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When "Group Commit Timers and High-Volume Transaction Systems" was

first published in the proceedings of the Second International

Workshop on High-Performance Transaction Systems (Asilomar,

California, September 1987), the graphs in Figures 4 and 5 were
accidentally switched. The authors apologize for the error. In
this publication, the graphs are correct.







GROUP COMMIT TIMERS AND HIGH VOLUME
TRANSACTION SYSTEMS

Pat HeLranD, HaraLD SAMMER, JM Lyon, RicHARD CARR, AND PHIL GARRETT
Tandem Computers, Inc.

ANDREAS REUTER
University of Stuttgart.

1) Introduction

In the summer of 1986, Tandem released the B30 version of its Transaction Monitoring
Facility (TMF). This release included a GROUP COMMIT mechanism. It also included
a primitive mechanism to gate the commit writes using manually adjusted TIMERS(1].
Subsequent experiments on large benchmarks have shown that timers reduce the
overhead of transactions running on high volume systems. This reduced overhead
increases system throughput while meeting response time constraints.

While other systems have used Group Commit Timers(2], we have investigated the fact
that various timer values are appropriate for various system loads. This paper discusses
TIMERSs and describes how a transaction’s commit overhead is reduced by making it
delay. It turns out that the system can set the timer dynamically to minimize average
response time. Calculations for the optimal TIMER DELAY are presented. Finally,
some directions for future research are described.

2) Group Commit and Timers

Group Commit refers to the technique used in high volume transaction systems where
many transactions are committed with a single disk 1/O to the log. That single I/O may
contain commit records for several transactions.

Group Commit has been in use for a number of years now [Gawlick] . Without group
commit, the transaction rate of a single-log system would be limited by the number of
transfers per second that the log could support. Group Commit allows transaction
systems with disk-based logs to break through that barrier of roughly 30 transaction per
second.

When Group Commit Timers are in use, the system behaves as follows:
-- When a transaction needs to write a commit record it will wait.
-- When the Group Commit Timer pops, all of the transactions waiting to get a

commit record written will have a record written as a part of a single disk I/O to
the log disk.



We also define special behavior when the Group Commit Timer value is 0. This is:

- If a transaction needs to write a commit record and there is no log 1/O
outstanding, then the commit record is immediately written to the log.

-- Ifa ldg 1/O completes and other transactions are waiting to commit, then commit
records for all waiting transactions are written using a single I/O.

When non-zero Group Commit Timers are in effect, the system awakens periodically and
writes commit records for all waiting transactions using a single I/O. The result is that
commit writes occur at scheduled intervals. Non-zero Group Commit Timers are a lot
like people waiting on the street corner for a bus that arrives every five minutes. When
the Group Commit Timer is zero, the bus driver will leave when the first passenger
arrives.

3) Our Model

We have chosen to examine the effect of Group Commit Timers on CPU response time.
One could justifiably argue that this is inadequate because disk I/O and the effects of
queuing for disk I/O have not been included. This has been done for the following
reasons:

. Since we have a single writer of the Log and the Log is kept on a separate
disk from the database, queuing for I/O on the Log disk is negligible.

. We believe that Group Commit Timers will not significantly affect the
queuing for disk at a fixed transaction rate.

. The response times that we use are for comparison purposes only. We
intend to minimize the time that a transaction spends queued for the CPU
and utilizing the CPU.

. Most importantly, we were getting a headache understanding this much.

Fundamentally, we are assuming that Group Commit Timers do not affect the /O
component of the response time. We hope to see further extensions of this work which
incorporate disks and disk queuing into the model.



Surprisingly, timers can reduce the average
transaction overhead.
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Commit Timers cause the number of transactions in each Group Commit Buffer to
Group Commit Timer, then Timers improve the transaction’s response time.
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if the CPU is heavily loaded.
CPU cost for each transaction and the total CPU work performed by the system. As the

total system CPU work drops, so does the queue length for the CPU and the average

Timers cause individual transactions to be delayed. Intuitively, this also implies an
To understand this, one must realize that transactions spend much of their time waiting in
the CPU queue. By reducing the total demand for CPU resources, we reduce the length
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The remainder of this paper is organized as follows:

Section 5 describes the technique for calculating the average response time of a
transaction when the Group Commit Timer is zero.

