag (l~16)/Proportional

7 HELP1 RETURN TO DISK MENU

There are three types of fields in the header form:

► The first nine are ASCII fields. They are changed in the same way
as the filename fields in the Disk Save function described above.

► Three form increment fields contain numeric data. These are:
Character Height, Super/Subscript Shift, and Width Flag. You can
change the numbers in these fields by pressing any key.

► There are three toggle fields: Horizontal/Vertical Printing,
User/System Charset, and Stock/Special Flag. When the cursor is in
one of these fields, you can choose an option by pressing any key.

3-6 EFONT

Use the up- and down-cursor keys if you want to move from one
header block field to another. The cursor-left and cursor-right keys
move from one character to another within an ASCII field.

The CH DIR key displays all the subdirectories under the currently
active directory. Use this key to find a file (a character set file, for
example) that you stored in another directory.

Press CH DIR, and use the cursor keys to highlight and load the sub
directory you want. To return, press CH DIR again, and select ..
Repeat this procedure until you are back at the original directory.

Press Return To Disk Menu when all of the header fields are correct.
The Help key displays a listing of the fields and their types.

WIDTH MODE 3.6
Use the Width key when you construct proportionally sized charac
ters. The width of a character dictates how close the next character in
a word can appear. If you press the Width key, a new menu appears:

MENU AUTO MANUAL HELP

The Menu and Help keys work as described earlier. The Auto func
tion key tells EFONT to automatically set the width of the character
under edit. If you press Manual, the width of the character under edit
is increased. (The character width is listed in the fifth line in the status
area of the screen. If you want proportional characters, be sure to set
the width field in the header form to proportional.)

FUNCTIONS ACCESSED THROUGH THE MAIN MENU 3-7

EDITING KEYS

CURSOR KEYS 4.1
The EFONT program has several cursor keys that operate in most edit
modes.

► The cursor arrow keys (<—, f, 1) move the character set cursor to a
new character.

► The number keys on the numeric pad move the cursor within the
character cell. (The Help key on the Main menu shows you an exam
ple of how the number keys move this cursor.) The number keys are
positioned around the 5 key in the same way that they move the cur
sor.

DOT
CURSOR
MOVEMENT

UP
&

LEFT

LEFT

DOWN
&

LEFT DOWN

UP UP
&
RIGHT

RIGHT

DOWN
&
RIGHT

► The Return key and the Enter key (on the 10-key pad) are toggles for
the dots in the character cell. Pressing one of these keys either makes
a dot appear at a blank location or erases an existing dot.

► The Backspace key restores the character cell to its original condi
tion. This key is a big help when you want to erase your changes and
start the edit process over with the original character.

EDITING KEYS 4-1

4

4.2 DOT EDIT MODES
The Dot Edit mode is displayed in the third line of the status area. You
change the mode by using the Equals (=) key on the 10-key pad. The
character set under edit is changed by using the Plus (+) key or the
Minus (—) key on the 10-key pad.

EFONT has four edit modes:

► Position mode: This is the safest of the four modes because it is non
destructive—it lets you move the dot cursor around the character cell
without changing any dots. The cursor keys function normally.

► Reset mode: Dots are turned off when the cursor passes over them,
regardless of their current status.

► Toggle mode: Dots beneath the cursor change to the opposite status
when you move the cursor: “On” dots are turned off; “off” dots are
turned on.

► Set mode: Dots are turned on when the cursor passes over them,
regardless of their current status.

4-2 EFONT

5
SAMPLE EFONT EDITING SESSION

You are now familiar with the various menus, function keys, and edit
ing keys that EFONT uses. In this chapter, you will use these menus and
keys to create a character set. This example takes you through the pro
cess step by step. If you’re unsure of any step, check the previous
chapters for details.

1. Boot your operating system and type EFONT to load the font edit
ing program.

2. When the work screen appears, press Disk at the Main menu to call
the directory of character set filenames.

3. Use the cursor arrow keys to move the reverse video highlight over
NORMAL.CHR.

4. At the Disk menu, press Load to load the Normal character set into
EFONT. (The letters on your screen display remain the same, since
the Normal character set is also used by the SAMPLE.CHR set
automatically loaded when the work screen appears.)

5. For practice, copy character set 0 of the Normal font, rather than
editing the original. Press Menu to return to the Main menu, then
press Copy. The Copy menu appears at the bottom of your screen.

6. The character set cursor should be at the first character of character
set 0. Press the Range key to set the beginning of the range at the
first character.

7. Using the cursor arrow key, move the cursor over ALL the charac
ters in the Normal character set. When you reach the last character,
press the right-arrow key one more time. This puts the cursor on the
first character in character set 1.

SAMPLE EFONT EDITING SESSION 5-1

8. Press Range again to define the range of characters to copy. If you
move the character set cursor back one space, you see all of charac
ter set 0 highlighted in bright video. The copy buffer line in the
status area now reads “COPY BUFFER FULL.”

9. Using the cursor arrow keys again, move the cursor to the upper left
character in character set 1.

10. Press the Plus key on the 10-key pad. Character set 2 displays. (This
set is blank.)

11. Press Copy. The character range you defined earlier (all of character
set 0) appears in the character set display. Then, press Menu to
return to the Main menu.

12. Use the cursor arrow keys to move the character set cursor to the
uppercase A. The uppercase A appears in the character dot matrix.

13. Using the cursor movement keys and the Enter key on the 10-key
pad, add or delete dots until you’re satisfied with the new look of
the uppercase A. When you have finished editing the character, go
on to uppercase B, and then to each uppercase letter in the charac
ter set display.

14. When you have edited all the uppercase characters, press Save at the
Disk menu to save your edited character set on the EFONT
diskette.

15. Now, EFONT asks you to verify or change the name of your edited
character set. Use the cursor arrow keys to move the cursor to the
filename field, and enter the name NEWONE.CHR. Then, press
Name OK to record the filename on the diskette.

16. If you press Disk, you can see that the filename NEWONE.CHR is
now in the directory.

5-2 EFONT

You have edited and saved a character set; now you must make it avail
able for use with your system and application diskettes. To do this, you
need an operating system configuration diskette (available from your
dealer). Follow these instructions:

1. Put the EFONT diskette in drive A and the operating system
configuration diskette in drive B.

2. Using the operating system’s Copy command, copy the file
NEWONE.CHR from drive A to drive B.

3. Remove the EFONT diskette, and move the system configuration
diskette into drive A.

4. Re-boot your operating system. When the first system configuration
menu appears, select “Generate a New Operating System” and
press the Return key.

5. Select the appropriate keyboard at the Keyboard table, and press
the Return key.

6. Answer Yes when the program asks if you want a second character
set.

7. When the next display appears, choose “NEWONE” as your second
character set. Then press the Return key.

8. Select the other elements of your operating system as you are asked
for them.

9. When the “Current Configuration” display appears, accept the
configuration as listed and press the Return key.

10. When the next screen appears, select “User Entered Filename” and
press Return.

11. Enter NEWSYS and press the Return key.

12. Answer Yes when the program asks if you’re sure you want to write
your operating system to NEWSYS. Then press the Return key.

13. Insert a program or application diskette into drive B. When the
BOOTCOPY program prompt appears on your screen, copy your
operating system onto the diskette in drive B.

SAMPLE EFONT EDITING SESSION 5-3

14. Your edited character set is now the second character set in your
operating system; however, you need one more step before you can
use that new character set. When you load your new operating sys
tem into your computer, press the Shift key and enter ALT-N while
at the operating system level. This loads your edited character set
into the operating system. If you want to use the other character set
in the operating system, enter ALT-O without pressing the Shift
key.

5-4 EFONT

INDEX

Cell mode, 3-1
Character cell, 2-1
Character set, display of, 2-2
Character set table, 2-2
Character width, 3-7
Copy, 3-2 to 3-3
Cursor movement, 4-1

Disk mode, 3-4

Edit, status of, 2-2
Edit modes, 4-2
Exit, 3-1

Function keys at main menu
cell mode, 3-1
copy, 3-2 to 3-3
disk mode, 3-4
exit, 3-1
line mode, 3-3

Header block, 3-5 to 3-6

Invoking EFONT, 2-1

Line mode, 3-3
Lines, insert and delete, 3-3 to 3-4
Load character set, 3-4 to 3-5

Move characters, 3-2 to 3-3

Proportional spacing, 2-2, 3-7

Sample editing session, 5-1 to 5-4
Save a character set, 3-5
Status area, 2-2

Work screen, 2-1

INDEX Index-1

KEYGEN

COPYRIGHT

® 1983 by VICTOR®.

All rights reserved. This manual contains proprietary information which
is protected by copyright. No part of this manual may be reproduced,
transcribed, stored in a retrieval system, translated into any language or
computer language, or transmitted in any form whatsoever without the
prior written consent of the publisher. For information contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
KEYGEN is a trademark of Victor Technologies, Inc.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.
Second VICTOR printing December, 1983.

ISBN 0-88182-037-7 Printed in U.S.A.

II KEYGEN

CONTENTS

1. Introduction... 1-1

2. KEYGEN Menus
2.1 The Load Menu... 2-2

2.1.1 Keyboard Layout..2-3
2.1.2 Character Set.................. 2-4
2.1.3 Keyboard Map.. 2-4

2.2 Header Information... 2-4

3. Creating a New Keyboard
3.1 Assign Menu.. 3-2
3.2 Assigning a Key...3-3

3.2.1 Assigning from the Character Set............................ 3-4
3.2.2 Type In...3-5
3.2.3 Assigning Attributes... 3-5
3.2.4 Assigning a Function.. 3-7

4. Completing KEYGEN
4.1 Saving a Keyboard...4-1
4.2 Using the New Keyboard.. 4-2

APPENDIXES

A: Creating a .KBD File..A-l

B: Keyboard Considerations...B-l

INDEX.. Index-1

CONTENTS III

FIGURES

2-1: KEYGEN Menus.. 2-1
2-2: Load Menu... 2-2
2-3: Main Menu.. 2-5
2- 4: Header Menu...2-6

3- 1: Assign Menu.. 3-2
3-2: Alter Menu... 3-3
3-3: Function Menu..3-7

TABLES

3-1: Attributes... 3-6
3-2: Function Key Options..3-8

B-1: Keycode and Characters... B-2

IV KEYGEN

CHAPTERS

1. Introduction

2. KEYGEN Menus

3. Creating a New Keyboard ...

4. Completing KEYGEN

Appendix A. Creating a .KBD File

Appendix B. Keyboard Considerations

u

2

3

4
■

A

B

CHAPTERS V

INTRODUCTION

KEYGEN is a program named for its “key generating” or customizing
capacity. It lets you customize a keyboard to fit your needs. You can,
for example, combine a particular keyboard display with a German
character set to produce a German keyboard. You can move certain
commands to more easily remembered keys, or configure a single key to
enter a string of characters.

