//‘|TANDEMCOMPUTEF%S

Reliability Improvement
Through Static RAM Sparing

Robert W. Horst

Technical Report 87.1
January 1987
Part Number 87618

RELIABILITY IMPROVEMENT THROUGH STATIC RAM SPARI NG
Robert W. Horst
January 1987

Tandem Technical Report 87.1

Tandem TR 87.1

RELIABILITY IMPROVEMENT THROUGH STATIC RAM SPARING

Robert W. Horst

January 1987
ABSTRACT

This paper presents a practical approach to improving the failure rate
of static RAM arrays through the use of spare RAMs. Assuming no
preventative maintenance is performed, the repair rate of a spared
array is a .function of the failure rates of the other logic and other
spared arrays on the same field-repairable unit. General equations
are developed to express failure rate improvements for multiple spare
RAM groups and varying amounts of other non-spared logic. The use of

RAM sparing in the Tandem NonStop VLX is discussed.

TABLE OF CONTENTS
TNt rOAUCELION . e e v e v seueenenenesonaacsassssssssasassasssassassonal
Previous Approaches..2
The RAM Sparing Approach.......................................3
Repair Policies........ PP
Analysis of Spared Array Failure RALES.eeeereeeesossssssncennnsd
Multiple Different Spared ArrayS....ceeceeeccecccsses S < |
Sparing in the NonStop VLX DLOCESSOr e s eesesseasanennanssancenasd
CONCLUSIONS . ¢ v e veseeuseacasasanacaasssssssessssasnansssnsseasall
REE @I ENCES . e e s e vesencecnsnoesesansosasasasasessanssnssssessassll
Figures...12

BASIC Program to compute failure FAteS.esseeeesesssss . Appendix A

1. Introduction

The use of higher levels of integration has helped improve the
reliability of new computer systems. Increasingly, the central
processors are built from high performance microprocessors, or are
built out of high density gate arrays or custom VLSI. All of these
technologies require fewer parts and less power than earlier discrete
logic implementations, resulting in dramatically improved reliability.

Another trend, however, is to increase the processor performance
through the use of large cache memories. These caches are built from
high speed static RAM memory components. Even though RAM densities
have improved greatly, the part count of caches has not decreased in
proportion; instead, larger caches are used to boost performance even
more. In addition to their use in caches, static RAMs are used in
large numbers for translation lookaside buffers, large scratchpad
memories, and for control stores. As as result, failure rates of new
systems are beginning to be dominated by the failure rates of the
static RAMs.

The reliability of the static RAMs is becoming more questionable
because static RAMs are no longer internally static. In order to
attain much higher speeds and densities, RAM designers have borrowed
some of the tricks used in dynamic RAMs and now use address transition
detection to generate a series of clock pulses for each new memory
access [FLAN86, HARD81]. The design of a totally foolproof circuit
for address transition detection and clocking has proven to be an
extremely difficult problem. It is difficult to rigorously prove that
a circuit will not be fooled by narrow address line glitches or inputs
hovering near threshold under all conditions of temperature, voltage,
and process variation. Devising tests for all possible combinations
of these parameters is not possible either. A careful system designer
is wise to design his system, if possible, to continue operation.
despite a faulty RAM which has slipped through the component screening
process.

Devising a way to tolerate RAM failures has a double benefit; system
availability improves, and service costs decrease. If the system
itself is fault tolerant, there is little room left for improvement in
the hardware availability because system failures are dominated by
operational and software failures [GRAY85]. However, all systems
benefit from reliability improvements resulting in reduced service
costs and reduced requirements for spare replacement boards. Hence,
unlike previous papers which consider sparing to improve system
availability, this paper considers RAM sparing as a way to reduce
service costs.

2. Previous Approaches

Error correcting codes are widely used to survive dynamic RAM failures
in main memories. Typically, modified Hamming codes are used for
single-bit error correction and double-bit error detection. For 32
bit data words, this requires an additional 8 check bits, a fairly
large overhead of 25%.

Another problem with ECC codes for static RAMs is that significant
performance may be lost. In order to check an ECC code, first a
syndrome is generated through several levels of exclusive-OR gates.
The syndrome is passed through an encoder and to another level of
exclusive-OR to flip the bit in error. In many systems, this takes an
entire clock cycle. To slow down a processor's cache access by an
extra clock cycle generally results in an unacceptable performance
degradation. Even if the system is designed to inject an extra cycle
only when a single bit error occurs, the resultant performance loss is
great enough to require a service call.

