/ﬂTANDEM

High Performance SOL Through
Low-Level System Integration

Andrea Borr
Franco Putzolu

Technical Report 88.10
June 1988 ~
Part Number 19141

HIGH PERFORMANCE SGQL THROUGH
LOW-LEVEL SYSTEM INTEGRATION

Andrea Borr
Franco Putzolu

Technical Report 88.10
June 1988
Tandem Part Number: PN19141

HIGH PERFORMANCE SQL
THROUGH LOW-LEVEL SYSTEM INTEGRATION

Andrea Borr
Franco Putzolu

June 1988
Tandem Technical Report 88.10
Part Number PN 19141

ABSTRACT: NonStop sQL™ achieves high performance through an
implementation which integrates SQL record access with the.pre-existing
disk 1/0 and transaction management subsystems, and moves SQL function
downward from the client to the server level of these subsystems. System
integration and movement of function to the server reduce message traffic
and cpu consumption by putting SQL optimizations at the lower levels of the
system. Examples of such optimizations are message traffic savings by
filtering data and applying updates at the data source, 1/0 savings by SQL-
optimized buffer pool management, and locking and transaction journaling
techniques which take advantage of SQL semantics. Achieving message
traffic reduction is particularly important in a distributed, non shared-
memory architecture such as the Tandem NonStop System. The result of
this implementation is an SQL system which matches the performance of the
pre-existing DBMS, while inheriting such pre-existing architecturally-
derived features as high availability, transaction-based -data integrity, and
distribution of both data and execution.

TABLE OF CONTENTS

INEOAUCHON. ...cecceireeiaeneiseereerenseestessenesscesecsessnssesssssssnssssssnsssessessssacssssssesseossassessesssessossessass 1
Overview of Tandem ATCHITECHUTE.ccvvvreerrnnisessreereesessseecesssneeseressssseesesssssssssssseses 3
Components Of the DIiSK PrOCESS.......cccereereereisrnensecseeseesesseessesessessessassssssesassassassassnens 5

Rationale for Division of Labor Between File System and Disk Process... 7

The Old FS-DP Interface Mandated by ENSCRIBE......c..ceeeseseeesessssnsesssssnessssssnnsans 9
The New FS-DP Interface Tailored for NonStop SQL.....c.cueeeeeemenseneeeeeareennenees 10
SQL Statement Execution Reduced to Single Variable Queries 11
Continuation Re-drive Protocol for Set-oriented FS-DP Requests............. 11
Sequential Block BUTEIING,.......ccoieierismenniriressesansnssssassssssssesnessessensssnssnsnssnsssssnssassnssess 12
Mapping SQL to FS-DP Interface: EXampIeS......ccctiresssrnnissscsnnnsescsssssanseosssssonses 13
Set Interface Facilities Cache Optimizations for Sequential Access........ 15
Field Interface Enables Audit Record Size Reduction.........cecceeeeeeeeeveeeeneeenn 16
Opportunities for Future Performance Enhancements for SQL................. 17
SUIMIMATLY...couireremnsnsnnsesisisisssmsssssassnsssssssssnssssssesssnsssssssssssssssssssssssssssssesssssssssssssasssssasssssnns 19
ACKNOWIEAGIMENLS. ...cucoriuiieiiisinisssrssisisssssssssssssisnsssesessenssnsassasssssssessassssasssssssessssassssesense 19

INTRODUCTION

In most implementations, SQL is not fully integrated with the existing record
access and transaction management subsystems. Typically, SQL is built on
top of an existing access method, which is used to provide blocked 1/0, and
relies on its own recovery scheme, supported by a proprietary journal. This
layered approach results in operational complexity in areas such as system
generation, problem isolation, and security administration. Furthermore,
there is a performance penalty associated with the non-integrated aspect of
this approach. Maintaining a separate journal is. more expensive than
integrating sQL-related activity with the existing journal. Layering sQL
operations on top of an existing access method may also result in
performance degradation. SQL implementations of hardware vendors
attempt to minimize this penalty by taking advantage of proprietary, -
privileged, low-level interfaces. Third party vendors do not have this luxury,
and are often more heavily impacted.