You can use KEYGEN to create several different keyboards and save
them in files. Then, when you need a special configuration, simply load
the appropriate file.

KEYGEN is a menu driven program, with displays that prompt you for
necessary responses. And on-screen help is available from every menu.

Note: Printers vary in their ability to support different character sets.
Check your printer manual to find out which sets it will print.

Using KEYGEN
Begin using the program by creating a KEYGEN disk. Copy the follow
ing files from your tool kit disks onto a formatted diskette or hard disk
volume.

1. KEYGEN.EXE and KEYGEN.DAT from disk 2.

2. Files with the .KBD suffix (display files) from disk 3.

3. Files with the .KB suffix (keyboard files) from disk 3.

4. Files with the .CHR suffix (character files) from disks 2 and 3.

INTRODUCTION 1-1

Next, log on to the drive or volume with the KEYGEN files. At the
operating system prompt, type:

keygen

KEYGEN comes up and displays the first menu.

1-2 KEYGEN

2
KEYGEN MENUS

KEYGEN is organized with a tree-like structure. When you first load
the program, you are at the topmost level. From that level, you move
down and branch out, depending on the options you choose.

Figure 2-1 illustrates the movement through KEYGEN menus.
2

MS-DOS

Figure 2-1: KEYGEN Menus

At every level KEYGEN displays a function key menu which lists the
options available at that point. Some of these options are the same from
menu to menu, and others differ.

KEYGEN MENUS 2-1

Function key 1, for example, moves you up through KEYGEN. If you
press 1 EXIT from the first menu, you return to the operating system. If
you press 1 MENU- in the succeeding levels, you return to the previous
menu. Function key 7 HELP always displays on-screen information
which explains the available choices.

The remaining function keys—2 through 6—perform tasks specific to
the level you are on, and then take you to the next logical level.

2

2.1 THE LOAD MENU
To customize a keyboard, you must first load three components:

1. A keyboard layout (filename extension .KBD)

2. A character set (filename extension .CHR)

3. A keyboard map (filename extension .KB)

Use the Load Menu to choose your "starter set”. This menu appears
when you load KEYGEN.

Figure 2-2: Load Menu

FEXIT|2~ LOAD 13 DRIUE |4 M DIR |5 PAGE + lb PAGE - I? HELP

2-2 KEYGEN

KEYBOARD LAYOUT 2.1.1

A keyboard layout file (with the extension .KBD) contains the informa
tion to draw a diagram of a specific keyboard. KEYGEN supports a
variety of keyboard structures; your MS-DOS User’s Guide has a listing
of all the available keyboards and character sets.

Use the cursor arrow keys to move through the keyboard layout files.
Highlight the one you want and press 2 LOAD.

Changing Drives and Directories
If the file you are looking for is on another drive or volume, change
drives by pressing 3 DRIVE.

KEYGEN prompts you for the drive or volume name to change to.
Type in the letter of the drive you want. KEYGEN then displays the
files in the current working directory of that drive (which is now the
default drive for KEYGEN). Use the arrow keys to highlight the file you
want and press 2 LOAD.

If the keyboard layout file you want is in another directory of the default
drive, press 4 CH DIR. KEYGEN then displays the directories available
in the current working directory (which is now the default directory). It
also displays the current working directory name in the lower left corner
of the screen. (If you are in a subdirectory, KEYGEN lists a directory
named which is the parent directory of the one you are in.)

Move the cursor to highlight the directory you want and press 2
ACCEPT. KEYGEN lists the appropriate files in the directory. Next,
highlight the file you want, and press 2 LOAD.

KEYGEN allows you to keep up to 130 files of a single type in a direc
tory. Your screen, however, displays only 45 files at a time. To see the
rest of the files, you can use:

► 5 PAGE + to scroll to the next “page” (screen) of a long directory.

► 6 PAGE — to scroll back to a previous screen.

2

KEYGEN MENUS 2-3

Note: It is a good idea to keep all your .KBD, .CHR, and .KB files in
one directory. This technique allows you to stay in the same directory
throughout a KEYGEN session.

2.1.2 CHARACTER SET

2
After you load a keyboard layout, KEYGEN lists the character set files
(extension .CHR) available in the default directory. A character set file
contains the font information that defines each character.

Notice the function key menu does not change. You can highlight and
load one of the files on the screen, or change drives and/or directories to
find the file you want. (You can, of course, use a file with a character set
you designed yourself using EFONT, a program in the Graphics Tool
Kit.)

2.1.3 KEYBOARD MAP

When you finish loading a character set, KEYGEN displays the key
board map files (filename extension .KB) available in the default direc
tory. A keyboard map file has the information that connects a specific
key on your keyboard to a character or function.

Again, you can highlight and load one of the displayed files or you can
go to another drive or directory to find and load the one you want.

2.2 HEADER INFORMATION
Loading a keyboard map file takes you down to the next level in
KEYGEN—to the Main Menu and the header information display.

You gain access to customizing options through the Main Menu. From
this menu you can go down to the Assign Menu, or you can save your
file and exit KEYGEN. First, though, use the Main Menu screen display
to modify the header information.

2-4 KEYGEN

Figure 2-3: Main Menu

MAIN MENU Modify header information Keygen Version 2.4

File name
Display class..
Name
Style................
Description....
Originator
Date

IB: AMERICAN. KB
Victor Inti
American
02
American Standard
Victor Tech. Inc
27Dec83

11 MENU - 12 SAVE 13 ASSIGN |4 LIST |5 PRINT I |7 HELP

You see the header whenever you enter KEYGEN and go through the
Load Menu. The header information should describe the keyboard you
are about to create.

► Filename: the name you will use to load your keyboard. Use any
name with a .KB extension.

► Display class: initially it is the keyboard display you loaded from the
Load Menu; leave this as is or change it so that it is more descriptive
to you.

► Name: your name.

► Style: version or style number of that particular keyboard; use it to
differentiate between small changes in a particular keyboard.

► Description: what the keyboard does.

► Originator: source of software or design.

► Date: date of last modification.

KEYGEN MENUS 2-5

To make header changes, first use the arrow keys to move the underline.
When you reach a line you want to change, begin typing the new infor
mation. As soon as you begin typing, the Header Menu appears.

Figure 2-4: Header Menu

HERDER MENU Change the header information Keygen Version 2.4

File name
Display class..
Naee
Style................
Description....
Originator
Date

Victor Inti
flierican
02
American Standard
Victor Tech. Inc
27Dec83

It MENU— -12 ACCEPT! I J |6 UNDO . |7 HELP

You can press:

k 2 ACCEPT to accept or enter a change.

► 6 UNDO to return to a previous entry. Use this key to correct a mis
take. (You can also use the Backspace key to erase characters to the
left of the cursor.)

Each time you press 2 ACCEPT you return to the Main Menu. You can
repeat the process—move the underline and type a new entry—as many
times as necessary. When you finish modifying your header, you are
ready to move down to the Assign Menu and begin customizing your
keyboard.

2-6 KEYGEN

3
CREATING A NEW KEYBOARD

The Main Menu offers four choices (aside from MENU- and HELP):

► 2 SAVE saves the keyboard you created. You will use this function
key later, after you finish assigning your keys.

► 3 ASSIGN calls up the Assign Menu.

► 4 LIST displays a listing of the keyboard map as it exists in the key
board map file you loaded.

► 5 PRINT prints a listing of the keyboard map.

3

Both 4 LIST and 5 PRINT call up the List Menu. From this menu you
can:

► 3 STOP

► 4 CONTINUE

► 5 PRINT

If you are displaying a list, 4 CONTINUE scrolls the list one screen at a
time. 5 PRINT starts printing the list, beginning with the section
currently on your screen. You can, therefore, print any part of a full list
ing. When you finish printing a list, KEYGEN takes you back to the
Main Menu.

ASSIGN MENU 3.1
When you press 3 ASSIGN from the Main Menu, KEYGEN displays
the Assign Menu.

CREATING A NEW KEYBOARD 3-1

Figure 3-1: Assign Menu
Keygen Version 2.4Select a key

□□ □□□[”]□□ □□□□
Unshi Ft:

Shift:

flit:

ASSIGN MENU

OUT I? HELP13 UNSHIFTl1 Mo -

F
1

F
1

F
1

eftBCDEFGHIJKLHHOP0RSTLIVUXVZ[\3t<
!()*+,-./0123456789:;<=>?

8ABCDEFGHIJKLMPQRSTUUUXYZ1 \ 1 A_
ahcdefghijkl»nopqrstuvwxyz{IH

Physical key: 1

The screen displays the keyboard and the character set you loaded from
the Load Menu. Below the keyboard you see various representations of
keys, which correspond to the keyboard map you loaded. For each
highlighted key, KEYGEN displays:

► The unshifted value—the character value is underlined and the
ASCII value (hex) appears on the two lines below the character value.

► The shifted value—the character value is underlined and the ASCII
value (hex) appears on the two lines below the character value.

► The ALT value—the character value is underlined and the ASCII
value (hex) appears on the two lines below the character value.

► The attributes, such as lock, caps lock, repeat, and local.

► The physical key number (decimal).

3-2 KEYGEN

ASSIGNING A KEY 3.2
Begin a key assignment by using the direction keys to move through the
keyboard until you find the key you want to change. Once your key is
highlighted, choose a mode from:

► 3 UNSHIFT

► 4 SHIFT

► 5 ALT

Each of these choices brings up the Alter Menu.

Figure 3-2: Alter Menu

ALTER MENU Select characters with a <CR> Keygen Version 2.4

I I I li I
on oooo
oo oooo
oo oooo
oo oooo
oo oooo

Shift:

physical key: 1

ML Char hex val: 00

F
1

|ft8CDE F 6H*IJKLHNOPORST11VUXVzY\YV\

l’W()»+,-./8123456?B9:;<=>?
8RBCDEFGHIJKLMOPQRSTUUUXYZ [\] A_
abcdefghijkl»nopqrstuvwxyz{I

11 IIEMU - |2 ACCEPT '13 TYPE M 14 FUNCTN I 16 UNDO I? HELP

CREATING A NEW KEYBOARD 3-3

On this screen, a long highlight replaces the previous value for the
chosen mode, and the cursor is in the character set. At the far right, the
screen displays the hex value of the character pointed to by the cursor. If
the cursor points to a control character, its name is displayed to the left
of the hex value. In addition, a new menu appears at the bottom of the
screen.

► 2 ACCEPT enters your selection and takes you back to the Assign
Menu.