The general approach of standby redundancy has been widely studied
[BOUR69, NG80]. These papers generally consider the effect of standby
redundancy on system availability, but do not suggest or analyze the
use of standby redundancy for improving subsystem repair rates.
[GROS81] has considered the use of small static RAMs to provide spare
bits for dynamic RAM arrays, but this requires a much different
analysis than the problem of whole RAM sparing considered here.

This paper directly addresses the theoretical and practical problems
encountered in designing a RAM sparing scheme. Unlike previous
papers, it takes into account the the possibility of multiple groups
of spared modules on the same field replaceable unit (FRU), and it
uses a more realistic repair policy.

3. The RAM sparing approach

A block diagram for RAM sparing is shown in Figure 1. The basic
organization is that of K-out-of-N hot standby redundancy. Since the
reliability gains generally do not warrant more than a single spare
per group, this reduces to K-out-of-K+1.

A group of K RAMs has an additional spare RAM which may be substituted
for any one failed RAM. Generally one of the K RAMs stores parity to
allow the detection of any RAM failure. When a hard RAM failure is
detected, the SPARE SELECT register is loaded with a value to select

the RAM for replacement. Write data to the spare is driven by a
multiplexer which selects the appropriate write data line. Individual
2:1 output multiplexers driven by a decode of the SPARE SELECT allow
one read data line to be driven from the spare instead of its
associated RAM.

Multiple groups of spared RAMs may be configured by duplicating the
structure of Figure 1. In some cases, multiple groups are required
due to multiple arrays receiving different address or control lines.
In other cases, dividing an array into multiple groups may be

done purposely to further improve the failure rate. Tradeoffs in
selection of the group size are considered in section 5.

Performance degradation is minimal since only a 2:1 multiplexer is
inserted in the read data path. In many technologies this can be
performed by a single AND gate delay plus a wired-OR. There may be
some additional delay due to the added loading of the spare line, but
this effect is small if the multiplexing is done internally to a gate
array or custom VLSI component. Write data timing is usually not as
critical, and the extra multiplexer on the spare RAM usually poses
little problem.

The system may be designed to dynamically or statically invoke the
sparing. If sparing is invoked statically, a RAM failure would cause
a failure of the system (if non fault-tolerant) or module (if fault
tolerant). It then would be brought back on-line manually or
automatically through the maintenance subsystem with the spare
selected.

It is more desirable to reconfigure the spare dynamically. In order
to do this, there must be a backup copy of the failed RAM's data
stored somewhere in the system. In a store-through cache, the backup
data is readily available through the copy in main memory. Once the
spare is invoked, every location in the spare which is not correct
causes a parity error. Each parity error causes a cache miss which
brings in a fresh copy of the data from main memory. Other arrays
which do not have backup data readily available may require extra
memory to allow the correct data to be refetched or reconstructed.

Allowing the arrays to be spared dynamically has an added benefit; the
same backup mechanism can be used to recover from intermittent errors
both in normal and spared operation. In fact, it is best to invoke
the spare only after a predetermined threshold of soft errors has
occurred.

4. Repair Policies

There are three reasonable policies for repairing the board after the
first RAM failure: field replacement of the bad RAM on the next
reqular service call, replacement of the board on the next service
call, and replacement of the board only after that board fails (due to
a double RAM failure, or other logic failure). These alternatives are
examined individually as follows:

Field RAM replacement

In order to field-replace the RAMs, they must be socketed. Experience
on early Tandem processors has made us wary of this option for several
reasons. If inexpensive sockets are used, there tend to be long term
reliability problems associated with the sockets themselves; if
expensive sockets are used, the extra cost may negate the service cost
savings. Also, there are practical problems of stocking the field
with correct spare RAMs and guaranteeing they will be handled properly
to avoid physical and electrostatic damage. For these reasons, we do
not believe socketing of large arrays is generally a good optionu
Instead, we solder the RAMs directly into the boards.

