
·-

•

•

System 80

OS/3
Consolidated Data
Management
Programming Guide

This Library Memo announces the release and availability of the System 80 OS/3 Consolidated Data Management
Programming Guide, UP-9978 Rev. 1.

This guide is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of the
product.

This guide explains what consolidated data management is, how it works, the data structures that are involved, and how
errors and exceptions are handled. Additionally, it describes the formats and conventions for the various types of files and
discusses those things you must consider when using each type of file in your program.

Changes to this guide for Release 12.0:

• The DMRECV=YES SUPGEN parameter does not provide recovery for temporary work files or system files as it did
in prior releases.

• II DD RECV=OFF, a new job control language specification that allows you to to temporarily 'turn off" recovery.

• 11 DD MSGSUPP, a new job control language specification that allows you to suppress the DM36 DUPLICATE
RECORD message, to suppress the LB05 MODULE NOT FOUND message, or to suppress all data management
messages.

• 11 DD RESTORE= YES, a new job control language specification that allows you to restore your file if it is
unintentionally initialized.

All other changes in this guide are corrections, deletions, or expanded descriptions applicable to items present in the
software prior to this release.

Additional copies may be ordered through your local Unisys representative.

Destruction Notice: This revision supersedes and replaces the OS/3 Consolidated Data Management Concepts and
Facilities, UP-9978, released on Library Memo dated September 1984. Please destroy all copies of UP-9978 and its
Library Memo .

Mailing Lists
MBZ, MCZ, and MMZ

Mailing Lists
MBOO, MBOl, MBW,
M28U, and M29U
(142 pages plus Memo)

Library Memo for
UP-9978 Rev. 1

October 1988

-·

•

•

•

•

•
• UNISYS

•

•

System 80
OS/3
Consolidated Data
Management
Programming
Guide

Copyright © 1988 Unisys Corporation
All rights reserved.
Unisys is a trademark of Unisys Corporation .

OS/3 Release 12.0

Priced Item

October 1988

Printed in U S America
UP-9978 Rev. 1

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Arr/ product and related
material disclosed herein are only furnished pursuant and subject to the terms and conditions of a
duly executed Program Product License or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if arrf, with respect to the products described in this document are set
forth in such License or Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or software material, including
direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the User Comments form at
the back of this manual or remarks addressed directly to Unisys Corporation, to E/MSG Product
Information, P.O. Box 500, M.S. E5-114, Blue Bell, PA 19424 U.S.A.

•

•

•

• Page Update
Part/Section Number Level

Cover

Title Page/Disclaimer

PSS iii

About This Guide v thru viii

Contents ix thru xv

1 1 thru 10

2 1 thru 4

3 1 thru 5

4 1 thru 29

5 1 thru 28

• 6 1 thru 7

7 1, 2

Appendix A 1 thru 8

Appendix B 1 thru 9

Appendix C 1 thru 14

Appendix D 1, 2

Appendix E 1

Index 1 thru 6

User Conments Form

Back Cover

•
UP-9978 Rev. 1

PAGE STATUS SUMMARY
ISSUE: UP-9978 Rev. 1

RELEASE LEVEL: 12.0 Forward

Part/Section
Page

Number
Update
Level Part/Section

Page
Number

iii

Update
Level

•

•

•

•

•

•

About This Guide

Purpose

Scope

This guide instructs the Unisys System 80 programmer in the use of Unisys Operating
System/3 (08/3) consolidated data management.

This guide

• Explains what consolidated data management is, how it works, describes the data
structures that are involved, and explains how errors and exceptions are
handled.

• Describes the formats and conventions for the various types of files and discusses
those things you must consider when using each type of file in your program .

Audience
The primary audience for this guide is the programmer who requires information on
the various types of files that can be used in a program.

Prerequisites
Anyone using this guide should be familiar with 08/3.

How to Use This Guide
Read the entire guide to familiarize yourself with consolidated data management;
then use it, as needed, to provide information on the types of files you intend to use in
your program .

UP-9978 Rev. 1 v

About This Guide

Organization

vi

This guide contains seven sections and five appendixes.

Section 1. Introduction

This section describes what consolidated data management is, how it works, describes
the data structures that are involved, and explains how errors and exceptions are
handled.

Section 2. Card Formats and File Conventions

This section describes how card files are organized, shows the card record formats, and
discusses those things you must consider when using card files in your program.

Section 3. Printer Formats and File Conventions

This section describes how printerfilesare organized, shows the printer record formats,
and discusses those things you must consider when using printer files in your
program.

Section 4. Magnetic Tape Formats and File Conventions

This section c.!c.>cribes how magnetic tape files and volumes are organized, shows the
tape record formats, and discusses those things you must consider when using
magnetic tape files in your program.

Section 5. Disk and Format Label Diskette Formats and File Conventions

This section describes how these files are organized, shows the record formats,
provides formulas for estimating space requirements for a data file, and discusses
those things you must consider when using these files in your program.

Section 6. Data Set Label Diskette Formats and File Conventions

This section describes how diskette files are organized, shows the record formats, and
discusses those thing you must consider when using diskette files in your program.

Section 7. Workstation Formats and File Conventions

This section describes how workstation files are organized, shows the record formats,
and discusses those things you must consider when using workstation files in your
program.

Appendix A. Functional Characteristics of Input/Output Devices

This appendix provides summaries of the functional characteristics of the various VO
devices.

UP-9978 Rev. 1

•

•

•

•

•

•

About This Guide

Appendix B. Code Correspondences

This appendix provides the hexadecimal value, the binary value, and the Hollerith
punched card code for all ASCII and EBCDIC characters.

Appendix C. DD Job Control Statement Processing

This appendix describes how the the DD job control statement can be used to
temporarily change file parameters at run time.

Appendix D. Shared Code and Accelerated File Access

This appendix describes how you use shared code to improve the performance of
consolidated data management when accessing files.

Appendix E. Data Management Debugging Facility

This appendix describes how you can use the data management debugging facility to
provide you with a system dump when an unexpected data management error occurs.

Related Product Information
The following Unisys documents may be useful in understanding and using
consolidated data management:

Note: Throughout this guide, when we refer you to another manual, use the current
version that applies to the software level in use at your site.

Interactive Services Operating Guide (UP-9972)

This guide describes the procedures used to communicate interactively through a local
workstation or remote terminal with the operating system.

System/82, 84 to OS/8 Conversion Guide (UP-9318)

This guide describes the guidelines for converting from IBM System/32, 34 to OS/3.

Installation Guide (UP-8839)

This guide describes how to generate, install, and tailor your operating system.

Supervisor Technical Overview (UP-8831)

This overview describes the concepts of the component that provides the central
control necessary for the optimum utilization of system hardware and software .

UP-9978 Rev. 1 vii

About This Guide

viii

System Service Programs (SSP) Operating Guide (UP-8841)

This guide describes the system service programs.

Data Utilities Operating Guide (UP-8834)

This guide describes how to reproduce and maintain data files.

Job Control Language Programming Guide (UP-9986)

This guide provides information on the format and use of job control statements.

System Messages Reference Manual (UP-8076)

This handbook lists and describes the messages that are displayed on the system
console during program execution.

COBOL, 1974 American National Standard Programming Reference Manual
(UP-8613)

This manual describes how to use the 1974 ANSI COBOL programming language.

FORTRAN IV™ Programming Reference Manual (UP-8814)

This manual describes how to use the FORTRAN IV programming language.

Report Program Generator II (RPG II) Programming Guide (UP-8067)

This guide describes how to use the RPG II programming language.

Operations Guide (UP-8859)

This guide describes the procedures and commands used to operate System 80.

FORTRAN IV is a trademark of SuperSoft Associations.

UP-9978 Rev. 1

•

•

•

•
Contents

Section 1.

• Section 2.

Section 3.

•
UP-9978 Rev. 1

About This Guide iii

Introduction

1.1. General Information
1.2. What Is Consolidated Data Management?
1.3. How Consolidated Data Management Works
1.4. Data Structure
1.5. Error and Exception Handling .. .

1.5.1. Error Messages .. .
1.5.2. Return of Control

1.6. Related Software
1.6.1. System Service Programs (SSP)
1.6.2. Job Control
1.6.3. Supervisor .. .
1.6.4. Data Utilities .. .

Card Formats and File Conventions

1-1
1-1
1-3
1-4
1-8
1-8
1-8
1-8
1-8
1-9

1-10
1-10

2.1. General Information .. 2-1
2.2. File Organization ... 2-1

2.2.1. Card Input Files .. 2-2
2.2.2. Card Output Files .. 2-2

2.3. Card File Programming Considerations 2-3

Printer Formats and File Conventions

3.1. General Information .. 3-1
3.2. File Organization ... 3-1

3.2.1. Text .. 3-1
3.2.2. Tabular Data .. 3-1
3.2.3. Data on Preprinted Forms .. 3-2

3.3. Printer Record Formats .. 3-3
3.4. Vertical Format and Load Code Buffers 3-4
3.5. Printer File Job Control Considerations 3-4

ix

Contents

Section 4.

Section 5.

x

Magnetic Tape Formats and File Conventions

4.1. General Information .. 4-1
4.2. Tape Volume and File Organization .. 4-1

4.2.1. EBCDIC Standard Volume Organization•...... 4-2
4.2.2. EBCDIC Nonstandard Volume Organization 4-6
4.2.3. EBCDIC Unlabeled Volume Organization•......... 4-9
4.2.4. ASCII Standard Volume Organizations 4-10

ASCII End-of-File and End-of-Volume Coincidence•.. 4-14
4.2.5. Magnetic Tape File Record Formats•..............•..................... 4-16

4.3. Magnetic Tape File Job Control Considerations 4-19
4.3.1. Assigning a Tape Device to Your Job (DVC)•..... 4-20
4.3.2. Specifying Tape Volume Information (VOL) 4-21

Inhibiting Volume Serial Number Checking 4-21
4.3.3. Specifying Tape Label Information (LBU 4-22

Specifying the File Identifier ... 4-22
Checking and Creating Volume and File Serial Numbers 4-22
Specifying the File Expiration Date .. 4-24
Specifying the File Creation Date .. 4-24
Specifying the File Sequence Number 4-24
Specifying the File Generation and Version Numbers 4-24

4.3.4. Defining Your Logical File (LFD) .. 4-25
4.3.5. Preparing Tape Volumes ... 4-26
4.3.6. Specifying Mode Characteristics for Tape Volumes 4-27
4.3.7. Creating Multivolume Files ... 4-27
4.3.8. Extending Tape Files .. 4-28

Disk and Format Label Diskette Formats and File
Conventions

5.1. General Information
5.1.1. How Disk Files Are Organized•..............•................
5.1.2. Disk Access Method .. .

MIRAM Concepts
5.2. MIRAM File Organization

5.2.1. The Data Partition .. .
5.2.2. Entries in the Index Partition .. .
5.2.3. MIRAM Index Structure
5.2.4. Estimating Disk Space Required for an Indexed Disk File
5.2.5. Estimating Disk Space Requirements for a Nonindexed MIRAM

File .. .
5.2.6. Minimum Cylinder and Track Allocation for MIRAM Files

5.3. Disk File Job Control Considerations
5. 3.1. Device Assignment Set for Creating a Disk File
5.3.2. Device Assignment Set for Allocating Fixed-Head Area to a

File on the 8417 Disk .. .
5.3.3. Device Assignment Set for Creating a Format Label Diskette

File Using the Autoloader Feature of the 8420 Diskette
5.3.4. Device Assignment Set for an Existing Disk File

5-1
5-1
5-2
5-2
5-4
5-4
5-8
5-9

5-10

5-15
5-15
5-16
5-16

5-17

5-19
5-21

UP-9978 Rev. 1

•

•

•

Contents

• 5.3.5. Extending an Existing Disk File .. 5-21
5.3.6. Device Assignment Set for a Remote Disk File 5-21
5.3.7. Preparing Disk Volumes ... 5-22

5.4. Disk File Sharing 5-22
5.4.1. Logical Access Path (LAP) ...•..•....................•.. 5-23
5.4.2. Share Requirements .. 5-23
5.4.3. ACCESS Parameter Specifications ...•.. 5-21

Section 6. Data Set Label Diskette Formats and File Conventions

6.1. General Information .. 6-1
6.2. Data Set Label Diskette File Organization 6-1

6.2.1. File Layout and Record Formats for Data Set Label Diskette Files 6-3
6.3. Data Set Label Diskette File Job Control Considerations 6-4

6. 3.1. Device Assignment Set for Creating a Data Set Label Diskette File 6-5
6.3.2. Device Assignment Set for Creating a Data Set Label Diskette File

Using the Autoloader Feature of the 8420 Diskette 6-6
6.3.3. Device Assignment Set for an Existing Data Set Label Diskette

File .. 6-7
6.3.4. Preparing a Data Set Label Diskette Volume 6-7

• Section 7. Workstation Formats and File Conventions

7.1. General Information .. 7-1
7.2. File Organization ... 7-1
7.3. Workstation Record Formats .. 7-1
7.4. Workstation File Job Control Considerations 7-1

7.4.1. Device Assignment Set for a Single-Volume Workstation File 7-2
7.4.2. Device Assignment Set for a Multivolume Workstation File 7-2

Appendix A. Functional Characteristics of Input/Output Devices

Appendix B. Code Correspondences

B.l. General Information .. B-1
B.2. EBCDIC/ASCII/Hollerith Correspondence B-1

B.2.1. Hollerith Punched Card Code ... B-2
8.2.2. EBCDIC ... B-2
8.2.3. ASCII ... B-2

B.3. Other Card Codes ... B-8
B.3.1. Compressed Card Code .. B-8
8.3.2. Column Binary (Image) Code .. B-9

•
UP-9978 Rev. 1 xi

Contents

Appendix C. DD Job Control Statement Processing •
C.l. General Information ... C-1
C.2. DD Job Control Statement Parameters ... C-1

C.2.1. Record Format (RCFMl .. C-2
C.2.2. Data Buffer/Block Size (BKSZl ... C-3
C.2.3. Record Size (RCSZl .. C-5
C.2.4. Key Length (KLENnl .. C-5
C.2.5. Key Location (KLOCnl ... C-5
C.2.6. Index Buffer Size (INDSl .. C-5
C.2.7. Initial Space Allocation Percentages (SIZE, SIZE!, SIZE2l C-6
C.2.8. File Sharing Characteristics (ACCESS) .. C-6
C.2.9. Variable Sector Support (VSECl ... C-7
C.2.10. File Recovery Support (RECV) .. C-7
C.2.11. One Volume Online at a Time (VMNTl C-10
C.2.12. Record Control Byte (RCBl .. C-10
C.2.13. Offset Physical Sector (OFFSET) .. C-11
C.2.14. General Rewind Options (REWIND) .. C-11
C.2.15. Rewinding at File Open (OPRWl ... C-11
C.2.16. Rewinding at File Close (CLRWl .. C-11
C.2.17. File Label Type (FILABL) .. C-12
C.2.18. Tape Marks (TPMARKl .. C-12
C.2.19. Restoring Initialized Files (RESTORE) C-12
C.2.20. Disk Cache Support (CACHE) ... C-13 •
C.2.21. Suppressing Error Messages (MSGSUPP) C-14

Appendix D. Shared Code and Accelerated File Access

Appendix E. Data Management Debugging Facility

E.l. General Information .. E-1
E.2. Console Command ... E-5

Index

User Comments Form

•
xii UP-9978 Rev. 1

• Figures

1-1. Relationship of Consolidated Data Management to a Program .. 1-2
1-2. Consolidated Data Management Program Development Cycle .. 1-3
1-3. Organization of Data on Peripheral Devices .. 1-5

2-1. Typical Card File Structure ... 2-1
2-2. Fixed-Length, Unblocked Record Format for Card Input Files .. 2-2
2-3. Record Formats for Card Output Files ...•... 2-3

3-1. Sample Tabular Data ... 3-2
3-2. Sample of Data on Preprinted Form .. 3-2
3-3. Printer Record Formats .. 3-3

4-1. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume - Single File 4-3
4-2. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume - Multifile Volume with

End-of-File Condition 4-4
4-3. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume - Multifile Volume with

End-of-Volume Condition ·······························~····················.................................. 4-5
4-4. Organization for a Nonstandard EBCDIC Magnetic Tape Volume - Single File 4-7

• 4-5 .
4-6.
4-7.

Organization for a Nonstandard EBCDIC Magnetic Tape Multifile Volume 4-8
Organization for an Unlabeled EBCDIC Magnetic Tape Volume .. 4-9
Organization of ASCII Single-File, Single-Volume and Single-File, Multivolume Sets 4-11

4-8. Volume Organization of an ASCII Multifile, Single-Volume Set .. 4-12
4-9. Volume Organization of an ASCII Multifile, Multivolume Set ... 4-13
4-10. Label Configuration Options of an ASCII Multifile, Multivolume Set when End-of-Volume and

End-of-File Coincide .. .'... 4-15
4-11. Record and Block Formats for Magnetic Tape Files, ASCII and EBCDIC 4-16

5-1. Disk (MIRAM) Data Record Slots Spanning Physical Sector Boundaries 5-5
5-2. Disk (MIRAM) Data Record Formats ... 5-6
5-3. Fine-Level Index Block 5-8
54. Coarse- or Mid-Level Index Block 5-9

6-1. Data Set Label Diskette File Layout ... 6-3
6-2. Data Set Label Diskette Record Formats ... 6-4

B-1. Compressed Card Code B-8
B-2. Column Binary (Image) Card Code ... B-9

•
UP-9978 Rev. 1 xiii

•

•

•

• Tables

4-1. Effects of Job Control VOL and LBL Statements when a File Is Opened, Standard
Labeled Tape File .. 4-23

5-1. Disk-Dependent Factors for Estimating Disk Space Requirements 5-12
5-2. Minimum Cylinder and Track Allocation for MIRAM Files .. 5-15
5-3. Summary of ACCESS Parameter Specifications 5-28

6-1. Data Set Label Diskette Characteristics•............ 6-2

A-1. Card Reader Subsystem Characteristics .. A-1
A-2. Card Punch Subsystem Characteristics A-3
A-3. Printer Subsystem Characteristics A-4
A-4. Disk and Diskette Subsystem Characteristics ... A-7
A-5. Magnetic Tape Subsystem Characteristics A-8
A-6. Workstation Subsystem Characteristics A-9

8-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith 8-3

• C-1. Allowable Keyword Parameters for the DD Job Control Statement C-1

•
UP-9978 Rev. 1 xv

•

•

•

•

•

•

Section 1
Introduction

1.1. General Information
As you know, all computer programs process data in one form or another; however, the
data and the program are in two different places. The program is executed in the main
storage section of the central processing unit (CPU) and the data is contained on
devices external to the CPU. In order to process the data and produce the desired
results, data must be moved in from and out to these peripheral devices. Because the
physical and electronic characteristics of the various devices differ, it can lead to
problems if you have to take the characteristics of a device into consideration each
time you want to perform an inputioutput (I/0) operation. Obviously, there is a need
for some way to specify an I/O operation in a program on a logical level. The answer to
this need is consolidated data management.

1.2. What Is Consolidated Data Management?
Consolidated data management is a collection of program modules that are written for
each of the I/O devices supported by your system. These modules handle the actual
movement of data. They take care of all the device characteristic requirements;
consequently, you need not worry about this when you want to perform I/O operations.
All you need to do is make a formal request in your program to data management and
it moves the data in from or out to the particular I/O device. Figure 1-1 illustrates the
relationship between data management and your program .

UP-9978 Rev. 1 1-1

Introduction

1-2

Figure 1-1. Relationship of Consolidated Data Manag2ment to a Program

As you can see in Figure 1-1, data management acts as the data transfer mechanism
between your program and the 1/0 devices.

UP-9978 Rev. 1

•

•

•

•

•

•

Introduction

1.3. How Consolidated Data Management Works
When you write your program, you establish a unique file name for each 1/0 device
you intend to use. You then describe the characteristics for each file. Once this is done,
you use these file names in conjunction with 1/0 commands at each point that you
want to move data into or out of your program. The 1/0 commands act as formal
requests to data management. After your program is written, it must be processed by
the applicable language processor (assembler, FORTRAN, COBOL, or RPG II) to form
an object module. The next step is to link edit your program to produce a load module
(an executable program).

When the time comes to execute your program, you use job control language
statements to associate each file name in your program with the particular device you
want to get data from or send data to. Once this is done, you can proceed to execute
your program. The appropriate data management modules are placed in main storage
at this time as shown in Figure 1-2.

Thereafter, each time an input or output command is encountered during processing,
the applicable data management module gets data from or sends data to the
appropriate device.

SOURCE LANGUAGE
STATEMENTS FOR
YOUR PROGRAM

LANGUAGE
PROCESSOR

PROGRAM
EXECUTION

SYSRUN

OBJECT
MODULE

CONTAINING
YOUR

PROGRAM

COPY REQUIRED
MODULES
(See Note)

LINKAGE
EDITOR

SYSLOD

CONSOLIDATED
DATA

MANAGEMENT
LOAD

MODULES

SYSLOD

LOAD
MODULE

CONTAINING
YOUR

PROGRAM

Note: Based on device assignment sets for files in the job control stream, the required modules are copied at
execution time.

Figure 1-2. Consolidated Data Management Program Development Cycle

UP-9978 Rev. 1 1-3

Introduction

1.4. Data Structure

1-4

Consolidated data management recognizes the following as structural entities:

• Volume

The largest physical unit for data storage; such as tape reel or disk pack.

• File

A delimited storage space having an identifying file name and consisting of a
collection of related data.

• Block

That portion of a file that is transferred into or out of main storage by a single
access.

• Record

A collection of contiguous characters that you have designated to be handled as a
unit.

• Field

One or more contiguous characters within a record that represents a single piece
of information.

The volume concept is not truly applicable to printers, workstation, or card devices.
On disk, diskettes, and magnetic tape, a file may be larger than a volume; that is, a
file may require more than one physical unit to hold it. In this case, you have what is
called a multivolume file. Figure 1-3 shows the organization of data on the peripheral
devices supported by consolidated data management.

UP-9978 Rev. 1

•

•

•

•

•

•

BLOCK ,_,.._,,
I FIELD'

DI I iU ID
A FILE COMPRISES ONE OR MORE SPANS REdORD
OF TRACKS ON ALL SURFACES OF PACK

a. Disk pack

Note: The set of tracks at a specific radius on all recording surfaces is called a cylinder.

Figure 1-3. Organization of Data on Peripheral Devices (Part 1 of 3)

UP-9978 Rev. 1

Introduction

1-5

Introduction

FILE

1-6

0

0
('

FIXED SECTORS

b. Diskette

RECORD=ONE LINE OF PRINTING

G VxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

0
0

0
0

0

0

0

0

0

0

0

c
0

0
0

0

0

0
0

0

0

0

0
0

0
0

0

0

I I I

I I

c. Printer

I I

d. Punched card

RECORD ----------FIELD I
11 I :1 I I: I I
I I I

I I I I

Figure 1-3. Organization of Data on Peripheral Devices (Part 2 of 3)

•

•

•
UP-9978 Rev. 1

•
FILE

•

•
UP-9978 Rev. 1

FILE OR
VOLUME

e. Magnetic tape

FIELD

I
I I I
I I I

I

RECORD

RECORD=ONE LINE OR ENTIRE SCREEN

-.,

~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

f. Workstation

Introduction

D?L----

Figure 1-3. Organization of Data on Peripheral Devices (Part 3 of 3)

1-7

Introduction

1.5. Error and Exception Handling
During program execution, consolidated data management monitors each
input/output request and notifies you when an error or exception occurs so that you
can take appropriate action. This notification consists of messages that are logged on
the printer or displayed at the console.

1.5.1. Error Messages

The error messages issued by data management have the following format:

OM nn chan/device explanatory-text,TYPE=nn

As you can see, these messages consist of the prefix DM followed by a number, the
channel and device address, and text explaining what caused the error. Some
messages have the suffix TYPE=nn, where nn is a subcode that further defines the
error. A complete list of the data management messages along with suggested actions
is provided in the System Messages Reference Manual (UP-8076).

1.5.2. Return of Control

Consolidated data management is designed so that control is always returned to your
program when an error is detected; that is, your program is never terminated. When
an error occurs, the applicable error message is logged or displayed and control is
returned to your program inline at the next sequential instruction after the
instruction that caused the error.

1.6. Related Software
There are several software components that are indirectly involved with data
management or perform functions required for program operation. These components
include:

• System service programs (SSP)

• Job control

• Supervisor

• Data utilities

1.6.1. System Service Programs (SSP)

1-8

The SSP are those routines that you use to prepare disk, diskette, and magnetic tapes
to accept data records, to create program load modules, to obtain printouts (dumps) of

UP-9978 Rev. 1

•

•

•

•

•

•

Introduction

main storage, and to construct and reorganize your program libraries. These routines
are described in detail in the System Service Programs (SSP) Operating Guide
(UP-8841).

The disk prep routine performs a surface analysis of the disk or diskette tracks and
assigns alternate tracks if defects are discovered. It also establishes a volume table of
contents (VTOC) for the device so that files may be placed on it.