The layered approach has serious performance problems in loosely-coupled
(non shared-memory) multi-processor- systems such as the Tandem
NonStop System. In such architectures, the record access and transaction
management functions are split between requester (client) processes, which
provide user interfaces, and server processes, which manage disk volumes.
Client and server processes typically reside in different processors, or even
in different geographical locations, and communicate via messages. The
bandwidth limitation inherent in the lack of shared memory requires that
management of shared resources (buffers, locks, file structures, etc.) be
performed as much as possible on the server side. As a consequence,
attempts to port third party sgL products to non shared-memory multi-
processor systems without integrating them with the low-level 1/0 subsystem
result in poor performance due to the necessity of running the ported sgL
subsystem as user code in the requester process.

Since the disk 1/0 server is part of the operating system in the Tandem
NonStop system architecture, Tandem rejected the idea of porting an
existing third party sQL product. Avoiding a design which would layer sgL
implementation on top of the existing record access and transaction

‘management subsystems, Tandem instead chose to integrate NonStop SQL
with ENSCRIBE™, the pre-existing DBMS. The implementation moves a large
part of the new SQL function to the server side of the disk 1/0 subsystem. It
introduces s@L-specific logic into the DBMS subsystems supporting ENSCRIBE.
Integration with Tandem's networking and distributed transaction
management subsystems has allowed NonStop SQL to inherit pre- ex1st1ng
facilities for high-availability, fault-tolerance, and distribution. The facilities
for distribution inherited from the pre-existing architecture, in particular,

will allow progressively fuller exploitation of parallelism to produce
performance gains in the future.

Pushing s@L support logic to the server side of the record access and
transaction management subsystems produces performance gains by
reducing path lengths as compared with the layered approach. It
furthermore provides the opportunity for significant sgL-specific disk cache
management optimizations, resulting in fewer and more efficient transfers
of data to and from disk. Given the message-based nature of Tandem's
distributed operating system, however, perhaps the most significant
performance gains are achieved via message traffic savings -- also in part
describable as path-length savings. By introducing a field-level interface to
the low-level disk 1/0 system, and by delegating sQL function such as field
projection, predicate evaluation, and set-oriented retrievals, updates, and
deletes to the Disk Process (low-level disk file server), message traffic is
significantly reduced as compared with the ENSCRIBE record-at-a-time
interface. In addition, delegating an update via update expression (e.g. sET
ACCOUNT . BALANCE = ACCOUNT.BALANCE - DEBIT) to the disk process eliminates the
extra message which would otherwise be required for the requester to read
the record before updating it. These message savings, optimized cache
management, and reduced path lengths for 1/0 and transaction management
compensate for increased path lengths at higher levels to support the
higher functionality and ease-of-use of the SQL language. The result is the

functionality of SQL with performance comparable to that of ENSCRIBE
[Benchmark].

OVERVIEW OF TANDEM ARCHITECTURE

The Tandem NonStop architecture consists of up to sixteen loosely-coupled
processors interconnected by dual high-speed buses to form a single system,
called a node, in the Tandem network [Katzman], see Figure 1. Nodes can
be connected into clusters via fiber optic links, as well as into long-haul
networks via X.25, SNA, or other protocols. The goals of the architecture are
fault-tolerance, high availability, continuous operation, and modularity.

: | Controllgrs

Figure 1: A schematic diagram of two Tandem nodes, each with four
processors. Disks and other devices are managed by process pairs.
Requestors communicate with local and remote servers via
messages.