Section 6 describes how transaction response times are calculated in a system in which
timer values are non-zero.

Section 7 discusses a technique by which timer values may be automatically determined
as a function of measurable system parameters.

Section 8 describes how to calculate all of the necessary parameters for the equations
from the system. This allows the system to plug in values to the described equations and
set the timers dynamically. :

Section 9 presents some predictions of the effect of Group Commit Timers on various
transaction loads..

Section 10 consists of a brief description of the use of the Group Commit Timers at
Tandem.

Section 11 discusses areas in which we feel further research may be beneficial.

Finally, Appendix A contains all of the mathematics necessary to derive the formulas
presented. If you trust our math, the appendix may be skipped.

5) Response Time With Zero Timers

Before examining the expected response times for transactions when timers are non-zero,
it is important to analyze the behavior of transactions when the Group Commit Timers
are zero. In this discussion, as in the rest of the paper, we examine the total time spent by
the transaction either executing in the CPU or waiting in the CPU queue. The time for
the physical I/Os to the database has been omitted. We are assuming that Group Commit
Timers do not affect the I/O time.

Let’s divide the transaction into two parts to examine the CPU costs associated with it.
We choose to consider the transaction’s CPU cost as the sum of:

A - The CPU cost of a transaction (excluding COMMIT).
B - The CPU cost for one transaction’s COMMIT (i.e. the cost to write a Group
Commit Buffer).

Both A and B are measured in seconds.



Define:

Co - The average number of transactions in a Group Commit Buffer when a timer
value of zero is used.

T - The transaction rate (transactions per second).
Up - The CPU utilization of a system when no timers are used.

Ro - The average transaction’s CPU response time on a system when the timer has a
value of zero.

We can now calculate CPU utilization by determining the amount of work for each
transaction times the number of transactions per second. The utilization is dimensionless.

Uo=(A+B/Co)* T
Next, assuming M/M/1 queuing gives us a response time for a transaction of:

(CPU Work)
CPUResponseTime = seconds.
(1 - utilization)

This means that the transaction’s average CPU response time (that is, its response time
exclusive of I/O) will be:

(A+B)
Rop=z —mm seconds.
(1 - Uo)
This can be rewritten as:
(A +B)
Ro = seconds.

(1-T(A+B/Cy))

5.1) Calculating C,
Unless B is small with respect to A, the calculation for the average transactions response
time will be highly dependent on Cy (the fullness of the Group Commit Buffer). To

understand the calculation of C,, we must review what can cause a Group Commit Buffer
to be written.

There are two reasons why a Group Commit buffer would be written when the timer is
zero:

-- If a transaction is ready to commit and no I/O is in progress.

-- If an I/O completes and a transaction is waiting to commit.



Let’s define the following terms:

L - The amount of time it takes a Log 1/O to complete. This time is wall clock time
rather than CPU time. We are not including queuing for the disk.

W: - The total writes to the log per second.

W; - The immediate writes to the log per second. These are the writes caused by the
transaction arriving and finding no I/O to the log in progress.

Wy - The delayed writes to the log per second. These are the writes caused by an 1/O
completing with one or more transactions waiting.

Cos - The average number of transactions in a delayed write buffer.
Note that:
Wt = Wi + Wd

Now, we remember that each immediate write will have one transaction in each buffer.
Each delayed write will have Coq transactions in each buffer. So, now we can state that:

Wi+ W¢Cod
W,

Co=

After much gnashing of teeth, this becomes:
Co = LT +eT (see Appendix A.1)

As you can see, when the timer is zero, the number of transactions in a Group Commit
buffer is a function of the transaction rate and the time a write to the log takes. It is
completely independent of any other factors. For this reason, it is possible to pick a

reasonable time for the log write and chart Cy as a function of transaction rate. See figure
2.
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6) Response Time With Non-Zero Timers

The calculation of the system utilization and transaction response time follows the same

pattern for systems using non-zero timers as it does for systems with zero timers. There .
are two differences: we expect the utilization to be different and the response time with

non-zero timers must include an expected wait for the timer to pop. Let’s define:

D - The timer delay (in seconds). Every D seconds, the timer will pop and a Group
Commit Buffer write will be attempted. |

C: - The average number of transactions in a Group Commit Buffer when timers are
non-zero.