The magnetic tape prep routine prepares a magnetic tape by writing the initial
volume label, dummy file header label, dummy file trailer label, and tape marks.

The linkage editor is used to create your program load module.

The dump routines allow you to obtain narrative or nonnarrative printouts of main
storage.

The system librarian allows you to construct and reorganize your program libraries.

1.6.2. Job Control

A major function of job control is the assignment of the required peripheral devices.
These are assigned through job control statements that specify logical unit numbers,
alternate device types, and information about the file. These statements include:

• DVC statement - assigns device number.

• VOL statement - identifies tape, disk, and diskette volumes.

• EXT statement - provides disk extent information (amount of disk or diskette
space required for your file).

• LBL statement - identifies the physical file on tape, diskette, or disk.

• LFD statement - associates the file defined in your program with the physical file
on the device.

Other functions provided by job control include loading the vertical format buff er
(VFB) and the load code buffer (LCB). For details on job control, see the Job Control
Language Programming Guide (UP-9986) .

UP-9978 Rev. 1 1-9

Introduction

1.6.3. Supervisor

The supervisor provides the largest amount of support for your program and data
management. For the most part this support is automatic and therefore is not
apparent during the execution of your program. This support includes

• Physical input/output control system (PIOCS)

Handles the actual tr an sf er of physical records between the I/O devices and main
storage.

• Transient scheduling routines

Retrieve transient routines, such as the file open and close routines, and bring
them into main storage for execution.

• Operator communications routines

Handle the communications concerning volume mounting requests, and so on.

• File protection routines

Protect files and records during shared file processing.

• Timer services routine

Compute run time, scheduling, and so on.

• Disk space managem~nt routines

Allocate disk space and maintain space accounting through procedures that
update the volume table of contents (VTOC) on disk files.

1.6.4. Data Utilities

1.10

A data utility routine is provided to assist you in manipulating data files and
preparing card decks. This routine edits or corrects data records, or copies them from
one device to another.

See the Data Utilities Operating Guide (UP-8834) for details concerning this routine .

UP-9978 Rev. 1

•

•

•

•

•

•

Section 2
Card Formats and File Conventions

2.1. General Information
A punched card file consists of a card deck that is input via a card reader or output via
a card punch. Records can comprise either a portion of a card or a complete card. The
basic punched cards for the card subsystems are the standard 80-column cards.
However, optional hardware features allow you to read 51- or 66-column cards.

Refer to Appendix A for the functional characteristics of the card subsystems that are
supported.

2.2. File Organization
Punched card files are sequential files; that is, the records are handled one at a time
in sequential order. The card deck consists of a start-of-data job control card
(optional), data cards containing one record each, and a end-of-data job control card.

Figure 2-1 shows a typical card file structure.

END-OF-DATA
JOB CONTROL~

CARD

1 TO n CARDS
EACH CONTAINING~

A SEPARATE RECORD

START-OF-DATA /$
JOB CONTROL

CARD ~
(OPTIONAL)

FOR INPUT FILES
THESE CARDS MAY HAVE

51, 66, 80, OR 96
COLUMNS

FOR OUTPUT FILES
THESE MUST

BE 80-COLUMN CARDS

Figure 2-1. Typical Card File Structure

UP-9978 Rev. 1 2-1

Card Formats and File Conventions

2.2.1. Card Input Files

A card input file consists of fixed-length, unblocked records; that is, all records are the
same size. When a record is read, it is placed in the 1/0 area. Figure 2-2 shows the
record format for fixed-length, unblocked records.

data

!<--------------A-------------->!

Legend

A Data record length. The VO area must be at least the same size as the record length and must be an even
number of bytes. If you are using 51-column cards, the VO area must be specified as 52 bytes.

Figure 2-2. Fixed-Length, Unblocked Record Format for Card Input Files

2.2.2. Card Output Files

2-2

A card output file consists of data that is formed into records, either in the 1/0 area or
a designated work area, and then is sent to the card punch, where the records are
punched in the standard 80-column card format. The output records can be fixed
length or variable length. These record formats are shown in Figure 2-3.

UP-9978 Rev. 1

•

•

•

•

•

•

Card Formats and File Conventions

FIXED LENGTH

data

!<:-----------A----------->!

VARIABLE LENGTH

data

I<-- D -->!<--------A ------->I

!<----------- c --------->!

!<:------------ F ------------>!

Legend

b Block size field, 4 bytes
Record length field, 2 bytes

u Reserved (2 bytes); may be any 2 characters chosen by the user
A Data record length
C Variable record length
D Record size field

F VO area layout. The VO area must be an even number of bytes and its size must equal the maximum record
size plus the block size and record size fields if you are dealing with variable-length records.

Figure 2-3. Record Formats for Card Output Files

2.3. Card File Programming Considerations
The following points must be considered when you use card files with your program:

1. The file name that you use in your program for a card file must be associated
with a card I/O device via a DVC-LFD job control statement series in the job
control stream at program execution. See the job control user guide for details on
these statements.

2. If you intend to process 51- or 66-column cards, the device number that you
specify in the DVC job control statement for that file must be the number of a
device that supports the required feature .

UP-9978 Rev. 1 2-3

Card Formats and File Conventions

2-4

3. If your files require either input or output translation (the conversion of an
existing character to another), you must provide a translation table in your
program. See the applicable programming language guide for details.

4. If you intend to read or write ASCII files, you must indicate this when you
describe the file in your program. This is necessary because the internal code in
the system is EBCDIC and data management must be alerted so that it can
translate the incoming data to EBCDIC (via the data management ASCII-to
EBCDIC translation table) or the outgoing data to ASCII (via data management
EBCDIC-to-ASCII translation table). See the applicable programming language
guide for details.

UP-9978 Rev. 1

•

•

•

•

•

•

Section 3
Printer Formats and File Conventions

3.1. General Information
A printer file consists of data that you create in your program and cause to be printed,
one line at a time, on a printer device. Each printed line can have up to 160
characters, depending upon the printer subsystem you use.

Refer to Appendix A for the functional characteristics of the printer subsystems that
are supported.

3.2. File Organization

Printer files can be organized to produce text, tabular data, or data on preprinted
forms. In each case, you must set up the data you want printed on each line, must
control the vertical separation between lines, and must provide for skipping to the
next page when the space on the current page is exhausted. (See the applicable
programming language guide for details.)

3.2.1. Text

The simplest printer file is one that consists entirely of text. An example of this is the
lines you are presently reading. If you had to write a program to produce these lines,
each line would be a record and you would form each line in an 1/0 area or work area.
Then you would cause it to be printed. This process is repeated for each line until the
end of the page is reached, at which point you issue an instruction to skip to the top of
the next page.

3.2.2. Tabular Data

The records for tabular data and reports are formed in the same manner as in text
files (in an 1/0 area or work area). In these cases, your program is more complex
because of vertical and horizontal spacing requirements, page and column headings,
and other repetitive items (see Figure 3-1) .

UP-9978 Rev. 1 3-1

Printer Formats and File Conventions

COLUMN { -PART- - - - - - - lfriii

HEADINGS _ "'"M c _.li'_B_1:!i _____ o_::..,i;;.iu eu_ol!I
OOOIOE CAPACITOR
OOOIOF ROTOR
OOOIOG POINT1IGN

PAGE HEADING

~

____ DAILY ACTIVITY REPORT
TRANS-

ACTION
Ol<DER
ORDER
ORDER

QUAN

ON-HAND

Figure 3-1. Sample Tabular Data

3.2.3. Data on Preprinted Forms

REO

PO

DEPARTMENT

BILLED
PRODUCTION
PRODUCTION
!'IAINTENANCE

A printer file that places data on a preprinted form is easy to use once it is organized.
You form your records in an I/O area or work area as with text or tabular data. The
difference, as you can see in Figure 3-2, is that you have to closely control the
positioning of your data.

3-2

• UNISYS
P. 0. BOX 500
BLUE BELL. PA. 19422

INT

SITE 3-1

ATTN: CATHY SMITH

D6866M 8598 UP 8071
ADDRESS CORRECTION REQUESTED

RETURN POSTAGE GUARANTEED

U01-527

Figure 3-2. Sample of Data on Preprinted Form

UMS

00851

UP-9978 Rev. 1

•

•

•

•

•

•

Printer Formats and File Conventions

3.3. Printer Record Formats
The printer record formats are shown in Figure 3-3. As you can see, a record may
contain a control character that specifies line spacing or skipping when the file is
printed. This character is not printed, but is a part of the record in storage.

FIXED LENGTH

H data, fixed length

I<------------ A >I

UNDEFINED

cc data, variable length {~
I<------------ A >I

VARIABLE LENGTH

data,-variable length

I<-- D -->l<--------A -------:>I

I<----------- c --------->I

I<------------ F ------------>I

Legend

b Block size field, 4 bytes
cc Control character, 1 byte, optional

Record length field, 2 bytes, binary
u Reserved (2 bytes); can be any 2 characters you choose
A Data record length
C Variable record length
D Record size field
F 1/0 area layout

Figure 3-3. Printer Record Formats

UP-9978 Rev. 1 3-3

Printer Formats and File Conventions

3.4. Vertical Format and Load Code Buffers
All printers contain a vertical format buffer and a load code buffer. The vertical format
buffer is used to define the printer page in terms of the number of lines per page, the
density of the lines, the overflow line, and the codes you can use with your program
instructions to skip to specific lines on a page.

The load code buffer specifies the 8-bit codes that are associated with the graphic
symbols on the print cartridge, band, or drum.

Normally, the vertical format buffer and the load code buffer are set up at system
generation time for each printer type. For details, refer to the Installation Guide
(UP-8839).

Normally, your only concern with these buffers is to know what standards are
established for the printer you are going to use with your program. In most cases,
these standards allow you to produce the printed output you require.

3.5. Printer File Job Control Considerations

3-4

The following points must be considered when you use printer files with your
program:

1. The file name that you use in your program for a printer file must be associated
with a printer device via a DVC-LFD job control statement series in the job
control stream at program execution. See the Job Control Language
Programming Guide (UP-9986) for details on these statements.

2. If you intend to process records that are larger than 120 characters, the device
number that you specify in the DVC job control statement for that file must be
the number of a device that has the required feature.

3. You must include a VFB job control statement in the DVC-LFD statement series
for your printer file if:

• You want to use one of the filed vertical format buffers (established at
SYSGEN time or by use of the job SG$PRB) rather than the default vertical
format buffer used when no VFB statement is specified.

• Your forms control requirements cannot be met by the vertical format buffer
that was established at SYSGEN time. In this case, the VFB statement is
used to specify a unique vertical format that meets your needs. When the
program is executed, the vertical format buffer you specified via the VFB
statement is used instead of the one specified at SYSGEN time. See the Job
Con(rol Language !'rogr:am,Tl)ing G.1t.ide (UP-9986) for details on the VFB
statement.

UP-9978 Rev. 1

•

•

•

•

•

•

Printer Formats and File Conventions

4. You must include an LCB job control statement in the DVC-LFD statement series
for your printer file if

UP-9978 Rev. 1

• You want to use one of the filed load code buffers (established at SYSGEN
time or by use of the job SG$PRB) rather than the default load code buffer
used when no LCB statement is specified.

• Your requirements cannot be met by the load code buffer that was
established at SYSGEN time. The LCB statement is used to specify a unique
load code buff er that meets your needs. When the program is executed, the
load code buff er you specified via the LCB statement is used instead of the
one specified at SYSGEN time.

See the Job Control Language Programming Guide (UP-9986) for details on the
LCB and VFB statements .

3-5

•

•

•

•

•

•

Section 4
Ma1~netic Tape Formats and File
Conventions

4.1. General Information
Magnetic tape files consist of data records that are recorded on one or more volumes
(reels) of magnetic tape. These files are sequential files; the data records are recorded
on tape in the order in which they are submitted, and they are read from the tape
starting with the first record on tape and continuing with each successive record. The
recording and reading are accomplished via a tape subsystem. Refer to Appendix A for
the functional characteristics of the magnetic tape subsystems that are supported.

4.2. Tape Volume and File Organization
Consolidated data management allows you to process magnetic tape files encoded in
Extended Binary-Coded Decimal Interchange Code (EBCDIC) as well as in the
American National Standard Code for Information Interchange (ASCII), X3.4-1977.
The file structure, organization, and processing specifications for ASCII magnetic tape
files is described in the American National Standard Magnetic Tape Labels for
Information Interchange, X3.27-1969. Both of these standarC...; are followed when
ASCII magnetic tape files are processed. The tape volumes (reels) can be organized as
follows:

• EBCDIC

Standard labeled

Non standard labeled

Unlabeled

• ASCII

Standard labeled

The paragraphs that follow explain and illustrate the different types of volume
organization .

UP-9978 Rev. 1 4-1

Magnetic Tape Formats and File Conventions

4.2.1. EBCDIC Standard Volume Organization

4-2

A standard volume has system standard labels and required tape marks; it may also,
at your option, contain standard user header labels and user trailer labels (UHL and
UTL). All standard tape labels are written in blocks of 80 bytes. Data management
assumes that the labels appear on tape in the order shown in Figures 4-1, 4-2, and 4-3,
which illustrate the reel organization for standard labeled EBCDIC volumes with an
end-of-file (EOF) and an end-of-volume (EOV) condition. A standard labeled EBCDIC
volume processed by data management ends in either an EOF or an EOV label group,
followed by two tape marks. The second tape mark indicates that no valid information
follows. No provision is made for creating additional volume, header, or EOF/EOV
labels on output files; if they exist on input files, data management bypasses them .

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

WITH END-OF-FILE CONDITION

Legend

VOL1 label

HDR1 label

HDR2 label

user header labels
UHL1-UHL8

tape mark

data
blocks

tape mark

EOF1 label

EOF2 label

user trailer labels
UTL1-UTL8

D Content supplied by user.

~ These bytes are required and generated by data management.

WITH END-OF-VOLUME CONDITION

VOL1 label

HDR1 label

HDR2 label

user header labels
UHL1-UHL8

tape mark

data
blocks

tape mark

EOV1 label

EOV2 label

user trailer labels

UTL1-UTL8

D These bytes are generated by data management; user supplies content for certain fields.

Ill These bytes are generated by user's routine for processing these labels; content is at user's option except for
content of 4-byte label-id fields. User is limited to eight UHL and eight UTL.

Figure 4-1. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume - Single File

UP-9978 Rev. 1 4-3

Magnetic Tape Formats and File Conventions

44

VOL1 label

HDR1 label of file A

HDR2 label of file A

tape mark

data blocks
of file A

tape mark

EOF1 label of file A

EOF2 label of file A

tape mark

HDR1 label of file B

HDR2 label of file B

tape mark

data blocks
of file B

tape mark

EOF 1 label of file B

EOF2 label of file B

tape mark

tape mark

Legend

D
~

D
Note:

Content supplied by user.

These bytes are required and generated by data management.

These bytes are generated by data management; user supplies content for certain fields.

Assume that file B completes on this volume.

Figure 4-2. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume • Multifile
Volume with End-of-File Condition

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

REEL 1 REEL 2

VOL1 label VOL 1 label

HOR1 label of file A HDR1 label of file B

H DR2 label of file A HDR2 label of file B

tape mark tape mark

data blocks data blocks

nf filA A of file B

tape mark tape mark

EOF1 label of file A EOF1 label of file B

EOF2 label of file A EOF2 label of file B

tape mark tape mark

HDR1 label of file B HDR1 label of fileC

HDR2 label of file B HDR2 label of file C

tape mark tape mark

data blocks data blocks

of file B of file C

:.;:<',~~'
tape mark ~~ tape mark

~,%,0"'.

EOV1 label of file B EOV1 label of file C

EOV2 label of file B EOV2 label of file C

tape mark tape mark

tape mark tape mark

Legend

D
~

D
Note:

Content supplied by user.

These bytes are required and generated by data management.

These bytes are generated by data management; user supplies content for certain fields.

Assume that file C is not completed on reel 2, but carries over (like file Bl onto another volume. If file C was
completed on reel 2, its EOVl and EOV2 labels shown here would be replaced with EOFl and EOF2 labels.

Figure 4-3. Organization for a Standard Labeled EBCDIC Magnetic Tape Volume - Multifile
Volume with End-of-Volume Condition

UP-9978 Rev. 1 4-5

Magnetic Tape Formats and File Conventions

4.2.2. EBCDIC Nonstandard Volume Organization

4-6

A nonstandard volume is any volume that contains only nonstandard labels and
certain required tape marks. Figures 4-4 and 4-5 show the formats for EBCDIC
nonstandard volumes.

The optional user header and trailer labels may be of any format, length, or number
because they are handled by a label processing routine that you supply in your
program.

The tape mark following the user header label is only required if you intend to use
read-backward operations in your program or if you intend to omit label checking. It is
not required and may be omitted if you intend to perform label checking. Normally,
this tape mark is automatically generated by data management unless you specify
otherwise.

The tape mark following the data blocks is required and is automatically generated by
data management. If user trailer labels are present, data management automatically
generates the two required tape marks that must follow these labels. If the user
trailer labels are not present, data management writes only one additional tape mark
after the one following the data blocks. This second tape mark is always present when
a file is the only file or is the last file on the volume. If the volume is a multifile
volume, this second tape mark is overwritten by the next file placed on this volume .

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

- --
optional user
header labels

tape mark

data blocks

tape mark

optional user
trailer labels

tape mark

tape mark

Legend

D

D

Content supplied by user.

These bytes are required !!nd generated by data management; only two tape marks follow data blocks if UTL

are not present.

These bytes are generated by data management unless user specifies otherwise; required only if label
checking is omitted or read-backward operations are specified.

The presence, content, format, and number of these bytes are entirely at user's option.

Figure 4-4. Organization for a Nonstandard EBCDIC Magnetic Tape Volume - Single File

UP-9978 Rev. 1 4-7

Magnetic Tape Formats and File Conventions

optional user
header labels

tape mark

data blocks
of file A

tape mark

optional user
trailer labels

tape mark

optional user

header labels

tape mark

data blocks
of file B

tape mark

optional user

trailer labels

tape mark

tape mark

LP.gend

LJ

D

ii

•

Content supplied by user.

These bytes are required and generated by data management; only two tape marks follow data blocks of last
file on volume if UTL are not present.

These bytes are generated by data management unless user specifies otherwise; required only if label
checking is omitted or read-backward operations are specified.

Presence, content, format, and number of these bytes are entirely at user's option .

Always present; written by data management.

Figure 4-5. Organization for a Nonstandard EBCDIC Magnetic Tape Multifile Volume

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

4.2.3. EBCDIC Unlabeled Volume Organization

Consolidated data management can also process unlabeled tape volumes. Figure 4-6
shows the organization for unlabeled EBCDIC volumes.

A tape mark normally precedes the data block unless you specify otherwise. The tape
mark following the data blocks is required on both single-file and multifile volumes
and is automatically generated by data management. A second tape mark is always
written by data management following the last or only file on each volume. If the
volume is a multifile volume, this second tape mark is overwritten by the next file
placed on this volume.

SINGLE-FILE VOLUME MULTIFILE VOLUME

tape mark

data blocks
of file A

tape mark

data blocks
of file B

tape mark

tape mark

Legend

D

D

UP-9978 Rev. 1

Content supplied by user.

These bytes are required and generated by data management; two tape marks follow data blocks of last file
on volume.

These bytes are generated by data management unless user specifies otherwise; required only when user
specifies read-backward operations.

Figure 4-6. Organization for an Unlabeled EBCDIC Magnetic Tape Volume

4-9

Magnetic Tape Formats and File Conventions

4.2.4. ASCII Standard Volume Organizations

4-10

The American National Standard, X3.27-1978, provides for the following file sets
(collections of one or more related files recorded on one or more volumes):

• Single file, single volume

• Single file, multivolume

• Multifile, single volume

• Multifile, multivolume

These volume organizations are shown in Figures 4-7 through 4-10. Note that all
ASCII tape files contain standard labels. Since data management follows the
standard, it expects to find these labels on ASCII input files and it generates them for
ASCII output files.

UP-9978 Rev. 1

•

•

•

Magnetic Tape Formats and File Conventions

SINGLE FILE. MULTIVOLUME

REEL 1 REEL 2 • SINGLE FILE. SINGLE VOLUME

VOL1 label VOL1 label

HDR1 label, file A HDR1 label, file A

HDR2 label, file A HDR2 label, file A

tape mark tape mark

data data

data blocks. blocks,

blocks first last

of part of part of

file A file A file A

•
tape mark tape mark tape mark

EOF1 label, file A EOV1 label, file A EOF1

EOF2 label, file A EOV2 label, file A EOF2

tape mark tape mark tape mark

tape mark tape mark tape mark

Legend

D Content supplied by user.

~ These· bytes are required and generated by· data-management.

II These bytes are generated by data management; user supplies data for certain fields.

• Figure 4-7. Organization of ASCII Single-File, Single-Volume and Single-File, Multivolume Sets

UP-9978 Rev. 1 4-11

Magnetic Tape Formats and File Conventions

4-12

Legend

0 Content supplied by user.

MULTIFILE, SINGLE VOLUME

HDR1 label, file A

HDR2 label, file A

tape mark

data blocks,
file A

tape mark

EOF1 label, file A

EOF2 label, file A

tape mark

HDR1 label, file 8

HDR2 label, file 8

tape mark

data blocks,
file B

tape mark

EOF1 label, file B

EOF2 label, file B

tape mark

tape mark

~ These bytes are required and generated by data management

• These bytes are generated by data management; user supplies data for certain fields.

Figure 4-8. Volume Organization of an ASCII Multifile, Single-Volume Set

•

•

•
UP-9978 Rev. 1

•

•

•

Magnetic Tape Formats and File Conventions

REEL 1

tape mark

data

blocks,
file A

tape mark

EOF1 label, file A

EOF2 label, file A

tape mark

HDR2 label, file B

tape mark

data blocks,
first part of

file B

tape mark

EOV2 label, file B

tape mark

tape mark

Legend

Content supplied by user.

MUL Tl Fl LE, MUL Tl VOLUME

REEL 2

VOL1 label

HDR1 label, file B

HDR2 label, file B

tape mark

continuation
of

file B

These bytes are required and generated by data management.

REEL 3

VOL1 iabel

HDR1 label, file B

HDR2 label, file B

tape mark

last part
of

file B

tape mark

EOF1 label, file B

EOF2 label, file B

tape mark

HDR1 label, file C

HDR2 label, file C

tape mark

file C
(completes

this volume)

tape mark

EOF1, file C

EOF2, file C

tape mark

tape mark

D
~

II These bytes are generated by data management; user supplies data for certain fields.

Figure 4-9. Volume Organization of an ASCII Multifile, Multivolume Set

UP-9978 Rev. 1 4-13

Magnetic Tape Formats and File Conventions

ASCII End-of-File and End-of-Volume Coincidence

4-14

The American National Standard, X3.27-1978, provides that whenever a volume ends
within a file, the last block of the file is followed by an end-of-volume label (EOVl). It
also allows for a second end-of-volume label (EOV2), which is standard in data
management (an EOVl label is always followed by an EOV2 label). A single tape
mark precedes and two tape marks follow the EOVl and EOV2 labels.

The standard also states that no file set may be terminated by end-of-volume labels;
consequently, provision is made for those cases where the end-of-volume and end-of
file coincide. In these situations, the standard provides that the labeling configuration
shall be one of the two options shown (see Figure 4-10). Option 1 occurs when the end
of-tape warning mark is reached while the last block of a file is being written. Option 2
occurs when the end-of-tape warning mark is reached after the EOFl and EOF2 label
groups have been started.

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

MULTI FILE, MULTIVOLUME

OPTION 1
REEL 1

file A
data blocks

tape mark

EOV1, file A

EOV2, file A

tape mark

REEL 2

VOL1 label

HDR1 label, file A

HDR2 label, file A

tape mark

tape mark

EOF1 label, file A

EOF2 label, file A

tape mark

HDR1 label, file B

HDR2 label, file B

tape mark

OPTION 2
REEL 1

tile A
data blocks

tape mark

EOF1, file A

EOF2, file A

tape mark

HDR1 label, file B

HDR2 label, file B

tape mark

tape mark

EOV1 label, file B

EOV2 label, file B

tape mark

tape mark

REEL 2

VOL1 label

HDR1 label, file B

HDR2 label, file B

tape mark

file B file B
data blocks data blocks 't'._._ ________ y "L_._ __________ y

Legend

D
~

•
Content supplied by user.

These bytes are required and generated by data management.

These bytes are generated by data management; user supplies data for certain fields.

Figure 4-10. Label Configuration Options of an ASCII Multifile, Multivolume Set when End-of
Volume and End-of-File Coincide

UP-9978 Rev. 1 4-15

Magnetic Tape Formats and File Conventions

4.2.5. Magnetic Tape File Record Formats

4-16

The data records on magnetic tape files may be fi~ed length, blocked or unblocked;
variable lengt;h, blocked or unblocked; or undefined. Figure 4-11 shows these formats
as they appear on EBCDIC and ASCII magnetic tape files. Note that the formats
illustrated in Figure 4-11 do not show the optional use of padding because it is not
supported. If your input blocks have been padded, the 1/0 area in your program must
be large enough to accommodate this padding and your program should take care of
detecting and removing the padding characters before it processes the data.