► 3 TYPE IN lets you type in your own character or string of charac
ters. Pressing this key displays the Type In Menu.

► 4 FUNCTION lets you assign an attribute or a function to a key.

► 6 UNDO erases your last entry, and displays the previous value.

3.2.1 ASSIGNING FROM THE CHARACTER SET

To use the displayed character set to assign characters, first use the
arrow keys to move through the character set display. When you have
highlighted the character you want, press the Return key. The new char
acter appears on the highlighted line, with the hex value below it.

You can assign up to 32 characters to each key; repeat the procedure
until all the characters you want are in the long highlight. Then enter
the assignment by pressing 2 ACCEPT.

KEYGEN then takes you to the Assign Menu. You can repeat the
procedure—highlight a key, choose a mode, move through the character
set and assign—until you configure the whole keyboard.

3-4 KEYGEN

TYPE IN 3.2.2
KEYGEN offers a second method of assigning a string of characters to a
key. This second method is, in most cases, the easiest to use. At the
Assign menu, highlight a key on the keyboard. Then press 3 TYPE IN.
KEYGEN displays the Type In Menu. You can then choose:

► 2 ACCEPT. Use this key to tell KEYGEN your assignment is com
plete.

► 3 CHARS. Use this key to tell KEYGEN you are making a key
assignment in characters. You can assign up to 32 characters to each
key.

► 4 HEX. Use this key to make an entry in hexadecimal. This number
represents the character’s ASCII value. For ASCII values below 10H
you must type a leading zero. You can assign up to 32 characters to
each key.

► 6 UNDO. Use this key to return to the previous value. (When enter
ing hex values, you can also use the Backspace key to erase letters to
the left of the cursor.)

Type in either the characters or hexadecimal values you want the key to
represent. When you finish, enter the string by pressing 2 ACCEPT.
KEYGEN takes you back to the Assign Menu. You can now work on
another key, or assign an attribute to the same key.

ASSIGNING ATTRIBUTES 3.2.3

Four attributes can be assigned to keys. Table 3-1 describes the possible
attributes.

CREATING A NEW KEYBOARD 3-5

Table 3-1: Attributes
ATTRIBUTE

Caps Lock

Shift Lock

Repeat

Local

DESCRIPTION

The Caps Lock attribute can be assigned to a key’s unshifted mode.
When this attribute is assigned to it, a key’s unshifted mode is
affected by the CAPS LOCK function key if you toggle the CAPS
LOCK function key “on”; when you type the key’s unshifted
mode, you enter its shifted mode. For example, suppose you assign
“e” and the Caps Lock attribute to the unshifted mode of physical
key . 33. You also assign “E” to the shifted mode of physical key 33.
When the CAPS LOCK function key is “on”, and you press
physical key 33, you type an “E”. (Standard keyboards usually
assign the Caps Lock to letter keys only.)

The Shift Lock attribute is the same as the Caps Lock attribute
except that it is implemented when the SHIFT LOCK function key
is toggled “on”. (Standard keyboards usually assign the Shift Lock
attribute to the regular typewriter keys.)

Any mode of a key can be assigned the Repeat attribute. When this
attribute is assigned to a mode of a key, the key (in that mode)
repeats if you press it down for more than a half second.

Any mode of a key can be assigned the Local attribute. When this
attribute is assigned to a mode of a key, the key (in that mode)
generates a code that is sent directly to the display interface,
bypassing all application programs. A key mode with the Local
attribute is implemented instantly and unconditionally. The screen
brightness key, for example, alters the brightness without interfering
with your program.

To assign an attribute, press 4 FUNCTION at the Alter Menu (after you
have highlighted the key and selected the mode at the Assign Menu).
The screen display indicates the existing attributes for the mode you
have selected. The menu displays the attribute options. Add or delete an
attribute by pressing the corresponding function key, which toggles the
attribute on/off:

► 3 LOCK

► 4 REPEAT

► 5 LOCAL

► 6 CAPS LK

3-6 KEYGEN

After you assign the attributes, return to the Assign Menu by pressing
1 MENU-. Do not press 2 ACCEPT. (You use 2 ACCEPT to make
function key assignments.)

Figure 3-3: Function Menu

(Null)
<Caps lock)
(Shift lock>
(Left shift)
(Right shift)
(flit)
(Control)
(Repeat)
(Clear keyboard)
(Hold screen line advance)
(Hold screen page advance)

UnshiFt:

Shift:

F
1

flit:

F
1

1 riEbiU - 12 ACCEPT |3 LOCK |4 REPFAT ITcr

ASSIGNING A FUNCTION 3.2.4

You can assign a function rather than a character to a key. First
highlight a key and select a mode, from the Assign Menu. Then press 4
FUNCTION. The right half of the screen displays the function key
options. Use the arrow keys to highlight the function you want and
press 2 ACCEPT.

After you press 2 ACCEPT, you return to the Assign Menu. Repeat the
procedure until you have assigned all function keys you want to use.

Table 3-2 describes function key options.

CREATING A NEW KEYBOARD 3-7

Table 3-2: Function Key Options
FUNCTION EFFECT

Null Disables the selected mode of the key (i.e., the mode has no
effect).

Caps Lock This function key implements the Caps Lock attribute of the
unshifted mode of a key; if you press the Caps Lock function
key and a key with the Caps Lock attribute you enter the
key’s shifted mode. This function is usually assigned to the
unshifted mode of key 54.

Shift Lock This function key implements the Shift Lock attribute of the
unshifted mode of a key; if you press the Shift Lock function
key and a key with the Shift Lock attribute you enter the
key’s shifted mode. This function is usually assigned to the
alternate mode of key 54.

Left Shift When used with a second key, Left Shift implements the
shifted mode of the second key. Left Shift is usually assigned
to key 74.

Right Shift When used with a second key, Right Shift implements the
shifted mode of the second key. Right Shift is usually
assigned to key 86.

ALT This function key implements a key’s alternate mode. On
standard keyboards the control characters (OOH to 1FH) are
assigned to the alternate mode of keys that have characters
40H through 7FH assigned to their unshifted mode. For
example, characters 40H and OOH are assigned to the
unshifted and alternate modes of one key and characters
41H and 01H are assigned to the unshifted and alternate
modes of another key.

Control Reserved for further expansion.

Repeat When used with a second key, the Repeat key causes that
key to repeat.

Clear Keyboard Empties the keyboard buffer so you can enter an immediate
system interrupt.

Hold Screen
Line Advance

Advances screen one page when in Page Advance “hold
screen mode”.

Hold Screen
Page Advance

Advances screen one line when in Line Advance “hold
screen mode”.

No change at all “No change at all” causes the existing function assignment
to remain in effect. It is the default option when you display
the Function Menu; if you display the Function Menu and
press 2 ACCEPT, no function assignment is made unless you
move the highlight from the “No change at all” option.

Note: Hold screen mode is described in “Display Driver Specifications” in the MS-DOS
User’s Guide (see ESC A).

3-8 KEYGEN

4
COMPLETING KEYGEN

SAVING A KEYBOARD 4.1
Once you finish configuring your keyboard, you must save it in a new
keyboard file. This file will be stored under the name you gave it in the
header on the Main Menu display.

All of the configuration procedures return you to the Assign Menu. To
save a file, however, you must be at the Main Menu. Press 1 MENU-
and move up one level to the Main Menu. From the Main Menu, press
2 SAVE. KEYGEN displays the message:

Reminder Menu asks if you are sure you want to leave KEYGEN.
Press:

► 1 NO if you want to stay in the program and make further changes.

► 2 YES if you are finished. This key returns you to the operating sys
tem.

COMPLETING KEYGEN 4-1

4.2 USING THE NEW KEYBOARD
To use your new keyboard, you must load it with MODCON, a utility
described in the MS-DOS User’s Guide.

Put the disk containing MODCON into a drive or copy it onto a hard
disk volume; default to that drive or volume. Put your KEYGEN disk
with the new keyboard file in the (second) floppy drive. Type:

modcon < new keyboard filename > < old keyboard filename > (or)

MODCON loads the new keyboard, and saves the previous keyboard
in a file called TEMP.KB.

Note: It is useful to copy the MODCON utility onto your KEYGEN disk;
you can then easily load new keyboards from one drive or volume.

4-2 KEYGEN

CREATING A .KBD FILE

KEYGEN uses a .KBD (keyboard display) file to draw a picture of a
keyboard. Your Applications Programmer's Tool Kit II includes
several different .KBD files. If you have a keyboard that is not
represented by one of these files, you can create your own .KBD file.

To make a .KBD file, you need the following:

1. MAKE_KBD.EXE: This program (on your tool kit disk) combines
two other files needed to construct a .KBD file.

2. KEYGEN.CHR: This file (on your tool kit disk) contains 32 control
characters and a special set of graphics characters which are used to
draw the keyboard display itself.

3. .KEY: You must write this file yourself. It is a list of key descrip
tions.

MAKING A .KEY FILE A.l
The .KEY file has the instruction set that KEYGEN.EXE uses to draw
a keyboard and move through it. Two lines of data in the file
correspond to each of the 104 logical keys on the keyboard. Data is
ordered according to the logical key number, so that the entry for key
0 occupies the first two lines in the file, the entry for key 1 occupies the
next two lines, and so on.

MAKE_KBD.EXE forms a .KBD file with KEYGEN.CHR and the
.KEY file that you write. MAKE_KBD.EXE accepts data for 104 keys
only. If your keyboard has more than that number, the additional keys
are not included.

CREATING A .KBD FILE A-l

If a physical key has more than one logical key assigned to it, then the
data for each of these logical keys is identical. For example, your com
puter has three logical keys which map together to form the carriage
return key: 46, 66, and 87. Each key is listed in its chronological place
in the .KEY file, and each has the same information.

You must enter the data in your .KEY file in the following order:

1. Address: KEYGEN uses window I/O, described in the
“WINDOWIO” files on your tool kit disk. The window where the
keyboards are drawn is "key—window". This window covers the
entire width of the screen from the second line of the screen to the
seventh.

The address value you specify in .KEY is a single whole number
that describes where in key—window you want the top left border of
the key to begin. Because a screen line contains 80 columns (0-79),
an address of 86 occurs in the sixth column of the second row of the
window.

2. Four Neighboring Keys: To move through the keyboard map,
KEYGEN must know which physical keys are to the left, right,
above, and below the current key. List the logical key numbers of
the keys above and below and to the left and right in that order.

When a particular key has no neighbor in some direction, indicate
this by entering an arbitrary negative number to stop the search for
a neighbor. Or, enter the number of the key on the other side of the
keyboard. This last method causes the cursor highlight to "wrap
around" and begin again in the same row or column on the other
side of the keyboard.

