/ﬂTANDEMCOMPUTERS

Plan Into Practice
Software Testing at Tandem Computers

Keith Stobie
Mary Alexander

Technical Report 87.3
May 1987
Part Number 83055

Plan Into Practice
Software Testing at Tandem Computers

Keith Stobie
Mary Alexander

May 1987

Tandem Technical Report 87.3

Tandem TR 87.3

Plan Into Practice
Software Testing at Tandem Computers

Keith Stobie
Mary Alexander

May 1987

ABSTRACT

Tandem Computers is a manufacturer of OnLine Transaction Processing
mini- and mainframe computer systems. Software quality is very
important at Tandem, since a software failure can nullify any hardware
fault tolerance and make resources unavailable. Tandem's software
development organization does most of the product oriented testing.
Tandem has approximately one quality assurance (QA) developer for
every three product developers. Tandem follows a fairly typical
software life cycle but has several innovations to allow ample time
for testing and user feedbaek. Rather than adversaries, at Tandem
product and QA developers are on the same team with a common goal,
that of delivering high quality, reliable software. Tandem SQA bases
several of .its documents on the IEEE Standard for Software Test

Documentation.

Several tools developed in-house and currently in use are described.
Automated Library Environment is wused to control and catalog the
running of tests. Dynamic Reload controls the automatic dumping and
reloads of a system. Terminal Simulator provides record and playback
of Tandem supported terminals. JET is a PC based terminal simulator.
COVER measures code coverage. Product Reporting System is used for

tracking incidents.

Tandem and NonStop are trademarks of Tandem Computers Incorporated.

l.

[\
.

I\)NNNNNNNMNO

3.

4.

Contents

0 Introduction . « « ¢« ¢ ¢ o o o o o o o e
1.1 Organization . .« « « ¢ « o o ¢ o o o o

ProCeSS « o o o o o o o o o o o o o o o o o
.1 QA Training . « « « « & o o « o =
.2 Philosophy .« « « « o « « o« o o
.3 Product Requirements
4 QA Strategy Document

5 External Specifications . . .
.6 QA Test Plans . « « « « « « « =
.7
.8
.9
.1

¢ o
. . e o o o
.

Internal Design . . . e e e e e e e

Product Development Test Plans .

Code and Test . .
0 Test Design Spec1f1cat10ns
2.10.1 Test Library .
2.11 Test Cases
2.12 Developer Release
2.13 Release Build . .
2.14 Manuals
2.15 Classes . . .+ =« .
2.16 Systems QA
2.17 Alpha Testing
2.18 Beta Testing . . .o .
2.19 Controlled Dlstrlbutlo
2.20 General Availability .

. 3 .

.
o & o o o & & s o .
o o e o & o . o o o o .
.

3
.

.

3

]

.

. .
.

3

.

.

.

3

0 Tools & Measurements . .« « ¢ ¢ o o o o o o o
3.1 ALIEN . . . o o o e e e e s s o e s e
3.1.1 Example ALIEN reports o« o o s o o e e

3.1.2 Weekly Release Testing Reports e o e o s
3.1.3 Example cross product weekly summary . .
2 QACOMP . . e s s s e e s
3 DIVER & DYNREL e e e s s e e .
B 1 0 . A I I R

.5 JET «
.6 Product Spec1f1c Testlng Tools
B A 1 o T
.8
.9
3.
1
3.

.

3 . . .

PRODRLSE + « o « o o o o o o

COVER« . .« o e
9.1 Example COVER summary output .« e e e e e
0 PRS . o o e e R T
10.1 Sample TPR e e e e e e e e e

wwwwwwww

e o o o o o e o
.

3‘

0 Conclusion .

4,1 IEEE Standard for Software Test Documentatlon
4.2 FUTURE DIRECTIONS . . . « « « o+ o =«

4.3 SUMMARY . « « o o o o o o o o o o o o o o o o
4.4 Acknowledgements . . o .+ ¢ ¢ o s e e e e o

RE FERENCES O . L] . . . L]

e« o o o o o o e o o e e o .
.

e o o o o o e o o & o o
. e o s o e o ‘e o . o o o o o o

. . . L] L] L] . L] . . L]
N e e L
U bR R OWVWDO~I0O0U PR

N -

WWwWwWwwwwhNNNNDNDNDDD R
b WRPRPOOWONAAUINWOW

w W W
0 0

PSS
(v Ne]

©
=

1.0 Introduction

Tandem Computers Incorporated manufactures and markets computer
systems and networks for on-line transaction processing. Typical
examples of on-line transaction processing are automatic teller
machines, airline reservation systems, electronic funds transfér, and
point-of-sale systems. The fault-tolerant NonStop systems range 1in
size from mini to some of the world's largest mainframes. Tandem has

over 6000 employees in 130 locations around the world.

Most software development at Tandem is done at corporate headquarters
in Cupertino, Caiifornia. There are approximately 500 software
developers, with about one fourth of them being QA developers. Our
present overall ratio of product to QA developers is 3.0 to 1.
Tandem's software products comprise approximately ten million lines of
code. Several major software releases a year recompile the majority

of the code, and requires Tandem to test all software.

Management's strong commitment to Software Quality at Tandem is
easy to understand, since a software failure can nullify hardware
fault tolerance and make resources unavailable. Customers expect
.reliability from any vendor promoting high availability, and Tandem's
continued success in the marketplace hinges on its ability to continue

to meet these expectations.

This paper describes some of the approaches used at Tandem to
test software, ensure its quality, and evaluate the results. The
techniques described are divided into three broad areas: Processes,

Tools, and Measurements.

1.1 Organization

Tandem's Software Development organization maximizes our ability to
produce high-quality software in the shortest possible time. Our
focus is on building the quality in, not on testing the bugs out. Our
own experiences match testing theory; it is cheaper to keep defects
out of the software in the first place than to find and remove them

later in the cycle.

Tandem has faced the classical tradeoff between isolating the testing
organization from product’ development for objectivity, and
incorporating the testing organization into product development to
find problems early. We have found a balance in today's organization.
Software development occurs in three divisions: Operating Systems,
Data Cohmunications, and Database software. Each of these divisions
has a second line organization devoted to Software Quality Assurance.
The distribution of the QA function across the three divisions holds
each division Director responsible for the quality of his or her own
products. There 1is also a Systems QA group outside the three product
development divisions. Systems QA 1is responsible for testing the
overall Asoftware system, as well as testing the migration path from

old to new releases.

QA developers have the same job titles and compensation as product
developers; we recruit highly skilled, fully competent software
professionals 1into the QA organization. Tandem's structure also
fosters a team approach to building quality software; for example the
QA developers share office areas with the product developers. This

team approach involves QA developefs in all stages of the development

cycle, so they can represent the end user by not worrying as much
about how hard it is to implement needed functionality, find problems
early, and later in the cycle understand product internals so testing

will be effective.