EBCDIC

FIXED-LENGTH UNBLOCKED RECORD

~ ~~ I d ••• ,.,,,d I

1:.--~--:1
FIXED-LENGTH BLOCKED RECORDS

r - -

I bn data record1 data record2 data record3

L - - '---------~--------~--------

' :;===~~:_D_1 ~----_-_-:_.>_I <:=~~-=--D_2_ -_ -_ -_-_-_>_l_<·====~:-_D_3_-_-~_ -_-:I
VARIABLE-LENGTH UNBLOCKED RECORD

r - -
block record

I bn header length data record

L - - ~----'----~----------------

~ BH -> 1:_-_R_L_-_>_I ______ D ---------:I
Figure 4-11. Record and Block Formats for Magnetic Tape Files, ASCII and EBCDIC (Part 1 of 4)

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

EBCDIC (cont.)

VARIABLE-LENGTH BLOCKED RECORDS
1

block record record

1 bn header length 1 data records 1 length2 data record2

L __

<- BH ->1<<- RL ->I 1<- RL ->I

<---------D-1 :::::--> <------ D2 ----:1

UNDEFINED RECORD FORMAT

1 bn data record

L __

I<------ ------>I

ASCII

FIXED-LENGTH UNBLOCKED RECORD (FORMAT F)

r - -

I
1 bsi data record

L __

\: D

l ___ :\
FIXED-LENGTH BLOCKED RECORDS (FORMAT F)

r - -

I bsi data record1 data record2

L - -

data record3

I :====----_D_,_-_ -_ -_ -_ -_-_>_l_<====~--D_z_-_-_-_-_-_>_I < _____ D_3 ____ :: I
Figure 4-11. Record and Block Formats for Magnetic Tape Files, ASCII and EBCDIC (Part 2 of 4)

UP-9978 Rev. 1 4-17

Magnetic Tape Formats and File Conventions

4-18

ASCII (cont.)

VARIABLE-LENGTH UNBLOCKED RECORD (FORMAT D)

r - -

1 bsi

buffer offset
field

(optional)

record
length data record

L - - ~------~---'------------------~

:-- BO -->1:_-_R_L_-_>_:------ D ---------:i
VARIABLE-LENGTH BLOCKED RECORDS (FORMAT D)

r -
buffer record record record

lbsi offset length 1 data record1 length2 data record2 length3 data record3
field

(optional)

<-BO ->1<<-RL 1->~ 1<-RL 2->~ 1<-RL 3->~
<:--------D_,_--~-==>-<-L---- D2 -> < - D3 --: I

UNDEFINED RECL~v FORMAT (FORMAT U)

r - -

1 bsi data record

L - - '--------------------------~

,<.---~ ------------:>!

Legend

D Record length, measured in bytes. This measure is entered in the most significant 2 bytes of the 4-byte record
length field; the least significant 2 bytes are reserved.

Block length, measured in bytes. Minimum block length is 18 bytes. This measure is entered in the most

significant 2 bytes of the 4-byte block header of EBCDIC variable-length records (blocked or unblocked); the
least significant 2 bytes are reserved. When the buffer offset field of ASCII variable records is a 4-byte field,
for output, data management writes the block length in it in ASCII. For input, data management assumes that it
contains the length of the block in 4 bytes of ASCII.

RL Record length field of variable-length records; a 4-byte field in ASCII and EBCDIC records. Its own length is
included in the measure inserted here. In EBCDIC records, record length is read and written in binary; in ASCII
records, it is recorded on tape in ASCII, although you present it to data management in binary and process it
in binary.

Figure 4-11. Record and Block Formats for Magnetic Tape Files, ASCII and EBCDIC (Part 3 of 4)

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

BH Block header, a 4-byte field at the head of the block format in which all EBCDIC variable-length
records, blocked or unblocked, appear on magnetic tape. The most significant 2 bytes contain the
length of the block, which includes the length of the header itself; the least significant 2 bytes are
reserved.

bn Optional 3-byte block number in EBCDIC. May not be created for output files. Data management
accepts the block number in EBCDIC input files, but does not process it.

BO Buffer offset field, an optional block prefix that may be placed at the head of each block of ASCII
variable records. Its content is recorded in ASCII; its length ranges from 0 to 99 bytes for fixed and
undefined records and is 0 or 4 for variable records. For variable records, when its length is 4
bytes, data management assumes that this field contains the length of the block (which includes the
length of this field itself).

bsi Optional 1-byte block sequence indicator for ASCII files in ASCII numeric code. May not be created
for output files. Data management accepts the block sequence indicator in input files, but does not
process it.

l The index register specified by the !OREG keyword parameter points here, to the first byte of the
record length field of variable-length records.

Notes:

1. Although the American National Standard, X3.27-1969, also provides for a variable ASCII record
with its record length specified in binary (commonly called the ''V-format" record), data
management does not support this format.

2. Spanned records (those extending beyond one block) are neither allowed in ASCII magnetic tape
files (in which there must be an integral number of records per block) nor supported by data
management in EBCDIC tape files.

Figure 4-11. Record and Block Formats for Magnetic Tape Files, ASCII and EBCDIC (Part 4 of 4)

4.3. Magnetic Tape File Job Control Considerations
The paragraphs that follow discuss the job control statements you include in your
program execution job control stream when your program requires magnetic tape files.
These are the DVC, VOL, LBL, and LFD statements (commonly called the device
assignment set) and they must appear in this order in the job control stream.

The job control stream must contain a device assignment set for each magnetic tape
file used by your program. This set is composed of at least one DVC (device
assignment) statement and one LFD (logical file definition) statement. The set may
also include a VOL (volume specification) statement and a LBL (file label information)
statement when you need them to specify certain actions and information to data
management.

See the Job Control Language Programming Guide (UP-9986) for the full formats of
these statements and other details on their use.

UP-9978 Rev. 1 4-19

Magnetic Tape Formats and File Conventions

4.3.1. Assigning a Tape Device to Your Job (DVC)

4-20

The DVC statement, with which you request the assignment of a tape unit to your job,
must be the first in the device assignment set that you need for each magnetic tape
file.

For the first positional parameter of the DVC statement, you specify nnn, a decimal
number that is the logical unit number assigned to a tape device by your installation.
The value ofnnn normally ranges from 90through127 for tape units; however, your
installation may have assigned other arbitrary logical unit numbers to one or more
tape devices at system generation time. The two other specifications for the first
positional parameter of the DVC statement (RES and RUN) are not used for magnetic
tape files.

Your use of the optional second positional parameter of the DVC statement depends
on your requirements; if you omit it, none of the three options available to a data
management user apply. One option is to specify that job control may assign an
alternative device of the same type as specified bynnn; for this, you specify ALT.

A second specification for this parameter, OPI', indicates that the device requested by
this DVC statement is an. optional device, not essential to the running of the job. If you
select this option, you must indicate in your program that the associated file i.s an
optional file.

The third specification for the second positional parameter of the DVC job control
statement is IGNORE. You specify this form when you assign more than one logical
file to the same tape device; that is, when your program accesses more than one of the
files on a multifile volume. You do not specify IGNORE when you are merely using the
same tape unit for handling the different volumes of a multivolume file in succession.

The coding examples that follow illustrate some of the uses of the DVC job control
statement in assigning devices to magnetic tape files. Note that the corresponding
LFD statements, with which each DVC statement must be paired, are not shown. For
a table oflogical unit numbers and further details, refer to the Job Control Language
Programming Guide (UP-9986).

Examples

10 16 72

1. II DVC 91
2. II DVC 122,ALT
3. II DVC 97,0PT
4. II DVC 111, IGNORE

Explanations

1. Requests the assignment of any tape device to your job, for the file named in the
accompanying LFD statement.

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

2. Requests the assignment of two tape devices of the same type for the file named
in the accompanying LFD statement.

3. Requests the assignment of any tape device to this job. However, this device is
not essential to the job. The job can be run even if this device is not available.

4. Requests the assignment of a tape device to this job. This same unit is also
assigned to other files by LFD statements paired with identical DVC statements
in the control stream for this job.

4.3.2. Specifying Tape Volume Information (VOL)

The VOL statement is required for all three types of files: standard labeled,
nonstandard labeled, and unlabeled files. For standard labeled files, it is used to
supply volume serial numbers (VSN s) for checking by data management.

For nonstandard and unlabeled files, you must include the (NOV) parameter. This is
necessary because these files do not contain VOL! labels and therefore do not have
VSN s. When you use a VOL statement, you insert it in your device assignment set
immediately after the DVC statement and before the LBL statement (if used) .

Inhibiting Volume Serial Number Checking

Normally, for a standard labeled input file, you will want data management to check
the VSN you specified in the first positional parameter of the VOL statement against
the VSN contained in the VOL! label in the tape volume. This action is performed
when your file is opened. If you want to bypass this checking, you can do so by
specifying (NOV) following the VSN as shown in the following example:

Example

II VOL ABC123(NOV)

Explanation

The example specifies that volume checking is not to be performed on the tape
volume whose VSN is ABC123.

There are other ways in which volume checking can be specified or inhibited. These
are described in detail in 4.3.3, which describes the LBL statement, and in Table 4-1.

UP-9978 Rev. 1 4-21

Magnetic Tape Formats and File Conventions

4.3.3. Specifying Tape File Label Information (LBL)

You use the LBL statement as the next-to~last job-control-statement in the device
assignment set for a standard labeled tape file to provide data management with the
information it needs for writing and checking the file header label group (HDRl and
HDR2 labels) and the end-of-file label group (EOFl and EOF2 labels) or end-of
volume label group (EOVl and EOV2 labels). You must have it for volume checking; it
has seven positional parameters, only the first of which is required.

Specifying the File Identifier

In the first positional parameter of the LBL statement, you must specify a file label
that corresponds, not necessarily to the logical name of the file (by which your
program refers to it), but to the file name that is recorded in the HDRl label of the
file on the volume. The file identifier for a tape file may contain as many as 1 7
characters, including blanks; ifit contains blanks, you enclose it in apostrophes. If you
do not have an LBL statement for an output file, data management uses the logical
file name (specified in the mandatory LFD statement) for the file identifier field of the
HDRl and EOFl or EOVl labels.

Checking and Creating Volume and File Serial Numbers

4-22

In the second positional parameter of the LBL statement, you either specify the file
serial number or request data management to check the relationship between this and
the volume serial number on an input file or to create. the file serial number on an
output file. If you specify the file serial number, it is a 1- to 6-character alphanumeric
string identical to the volume serial number of the first volume of the file. The option
VCHECK in the second positional parameter requests data management to create or
check this identity in the file-labels. The VCHECK parameter instructs job control to
use the volume serial number of the first volume of the file as the file serial number. If
you have four volumes in a file, and you only want to use the last two volumes (3 and
4, in that order), you must specify the file serial number that is the same as the
volume serial number of the actual first volume of the file. When the 4-volume file is
created, you use the VCHECK parameter to assign the same file serial number to each
volume. If you use the VCHECK parameter again, while trying to read only the third
and fourth volumes, job control uses the volume serial number of the first volume
you've coded (volume 3) as the file serial number value. Because volumes 3 and 4 were
created with the file serial number of volume 1, the job will not run. Omitting the
second positional parameter may inhibit the check or creation actions, depending on
what you have specified in the VOL card and on whether the file is an input or an
output file. Table 4-1 summarizes the combined effects of the various VOL and LBL
statement specifications upon the actions taken by data management when a file is
opened.

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

Table 4-1. Effects of Job Control VOL and LBL Statements on Data Management when a File Is
Opened, Standard Labeled Tape File

Resulting Action by OPEN Transient
VOL Statement, LBL Statement,
Specification of Specification of VSN Field of File Serial Number

Positional Parameter 1 Positional Parameter 2 VOL1 Label Field of HDR1 Label

Input Files

Unique VSN Unique FSN Checks that VSN in Checks that FSN in
VO L1 label is identical HOR 1 label is identical
to VSN specified in to VSN in the VOL 1

VOL statement label of the first volume
of the file

Unique VSN VCHECK Checks that VSN in Checks that FSN in
VO L1 label is identical HOR1 label is identical
to VSN specified in to VSN in the VOL 1
VOL statement label of the first volume

of the file

Unique VSN Blank. or statement Checks that VSN in No check made
omitted VOL 1 label is identical

to VSN specified in

VOL statement

Output Files

Unique VSN Unique FSN Creates VSN in VOL 1 Creates FSN in HOR1
label identical to the label identical to
VSN specified in the VSN in the VOL 1
VOL statement, or label of the first
checks that VSNs are volume of the file
identical

Unique VSN VCHECK Creates VSN in VOL 1 Creates FSN in HOR 1
label identical to the label identical to
VSN specified in the VSN in the VOL 1
VOL statement, or label of the first
checks that VSNs are volume of the file
identical

Unique VSN Blank. or statement Creates VSN in VOL 1 Creates FSN in HOR1
omitted label identical to the label identical to

VSN specified in the VSN in the VOL 1
VOL statement, or label of the first
checks that the VSNs volume of the file
are identical

Notes:

1. Specifying any combination of the VOL and LBL statements other than those shown for input or output files is
invalid and results in an error message being issued. Invalid job control specifications must be corrected and
your job rerun.

2. When you specify (PREP) following the VSN in the VOL statement for an output file, you may specify any of
these three combinations in the LBL statement. Refer to 4.3.5 for a description of the data management
automatic tape prep facility.

N

0

t

•
s

1

-

-

-

1

2

2

2

UP-9978 Rev. 1 4-23

Magnetic Tape Formats and File Conventions ·

Specifying the File Expiration Date

To provide data management with the expiration date of a file, you specify the
expiration date in either of the two forms provided for it in the third positional
parameter of the LBL statement. These forms are the actual expiration date you want
or the number of days the file is to be retained beyond its creation date. This
information is inserted in the file HDRl label. If you use the file retention form of this
option, you should either specify a file creation date or rely on the default assumption
as described in "Specifying the File Creation Date" in this subsection. If you do not
specify a file expiration date, data management makes the expiration date the same
as the creation date.

Examples

10 16 72

1. II LBL FICA,A12345,76366
2. II LBL FICA,B12345,R30

Explanations

1. Specifies that the expiration date of the tape file, whose external label is FICA
and whose FSN is Al2345, is 31December1976.

2. Specifies that the tape file, whose external label is FICA and whose FSN is
B12345, is to be saved 30 days beyond the date it is created.

Specifying the File Creation Date

You may specify the creation date of the file by coding the fourth positional parameter
of the LBL statement. If you omit this parameter, data management uses the date
stored in the job prologue.

Specifying the File Sequence Number

The file sequence number is not the same thing as the file serial number; you use the
file sequence number in a multifile tape volume to indicate the sequential position of a
file with respect to the first file on the reel. The file sequence number of the first file
may be 0001. Data management assumes this value is specified if you omit the fifth
positional parameter in the LBL statement, and so records it in the file HDRl label.

Specifying the File Generation and Version Numbers

4-24

You may specify a unique edition of a file by specifying its generation number in the
sixth positional parameter of the LBL statement; the default assumption is 001. You
may specify the version number of this generation in the seventh parameter; here, the
default is 01.

UP·9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

4.3.4. Defining Your Logical File (LFD)

Each device assignment set in your job control stream must end with an LFD
statement that specifies the logical file namefor your-file. This file name must be the
same as the name you specified when you defined your file in your program. Job
control allows the file name to be as many as eight alphanumeric characters. Data
management, however, requires that the file name not exceed seven characters and
the first character must be alphabetic.

The file name in the LFD statement is the first positional parameter. To ensure that a
read-only type file is not inadvertently written over, you may precede the file name in
the LFD statement with an asterisk (*) to indicate an input only file. This indicates
that the operator should verify that the write-enable ring has been removed from the
tape reel.

The second positional parameter of the LFD statement is not used in device
assignment sets for magnetic tape files.

The EXTEND option of the third parameter may be used on the LFD statement to
specify that a previously created output file is to be extended (see 4.3.8).

The coding examples that follow illustrate the uses of the LFD statement.

Examples

10 16 72

1. II LFD *YOURFLE
2. II LFD MYFILE
3. II LFD OUTFLE,,EXTEND

Explanations

1. Specifies that the logical name of the file to which this device assignment set
pertains is YOURFLE, and that it is an input-only file. The operator should verify
that the write-enable ring has been removed from the tape reel.

2. Specifies that the logical name of the file to which this device assignment set
applies is MYFILE. It is not designated as an input-only file, and no physical
safeguard is made by the operator against its being overwritten.

3. Specifies that the output tape file, OUTFLE, is to be extended. OUTFLE must be
the last or only file on a single tape volume or a file that needs additional space
on a new volume .

UP-9978 Rev. 1 4-25

Magnetic Tape Formats and File Conventions

4.3.5. Preparing Tape Volumes

4-26

If you intend to create standard labeled tape files in your program, you must first
prepare the tape volumes on which you intend to write your output files. This process
consists of writing the standard VOLl, HDRl, and HDR2 labels on these tape
volumes. There are two ways you can do this. The first way is to use the tape prep
utility (TPREP) to prepare the volumes before they are used in your program. This is
described in the System Seruice Programs (SSP) Operating Guide (UP-8841).

The second way is to request data management to prepare the required tape volumes
for the file at program execution time. This is accomplished by specifying (PREP) in
the VOL statement for your file after the VSN of each volume that is to be prepped.
When you do this, data management writes the standard VOLl, HDRl, and HDR2
labels on these volumes when the file is opened and processing continues from that
point on.

Part of the information required by this tape prep facility for writing HDRl and HDR2
labels may be specified in the LBL statement; therefore, when you specify (PREP) on
the VOL statement of a device assignment set, you may also include an LBL
statement in the set (refer to 4.3.3 and Table 4-1).

The examples that follow show how to use the VOL statement to cause data
management to prep tape volumes at program execution time.

Examples

10 16 72

1. II VOL ABC789,DEF012CPREP)
2. II VOL ,,,,DEF014CPREP)

Explanations

1. Calls on data management to prep two tape volumes, whose VSN s are ABC789
and DEF012. By default, data management uses the tape density and other
mode characteristics specified by your installation at system generation for the
tape device specified in the DVC statement which starts this device assignment
set. Data management uses information supplied in the accompanying LBL
statement to write the HDRl and HDR2 labels for the files on these volumes.

2. Calls on data management to prep a tape volume (DEF014), but set the volume
sequence number (in the HDRl label) to 4 rather than 1. The prep utility adds
one for every comma immediately preceding the first operand to get the volume
sequence number. Whenever you use tapes in a multivolume file environment,
t4is proc~dure should b~ .. us~d besau~e it elimi~~tes the. use pf 1>~ratcP, volumes. If
scratch volumes are used, the volume sequence number defaults to 1, resulting in
a volume sequence number error condition. Even though this condition can be
ignored, it is recommended that your volume sequence numbers be valid.

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

4.3.6. Specifying Mode Characteristics for Tape Volumes

Data management does not set the mode characteristics of the tape volumes, such as
bytes per inch (recording density), parity, and the number of tracks. These
characteristics are usually set at system generation and all tape volumes are recorded
with these characteristics by data management.

If you need to use or produce a volume that does not conform to the mode
characteristics set at system generation, you must specify this via the Mee parameter
in the VOL statement for this volume in the device assignment set. The following
example shows how this can be done:

Example

10 16 72

II VOL MC0,ABC123

Explanation

This example specifies that the tape volume whose VSN is ABC123 has a
recording density of 1600 bytes per inch and parity is odd. For full details on
mode characteristics, refer to the Job Control Language Programming Guide
(UP-9986) .

4.3. 7. Creating Multivolume Files

As explained in 4.3.5, you may use the VOL job control statement to specify the
volume serial numbers (one for each tape used) of the volumes that will constitute a
magnetic tape output file. If you have not previously prepped these tapes, specification
of the (PREP) parameter in the VOL statement causes them to be prepped
automatically for you as part of the job step creating the file. These procedures are
helpful when you know precisely the size of the file and the exact number of tapes it
requires - but this is not always the case with a new file.

If you specify (PREP) and fill all the tapes specified in the VOL statement and have
not completed creating your file, there is no way to complete it in this job step. An
error message is issued (DM41 FILE SPACE IS EXHAUSTED) and your job cancels.
In some circumstances, you do not know exactly which was the last block written to
this tape. Therefore, you may still not be able to estimate easily how many volumes
are needed in your next effort to create the file. In other circumstances, possibly the
entire run has been futile .

UP-9978 Rev. 1 4-27

Magnetic Tape Formats and File Conventions

Data management offers a useful facility in case you do not know the exact number of
volumes needed for an output file. It automatically extends your file, one volume at a
time, after the last volume specified on the VOL statement has been exhausted. It
continues to- do this until you terminate your file creation-operation. This can only be
done, however, if you do not specify the (PREP) parameter in the VOL statement.
Automatic prepping of tapes cannot be requested at the same time the automatic
extension feature is requested. Furthermore, if you are creating a nonstandard tape
file, the (NOV) parameter must be specified in the VOL statement.

When you are creating a file under these conditions, data management issues a mount
message to the operator for a scratch volume each time an end-of-volume marker is
reached. This continues until you terminate the file creation operation. The message
issued to the operator at the system console is

MOUNT VSN=SCRATCH ON DVC xxx RIC

When this message is displayed, the operator must mount either a preprepped tape, if
a standard labeled file is being created, or an unprepped tape, for a nonstandard
labeled or unlabeled file, and then reply R to the mount message to allow the program
to continue writing your output file but on the new volume. If a standard labeled file is
being created, you should make enough preprepped and properly sequenced tapes
available to allow the operator to complete the operation as requested. You must also
furnish the operator with instructions designating the order in which the tapes are to
be mounted. If the tapes are mounted out of sequence and are correctly preprepped
with consecutive volume sequence numbers, the output file is created, but an error
message indicating the out-of-sequence condition is displayed on the system console
each time the file is read. Although these messages may not confuse you, they could
cause other users of the file unnecessary concern. If a nonstandard labeled or
unlabeled file is being created, your instructions should request the operator to mount
an unprepped volume each time the mount message is displayed and somehow
identify the order in which they are to be mounted.

4.3.8. Extending Tape Files

4-28

Data management allows you to extend a standard labeled tape file provided that the
file is not physically followed by another file on the same volume. When you extend a
file, the record size, record format, and block size specifications of your extending
program must be the same as those specified for the original file. Your extending
program must also specify that the file is an output-only file.

Both single-volume and multivolume files can be extended by specifying the EXTEND
parameter in the LFD statement associated with the file. The EXTEND parameter
directs data management to proceed to the end of the file when the file is opened and
erase the end-of-file label. The extension then begins on the mounted tape unless the
end-of-file label happens to coincide with the end-of-volume marker. If this happens, a
mount message is issued. In either case, data management proceeds to extend your

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic Tape Formats and File Conventions

file until it is closed by your extending program. If an end-of-volume condition is
reached and there is more data to be placed on the file, data management requests the
mounting of the next volume specified in the VOL statement for this file and
continues· extending it:

If you think that your file extension operation will require the operator to mount
additional tapes, you should prep the volumes you want used with the appropriate
volume sequence numbers before you begin your file extension operation. This allows
you to identify the tapes you want to use in the VOL statement, and eliminates the
confusion that arises when the tape file is read and the volume sequence numbers on
the tapes are not consecutive. Remember that you cannot request automatic prepping
of tape volumes while you are extending a tape file. This can only be requested with a
file creation operation. Consequently, the (PREP) cannot be specified in a VOL
statement associated with a file extension operation.

The following device assignment set shows how you specify the extension of a file that
is not expected to exceed the limits of the present tape volume:

II DVC 90
II VOL TP01
II LBL MASTER
II LFD MAST,,EXTEND

If you expect the extension to exceed the space remaining on the present volume, you
should add the VSNs of the new tapes to the VOL statement as follows:

II DVC 90
II VOL TP01,TP02,TP03, •••
ll LBL MASTER
II LFD MAST,,EXTEND

If you are extending a multivolume tape file, your device assignment set need only
identify the last volume containing the file (plus any new volumes you may need), but
you must also include the VSN of the first tape volume in the file as the second
parameter in the LBL statement. For example, if you had a master file on tapes TPOl,
TP02, and TP03 that you wanted to extend, and you expected your extension to
require one additional tape, your device assignment set would be as follows:

II DVC 90
II VOL ,,,TP03,TP04
II LBL MASTER,TP01
II LFD MAST,,EXTEND

The first VSN (TPOl) is required to identify the new tape TP04, as well as TP03, as
being part of a file named MAST, which begins on TPOl.

UP-9978 Rev. 1 4--29

•

•

•

•

•

•

Section 5
Disk and Format Label Diskette Formats and
File Conventions

5.1. General Information
Whenever "disk file" is used in the following discussion, it refers to both disk and
format label diskette files. A format label diskette file is treated exactly the same as
any other disk file.