Hardware and software redundancy provide 1/0 device availability despite
single module fajlure. Hardware redundancy provides alternate physical
paths to 170 devices. Software redundancy provides fault-tolerant device-
controlling process-pairs , the primary process and its hot-standby backup
process running in two processors physically connected to the device
[Bartlett]. A transaction mechanism coordinates the atomic commitment of
updates by multiple processes in the network [Borrl].

System resources are managed by a message-based operating system which
provides communication between processes executing in the same or
different processors. The message system makes the distribution of
hardware components transparent [Bartlett]. 1/0 devices are managed by
system-level processes called 1/0 processes. The Disk Process is the 1/0
process which manages a disk volume (optionally replicated on mirrored
physical drives for fault tolerance).

COMPONENTS OF THE DISK PROCESS

The Disk Process is actually a group of cooperating processes which share a
message input queue. The process group acts as 1/0 server for files resident
on the volume it manages. These files include code files and virtual memory
swap files as well as SQL and ENSCRIBE database files. The Disk Process
performs disk 1/0 by invoking a set of subroutines, collectively called the
Driver, which run in the process environment of the invoker.

The record management component of the Disk Process implements the
access methods supporting the file structures common to ENSCRIBE
and NonStop SQL:

* key-sequenced (B-Tree);

¢ relative (direct access);

* entry-sequenced (direct access for reads, insert at EOF only).

The cache management component of the Disk Process uses a least-
recently-used (LRU) algorithm obeying write-ahead-log protocol [Gray] to
manage a main memory buffer pool for staging data to and from disk. The
cache provides transaction-protected database read and write services while
attempting to minimize disk 1/0 accesses. Disk cache management is
integrated with the operating system's processor-global virtual memory
management mechanism in the sense that the latter implements a globally
optimized page replacement algorithm which can, via handshakes with the
Disk Processes of the processor, cause the stealing of clean database buffers
and the cleaning (writing) of dirty ones in order to make the underlying
physical memory pages available for a higher priority use.

The lock management component of the Disk Process provides concurrency
control for both SQL and ENSCRIBE via locking at the file, record, or generic
(key prefix) level for volume-resident SQL or ENSCRIBE data.

Code supporting transaction management and auditing (Tandem's term for
journaling or logging) permeates the record management, cache
management, and lock management components. Transaction commit and
abort are supported by tight integration with the operating system's

_ Transaction Monitoring Facility; TMF [Borrl]. The dual roles of the backup
Disk Process and TMF in maintaining high device availability, fault tolerance,
transaction consistency, and robustness to crash are described in [Borr2].

Both sgL and ENSCRIBE share the same TMF audit trail (log), which resides on
the audit trail volume, managed by a standard Disk Process. The audit trail
writing component of the audit trail volume's Disk Process is highly
optimized for long, or bulk sequential 1/0's using group commit [Gawlick]

and audit piggy-backing to maintain a high transaction commit rate with a
minimal number of I/0's.

RATIONALE FOR DIVISION OF LABOR
BETWEEN FILE SYSTEM AND DISK PROCESS

The File System is a set of system library routines which have their own data
segment but which run in the process environment of the application
(client) program. These routines format and send to various Disk Processes
messages requesting database services for files residing on their volumes.
Through File System invocations, the application process becomes a
requester (client) and the Disk Process a server in the requester-server
model.

In the case of ENSCRIBE, the application program invokes the File System
explicitly -- calling such routines as OPEN, READ, WRITE, LOCKRECORD -- to
perform key navigation and record-oriented 1/0.

In the case of sQL, the application program's SQL statements invoke the sQL
Executor, a set of library routines which run in the application's process
environment. The Executor invokes the File System on behalf of the
application. Its field-oriented and possibly set-oriented File System calls
implement the execution plan of the pre-compiled query.