U; - The CPU utilization when timers are non-zero.

Ry - Theaverage transaction’s CPU response time when timers are non-zero.

We can now state that:

U= (A+B/Cg)"T

+ D/2 seconds.

In a system using non-zero Group Commit Timers, there is only one reason for writing a
Group Commit Buffer: the timer pops, and at least one transaction needs a commit record
written.

We must determine C{ to be able to evaluate this.

6.1) Calculating Cq4

To evaluate Cy, we must first discuss the conditions under which a Group Commit buffer
will be written. When the timer pops (every D seconds), the Group Commit buffer will
be written to the log if one or more transactions are waiting to write a commit record. All
of the waiting transactions will be included in the buffer. We are assuming that a full
buffer is so unusual a condition as to be negligible.

What we must be careful to consider, however, is the probability that the timer will pop
and there will be no transactions waiting to be committed. The Group Commit buffer
will not be written under those circumstances.

To evaluate this probability, we use a Poisson distribution. We represent the probability
that exactly n transactions are waiting for a commit record to be written as:

Pro(n)

where TD is the transaction rate (T) times the delay interval (D). This represents the
expected mean number of transactions.



We can now describe the expected number of records written in a Group Commit buffer
as:

S P (i)
=1

The probability that a Group Commit write will occur is the same as the probability that
at least one transaction is ready to commit when the timer pops. This is:

(=

2 Prp(i)

i=1

So, the average number of transactions in a Group Commit buffer will be:

Expected records per write

Probability that a write occurs

Which is:
o0
2 iPrp(i)
i1
Ca=
©0
2 Ppi)
i=1
Which boils down to become:
TD .
Coi= —m (see Appendix A.2)
1-e-™

Now that we know how to calculate the average response time, what do we do with it?
Our goal is to employ the timer mechanism in such a way that it minimizes the average
transaction’s response time. If we can derive a formula based on information available in

the system, we can construct an algorithm to set the timers dynamically, based upon the
system load.



7.1) Minimizing Response Time

The average response time for a transaction (excluding I/O) when timers are in use is:

(A +B)
(1-Uq)

+ D/2 seconds.

Our goal is to rearrange this formula to be a function of:

T - The transaction rate of the éystem. This we can directly measure as the system
operates. :

B - The cost 7writing a Group Commit Buffer. This is a constant cost on a given
system. Its value is determined by using performance measuring tools.

A - The average transaction’s CPU cost (excluding the cost of commit). This we can
calculate as a function of B, T, measured CPU utilization, and measured rate
of writing the Group Commit Buffer.

D - The Group Commit Timer Delay.

Once we have this formula, we then assume that B, A, and T are constants with respect to
Ry. The calculation of R4 can then be viewed as a function in terms of D. The minimum
value of Ry can then be found by taking its derivative and solving for:

Ry =0
This strategy gives us:
DA + DB _
Rs = + D72 (see Appendix A.3)

D-TAD-B +Be-™

B(A + B)(TDe-T0 - 1 + -TD)
R4 = +1/2 -
- (D-TAD-B + Be-m)2

(see Appendix A.4) .

If we assume that Ry’ = 0, we can then derive that:

B(1 - e-™) + V(2B(A + B)(1 - ™ -TDe-™0) )
1-TA

~ (see Appcndix A.5)

This is the formula that defines the proper value for a Group.Commit Timer.

10



7.2) - Computing the Optimal Timer Delay (D)

As we have just seen, D may be expressed as:

B(1 - 6-0) + V(2B(A + B)(1 - &0 -TDe-T0)
1-TA

D=

Unfortunately, this solution for D involves D in the right half side of the equation. We
have chosen to determine a method to guess at an initial value for D and then refine the
guess to be within acceptable limits.