The potential aisadvantages of close teamwork are the 1loss of
objectivity, and the loss of a QA 1identity. Keeping QA separate
through the second 1line management level ensures a large enough
group (generally 30 to 60 QA developers) to foster a sense of group
fdentity. To ensure cross-department communications, bi-monthly QA
managers meetings are held during which overall QA 'strategies and
strategic product issues are discussed. We also hold all-QA meetings,

training courses, and social events.

Objectivity is encouraged by writing Test Plans and Test Strategies
very early in the development cycle, so that the original thoughts
about product testing are captured before learning too much about the

internals.

V.P. Software

Director Director Director Director
Data Operating ee e Software ee e¢ Database oo o
Communications Systems Services
‘A. .ZX.
o(\oo oo 00 .{\.. o(\oo ee oo
Prod Dev QA Prod Dev Prod Dev QA Prod Dev
Manager Manager Manager Manager Manager Manager
Systems
.AO ‘A. ..AOO QA .A. .AO QA‘
AN

2.0 Process

2.1 OQA Training

In addition to standard internal training available to all developers,
Tandem provides QA training for QA developers and interested product
developers. We developed a QA course geared towards our development
QA environment. In addition, the "Testing Computer Software" course
developed by Hetzel and Gelperin has been taught in-house; over half

of the current staff of QA developers have attended a course.

Our internal course lasts a week with long lab sessions. It borrows
from the IEEE seminar on the Software Test Documentation standard
[IEEE84]. Students learn about Tandem's QA tools and procedures.
They review a small product requirements document and an external
specification, generate a test plan and test design specification, and

implement a representative sample of test cases.

We make available to all of our QA people the IEEE Standard for
Software Test Documentation [IEEE83], and The Complete Guide To
Software Testing [HETZ84]. 1In addition the Tandem library has many
of the standard works on QA. We also have an on-line bibliography of

recommended QA readings for those interested.

2.2 Philosophy

Tandem's philosophy is to provide guidelines, rather than to mandate
policies, wherever possible. This practice is consistent with
the corporate strategy of hiring the most highly qualified people
available for every position, then giving them authority and
responsibility for their projects. A project is usually two to twenty
people. Thus, rather than having a mandated Software Development Life
Cycle Policy, we describe our general method of product development in
the Software Projects Handbook. Management decides the lifecyle and

the variations from the guidelines for each project.

The Handbook helps project leaders run successful projects, where
success is defined as (1) yielding a quality product, (2) on time,
and (3) with minimal frustrations by the project team. The Handbook
describes the software development cycle in general, as well as
variations for different types of projects, such as new development,
maintenance, etc. The Handbook also contains a section of essays, or
"how to" aids, written by experienced software development personnel.
A new product development project leader, working with QA and
publications, will define a custom life cycle for the project, based
upon the sample development cycles listed in the Héndbook. Below we

describe a typical product development cycle.

2.3 Product Requirements

The first document produced in the product development cycle is the
Product Requirements document (PR), which describes what need the
product will fill. The PR, typically five to thirty pages is written
jointly by development and product management, and describes the
market needs, discusses competitive products (if any), and assigns
project priorities, such as schedule, performance, and functionality.
The PR 1is submitted for general distribution, with review comments
submitted by development, QA, publications, marketing and support.
Tandem has no formal standards for writing this document, although

there are guidelines and examples of previously written documents.

2.4 QA Strategy Document

This document gives a high level overview of QA's strategy for an
upcoming product release. Keeping in mind that a release can mean
the development of an entirely new product, or an enhancement of an
existing product, the QA Strategy document is organized as follows.
First there is an introductory section, which describes what 1is new
or changing for this release. Then, the impact of these changes
on product QUality is discussed, as well as an assessment of the
risks. Next, OQA's strategy for managing the risk is described. The
specific steps QA will be taking to contain the risks and why these
actions were chosen are discussed. Constraints, work-arounds and our
assessment of the quality of these decisions are also outlined. This
document must be concise to ensure that it is widely read; in general,
it is one page long. Review 1is done by product development, QA,

product management, publications, and support.

2.5 External Specifications

From the PR, product development writes the External Specification
(ES), which describes the product as it will 1look to the wuser. A
single ES 1is usually thirty to one hundred pages, although some
have been over two hundred pages. All products must have an ES.
The ES 1is widely distributed for review. In particular people
from product development, QA, publications, marketing, support, and
education review the ES. Many of the reviewers use the ES as
the basis for their own documents relating to their role 1in the
project. There may be several iterations of reviews if there are

enough comments or'changes to warrant them.

2.6 QA Test Plans

Based on the first ES, QA developers write a Test Plan (TP). Tandem
generally follows the IEEE standard Test Plan as defined in the IEEE
Standard for Software Test Documentation. Writing the test plan
encourages a thoughtful review of the ES. The test plan, typically
ten to thrity pages, is distributed for review when the ES, after one
or more reviews, has stabilized. Test plans are reviewed by product

development and QA.

The TP may also define what product development must do to show
QA they haQe tested their product. This may entail development
demonstrating the passing of a subset of the QA written tests showing
basic functionality and demonstrating a specified 1level of code
coverage. QA does not accept a formal release from development until

the acceptance criteria have been demonstrated.

2.7 Internal Design

The goals of the internal design phase of a project are to produce a
design that fulfills the product requirements and external
specification, communicates information about the product internals to
other team members, and can be used as an aid in maintaining the

product in the future.

Early stages of internal design overlap the ES review cycle. The
standards for documenting and communicating 1internal designs are
established on an individual project basis; however a formal internal
design s?ecification is seldom written. Design walkthroughs, memos,
discussions, and extensive comments imbedded in the source are all
used. In some cases, a more formal approach has been followed; an
example of this approach is an internal design that uses EXCELERATOR

[INDE85], a System Analysis and Design program.

2.8 Product Development Test Plans

Concurrently with the internal design phase, product developers are
encouraged to write a formal product development test plan describing
the planned module and integration testing of their product. More

often the approach taken to development testing is informal.

2.9 Code and Test

Overlapping the 1internal design phase 1is the actual coding of
the product. Tandem has not imposed any development-wide coding
standards, although many project teams have created their own.
Reviews are held of selected portions of the internal design and code.
These reviews follow a variety of formats, ranging from code reading

and reviews to more formal walkthroughs.

After coding, product development performs module and integration
testing. Results from this testing, as well as information gathered
during revievs, guide QA in the development of test library

enhancements that target potential product weaknesses.