Certain aspects of the division of labor between the File System and the Disk
Process are mandated by the distributed character of the Tandem
architecture. Database files in a Tandem application are typically spread
across multiple disk volumes, attached to different processors within a
node, or to different nodes within a cluster or network. Base files may have
multiple secondary indices (implemented as separate key-sequenced files),
and these may be located on arbitrary volumes. Base files and secondary
indices may each be horizontally partitioned, based on record key ranges,
into multiple fragments residing on a distributed set of disk volumes. Thus,
the file fragment managed by the Disk Process as a single B-tree may in fact
be merely a single partition of an ENSCRIBE or S@L file, or a secondary index
(or partition thereof) for an ENSCRIBE or SQL base file. The file or table is
viewed as the sum of all its partitions and secondary indices only from the
perspective of the sgL Executor or ENSCRIBE File System invoker. Such an
architecture makes the File System the natural locale for the logic which,

transparently to the caller, manages access to the appropriate partition
based on record key; or manages access to the base file record via a
secondary key; or performs maintenance of secondary indices consistent
with the update or delete of a base file record.

Schema Statement
ACCOUNT Table

|A:ccrN:' O NAME|BALANCE] UPDATE ACCOUNT
—_— SET BALANCE = BALANCE + 88.20

NAME Index WHERE NAME= "Joe Blow"

APPLICATION PROCESS DISK SERVERS

ﬂ:om: DAT}\

[USER USER \ .
PROGRAM | WORKING
STORAGE

SQL SQL PLANS
&

Name Index

DATA

BUFFERS Joe Blow?
s =
FILE CONTROL |*=& — Tree

SYSTEM BLOCKS &
BUFFERSA UPDATE ACCOUNT

¥ X SET BALANCE = BALANCE + 88.20
_ WHERE ACCOUNTNO = 71;

Partition #1 Partition #9
B B
Tree Tree
ACCTNO: 1-100 oee 900-1000

ACCOUNT Table: Partitioned by ACCTNO

Figure 2: The File System in doing an update via alternate key first
sends a request to the disk server managing the index to find the
primary key. It then sends the update experssion to the server
managing the primary key partition.

For example, to implement a request to read via a secondary index (see
Figure 2), the File System first sends to the Disk Process managing the
index's volume a read request for the appropriate index record. Having
extracted the base file record key from the index record, it then sends a
request to the base file's Disk Process to read the base file record having
that key. To implement a read or write request to a partitioned file, the File
System uses the record key to identify the partition in which that record
resides, then sends the read or write request to the Disk Process which
manages that partition. These File System functions are common to both
SQL and ENSCRIBE, although separate File System procedures perform them
for the two systems.

In the following, we describe the nature of the File System-Disk Process
interface (Fs-DP Interface) for ENSCRIBE, and the reasons for the
design of a new FS-DP interface for NonStop SQL.

THE OLD FS-DP INTERFACE MANDATED BY ENSCRIBE

The record-oriented user interface of ENSCRIBE mandates a record-oriented
FS-DP interface to support it. The ENSCRIBE user issues requests to read,
write, or delete a whole record, specified by its primary or alternate
(secondary) key. The only exception to this record-at-a-time interface is a
user-controlled sequential read optimization called sequential block
buffering (SBB). When enabled, SBB for reads causes each FS-DP request
message to return a copy of a physical file block. SBB reduces FS-DP message
traffic by the file's physical blocking factor (i.e. number of records per
block). Once an FS-DP message has returned a block to the File System,
multiple record-at-a-time ENSCRIBE READ requests then result in de-blocking
by the File System from its local block copy before a message requesting the
next block is sent to the Disk Process. SBB under ENSCRIBE has limited
utility, however, since no locking other than at the file level is effective
when it is in use. The user is therefore required to have an OPEN exclusion
mode which excludes other write-access openers.