When we solved for D, we did so assuming that Ry’ = 0. We then rearranged the
function to arrive at a value for D. In doing so, we really arrived at a different function Y
. which we know has the same value for D at the point Y = 0. It is important to realize that
the function Y is not really the same as Rq’. We have chosen as Y the function:

Y = 2B(A+B)(TDe-10 -1 + ¢-10) + (D - TAD - B + Be-TD)2
(see Appendix A.6)
Once we have an initial guess for the value of D, we will use the function Y to find a
better guess. The Newton-Raphson method[PRESS] extrapolates to find the next estimate
of the root that we are searching for. This is done by geometrically extending the tangent
line at the current point Y(D;) until it crosses zero. This then becomes our next guess
Y(Di+l)-
So, to iterate, we have the equation:
Y(Di)
D= Di- —
Y'(D)
To do this we need Y’. We have concluded that this is:
Y'= 2((1-TA)D-B(1-e-T0)) (1-TA-TBe-1D)

- 2B(A + B)T2De-
(see Appendix A.6)

For our initial guess, we will assume that TD is large. This causes e -TD to approach zero.
We will take as our guess the value of D when e-TD is zero. This gives us:

B + V2B(A + B)
1-TA

Do =

So, to calculate the optimal timer values, we will first calculate Dy using the above
formula. We then calculate successive D; values for a few iterations. In most cases, this
converges very rapidly. '



8) Cslculating A From System Statistics

The preceding section derives a formula for the timer delay value which is a function of
B, T, and A. B is a constant (for a given release of the operating system). T is
measurable from the system. It remains to describe how A can be calculated
dynamically.

Define the following terms:

R - The frequency with which the Group Commit Buffer is written. The system can
' trivially maintain statistics to provide this.

Uyys - The total system work. This is represented by the CPU utilization. Again, the
system can trivially maintain statistics to provide this.

As discussed above, all of the work for transactions running on the system may be
considered to be divisible into two parts: A and B. B is the cost of writing a commit
buffer. A is the remaining cost of the transaction.

This means that we can consider the work performed by the system to have two
components:

Usys = ( R * B) + Other transaction work

The other transaction work may be averaged among the transactions processed during the
sample interval. This implies that:

Other transaction work = (A * T)
This leaves us with:
Ugys=(R*B)+ (A" T)

Where R, Usys, and T are measurable and B is a constant. Rearranging things leaves us
with:

Usys - (R * B)
T

A=

12



Average Response Time (Seconds)

9)  The Effect of Group Commit Timers on Throughput

To learn about the effects of Group Commit timers, we set up some spread sheets to plot
throughput verses response time for a number of artificial transactions. In the first, we

assumed that:
A = 100 Milliseconds
B = 50 Milliseconds

L = 33 Milliseconds

This nicely models a machine in which a relatively low transaction rate is achieved on a

single processar. This gave us the following results:

5

4.5

4

3.5

3

2.5

0.5
0 T T T T T T T T T
1 2 3 4 5 6 7 8 9
Transactions per Second
=] Zero Tim‘er: + Non=Zero Timers
Fig. 3 - System Throughput vs. Response Time -- Trial 1
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Average Response Time (Seconds)

Next, we tried to analyze what would happen if the clock rate of the machine was 10

times as great. This would give us:
A = 10 Milliseconds
B = 5 Milliseconds

L = 33 Milliseconds (remember, L is wall clock time)

B3
A DU S S

10 20 30 40 S0 60 70 80 90

Transactions per Second
=} Zero Timers + Non—Zero Timers

Fig. 4 - System Throughput vs. Response Time -- Trial 2
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Average Response Time (Seconds)

Notice that the dramatic results are a consequence of the ratio between A and B (which is
what we experience on our machine). If you change this ratio because you have extra
good logging or you have larger transactions, the effect is present, but not as pronounced.
Let’s try: :

A = 100 Milliseconds
B = 10 Milliseconds

L = 33 Milliseconds (remember, L is wall clock time)

Transactions per Second
o] Zero Timers + Non-Zero Timers

Fig.5 - System Throughput vs. Response Time -- Trial 3

15



10)  Testimoenial

In the Spring of 1987, Tandem gathered 32 of VLX processors together to perform a
large benchmark as a prelude to the announcement of our NonStop SQL product. When
we started the benchmark (which consisted of DebitCredit[3] transactions with 2 second
response time), we were not using the Group Commit Timers. Running with timer values
of zero, we were able to process 165 transactions per second.