Disk files consist of data records that are recorded on one or more volumes (disk
packs). These files differ from other types of files in that the data records can be
retrieved not only sequentially but also randomly by relative record number (the
position of a record in the file relative to the beginning of the file) or by the record key
(a character string specified within each record to uniquely identify that record). The
data records are retrieved or written on the d1sk volume via a disk subsystem. Refer to
Appendix A for the functional characteristics of the disk subsystems that are
supported.

Usually, there is more than one file on a disk volume. In order to keep track of where
these files are located, each volume contains a volume table of contents (VTOC). Each
file also contains system standard labels that identify and delineate it.

5.1.1. How Disk Files Are Organized

Disk files fall into two general categories: nonindexed and indexed.

A nonindexed file is organized consecutively. Its records are written on the disk in the
order in which they are presented. The records are processed consecutively in the
same order as they appear on the disk. Anoniridexed file can also be one that is
organized relatively; each record in the file is written on the disk in a specific position
relative to the beginning of the file. This allows any record in the file to be retrieved
directly without processing any preceding records when the location (relative record
number) of the record is specified.

An indexed file contains data records and an index of the record keys. The data
records appear on the disk in the order in which you submitted them and the index is
arranged in ascending key order. The records can be processed sequentially or
randomly by record key. If the records are processed sequentially, the processing
commences with the record that has the lowest key value. For random retrieval, you
nee·d only" specify-the kef'of the record you wanfi-etrieved~

UP-9978 Rev. 1 5-1

Disk and Format Label Diskette Formats and File Conventions

5.1.2. Disk Access Method

Consolidated data management uses one access method for all disk files - MIRAM
(multiple indexed random ·access method}; MIRAM provides the functions that were
previously provided by separate access methods.

MIRAM Concepts

5-2

MIRAM has a number offeatures and concepts that distinguish it from other disk
access methods.

• Each data record is stored in a record slot. Record slots in MIRAM files, for either
fixed- or variable-length records, are of uniform size and may span physical
blocks, tracks, and cylinders as required. They may even extend from one volume
to another (unless the file was created for processing only a single volume online
at a time).

• Data record slots are written on disk compactly as a continuous string of bytes.

• The data buffer size specified in the program only determines the number of
physical blocks that are transferred between the disk and main storage in a
single access.

• The string of data records can always be accessed sequentially (consecutively) or
by relative record number. In addition, the data can be indexed by up to five keys;
this causes MIRAM to build a suitable index structure for each key type in a
partition that is separate from the data.

• An indexed MIRAM file can be accessed by the additional random-by-key or
sequential-by-key modes using a given key of reference, which can be changed.

• Indexed MIRAM files, either multivolume or single volume, may be created by
means of an orderly load (records submitted in ascending key order) or a
disorderly load (records submitted in no particular key order) and they may be
extended by appending records in either manner. MIRAM does not sort the index
at the completion of a disorderly load, but maintains the index current on a
record-by-record basis.

• Duplicate keys are permitted.

• A new record is immediately available for retrieval whether it has been added to
an indexed or nonindexed file.

• Multivolume MIRAM files may be created for processing with either one volume
online at a time or with all volumes online. They must be processed in the same
manner as they were created. All volumes must be the same device type.

UP-9978 Rev. 1

•

•

•

•
Disk and Format Label Diskette Formats and File Conventions

• All programs that access a MIRAM file need not use the same data buffer size for
input/output as was used to create the file. Those that access an indexed MIRAM
file, however, must use the same index buffer size.

• MIRAM allows you to logically delete records in your files; that is, it allows you to
mark records so that in subsequent processing they will be ignored. A deleted
record count is maintained for all files created under Release 12.0 or later. This
count will always be accurate for files created with recovery. However, for files
without recovery, the count will show the number of deleted records at the time
the file was last closed.

The deleted record count is displayed on the System Utilities (SU) 'VTP' print.
Files that are created with this functionality will show a valid count; that is, zero,
or the actual count. When an accurate count is not available (for example, a file
created prior to Release 12.0), the field will be blank.

• MIRAM always extends an existing file unless the !NIT parameter is specified on
the LFD statement. This causes initialization of the file. MIRAM does not
recognize the EXTEND parameter on the LFD statement, and you cannot use
EXTEND to override a program specification that calls for initialization of the
file.

• These are the restrictions.

• The maximum key length is 80 bytes.

•

No byte of a record key may contain the hexadecimal ;ralue 'FF'.

The minimum size for the index and data buffer is 256 bytes.

The maximum size for the index buffer is 32,512 bytes.

You may not mix device types within a multivolume file set.

• The two types ofMIRAM files are MIRAM characteristic files and !RAM
characteristic files. MIRAM characteristic files meet one or more of the following
conditions:

Multiple keys

Duplicate keys permitted

Key change on update permitted

Variable file record format

Record control byte (RCB)

UP-9978 Rev. 1 5-3

Disk and Format Label Diskette Formats and File Conventions

You may use the MIRAMCHAR SYSGEN parameter to specify MIRAM
characteristics for all newly created MIRAM files, regardless of the file's actual
characteristics. For further details on the MIRAMCHAR parameter, refer to the
Installation Guide (UP-8839).

5.2. MIRAM File Organization
All MIRAM files contain two partitions: the data partition, which contains the data
records, and the index partition, which contains an index.for each of the keys in your
records. If the file is a nonindexed file, the index partition is not used; that is, no
entries are placed in it and no space is allocated to it. If the file is indexed, entries are
placed in the index partition and space is allocated to it.

For indexed files, the data partition precedes the index partition.

5.2.1. The Data Partition

5-4

The data partition is arranged in the same way for both nonindexed and indexed files.
It consists of a single compact string of data records that may be keyed or unkeyed.

When data records are stored in a MIRAM file, the records are placed in uniform size
record slots and are arranged in the same order in which you originally presented
them. These t!ata records are stored in 256-byte physical sectors on your disk packs .
Because the record slot size does not have to conform to the physical sector size, the
records may span these physical boundaries, as shown in Figure 5-1.

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

PHYSICAL SECTOR 1

PHYSICAL SECTOR 1

I I I

PHYSICAL SECTOR 1

EXAMPLE 1

PHYSICAL SECTOR 2

EXAMPLE 2

PHYSICAL SECTOR 2

2

EXAMPLE 3

PHYSICAL SECTOR 2

PHYSICAL SECTOR 3

4

PHYSICAL SECTOR 3

I I
2 3

PHYSICAL SECTOR 3

1
1

I , I , I · I I· I , I · I , I · I I · I · 1
1

• 1
11

H
Notes:

1. All physical sectors are 256 bytes.

2. 1, 2, 3, ... n represent record slots.

3. Record slots in Example 1 are approximately 190 bytes each.

4. Record slots in Example 2 are approximately 300 bytes each.

5. Record slots in Example 3 are approximately 70 bytes each .

Figure 5-1. Disk (MIRAM) Data Record Slots Spanning Physical Sector Boundaries

UP-9978 Rev. 1 5-5

Disk and Format Label Diskette Formats and File Conventions

5-6

Your data records may also span track boundaries, cylinder boundaries, and volume
boundaries (except when a multivolume file is created for processing with only one
volume online at any one time). When new records are added to a file, they are
appended to the existing data record string; that is, they are added at the end as a
continuation of the original string.

The formats of the disk data records are shown in Figure 5-2.

FIXED-LENGTH RECORDS WITHOUT KEYS

I ~ I .,., , .. ,,. I

I <--1 <~~~~~----_-_-_-_-_-_-_ -_ -_ -_ -_ -_ : ___________ :I
FIXED-LENGTH RECORDS WITH KEYS

key 1 data key 2 data

1:;=====-L-2 ====~-=-_I R --------->I
I<:--------- s >I
VARIABLE-LENGTH RECORDS WITHOUT KEYS

data

I · I
<-RDW->I I
<------------- R ----------->
< $-------------.>

Figure 5-2. Disk (MIRAM) Data Record Formats (Part 1 of 2)

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

VARIABLE-LENGTH RECORDS WITH KEYS

I , I ~ 11 key , I d ...

<--ROW ->1
<-- L,-->

<----- L2------.>

key 2 data

I · I

<-------------- R ----------->
<-------------- s -------------->

Legend

rcb Record control byte (optional). Used to indicate that a record has been logically deleted from the file. For
MIRAM fixed-length records, this byte is placed at the beginning of each record. For variable-length records,
the third byte of the record descriptor word (RDW) is used as the rcb.

R Length of the logical record (RDW plus keys plus data). You specify this length as the number of bytes. For
variable-length records, this value, expressed in binary; must be placed in the first 2 bytes of the RDW.

RDW 4-byte record descriptor word for variable-length records. The first 2 bytes contain the logical record length (r)
expressed in binary; the third byte may be used as the rcb; the fourth byte is not used .

L n The starting location of record key n (n = 1 through 5) of a MIRAM file data record when the key does not start
in the first byte of the record. L n represents the number of bytes (RDW plus data) that precede key n. The
starting location of key n must be the same in each record. Key n must have the same length in each record
(a minimum of 1 byte and a maximum of 80), and no byte may contain the hexadecimal value 'FF'.

S Slot size. All records are written into fixed-size slots. Slot size equals the record size + 1 for fixed-length
records with an rcb; otherwise, slot size equals the record size. For variable-length records, the slot size
equals the maximum record size.

P Padding.

Figure 5-2. Disk (MIRAM) Data Record Formats (Part 2 of 2)

UP-9978 Rev. 1 5-7

Disk and Format Label Diskette Formats and File Conventions

5.2.2. Entries in the Index Partition

If you have keyed records, entries are placed in the index partition as these records
are loadedinto the-data partition.MIRAM extracts all the-keys from each record (a
maximum of five keys is permitted) and constructs a 3-byte pointer for each of the
keys from the file-relative record number of the position the record was written to.
From these, it forms an index entry for each of the keys in the record and stores them
in the index partition. The index entry for each key consists of the key plus 3 bytes
(equal to the specified key length plus 3 bytes) and is stored in an area of the index
partition, which is called a fine-level index. If you have three keys in each record, the
index entry for each key is stored in a separate fine-level index; that is, the entry for
key 1 is stored in the fine-level index for key 1, the entry for key 2 is stored in the fine
level index for key 2, the entry for key 3 is stored in the fine-level index for key 3, and
so on.

A fine-level index is not formatted for hardware search, unlike the other levels of
index that are described subsequently. It is treated as a chain ofmultisector blocks
where each sector is 256 bytes long. All entries in a fine-level index are maintained in
ascending key order. Figure 5-3 shows a typical fine-level index block of three sectors.

FLAG BYTE CHAIN TO NEXT
FINE BLOCK

CURRENT NUMBER OF ACTIVE BYTES~ ~

•

CONTROLAREA} •
IS LAST SIX -
BYTES OF INDEX
BLOCK

5-8

'INACTIVE AREA
ACTIVE ENTRIES

I I I I 11 I I I I

CONTROL AREA

Figure 5-3. Fine-Level Index Block

\
\
\

\
\

When a fine-level index is created, another hierarchical level of index is always
created - the coarse-level index. This is hardware searchable and is composed of 256-
byte blocks that contain entries similar to those in the fine-level index. They differ,
however, in that the 3-byte pointer in each coarse-level entry does not represent the
file-relative number of a record in the data partition. Instead, it points to another
index block at a lower level - either a fine-level block or a block in what is called a mid
level index.

UP-9978 Rev. 1

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

Another difference is that instead of having a 6-byte control area, each coarse-level
block uses its final byte to indicate the number of active entries. The high key of the
block is the first one encountered by the hardware search. Both the coarse-level and
mid-levelindex blocks have the sameformatfsee Fignre 5-4):

ACTIVE ENTRIES INACTIVE AREA
_________ _.....,.....__ _______ ~

HIGH
KEY

Figure 5-4. Coarse-Level or Mid-Level Index Block

5.2.3. MIRAM Index Structure

FINAL
BYTE

~--OF

SECTOR

As you know, you can specify up to a maximum of five keys for a file. For each key that
you specify, MIRAM builds a separate index structure. In those files where you have
more than one key, these separate index structures allow you to use any of the key
types as the key of reference to access your data records when you subsequently use
the file in a program.

When MIRAM builds an index structure for your file, it creates a minimum of two
levels of index: a fine-level index and a coarse-level index. If your file is very large,
one or more mid-level indexes are created as needed. The fine-level index consists of
one entry for every record in the data partition of your file. The fine-level entries are
filed in ascending key order until an index block (256 bytes) is filled. At this time, one
coarse-level entry is made that contains the high key entry of that filled block of the
fine-level index. As each fine-level index block is filled, another coarse-level entry is
made. This process continues until all your records are on file.

The coarse-level index is automatically allocated by MIRAM. If the coarse-level index
is filled before all your records are on file, a mid-level index is created .

UP-9978 Rev. 1 5-9

Disk and Format Label Diskette Formats and File Conventions

5.2.4. Estimating Disk Space Required for an Indexed Disk File

5-10

You can use either cylinder or track allocation to allocate space for an indexed file.

The following procedure allows you to estimate the number of cylinders or tracks for
your primary allocation of disk space to an indexed file. The result is an
approximation you can use in specifying the EXT statement in the job control device
assignment set that allocates disk space for an indexed file to be created by your
program. This procedure can also be used to determine the number of cylinders or
tracks to be allocated for an indexed file that is to be generated from another file by
the data utility program.

The number of cylinders or tracks required for an indexed file includes those occupied
by the data partition and the index structures for each key type in the file. To estimate
the number of cylinders or tracks required by the file, proceed as follows:

First, calculate D, the number of sectors required for your data records; that is, the
data partition.

Stepl

D = record-length number-of-records

s

where:

S is the physical sector size. The default size is 256 for all types of disk
subsystems. For the 8430 and 8433 disk subsystems, this value can be greater
than 256. (See VSEC parameter in Appendix C.)

Next, calculate Bi, the number of index blocks required by your fine-level index for
keyi.

Step2

Bi = number-of-records (keylengthi + 3) 4

(256 . m) - 6 3

where:

The factor of 413 is used because the average fine-level index will be 3/4 full.

m is the number of 256-byte sectors in the index buffer.

Then calculate Fi• the number of 256-byte sectors required by your fine-level index for
keyi.

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

Step3

Repeat steps 2 and 3 as many times as necessary and then calculate F, the number of
256-byte sectors required by your fine-level indexes for all keys in the file.

Step 3a

where:

n is the number of keys in the file.

Then perform the final calculation. This calculation, which is the sum of the data
requirements and the fine-level index requirements, represents over 95 percent of the
space required for an indexed file. Once this is determined, it is a simple matter to
figure out what your space requirements are for a given file.

As you can see, formulas are provided for cylinder allocation and for track allocation.
You can use any formula, but track allocation should only be used for files whose space
requirements are 5: 2 cylinders.

Step4

Cylinder Allocation. Track Allocation

c = + D T = F + D

U • N A • N U A

or or

C = T T = C • N

N

where:

c
Is the number of cylinders to allocate to the file .

UP-9978 Rev. 1 5-11

Disk and Format Label Diskette Formats and File Conventions

5-12

A

D

F

u

N

T

Example

Is the disk dependent number of sectors per track for the data partition.
If the physical sector size is 256 (default), use Table 5-1 for this value. If
the VSEC parameter (see Appendix C) is used to specify a large:r
physical sector size for an 8430 or 8433 disk subsystem, the number of
sectors per track will have to be determined.

Is the number of 256-byte sectors required for the data partition.

Is the number of 256-byte sectors required by all the fine-level indexes
in the file.

Is the disk-dependent number of 256-byte sectors per track for the index
partition (see Table 5-1).

Is the disk-dependent number of tracks per cylinder (see Table 5-1).

Is the number of tracks to allocate to the file.

Assume that you want to calculate the number of cylinders to allocate for an
indexed disk file and the following conditions apply:

Number of records

Record length

Keylength1

Keylength2

Sector size (data partition)

Index buff er length

Type of disk

• D = record length

512 - 77,500

256

77,500

512 bytes

28 bytes

30 bytes

256 bytes

512 bytes

8433

number-of-records

256

UP-9978 Rev. 1

•

•

•

Disk and Format Label Diskette Formats and File Conventions

• = 155,000 sectors for data partition.

• s, = number-of-records (keylength 1 + 3) 4

(256 m) . 6 3

= 77,500 (28 + 3) 4

(256 2) - 6 3

= 6,331 index blocks required for the fine-level index for key1 •

•

= 2 6331

= 12,662 sectors for the fine·level index for key1.

• s2 = number-of ·records (keylength2 + 3) 4

(256 . m) 6 3

= 77,500 (30 + 3) 4

• (256 2) . 6 3

6,739 index blocks required for the fine-level index for key2 .

•

2 6739

= 13,478 sectors for the fine-level index for key2 •

•
F

= 12,662 + 13,478

26,140 sectors for all the fine-level indexes for all keys in the file •

•
UP-9978 Rev. 1 5-13

Disk and Format Label Diskette Formats and File Conventions

5-14

• c = F + D

U • N A • N

26,140 + 155,000

29 . 19 33 . 19

= 295 cylinders are required for the data and fine·level indexes.

Note: After you have calculated your disk space requirements and you proceed
to create your file, you must provide enough volumes to hold the file. This
must be considered because the amount of space available is not the same
for all disk types. Refer to Table A-4 to determine how many volumes you
will need based upon your calculations and the type of disk you intend to
use.

The minimum cylinder and track allocation for indexed MIRAM files is described
in 5.2.6.

Table 5-1. Disk-Dependent Factors for Estimating Disk Space Requirements

u A N

Unisys (Number of 256-byte (Number of 256-byte (Number of tracks
Disk Subsystem sectors per disk track sectors per disk track per disk cylinder)

for index partition) for data partition)
, '

8416* 40 40 7

8418* 40 40 7

8417 60 60 14

8419 50 50 7

8430* 29 33 19

8433* 29 33 19

8470 96 96 32

8494 96 96 20

*Models 8-20 only

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

5.2.5. Estimating Disk Space Requirements for a Nonindexed MIRAM File

The following procedure allows you to estimate the number of cylinders or tracks
required for your primary allocation of disk space to a nonindexed file.

As you can see, formulas are provided for cylinder allocation and for track allocation.
You can use any formula, but track allocation should only be used for files whose space
requirements are ,s. 2 cylinders.

Cylinder Allocation Track Allocation

C = D T = D

A • N A

or or

C = T T = C • N

N

The calculation of D, A, and N is described in 5.2.4.

The minimum cylinder and track allocation for nonindexed MIRAM files is described
in 5.2.6.

5.2.6. Minimum Cylinder and Track Allocation for MIRAM Files

Table 5-2 shows the minimum number of cylinders or tracks that are required by
nonindexed and indexed MIRAM files.

Table 5-2. Minimum Cylinder and Track Allocation for MIRAM Files

Allocation Type
File Type

Cylinders Tracks

Non indexed 1 1

Indexed 2 6 + n*

*n is the number of keys in the file .

UP-9978 Rev. 1 5-15

Disk and Format Label Diskette Formats and File Conventions

5.3. Disk File Job Control Considerations
The device assignment set that you use for a disk file in your program execution job
control stream depends on how the file is being used in your program. If you are
creating a disk file, you need a specific device assignment set for that situation, and if
you are using an existing disk file, a different device assignment set is needed. In
addition, you must also prepare a disk volume before you use it. These situations are
discussed in the paragraphs that follow.

5.3.1. Device Assignment Set for Creating a Disk File

5-16

The device assignment set for creating a disk file consists of the DVC, VOL, EXT,
LBL, and LFD job control statements in that order. The DVC statement supplies the
device number, the VOL statement supplies the volume serial number (VSN), the LBL
statement supplies the file identifier, and the LFD statement associates the file name
you used in your program with the disk volume.

As you have noticed, an EXT statement is included in the device assignment set. This
statement is required when you are creating a disk file. It is required because you
have to allocate space for your file on the disk volume. The EXT statement describes
your space requirements on the disk. The question of how much space is required for a
file can be determined by using the formulas that are shown in 5.2.4 and 5.2.5. When
you use the EXT statement, the first positional parameter specifies the access method.
Because we are dealing with a MIRAM file, this parameter is always MI. Because this
is the default case, this parameter can be omitted.

The second positional parameter indicates whether or not you want the requested file
space to be contiguous. C specifies contiguous space; it is best to specify this option
whenever possible because an overly fragmented file may

• Cause you to exceed the number of physical descri9tors within the VTOC that are
needed to describe your file's location.

• Impact performance because of excessive read/write head movement.

The third positional parameter is used to specify the number of units (tracks,
cylinders) by which the file is to be dynamically extended if needed. If this parameter
is omitted, the file is extended one unit at a time as needed.

The fourth positional parameter indicates the units of allocation. CYL, for example,
specifies allocation by cylinder and TRK specifies allocation by track.

Track allocation is only permitted for

• All nonindexed MIRAM files

• MIRAM characteristic indexed files (see "MIRAM Concepts" under 5.1.2)

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

The fifth positional parameter specifies the number of units needed by this file.

The following example shows how the EXT statement is used and how it appears in
the device assignment set:

II DVC 50
II VOL DSK001
II EXT Ml,C,5,CYL,299
II LBL DMASTER
II LFD MPAY

In this example, we are creating a MIRAM file on a disk whose VSN is DSKOOl, the
file identifier is DMASTER, and the name of this file in our program is MPAY. The
file requires 299 cylinders and it is to be extended dynamically 5 cylinders at a time as
needed.

Refer to the job control user guide for full details and formats for these statements.

Notes:

1. In many interactive applications, the ALLOCATE command makes it unnecessary
to use job control statements to allocate disk file space. For more information about
this command, see the Interactive Services Operating Guide (UP-9972) .

2. In a remote environment, you cannot create a disk file on a host system. A disk file
is created by programs running on a processor that owns the supporting device.

5.3.2. Device Assignment Set for Allocating Fixed-Head Area to a File on
the 8417 Disk

The 841 7 disk subsystem is available with a 4-cylinder fixed-head area. This allows
faster data access because the read/write heads are fixed, rather than moveable. This
feature significantly reduces the seek time required to locate records.

Determining how much fixed-head area to allocate for a MIRAM file depends on the
file size and your application. You can allocate fixed-head space to hold an entire file
or just the index partition of an indexed file.

To get the most from the fixed-head feature, consolidated data management controls
the assignment of fixed-head area to an indexed MIRAM file as follows:

• When you request fixed-head area for an indexed file, the fixed-head area is
always assigned to the file's index partition.

• Consolidated data management only assigns fixed-head area to the data partition
of an indexed file if you request fixed-head area for the entire file and there is
enough fixed-head area for the data partition .

UP-9978 Rev. 1 5-17

Disk and Format Label Diskette Formats and File Conventions

5-18

When you are dealing with a large index structure, it is especially useful to allocate
fixed-head space just for the coarse-level index. (A file with five keys, for example, has
five separate index structures. For each structure, data management assigns a coarse
level track. These tracks make up the coarse-level index. Using the EXT statement,
you can allocate fixed-head area for five tracks and data management will place the
coarse-level index in these tracks.)

Note: Remember, you can only use track allocation for MIRAM characteristic
indexed files. (see "MIRAM Concepts" under 5.1.2).

To create a file in the fixed-head area, you proceed as you would for any other disk
file. You must provide a device assignment set that consists of the DVC, VOL, EXT,
LBL, and LFD job control statements in that order.

Because you are dealing with the fixed-head area, the format of the DVC and EXT job
control statements differ from those you would normally use when you are creating a
disk file. The logical unit number in the DVC statement must be either 168or169,
and the EXT statement must contain the FIX parameter. If this is not done, your file
will not be placed in the fixed-head area.

When you use the EXT statement, the first positional parameter specifies the access
method. This parameter is always MI because all disk files are MIRAM files. Because
MI is the default for this parameter, it may be omitted.

The second positional parameter is C when dealing with contiguous file space.

The third positional parameter is used to specify the number of units (tracks or
cylinders) by which the file is dynamically extended if needed. If this parameter is
omitted, the file is extended one unit at a time as needed. Remember, file space for
dynamic extension is always acquired from the moveable-head area. Your file will
never have any more fixed-head space than initially allocated to it.

The fourth positional parameter is CYL when dealing with cylinders and TRK when
dealing with tracks.

The fifth positional parameter specifies the number of cylinders, or tracks, needed for
the file. This can be determined by using the formulas shown in 5.2.4 and 5.2.5. If you
specify more than four cylinders, any data that does not fit in the 4-cylinder area will
be placed in the moveable-head area.

The sixth positional parameter must always be FIX.

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

The following example shows how the DVC and EXT statements are used to specify
that a file is to be placed in the fixed-head area and how they appear in the device
assignment set:

II DVC 168
II VOL FDSK01
II EXT MI,C,,CYL,3,FIX
II LBL FASTAC
II LFD QDATA

In this example, we are creating a MIRAM file that is to be placed in the fixed-head
area of an 8417 disk. The VSN is FDSKOOl, the file identifier is FASTAC, and the
name of this file in our program is QDATA. The file requires three cylinders, and it is
to be extended dynamically one cylinder at a time as needed.