THE NEW FS-DP INTERFACE TAILORED FOR NonStop SQL

The s@L language is characterized by a field-oriented user interface and set-
oriented selection, update, and delete operations [ans1]. User-specified
predicates define selection criteria, update expressions, and integrity
constraints. The field- and set-orientation of the user interface have a
natural extension down to a field- and set-oriented Fs-DP interface,
necessitating less total message traffic between the File System and the Disk
Process than a record-at-a-time interface. When the selection predicate
(€.8. WHERE ACCOUNT.BALANCE > 0) involves only one table (actually, one file
fragment managed by a single Disk Process), such a single-variable query can
be evaluated by the Disk Process for each record in a key range and used as a
filter limiting the set of records processed or returned in the reply to the
FS-DP message. When an update expression (e.g. SET ACCOUNT.BALANCE =
ACCOUNT.BALANCE * 1.07) specifies a new value for a field in terms of an
expression involving only literals and fields of the record at hand,
subcontracting the expression evaluation and update to the Disk Process
avoids the necessity of returning the record to the File System invoker,
which would subsequently request the update via a new message. Where an
integrity constraint (CHECK PART.QUANTITY >= o) limits the allowable updates to
a table, its enforcement at Disk Process level may likewise obviate the need

for a preliminary read by the File System for constraint verification prior to
an update request via a second message.

10

S@L STATEMENT EXECUTION REDUCED TO SINGLE-VARIABLE QUERIES

Although a general SQL predicate can be multi-variable (i.e. involving joins, or
expressions in terms of fields of more than one table), the Executor's File
System invocations, mandated by the plan produced by the SQL query
compiler, are in terms of a single table, with optional access via a secondary
index. The File System dynamically decomposes this single-table request
into messages to individual Disk Processes managing partitions (if any)
and/or secondary indices.

If the sQL statement decomposes in such a way that a single-variable query
can be attached to the request message sent by the File System to the Disk
Process, then message traffic over the FS-DP interface can be reduced by
filtering the data at its source. By pushing SQL selection and projection logic-
as low as possible in the system, data is filtered early. In a distributed
system, this produces important performance benefits due to reduced
message traffic, since only selected and projected data is returned to a
remote requester.

[T TR

FOR SET-ORIENTED FS-DP REQUESTS

The sQL Fs-DP interface thus subcontracts selection and projection to the
Disk Process wherever feasible. The interface also has a set-oriented option.
The Disk Process may be requested to operate on (i.e. to retrieve, update, or
delete) a set of records spanning a specified (primary) key range (may
include all) and, optionally, satisfying a predicate. To prevent a single set-
oriented FS-DP request from monopolizing a Disk Process over a long period
of time, limits on the elapsed and processor time spent per request
message are set. If exceeded, a continuation re-drive protocol is triggered.
The Disk Process then returns to the File System the key of the last record
accessed, together with any data selected during the current request
execution (retrieval case). The File System then sends a re-drive message
supplying as the new (non-inclusive) begin-key of the range the key last
processed on the previous execution. Re-drives are also triggered by a full
sequential block buffer condition (see next section).

11

SEQUENTIAL BLOCK BUFFERING

The ENSCRIBE concept of sequential block buffering has been extended for
sgL from real (RSBB) physical disk block copies to virtual (vsBB) blocks built
by the Disk Process via selection and projection. In VSBB, data is returned
through the set-oriented Fs-DP read interface after projected fields have
been extracted from key-range-satisfying records which have optionally been
subjected to a filtering predicate. This is similar to the concept of portals
described by Stonebraker [Stonebraker]. The locking restriction under
ENSCRIBE (file locking only) which limited the usefulness of sBB has been
removed for sQL. Record locking has been extended to a form of virtual
block locking in which the records of the virtual block are locked as a group.

The selection and projection performed by the Disk Process in filling the
virtual block buffer, particularly if the predicate is very selective, give VSBB a
much reduced message cost over the record-at-a-time interface, and even
over the RSBB interface. RSBB gives a factor of three over the record-at-a-
time interface. VSBB gives NonStop SQL an additional factor of three over
RSBB on many of the Wisconsin benchmark queries [TDBG]. The performance
gains of VSBB are attributable to the reduced message traffic resulting from

filtering data at its source, and only returning selected and projected data to
the requester.