3. Newstart: When a key occupies a single row, enter an arbitrary
negative number for this value. If a key occupies more than one
row, however, use the address of the leftmost part of the second row
for Newstart.

A-2 KEYGEN

4. How Many Chars: Keys are drawn from a special graphics character
set in KEYGEN.CHR. How Many Chars specifies the number of
graphics characters needed to draw the key. If a key occupies two
rows, specify the number needed to construct the top row of the key
you are describing. MAKE__KBD.EXE will then compute (for itself)
the number of characters occurring on the second row.

5. Appearance of the Key: KEYGEN.CHR has 24 graphics characters
for drawing keys. 12 of these are the reverse-video equivalents of the
other 12. Use the nonreverse-video characters, 0 through 11, to
describe the construction of a key. Use EFONT (or KEYGEN) to
look at these KEYGEN.CHR characters.

Character sets are illustrated in the MS-DOS User's Guide. The
33rd character listed in the character sets is the first of these special
graphics characters. This character is considered to be 0 for this pur
pose, and looks like "[". Determine the value of the other characters
in the set by adding 1 to the value of the one to the left.

List the values of the characters you need to "draw" the key, begin
ning at the left and moving right. If the key occupies more than one
row, begin the description of the second row immediately after the
description of the first row, on the same line in the .CHR file.

End your description with an arbitrary negative number and a car
riage return.

The following example is the Return key description in the
EXAMPLE.KEY file. This key is described by logical key numbers 46,
66, and 87. Thus, this description occurs on lines 92-93, 132-133, and
154-155 of the EXAMPLE.KEY file.

290 45 47 25 86 368 4
3774019886-1

290 is the screen address which marks the upper left corner of the key.
45, 47, 25, and 86 are the keys to the left and right of, above, and
below this key. The left corner of the second row of the key's picture
begins at 368 in the window (Newstart).

CREATING A .KBD FILE A-3

The 4 describes how many special graphics characters are needed to
draw the top row of the key. The first row takes the characters 3, 7, 7,
and 4. The second row (not included in the 4) needs 0, 1,9, 8, 8, and
6. The — 1 indicates that the list is finished.

A.2 COMBINING THE FILES
Combine the files by running MAKE__KBD.EXE. At the system
prompt, type:

make_kbd

Answer the next prompt with your .KEY filename. The program out
puts a file called OUT.KBD. Rename this output file so that the new
name is descriptive of the file, and end it with the extension .KBD.

A-4 KEYGEN

KEYBOARD CONSIDERATIONS

This appendix gives you the character or function generated by each
key position on the keyboards available with your computer. Table
B-l lists each key position in shifted, unshifted, and Alternate modes.

For each key position, Table B-l lists one of the following:

► The actual character (letter, number, or symbol) generated by that
key.

► The hexadecimal codes of the character generated by that key (such
as F4).

► The function generated by that key (such as BKSP, DEL, ALT, and
ESC).

Some listings include both the code and the character generated (such
as F8 0 for key number 0).

For supplementary information, consult the following appendixes of
the MS-DOS 2.1 User's Guide:

► Appendix A illustrates the physical keyboards available for your
computer.

► Appendix B shows the key positions (logical key numbers) on the
standard keyboards for the portable and desktop computers.

► Appendix C lists the hexadecimal code for each character in all the
character sets.

► Appendix D contains a list of both the Escape sequences and Alter
nate sequences.

KEYBOARD CONSIDERATIONS B-l

Table B-l: Key codes and Characters

KEY POSITION

0 unshifted
0 shifted
0 alternate

I unshifted
I shifted
1 alternate

2 unshifted
2 shifted
2 alternate

3 unshifted
3 shifted
3 alternate

4 unshifted
4 shifted
4 alternate

5 unshifted
5 shifted
5 alternate

6 unshifted
6 shifted
6 alternate

B
7 shifted
7 alternate

8 unshifted
8 shifted
8 alternate

9 unshifted
9 shifted
9 alternate

10 unshifted
10 shifted
10 alternate

11 un shifted
I 1 shifted
1 1 alternate

12 unshifted
12 shifted
12 alternate

13 unshifted
13 shifted
13 alternate

14 unshifted
14 shifted
14 alternate

STAND DOMESTIC FRENCH

F8 ° F8 ° F8 1
F8 ° F8 ° F8I
F8 ° F8 ° F8 1

Fl ± Fl ± Fl ±
Fl ± Fl ± Fl ±
Fl ± Fl - ± . Fl ±

F2 > F2 > F2 >
F2 > F2 > F2 >
F2 > F2 > F2 >

F3 < F3 < F3 <
F3 < F3 < F3 <
F3 < F3 < F3 <

F4 F4 F4
F4 F4 F4
F4 F4 F4

F5 F5 F5
F5 F5 F5
F5 F5 F5

F6 * F6 F6 *
F6 * F6 - F6 -
F6 F6 - F6 -

F7 = F7 F7 =
F7 -- F7 ~ F7 =
F7 F7 =« F7 ~

F8 ° F8 0 F8 1
F8 ° F8 ° F8 1
F8 ° F8 ° F8 1

F9 F9 F9
F9 F9 F9
F9 F9 F9

FA FA FA
FA FA FA
FA FA FA

ESC ESC H ESC
ESC ESC E ESC
ESC ESC E ESC

\ \ 23 C
F8 ° F8 ° $
E3 E3 r

1 1 &
i

-) -> 78 e
C"
< 7

F8 0 I F8 0
F8 ° I F8 °
F8 ° I F8 0

Fl ± Fl ± Fl
Fl ± Fl ± Fl
Fl ± Fl ± Fl

F2 > F2 > F2
F2 > F2 > F2
F2 > F2 > F2

F3 < F3 < F3
F3 < F3 < F3
F3 < F3 < F3

F4 F4 F4
F4 F4 F4
F4 F4 F4

F5 F5 F5
F5 F5 F5
F5 F5 F5

F6 — F6 — F6 -
F6 - F6 - F6 -
F6 - F6 - F6 -

F7 F7 ~ F7
F7 = F7 = F7 =-
F7 = F7 ~ F7 -

F8 ° I F8°
F8 ° I F8 °
F8 ° I F8 °

F9 F9 F9
F9 F9 F9
F9 F9 F9

FA FA FA
FA FA FA
FA FA FA

ESC ESC ESC
ESC ESC ESC
ESC ESC ESC

\
Kull * A 8 §
Kull ‘ A8 §

I I 9C '
! ! 1
I ! I

8-2 KEYGEN

+1
+1 +1

Al
Al

Al
vi

VI
VI

KEY POSITION STAND. DOMESTIC FRENCH BRITISH GERMAN ITALIAN

15 tin shifted 3 3 3 3
15 shifted # # 3 3 40 § 3
15 alternate > > 3 > 40 § >

16 un shifted 4 4 4 4
16 shifted $ $ 4 23 £ $ 4
16 alternate F9 F9 4 23 £ $ #

17 unshifted 5 ' 5 (s 5 (
17 shifted % % 5 % % ->
17 alternate ALT-X ALT-X < % % («

18 unshifted 6 6 5D § 6 6 _
18 shifted 98 <r 98 4 6 $ & 6
18 alternate A A A A 6 $ & [

19 unshifted 7 7 7D e 7 7 8A e
19 shifted & & 7 & \ 7
19 alternate 7 7]

20 unshifted 8 8 ! 8 8 -
20 shifted * ♦ 8 * (8
20 alternate *

21 unshifted 9 9 5Cq 9 9 87?
21 shifted ((9 () 9
21 alternate ({ 9 r {

22 unshifted 0 0 40 a 0 0 85 a
22 shifted)) 0) 0
22 alternate } } 0) =)

23 unshifted -) 7E)
23 shifted 5B° _ 9 F8 °
23 alternate > ?

24 unshifted = — #
24 shifted 4- 4- _ + +
24 alternate \ \ - \ \

25 unshifted ALT-H ALT-H ALT-H ALT-H ALT-H ALT-H
25 shifted ALT-H ALT-H ALT-H ALT-H ALT-H ALT-H
25 alternate ALT-H ALT-H ALT-H ALT-H ALT-H ALT-H

26 unshifted ESC H DB ESC H ESC H ESC H ESC H
26 shifted ESC E CB ESC E ESC E ESC E ESC E
26 alternate ESC z DB ESC z ESC z ESC z ESC z

27 unshifted DEL DEL DEL DEL DEL DEL
27 shifted DEL CC DEL DEL DEL DEL
27 alternate DEL DC DEL DEL DEL DEL

28 unshifted = = = = = =
28 shifted ED ED ED FD FD FD
28 alternate ED = FD FD FD FD

29 unshifted % % % % % %
29 shifted % % % % % %
29 alternate % % % % % %

30 unshifted / / / / / /
30 shifted / / / / / /
30 alternate / / / / / /

KEYBOARD CONSIDERATIONS B-3

KEY POSITION STAND. DOMESTIC FRENCH BRITISH GERMAN ITALIAN

31 unshifted * * * * * *
31 shifted * * * * * *
31 alternate * * * * * *

32 unshifted ESC (BD ESC (ESC (ESC (ESC (
32 shifted ESC) CD ESC) ESC) ESC) ESC)
32 alternate ESC) DD ESC) ESC) ESC) ESC)

33 unshifted ALT-I ALT-I ALT-I ALT-I ALT-I ALT-I
33 shifted ALT-I ALT-I ALT-I ALT-I ALT-I ALT-I
33 alternate ALT-I E9 ALT-I ALT-I ALT-I ALT-I

34 unshifted q q a q q q
34 shifted Q Q A Q Q Q
34 alternate ALT-Q ALT-Q A LT-A ALT-Q ALT-Q ALT-Q

35 unshifted w w z w w z
35 shifted W W Z W W Z
35 alternate ALT-W ALT-W ALT-Z ALT-W ALT-W ALT-Z

36 unshifted £ E g e e e
36 shifted E E E E E E
36 alternate ALT-E ALT-E ALT-E ALT-E ALT-E ALT-E

37 unshifted r r r r r r
37 shifted R R R R R R
37 alternate ALT-R ALT-R ALT-R ALT-R ALT-R ALT-R

38 unshifted t t t t t t
38 shifted T T T T T T
38 alternate ALT-T ALT-T ALT-T ALT-T ALT-T ALT-T

39 unshifted y y y y z y
39 shifted Y Y Y Y z Y
39 alternate ALT-Y ALT-Y ALT-Y ALT-Y ALT-Z ALT-Y

40 unshifted u u u u u u
40 shifted U 0 O 0 O 0
40 alternate ALT-0 ALT-0 ALT-O ALT-O ALT-0 ALT-0