2.10 Test Design Specifications

QA uses the ES and their TP as the basis for writing their Test Design
Specification (TDS). This document is an amalgamation of the IEEE
standards for Test-Design Specification and Test-Case Specification.
Most of the test cases described 1in the TDS have the same test
items, hardware, and software. By listing all the test cases 1in one
document, we avoid a lot of repetition. A TDS is typically thirty to

a hundred pages long.

During work on these specifications, we often discover areas in which
the product's ES is incomplete or amibguous. The QA developers
request a revised ES. QA might also ask product development for

special test points to be inserted into product code to guarantee the

software is in certain states when a test performs certain actions.
This can be especially important in testing software fault-tolerant

operation [BART86] where it is important to verify recovery logic.

If not already defined in the TP, the TDS specifies the release to QA
acceptance criteria. The TDS is reviewed by product development and

QA.
2.10.1 Test Library

The TDS describes the test library to be built. All tests become part
of the automated regression test suite. Most libraries are designed
to permit the later addition of other types of test cases, for example
internals based tests, or test cases based on a specific problem

reports.

In the design of the test library, the following points are always

emphasized:

e Each test should have a specific objective as defined in the test
case design. Tests must check for correct (postive tests) and
incorrect product usage (negative tests). There must also Dbe

stress, load, fault-tolerance, and performance tests.

e Anyone should be able to tell whether the software passed or failed
a test. The test results must be complete and consistent. 1In
the case of failures, enough of the failure environment must be

retained to allow diagnosis.

e The tests should be runnable by anybody. To ensure portability,

10

tests must include parameters to allow them to run in different
environments. Each test should be self-contained. It should not

depend on other tests.

e Tests should be automated as much as possible, using the tools

described later in this paper.

2.11 Test Cases

From the TDS, QA codes its test cases. The first test cases written
are generally based on product externals, since internals might not
even exist yet. Sometimes there are test case walkthroughs, but they

. are still rare.

Associated with the test-case development 1is the writing of
test-procedure specifications, which describe how to run the tests.
In concept these specifications are like the IEEE's Test-Procedure
Specifications, but the IEEE outline is not used. All together, the

test-procedure specifications may be many hundreds of pages.

2.12 Developer Release

As product development completes its module and integration testing,
developers give QA pre-release versions of software for test-case
debugging. Problems found while debugging test cases are reported
to product development. QA might also begin implementing 1internals
and coverage based testing at this point. QA enhances the TDS to
discuss the new tests and new types of problems uncovered by the test

debugging.

11

Product development works toward passing the acceptance criteria
defined in QA's TP or TDS. Product development and QA agree to these
criteria early in the development cycle. The criteria ensure that
a product formally released to QA by product development has a known

level of functionality and stability.

2.13 Release Build

After meeting the acceptance criteria défined in the TP or TDS,
product development formally builds and releases the product to the
release coordination group using Tandem's automated release tools,
causing creation of Tandem's equivalent of the IEEE Test Item
Transmittal Report. The release coordination group provides the
software to QA test machines for formal testing. QA operations checks
out the integration of the software by installing all of the official
software together. QA tests the official, controlled software running
only with other official, controlled software and tracks problems. QA

also measures coverage (see COVER later) of the official product.

The figure on the following page is from the Handbook ‘and shows the

various phases and deliverables.

12

12/06/86

Life Cycle for QA Projects

(ueld 3ISaL 3yl jo suorldas se papnidout aq Aem wn) (303load tenuew atdiytnu 31 Auo %)

ainjotd big ayy

| 3aoday (stooa

I 1 | I AYDTJOIDIH |]
| | Ka1euumsg 3 soads || i B 4+ | |
_ 13y | isay burpnyour) || [|| sumtoaqns ¥ood | NOIL |
] Y0 | suntoaqns vO || [I s)yoog 4+ 1-donaoud |
I | | | I sauttanig | !
e it T P I ettt S L L T L P el R - ---p |
| | 310day snieas vd I adel 1Ins | | |
| 1S3 | % d [[I
| aoud- | Sy¥dlL (S1o03 pue |] I
| 1s3aL | Il sdoads (e butpnyout) |zSVATAY | |
i YO | Kieaqi7 189l It JumyoAqns 3onpoad | I SJI3)1SeN Yiomiay | |
I _ .q 1 .ﬁ | I Teuld Teurd | _
R ettt O Bttty = e e e e e I L 4 | I
| ongza- | (6nqap) Aieaqiy 3S9L——odj—»2pod> passed ive | ls3i ||] I _
| LSL YO | I AFQ || | I
e Sl i B B I 3jelq _ [
| | »»¥23ds H : | KN puodas | i
| 1dWI |93epdn *doad I | L) & I I
| 417 | ueld 3Isal s1o0L VD || apod A1aeg T 1dAWI || |ONILINM |
{ | ﬁ 1 1 | H | |
R e e LT -f-/----- ot | DD BT I G e L LT P 1 | !
| | »x23ds || | I | |
| | dads steutaixy || I Il | |
| | ubtsag 3say s1ooL vO || | I]]
| I d I | I 3jeaq Haomjay | I
| | 1 I 11 ybnoy Ijeaq | I
N9isaa	xs23ds y4dads bay			Il			
€I7	2an3dajtyoay Ionpoag		93epdn uetd	NOISEQ			
Is3ay	189y §7100% YO			ANI		====smmmm e e	
]	ﬁ 1 [I						
	Ll	1]					
	uetld 31s3y Il [I (s)uerd sqnd []						
{			NO9IS3Q				
==m=momme ittty Ittt --== <-"F--- HUHUhHhhhhllllllﬂﬂﬁ+	\\ll\lLv ! LX3						
	Il 93ds s{euaaixz	I . I					
[I -\	NOISZA		w23ds	v			
	ueid v0S 1 #3epdn uetd	X3		2INJIOIITIYDAY [enuel			
1] \\‘]	FYINO3Y						
say	- ~—ezo--- Y At	[
I Il 23ds “bay 3dnpoad I I							
1 I M	F¥INDAY						
I	Il uetd 3oaload I 1l	I					
Bt e R T P R ettt L T, I R Rt T							
“]	ISIANI		I I			
.l.'...'ll'l.'l.'.-'..l'..."l.l..l'......ll'.'.l..'l"'..'..-'...l.ll.l"..-ll'..ll.l.'I...l'.ll..ll.l"l.'I'—							
SASVHA	SATEVHAAINGEA I SATEVHAAITA]	sasvHd		SATEVHIAITEA	SASVHd		
YO	FINVHNSSY ALITVND il LNARIOTAAAA	AFa	} - SNO1LYDI78nd	sdnd			

™
!