If a file's device assignment set contains multiple// EXT statements requesting both
fixed- and moveable-head space, consolidated data management reserves the fixed
head space for the index. When all of the fixed-head space is used, any remaining
portion of the index is placed in the moveable-head area.

Refer to the Job Control Language Programming Guide (UP-9986) for full details and
formats for these statements .

5.3.3. Device Assignment Set for Creating a Format Label Diskette File
Using the Autoloader Feature of the 8420 DiskP.tte

The 8420 diskette subsystem is available with the autoloader feature. This allows you
to place several volumes in a hopper, have them processed one after the other in the
order that you placed them in the hopper, and have each one automatically ejected
when processing is completed on that volume. (The operator must manually feed the
first volume.) This feature is useful when you are creating a multivolume sequential
file because it eliminates the need to mount and remove individual volumes during
the execution of your program.

When a file is opened, processing begins with the first volume and continues through
each succeeding volume until the file is closed. At this point, processing is completed
and the last volume is automatically ejected. (If the file is a single-volume file, the
operator must eject it manually.)

A format label diskette file is treated as a disk file; consequently, you proceed as you
would to create any other disk file. You must provide a device assignment set that
consists of the DVC, VOL, EXT, LBL, and LFD job control statements in that order.

Because you are dealing with the autoloader feature, the logical unit number for the
DVC statement must be 150or151. If this is not done, you cannot use the autoloader
feature .

UP-9978 Rev. 1 5-19

Disk and Format Label Diskette Formats and File Conventions

5-20

A separate VOL statement is required for each volume when you are creating a
multivolume file. This is necessary because you must specify the VSN for each of the
volumes that make up your file.

A separate EXT statement is required for each volume when you are creating a
multivolume diskette file. This is necessary because you must allocate space on each
of the volumes that make up your file.

The first positional parameter of the EXT statement is always MI. Because MI is the
default for this parameter, it may be omitted.

The second positional parameter is C when you are dealing with contiguous file space.

The third positional parameter specifies the number of allocation units (cylinders,
tracks) by which the volume is to be dynamically extended if needed. If this parameter
is omitted, the volume is extended one unit at a time as needed.

The fourth positional parameter indicates the units of allocation. CYL, for example,
specifies allocation by track.

Because you must use a separate EXT statement for each volume, the fifth positional
parameter specifies the number of cylinders to be allocated to one volume in the file.

The total nll.11~:.,~r of cylinders needed for a file is determined by using the formulas
shown in 5.2.4 and 5.2.5.

The following example shows how the DVC, VOL, and EXT statements are used to
specify that you are creating a multivolume file that is to be sequentially processed
using the autoloader feature of the 8420 diskette.

II DVC 150
II VOL 1
II EXT Ml,C,,CYL,60
II VOL 2
II EXT MI,C,,CYL,60
II VOL 3

II EXT Ml,C,,CYL,55
II LBL DKAUTO
II LFD LODFIL

In this example, we are creating a multivolume file that is to be sequentially
processed using the autoloader feature of the 8420 diskette. The file is on three
volumes whose VSN s are 1, 2, and 3, respectively. The total number of cylinders
required for the file is 1 75, and each volume is to be extended one cylinder at a time as
needed. The file identifier is DKAUTO, and the name of this file in our program is
LODFIL.

Refer to the Job Control Language Programming Guide (UP-9986) for full details and
formats for these statements.

UP-9978 Rev. 1

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

5.3.4. Device Assignment Set for an Existing Disk File

The device assignment set for an existing disk file consists of the DVC, VOL, LBL, and
LFD job control statements in that order. The EXT statement is not required because
the file space has already been allocated.

5.3.5. Extending an Existing Disk File

When you extend an existing disk file, the process is essentially the same as creating
the file; that is, your program creates the records and writes them on the disk. The
only difference is that you are dealing with an existing file rather than creating a new
one. Consequently, when you execute your file extension program, you must not
include an EXT statement in the device assignment set. There is also no need to
specify the EXTEND parameter in the LFD statement.

5.3.6. Device Assignment Set for a Remote Disk File

A remote disk file is one that is physically associated with a processor other than the
one on which your job is running.

However, both processors must run on the same operating system. The device
assignment set for the remote disk file requires a// DVC job control statement to
specify the host-id parameter.

The following example shows how job control statements are used to specify a remote
disk file:

II DVC 81,HOST=AB23
II VOL 000006
II LBL FILE4
II LFD REMOTE

Remote file support specifications call for only

• One host per file

• External disk data files (that is, no library files)

• Single-volume disk files

Share requirements when using the host specifications include the following:

• The remote file cannot be shared among programs; that is, the ACCESS
parameter specifications SADD and UCP are not permitted.

• Two jobs running on a file on a device that is physically associated with two local
processors, have read-write protection if one job specifies one of the processors as
host, and the other job specifies no host.

UP-9978 Rev. 1 5-21

Disk and Format Label Diskette Formats and File Conventions

• If one of the processors is not declared host (and the disk file is physically
associated with two processors), it is your responsibility to use the file in a read
only manner; that is, the ACCESS parameter specification is SRDO.

For more details about disk file sharing, see 5.4.

Note that the SIZE and VSEC parameters on the// DD control statement will be
ignored if specified. For more information about remote file processing, refer to the
Job Control Language Programming Guide (UP-9986) and the Distributed Data
Processing Programming Guide (UP-8811).

5.3.7. Preparing Disk Volumes

All disk volumes must be prepared before data can be recorded on them. You do this
by using the initialize disk routine (DSKPRP). This is described in the System Service
Programs (SSP) Operating Guide (UP-8841).

The DSKPRP routine performs a surface analysis of the disk tracks and assigns
alternate tracks if defects are discovered. It also establishes a volume table of contents
on the volume so that files can be placed on it.

Note that, when you prepare a format label diskette volume, you must use a double
sided/double-density diskette.

5.4. Disk File Sharing

5-22

A data management file is a collection of related records stored on an external
medium. If that medium is a disk storage device, then the individual records in the
file are directly accessible. Any given reference to the file is independent of a prior
reference to the file. This capability gives disk files the potential of being shared
between programs. References to the file (from different programs) may be
independent of one another, but they are dealing with a common set of records. If
multiple programs are sharing a file and at least one of the programs is writing
(adding, updating, or deleting) to the file, then this may affect the other programs that
are sharing the file. It is possible for one program to read a record and take an action
based on the contents of that record, and then have another program update or delete
that same record. All programs that use a particular file are potential candidates to
use the file at the same time (share the file), but this should only be done ifthe
particular applications are suited to such an environment. A determination must be
made for each candidate program as to what its "share requirements" are. The share
requirements reflect how a program intends to use the file (read-only use or read/write
use) and how other programs can concurrently use the file. The means by which you
determine and specify the share requirements are discussed in detail in the
succeeding paragraphs.

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

5.4.1. Logical Access Path (LAP)

A disk file is like any other file in that it must be assigned to a program before the
program can use it. The file must be both physically and logically assigned to the
program. The physical assignment is performed at job initialization, and the logical
assignment is performed when the program issues a request to data management to
open the file. Data management creates a logical access path (LAP) to the physical
file. Associated with each LAP to a disk file are the share requirements for the
particular file. The logical summation of the share requirements of all LAPs to the file
defines the share environment of the disk file. When a program no longer requires the
disk file, it issues a request to data management to close the file. Data management
responds by removing the LAP. This may result in altering the share environment for
the disk file.

Your sole responsibility is to determine what the LAP share requirements are. Data
management automatically monitors and enforces the specified requirements. If a
LAP is being created and its share requirements are not compatible with the share
environment that has been established by other LAPs using the file, data
management honors the requirements by suspending this program. The program is
suspended at the point at which the file resource request was made and remains
suspended until the LAP share requirements are compatible with the share
environment.

Notes:

1. There is a limit of 48 concurrent LAPs using a lockable disk file. When the limit is
reached, an attempt by a job (or task) to gain access to the file causes the job to be
suspended until the LAP count drops below 48 (due to an explicit close request or
job termination).

2. Only one LAP can be established to a data set label diskette file at any time within
a job step. If an attempt is made to open another data set or to use an already open
data set, then the data management error, DM 89, occurs, indicating that the
requested diskette drive is not available.

3. Multiple LAPs are permissible in a format label diskette within a job step. Format
label diskettes are not shareable among jobs.

5.4.2. Share Requirements

As previously mentioned, the share requirements indicate how the LAP that is being
created (the current LAP) intends to access the file and the type of access that it
permits other LAPs (which would be sharing the same physical file) to have. There are
two ways to indicate the share requirements: the ACCESS parameter and the LFD job
control statement .

UP-9978 Rev. 1 5-23

Disk and Format Label Diskette Formats and File Conventions

• ACCESS parameter

If you have a BAL program, you can include an ACCESS parameter as part of the
processing requirements that are specified in your program and are presented to
data management when the file is opened. You can also specify the ACCESS
parameter in a DD job control statement (see Appendix C) to override the
program specification. If the ACCESS parameter is not specified in your program
or in a DD job control statement, the default is ACCESS=EXC (see 5.4.3).

If you use IMS, you can include the ACCESS parameter for a data file in the
FILE section of the configurator. You can also specify the ACCESS parameter in
a DD job control statement in the IMS start-up job control stream to override the
configurator specification. If the ACCESS parameter is not specified for a data
file in the configurator or in a DD job control statement, the default is
ACCESS=EXC.

If you have a program written in a higher-level language, the default case
ACCESS=EXC always applies. If you want to specify other share requirements,
you must include the ACCESS parameter in a DD job control statement.

• LFD job control statement

•

If you prefix the logical file name specified in the LFD job control statement with
an asterisk (*), it indicates to data management that this file is to be a "read-
only" file. This is equivalent to specifying ACCESS=SRDO (see 5.4.3). If you use •
this asterisk facility, it overrides the ACCESS parameter regardless of whether it
was specified in your program or in a DD job control statement.

5.4.3. ACCESS Parameter Specifications

5-24

The ACCESS parameter has seven specifications for describing a file's share
requirements. For efficient processing, select the ACCESS parameter specification
that most accurately describes the share requirement; if you specify a greater share
requirement than needed, unnecessary file share processing (110 overhead) results.
ACCESS parameter specification SADD has the highest overhead; EXCR, SRD, and
UCP have moderate overhead, and EXC, SRDO, and SRDF have no overhead.

A description of each ACCESS parameter specification follows. Specifications are
summarized in Table 5-3, following the detailed descriptions.

ACCESS=EXC
The LAP that declares this specification has exclusive read/write use of the file.
When this specification is made, the file can only be shared with SRDF.

ACCESS= SR DO
The LAP that declares this specification is permitted to only read data from the
file and it allows a number of other LAPs to share the file for read-only purposes.
The SRDO specification defines a share environment for the file such that the
participating LAPs sharing the file must specify SRDO, SRD, or SRDF.

UP-9978 Rev. 1

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

ACCESS=SRDF
The LAP that declares this specification is permitted only to read data from the
file. SRDF is compatible with all ACCESS parameter specifications, including
EXC; however, some LAP specifications (described in the following paragraphs)
may affect SRDF. Because of its compatibility with all ACCESS parameter
specifications, when you use the SRDF specification to open a file, the usual
compatibility checks are bypassed. Performance with SRDF is as good as with
EXC and SRDO.

The following conditions affect SRDF:

• You can use SRDF for the following kinds of retrieval: UNKEYED random
(relative record number) or sequential (consecutive) and KEYED retrieval. You
can use KEYED retrieval as long as no other program is writing to the file and
modifying the index (via record additions, or updates with key changes or key
deletes). If the index is being modified when you specify SRDF, a DM24 error or
an early EOF condition may result.

• If another program is updating records in the file, the program with the SRDF
specification does not always receive the updated version of all records. An SRDF
program does not receive updated records if records have moved into the SRDF
program I/O buffer before being updated by another program. The number of
records held in the SRDF buffer depends on your buff er size .

For files created with the recovery option - records added by a program that
opens the file after the SRDF program opens the file are not accessible to the
SRDF program; records added before the SRDF program opens the file are
accessible.

For files created without the recovery option - records added by a program
that has the file open at the time of the SRDF open are not accessible. If the
program adding records closes the file (thus updating the format labels) prior
to the SRDF open, then all added records are accessible to the SRDF
program.

ACCESS=SRD

UP-9978 Rev. 1

The LAP that declares this specification is permitted to only read data from the
file, but it permits other LAPs to share the file for read/write purposes. The SRD
is a passive specification. It defines a share environment that is compatible with
other LAPs whose share requirements are specified on the ACCESS parameter as
EXCR, SRD, SRDO, SADD, or SRDF. The EXCR, SRDO, and SADD
specifications are dominant specifications because they define share
environments that rule out specific participants .

5-25

Disk and Format Label Diskette Formats and File Conventions

5-26

To illustrate this, assume that a single LAP with SRD specified is currently
connected to the file, and another program requests to use the same disk file and
specifies its share requirements with SRDO. Because SRDO is compatible with
SRD, data management honors the request and creates an SRDO specification for
the LAP. This results in a share environment that excludes LAPs that require
write use of the file.

Remember that the share environment is the logical summation of the share
requirements of all the LAPs currently using the file. If the second request had
specified EXCR instead of SRDO, the share environment would have permitted a
single writer (LAP with EXCR specified) and multiple readers. If SADD had been
specified instead of SRDO, the share environment would have allowed multiple
writers as well as multiple readers.

Note that a record added to a file by the writer participant (LAP with EXCR or
SADD specified) is immediately available to the reader participant (LAP with
SRD specified), while a record just updated by the writer may not be immediately
available. (It may be in a data management buffer area for a time before it's
returned to the disk file.) If such a record is requested, the reader receives a valid
record from the disk file but not the latest version. Also note, a writer participant
can update a record just referenced by a reader participant.

ACCESS=EXCR
The LAP that declares this specification has read/write use of the file, and it
allows a number of other LAPs to share the file for read-only purposes. The
EXCR specification defines a single-writer/multiple-reader share environment.
SRD and SRDF are compatible specifications.

ACCESS=SADD
The LAP that declares this specification has read/write use of the file and it
allows other LAPs to share the file regardless of whether they require read or
read/write use. The compatible specifications are SADD, SRD, and SRDF.

Physical data blocks are locked to a job when the job retrieves a record with
intent to update that record or outputs a new record through a LAP with SADD
specified. Locked data blocks are not available to other jobs when these locked
blocks are referenced by LAPs with SADD specified. The number of blocks that
are locked is dependent on the user's buffer size.

Blocks locked by input with intent to update are held until released by the
followup update operation. This prevents two jobs from concurrently modifying
the same physical blocks and thus avoids lost updates.

The block lock generated by an output operation is temporary and is held only for
the duration of the operation. This prevents two jobs from concurrently
overwriting the same physical blocks and thus avoids lost records.

A job that requests to lock blocks held by another job must wait until those blocks
become available. Locked blocks, however, are always made available to jobs that
request them for informational (read-only) purposes.

UP-9978 Rev. 1

•

•

•

•

•

•

Disk and Format Label Diskette Formats and File Conventions

Only one set of blocks can be locked to a job at any one time. An attempt to
accumulate block locks causes the automatic release of any block locks previously
held by the job. An attempt to modify released blocks is reported as an error.

Two jobs using the same file through LAPs with SADD specified can concurrently
add records to the file without losing any of the records added by either job. All
added records are available to each job and all readers (LAPs with SRD specified)
that may be participating.

ACCESS=UCP

UP-9978 Rev. 1

The LAP that declares this specification has read/write use of the file and allows
other LAPs to share the file whether they require read or read/write use. The
compatible specifications are UCP, SRD, and SRDF.

With UCP specified, you accept responsibility for the data integrity of the file.
This is because UCP (unlike SADD) doesn't generate block locks. This enables an
application to have multiple updates pending and then to successfully update
those records without receiving block lock errors (DM14 TYPE=15).

However, because block locks aren't generated, lost updates are possible in a
multiwriter environment. If, for example, another job is currently updating a
record in the same physical block as your job or in adjacent physical blocks, your
updates could be nullified or lost. (The number of adjacent physical blocks
depends on the buffer size.) Lost updates can also account for inconsistencies
between fields within a record.

A DM14 TYPE=05 error message appears if you attempt to update a record that
has been retrieved (with RCB) for update and subsequently deleted by another
job.

If the lost updates involved a key change, the key value associated with the lost
update is deleted from the index. The key value of the most recent update is
reflected in the index.

Although updates can be lost, records added to a file are never lost even in a
multiple adder environment.

Note: Single-volume files are locked on physical file name and serial number;
multivolume files are locked on name only. If you attempt to open a
multivolume file with the same physical file name (given in the LBL job
control statement), your job won't be processed. Either of the following
may occur:

• File lockout results if the ACCESS specifications for both files are
incompatible.

• The error message DM68 TYPE=02 results if the ACCESS
specifications for both files are compatible .

5-27

Disk and Format label Diskette Formats and File Conventions

5-28

Table 5-2. Summary of ACCESS Parameter Specifications

User Permitted

ACCESS Other LAPs
Parameter (and Compatible

Specification Current LAP Specifications)

EXC Read/write Read (SROF*)

SROO Read Read (SROO
SROF*
SRO)

SROF Read Read/write CEXC
SROO
SROF*
SRO
EXCR
SAOO
UCP)

SRO Read Read/write (SROO
SROF*
EXCR
SAOO
UCP)

EXCR Read/write Read (SROF*
SRO)

SAOO Read/write Read/write (SROF*
SRO
SAOO)

UCP Read/write Read/write (SROF*
SRO
UCP)

* See the SROF description for an explanation of
conditions that affect SROF specifications.

•

•

•
UP-9978 Rev. 1

•

•

•

Section 6
Data Set Label Diskette Formats and File
Conventions

6.1. General Information
Data set label diskette files consist of data records that are recorded on one or more
volumes (diskettes). The data records can be retrieved sequentially or randomly by
relative record number (the position of a record in the file relative to the beginning of
the file). The data records are recorded and retrieved via a diskette subsystem. Data
set label diskette files are not shareable. For details see 5.4, "Disk File Sharing." Refer
to Appendix A for the functional characteristics of the diskette subsystems that are
supported.

6.2. Data Set Label Diskette File Organization
Data set label files are recorded on one or both sides of the diskette, depending on the
diskette type used. The diskette type also determines the size of the fixed-length
sectors on the diskette volume, the maximum number of files that the volume can
contain, and the maximum number of data bytes the volume can contain. The effect of
the diskette type is shown in Table 6-1.

UP-9978 Rev. 1 6-1

Data Set Label Diskette Formats and File Conventions

6-2

Table 6-1. Data Set Label Diskette Characteristics

Maximum Maximum
Physical Number of Number of Maximum
Sector Sectors Data Number of
Size Sectors per Bytes per Files per

Diskette in per Diskette Diskette Diskette
Type Bytes Track Volume Volume Volume

Single 128* 26* 1,898* or 242,944* or 19
Sided, 1,924 246,272
Single
Density* 256 15 1,110 284,160 19

512 8

I
592 303,104 19

Single 256 26 1,924 492,544 19
Sided,
Double 512 15 1,110 568,320 19
Density

Double 128 26 3,848 492,544 45
Sided,
Single 256 15 2,220 568,320 45
Density

512 8 1,184 606,208 45

Double 256 26 3,848 985,088 45
Sided,
Double 512 15 2,220 1,136,640 45
Density

* Applies to files written in basic data exchange (BDEJ mode - IBM System/3 and Unisys 90/30 compatibility. The
number of sectors available for BDE files is reduced to have compatibility between systems. Only tracks 1 thru
73 are used in this mode. This is the only configuration available on the 8413 diskette subsystem. BDE diskettes
are single sided, single density, have a logical record sizes 128, fixed-length unblocked-unspanned records,
and a file name of eight characters or less. Tracks 1 thru 74 are used for all other modes.

Regardless of the recording mode used, the information on a data set label diskette is
organized into two areas: the index track (track 0) on which data management writes
the file labels, and tracks 1 thru 74 where the data records for the file are written.

Data set label files may be either single-volume or multivolume files. In the latter
case, the file can only be processed with one volume online at a time.

UP-9978 Rev. 1

•

•

•

•

•

•

Data Set Label Diskette Formats and File Conventions

6.2.1. File Layout and Record Formats for Data Set Label Diskette Files

The file layout and the record formats for data set label diskette files are shown in
Figures 6-1and6-2, respectively.

UNBLOCKED, UNSPANNED FILE

slot 1 u slot 2 u slot 3

<-- LS1 -->I <-- LS2 -->I <-- LS3 -->I

<-- PS1 -----> <-- PS2 -----> <-- PS3 ----->

BLOCKED, UNSPANNED FIL~

slot 1 slot 2 u slot 3 slot 4 u slot 5 slot 6 u

<-- LS1 -->1 <-- LS2 -->1 <-- LS3 -->1

<-- PS1 -----> <-- PS2-----> <-- PS3 ----->

BLOCKED, SPANNED FILE

slot 1 slot 2 slot 3 I {
<-- LS1 -> <-- LS2 --> <-- LS3 >

-- PS1 - -- PS2 -- -- PS3 ---

Legend

LS Logical sector

PS Physical sector

U Unused portion of physical sector (PS-LS=Ul

Figure 6-1. Data Set Label Diskette File Layout

UP-9978 Rev. 1 6-3

Data Set Label Diskette Formats and File Conventions

FIXED-LENGTH RECORDS

data

<---------- R ---------->

<.---------- s ----------:>

VARIABLE-LENGTH RECORDS

data

<- RDIJ ->I I
<--------------- R ------->i
<-------------- s --------->

Legend

R Length of the physical record; record descriptor word (ROW) plus data. For variable-length records, this
value, expressed in binary, must be placed in the first 2 bytes of the ROW.

ROW 4-byte record descriptor word for variable-length records. The first 2 bytes contain the logical record
length (r) expressed in binary.

S Slot size. All records are written into fixed-size slots.
P Padding.

Figure 6-2. Data Set Label Diskette Record Formats

6.3. Data Set Label Diskette File Job Control
Considerations

A data set label diskette file is similar to a disk file in that a specific device
assignment set is required in your program execution job control stream for creating a
file and another is needed when you are dealing with an existing file. In addition, you
also must prepare a diskette volume before you use it. These things are discussed in
the paragraphs that follow.

UP-9978 Rev. 1

•

•

•

•

•

•

Data Set Label Diskette Formats and File Conventions

6.3.1. Device Assignment Set for Creating a Data Set Label Diskette File

The device assignment set for creating a data set label diskette file consists of the
DVC, VOL, EXT, LBL, and LFD job control statements in that order.

The DVC statement supplies the device number, the VOL statement supplies the
VSN, the LBL statement supplies the file identifier, and the LFD statement
associates the file name you used in your program with the diskette volume.

The EXT statement is required when you are creating a diskette file only if the area
(the extent) for the file was not previously allocated via the prep routine for the data
set label diskette. (The prep routine for data set label diskette automatically allocates
the entire diskette for one file and assigns a file identifier of DATA unless you specify
otherwise.) The extent consists of contiguous sectors on the diskette.

The first positional parameter of the EXT statement for a data set label diskette file is
always MI. Because this is the default case for this statement, you can omit it if you
choose.

The second positional parameter must always be C since we are dealing with
contiguous sectors.

The third positional parameter must always be 0 because there is no provision for
dynamic extension with data set label diskette files .

The fourth positional parameter must always be BLK because you are dealing with
fixed-length sectors (blocks). This is the default case and it can be omitted if you
choose.

The fifth positional parameter must be in the form (bi,ai), where bi is the block size in
bytes and ai is the number of blocks in the file.

The following example shows how the EXT statement is used and how it appears in
the device assignment set:

II DVC 130
II VOL DSKT10
II EXT MI,C,0,BLK,(80,1000),NDI
II LBL DSKTMAS
II LFD MEFILE

In this example, we are creating a data set label file on a diskette whose VSN is
DSKTlO, the file identifier is DSKTMAS, the name of this file in our program is
MEFILE, and there are 1,000 sectors requested for file space on this diskette. Also, by
specifying NDI, we have indicated that the file is not a basic data exchange mode file .

UP-9978 Rev. 1 6-5

Data Set Label Diskette Formats and File Conventions

6.3.2. Device Assignment Set for Creating a Data Set Label Diskette File
Using the Autoloader Feature of the 8420 Diskette

6-6

The 8420 diskette is available with the autoloader feature. This allows you to place
several volumes in a hopper, have them processed one after the other in the order you
placed them in the hopper, and have each one automatically ejected when processing
is completed on that volume. (The operator must manually feed the first volume.) This
feature is useful when you are creating a multivolume sequential file because it
eliminates the need to mount and remove volumes during the execution of your
program.