After performing some "back-of-the-envelope" calculations, the Group Commit Timer
was set. By using the Group Commit Timer (and the Audit Flush Timer discussed below
in section 11), we were able to process 208 transactions per second with 2 second. '

11) Future Research

A number of other applications for dynamic timers have been discussed amongst our
cohorts. The idea of Group Commit Timers is an approach that is not specifically related
to Group Commit. The idea works whenever you have multiple activities which could be
accomplished more efficiently if bundled together into one unit of work.

Some ideas that have come to mind include:

b TIMERS AND MESSAGE BASED SYSTEMS

The Tandem system is a distributed multi-processor system. The various CPUs
communicate with each other by sending messages. Currently, somewhere in
excess of 20% of our machine cycles are spent sending messages.

The overhead for sending a message has two components: a "per-message”
overhead and a "per-byte" overhead. If we could bundle multiple messages into a

single transmission, some of the "per-message” overhead cost could be amortized
over the messages that were bundled.

hd TIMERS FOR DATA COMMUNICATION

Most of the data communications protocols have large overheads associated with
each transmission. By bundling multiple messages going in the same direction,
into a single transmission, many CPU cycles could be saved.

As with Group Commit, the savings associated with increased sharing of the same
work could reduce the response time of the work enough to justify hanging
around for a while to see if anyone else wants to hitch a ride.

16



A AuDIT FLUsH TIMERS

The Tandem system is a distributed system in which the before and after audit
images for database updates are frequently generated and buffered in a CPU that
is not physically connected to the disk holding the logl4.5)l. To commit a
transaction, this audit must be transmittzd to one of the CPUs that is physically
connected to the Log disk. .

We have found that significant savings may be obtained by using timers to delay
the transmission of the audit images for a while. When timers are used here, the
buffer that is sent will contain the audit images for more transactions that are
ready to commit.

1 Lock RELEASE TIMERS

This was an idea that didn’t work. In the Tandem system, the record locks on the
database are maintained in the process that manages the disk containing the
records being locked. To release the locks, the system must dispatch the disk
process. We tried to see if by delaying the dispatch of the disk process, we could
cause the disk process to release the locks for multiple transactions at the same
time.

Well, it would release the locks for multiple transactions at the same time, but the
CPU savings weren’t worth the increased lock contention. Oh, well.

11.1) Shepherds

As discussed above, the Tandem system is already employing two timers that affect the
life of a transaction. We are considering the possibility of adding more.

When one function controlled by a timer may be begun as soon as another function
controlled by a timer completes, a token (or Shepherd) may be passed as each function is
processed. Even if the second function (e.g. the Group Commit buffer flush) must wait
for a bunch of completions of the first function (e.g. Audit Flush from all of the
constituent processors), the shepherd may be used. _
The basic advantage to this approach is that you can get savings by sharing the work of
all of the various functions while only delaying for the processing of the first function.
Once the first function starts, you, your other transactions, and the shepherd will get
immediate service from the remaining functions.

Our guesstimates indicate that shepherds come out dead even with multiple timers on our
system in which two levels of timers are employed. Once we start bundling more of the
system functions into activities that can be simultaneously performed for multiple
transactions, shepherds will be looked at even more closely.

17



Transactions per Group—-Commlit Buffer

11.2) A Minor Anomaly

When we went to model the number of transactions in a Group Commit buffer when non-
zero timers are used, we found that the number was worse than the zero timer cases in a
very small range (this effect is visible in Figure 6). The problem occurs at low
transaction rates when timers are first enabled and the timer value is still smaller than L
(the wall clock time to do a log 1/O). At this point, our Response Time model ceases to
be valid.

We decide not to worry about this at this time and chose, instead, to restrict the system to
behave as if the timer value was zero when the calculated optimal timer value was
smaller than L. :

10

10 20 30 40 S0 60 70 80 90

Transactions per Second
a Zero Timers + Non=Zero Timers
Fig. 6 - Non-Zero Timer vs Zero Timer Buffer Sizes
' This is assuming the following values:
L - .033 seconds
A - .010 seconds
B - .005 seconds

18



12) Conclusions

Group Commit timers have been shown to provide very noticeable increases in
throughput while still meeting response time objectives. They offer a surprising gain for
a modest amount of implementation.