Tandem Computers

2.14 Manuals

The writers of Tandem's manuals are also within the Software
Development organisation. A publications plan is distributed for
review shortly after the ES 1is finished. The plan is reviewed by
publications, product development, and QA. The writers strive to have
draft copies of the manuals ready during the initial testing period of
a release. Both product development and QA review the manuals. QA
also tries to start using the manuals to verify their ease of use as

well as their technical accuracy.

‘ 2.15 Classes

From the ES and draft copies of the manual, Tandem education prepares
classes for Beta customers (described later) and field analysts. A
dry run of the class is given to product development, Qa, education,

Alpha users, and others.

2.16 Systems QA

The focus of Product QA is on testing individual products. Within
software development there 1is a performance assurance dgroup to
identify performance problems in individual products. Large-scale
tests as well as testing of migration to the new release are the

responsibility of Systems QA.

Systems QA is organizationally separate from Product Development,
reporting to the Vice President of Software through the Director
of Publications and Software Services. Systems QA begins working
with the software midway through the formal release testing cycle,

acting as the first customer-oriented user of the system. Systems QA

14

consists of a core group of QA developers and analysts who, with the
help of visiting field analysts, concentrate on the systems testing of
releases. Systems QA uses copies of large customer applications that
have proven stressful to the system. Visiting analysts may bring new
applications for testing, along with new ideas about specific system
tests to try. Large- scale test cases are custom designed for each
major new software release. Large hardware configurations are used
to discover any unknown systems limits. Almost every hardware device
type Tandem currently supports is available to Systems QA to ensure
compatibility. Systems QA also verifies the installation procedure,

and performs extensive power-fail and network testing.

Outside of software development, the major test groups are within the
Customer Support Organization. These groups review classes, manuals,
etc. They prototype customer applications as part of application
design reviews. They verify connectivity of data communications
products with other vendors' products, especially IBM SNA. The
Benchmark Center conducts performance analyses of customers'
applications. The high-performance center runs the system at peak

performance, looking for bottlenecks, performance bugs, etc.

2.17 Alpha Testing

The intent of Alpha testing 1is to provide testing in a real user
environment with particular emphasis on functionality, stress, and
volume. Alpha testing occurs concurrently with pre-release testing,
once most of the serious problems have been found and corrected
during the product QA cycle. Alpha testing is done on most of our
development systems and some corporate systems, which are all large
systems with many users. Problems found during alpha testing are

15

reported and tracked, as are those found by product QA. The success
of alpha testing, and the rate at which problems are found during
alpha testing, are factors used in determining the product's readiness

to ship to Beta customers.

2.18 Beta Testing

Beta customers are the software's first non-Tandem users. Beta sites

serve a dual purpose:
Validation - How well does this product meet the customer's needs?
Verification - Is the product correct / defect free?

Beta customers agree to use the product in a non-production
environment, and are aware that at this stage the software may still
be changing. The Beta testing process is tightly controlled, starting
with the selection of Beta customers who are willing and able to
give the most useful feedback about the product. Beta customers
attend training courses, receive draft copies of manuals, and are
monitored closely by field analysts to help ensure easy usage of the
product. Beta Customers work with their Tandem field analysts to
produce Beta test plans, which are reviewed by product development,
product management, support, and QA. During actual Beta testing,
progress against these plans is closely monitored, both by the analyst
and through weekly status reports submitted to product management.

Refreshes of Beta software are scheduled as needed.

16

2.19 Controlled Distribution

Once Beta testing has proved customer acceptance of the product and
product and systems QA have given approval, the software may enter
into a controlled distribution situation. This option is most often
chosen for a large new product, or for a major systems revision. By
closely controlling both the number and type of customers who receive
early versions of the product, we can provide close field analyst
support as well as support from develbpment. As a Limited Customer
Distribution is considered a release of the product, we charge for the

products. Customers may use the product in a production environment.

2.20 General Availability

At this stage of the product's distribution, the product is considered
to be generally available to anyone who is interested in purchasiqg
it. The 1initial problems encountered by customers, both during Beta
testing and during limited distribution, have been addressed. The
support organization has been trained and ‘is in place. Training
programs have been developed and customer tested, and are now ready to
be offered on a reqular basis. Update releases are scheduled every
four to six months to provide bug fixes and planned enhancements to
the product. Both problems found and suggestions for improvements and
enhancements are tracked via the Product Reporting System (described
later) database. In cases of extreme customer problems, Early Warning
Reports (EWRs) are generated, and producing responses to these are
given a very high priority in development. If a problem is deemed too

severe to wait for the next scheduled update release, an Emergency Bug

17

Fix (EBF) release is performed. Depending on the nature and

of the problen,

distributed to all customers or sent selectively.

The following figure shows the controlled growing use of a product

extent

and the risk associated with the fix, an EBF can be

or

release.

Product
Development
/ Product QA test \
/ Systems QA test \

/ Alpha test \

/ Beta test

\

AN

/ Controlled Distribution
/ General Availability

AN

18

3.0 Tools & Measurements

Tandem has built many tools to automate the production and testing
of software. Tandem's systems use a proprietary instruction set,
architecture, and systems programming language, so most tools have
been developed in house. We believe our tool set is generally keeping
up with the state of software QA technology, ahead in some areas and

behind in others.

Below is a brief overview of the tools discussed 1in more detail

throughout the rest of this section.

ALIEN Test library management
Test execution tracker
QACOMP Pattern matching file comparison
DIVER Halt a processor
DYNREL Automatic Dump and Reload of a system
TSIM General purpose Tandem terminal emulator
JET PC emulator with interfaces to Tandem systems
vC Version Control system

PRODRLSE Tracks product transmittals
COVER Statement coverage analyizer

PRS Product Reporting System

An individual test case in an ALIEN managed library can run TSIM
against a product and use DIVER to test fault tolerance. The results

would be verified using QACOMP and incidents reported using PRS.

With all of the various testing efforts within Tandem, it is important
to measure the testing to ensure that the test accurately assess the

quality of the products. One of the best indicators of the quality of

19

a test library is how many problems it found before release compared
to the number of problems found after release by customers and others.
Another indicator of a test library's quality is what percentage of

the product is covered by tests in the library.

Tandem's measurements generally provide only raw data. Using Tandem's
report writer and personal computer programs, informative reports and
graphs are generated. Some analysis of the data still requires manual
work. For instance, the overall report on the quality of a release
is usually gathered manually since we lack a unified database of test

results [LIND86].

3.1 ALIEN

Tandem wrote its Automated LIbrary ENvironment (ALIEN) to help manage
test libraries. ALIEN was written in Tandem Advanced Command Language
(TACL), an interpretive language similar in concept to the Unix(tm)

shell but more powerful.