12

MAPPING SQL TO FS-DP INTERFACE: EXAMPLES

Example (1): Virtual Sequential Block Buffering: The following statement
maps into a series of set-oriented read requests involving selection and
projection, and returning data via Virtual Sequential Block Buffering (VSBB).

Table EMP has fields: empno (primary key), NAME, HIRE DATE, SALARY, ...

Statement: SELECT NAME, HIRE DATE FROM EMP
WHERE EMPNO <= 1000
AND SALARY > 32000;

Message types: GET*FIRST~VSBB
GET~NEXT~VSBB

The initial FS-DP message is of type cer~FirsT~vsee. It specifies the
projection of the fields naMe and uire_pare (identified by their record
descriptor field numbers), the primary key range [LOW-VALUE, 1000] for EmpNo,
and the predicate satary > 32000. The returned virtual block contains (vaMe,
HIRE_DATE) from records in the primary key range which satisfy the selection
predicate. If a full VSBB condition or a-time limit expiration makes a
continuation re-drive necessary, message type GeET~NExT~VsBB is used.

It specifies the new key range (Last-processep-key, 1000] for EmpNo, but does
not re-send the predicate or the projection. These latter were saved in the
Subset Control Block which was created by the Disk Process at GET~FIRST
time.

Example (2): Real Sequential Block Buffering: The following statement
maps into a series of set-oriented read requests which return data via Real
Sequential Block Buffering (RSBB) since there is no selection or projection.

Statement: SELECT * FROM EMP;

Message types: GET“FIRST~RSBB
GET~NEXT~RSBB

The initial FS-DP message is of type GeT~FIrsT~RsBB. It specifies the primary
key range [Low-vaLuE, HiGH-vaLuE] for empNo. Each re-drive, using message

13

type cer~NExT~RSBB and specifying the new key range (LasT-PROCESSED-KEY,
HIGH-VALUE], returns one real sequential block.

Example (3): Update Subset: The following statement maps into a series of
set-oriented update requests involving a selection predicate and an update
expression.

Table account has fields: accryo (primary key), BALANCE, ...

Statement: UPDATE ACCOUNT
SET BALANCE = BALANCE * 1.07
WHERE BALANCE > 0;

Message types: UPDATE~SUBSET"FIRST
UPDATE~SUBSET~“NEXT

The initial FS-DP message is of type UPDATE~SUBSET~FIRST. It specifies the
primary key range [Low-vALUE, H1GH-VALUE] for accwo, the predicate BALANCE > 0,
and the update expression BALANCE = BALANCE * 1.07. If a time limit
expiration makes a continuation re-drive necessary, message type
UPDATE~SUBSET~NEXT is used. It specifies the new key range (LAST-PROCESSED-
KEY, HIGH-vaLug] for accrno, but does not re-send the predicate or the update
expression. These latter were saved in the Subset Control Block which was
created by the Disk Process at GeT~FIrsT time.

14

SET INTERFACE FACILITATES CACHE OPTIMIZATIONS
FOR SEQUENTIAL ACCESS

The set-oriented FS-DP requests specify a primary (physically clustered) key
range of records to be processed. The begin-key and end-key are specified
at the initial FS-DP interaction. From then on, the Disk Process can
optimize, reading the blocks containing the required key span from disk
into cache using a minimal number of 1/0's. Where possible, it reads into
cache buffers sequential strings of physical blocks (presently limited to 4K
bytes maximum each) using bulk 1/0's (presently limited to 28K bytes
maximum). Of course, where physical clustering of key-sequenced data
blocks has been broken due to B-tree splits and collapses, some bulk 1/0's
may be less than maximal length.

In addition to using bulk 1/0 to minimize the number of reads, the Disk
Process attempts to pre-fetch data, i.e. to perform bulk reads
asynchronously in anticipation of their need by an active request. Advance
knowledge of the required key span, and use of the multi-process structure
of the Disk Process group, make asynchronous pre-fetch possible.
Asynchronous pre-fetch allows cpu-bound processing using data from the
cache to occur in parallel with disk 1/0's.