When a file is opened, processing begins with the first volume and continues through
each succeeding volume until the file is closed. At this point, processing is completed
and the last volume is automatically ejected. (If the file is a single-volume file, the
operator must eject it manually.)

You proceed as you would to create any other data set label diskette file. You must
provide a device assigment set that consists of the DVC, VOL, EXT, LBL, and LFD job
control statements in that order.

Because you are dealing with the autoloader feature, the logical unit number for the
DVC statement must be 150or151. If this is not done, you cannot use the autoloader
feature.

A separate VOL statement is required when you are creating a multivolume diskette
file. This is necessary because you must specify the VSN for each of the volumes that
make up your file.

A separate EXT statement is required for each volume when you are creating a
multivolume diskette file. This is necessary because you must allocate space on each
of the volumes that make up your file.

The first positional parameter of the EXT statement for a data set label diskette file is
always MI. Because MI is the default case for this parameter, it may be omitted.

The second positional parameter must always be C because we are dealing with
contiguous sectors.

The third positional parameter must always be 0 because there is no provision for
dynamic extension with data set label diskette files.

The fourth positional parameter must always be BLK because you are dealing with
fixed-length sectors (blocks). This is the default case and it can be omitted if you
choose.

The fifth positional parameter must be in the form (bi,ai), where bi is the record size
in bytes and ai is the number of records.

UP-9978 Rev. 1

•

•

•

•

•

•

Data Set Label Diskette Formats and File Conventions

The following example shows how the DVC, VOL, and EXT statements are used to
specify that you are creating a multivolume data set label diskette file that is
sequentially processed using the autoloader feature of the 8420 diskette.

II DVC 150
II VOL A
II EXT MI,C,0,BLK,C80,3000),NDI
II VOL B
II EXT MI,C,0,BLK,C80,3000),NDI
II VOL C
II EXT MI,C,0,BLK,(80,2560),NDI
II LBL DSLAL
II LFD OFILE

In this example, we are creating a multivolume data set label diskette file that is
sequentially processed using the autoloader feature of the 8420 diskette. The file is on
three volumes whose VSN s are A, B, and C, respectively. The data records are 80
bytes in length and the total number of records is 8,560. The file identifier is DSAL,
and the name of this file in our program is OFILE. Also, by specifying NDI, we have
indicated that the file is not a basic data exchange mode file.

Refer to the Job Control Language Programming Guide (UP-9986) for full details and
formats for these statements

6.3.3. Device Assignment Set for an Existing Data Set Label Diskette File

The device assignment set for an existing data set label diskette file consists of the
DVC, VOL, LBL, and LFD job control statements in that order. The EXT statement is
not required because the file space has already been allocated. Refer to the Job
Control Language Programming Guide (UP-9986) for full details and formats for
these statements.

6.3.4. Preparing a Data Set Label Diskette Volume

All diskettes must be prepared before data can be recorded on them. You do this by
using the initialize disk routine (DSKPRP) as described in the System Service
Programs (SSP) Operating Guide (UP-8841).

The DSKPRP routine establishes the VTOC on the volume so that files can be written
on it. This routine also establishes the recording density and that the diskette volume
is to be used to record data set label files .

UP-9978 Rev. 1 6-7

•

•

•

•

•

•

Section 7
Workstation Formats and File Conventions

7 .1. General Information
A workstation is an I/O device that contains a keyboard and a video screen.
Workstation input files consist of data records that you type in via the keyboard and
output files consist of data records, created by your program, that are displayed on the
video screen. Ref er to Appendix A for the functional characteristics of the workstation
subsystems that are supported.

Workstation files can be either single-volume or multivolume files. If a file is a single
volume file, this means that one workstation (volume) is assigned to that file. Ifit is a
multivolume file, this means that more than one workstation is assigned to that file.

7.2. File Organization
Workstation files differ from card, tape, printer, disk, and diskette files in that data
cannot be permanently stored on them. This is true because a workstation data record
exists on the input or output file only as long as it appears on the screen. Once the
screen is cleared, the record is gone; that is, it ceases to exist physically. As you can
readily see, a workstation file is a sequential file; that is, you present your input one
record at a time and your output is displayed one record at a time.

7.3. Workstation Record Formats
Workstation records consist of alphabetic, numeric, or alphanumeric data. This data
must consist of displayable characters. If you include any device control characters
(hexadecimal equivalent 00 through 3F), this may cause hardware errors. A record can
range from one character in length to the full extent of the screen. For example, if each
line on a screen can contain 80 characters and there are 24 lines on a screen, the
maximum record size would be 1,920 characters.

7 .4. Workstation File Job Control Considerations
The paragraphs that follow discuss the device assignment sets that you include in
your program execution job control stream when you use either single-volume or
multivolume workstation files .

UP-9978 Rev. 1 7-1

Workstation Formats and File Conventions

7.4.1. Device Assignment Set for a Single-Volume Workstation File

When you use a single-volume workstation file, your device assignment set consists of
a DVC and LFD job control statement. The DVC statement supplies the device
number and the LFD statement associates the file name you used in your program
with the workstation.

The following example shows a device assignment set for a typical single-volume
workstation file:

II DVC 200
II LFD DSPLY

In this example, a workstation is assigned to the logical file named DSPL Y.

Workstation device assignment sets also require a USE job control statement
whenever you use screen format services, menu services, or the dialog processor.

Refer to the Job Control Language Programming Guide (UP-9986) for full details and
format of these statements.

7 .4.2. Device Assignment Set for a Multivolume Workstation File

7-2

When you use a multivolume workstation file, it means that you intend to use more
than one workstation for either input or output. Although a workstation is considered
as one volume in a multivolume file, it is a separate unit. Consequently, when you
have a multivolume workstation file, you must indicate how many units are assigned
to the logical file in your program.

The following example shows the device assignment for a typical multivolume
workstation file:

II DVC 200(3)
II LFD DSPWKS

In this example, the file DSPWKS is a multivolume workstation file that requires
three workstations. Up to 255 workstations can be assigned to any one workstation
file.

Refer to the Job Control Language Programming Guide (UP-9986) for full details and
formats of these statements.

Nate: The user must specify the maximum number of workstations per file in job
control; the system does not automatically expand as more workstations are
connected.

UP-9978 Rev.

•

•

•

•

•

•

Appendix A
Functional Characteristics of Input/Output
Devices

The tables in this appendix summarize the functional characteristics of the
inputioutput devices that are supported by consolidated data management.

Table A-1. Card Reader Subsystem Characteristics

0716 Card Reader Subsystem*

Characteristic Description

Card orientaticn Face in, with column 1 leading and row 9 down
(80-, 66-, and 51-column cards)

Card rate 1000 cpm

Read technique Dual redundant, solar cell technique using phototransistors
Column 0 amplifier checking

Read modes Image mode: 160 six-bit characters per card
Translate mode: 80 characters per card
Three available codes:

• 8-bit ASCII

• 8-bit EBCDIC (required)

• Compressed code

Read station sensing Column by column

"
Hopper capacity 2400 cards

Stacker capacity
Normal (stacker 2) 2000 cards
Reject (stacker 1) 2000 cards

• Model 8 only
continued

UP-9978 Rev. 1 A-1

Functional Characteristics of Input/Output Devices

• Table A-1. Card Reader Subsystem Characteristics (cont.)

0719 Card Reader Subsystem

Characteristic Description

Card orientation Face down, column 1 to left and row 9 facing away
(80-, 66-, and 51-column cards)

Card rate 300 cpm

Read technique Two columns of photosensitive sensors and
light-emitting diodes

Dual redundant column amplifier checking

Read modes Image mode: 160 six-bit characters per c_ard
Translate mode: 80 characters per card

Read station sensing Column by column

Hopper capacity 1000 cards

Stacker capacity
Normal 1000 cards
Reject 1000 cards

•
Table A-2. Card Punch Subsystem Characteristics

0608 Card Punch Subsystem

Characteristic Description

Media 80-column cards

Punch mode 2-column serial

Check mode Punch motion check

Feed mode On demand

Punch rate 75 cpm (full card)
160 cpm (28 columns only)
120 columns/second advance speed

Input capacity 700 cards

Output capacity 700 cards (primary stacker)
100 cards (auxiliary stacker)

Reading Optional

Read rate 160 cpm •
A-2 UP-9978 Rev. 1

Functional Characteristics of Input/Output Devices

• Table A-3. Printer Subsystem Characteristics

0770 Printer Subsystem*

Characteristic Description

Print speed 0770-00 0770-02 0770-04

112 to 1435 lpm, 213 to 2320 lpm, 337 to 3000 lpm,
depending on character depending on character depending on character
contingencies contingencies contingencies

112 lpm - 384 contiguous 213 lpm - 384 contiguous 337 lpm - 384 contiguous
characters characters characters

800 lpm - 48 contiguous 1400 lpm - 48 contiguous 2000 lpm - 48 contiguous
characters characters characters

1435 lpm - 24 contiguous 2320 lpm - 24 contiguous 3000 lpm - 24 contiguous
characters characters characters

Line advance rate 50ips 75 ips 100 ips

Line advance timing Advance and print Time (ms)
6 lpi 8 lpi

1 line 120.0 118.0

• 2 lines 127.6 123.7
3 lines 135.2 129.4
n+ 1 line 120+7.6n 118+5.7n

Number of print Full print width of 132 print positions placed anywhere on a 16.5-inch form.
positions With 22-inch form, only central 13.2-inch portion can be

used (160 print positions with feature).

Forms advance control Vertical format buffer

Form dimensions Continuous forms with standard edge sprocket holes from 4 to 22 inches
in width. Carbons may be attached or unattached with multicopy forms to
a maximum of six parts. Recommended pack thickness not to exceed .0155
inch for high quality print.

Character set Standard 48-character set. Any number of characters up to 384 with options.

Horizontal spacing 10 characters per inch

Vertical spacing 6 or 8 lines per inch, as determined by program

* Model 8 only

continued

•
UP-9978 Rev. 1 A-3

Functional Characteristics of Input/Output Devices

Table A-3. Printer Subsystem Characteristics (cont.) •
0776 Printer Subsystem

Characteristic Description

Print speed 210 to 1250 lpm depending on character contingencies:

Available character sets Number of sets Nominal print
(characters/ set) per band rate (lpm)

384 1 210
192 2 395
128 3 560
96 4 710
64 6 980
48 8 1200
32 12 1250
24 16 1250

Line advance timing Advance and print Time (ms)
(number of lines)

6 lpi 8 lpi

1 16.7 14.1
2 24.6 20.9
3 30.9 25.9
4 35.0 30.9
5 38.9 34.1
6 42.6 37.1 • 7 45.9 39.9
8 49.3 42.6

Number of print 136 print positions (columns)
positions

Forms advance control Vertical format buffer

-
Forms advance rate 50 inches (127 cm) per second

Form dimensions 4 to 18.75 inches (10.16 to 47.62 cm) wide
1 to 18 inches (45. 72 cm) long

Horizontal spacing 10 characters per inch

Vertical spacing 6 or 8 lines per inch, operator-selectable

continued

•
A-4 UP-9978 Rev. 1

Functional Characteristics of Input/Output Devices

• Table A-3. Printer Subsystem Characteristics (cont.)

0789 Printer Subsystem

Characteristic Description

Print speed 180, 300, and 640 lpm, depending on character contingencies

Available character Number of sets Nominal print
sets per band rate (lpm)

48 4 (plus 16 char) 317
64 3 (plus 16 char) 306
96 2 (plus 16 char) 246

128 1 (plus 80 char) 177
-

Line advance timing Advance and Time (ms)
print 6 lpi 8 lpi

1 line 40 40
2 lines 52 52
3 lines 64 64
n+ 1 lines 76+ 12 76+12

Number of print 120 print positions (columns) by standard printer;
positions 132 columns by feature

• Forms advance control Controlled from host processor

Forms advance rate 15 inches (38. 1 cm) per second

Form dimensions 3 to 15 inches (7.62 to 38.10 cm) wide
1 to 22 inches (55.88 cm) long

Horizontal spacing 10 characters per inch

Vertical spacing 6 or 8 lines per inch, operator-selectable

•
UP-9978 Rev. 1 A-5

),>
O'I

c
~
l.O
"-.J
00
;;i;J

~
......

Table A-4. Disk and Diskette Subsystem Characteristics

Description

Characteristics
8416 8417 8418 8419 8420/8422 8430 8433 8470
Disk Disk Disk Disk Diskette Disk Disk Disk

Subsystem@ Subsystem Subsystem@ Subsystem Subsystem Subsystem© Subsystem© Subsystem

Data capacity MB (8-b1t bytes) 28 95 118 2 28 9 or 72.39 Single density© Double density© 100 200 491
formatted 57 9 1 side 303, 104© 1 side 563,320

2 sides 606.208 2 sides 1, 136,640©

Number of disk units 2 to 8 1 to 8 2 to 8 1 to 8 1 to 4 1 to 8 (with 1 to 8 (with 1 to 8
per subsystem optional feature optional feature

up to 16) up to 16)

D1sk/d1skette speed (rpm) 2800 3400 2800 2800 360 3600 3600 3600

Rotation period 21 5 17 6 21 5 21 166 16 7 16.7 16.7
(ms/rotation)

Data bit rate (MHz) 50 905 5.0 6.2 - 6.45 6.45 16.8

B11 density (ppi) 4040 6366 4040 5050 - 4040 4040 11.134

Track density 192 476 370 - - 192 370 630
(tracks/inch)

Track capacity (bytes/track) 10.240© 15.360 10,240 12,800 3328 to 7680© 13,030 13,030 24.576
formatted

Number of cylinders 404 I 7 550 I 10 404 or 808 -I 7 808 t 7 77 total. 75@for data 404 + 7 808 + 7 625 + 5
alternates alternates alternates alternates use per diskette alternates alternates alternates

surface

Number of surfaces per Data 7 14 Data 7 7 2 19 19 32
disk unu pos1t1omng 1 pos1t1oning 1

Pos1t1oning time !seek time)
M1mmum !ms) 10 7 10 10 3 7 10 4
Average (ms) 30 35 27 33 15 27 30 23
Maximum (ms) 60 70 45 60 35 50 55 46

Transfer rate 625 1130 628 784 Dependent on sector sequence 806 806 2,100
(kilobytes/second) arrangement

Notes:

Model 8 only

242,944 for data set label BDE (basic data exchange) diskette file.

971, 776 for format label diskette file.

CD
0
0
© Maximum value. Actual value is dependent on diskette type (single sided, single density; single sided, double density; double sided, single density; double

sided, double density), physical sector size (128, 256, or 512 bytes) and file type (format label or data set label).

®
®
(j)

®

•
In fixed 256-byte sectors, 40 sectors per track

73 for format label diskette file and data set label BDE (basic data exchange) file. 75 for other data set label non-BDE files.

Only increments of 2 (2, 4, 6, 8) are supported.

Equivalent of approximately six cylinders of available alternate sectors .

•

8494
!Hok

Subsystem

308

2 to a0

3600

16.7

14.5

15.000

960

24,576

626+60

20

5
18
35

2.200

•

.,,
c
::s
0
!:!'.
0
::s
2!.
(")
::S
Q) .,
Q)
0 -Cl) .,
u;·
!:!'.
0
U>

a
S"
"O c
'C!:
0
c -"O c -c
~ c;·
Cl)
U>

c
~
ID
-.....]
00
:::0
CD
:<:
......

),>
-.....]

• •
Table A-5. Magnetic Tape Subsystem Characteristics

Description

Characteristic

UNISERVO 12" UNISERVO 16" UNISERVO 20" UNISERVO 10" UNISERVO 14" UNISERVO 10

Tape umts per subsystem 1 to 16 1 to 16 1 to 16 2 to 8 2 to 8 1 10 8

Data transfer rate 6B,320 192,000 320.000 40.000 96.000 40.000
(maximum)

(frames per second)

Tape speed 42 7 120 200 25 60 25
(mches per second)

Tape d1recuon

Read mg Forward or Forward or Forward or Forward or Forward or Forward or

backward backward backward backward backward backward

Writing Forward Forward Forward Forward Forward Forward

Tape length (maximum) 2400 2400 2400 2400 2400 2400
(feet)

Tape thickness 1 5 1 5 1 5 1 5 1 5 1 5
(mils)

Block length Vanable Vanable Variable Variable Variable Variable

Maximum block 65,535 65.535 65.535 8191 65,535 65.535
size (bytes)

Mimmum block size 1B 1B 1B 1B 1B 1B
(bytes)

lnterblock gap 9-track 7-track 9-track 7-track 06 9-track 7-track 9-irack 7-uack 06
(inches) 06 0 75 06 0 75 0.6 0 75 06 0 75

lnterblock gap time (ms)
Nonstop 14 1 17 6 50 6 25 10 24 30 14 17 24
Start-stop 20 1 23 6 BO 9 25 50 30 3B 20 23

Pulse density 1600 BOO 1600 800 1600 1600 BOO 1600 BOO 1600 on 9~track PE
(pp1) 800 556 BOO BOO 556 BOO 556 800 on 9~track NAZI

200 200

Recording mode PE NAZI PE NAZI PE PE or NAZI PE or NRZI PE or NAZI
NAZI NAZI

Reversal time (ms) 25 10 16 16 10 16

Rewind time (min) 3 2 1 3 3 3

S1muhaneous operation Opuonal Optional Optional Optional Opuonal Optional

• Model 8 only

t Provides dump or restore capabdity to backup data stored on nonremovable disk packs.

UNISERVO 22" UNISERVO 24"

1 to 8 1 to 8

120,000 200.000

75 125

Forward or Forward or

backward backward
Forward Forward

2400 2400

1 5 1 5

Variable Variable

65.535 65.535

1B 1B

06 06

BO 48
7 7 7 7

1600 or 800 on 1600 or 800 on

9-track PE/NAZI 9-track PE/NAZI

PE or NAZI PE or NAZI

10 10

2 2

Opuonal Optional

Streaming

Tape Drivet

1 to 4 daisy chamed to

host controller

160.000 or 40,000

100 or 25

Forward or

backward

Forward

2400

1 5

Variable

65.535

1B

06

60
7 7

1600 on 9-track PE

PE

450

3

Optional

•
"Tl c
:;:,
(") -s·
:;:,
~
(")
:::T
!»
""'I
!»
(") -Ct>
""'I c;;·
d'.
(")
VI

0 -:;:,
"C
c
~
0 s.

"C
s.
c
~ c:;·
Ct>
VI

Functional Characteristics of Input/Output Devices

Table A-6. Workstation Subsystem Characteristics •
Workstation Subsystem

Characteristic Description

Type of display Cathode ray tube (CRT)

Number of display lines 24 plus 1 indicator

Characters per line 80

Number of units 1 to 8

Keyboard arrangements Typewriter layout. typewriter layout with numeric and function pads, or Katakana/English

-
Character sets Domestic, United Kingdom, Germany, France, Spain, Denmark/Norway,

Sweden/Finland, Italy, or Katakana/English

•

•
A-8 UP-9978 Rev. 1

•

•

•

Appendix B
Code Correspondences

B.1. General Information
This appendix presents a cross-reference table and several figures useful to you in
visualizing the correspondences among the following codes commonly used in data
processing:

• Hollerith punched card code

• EBCDIC (Extended Binary-Coded Decimal Interchange Code)

• ASCII (American National Standard Code for Information Interchange)

• Binary bit pattern (bit configuration) representation for an 8-bit system.

• Hexadecimal representation

• Compressed code for punched cards

• Binary (image) mode for punched cards

B.2. EBCDIC/ASCII/Hollerith Correspondence
Table B-1 cross-references the correspondences between the Hollerith punched card
code, ASCII, and EBCDIC. The table is arranged in the sorting (or collating) sequence
of the binary bit patterns that have been assigned to the codes, with 0000 0000 being
the lowest value in the sequence and 11111111 the highest.

Note that the column headed Decimal uses decimal numbers to represent the
positions of the codes and bit patterns in this sequence, but counts the position of the
lowest value as the 0th (zeroth) position rather than the first. Thus, the position of the
highest value bit pattern 1111 1111 is represented in the decimal column by 255,
whereas it is actually the 256th in the sequence. This scheme corresponds to the
common convention for numbering bytes, in which the first byte of a group is byte 0,
and is convenient when you are constructing a 256-byte translation table.

The column headed Decimal also represents the collating sequence for the EBCDIC
graphic characters shown in the fourth column of the table; the fifth column, Hollerith
Punched Card Code, contains the hole patterns assigned to these EBCDIC graphics.
An empty space in the fourth column represents the position of the EBCDIC control
character for which there is no graphic representation; the EBCDIC space character is

UP-9978 Rev. 1 B-1

Code Correspondences

represented in the fourth column by the conventional notation SP at decimal position
64, and the corresponding card code is "no punches."

The ASCII graphic characters, listed in the sixth column of Table B-1, are also in their
collating sequence, and the hole patterns in the seventh column correspond to the
ASCII graphics. The ASCII space character is represented by the notation SP in the
sixth column at decimal position 32; the corresponding card code is, again, "no
punches." The empty space in the sixth column represents the positions of the ASCII
control characters for which there is no graphic representation. The shading in the
ASCII graphic character column indicates where the 128-character ASCII code leaves
off; there are no ASCII graphic or control characters that correspond to the bit
patterns higher in collating sequence than 01111111 (the 128th in Table B-1).

8.2.1. Hollerith Punched Card Code

The standard Hollerith punched card code specifies 256 unique hole patterns in
12-row punched cards. Hole patterns are assigned to the 128 characters of ASCII and
to 128 additional characters for use in 8-bit coded systems. These include the EBCDIC
set. Note that no sorting sequence is implied by the Hollerith code itself.

8.2.2. EBCDIC

•

EBCDIC is an extension of Hollerith coding practices. It comprises 256 characters, •
each of which is represented by an 8-bit pattern. Table B-1 shows the EBCDIC graphic
characters only; the EBCDIC control characters are not indicated.

B.2.3. ASCII

8-2

ASCII comprises 128 coded characters, each represented by an 8-bit pattern, and
includes both control characters and graphic characters. Only the latter are shown in
Table B-1. ASCII is used for information interchange among data processing
communication systems and associated equipment.