Libraries managed by ALIEN have two main components: test units
and shared units. Test units are independent, separately runnable
entities. Each unit can contain many test cases. A test unit has
an associated list of keywords with which to select it and a list of

tools it requires in order for it to run.

There are two kinds of shared units: shared tools and global
databases. A shared tool is common code or programs used in more than
one test unit. A test unit can also contain specialized tools that
only it needs. A global database contains data for use by two or more
test units.

20

ALIEN keeps track of the state of development of test units and shared
units. Under-development means the test units have been initialized.
A test developer creates and tests a test unit while the wunit 1is in
the under-development state. When the test developer is satisfied,
he or she checks it 1in to ALIEN as Serviceable. ALIEN archives
checked-in test units so that anybody needing to test a product knows
where to find stable, runnable tests. When another developer has run
the wunit, 1its state can be marked Certified, meaning there is a good

chance anybody could successfully run the test.

A tester can select all archived tests from the library or only those
matching a specified set of keywords. A tester may also exclude tests
based on keywords. For instance, the tester can select all STRESS
tests that do not require a NETWORK. ALIEN helps install shared units

required by the test units that have been selected to run.

Each test has at least three parts:
e setup- checks configuration parameters, etc.
e procedure runs the actual test

e cleanup returns the system back to its original state.

ALIEN usually runs on the system where the test 1is performed. ALIEN
also allows multi-step tests. For instance there might be a test
in which the first step causes the system to halt; the system 1is
restarted, and the second step of the test runs to complete the test.
Multi-step tests verify system failure recovery, for instance recovery

from a long power outage.

21

ALIEN logs the running of tests not under-development and can produce
reports about test runs. A test always reports one of three results:
Passed, Failed, or peferred. Most tests always report either Passed
of Failed. Deferred indicates that the tester must make the final

judgement.

ALIEN logs the starting time, stopping time, and evaluation rsult of
each test. Furthermore, the user can set a 'paseline’' from which test
reports are to begin. For example, the wuser can request a report
on all tests run since the start of a release and a report on all
tests run since the latest transmittal of software. Test histories of
different transmittals can indicate the relative stability and quality
of the product and can sometimes predict the future maintainability
of the product. There is currently no provision for combining the

results of different test libraries.

22

3.1.1 Example ALIEN reports

STATLIB ->> OQA Library Reporting Facility
Test logs used were:

$SYSTEM.DSTLOG.TESTLOG

SUMMARY BASELINE REPORT -- 11/23/86 11:01:27 PM
Baseline = FIRST RQAT RUN

TEST Number of
UNIT Attempts Number Failed Number Passed

TOO1 1 0 1
T002 1 0 1
T0O03 1 1 : 0
T004 2 1 1
T00S 2 0 2
T0O06 2 0 2
T007 2 1 1

DETAIL BASELINE REPORT -- 03/17/87 06:21:56 PM

Baseline = NCN-RELEASE OF 1/19/87

TEST EVENT EVENT EVAL
UNIT NAME EVENT-DATE TIME FLAG EVALUATION-COMMENT
TO03 START 3 FEB 87 09:10

STOP 3 FEB 87 11:19

EVAL 3 FEB 87 11:19 FAILED CASE 6.5-4:

GETVERSION FAILURE:-8

START 6 FEB 87 10:33
STOP . 6 FEB 87 10:41
EVAL 6 FEB 87 10:41 PASSED GETVERSION OK

T004 START 29 JAN 87 07:06
- STOP 29 JAN 67 07:10
EVAL 29 JAN 87 07:10 PASSED SIMPLE FILTERING OK

START 3 FEB 87 11:20
EVAL 6 FEB 87 13:20 FAILED INSTALLATION PROBLEM

T005 START 29 JAN 87 07:11
STOP 29 JAN 87 07:22
EVAL 29 JAN 87 07:22 PASSED SIMPLE REAL TIME
CONSUMER

START 3 FEB 87 11:22

STOP 3 FEB 87 11:23

EVAL '3 FEB 87 11:23 FAILED EVENTS NOT FOUND,
R1:QACOMP DIFF

The EVALUATION-COMMENT is part of the test output for tests that
automatically evaluate to Passed or Failed. For tests that do not
complete normally (second run of T004 for example) or have Deferred
results, the EVALUATION-COMMENT is entered through a‘ separate ALIEN
function to manually evaluate the test. Eventually all tests should
be listed as Passed or Failed. In this example, test T003 detected
a product failure on the first run but on the second run the product

passed.

24

ALIEN does not track the number of tests planned. The number of

planned tests is usually tracked manually based on the TDS.
3.1.2 Weekly Release Testing Reports

During the formal release testing cycle, summary reports of testing
progress are produced weekly. These reports measure testing progress
against the planned schedule. Items tracked are the number of tests
planned, available, run, and run without incident (passed). Problems
are tracked 'by total number found, total number of severe problems
found, current unresolved problems, and current severe unresolved
problems. Graphs of these statistics over -time are used as tools
to determine how well we are using our existing test 1libraries, how
well we are adhering to the planned schedule, and when the product is
ready to ship. These reports also highlight areas of the system that
are stabilizing more quickly than others, allowing us to redistribute

resources to match the need.

3.1.3 Example cross product weekly summary

Planned Available Run Passed Pass/Avail

Product set 1 280 238 177 112 .470
Product set 2 55 30 30 29 .967
Product set 3 23 16 16 12 .750
Product set 4 105 105 104 100 .952
Product set 5 440 432 377 361 .836
Product set 6 408 408 363 363 .890
Product set 7 294 150 150 111 .740
Product set 8 461 391 310 295 .754

25

ALIEN serves a similar purpose to AT&T's BUSTER [WODA86] or Software
Research's SMARTS [CASE87]. There are many similarities between ALIEN
and BUSTER showing the need of all test organizations for test support
systems. Like ALIEN, BUSTER requires test scripts to be independent
and its tests have three parts: setup, procedure, and cleanup.
A BUSTER test can have any of three results: pass, fail, and
inconclusive (equivalent to Deferred). Unlike ALIEN, BUSTER tracks

the number of planned tests and it can time out a test.

3.2 QACOMP

The Quality Assurance COMParison tool, QACOMP, is a general purpose
file compéfison program containing special features to support
testing. A tester who uses QACOMP must run the test at least once
to create "reference" files. Reference files are carefully checked
manually so that subsequent test runs can reliably compare newly

generated test results against them.,

In large production systems it is rare to have a reference file which
matches its actual results file byte-for-byte. The files are often
filled with inconsequential differences, such as timestamps, that are
irrelevant to the function being tested. QACOMP provides a robust
pattern matching facility which permits the tester to specify exactly

which parts of a file are allowed to differ.