41 unshifted i j i i i i
41 shifted I I i I I I
41 alternate ALT-I ALT-I ALT-I ALT-I ALT-I ALT-I

42 unshifted 0 0 o 0 0 0
42 shifted o 0 o o o o
42 alternate ALT-O ALT-0 ALT-O ALT-O ALT-0 ALT-O

43 unshifted P P P P P P
43 shifted P P P P P P
43 alternate ALT-P ALT-P ALT-P ALT-P ALT-P ALT-P

44 unshifted AB AB - Null 7D u 8D i
44 shifted AC AC 7E " Null 5DO —
44 alternate AC AC 7E " Null ALT-] =

45 unshifted]] I + $
45 shifted [[[* &
45 alternate ALT-] ALT-] ALT-] * $

46 unshifted Null Null Null Null Null Null
46 shifted Null Null Null Null Null Null
46 alternate Null Null Null Null Null Null

B-4 KEYGEN

KEY POSITION STAND. DOMESTIC FRENCH BRITISH GERMAN ITALIAN

47 unshifted ESC (a BE ESC (o' ESC (o' ESC O' ESC O
47 shifted ESC L CE ESC L ESC L ESC L ESC L
47 alternate ESC 0 DE ESC 0 ESCO ESC 0 ESC O

48 unshifted ESC K BF ESC K ESC K ESC K ESC K
48 shifted ESC M CF ESC M ESC M ESC M ESC M
48 alternate ESC M DF ESC M ESC M ESC M ESC M

49 unshifted 7 7 7 7 7 7
49 shifted 7 7 7 7 7 7
49 alternate 7 7 7 7 7 7

50 unshifted 8 8 8 8 8 8
50 shifted 8 8 8 8 8 8
50 alternate 8 8 8 8 8 8

51 un shifted 9 9 9 9 9 9
51 shifted 9 9 9 9 9 9
51 alternate 9 9 9 9 9 9

52 unshifted
52 shifted - - -
52 alternate - - - -

53 unshifted ESC p ESC p ESC p ESC p ESC p ESC p
53 shifted ESC q ESC q ESC q ESC q ESC q ESC q
53 alternate ESC q ESC ESC q ESC q ESC q ESC q

54 unshifted Caps Lock Caps Lock Caps Lock Caps Lock Caps Lock Caps Lock
54 shifted Caps Lock Caps Lock Caps Lock Caps Lock Caps Lock Caps Lock
54 alternate Shift Lock Sliili Lock . Shift Lock Shift Lock Shift Lock Shih Lock

55 unshifted 3 3 q a 3 3
55 shifted A A Q A A A ■ R
55 alternate ALT-A ALT-A ALT-Q ALT-A ALT-A ALT-A ■ o
56 unshifted s s c s c
56 shifted S s S S S S
56 alternate ALT-S ALT-S ALT-S ALT-S ALT-S ALT-S

57 unshifted d d d d d d
57 shifted D D D D D D
57 alternate ALT-D ALT-D ALT-D ALT-D ALT-D ALT-D

58 unshifted f f f f f f
58 shifted F F F F F F
58 alternate ALT-F ALT-F ALT-F ALT-F ALT-F ALT-F

59 unshifted g g g g g g
59 shifted G G G G G G
59 alternate ALT-G ALT-G ALT-G ALT-G ALT-G ALT-G

60 unshifted h h h h h h
60 shifted H H H H H H
60 alternate ALT-H ALT-H ALT-H ALT-H ALT-H ALT-H

61 unshifted j j j ,i j j
61 shifted J J J J J J
61 alternate A LT-J ALT-J ALT-J ALT-J ALT-J ALT-J

62 unshifted k k k k k k
62 shifted K K K K K K
62 alternate ALT-K ALT-K ALT-K ALT-K ALT-K ALT-K

KEYBOARD CONSIDERATIONS B-5

KEY POSITION STAND. DOMESTIC FRENCH BRITISH GERMAN ITALIAN

63 unshifted 1 1 1 1 1 1
63 shifted L L L L L L
63 alternate ALT-L ALT-L ALT-L ALT-L ALT-L ALT-L

64 unshifted m 7 C d m
64 shifted M 5CO M
64 alternate ALT-' ALT-M ALT-X ALT-M

65 unshifted 7C u 7B a 97 u
65 shifted % ■ 5B A %
65 alternate % ALT-[%

66 unshifted Null A ’till Null Null Null Null
66 shifted Null Null Null Null Null Null
66 alternate Null Null Null Null Null Null

67 unshifted ALT-J E4 ALT-J ALT-J ALT-J ALT-J
67 shifted ESC I E6 ESC 1 ESC I ESC 1 ESC I
67 alternate ESC xA ESC xA ESC xA ESC xA ESC xA ESC xA

68 unshifted ESC 8 E5 ESC 8 ESC 8 ESC 8 ESC z
68 shifted ESC 9 E7 ESC 9 ESC 9 ESC 9 ESC z
68 alternate ESC yA ESC yA ESC yA ESC yA ESC yA ESC yA

69 unshifted 4 4 4 4 4 4
69 shifted . 4 4 4 4 4 4
69 alternate 4 4 4 4 4 4

70 unshifted 5 5 5 5 5 5
70 shifted 5 5 5 5 5 5
70 alternate 5 5 5 5 5 5

71 un shifted 6 6 6 6 6 6
71 shifted 6 6 6 6 6 6
71 alternate 6 6 6 6 6 6

72 unshifted + + + + + +
72 shifted + + + + + +
72 alternate + + + + + +

73 unshifted ESC 0 ESC 0 ESC 0 ESC 0 ESC 0 ESC 0
73 shifted ESC 1 ESC 1 ESC 1 ESC 1 ESC 1 ESC 1
73 alternate ESC 1 ESC 1 ESC 1 ESC 1 ESC 1 ESC 1

74 unshifted Left shift Left shift Left shift Left shift Left shift Left shift
74 shifted Left shift Left shift Left shift Left shift Left shift Left shift
74 alternate Left shift Left shift Left shift Left shift Left shift Lett shift

75 unshifted Null Null Null Null Null Null
75 shifted Null Null Null Null Null Null
75 alternate A 'till Null Null Null Null Null

76 unshifted 7 w / w
76 shifted z Z W Z Y W-
76 alternate ALT-Z ALT-Z ALT-W ALT-Z ALT-Y ALT-W

77 unshifted Y Y Y Y V Y

77 shifted X X X X X X
77 alternate ALT-X ALT-X ALT-X ALT-X ALT-X ALT-X

78 unshifted r r <> e <•
78 shifted (7 C C C C C
78 alternate ALT-C ALT-C ALT-C ALT-C ALT-C ALT-C

8-6 KEYGEN

KEY POSITION STAND. DOMESTIC FRENCH BRITISH GERMAN ITALIAN

79 unshifted V V V V V
79 shifted V V V V V V
79 alternate ALT-V ALT-V ALT-V ALT-V ALT-V ALT-V

80 iinshifted b b b b b b
SO shifted B B B B B B
SO alternate ALT-B ALT-B ALT-B ALT-B ALT-B ALT-B

SI unshifted n n n • n n]-]
SI shifted N N N N N N
SI alternate ALT-N ALT-N ALT-N ALT-N ALT-N ALT-N

S2 unshifted m m m m
S2 shifted M M 9 M M 3
S2 alternate ALT-M ALT-M ? ALT-M ALT-M ?

S3 unshifted
S3 shifted
83 alternate ALT-\

84 unshifted
84 shifted / /
84 alternate ALT-] / /

85 unshifted / / = / 95 6
85 shifted 9 9 + i
85 alternate ! ! + ? - I

86 unshifted Rl. shift Rl. shift Rl. shift Rl. shift Rl. shift Rl. shift
86 shifted Ri. shift Rl. shift Rl. shift Rl. shift Rl. shift Rl. shift
86 alternate Rl. shift Rl. shift Rl. shift Rl. shift Rl. shift Rl. shift

87 unshifted ALT-M ALT-M ALT-M ALT-M ALT-M
87 shifted ALT-M ALT-M ALT-M ALT-M ALT-M ALT-M PH
87 alternate ALT-M ALT-3 ALT-M ALT-M ALT-M ALT-M RhH
88 unshifted ESC A ESC A ESC A ESC A ESC A ESC A
88 shifted ESC A ESC A ESC A ESC A ESC A ESC A
88 alternate ESC xB ESC xB ESC xB ESC xB ESC xB ESC xB

89 unshifted ESC B ESC B ESC B ESC B ESC B ESC B
89 shifted ESC B ESC B ESC B ESC B ESC B ESC B
89 alternate ESC yB ESC yB ESC yB ESC yB ESC yB ESC yB

90 unshifted 1 1 1 1 1 1
90 shifted 1 1 1 1 1 1
90 alternate 1 1 1 1 1 1

91 unshifted -> -> 9 -> 3 3

91 shifted 3 ~> 3 3 3 3

91 alternate 2 2 2 2 2 2

92 unshifted 3 3 3 3 3 3
92 shifted 3 3 3 3 3 3
92 alternate 3 3 3 3 3 3

93 unshifted ALT-M ALT-M ALT-M ALT-M ALT-M ALT-M
93 shifted ALT-M ALT-M ALT-M ALT-M ALT-M ALT-M
93 alternate ALT-M ALT-2 ALT-M ALT-M ALT-M ALT-M

94 unshifted Repeal Repeat Repeal Repeal Repeat Repeat
94 shifted Repeal Repeal Repeal Repeat Repeal Repeal
94 alternate Repeal Repeal Repeal Repeal Repeal Repeal

KEYBOARD CONSIDERATIONS B-7

KEY POSITION STAND. DOMESTIC FRENCH BRITISH GERMAN ITALIAN

95 unshifted ALT ALT ALT ALT ALT ALT
95 shifted ALT ALT ALT ALT ALT ALT
95 alternate ALT ALT ALT ALL ALT ALT

96 unshifted Space Space Space Space Space Space
96 shifted Space Space Space Space Space Space
96 alternate Space Space Space Space Space Space

97 unshifted ALT-S ALT-S ALT-S ALT-S ALT-S ALT-S
97 shifted ALT-S ALT-S ALT-S ALT-S ALT-S ALT-S
97 alternate ALT-S ALT-S ALT-S ALT-S ALT-S ALT-S

98 unshifted ESC D ESC D ESC D ESC D ESC D ESC D
98 shifted ESC D ESC D ESC D ESC D ESC D ESC D
98 alternate ESC xC ESC xC ESC xC ESC xC ESC xC ESC xC