UP-9978 Rev. 1

•

Code Correspondences

• Table B-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith

EBCDIC ASCII

Hex a- EBCDIC Hollerith ASCII Hollerith
Decimal dec1- Binary Graphic Punched Card Graphic Punched Card

mal Character Code Character Code

0 00 0000 0000 12-0-9-8-1 12-0-9-8-1
1 01 0000 0001 12-9-1 12-9-1

2 02 0000 0010 12-9-2 12-9-2

3 03 0000 0011 12-9-3 12-9-3
4 04 0000 0100 12:9.A ---9:.1.
5 05 0000 0101 12-9-5 0-9-8-5
6 06 00000110 12-9-6 0-9-8-6
7 07 0000 0111 12-9-7 0-9-8-7
8 08 0000 1000 12-9-8 11-9-6
9 09 0000 1001 12-9-8-1 12-9-5

10 QA 0000 1010 12-9-8-2 0-9-5
11 OB 0000 1011 12-9-8-3 12-9-8-3
12 OC 0000 1100 12-9-8-4 12-9-8-4
13 OD 0000 1101 12-9-8-5 12-9-8-5
14 OE 0000 1110 12-9-8-6 12-9-8-6
15 OF 0000 1111 12-9-8-7 12-9-8-7
16 10 0001 0000 12-11-9-8-1 12-11-9-8-1
17 11 0001 0001 11-9-1 11-9-1
18 12 0001 0010 11-9-2 11-9-2
19 13 0001 0011 11-9-3 11-9-3
20 14 0001 0100 11-9-4 9-8-4
21 15 0001 0101 11-9-5 9-8-5 • 22 16 0001 0110 11-9-6
23 17 0001 0111 11-9-7

9-2
0-9-6

24 18 0001 1000 11-9-8 11-9-8
25 19 0001 1001 11-9-8-1 11-9-8-1
26 1A 0001 1010 11-9-8-2 9-8-7
27 1B 0001 1011 11-9-8-3 0-9-7
28 lC 0001 1100 11-9-8-4 11-9-8-4
29 10 0001 1101 11-9-8-5 11..:.9_-8-5
30 lE 0001 1110 11-9-8-6 11-9-8-6
31 1F 0001 1111 11-9-8-7 11-9-8-7
32 20 0010 0000 11-0-9-8-1 SP No punches
33 21 0010 0001 0-9-1 ! 12-8-7
34 22 0010 0010 0-9-2 " 8-7
35 23 0010 0011 0-9-3 # 8-3
36 24 00100100 0-9-4 $ 11-8-3
37 25 0010 0101 0-9-5 % 0-8-4
38 26 00100110 0-9-6 & 12
39 27 0010 0111 0-9-7 Jli
40 28 0010 1000 0-9-8 (12-8-5
41 29 0010 1001 0-9-8-1) 11-8-5
42 2A 0010 1010 ')-9-8-2 * 11-8-4
43 28 0010 1011 0-9-8-3 + 12-8-6
44 2C_ 00 1 0 _1J__QQ_ ~Q.;U
45 20 0010 1101 0-9-8-5 - 11
46 2E 00101110 0-9-8-6 12-8-3
47 2F 0010 1111 0-9-8-7 I 0-1
48 30 0011 0000 12-11-0-9-8-1 0 0
49 31 0011 0001 9-1 1 1
50 32 0011 0010 9-2 2 2
51 33 0011 0011 9-3 3 3
52 34 0011 0100 9-4
53 35 0011 0101 9-5
54 36 0011 0110 9-6 • 4 4

5 5
6 6

continued

UP-9978 Rev. 1 B-3

Code Correspondences

Table B-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (cont.) •
EBCDIC ASCII

Hex a- EBCDl.C Hollerith ASCII Hollerith
Decimal deci- Binary Graphic Punched Card Graphic Punched Card

mal Character Code Character Code

55 37 0011 0111 9-7 7 7
56 38 00111000 9-8 8 8
57 39 0011 1001 9-8-1 9 9
58 3A 0011 1010 9-8-2 : 8-2
59 3B 00111011 9-8-3 ; 11-8-6
60 3C 00111100 9-8-4 < 12-8-4
61 30 0011 1101 9-8-5 = 8-6
62 3E 0011 1110 9-8-6 > 0-8-6
63 3F 0011 1111 9-8-7 ? 0-8-7
64 40 0100 0000 SP No punches @ 8-4
65 41 0100 0001 12-0-9-1 A 12-1
66 42 0100 0010 12-0-9-2 B 12-2
67 43 0100 0011 12-0-9-3 c 12-3
68 44 0100 0100 12-0-9-4 0 12-4
69 45 0100 0101 12-0-9-5 E 12-5
70 46 01000110 12-0-9-6 F 12-G
71 47 0100 0111 12-0-9-7 G 12-7
72 48 0100 1000 12-0-9-8 H 12-8
73 49 0100 1001 12-8-1 I 12-9
74 4A 0100 1010 [--1.2:a2 J 11-1
75 48 0100 1011 12-8-3 K 11-2
76 4C 0100 1100 < 12-8-4 L 11-3
77 40 0100 1101 (12-8-5 M 11-4
78 4E 0100 1110 + 12-8-6 N 11-5
79 4F 0100 1111 I 12-8-7 0 11-6 • 80 50 0101 0000 & 12 p 11-7
81 51 0101 0001 12-11-9-1 Q 11-8
82 52 0101 0010 12-11-9-2 R 11-9
83 53 0101 0011 12-11-9-3 s 0-2
84 54 0101 0100 12-11-9-4 T 0-3
85 55 0101 0101 12-11-9-5 u 0-4
86 56 0101 0110 12-11-9-6 v 0-5
87 57 0101 0111 12-11-9-7 w 0-6
88 58 0101 1000 12-11-9-8 x 0-7
89 59 0101 1001 11-8-1 y 0-8
90 5A 0101 1010 J 11-8-2 z 0-9
91 58 0101 1011 $ 11-8-3 [12-8-2
92 5C 0101 1100 . 11-8-4 \ 0-8-2
93 50 0101 1101) 11-8-5 J 11-8-2
94 5E 01011110 11-8-6 /\ 11-8-7
95 5F 0101 1111 /\ 11-8-7 - 0-8-5
96 60 0110 0000 - 11 8-1
97 61 0110 0001 I 0-1 a 12-0-1
98 62 0110 0010 11-0-9-2 b 12-0-2
99 63 0110 0011 11-0-9-3 c 12-0-3

100 64 0110 0100 11-0-9-4 d 12-0-4
101 65 0110 0101 11-0-9-5 e 12-0-5
102 66 0110 0110 11-0-9-6 f 12-0-6
103 67 0110 0111 11-0-9-7 g 12-0-7
104 68 0110 1000 11-0-9-8 h 12-0-8
105 69 01101001 0-8-1 i 1T-ITTr
106 6A 0110 1010 I

I 12-11 j 12-11-1
107 6B 0110 1011 0-8-3 k 12-11-2
108 6C 01101100 % 0-8-4 I 12-11-3
109 60 0110 11oi - 0-8-5 m 12-11-4 • continued

8-4 UP-9978 Rev. 1

•
Decimal

110
111
112
113
114
115
116
117
118
119
120

121

122
123

124
125

126
127
128
129
130

• 131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151

152

153
154

155
156
157

158
159

•
UP-9978 Rev. 1

Code Correspondences

Table B-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (cont.)

EBCDIC

Hex a- EBCDIC
deco- Binary Graphic

mal Character

6E 0110 1110 >
6F 01101111 7

70 0111 0000
71 0111 0001
72 0111 0010
73 0111 0011
74 0111 0100
75 0111 0101

76 0111 0110

77 0111 0111

78 0111 1000
79 0111 1001 '
7A 0111 1010
7B 0111 1011 #
7C 0111 1100 @

70 0111 1101

7E 0111 1110 =

7F 0111 1111 "

80 1000 0000
81 1000 0001 a
82 1000 0010 b

83 1000 0011 c
84 1000 0100 d

85 1000 0101 e
86 10000110 f
87 10000111 g

88 1000 1000 h
89 1000 1001 i

8A 1000 1010
88 1000 1011
8C 1000 1100
80 1000 1101
8E 1000 1110
8F 1000 1111
90 1001 0000
91 1001 0001 J
92 1001 0010 k

93 1001 0011 I

94 1001 0100 m

95 1001 0101 n
96 1001 0110 0

97 1001 0111 p

98 1001 1000 q

99 1001 1001 r

9A 1001 1010

913 1001 1011
9C 1001 1100

90 1001 1101

9E 1001 1110
9F 1001 1111

Hollerith
Punched Card

Code

0-8-6
0-8-7
12-11-0

12-11-0-9-1
12-11-0-9-2
12-11-0-9-3
12-11-0-9-4
12-11-0-9-5
12-11-0-9-6
12-11-0-9-7
12-11-0-9-8

8-1

8-2
8-3

8-4
8-5

8-6
8-7
12-0-8-1
12-0-1
12-0-2
12-0-3
12-0-4
12-0-5

12-0-6
12-0-7
12-0-8
12-0-9
12-0-8-2
12-0-8-3
12-0-8-4
12-0-8-5
12-0-8-6
12-0-8-7
12-11-8-1
12-11-1
12-11-2

12-11-3
12-11-4
12-11-5
12-11-6
12-11-7

12-11-8

12-11-9
12-11-8-2
12-11-8-3
12-11-8-4
12-11-8-5

12-11-8-6
12-11-8-7

ASCII
Graphic

Character

n
0

p

q

s
t

u

v

w

x
y

z
{
I
I

}

ASCII

Hollerith
Punched Card

Code

12-11-5
12-11-6
12-11-7

12-11-8
12-11-9
11-0-2
11-0-3
11-0-4
11-0-5
11-0-6
11-0-7

11-0-8
11-0-9

12-0
12-11

11-0
11-0-1

12-9-7
11-0-9-8-1
0-9-1
0-9-2
0-9-3
0-9-4
11-9-5

12-9-6
11-9-7
0-9-8
0-9-8-1
0-9-8-2
0-9-8-3
0-9-8-4
12-9-8-1
12-9-8-2
11-9-8-3
12-11-0-9-8-1
9-1

11-9-8-2
9-3
9-4
9-5
9-6
12-9-8

9-8
9-8-1
9-8-2
9-8-3

12-9-4
11-9-4

9-8-6
11-0-9-1

continued

8-5

Code Correspondences

Table B-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (cont.) •
EBCDIC ASCII

Hex a- EBCDIC Hollerith ASCII Hollerith
Decimal deci- Binary Graphic Punched Card Graphic Punched Card

mal Character Code Character Code

160 AO 1010 0000 11-0-8-1 12-0-9-1
161 A1 10100001 /-..J 11-0-1 12-0-9-2
162 A2 1010 0010 s 11-0-2 12-0-9-3
163 A3 1010 0011 t 11-0-3 12-0-9-4
164 A4 10100100 u 11-0-4 12-0-9-5
165 A5 10100101 v 11-0-5 12-0-9-6
166 A6 1 0100110 w 11-0-6 12-0-9-7
167 A7 10100111 x 11-0-7 12-0-9-8
168 AB 10101000 y 11-0-8 12-81
169 A9 1010 1001 z 11-0-9 12-11-9-1
170 AA 1010 1010 11-0-8-2 12-11-9-2
171 AB 10101011 11-0-8-3 12-11-9-3
172 AC 1010 1100 11-0-8-4 12-11-9-4
173 AD 1010 1101 11-0-8-5 12-11-9-5
174 AE 1010 1110 11-0-8-6 12-11-9-6
175 AF 1010 1111 11-0-8-7 12-11-9-7
176 BO 1011 0000 12-11-0-8-1 12-11-9-8
177 B1 1011 0001 12-11-0-1 11-8-1
178 B2 1011 0010 12-11-0-2 11-0-9-2
179 B3 1011 0011 12-11-0-3 11-0-9-3
180 B4 1011 0100 12-11-0-4 11-0-9-4
181 B5 I ;._,11 0101 12-11-0-5
182 B6 1011 0110 12-11-0-6
183 B7 1011 0111 12-11-0-7

11-0-9-5 • 11-0-9-6
11-0-9-7

184 BB 1011 1000 12-11-0-8 11-0-9-8
185 B9 1011 1001 12-11-0-9 0-8-1
186 BA 1011 1010 12-11-0-8-2 12-11-0
187 BB 1011 1011 12-11-0-8-3 12-11-0-9-1
188 BC 1011 1100 12-11-0-8-4 12-11-0-9-2
189 BO 1011 1101 12-11-0-8-5 12-11-0-9-3
190 BE 1011 1110 12-11-0-8-6 12-11-0-9-4
191 BF 1011 1111 12-11-0-8-7 12-11-0-9-5
192 co 1100 0000 { 12-0 12-11-0-9-6
193 C1 11000001 A 12-1 12-11-0-9-7
194 C2 11000010 B 12-2 12-11-0-9-8
195 C3 11000011 c 12-3 12-0-8-1
196 C4 11000100 D 12-4 12-0-8-2
197 C5 11000101 E 12-5 12-0-8-3
198 C6 1100 0110 F 12-6 12-0-8-4
199 C7 1100 0111 G 12-7 12-0-8-5
200 cs 1100 1000 H 12-8 12-0-8-6
201 C9 1100 1001 I 12-9 12-0-8-7
202 CA 11001010 12-0-9-8-2 12-11-8-1
203 CB 1100 1011 12-0-9-8-3 12-11-8-2
204 cc 11001100 12-0-9-8-4 12-11-8-3
205 CD 1100 1101 12-0-9-8-5 12-11-8-4
206 CE 1100 1110 12-0-9-8-6 12-11-8-5
207 CF 11001111 12-0-9-8-7 12-11-8-6
208 DO 1101 0000 } 11-0 12-11-8-7
209 01 1101 0001 J 11-1 11-0-8-1

continued

•
8-6 UP-9978 Rev. 1

•
Decimal

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

• 230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

•
UP-9978 Rev. 1

Code Correspondences

Table B-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (cont.)

EBCDIC

Hex a- EBCDIC
deci- Binary Graphic
mal Character

02 1101 0010 K
03 1101 0011 L
04 1101 0100 M
05 1101 0101 N
06 1101 0110 0
07 1101 0111 p

08 11011000 Q

09 1101 1001 R
DA 1101 1010
DB 1101 1011

DC 1101 1100
DD 1101 1101

DE 1101 1110

OF 1101 1111

EO 1110 0000 \
El 1110 0001
E2 1110 0010 s
E3 11100011 T
E4 1110 0100 u
E5 1110 0101 v
E6 1110 0110 w
E7 1110 0111 x
EB 1110 1000 y

E9 1110 1001 z
EA 1110 1010
EB 11101011
EC 1110 1100
ED 1110 1101
EE 11101110
EF 1110 1111
FO 11110000 0
F1 1111 0001 1
F2 1111 0010 2
F3 1111 0011 3
F4 1111 0100 4
F5 1111 0101 5
F6 1111 0110 6
F7 1111 0111 7
F8 11111000 8
F9 1111 1001 9
FA 1111 1010
FB 1111 1011
FC 11111100
FD 1111 1101
FE 1111 1110
FF 1111 1111

Hollerith
Punched Card

Code

11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
12-11-9-8-2
12-11-9-8-3
12-11-9-8-4
12-11-9-8-5
12-11-9-8-6
12-11-9-8-7
0-8-2
11-0-9-1
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
11-0-9-8-2
11-0-9-8-3
11-0-9-8-4
11-0-9-8-5
11-0-9-8-6
11-0-9-8-7
0
1
2
3
4
5

6
7
8
9
12-11-0-9-8-2
12-11-0-9-8-3
12-11-0-9-8-4
12-11-0-9-8-5
12-11-0-9-8-6
12-11-0-9-8-7

ASCII
Graphic

Character

ASCII

Hollerith
Punched Card

Code

11-0-8-2
11-0-8-3
11-0-8-4
11-0-8-5
11-0-8-6
11-0-8-7
12-11-0-8-1
12-11-0-1
12-11-0-2
12-11-0-3
12-11-0-4
12-11-0-5
12-11-0-6
12-11-0-7
12-11-0-8
12-11-0-9
12-11-0-8-2
12-11-0-8-3
12-11-0-8-4
12-11-0-8-5
12-11-0-8-6
12-11-0-8-7
12-0-9-8-2
12-0-9-8-3
12-0-9-8-4
12-0-9-8-5
12-0-9-8-6
12-0-9-8-7
12-11-9-8-2
12-11-9-8-3
12-11-9-8-4
12-11-9-8-5
12-11-9-8-6
12-11-9-8-7
11-0-9-8-2
11-0-9-8-3
11-0-9-8-4
11-0-9-8-5
11-0-9-8-6
11-0-9-8-7
12-11-0-9-8-2
12-11-0-9-8-3
12-11-0-9-8-4
12-11 -0-9-8-5
12-11-0-9-8-6
12-11-0-9-8-7

B-7

Code Correspondences

B.3. Other Card Codes
There are three other card coding systems that can be handled by data management:
compressed code, column binary (image) code, and 96-column code.

B.3.1. Compressed Card Code

8-8

Figure B-1 indicates the construction of the compressed card code; each card column is
represented by an 8-bit pattern in 1 byta of main storage.

I COLUMN PUNCH POSITIONS

4 5

MAIN STORAGE
BYTE
BIT POSITIONS

Note: Punch positions 1 through 7 are indicated in bits 1 through 3, according to the following table:

Punch Bits
Rows 1 Thru 7 123

NONE 000
1 011
2 101
3 001
4 010
5 100
6 111
7 110

Figure B-1. Compressed Card Code

UP-9978 Rev. 1

•

•

•

•

•

•

Code Correspondences

B.3.2. Column Binary (Image) Code

Figure B-2 indicates the construction of this code. Note that each card column requires
two bytes of main storage; an I/O area of 160 bytes is required for an 80-column card.

COLUMN PUNCH POSITIONS

0

Note: Bits 0 and 1 are cleared to zeros on an image read.

12

11

0

2

3

4

5

6

7

8

9

Figure B-2. Column Binary (Image) Card Code

UP-9978 Rev. 1 B-9

•

•

•

•

•

•

Appendix C
DD Job Control Statement Processing

C.l. General Information
The DD job control statement can be used in your program execution job control
stream to temporarily change certain file parameters at run time. The changes are
effective only during the execution of the job. If a permanent change is desired, you
must change your source program. The Job Control Language Programming Guide
(UP-9986) describes the format and placement of the DD job control statement.

C.2. DD Job Control Statement Parameters
Table C-1 summarizes the DD job control statement keyword parameters you can use
to temporarily change your file parameters. If you specify a keyword parameter that is
not allowed for the particular type of file, the specification is ignored.

Table C-1. Allowable Keyword Parameters for the DD Job Control Statement

Format Label Data Set Label
Keyword Diskette/Disk Diskette Tape Card Printer

RCFM* x x x

BKSZ* x x x x x

RCSZ* x x x

KLENl-5* x

KLOCl-5* x

INDS* x

SIZE x

ACCESS x

VSEC v

RECV x

VMNT x x
continued

UP-9978 Rev. 1 C-1

DD Job Control Statement Processing

Table C-1. Allowable Keyword Parameters for the DD Job Control Statement (cont.)

Format Label Data Set Label
Keyword Diskette/Disk Diskette Tape Card Printer

RCB x x

OFFSET x

REWIND x

OPRW x

CLRW x

FILABL x

TPMARK x

RESTORE x

CACHE x

MSGSUPP x

• Be careful when specifying this keyword parameter. If the program accessing the file is dependent on predefined
(e.g., compile time) file or processing characteristics, it may not be prepared for such a change at execution
time. You may get unexpected results unless the program is a user-written BAL program prepared for this type
of specification change or if the user documentation for the product explicitly states that this specification can
be changed at execution time.

Legend

X Allowable keyword
V Applies to nonsectorized disk devices only

C.2.1. Record Format (RCFM)

C-2

This keyword parameter specifies the record format.

RCFM=FIXUNB
Specifies fixed-length unblocked records.

RCFM=FIXBLK
Specifies fixed-length blocked records. This specification is invalid for card and
printer files.

UP-9978 Rev. 1

•

•

•

•

•

•

DD Job Control Statement Processing

RCFM=UNDEF
Specifies undefined records.

RCFM=VARUNB
Specifies variable-length unblocked records.

RCFM=VARBLK
Specifies variable-length blocked records. This specification is invalid for card
and printer files.

C.2.2. Data Buffer/Block Size (BKSZ)

This keyword parameter specifies the size of the data 1/0 buff er.

BKSZ=n
Specifies the size of the buff er in bytes. If the full size specified cannot be used, it
will be automatically rounded down to an appropriate size.

The following is device-dependent information regarding block/buffer size:

UP-9978 Rev. 1

DISK/FORMAT LABEL DISKETTE/DATA SET LABEL DISKETTE

The following algorithm determines the minimum allowable buffer size in
logical sectors

where:

s

LSS

N

S/LSS=N and R

Is the slot size. The slot size equals the record size + 1 for files with an
RCB and fixed-length records. Otherwise, the slot size equals the record
size.

Is the logical sector size. For disk and format label diskette files, the
logical sector size is equal to the physical sector size. For the data set
label diskette, the logical sector size is:

• equal to the record size if records are unblocked and unspanned.

• n x record size if records are blocked and unspanned.

• physical sector size if records are blocked and spanned.

Is the number of full sectors per slot .

C-3

DD Job Control Statement Processing

C-4

R

Is the remainder.

The minimum allowable buff er size in logical sectors is

N ifR = 0.

N+1 if R divides evenly into LSS.

N+2 otherwise

To determine n, multiply the minimum allowable size in sectors by LSS.

TAPE
The buff er size is related to the record size (RCSZ) and record format
(RCFM) specifications. The following guidelines apply for certain record
formats:

• For variable-length blocked records

BKSZ must accommodate the largest block size in the file (including
block and record descriptor words).

• For variable-length unblocked records

BKSZ must accommodate the largest record size (including block a."ld
record descriptor words).

• For fixed-length unblocked or blocked records

BKSZ must accommodate either record size or record size x blocking
factor.

PRINTER

CARD

The buffer size determines the record size. For variable-length or undefined
records, BKSZ is the length of the longest record (including block and record
descriptor words for variable records). For programs using embedded control
characters, BKSZ is n+l, where n is the length of the longest record to be
printed.

The buffer size determines the record size. For variable-length unblocked
records, BKSZ is the length of the longest record (including block and record
descriptor words). When using binary mode, BKSZ is double the maximum
record size.

UP-9978 Rev. 1

•

•

•

•
DD Job Control Statement Processing

C.2.3. Record Size (RCSZ)

This keyword parameter specifies the record size.

The following is device-dependent information regarding record size:

DISK/FORMAT LABEL DISKETTE/DATA SET LABEL DISKETTE

TAPE

RCSZ specifies the length of each record in bytes. Since variable-length
records are written in fixed size slots, RCSZ is the slot size (including the
record descriptor word).

RCSZ specifies the length of each record in bytes and is valid only in fixed
length record format.

C.2.4. Key Length (KLENn)

This keyword parameter specifies key lengths for an indexed file.

KLENn=L
Specifies the length of up to five keys, when n is from 1 to 5, inclusive, and L
is from 1 to 80 bytes.

• C.2.5. Key Location (KLOCn)

•

This keyword parameter specifies key locations for an indexed file.

KLOCn=L
Specifies the location of up to five keys, when n is from 1 to 5, inclusive, and
Lis the number of bytes (including the record descriptor word for variable
length records) in the record preceding the key.

C.2.6. Index Buffer Size (INDS)

This keyword parameter specifies the index 1/0 buff er size.

UP-9978 Rev. 1

INDS=n
Specifies the buffer size, where n is the number of bytes up to a maximum of
32,512 bytes and must be a multiple of 256 .

C-5

DD Job Control Statement Processing

C.2.7. Initial Space Allocation Percentages (SIZE, SIZEl, SIZE2)

CDM uses the file's record size and key size to estimate the ratio of data partition to
index partition requirements. CDM uses this ratio to determine the percentages for
initial space allocation of the data and index partitions. The percentages minimize the
number of extent table entries that are required. This reduces the possibility of
running out of extent table entries, resulting in fewer DM45 errors.

Prior to this release, you specified SIZE=AUTO on the file's DD JCL statement to
allocate the percentages; now, allocation is performed automatically. If you specify
SIZE=AUTO, it is ignored. The index partition is guaranteed to receive part of the
initial allocation. Except for very small allocations (one, two, or three cylinders), part
of the initial allocation is not assigned and is available for logical extensions.

The accuracy of the calculated percentages depends on the size of the file, the effects
of roundoff, and how the file is loaded. For more efficient use of space in the index
partition, load records in ascending key sequence, rather than in unordered key
sequence. If the calculated percentages exhaust the extent table or result in wasted
disk space, use the SIZEl and SIZE2 parameters to specify explicit percentages for
CDMtouse.

SIZE1=n SIZE2=m
Specify both parameters: n represents the percentage to be used for the data
partition and m represents the percentage to be used for the index partition .
Their total must not exceed 100.

These specifications are effective only at file creation time; they are ignored
if specified at other times. You create a file by

• Loading a newly alloc?.ted file

or

• Reloading (recreating) a file by using the INIT job control specification

If you used SIZE parameters to create a file, respecify them when you reload
a file by using the INIT specification.

C.2.8. File Sharing Characteristics (ACCESS)

C-6

This keyword parameter specifies the disk file sharing characteristics. The
characteristics indicate whether or not multiple logical access paths (LAPs) can access
the physical file at the same time and the type of processing (read and/or write use)
that each LAP can perform. See 5.4 for detailed information on disk file sharing and
the ACCESS parameter.

UP-9978 Rev. 1

•

•

•

•

•

•

DD Job Control Statement Processing

C.2.9. Variable Sector Support (VSEC)

Both the data and index partitions specify a fixed sector size of 256 bytes. This is
required for the sectorized devices (8416, 8417, 8418, 8419, and 8470 disk subsystems)
which are formatted for a 256-byte sector. The selector channel devices (8430 and
8433 disk subsystems) have no such constraint. However, they are preformatted when
the file is opened to accept the 256-byte sector size. This sectorization requires
hardware overhead and thus decreases the effective capacity of the disk.

Variable sector support eliminates the problem. It allows you to create a disk file with
a data partition physical sector size (PSS) that is larger than 256 bytes on the selector
channel devices. Because the hardware overhead remains constant, the use of the
larger PSS increases the effective capacity of the disk.

This keyword parameter is only valid at file creation time. It is not required for
selector channel devices and is ignored if specified at other times. If it is specified for a
sectorized device, it is ignored.

VSEC=n
Specifies the PSS where n is the size in bytes. To obtain the maximum
benefit, n should always be a multiple of slot size.

VSEC=YES
Specifies that the PSS is to be automatically computed when the file is
opened. The computed PSS will be the largest multiple of slot size.

Slot size is determined as follows:

• For a file with fixed-length records that contain an RCB, the slot size
equals record size + 1.

• For other files, the slot size equals record size.

C.2.10. File Recovery Support (RECV)

When you perform operations such as adding or deleting records from a keyed file or
updating records with a key change, the physical file structure changes constantly
during program execution. If your program completes its run and the file is
successfully closed, the file limits information contained in the file labels is updated.

If a system failure occurs, the file is not closed and the file limits information is not
updated. A nonindexed file reverts to the state it was in before the file was opened,
and any records added during the run are lost. The effect on an indexed file is more
serious; the file's index may become compromised, and it is impossible to determine
whether or not this has happened. DM24 or DM39 errors or premature end of file are
indications that the index is compromised, but they may not appear immediately .

UP-9978 Rev. 1 C-7

DD Job Control Statement Processing

C-8

File recovery support eliminates these problems by writing the current file limits
information to disk (the first sector of the data partition, PCAl) after each function
that changes the limits information, such as record addition, keyed deletion, or update
with key change. You should request recovery for your files, especially indexed files,
because it saves you the inconvenience of rebuilding files and getting unexpected
program errors. There is only a small overhead cost incurred on the functions that
change file limits information.