QACOMP has a report generator that allows the tester to document
tests, and have the documentation appear on the report alongside
the result of the comparison. The report generator also permits
the tester to indicate in the documentation that the reference files

aren't quite right yet. This is very useful in situations where low

26

priority defects still exist and the problems may not be fixed for a
while. Thus, if the files match, QACOMP will indicate FAIL/NOCHANGE
instead of PASS; a difference 1in the files will be highlighted as

FAIL/CHANGED.

3.3 DIVER & DYNREL

DIVER is a program that causes a processor to halt under software
control. It runs in the processor to be halted, waits a short random
time, and then halts the processor. The halt may occur at any time
including catching an 1/0 process in an I/0 for instance. DIVER is
used to halt pfocessors to verify fault tolerant software. Loss of a
processor should have virtually no effect on system operation. DIVER
is shipped to customers so they may conduct their own tests of this

essential feature.

DYNamic RELoad, DYNREL, is a personal computer emulation of a Tandem
operations and service processor (0SP). The OSP allows an operator
to control Tandem processors, for instance to cold load or run
diagnostics. With DYNREL a test can intentionally cause a system
failure, reload the system, and continue. A DYNREL script can also
cause different system configurations to be loaded for each reload of
the system. DYNREL scripts are frequently used in conjunction with
an ALIEN multi-step test unit. DYNREL can also be set up to monitor
a system so that if a halt océurs, it can dump all the processors,

reload the system, and run the next test or rerun the previous one.

27

3.4 TSIM

Tandem's Terminal SIMulator, TSIM, 1is completely terminal-type
independent and can simulate any terminal type supported by Tandem.
TSIM records the actual byte stream sent to and received by a
terminal. During playback, TSIM replays the byte stream to the
application making requests while recording the applications output
for comparison. TSIM lets the user have a display terminal show the

progress of a playback as it proceeds.

Sessions with multiple terminals can be recorded concurrently
including their relative order of keystrokes. In playback, these
sessions can be synchronized so that applications see inpu£ in the
same order as they were originally entered. This feature ‘is wuseful

for testing an application that shares a cache or uses locks.

TSIM has some major drawbacks. It is not easy to update a previously
recorded session. You generally need to recreate the entire session
to change it. The comparison can be done as the data is received or
the data can be logged and compared in batch mode after the test. An
error, such as going to the wrong screen, can cause the rest of the

test to miscompare.

TSIM is a good basis for a terminal simulator with good performance
and 1low system overheéd but requires support code to better control
and update previously recorded sessions [CASE86]. TSIM also needs a
full screen editor to change data and test flow similar to Test Work
Station [PERE86]. (TWS, which runs on personal computers, is strictly

3270 oriented and therefor not general enough for Tandem's needs.)

28

3.5 JET

The JET test harness supports testing of programs running on personal
computers. It allows PC programs to receive input from, and send
output to, a control process on the Tandem system. Existing Tandem
tools can then be used as an aid in the development and execution of

tests and in the checking of test results.
JET provides the following features:
e translation of keystroke input into human-readable text files

containing multiple test steps;

e supplying keystrokes to the product one step at a time, either as

needed or at tester convenience (stepping mode);
e recording screen output after each testing step;

e allowing test developers to modify test step sequences during test
execution according to conditional statements inserted by the test

developer (loop or branch based on results of previous test steps);
e allowing testing of multiple versions of the program (multiple PCs)

simultaneously.

In addition, JET does not alter the testing environment to the extent
that the results of tests run under JET could not be relied upon to

correctly reflect the product's behavior without JET.

29

3.6 Product Specific Testing Tools

The previously mentioned testing tools are general purpose and may be
used in many different test libraries. Similar tools are available
from outside vendors. In addition to these tools, there are tools
more specific to Tandem's products. Many test libraries also include
product specific testing tools. For instance, to test Tandem's
product for auditing a database to keep it consistent (Transaction
Monitoring Facility - TMF), the TMF QA group wrote a tool that does
random inserts, updates, and deletes to a file or set of files.
Each transaction changes the database so that the sum of a specific
field in all records of a file are always 1,000 times the number of
éommitted transactions. If any transaction completed only part of
its changes, the sum would not compare properly. With this tool,
SELFCHECK, we can test database consistency under various types of
failures. Failures include an aborted transaction, remote system

access loss, single processor failure, and total system failure.

3.7 vC

Tandem has developed 1its own prototype software version control
system, VC. VC is language independent and can be wused with any
set of text files. Thus not only the source, but its documentation
and other project related files are under version control. VC
allows for parallel development on thé same file and implements a
unique merge algorithm for resolving differences when the parallel
developments aré integrated. The VC merge algorithm is more likely

the other version control systems to produce the desired merged

30

result by its remembering the history of changes. Many other version
control systems perform merge as though the two files have no prior

relationship.

VC 1is currently being integrated with our product build tools to

control the entire software construction process.

3.8 PRODRLSE

After building and testing their product, developers formally release
it_ using the product release program, PRODRLSE. PRODRLSE handles the
transfer of developers' product-related files to the official archive.
PRODRLSE is integrated with Tandem's electronic mail system providing
the equivalent of the IEEE Standard Test-Item Transmittal Report.:
PRODRLSE can be wused to release just portions of products for bug

fixes.

PRODRLSE is one of many integrated release tools wused. The entire
release process 1is heavily automated to allow careful tracking of

released code.

3.9 COVER

Tandem has implemented its own unique coverage analyzer called COVER.
It measures statement coverage of virtually any object code running
on a Tandem NonStop System. Since COVER causes negligible degradation
in run-time performance, it can be used to analyze real-time processes
such as the disc process or X25 I/O process without introducing timing
anomalies. We can use COVER against the same code that is finally

shipped.

31

COVER 1is inteqrated into the operating system and works with all
current processoré in Tandem's NonStop line. Tandem compilers know
nothing about COVER and COVER does not instrument the object code
file, it instruments only the in-memory object image. To wuse COVER,
a program must be compiled using compilers that provide symbols for
Tandem's symbolic debugger. COVER needs the symbol information to
distinguish statement starters and in-line constants. This symbol
information can be removed from an object file without any change to

the object code when the product is shipped.

COVER lets you take measurements from several different processes
using the same program file and merge them together. This feature 1is
particularly important for Tandem's implementation of software fault-
tolerant process pairs. We measure the coverage in the primary
process doing the work, and simultaneously in the backup which is
keeping track of the primary. We then kill the primary process and
‘record which code is executed in the backup, which now takes. over
the workload. Killing the primary in different states may cause the

backup to execute different recovery code.