99 unshifted ESC C ESC C ESC C ESC C ESC C ESC C
99 shifted ESC C ESC C ESC C ESC C ESC C ESC C
99 alternate ESC yC ESC yC ESC yC ESC yC ESC yC ESC yC

100 unshifted 0 0 0 0 0 0
100 shifted 0 0 0 0 0 0
100 alternate 0 0 0 0 0 0

101 unshifted 00 00 00 00 A LI -(« 00
101 shifted 00 00 00 00 ALT-(// 00
101 alternate 00 000 00 00 ALT-0/ 00

102 unshifted
102 shifted
102 alternate

103 unshifted ALT-M ALT-M ALT-M ALT-M ALT-M ALT-M
RM 103 shifted ALT-M ALT-M ALT-M ALT-M ALT-M ALT-M

103 alternate ALT-M ALT-M ALT-M ALT-M ALT-M ALT-M

B-8 KEYGEN

INDEX

2-3
.CHR, 2-4
.KBD, 2-2, A-l
.KEY, A-l

Keyboard map, 2-4
KEYGEN disk, 1-1
KEYGEN.CHR, 1-1, A-l
KEYGEN.DAT, 1-1
KEYGEN.EXE, 1-1

ACCEPT, 2-3
ALT, 3-8
ALT value, 3-2
Alter Menu, 3-3
Assign Menu, 3-2
Attributes, 3-2, 3-5 to 3-6

KEYGEN.KB, 1-1
KEYGEN.KBD, 1-1
Keys, assigning, 3-3 to 3-4

Left Shift, 3-8
List Menu, 3-1
LOAD, 2-3

Backspace, 3-5 Local, 3-6

Caps Lock, 3-6, 3-8
Character set, 2-4
Characters, assigning, 3-4
Clear keyboard, 3-8
Control, 3-8
Cursor arrow keys, 2-3

MAKE_KBD.EXE, A-l
Main Menu, 2-4, 3-1
Menus

Alter, 3-3
Assign, 3-2
Function, 3-7
Header, 2-6

Directories, 2-3 to 2-4
Display class, 2-5
DRIVE, 2-3
Drives, 2-3 to 2-4

List, 3-1
Load, 2-3
Main, 2-4, 3-1
Reminder, 4-1

MODCON, 4-2
EFONT, 2-4
EXIT, 2-2

Modes, 3-3

Null, 3-8
Filename, 2-5
Files, 2-3
Function, 3-7 to 3-8
Function Menu, 3-7

Physical key number, 3-2
Printers, 1-1

Reminder Menu, 4-1
Header information, 2-4 to 2-6
Header Menu, 2-6

Repeat, 3-6
Right Shift, 3-8

HELP, 2-2
Hexadecimal, 3-5
Hold screen, 3-8

SAVE, 3-1
Saving, 4-1

INDEX Index-1

Scroll, 2-3
Shift Lock, 3-6, 3-8
Shifted value, 3-2
Style, 2-5

TEMP.KB, 4-2
TYPE IN, 3-5

UNDO, 2-6
Unshifted value, 3-2

Index-2 KEYGEN

SYSGEN

COPYRIGHT

® 1983 by VICTOR®.

All rights reserved. This manual contains proprietary information
which is protected by copyright. No part of this manual may be repro
duced, transcribed, stored in a retrieval system, translated into any
language or computer language, or transmitted in any form whatsoever
without the prior written consent of the publisher. For information
contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, California 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MS- is a trademark of Microsoft Corporation.
CP/M-86 is a registered trademark of Digital Research.
Intel is a trademark of Intel Corporation.

NOTICE

VICTOR makes no representations or warranties of any kind whatso
ever with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular pur
pose. VICTOR shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

VICTOR reserves the right to revise this pubheation from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

Second VICTOR printing November, 1983.

ISBN 0-88182-088-1 Printed in U.S.A.

II SYSGEN

CONTENTS

1. Operating System Generation
1.1 Introduction... 1-1
1.2 Using SYSGEN... 1-1
1.3 Selection Menus.. 1-3

1.3.1 Keyboard Tables... 1-3
1.3.2 Character Set Selection...1-4
1.3.3 Alternate Character Set.. 1-4
1.3.4 Translation Tables.. 1-4
1.3.5 Primary Printer Selection.. 1-5
1.3.6 Secondary Printer ... 1-5
1.3.7 Serial Port Configuration... 1-6
1.3.8 Banner Skeleton Selection....................................... 1-6
1.3.9 Logo Selection.. 1-6
1.3.10 Current Configuration.. 1-7
1.3.11 Writing the Operating System Out........................ 1-7

2. System Operation
2.1 Program Files.. 2-1
2.2 Batch Files..2-2
2.3 System Selection Files.. 2-2

2.3.1 Keyboard Table File.. 2-3
2.3.2 Character Set Files..2-3
2.3.3 Banner Skeleton File.. 2-4
2.3.4 Logo Files...2-5

2.4 Files Generated by SYSGEN.. 2-5
2.5 Instruction Files..2-6

CONTENTS III

APPENDIXES
A. Character Sets... A-1
B. SYSGEN Diskette Contents... B-l

TABLES

2-1: System Selection File Extensions................... 2-3
2-2: Information Displayed by Character Set Tables........................2-4

IV SYSGEN

CHAPTERS

1. Operating System Generation

2. System Operation

Appendix A: Character Sets

Appendix B: SYSGEN Diskette Contents

2

a

B

CHAPTERS V

OPERATING SYSTEM
GENERATION

INTRODUCTION 1.1
SYSGEN is a system generation program that lets you generate a cus
tom MS-DOS operating system. You can configure operating system
components for Standard, International, British, French, Italian, and
German variations (see Appendix A).

Configurable system components include character set, alternate char
acter set, keyboard, logo and banner selection. User-configured I/O
components include primary printer, secondary printer and serial
communications port.

USING SYSGEN 1.2
The SYSGEN program is on diskettes 3 and 4 of your Programmer’s
Tool Kit. PTK 3 has the tool and batch files, and PTK 4 has the .OBJ
files (see Appendix B).

Before you begin system selection and generation, use DISKCOPY to
duplicate the system generation diskettes. Store the original system
diskettes in a safe place. Next, make sure you have a formatted
diskette or hard disk volume that you have set up with either
HDSETUP or AUTOSET. If you need additional information, refer
to your Operator's Reference Guide.

OPERATING SYSTEM GENERATION 1-1

Load SYSGEN with these steps:

1. Boot up your system with MS-DOS.

2. Copy the MS-DOS files and CONFIG.SYS
from your operating system diskette onto your PTK disk 3.
SYSGEN will need these files to make the new system diskette.

COMMAND.COM

3. Remove your operating system diskette and place the program disks
on any two drives.

4. Default to the drive with PTK 3 and type SYSGEN.

SYSGEN signs on and prompts you for the date and time.

SYSGEN now begins displaying menus. The first menu gives you three
choices:

► Generate a New Operating System

Modify an Existing Operating System

► Help—Display Instructions

The “Generate a New Operating System” option takes you through the
entire process of creating a new configuration. If you make an error
during this process, the configuration acceptance display at the end of
the program lets you correct it.

The “Modify an Existing Operating System” option lets you change an
existing configuration. When you select an existing control file for
modification, SYSGEN displays the configuration specified by that
control file. You can then change any part of that configuration
without going through an entire reselection process.

“Help—Display Instructions” is an on-line instruction display. It
explains all the program options and how to select them.

Select a menu choice by pressing the space bar until the option you
want is highlighted. Then press Return. After you enter your selection
from the menu, the next menu appears. Repeat this procedure until
you have completed all the menu options.

1-2 SYSGEN

COMMAND.COM

The next prompt asks you for the type of operating system you want
(i.e., floppy disk, hard disk) and the location (drive numbers) of the
PTK disks. Follow the onscreen example to answer this prompt.

The last prompt asks you which drive you want to copy your new sys
tem onto. Take out PTK 4, insert your formatted diskette, and type
the drive number. Or, type the destination hard disk volume number.
SYSGEN copies your customized operating system onto the specified
drive.

NOTE: You can exit SYSGEN at any time by pressing ALT-C. This
command returns you to the operating system.

SELECTION MENUS 1.3
The following options appear in menus. Press the space bar to move
the highlight, and press Return to select the highlighted option.

KEYBOARD TABLES 1.3.1

The keyboard table defines the codes generated or keyboard functions
executed when a key is pressed. Each selection is described by banner
name, display class, descriptive comment, and filename.

► The banner name is the name of the character set (including version
number) displayed in the banner. Character sets are illustrated in
Appendix A.

► The display class describes the graphic subset (hex 21 through hex
7E) of the character set. It helps you avoid incompatible combina
tions of character set and keyboards. For example, the International
display class defines hex 23 as the crosshatch (#), and the British
class defines the same hex as the British monetary sign.

OPERATING SYSTEM GENERATION 1-3

► The filename is the name of the file containing the character set.

The standard keyboard tables are provided on your configuration
diskette. You can, however, generate your own keyboard tables using
the KEYGEN utility (also available in your Programmer’s Tool Kit).

1

1.3.2 CHARACTER SET SELECTION

This menu lets you select a character set. The Character Set Selection
menu has the same format as the Keyboard Tables menu.

1.3.3 ALTERNATE CHARACTER SET

An alternate character set lets application programs display an entirely
different character set of 128 or 256 characters. If you include an alter
nate character set in a configuration, you decrease the available
memory by up to 8K bytes.

1.3.4 TRANSLATION TABLES

This option applies only to users with French keyboards.

1-4 SYSGEN

PRIMARY PRINTER SELECTION 1.3.5

The Primary Printer Selection menu sets the name of the default
printer of the logical device EST:. The choices are:

► Serial printer (ULI:)

► Parallel printer (LPT:)

You can change these values at run time.

If you select a serial printer, SYSGEN displays the menu for serial port
configuration. Refer to the Serial Port Configuration menu for more
details.

SECONDARY PRINTER 1.3.6

You can select a secondary printer as well as a primary printer. If you
choose a serial printer as the secondary printer, the next menu you see
is the Serial Port Configuration menu.

The primary and secondary printers cannot both be parallel printers
because the system supports only one parallel port.

OPERATING SYSTEM GENERATION 1-5

1.3.7 SERIAL PORT CONFIGURATION

This menu lets you set the baud rate, stop bits, and parity of the two
serial ports. You can find information on these settings in the user
menu for each device that you want to connect to a serial port.

The baud rate choices are 50, 75, 110, 134.5, 150, 200, ZOO, 600, 1200,
1800, 2000, 2400, 3600 and 4800. The choices for stop bits are 1, 1.5
and 2.