Bulk 1/0 is also used for asynchronous write-behind. This mechanism uses
idle time between Disk Process requests to write out strings of sequential
blocks updated under a subset. By using its Subset Control Block (created as
a result of the initial set-oriented FS-DP interaction), the Disk Process can
keep track of strings of sequential blocks which are dirty (i.e. have been
updated in cache). Once a string of dirty data blocks has aged to the point
that the audit related to the blocks of the string has already been written to
disk, then the string of dirty data blocks can be written to disk without
violating write-ahead-log protocol [Gray]. The Disk Process then writes the
string to disk using the minimal number of bulk 1/0's.

15

FIELD INTERFACE ENABLES AUDIT RECORD SIZE REDUCTION

The field-oriented nature of the SQL FS-DP interface allows the record
management component of the Disk Process to generate sQL-specific TMF
audit records containing field-oriented before- and after-images. The
resultant field-compressed audit records are generally reduced in size as
compared with ENSCRIBE audit records, which by default contain full-record
before- and after-images. SQ@L naturally lends itself to audit compression
because SQL syntax specifies the fields which are being updated. By contrast,
the ENSCRIBE user's unit of update is a record, and while an ENSCRIBE audit-
compression user option is available, its implementation is costly since the
identity of the updated fields must be computed by comparing the record
before-and after-images. Therefore, ENSCRIBE audit records contain full
record images by default.

The reduction in SQL audit record size resulting from field compression has
performance benefits in many areas. For example, the size of the audit trail
data on disk as well as the size of all audit-containing messages throughout
the system is reduced. There are fewer sends of audit to the audit trail Disk
Process due to audit buffer-full conditions, since the audit buffer fills up less
frequently. Less audit per transaction allows each bulk-write of the audit
trail to commit a larger group of transactions. Since audit compression
reduces the frequency of audit writes due to buffer-full conditions, timers
have been introduced to force out pending commits from a partially full
buffer. Response times are minimized by dynamically adjusting the timers

based on such system statistics as transaction rate and average transaction
size [Helland]. '

16

- OPPORTUNITIES FOR
FUTURE PERFORMANCE ENHANCEMENTS FOR NonStop SQL

The previously discussed performance gains due to the use of sequential
block buffering for reads point the way to achieving similar results by
changing the FS-DP sequential write interface. Presently, the interface for
sequential SQL inserts is a message per record inserted. If a blocked
interface for inserts were introduced, the message traffic between the File
System and the Disk Process could be reduced by the blocking factor.
Multiple sequential inserts issued to the File System by the sQL Executor
would then be accumulated in a local buffer by the File System, which would,
when required, send the buffer of inserted records to the Disk Process
using one message. To avoid a late-detected duplicate key condition,
however, the Disk Process would have had to keep an empty sequential
target key range locked by prior agreement with the File System. Given
such an interface, the Disk Process could then maintain an Insert Control
Block, similar to the Subset Control Block, which would keep track of
strings of sequential blocks previously dirtied. Strings of dirty blocks old
enough not to cause write-ahead-log if written to disk would then be written
out using bulk 1/0.

Similarly, the previously discussed performance gains due to use of set-
oriented update and delete request messages point the way to achieving
better performance for the construct UPDATE WHERE CURRENT OI DELETE WHERE
curreNT. These currently require a message per record updated or deleted.
By allowing the updates (deletes) to occur in a buffer local to the File
System, and then sending the buffer full of updates (deletes) to the Disk
Process in one message, substantial message traffic savings in the FS-DP
interface could be realized.