COVER pro&ides several reports from the measurements taken. It can
display each statement number and whether it was executed (default),
just the statement numbers which were not executed (brief), or
the percentage of statements in a procedure that were not executed
(summary). It can also mark up the source listing showing which

statements were unexecuted (markup).

32

3.9.1 Example COVER summary output

Bitmap is from $DATA.COVER.OR1
Program file is SA.QA.PROG dated 02 Jan 1985, 14:56:01

Spaceid 00 word offset 000045 is base of VERSION~AQ1
* Entry point at word offset 000014 is VERSION"AQ1
of 1 statements, 1 (100. %) were not executed.

Spaceid 00 word offset 000164 is base of APPEND"TEXT
Entry point at word offset 000000 is APPEND"TEXT
of 1 statements, 0 (0. %) were not executed.

Spaceid 00 word offset 000173 is base of OUTPUT"
Entry point at word offset 000000 is OUTPUT"
of 6 statements, 2 (33.3%) were not executed.

Spaceid 00 word offset 005136 is base of GOTO"

Entry point at word offset 000014 is GOTO"

Entry point at word offset 000142 is GOTO”SECOND"ENTRY
of 46 statements, 32 (69.6%) were not executed.

Program total:
of 771 statements, 227 (29.4%) were not executed.

A QA developer reviews such coverage reports to evaluate areas that
may need improvement. COVER is a tool that aids in test development
by indicating areas that need evaluation; it does not provide a sﬁrict
measure of library comprehensiveness since it can not show areas
of functionality missing from the product whiéh the library did not

detect [BAIL87].

Other coverage analyzers on the market are based on either a
hardware monitor or instrumentation of the source code. Both
approaches have short commings. A hardware monitor requirés expensive
hardware for each processor and complex software to interpret the
monitored hardware state. Instrumented code provides a great deal of

flexibility in terms of measurements and, if done as a preprocessor,

33

can even be fairly transportable [GIRAS8SG, MILL86]. However,
instrumented code may produce side effects related to increased code
size, use of memory, or degraded performance. COVER allows us to test
production code and perform coverage analysis on that code in a single

execution.

COVER lets us measure statement coverage against real time production
code, 1instead of stronger forms of coverage, e.g. path coverage with
instrumented code. COVER can not produce a histogram of usage, but
Tandem has performance-measurement tools for determining which parts
of code are most hea&ily used. The performance-measurement tools use

a sampling technique that is unacceptable for coverage measurement.

3.10 PRS

The Product Reporting System, PRS, is Tandem's on-line tracking
system; PRS supports two major entities. A Tandem Product Report
(TPR) is equivalent to the IEEE standard Test-Incident Report. A
product Maintenance Notice (PMN) is a development designation of the
fix. A single TPR can produce many PMNs if it describes many
problems, or many TPRs can refer to the same PMN if they are all
really the same problem. PMNs can record which module was in error,
how much time was spent on the fix, and other development information
for tracking. Product developers use PRS to track problems demanding

their attention. QA developers track fixes to be verified.

34

The PRS system is used for all tracking of products that have been
released through the release tools. Thus it is used during QA of a
new release, from before alpha testing, through Beta testing, and in
production. PRS 1is also the way in which enhancement requests are

entered.

A TPR (or PMN) may need to be examinged by many different people on

different systems. Below is a typical example.

| 2
Customer 4—_1:>Field Analyst g———¥®Support —3 » Development
8 7 A manager
QA <4—>— Product 4——14
developer developer

A field analyst enters a TPR on behalf of a customer reporting a
problem (1). The analyst assigns the TPR to support for review (2)
to see if it is a misunderstanding, already fixed, or something else
not requiring development's attention. If support sees the problem
as a new one, the TPR is forwarded to development (3). A development
manager assigns the TPR to a product developer for response (4). The
product developer analyzes the problem and implements a fix. After
testing and releasing the fix, he or she forwards the TPR to their
QA developer for verification (5). The QA developer gets the fix
from the official release archives, verifies it, and returns the TPR
to support (6). Support keeps track of known problems to respond to
field requests. Support sends the TPR back to the field analyst (7)

who informs the customer (8).

35

PRS causes electronic mail messages to be sent to the responsible
people as the TPR is assigned to them. The Tandem report writer can
be run against the PRS database to find the current status of TPRs or

other TPR and PMN related information.

PRS has a database on each system that uses it. Collecting a
complete report involves collecting the information from each system
that maintains it. The distributed database can make complete summary
reports difficult to acquire and interpret due to the large number of

systems with databases.

TPRs are rated on a severity scale of 0 to 3; The most severe problems
have a rating of 3 and the least severe have a rating of 0. TPRs
can be in several easily discernible locations: Field, Support,

Development (includes QA), Publications, Marketing.

The current PRS has several shortcomings as a problem tracking system.
It does not keep sufficiently detailed information about the state of
a TPR, for example "the TPR is waiting for product developer review"
or "the TPR has been sent to QA awaiting release of fix". PRS
is also not designed to record categories of problems found as has
been suggested by Slinglﬁff [SLIN86]. Many development groups have
by convention been able to record this information in various text

fields, but it is not yet automatic and nor eaéy to report.

PRS is currently being redesigned and implemented to provide better
tracking of TPR and PMN states within development, as well as to
accept other information that is currently manually tracked or tracked

via misuse of existing fields.

36

3.10.1 Sample TPR

TANDEM PRODUCT REPORT

TPR NUMBER: S 85-08-05 13:17 980 RESPONSE DUE: 85-09-05
ASSIGNED TO: SEVERITY: O
from the FIELD
PRODUCT NAME: TFORM PRODUCT NUMBER: T9605B10
PRODUCT RELEASE DATE: 16MAY85
CLASSIFICATION: (Problem)
(Software)

ORIGINATION INFORMATION

DATE RECEIVED : 85-08-05 13:19 FROM: \SVLDEV
DATE FORWARDED: 85-08-05 13:23 TO : \SSG
DATE RETURNED : 85-08-30 17:38 TO FIELD
ORIGINATOR NAME: KEITH STOBIE EMP # 980

ADDRESS: QUALITY ASSURANCE
CUPERTINO DEVELOPMEN
CUSTOMER: TANDEM \SVLDEV SYSTEM # 888
10555 RIGEVIEW COURT
" CUPERTINO, CA 395014

DESCRIPTION

** BRIEF DESCRIPTION

FILE WRITE * truncactes trailing blanks.
\FILE WRITE * "a b"," c ","d" gives "a b cd"

** DETAIL DESCRIPTION

** RESPONSE
FORWARDED TO DAN MELINGER 85-08-06 MIMI KOMITO.

RESPONDENT: Dan Melinger (Software Development) DATE:25AUG85
TPR DISPOSITION: Change will be in version B30 DATE:01FEB86

FURTHER EXPLANATION OF CHANGE

The translator (back-end) section of TFORM was stripping
trailing blanks from lines that were about to be output.
This should not be done if the line was generated by a \FILE
WRITE * command.