The choices for parity are even, odd, and none. You can also set the
parity bit with software for transmission; parity is not checked on
incoming characters.

1.3.8 BANNER SKELETON SELECTION

The banner skeleton is a framework that holds the logo and
configuration information displayed in the banner. For each
configuration, the banner skeleton contains a different character set,
keyboard, and other information.

1.3.9 LOGO SELECTION

The logo is a unique set of graphics characters that form the logo
display. Normally, the logo is displayed as part of the banner when the
operating system is loaded. If you’ve generated a system without logo
characters, you must select a banner without a logo.

1-6 SYSGEN

CURRENT CONFIGURATION 1.3.10

This menu displays the current configuration. The first selection in the
upper box starts the process of writing the intermediate files onto disk.
The second choice starts the selection process from the beginning. The
items displayed in the lower box are the values of the current
configuration.

When you select an item to modify, the menu for that item appears.

After you make the modification, the updated Current Configuration
menu re-appears. If you choose “Accept the Current Configuration,”
SYSGEN displays the menu for writing the operating system out.

WRITING THE OPERATING SYSTEM OUT 1.3.11

This menu displays the current intermediate files. You can select an
existing file, or you can enter a new filename by selecting the “User
Entered File” option.

After you make your choice, SYSGEN asks you to confirm it. If you
answer No, control returns to the Current Configuration menu. If you
choose to write the operating system to the specified file, SYSGEN
begins writing it; the job can take several minutes.

OPERATING SYSTEM GENERATION 1-7

2
SYSTEM OPERATION

This chapter describes the operation of the system selection program.
It includes:

► SYSGEN program files

► Batch files

► Selection files

► Files generated by SYSGEN

PROGRAM FILES 2.1
SYSGEN is a batch file that runs five other program files:

1. SYSELECT creates files for the customized parts of your operating
system. This program makes the system component selections.

2. BIN2REL.EXE and LINK.EXE generate the operating system.
BIN2REL.EXE converts binary image files to relocatable object
module format files.

3. LINK.EXE combines component system files into an operating sys
tem. It collects the files SYSGEN selected and created and finks them
into a single file called MSDOS.EXE.

4. SYSLOC.EXE reformats the MSDOS.EXE file into the proper for
mat for SYSCOPY.EXE. Invoke SYSLOC.EXE by typing SYSLOC
MSDOS .SYS. (Note the space between MSDOS and .SYS.)

5. SYSCOPY.EXE writes the operating system to diskette or hard disk.
It also copies the boot tracks onto the diskette or hard disk volume.

SYSTEM OPERATION 2-1

2.2 BATCH FILES
SYSGEN has six operating system generation batch files:

► 1 .BAT (for a floppy disk system)

► 2.BAT (for a hard disk system)

► 3.BAT (for a floppy disk system with an IEEE driver)

► 4.BAT (for a hard disk system with an IEEE driver)

► 5.BAT (for the portable)

► 6.BAT (for the portable with an IEEE driver)

Each batch file runs the same five program files. The difference
between the batch files is that each tells the linker to link different
object files, depending on the configuration.

For example, if you have a hard disk system and you want to use the
IEEE 488 driver in your operating system, choose the 4.BAT file
(when SYSGEN prompts you for your operating system). This file
tells the linker which object modules to link for your system.

2.3 SYSTEM SELECTION FILES
The SYSGEN diskette directory has information on keyboards, char
acter sets, translation tables, banner skeletons and the logo. You can
find these files by searching the directory for their file extensions.

2-2 SYSGEN

FILE TYPE EXTENSION

Table 2-1: System Selection File Extensions

Keyboard .KB
Character set .CHR
Banner skeleton .BNR
Translation table .XLT
Logo .LOO

SYSGEN expects a particular format for each file type. Errors occur if
other file types use any of the extensions in Table 2-1, or if you
modify the format of a file type.

KEYBOARD TABLE FILE 23.1

Files with the .KB extension are keyboard table files. These files con
tain information on the keyboard code sent to the processor when a
key is pressed. The files also have information on the keyboard table
name, version number, origin, date of origin, and display class
displayed by the system selection program.

CHARACTER SET FILES 23.2

Files with the .CHR extension contain character set tables. These
tables contain data corresponding to the dot matrix displayed by each
character on the keyboard. The tables also contain information on the
character set name, version number, origin and date of origin, and
display class.

SYSTEM OPERATION 2-3

SYSGEN displays most of this information to help you select the
correct character set. Table 2-2 shows the format of the information in
the first sector of these files.

The banner name and version are the name and version number of
the character set placed in the banner.

2 Table 2-2: Information Displayed by Character Set Tables

LENGTH
TYPE OF INFORMATION (BYTES)

File type (K = keyboard; C = character) 1
Format version 1
Display class 12
Banner name 8
Filler (a space) 1
Comment 35*
Originator** 16
Date (yy/mm/dd)** 8
Length** 4
Unused** 51

* 31 bytes are displayed by SYSGEN
** Not displayed by SYSGEN

2.3.3 BANNER SKELETON FILE

Files with the .BAN extension are banner skeleton files. The banner is
information displayed during system boot, including the logo and
configuration information. The banner skeleton is a set of ASCII
strings containing the escape sequences and characters needed to
display the logo and configuration information.

SYSGEN displays the banner files available for selection. After you
specify the keyboards and character sets, SYSGEN makes a copy of
the banner. The first sector of the banner specifies the chosen key
boards and character sets.

2-4 SYSGEN

When SYSGEN writes a custom banner, the first sector has this for
mat: The first byte is zero, followed by ODH OAH. Next you see the
length of the file in decimal (with a leading and a trailing space), fol
lowed by ODH OAH.

If the first byte is not zero, SYSGEN does not customize the banner.
If data in the first sector is not “recognizable,” SYSGEN uses default
locations during custom banner generation.

The location of the keyboard name and character set name follow the
same format as the file length. If the file length is 639 characters, the
keyboard name is at byte 502, and the character set name is at 541.
The first 24 bytes of the banner file are shown below (in hex):

00 0D 0A 20 36 33 39 20 0D 0A SO 35 30 20 0D
OA 20 35 34 31 20 OD OA

LOGO FILES 2.3.4

Like the character set, the logo contains data that corresponds to a set
of special characters. These characters represent the set of dots in the
logo. If the size of the logo is nonstandard, the first byte must contain
its length in sectors. SYSGEN supports sixteen-sector logo files.

SYSTEM OPERATION 2-5

2.4 FILES GENERATED BY SYSGEN

*.CTL Files
The primary output of SYSGEN is a control file containing the
specifications of the operating system. Use the “Modify an Existing
Operating System” option to modify existing control files.

*SPR Files
SYSGEN generates an *.SPR file for each operating system you select.
This file contains system parameter data to be loaded into the operat
ing system.

*.BNR Files
SYSGEN generates a *.BNR file (banner file) each time you select an
operating system. This file is a customized version of the selected
banner skeleton file.

2.5 INSTRUCTION FILES
The file in the SYSELECT.HLP program contains information that
tells you how to use SYSGEN.

2-6 SYSGEN

CHARACTER SETS

International Character Set

Q 6 9 st
r *

l. n n
s

o

N
9

¥

Ji

British Standard Character Set

E9 r♦ 6 9 fl H

*
H

L N

1 n o

tt ¥

Ji JJ 1E

OQ6 € n

B
B

G
H

2
B
R
b

3
r

2
B
R
b

A
R

G
H

B
B
L
E

8
6
F
U

t
(
8
H
X
b

9
L

9
I
Y

C

K
l
k
{

K
I
k
{

?6

?
6

T
4

8
L
F
U
f

a
u c

rr

♦
v

a
o
n

1
$
4
D
T
d

1
$
4
D
T
d

9
e
(j

LOW
NIBBLE £

o
N

9
e
O

9
u

J
H

A
R

!!
#
3

A
f

7
G
U
9

7
G
U
9

0
t

m
}

o
I
)
9
I
Y

o
4

r

j
z
j
z
e
li

J
Z
J
z
e
li

8
H
X
h
X
e
y
L

N
]
m
}

e
K
6

V
h
£
3
0
S
c
s
a
6
u

1
A
u
a

❖
§
2
5
E
U
e
u

« 4
n s

A
f
»

4 r

-
§
x
5
E
U

£

0123456789ABCDEF
0: “ " ' “
1:4
2:
3:0
4-.V
5:P
6:'
7:p
8:C
9:e
fi:a

cA
D:ll
E:« p T fi X
F:= ± > < f

1
A
Q
a
1
U
X

n
: ♦ € (1

LOW
nibble I B123456789RBCnE F

0:
l:h
2:
3:0
4:B
5:P
6:'
?:p
8:C
9:e
A: a
a

t I 1 I f . I +
E: k p I' n X tr ji t 5
F:= ± > < f I - . »

n

CHARACTER SETS A-l

French Standard Character Set
LOW
NIBBLE

H
I

G
H

N
I
B
B
L
E

0123456789RBCBEF
0: +
1:F 4 t !! t 9 . 1
2: I ’’ £ $ J 8 ’
3:0 1 2 3 4 5 6 7
4:a fi B C D E F G
5:P I] R S T U U II
6: 1 a b c A e f <j
7:pqrstuvw
O:“ ii { } a a a e
9:E « Il o o 6 u y
fl:a i 6 u n N - ®

tM^'uUT
()*+,-./
8 9: ; < = > ?
H I J K L H H 0
hz°5§\
hijklnno
x g z e u e ’’ a
8 l] T i 1 A A
0 U \ C H ¥ R f
i r- % 3$ i « »

SHlSHiHliiiiJ
E:a p F nltprlPftioffn
F:=+>< fj v = !'• J ■ * .

German Standard Character Set
LOW
nibble I 0123456789RBCDEF

8: SSV»»».g«gS?Fftch
l:k O 111 I . 4 t I o i. • if
2: !"tt$28' ()»+,-./
3:0 123456789: ;<=>?

“ 4:§ RBCDEFGH I JKL11N0
q 5:P QRSTUUUXYZnoU*_
H 6:' abcdeFghijklano

7 :p qrstuvwxyzaiiiipa
8:-{}aaaeeee[]iii‘A

B 9:E l I o o ti u ij 5 ° \ 0 £ ¥ B f
B H:ai6unfi4!irT![!(j«»

E:« rxnzapri0(15«|£0
V:= ± > < f J t = I . J« ‘ i

A-2 SYSGEN

SYSGEN DISKETTE CONTENTS

The files and programs described in this appendix are contained on
the SYSGEN diskettes.