We feel quite strongly that timers are important. The arbitrary selection of a specific
value for the timer could harm some transaction mixes. An example of this would be a
system running serialized batch transactions. The use of a non-zero timer will only add
to the response time. To expect a system manager to wisely select an appropriate timer
value is also untenable. For these reasons, it seems clear that the system should
dynamically calculate an appropriate timer value based on the system load.

While more work is needed to perfect the model, we feel comfortable using these
formula in our production software to calculate the Group Commit Timer value.

19



A) Appendix A: Hieroglyphics

This abpcndix fills in all of the “leaps of faith" that have been made in the rest of the
paper.

A.1) Calculate C,

As described in section 5.1, the formula for the expected Group Commit Buffer
population (Co) when no timers are used is:

Wi + WdCOd
wt

A.1.1) Calculate Coq

The calculation for Coq is almost identical to the calculation for Cq. The only difference is
that the time to accumnulate transactions is not D, but L (the service time on a log 1/0).
Following the same arguments as those presented for C4, we have: '

Expected records per delayed write

Cod=
Probability that a delayed write occurs
Which is:
o0 .
2 iP+(0)
i=1
Cod=
oo
2 Pi()
=1
Note that:

TiPl)= 3 iPl)

i=1 i=0
This is because when i = 0, OPy(LT) equals 0. But note that:

SiPgl)  =LT
i=0
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Hence:

S0 =LT
i=1

Now we observe that:

- .
2 P+(i) =1 - P.1(0)
=1

This means that:

LT
Coa=
1-P+(0)

A.1.2) Calculate W,

The number of delayed writes to the disk is somewhat complicated to compute. A
delayed write occurs whenever a log write finishes and 1 or more transactions is waiting
to commit. These transactions must have arrived while the log I/O was outstanding (or in
the time interval L). The probability that one or more transactions is waiting can then be

expressed as:

(1 - Pw(0))

This means that the number of delayed writes is:

Wd = Wt (1 - PLT(O))

= (Wi + Wg) (1 - PL1(0))
= Wi(1 - Pr(0)) + Wq(1 - PL1(0))
= W1 - P1{0)) + Wa - WaPL1(0)

So:
WyPL1(0) = W;(1 - P7(0))
Wi(1 - P.r(0))
Wy =
- P7(0)
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A.1.3) Cailculate W,

Let’s start out with:

W‘ = .- Wi+Wqy
Wi(1 - Pr(0))
= W+
P.+(0)
W;P.1(0) Wi(1 - Pr(0))
= e — +
P1(0) P.7(0)
Giving us:
1
W= W,
- P1{0)
Which means that:

W;= W,PL1(0)

A.1.4) Put C, Together
Now that we know both Coq and Wy, we can calculate that:

LT
WiCous = W.(1 - PL1(0))
(1 - P5(0))
= WLT
Next, we recall that
Wi + WdCod
Co=
W

t

Substituting gives us:
WPL(0) + WiLT
W,
= Pur(0) + LT

Now, we have to look in our textbook[PRESS] to tell us the value of the Poisson
Probability Function. According to the magic formula in the book,

Py (0) = &
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Hence,

P.r(0) = e-L7
And we get:
Co=LT +e-LT

A.2) Calculate Cq4

The calculation for Cq is almost identical to the calculation for Coq. The only difference is
that the time to accumulate transactions is D when calculating C4 and L (the service time
on a log I/O) when calculating Coq. For this reason, the discussion here and in section 6.1
is almost identical to the discussion in sections 5.1 and A.1.1.

In section 6.1, we determined that:

§ iPrp(i)
i=1
Ci=
2 Pppli)
j=1
| Note that:
§ iPp(i) = io iPp(i)
j=1 =0

This is because when i =0, OPy(TD) equals 0. But note that

SiP0) =TD
i=0
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Hence:

S iPx(i)

i=1

TD

Now we observe that:

P =1-Prl0)
=1

This means that:

TD
C4g= ——m—
1 - P+0(0)
TD
Ca=
i1-e-T0

A.3) Calculate R4

As described in section 6, Ry is:

Rd= + D/2
(1-Uq)

Substituting for Ug (again described in section 6) we have:

(A +B)
Rg= +D/2
1 - T(A+B/Cy)