The test file for this is \PRUNE.S$PITS.TFORMBUG.KEITHS.

OTHER PRODUCTS AFFECTED: None.

37

4.0 Conclusion

4.1 IEEE Standard for Software Test Documentation comparison

The IEEE Standard [IEEE83] defines eight types of possible
documentation for software testing. Not all documentation is
necessary for all types of software projects. In some cases we have

tailored the standard format to.better fit our needs and environment.

Except for the Approvals section, which no Tandem documents contain,
many of Tandem's Test Plans correspond exactly to the IEEE's. Our
Test Design Specification is an amalgamation of the IEEE's Test-Design
and Test-Case Specification. While most test libraries include test
procedure specifications, they follow only the intent of the IEEE
and not 1its form. ALIEN requires a file called DOCUMENT for each
test unit; that file corresponds to the test procedure specification.
Tandem's equivalent of the Test-Item Transmittal Report is the mail
message generated by PRODRLSE when a product is submitted. Tandem has
very little resembling the IEEE's test log and we are uncertain of
its usefulness in an automated test environment where many of the test
libraries run overnight, unattended. ALIEN's test log records a test
start, stop, and evaluation, but not its "visually observable results”
or environmental information. Tandem's TPR/PMN scheme is analogous to
the IEEE's Test-Incident Report but does not exactly follow the IEEE's
outline. ,Tandém produces weekly summary reports during a release and
a final assessment, but not with the formality called for by the
IEEE's Test-Summary Report. The summary report is an area where we

can probably improve.

38

The table Dbelow estimates the percentage of compliance between
Tandem's documents and the IEEE software test documents. "Syntax"
indicates to what extent we use the titles, subtitles, etc. that the
standard recommends. "Concept" indicates to what extent our documents

correspond to the spirit of what the IEEE document calls for.

IEEE Tandem Syntax Concept
Test Plan Test Plan 95 95
Test-Design Spec Test-Design Spec 50 80
Test-Case Spec

Test-Procedure Spec Test-Procedure Spec 50 80
Test-Item Transmittal PRODRLSE mail message 40 70
Test Log Test Log 30 50
Test-Incident Report TPR/PMN 80 100
Test-Summary Report Test-Summary Report 0 40

4.2 FUTURE DIRECTIONS

We have recently completed a cycle of improving Quality Assurance
at Tandem. This has resulted 1in a better understanding of our
development process, a fuller complement of tools, and raising the
level of experience of people in our testing organization. We need
to continue work in all these areas, of course, but we also need to
obtain better measurements, so that we can understand where best to

apply our next efforts at improvement.

Our measurement tools are improving, as well as our ideas as to what
should be measured. We are looking for trends among our measurements
of what has occurred which will tell us what techniques have worked
well in the past, and what are the early indicators that a product

is developing into a quality product as well as the indicators that

39

something is amiss. It is our hope and firm belief that we can
continue to improve our ability to deliver high quality software on

competitive schedules, and for competitive development costs.

4.3 SUMMARY

Different QA groups are implementing these processes, tools, and
measurements at different rates. No single project currently does all
that we have described, but we are all striving to achieve the highest

levels of software quality.

This paper has described the process followed by Tandem Computers
today to ensure delivery of high quality software on schedule. It
has discussed our development organization, our internal training, and
the Software Development Life Cycle. It has described the tools we
use today to enhance testing productivity and to measure control the
effectiveness of testing. The goals of our tools are to automate the

testing process, track progress and problems found, and measure the

results.

4.4 Acknowledgements

The authors wish to thank Bruce Bailey for COVER, Doug Chorey for the
Software Projects Handbook, Claude Fenner for QACOMP and ALIEN, David
Hammer and Ian Earnest for DYNREL, Ken Franklin for PRODRLSE, Robin
Glascock for JET, Jim Mead for TSIM, Chris Sheedy for VC, and Edith
Reisner, Tom VanVleck, Howard Moehrke, and our other reviewers for

their careful review of this paper.

40

BAIL87

BART86

CASES86

CASE87

GIRA86

HETZ84

IEEES83

IEEE84

INDES85

REFERENCES

Bailey, B., Uses and Abuses of Statement Coverage, Tandem

Technical Report TR87.2, 1987, Cupertino, CA.

Bartlett, J., Gary, J., Horst, B. Fault Tolerance in Tandem
Computer Systems, Tandem Technical Report TR86.2, 1986,

Cupertino, CA.

Casey D., Ceguerra L., Irwin J., Morrison M., User's Manual
for CAPBAK, Release 2.0.8, Software ﬁesearch Associates
TN-1075/8, 1986.

Capture/Playback system for PC's.

Casey D., SMARTS - Software Maintenance and Regression Test
System Function Description and User’'s Manual, Release 3.1,

Software Research Associates TN-1281/3.1, 1987.

Girard, G., Measuring the Effectiveness of Testing, Third
National Conference on Testing Computer Software Conference

Notebook.

Hetzel, W., The Complete Guide to Software Testing, Wellesley,

MA: QED Information Sciences, Inc. 1984.

IEEE Standard for Software Test Documentation, ANSI/IEEE Std

829-1983,
IEEE Standards Seminar - Software Testing Workshop, 1984,

Index Technology Corporation, Excelrator Users Guide, Index

Technology Corporation, Cambridge, MA, 1985.

41

LIND86

MILL86

PERE86

SLIN86

WODASB6

42

Lindgren, A. L., Testing Quality Control of Large Software
Systems, Third National Conference on Testing Computer

Software Conference Notebook.

Miller, E., Using Tools to Improve Test Effectiveness, Third
National Conference on Testing Computer Software Conference
Notebook.

Discusses TCAT an instrumention coverage analiyizer.

Perelmuter, I. M., Direction of Automation 1in Software
Testing, Third National Conference on Testing Computer
Software Conference Notebook.

Describes LEAP & TWS (Test Work Station)

Slingluff, M., Test Tracking Systems, Third National

Conference on Testing Computer Software Conference Notebook.

Wodarz, D., An Automted Solution to Many Common Testing
Problems, Third National Conference on Testing Computer
Software Conference Notebook.

Describes BUSTER.

Distributed by
//’|TANDEMCOMPUTERS
Corporate Information Center
19333 Vallco Parkway MS3-07
Cupertino, CA 95014-2599

-