SYSGEN.BAT Boot up batch file

PROMPT SYSGEN prompt

MAKEMS.BAT MS-DOS MAKE batch file

1. BAT
2. BAT
3. BAT
4. BAT
5. BAT
6. BAT

Configuration batch files

SYSELECT.EXE Syselect program

SYSGEN.HLP SYSGEN help

BIN2REL.EXE BINary to RELocatable Converter

LINK.EXE MS Linker

SYSLOC.EXE System Locator

SYSCOPY.EXE System copy utility

AMER02.KB
FRENCH01.KB
GERM03.KB
ITALIN02.KB
VICTOR.KB

Keyboard files

SYSGEN DISKETTE CONTENTS B-1

GERMAN.BAN
ITALIAN.BAN
VICNOLGO.BAN
FRENCH.BAN
VICTOR.BAN

Banner files

ITALIN02.CHR
FRENCHO1 .CHR
GERM02.CHR
VINTL01.CHR

Character set files

FRENCHO l.XLT
NOTRANS.XLT

Translate tables

VICTOR.LGO Logo

VICTOR.BNR
VICTOR.CTL
VICTOR. SPR

SYSGEN configuration information
for diskette

BANNER. OBJ
CHARSET.OBJ
KEYS. OB J
SYSPAR.OBJ
XLATE.OBJ

SYSGEN generated objects

B-2 SYSGEN

INDEX

.BNR, 2-3 Menus, 1-2, 1-3

.CHR, 2-3 Modify, 1-2

.KB, 2-3

.LGO, 2-3 New Operating System, 1-2

.OBJ files, 1-1

.XLT, 2-3 Operating System, 1-2

ALT-C, 1-3

Banner, 1-6

writing out, 1-7

Parity, 1-6
Printer

name, 1-3 parallel, 1-5
Batch files, 1-1 primary, 1-5
Baud rate, 1-6 secondary, 1-5

Character set, 1-3
alternate, 1-4

serial, 1-5

Selection menus, 1-3 to 1-7
selection, 1-4 Serial port configuration, 1-6

COMMAND.COM, 1-2 Stop bits, 1-6
CONFIG.SYS, 1-2

Files
*.BNR, 2-6
*.CTL, 2-5

Translation tables, 1-4

*.SPR, 2-6
banner, 2-4 to 2-5
character set, 2-3 to 2-4, A-l
keyboard table, 2-3
logo, 2-5
system selection, 2-2 to 2-3

Graphic subset, 1 -3

Help, 1-2
instruction files, 2-6

Keyboard tables, 1-3 to 1-4

Loading, 1-2
Logo, 1-6

Index-1

COMMAND.COM

MODCON
Utility

COPYRIGHT

© 1983 by VICTOR®.

All rights reserved. This publication contains proprietary information
which is protected by copyright. No part of this publication may be
reproduced, transcribed, stored in a retrieval system, translated into
any language or computer language, or transmitted in any form what
soever without the prior written consent of the publisher. For informa
tion contact:

VICTOR Publications
380 El Pueblo Road
Scotts Valley, CA 95066
(408) 438-6680

TRADEMARKS

VICTOR is a registered trademark of Victor Technologies, Inc.
MODCON is a trademark of Victor Technologies, Inc.
WordStar is a trademark of MicroPro.

NOTICE

VICTOR makes no representations or warranties of any kind
whatsoever with respect to the contents hereof and specifically dis
claims any implied warranties of merchantability or fitness for any
particular purpose. VICTOR shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this publication or its contents.

VICTOR reserves the right to revise this publication from time to time
and to make changes in the content hereof without obligation to notify
any person of such revision or changes.

First VICTOR printing February, 1983.

ISBN 0-88182-006-7 Printed in U.S.A.

II GRAPHICS TOOL KIT

CONTENTS

1. Overview ..1-1

2. Operating Environment .. 2-1
2.1 Character Sets, Keyboard Tables, and Translate Tables .2-1
2.2 MODCON Operation ... 2-2
2.3 Command Syntax ... 2-2
2.4 Error Conditions ... 2-3

3. Using MODCON .. 3-1
3.1 Commands ..3-1
3.2 Applications ... 3-2

MODCON UTILITY III

CHAPTERS

1. Overview

2. Operating Environment

3. Using MODCON

MODCON UTILITY V

OVERVIEW

MODCON is designed to take advantage of one of the most powerful
features of your computer—its flexibility. With MODCON, you can
modify the configuration of the operating system with respect to the
keyboard table, character set, and translate table. When used with
EFONT and KEYGEN, MODCON provides you with a personalized
environment not possible on other machines.

MODCON lets you select a new keyboard table, translate table, and/or
character set before entering an application program. The current set(s)
can be saved and restored when you exit the application program.

MODCON is supported by the following operating systems:

► MS-DOS: Vl.25/2.5 or later

► CP/M: VI. 1/2.4 and later

If you try to use MODCON with earlier versions of either operating
system, an error message appears.

Note: Translate table functionality is available with MS-DOS V1.25/2.6
and later.

MODCON UTILITY 1-1

OPERATING ENVIRONMENT

Before you can use MODCON, you must set up any keyboard and
character files and translate tables.

CHARACTER SETS, KEYBOARD TABLES,
AND TRANSLATE TABLES 2.1
Character sets are obtained by:

► Selecting a set provided on the system selection (SYSELECT) disk
ette included in the Programmer’s Tool Kit.

► Selecting a graphics character set provided with CHARGRAF in the
Graphics Tool Kit.

► Modifying the current set (or any available set) using the EFONT
character-font editor.

Keyboard tables are obtained by:

► Selecting a table provided on the system selection (SYSELECT)
diskette included in the Programmer’s Tool Kit.

► Modifying the current table (or any available table) using the key
board table editor KEYGEN.

Translate tables are associated with character sets requiring dead key
sequences. These are provided for each appropriate language on the
SYSELECT diskette.

MODCON UTILITY 2-1

2.2 MODCON OPERATION
If you request it, MODCON saves the current keyboard table or translate
table and/or character set in a file on the drive you specify. The keyboard
file and translate table is 2K bytes and the largest character set file is 10K
bytes. All header fields are initialized with blanks except for the following:

► TYPE is K (keyboard), C (character).

► VERSION is 0.
2

► BANNER NAME is the file name you specify.

► FILE SECTOR COUNT is the appropriate value.

Translate table header fields are set to nulls.

Any valid keyboard or character file created by KEYGEN, EFONT or
MODCON—or taken from a system selection, graphics or other
diskette—can be loaded from a file and set as the active keyboard table
or character set.

Translate tables are processed only when a character set is being pro
cessed. If there is a translate table with the same name as the character
sef you have selected, that translate table is automatically included in
your configuration. If no such translate table exists, a translate table is
not included.

When you save a character set, any active translate table is automati
cally saved on the same diskette. The translate table has the same file
name as the character set file, and the extension .XLT.

2.3 COMMAND SYNTAX
To invoke MODCON, type:

MODCON <command>

2-2 GRAPHICS TOOL KIT

The command portion of the invocation can have any of these formats
(items enclosed in brackets are optional):

<source file>[.<source ext.>]<save file>[.<save ext.>]
<source file>[.<source ext.>]
*<save file>[.<save ext.>]

where:

<source filo is the name of the file(s) that contain the sets to be
made active. If you enter an asterisk (*), no new sets are made
active and the configuration remains unchanged.

<source ext. > is .KB for keyboard or .CHR for character set. If the
extension is omitted, then both keyboard and character files are
made active.

<save filo is the name of the file(s) used to save the currently
active keyboard table and/or character set. If you use MODCON to
set a new configuration, <save filo is optional.

<save ext.> is .KB for keyboard or .CHR for character set. If the
extension is omitted, then both keyboard and character sets are
saved.

2

NOTES: (1) The <source ext.> option is independent from the <save
ext.> option.

(2) Translate tables can be acted on only if a character set is
being processed.

ERROR CONDITIONS 2.4
Any of the following errors cause MODCON to terminate prematurely.
When this happens, none of your new configuration is saved, and the
operating system is unchanged. Any BDOS or BIOS errors are returned
in the normal manner.

CANNOT OPEN FILE <filename>

Make sure the file exists on the specified drive.

MODCON UTILITY 2-3

DISK FULL

Make room for the new file(s). Keyboard files and translate tables
need 2K bytes; a character set file needs 10K.

DIRECTORY FULL

Make room for one or two new entries.

INVALID FILE EXTENSION

Specify the proper extension (.KB or .CHR).

INVALID DELIMITER

The correct delimiter is an asterisk (*).

SYSTEM ERROR

Run system diagnostics.

OPERATING SYSTEM MISMATCH

Reboot with the correct version of the operating system.

DISK ERROR <filename>

Use a different diskette.

2-4 GRAPHICS TOOL KIT

USING MODCON

This chapter shows how MODCON is used both at the command level
and to create a prepackaged set of programs intended for end-users.

COMMANDS 3.1
The following examples show how commands are used:

► MODCON GERM01 G02SAVE
This saves the current keyboard table and character set in files
G02SAVE.KB and G02SAVE.CHR on the default drive. The data in
GERM01.KB and GERM01.CHR become the new active sets.

► MODCON MOI GERM01
This does the same as the previous example except that the original
GERM01.KB and .CHR files are overwritten in the save operation.

► MODCON AUST01
This sets the new keyboard table and character sets, both named
AUST01. The previous keyboard table and character sets are not
saved.

► MODCON B: GRAPHIC. CHR SAVE.CHR
This saves the current character set in SAVE.CHR on the default
drive. The new active character set is GRAPHIC.CHR on drive B.
The keyboard tables are not changed.

► MODCON * BRIT01.KB
This saves the current keyboard table in file BRIT01.KB on the
default drive while leaving it as the active keyboard. The character
set is not changed.

► MODCON FRENCH.KB B:SWEDISH.CHR
This saves the current character set in file SWEDISH.CHR on drive
B, while leaving that character set active. It also sets the keyboard
table from the default drive file FRENCH.KB, and overwrites the
existing keyboard table without saving it.

MODCON UTILITY 3-1

3.2 APPLICATIONS
The following example shows how a series of commands in a batch file
(MS-DOS) or submit file (CP/M-86) set up a dedicated keyboard for a
WordStar word processing session. The original keyboard is restored
when WordStar is terminated.

MODCON WORDAMER.KB SAVED.KB
The American keyboard is set as the
dedicated keyboard for the WordStar ses
sion. The original keyboard is saved so it can
be restored at the end of the session.

WS WordStar is invoked.

MODCON SAVED.KB The original keyboard is restored.

DEL SAVED.KB This deletes the original keyboard file
(MS-DOS).

[ERA SAVED.KB] This deletes the original keyboard (CP/M-
86).

3-2 GRAPHICS TOOL KIT