(A +B)
= +D/2
- 1-TA-TB/Cq4

CA+CsB
= A + D/2
Cq-TACs-TB

Substituting for C4 (described in section 6.1) yields:

ATD/(1 - e-T0) + BTD/(1 - €-T0)
Rq = + D2
TD/(1 - @-0) - T2AD/(1 - @-T0) - TB
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Multiplying above and below by (1 - e “TD) yields:

ATD + BTD
Rd = + D/2
TD-T2AD-TB + TBe-0

AD +BD
= + D/2
D-TAD-B +Be-™

A.4) Calculate Ry’

Let’s make the following assignments:
f=AD + BD
g=D-TAD-B~;»Be-TD

Then we have:

f’g 'fg'
R4 = +1/2
gZ
f= A+B

g= 1-TA-TBe-®

fg= (A+B){D-TAD-B +Be-m)
= AD-TA2D - AB + ABe- + BD - TABD - B2 + B2e-T

fg'= (DA +DB)(1-TA-BTe-m)
= AD-TA2D - ABTDe -0 + BD - TABD - B2TDe -1D

So, when we combine f’g and fg’ we get:

fg-1fg' = AD -TA2D - AB + ABe -0+ BD - TABD - B2 + B2e -0
" - AD + TA2D + ABTDe -0 - BD + TABD + B2TDe T
-AB - B2 + ABe-0 + B2e-TD + ABTDe -0+ B2TDe -0
= (A +B)(-B+Be-m+TBDe-™)
= B(A + B)(TDe -0 -1 + @-TD)

25



Now, we can assemble R’ as:
fg-1g
g2
B(A + B)(TDe -0 -1 + e -T0)
(D-TAD-B + Be-T0)2

Rd = +1/2

A.5) Solve for D When (R4’ =0)

+1/2

Now, we are going to attempt to solve for Ry’ = 0. We do this by assuming that R¢’ = 0

and munching around with the equation.
B(A + B)(TDe -™ -1 + e -T0)

(D-TAD-B + Be-T0)2
B(A + B)(TDe -0 -1 + @ -T0)

(D-TAD-B + Be-T0)2

So this gives us:
B(A + B)(TDe-™ -1 + ¢ -TD)
(D-TAD-B + Be-)2

-1/2 =

+1/2

+1/2

(D - TAD - B + Be-T0)2 = - 2B(A + B)(TDe 0 -1 + &-T0)

(D(1 - TA)-B(1 - -™) )2 =2B(A + B)(1 - -0 - TDe -T0)

Taking the square root of both sides we have: |

D(1-TA) - B(1-e ™) = V( 2B(A + B)(1 - @-° - TDe -10)

D(1-TA) = B(1-e-™) + V(2B(A + B)(1 - € T° - TDe -T0)

" be

B(1 - e-T0) + V( 2B(A + B)(1 - @™ -TDe-™0) )

1-TA
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- A.6) Calculating Yand Y’
We take the following equation from section A.5 above.
(D-TAD - B + Be-™0)2 =- 2B(A + B)(TDe-™ -1 + ¢-TD)
Modifying this slightly we have:
0=(D-TAD-B + Be-T0)2 + 2B(A + B)(TDe -0 -1 + e-TD)
Let’s define a function Y as:
Y =(D-TAD-B(1 - e-T0)2 + 2B(A + B)(TDe -0 -1 + @ -TD)
The function Y has a value of 0 exactly when Ry’ = 0. Therefore, if we find the value for
D that causes Y to equal 0, we will have found the value for D which causes Ry’ to equal
0. This value for D is the optimal value for the timer.

So, as mentioned above in section 7.2, we need to find Y’ to use the Newton-Raphson
method to approximate where Y =0. Let’s rearrange Y slightly to get:

Y= 2B(A +B)(TDe-T0-1 + e-0) + ((1-TA)D - B(1 - e-TD))
And we get:
Y'= 2B(A +B)(Te-T0-T2De-0 -Te-T0) +

2((1 - TA)D - B(1 - e-))(1 - TA - TBe-T0)

Y'= 2((1-TA)D-B(1 - 6-10)) (1 - TA- TBe-T0)
- 2B(A + B)T2De-
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