An open-ended area for improving the performance of NonStop SQL is the
fuller exploitation of the parallel architecture of the Tandem system.
Parallelism is currently exploited in the sense that multiple independent
transactions can execute simultaneously [TDBG]. The overlap of 1/0 and cpu-
bound processing inherent in asynchronous pre-fetch and write-behind is
also a form of parallelism. There is furthermore a user option which directs

17

the sgL compiler to cause the invocation at execution time of the parallel
sorter, FastSort, which uses multiple processors and disks if available
[Tsukerman]. Future opportunities for the use of intra-query parallelism
involve distributed query optimization, parallel Executor process structure,
and no-wait Disk Process message sends in the File System.

18

SUMMARY

By pushing sQL-specific logic downward in the DBMS support subsystems
from the requester to the server level, Tandem has obtained an sgL system
which today matches, and is expected one day to surpass, the performance
of its pre-existing DBMS. The low-level path length savings, disk cache
management optimizations, and reduced message traffic resulting from low-
level integration pay for the increased path lengths at higher levels needed
to support the high functionality and ease-of-use of the sgQL language.
Furthermore, system integration allows NonStop S@L to inherit from the
pre-existing system the facilities which support high availability, fault-
tolerance, and data and execution distribution. In particular, the inherited
facilities for distribution make the increased exploitation of parallelism an
avenue for major performance gains in the future. Additional benefits can be
derived in the future by the introduction of further server-level sgL-specific
optimizations which take advantage of SQL semantics.

ACEKNOWLEDGEMENTS

Members of the Tandem Database Group too numerous to mention
individually contributed ideas to the design of the record access and
transaction management architecture for NonStop SQL.

Thanks are due to both Jim Gray and Dieter Gawlick for editorial

suggestions whose implementation improved the presentation of this
material.

19

REFERENCES

[ANSI] Database Language SQL 2 (ANSI working draft), ANSI X3H2 87-8.
Dec. 1986.

[Bartlett] Bartlett, J. F., A NonStop Kernel, Proceedings of Eighth
Symposium on Operating System Principles, ACM, Dec. 1981.

[Benchmark] NonStop SQL Benchmark Workbook, Part No. 84160, Tandem
Computers Inc, Cupertino, Ca., March 1987.

[Borrl] Borr, A. J., "Transaction Monitoring in ENCOMPASS: Reliable
Distributed Transaction Processing”, Seventh International Conference
on Very Large Databases, Sept. 1981.

[Borr2] Borr, A. J., Robustness to Crash in a Distributed Database: A Non
Shared-Memory Multi-Processor Approach, Tenth International
Conference on Very Large Databases, Aug. 1984.

[Tsukerman] Tsukerman, A., et al., FastSort: An External Sort Using
Parallel Processing, Tandem Technical Report 86.3, Cupertino, Ca.,
May 1986.

[Gawlick] Gawlick, D. and Kinkade, D., Varieties of Concurrency Control in -
IMS/VS Fast Path, IEEE Database Engineering, June 1985. :

[Gray] Gray, J. N., Notes on Database Operating Systems, IBM Research
Report: RJ 2188, Feb. 1978.

[Helland] Helland, P., et al. Group Commit Timers and High Volume
Transaction Systems, 2nd International Workshop on High
Performance Transaction Systems, Asilomar, Ca., Sept. 1987. Also:
Tandem Technical Report 88.1, Cupertino, Ca., March 1988.

[Katzman] Katzman, J. A., A Fault-Tolerant Computing System, Eleventh
Hawaii International Conference on System Sciences, 1978.

[Stonebraker] Stonebraker, M. and Rowe, L., Database Portals: A New
Application Program Interface, Tenth International Conference on
Very Large Databases, August 1984.

[TDBG] Tandem Database Group, NonStop SQL, A Distributed, High-

Performance, High-Availability Implementation of sgQL, Tandem
Technical Report 87.4, Cupertino, Ca., April 1987.

20

J

L

J

L

Distributed by
2 TANDEM

Corporate Information Center
19333 Vallco Parkway MS3-07
Cupertino, CA 95014-2599