The recovery facility is activated when the file is successfully closed, after file creation.
If a system failure occurs during file creation, the file will have to be reloaded, because
recovery was never activated. This ensures that no overhead is incurred during file
creation. There is no overhead on read, update without key change, or nonindexed
delete functions, regardless of when they occur.

When recovery is active for a file, and a system stop occurs

• A nonindexed file is recovered automatically. The file limits information reflects
all of the records that were in the file at the time of the stop, and no records are
lost.

• If the file is indexed, and CDM is in the middle of an index manipulation when
the stop occurs, the index is compromised. The following error message appears
the next time a program attempts to open the file:

DM66 FILE INACCESSIBLE TYPE=01

• If you do not receive this error on the first attempt to open the file after the stop,
the file is totally recovered, the index is not compromised, and no records are lost.
If you receive this error, use the RECV=FCE specification to open the file strictly
to recreate it.

• Note that a VTOC print (SU VTP) reflects the correct number of records. The stop
prevents label update, but correct information is maintained in the recovery
block. SU VTP extracts information from the labels and the recovery block.

Use either the DMRECV SUPGEN parameter or the RECV DD JCL parameter to
request recovery support. DMRECV lets you specify what kind of files will be created
with recovery.

•

•

•

DMRECV=YES - create all data files (except temporary files prefixed $SCR or
$JOB, or system files prefixed with Y).

DMRECV=INDEX - create only indexed data files (except temporary files
prefixed $SCR or $JOB, or system files prefixed with Y).

DMRECV=NO - create no files .

You can override these specifications on a file basis (except temporary files prefixed
with $SCR or $JOB) by using the RECV parameter on the DD JCL statement. See the
Installation Guide (UP-8839) for details on the DMRECV parameter.

UP·9978 Rev. 1

•

•

•

•

•

•
UP-9978 Rev. 1

DD Job Control Statement Processing

RECV=YES
Creates the file with recovery support. It is not necessary to use this
specification if the DMRECV parameter is set to request recovery for the file
type in question.

This specification is effective only at file creation time; it is ignored if you
specify it at other times. When you recreate a file by using the INIT
specification, respecify this parameter if you used it to create the file the first
time.

RE CV= LOAD
Creates the file with recovery support and activates the recovery facility
during file creation. Use this specification if you want to activate recovery
when you load the file.

This specification is effective only at file creation time; it is ignored if you
specify it at other times. When you reload the file using the INIT
specification, you must specify this parameter again if you used it to create a
file.

RE CV= NO
Creates the file without recovery support. Use this specification when you
use the SUPGEN parameter DMRECV=YES or DMRECV=INDEX and you
do not want recovery for this file.

This specification is effective only at file creation time; it is ignored if you
specify it at other times. When you reload the file by using the INIT
specification, respecify this parameter if you used it to create a file.

RECV=FCE
Ignores the compromised file condition; you will not receive a DM66
TYPE=Ol error. Use this specification only when you want to open a
compromised file to read the data partition (and not the index) to recreate
the.file.

RECV=OFF
Deactivates the recovery facility during this job run. The recovery block will
not be updated after each function that changes the file limits information. If
the file is indexed and the file is not successfully closed (that is, system stop),
you will receive a DM66 TYPE=Ol error message the next time a program
tries to open the file. For nonindexed files, added records will be lost.

This specification is effective only for ACCESS specifications of EXC or
EXCR; it is not supported for ACCESS specifications of SADD or UCP. You
can use this specification to avoid recovery overhead where, if the system
stops, the file would be backed up anyway .

C-9

DD Job Control Statement Processing

C.2.11. One Volume Online at a Time (VMNT)

This keyword parameter specifies whether or not a file is to be processed with only
one volume online at a time.

VMNT=NO
Specifies that the file is to be processed with all volumes online. A file that is
created in this manner must always be processed in this manner. Random
operations are permitted.

VMNT=ONE
Specifies that the file is to be processed with only one volume online at a
time. A file that is created in this manner must be processed in this manner.
N onkeyed random operations or keyed random output operations are not
permitted.

C.2.12. Record Control Byte (RCB)

C-10

This keyword parameter specifies whether or not a record control byte (RCB) is
present in each record.

RCB=YES
Each record contains an RCB. If the records are fixed length, the RCB is
appended to the front of each record. If the records are variable length, the
third byte in the 4-byte overhead is used as the RCB. The presence of RCBs
allows you to logically delete records from the file by marking them as void
records. The records are not physically removed from the file. The marking
process consists of setting the high order bit in the RCB.

In addition, the presence of RCBs also provides the following:

• If you are retrieving records sequentially, the deleted records are
skipped over.

• If you are retrieving records randomly and your search argument
specifies the key or relative record number of a deleted record, it results
in a no-find error condition.

• If you are outputting records randomly and you direct a record to a
point beyond the last record in the file, any gap is filled with void
records.

• If you are outputting records randomly and you direct a record to a
point within the file limits, an error condition results if a valid (not
deleted) record is at that point.

RCB=NO
Indicates that no record contains an RCB.

UP-9978 Rev. 1

•

•

•

•

•

•

DD Job Control Statement Processing

C.2.13. Offset Physical Sector (OFFSET}

Specify the OFFSET parameter when you want to process (convert) a data set label
diskette created by an IBM (Systern/32 or Systern/34) utility. The first sector of such a
diskette always contains file control information while the first sector of an OS/3 data
set label diskette is always used for file data. OFFSET tells consolidated data
management to position an IBM diskette to the second physical sector so that file
processing can begin at the first logical record. For more information about converting
IBM diskettes see the System 32, 34 to OS I 3 Conversion Guide (UP-9318).

OFFSET=1
Specifies the first sector of a data set label diskette does not contain file
data.

C.2.14. General Rewind Options (REWIND)

This keyword parameter specifies general tape rewinding options. If specified, OPRW
(see C.2.15) and CLRW (see C.2.16) are ignored.

REIJIND=UNLOAD
Specifies rewinding of the tape to the load point when the file is opened, and
specifies unloading of the tape when the file is closed .

REIJIND=NORIJD
Specifies no tape rewinding when the file is opened, and tape positioning to
the end of volume (between the two tape marks) when the file is closed. Note
that open processing is identical to OPRW=NORWD, but close processing is
not identical to CLRW=NORWD.

C.2.15. Rewinding at File Open (OPRW)

This keyword parameter specifies a rewinding option for file open.

OPRIJ=NORIJD
Specifies no tape rewinding (to load point) before labels are checked during
file open.

C.2.16. Rewinding at File Close (CLRW)

This keyword parameter specifies rewinding options for file close.

CLRIJ=NORIJD
Specifies no tape rewinding after the file is closed .

UP-9978 Rev. 1 C-11

DD Job Control Statement Processing

CLRIJ=RIJD
Specifies tape rewinding (to load point), but no unloading after the file is
closed.

C.2.17. File Label Type (FILABL)

This keyword parameter specifies the label type (if any) for the file and is applicable
to all volumes of a multivolume file.

FILABL=NO
Specifies that the file is unlabeled. This specification is not valid for ASCII
files.

FILABL=STD
Specifies that the file has standard labels that conform to system
conventions.

FILABL=NSTD
Specifies that the file has nonstandard labels. This specification is not valid
for ASCII files.

C.2.18. Tape Marks (TPMARK)

This keyword parameter specifies a tape-marking option.

TPMARK=NO
Specifies that data management is not to write a tape mark preceding data
on nonstandard labeled or unlabeled output files. Distinguishing between
labels and data when reading nonstandard labeled files is your
responsibility.

C.2.19. Restoring Initialized Files (RESTORE)

C-12

This keyword parameter enables you to restore a MIRAM disk file after it was
unintentionally initialized.

RESTORE=YES
Beginning with OS/3 Release 12.0, data management will save the record
count whenever a file is initialized.

RESTORE= YES allows you to restore a file to its original capacity. The
number of records written to the file after initialization has overlaid the
same number of original records. The original records that were overlaid are
lost; however, the remainder of the original records are present and are
accessible. It is recommended that you use RESTORE= YES if a file was
unintentionally initialized and then copy that file to another file.

UP-9978 Rev. 1

•

•

•

•

•

•

DD Job Control Statement Processing

This specification will not work with a file that has been scratched and then
reallocated into the same physical space it originally occupied or with a file
that was unintentionally initialized in a release prior to OS/3 Release 12.0.

RESTORE=n
Specifies the number of records that data management is to read in order to
restore the file. Use this specification to read the data partition of the file
(PCAl) and copy or rebuild the file. The reasons for using this specification
are

• If there is a need to restore a portion of the original file, n would
represent the number of records to restore

• If the file was scratched and reallocated into the same physical space it
originally occupied

• If the file was unintentionally initialized on a release prior to OS/3
Release 12.0

You must use a copy program, such as DATA or MILOAD, to copy the file or rebuild
the index.

C.2.20. Disk Cache Support (CACHE)

This keyword parameter and the CACHE !OGEN parameter provide selective caching
of MIRAM disk files. You may not wish to cache data from a file when:

• A file is accessed randomly. Caching may not improve performance, but may
impact it.

• Performance is not a priority in file processing and you wish to reserve the cache
buff er for other processing.

Use the CACHE I OGEN parameter to specify the files that are to be cached for the
disk device.

• CACHE= YES - cache data from all files. YES is the default.

• CACHE=NO - do not cache data from any files.

• CACHE=NOMI - cache data from all but MIRAM data files.

For further information on the CACHE !OGEN parameter, refer to the Installation
Guide (UP-8839).

Note that the REMOVE command can also be used to remove a device from the disk
cache facility. For further information on the disk cache facility and descriptions of all
cache commands, refer to the Operations Guide (UP-8859) .

UP-9978 Rev. 1 C-13

DD Job Control Statement Processing

To override a YES or NOMI specification on a file basis, use the CACHE parameter in
the DD JCL statement.

CACHE=NO
Specifies that the file be processed with no caching. Use DD CACHE=NO
when the device is being cached (!OGEN CACHE= YES) and you do not want
caching for this file.

CACHE=YES
Specifies that the file be processed with caching. Use DD CACHE= YES when
you specify I OGEN CACHE=NOMI and you want caching for this file. This
specification is unnecessary if you indicate !OGEN CACHE= YES. If you
indicate I OGEN CACHE=NO, this specification is ignored. DD CACHE= YES
applies only to MIRAM data files.

C.2.21. Suppressing Error Messages (MSGSUPP)

C-14

This keyword parameter allows you to suppress the display of the DM36 error
message, the LB05 error message, or all error messages.

MSGSUPP=DM36
Specifies that the DM36 DUPLICATE RECORD error message is not to be
displayed on the console or log.

MSGSUPP=LB05
Specifies that the LB05 MODULE NOT FOUND error message is not to be
displayed on the console or log.

MSGSUPP=ALL
Specifies that all data management error messages are not to be displayed
on the console or log.

UP-9978 Rev. 1

•

•

•

•

•

•

Appendix D
Shared Code and Accelerated File Access

For each file type (disk, tape, card, and so on), there is a data management processing
module invoked whenever a file of that type is accessed. These processing modules are
shared, meaning that when a system or user program requests access of a particular
file type, a copy of the corresponding module is loaded into main storage for use by any
program requesting access of the same file type.

To improve the performance of consolidated data management when accessing files,
you can make the processing modules for card, printer, tape, diskette, and disk files
resident. A shared code module designated as resident is loaded when the operating
system (actually, the supervisor) is loaded and is never moved or deleted.
Consolidated data management recognizes that the module is resident and takes
advantage of the fact that the module's location cannot change. Accelerated file access
results because control can be transferred to a resident module faster than it can be to
a nonresident module.

To designate a module as resident, you must specify the name of the module in the
RESHARE parameter during generation of your supervisor (SUPGEN). The file types
and corresponding module names you can specify are

File Type Module Name

Disk D3$Mlll0

Diskette D3$Mlll0

Tape DD$Tlll0

Card CDSIOJOO

Printer PR$10EOO

Notes:

1. Accelerated access is provided only for disk files with share requirements of EXC or
SRDO. Files with share requirements of SRD, EXCR, or SADD, for example, are
not provided with accelerated file access even ifthe disk module is resident. (See
5.4 for information about disk file share requirements.)

UP-9978 Rev. 1 D-1

Shared Code and Accelerated File Access

D-2

2. Acceleration is not provided for single-mount multivolume disk or diskette files or
multivolume tape files.

It isn't necessary to make all the modules resident; only those corresponding to the
particular file type that you want accelerated access for. For more information about
the RESHARE parameter, see the Installation Guide (UP-8839).

UP-9978 Rev. 1

•

•

•

•

•

•

Appendix E
Data Management Debugging Facility

E.1. General Information
The data management debugging facility obtains documentation (a system dump)
when an unexpected data management error occurs.

E.2. Console Command
The following console command will activate the debugging facility:

SE DE,DM,eess

where:

ee
Is the data management error code .

SS

Is the subcode received on the error message.

You must enter a 4-character code even if there is no subcode associated with the error
code. For example, to activate the debug facility for a DM06 error, you enter

SE DE,DM,0600

For those error codes that have subcodes, you can enter 00 for the subcode if you want
a system dump produced for any occurrence of the error code (independent of the
subcode).

When the error condition is encountered, an automatic system dump is generated
(with an error code of 3DE), and the job continues to execute. It does not require a
debug supervisor, and it will not result in an HPR or abnormal job termination. It is
automatically deactivated upon the first occurrence of the error condition .

UP·9978 Rev. 1 E-1

•

•

•

•

•

•

Index

A
ACCESS parameter 5-21, 5-22, 5-24

ASCII
card files 2-3
code correspondence with EBCDIC,

Hollerith B-1, B-3
end-of-file/end-of-volume coincidence 4-12
magnetic tape files 4-1
record formats 4-16
standard volume organization 4-11
translation tables 2-4

ASCII/EBCDIC/Hollerith correspondence
B-1, B-3

ASCII standard volume organization
end-of-file/end-of-volume coincidence

4-14, 4-15
multifile, multivolume 4-13
multifile, single volume 4-12
single file, multivolume 4-11
single file, single volume 4-11

ASCII-to-EBCDIC translation table 2-4

Autoloader feature, 8420 diskette 5-19, 6-6

B
Block, data structure 1-4

UP-9978 Rev. 1

c
Card file programming considerations 2-3

Card files
input 2-2
organization 2-1
output 2-2
processing 51- or 66-column cards 2-3
programming considerations 2-3
punch, functional characteristics A-2
reader, functional characteristics A-1
record formats 2-2, 2-3
structure 2-1

Card input files 2-2

Card output files 2-2, 2-3

Card punch subsystem characteristics A-2

Card reader subsystem characteristics A-1

Coarse-level index, MIRAM disk files 5-8,
5-9

Code correspondences Appendix B

Column binary (image) code B-9

Compressed card code B-8

Consolidated data management
definition 1-1
program development cycle 1-3
relationship to a program 1-2

Index-!

Index

D

Data set label diskette files
file layout 6-3
organization 6-1
programming considerations 6-4
record formats 6-2, 6-3
recording mode 6-1

Data set label diskette file programming
considerations

creating a data set label diskette file 6-5,
6-6

existing dab set label diskette file 6-7
volume preparation 6-7

Data structure
block 1-4
field 1-4
file 1-4
record 1-4
volume 1-4

Data utilities, software component 1-10

DD job control statement
description C-1
parameters C-1

Debugging facility E-1

Device assignment set
card files 2-3
creating a disk file 5-16
data set label diskette files 6-5, 6-6
existing disk file 5-21
extending an existing disk file 5-21
format label diskette files 5-16
magnetic tape files 4-19
MIRAM disk files 5-16
printer files 3-4
remote disk file 5-22
workstation files 7-2

Disk file organization
indexed files 5-1
MIRAM data partition 5-3
MIRAM index partition entries 5-6

lndex-2

MIRAM nonindexed file 5-3
nonindexed files 5-1

Disk file programming considerations
creating a disk file 5-16, 5-17
existing disk file 5-18
extending an existing disk file 5-21
volume preparation 5-22

Disk file sharing 5-22

Disk files
access methods 5-2
data partition 5-4
disk volume preparation 5-22
estimating disk space requirements 5-10,

5-15
file sharing 5-22
index partition entries 5-8, 5-9
index structure 5-9
indexed 5-1
MIRAM concepts 5-2
MIRAM data record formats 5-6
MIRAM file organization 5-4
nonindexed 5-1
organization 5-1
programming considerations 5-16
remote 5-21

Disk subsystem characteristics A-6

Disk volume preparation 5-22

Diskette files
data set label 6-1
diskette volume preparation 6-7
file layout 6-3
organization 6-1
programming considerations 6-4
record formats 6-2, 6-3
recording mode 6-1, 6-2

Diskette subsystem characteristics A-6

DSKPRP routine 5-22, 6-7

UP-9978 Rev. 1

•

•

•

•

•

•

DVC job control statement
card files 2-3

E

creating a data set label diskette file 6-4,
6-5

creating a disk file 5-16, 5-17
existing data set label diskette file 6-7
existing disk file 5-21
job control software component 1-9
logical unit number, tape devices 4-20
magnetic tape files 4-20
multivolurne workstation file 7-2
optional devices 4-20
printer files 3-4
single-volume workstation file 7-2

EBCDIC
internal code, system 2-4
nonstandard volume organization 4-6
record formats 4-16
standard volume organization 4-2
unlabeled volume organization 4-9

EBCDIC/ASCII/Hollerith correspondence
B-1, B-3

EBCDIC-encoded magnetic tape files
end-of-file condition 4-2, 4-4
end-of-volume condition 4-2, 4-5
nonstandard labels 4-6, 4-8
standard labeled 4-2, 4-3, 4-4
standard volume organization 4-2
unlabeled 4-9

EBCDIC-to-ASCII translation table 2-4

End-of-file condition 4-2, 4-4, 4-15

End-of-volume condition 4-2, 4-5, 4-15

EOF1/EOF2 labels 4-14, 4-15

EOV1/EOV2 labels 4-14, 4-15

UP-9978 Rev. 1

Error and exception handling 1-8

Error message format 1-8

Errors, return of control 1-8

EXT job control statement
creating data set label diskette file 6-6,

6-6
creating a disk file 5-16, 5-17

Index

estimating disk space requirements 5-10,

F

5-15
existing data set label diskette file 6-7
existing disk file 5-18
extending an existing disk file 5-21
job control software component 1-9

Field, data structure 1-4

File, data structure 1-4

File organization
ASCII-encoded magnetic tape files 4-1
disk files 5-1
diskette files 6-1
EBCDIC-encoded magnetic tape files 4-1
magnetic tape files 4-1
MIRAM indexed files 5-3
nonindexed MIRAM files 5-3
printer files 3-1
punched card files 2-1
workstation files 7-1

File sharing
ACCESS parameter 5-24
DD job control statement C-1
disk files 5-22

Fine-level index, MIRAM disk files 5-8, 5-9,
5-8

Fixed-head area, 8417 disk 5-17

Format label diskette files 5-1

lndex-3

Index

Functional characteristics, VO devices
card punch subsystems A-3

H

card reader subsystems A-1
disk subsystems A-7
diskette subsystems A-7
magnetic tape subsystems A-8
printer subsystems A-4
workstation subsystems A-9

Hollerith/ASCII/EBCDIC correspondence
B-1, B-3

I
Image (column binary) code B-9

VO devices, functional characteristics
Appendix A

J
Job control software component 1-9

L
LBL job control statement

checking volume/file serial numbers 4-22
creating a data set label diskette file 6-4,

6-5
creating a disk file 5-16, 5-19
creating volume/file serial numbers 4-22
data management action to open file 4-23
existing data set label diskette file 6-7
existing disk file 5-21
file creation date 4-24
file expiration date 4-24
file generation/version number 4-24
file identifier 4-22
file label information 4-21
file sequence number 4-24
job control software component 1-9
volume/file serial numbers 4-21

lndex-4

LCB job control statement 3-5

LFD job control statement
card files 2-3
creating a data set label diskette file 6-5,

6-6
creating a disk file 5-16, 5-17
existing data set label diskette file 6-7
existing disk file 5-21
extending an existing tape file 4-22, 4-25
file sharing requirements 5-23
job control software component 1-9
logical file definition 4-22, 5-16, 6-5, 7-2
magnetic tape files 4-25
multivolume workstation file 7-2
printer files 3-4
single-volume workstation file 7-2
tape device assignment 4-19

Logical access path (LAP) 5-23

M
Magnetic tape file programming

considerations
checking volume/file serial numbers 4-22
creating multivolume files 4-27
creating volume/file serial numbers 4-22
extending tape files 4-25, 4-28
file creation date 4-24
file expiration date 4-24
file generation/version numbers 4-24
file identifier 4-22
file label information 4-22
file sequence number 4-24
inhibiting volume serial number checking

4-21
logical file definition 4-25
mode characteristics 4-27
tape device assignment 4-20
tape volume information 4-21
tape volume preparation 4-26

Magnetic tape subsystem characteristics A-8

UP-9978 Rev. 1

•

•

•

•

•

•

Magnetic tape files
ASCII 4-1
EBCDIC 4-1
file organization 4-1
multifile volume 4-4, 4-5, 4-8, 4-12, 4-13,

4-15
multivolume file 4-11, 4-13
nonstandard EBCDIC 4-6
programming considerations 4-19
record formats 4-16
single file 4-3, 4-7, 4-9, 4-11
volume organization 4-1

Magnetic tape volume organization
ASCII end-of-file/end-of-volume

coincidence 4-14, 4-15
ASCII standard volume 4-10, 4-11, 4-12,

4-13
EBCDIC nonstandard volume 4-6, 4-8
EBCDIC standard volume 4-2, 4-4, 4-5
EBCDIC unlabeled volume 4-9

Magnetic tape volume preparation
tape prep utility (TPREP) 4-26

VOL job control statement 4-26

Mid-level index, MIRAM disk files 5-8, 5-9

MIRAM characteristic files 5-3

MIRAM concepts 5-2

MIRAM disk file organization
data partition 5-4
estimating disk space 5-10, 5-15
index partition entries 5-8
index structure 5-9

MIRAM disk file job control considerations
creating a disk file 5-16
existing disk file 5-21
extending an existing disk file 5-21
volume preparation 5-22

UP-9978 Rev. 1

MIRAM disk files
concepts 5-2
data partition 5-4
data record format 5-6
disk volume preparation 5-22

Index

estimating disk space requirements 5-10,

N

5-15
file sharing 5-22
index partition entries 5-8
index structure 5-9
nonindexed 5-1
organization 5-4
programming considerations 5-16

N onindexed files
disk 5-1
MIRAM disk 5-2, 5-3

p

Printer file job control considerations 3-4

Printer files
data on preprinted forms 3-2
load code buff er 3-4
organization 3-1
programming considerations 3-4
record formats 3-3
tabular data 3-1, 3-2
text 3-1
vertical format buff er 3-4

Printer subsystem characteristics A-4

Programming considerations
card files 2-3
data set label diskette files 6-4
disk files 5-16
magnetic tape files 4-19
MIRAM files 5-16
printer files 3-4
workstation files 7-1

lndex-5

Index

R
Record, data structure 1-4

Record formats
card input files 2-2
card output files 2-2, 2-3
data set label diskette files 6-2, 6-3
magnetic tape files 4-16
MIRAM data records 5-6
printer files 3-3
spanning physical block or sector

boundaries, MIRAM data records
5-5

workstation files 7-1

Recording mode 6-1, 6-2

Remote disk file 5-21

s
Software, related

data utilities 1-10
job control 1-9
supervisor 1-10
system service programs (SSP) 1-8

Supervisor, software component 1-9

System service programs (SSP), software
component 1-8

T
Tape marks

EBCDIC nonstandard volume
organization 4-6

EBCDIC standard volume organization
4-2

EBCDIC unlabeled volume organization
4-7

lndex-6

u
User header labels

optional 4-6
standard 4-2

User trailer labels
optional 4-6
standard 4-2

v
VFB job control statement 3-4

VOL job control statement
bypass volume serial number checking

4-21
data management action to open tape file

4-23
creating a data set label diskette file 6-5,

6-6
creating a disk file 5-16
creating multivolume files 4-27
existing data set label diskette file 6-6
existing disk file 5-18
job control software component 1-9
mode characteristics, tape volume 4-27
tape volume preparation 4-26
volume serial number specification 4-22

Volume, data structure 1-4

w
Workstation file job control considerations

multivolume workstation file 7-2
single-volume workstation file 7-2

Workstation files
device assignment sets 7-2
organization 7-1
programming considerations 7-1
record formats 7-1

Workstation subsystem characteristics A-8

UP-9978 Rev. 1

•

•

•

•

•

•

•
UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines. and mall. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

r

FOLD

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
E/MSG Product Information Development
PO Box 500 - ES-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ... 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

_,

•

•

• NOTES

•

•

•

•

•

• NOTES

•

•

•

•

•

•

•

•