Board replacement for single RAM failures

Another replacement policy is to swap the board containing a single
RAM failure the next time a CE is on-site for preventative maintenance
or for any other failure requiring service. With this policy, only a
portion of the service cost reduction is realized. The number of
service calls is reduced, but the board repair cost is not reduced,
and the field spare inventory is not reduced. 1In addition, customers
generally prefer not to repair something which is not broken (as far
as they can determine). They may prefer to retain the board which has
a single failure, but which as performed faithfully for the last
several months, as opposed to swapping-in the unknown spare the CE has
brought. Even if the spare is good, anytime a CE has to touch a
machine, there is some potential for human error which could cause
more problems.

Board replacement for board failures

Tandem has chosen to adopt the policy of swapping the board only after
it has failed completely either due to a double RAM failure, or to
failure of some other logic on the same FRU. This policy gives the
maximum savings from the RAM sparing, because some multiple component
failures are repaired in a single repair cycle instead of individual
cycles for each failure. In a fault-tolerant system, since the board
failure does not cause a system failure, there is little impact on the
customer if the board finally fails due to a second RAM failure. In
not fault-tolerant systems, this policy may or may not make sense
depending on the desired tradeoff between high availability and low
service costs.

The following analysis assumes the repair-on-board-failure policy:
Note that this policy is different from the those assumed in previous
papers on standby redundancy with repair [NG80].

5. Analysis of Spared Array Failure Rates

The assumption of the repair-on-board-failure policy creates the
interesting result that the failure rate of each spared array is a
function of the rest of the logic on the same board. If there are
many other components on the board, it is unlikely that a second RAM
will fail before another component on the board, and the first failure
will be fixed for free. The apparent failure rate (double failures)
of a spared array approaches zero as the amount of other logic
increases. On the other hand, if there is little other logic on the
board, sparing can have a greater impact on improving the overall
failure rate of that board.

If there are multiple groups of spared RAMs, each group affects the
reliability of the others. With many groups, multiple single failures
are likely to accumulate before the first double failure, again
raising the probability of fixing multiple failures at a time.

Following is the derivation of a model which can be used to

explain these effects. It is intended to be useful for design
engineers in making tradeoffs in sparing, as well as by reliability
engineers in computing expected failure rates of boards with spared
RAMS.

Assumptions

The model used will be accurate only if the following assumptions
are met:

1. Component failure rates are all independent and exponentially
distributed.

2. In spared arrays, there are no undetected single failures
which can cause board failures.

3. After repair, the board is as good as a new board.

4. Repair rates are exponentially distributed and equal to the
failure rate of the other logic on the board.

Definition of Terms:

Ar - Failure rate of one RAM
Ab - Failure rate of the Board (FRU)
Asg - Failure rate of a Spared Group of RAMs
MTTFsg - Mean Time To (double) Failures of a Spared Group
(= 1/Asq)
K - The number of RAMs in each group not counting the spare
G - The number of identical spared groups on the board
L - A constant used to express the non-spared logic failure

rate in RAM equivalents. (Alogic = LAr)

u - Repair rate of the board to fix problems other than
double failures in this group.

u2 - Repair rate to fix double failures in this group.

FIr - Failure rate Improvement per RAM. Equals the ratio of
the failure rate of a group of K unspared RAMs to a
group of K+1 spared RAMs,

FIb - Failure rate improvement of the Board. Ratio of
failure rates with and without sparing.

The Markov graph and transition matrix for one spared group are shown
below.

(K+1)Ar
1 —_ 2
No Fails One fail
u
———
u2 lKAr
. 3

Two Falls

-(K+1)Ar (K+1)Ar 0
A= u -u-kAr kAr
u? 0 -u2

Starting in state 1, the first failure occurs on the first transition
to state 3. Solving for the MTTF using the linear algebra method
described in [DHIL81]:

u + KAr + (K+1)~r

(1) MTTFsg =
2
Ar c (K+1)K

The repair rate, u, equals the failure rate of the rest of the logic
on the board. The trick in this analysis is to realize that because
all groups are identical, the failure rate improvement of the other
groups on the board is the same as the group whose failure rate we are
trying to determine. Hence, the repair rate of this group equals the
failure rate of the other groups plus the nonspared logic:

(2) u = (G-1)(K+1)Ar/FIr + LAr

Substituting for u in (1),

(G-1)(K+1)/FIr + L + 2K + 1
(3) MTTFsg =

Ar(K+1)K
The failure rate improvement of the RAMs in this group is given by:
(4) FIr = (K+1)Ar/Asq where Asg = 1/MTTFsg then
(5) MTTFsg = FIr/(K+1)Ar

Setting equations (3) and (5) equal to each other yields a quadratic
equation in FIr. Selecting the positive root gives:

2
L + 2K + 1 + (L + 2K + 1) + 4K(G-1)(K+1)

(6) FIr =
2K

And the total.failure rate of the spared board is
(7) Asb = (L + G(K+1)/FIr)Ar

The failure rate before sparing was

(8) Ab = (L + GK)Ar

Then the board failure rate improvement ratio is

L + GK
(3) FIb =Ab/Asb =

L + G(K+1)/FIr

The graphs of Fiqures 2a - 2c show FIr versus L for varying numbers of
RAMs and groups. These graphs show how failure rate improvement of
the RAMs improves with either more nonspared logic on the board (large
L) or with the array partitioned into more groups (large G). These
graphs can be used by a designer to get a rough idea of how failure
rates will change with sparing. For instance, if the failure rate of
the rest of the logic is estimated at about the same as 100 RAMs, then
the failure rate of each RAM in a spared group of 64 will appear to
improve by a factor of about 3.6 (i.e. in the failure rate
calculations, it will look like only 66/3.6 = 18.3 RAMs).

Partitioning the array into two spared groups will make the failure
rate improvement about 5.2 or equal to only 67/5.2 = 12.9 RAMs.

Figures 3a-3b graph FIb versus L for varying numbers of RAMs and
groups. These graphs show that sparing has greater overall impact on
the board's failure rate with fewer nonspared components. They show
that for small L, partitioning the logic into multiple spared groups
can have a large impact on board failure rate, but with large L there
may be little point in multiple groups; for large L, the nonspared
logic is much more likely to fail before a second RAM failure, hence
there is not much point in tolerating multiple RAM failures.

6. Multiple Different Spared Arrays

The closed form solution to spared array failure rates in equations’
(6) and (7) works only if all RAM arrays on the board have identical
organizations and their RAMs have the same failure rates. On large
boards, there may be multiple different types of spared arrays. One
way to determine this failure rate would be to develop a unique Markov
graph for the entire board and solve it. This approach is taken in
[GoYvas6], but the method proposed is extremely complex, and it still
does not take into account the preferred repair policy. Below is a
much simpler approach which builds on the above solution for identical
arrays.

If each array is treated individually, then the failure rate of each
array will be overestimated; board failures due to a double failure on
one array are not figured into the repair frequency of the other
arrays. This gives a way to obtain an upper bound on the board
failure rate. For N arrays on the board:

N
(10) ~bupper = LAr + E (Ki + 1)GiAr/FIr(L,Li,Gi)
i-1

1 +2k+1+\/ (1+ 2k+ 1) + 4k(g-1) (k+1)

Where FIr(l,k,g) =
2k

A lower bound on the board failure rate can be obtained by assuming

the repair frequency for each array equals the upper bound of the
failure rate of the board.

N
(11) *blower = LAr + E (Ki + 1)GiAr/FIr(*bupper/Ar,Li,Gi)
i-1
To illustrate this process, consider a board with L=100 and two arrays
of 33 + spare RAMs, For this example we will use identical failure
rates of the RAMs of .2 FPM (fails per million hours). Identical
arrays and failure rates were picked for this example in order to

compare the exact solution using equations (6) and (7) with the upper
and lower bounds.

FIr(l,k,q) = FIr(100,33,2) = 5.26

FIb = .2(100 + 66/5.26) = 22.5 FPM (actual failure rate)
treating the arrays individually,

FIr(l,k,q) = FIr(100,33,1) = 5.06

and FIbupper = .2%100 + .2 * 33/5.06 + .2 * 33/5.06 = 22.6 FPM

and for the lower bound,

FIr(l,k,q) = FIr(22.6/.2,33,1) = 5.45
and FIlower = .2*100 + .2 * 33/5.45 + .2 * 33/5.45 = 22.4 FPM

The spread between upper and lower bound is less than 1% of the total
failure rate. This is far more accurate than the calculated failure
rates of the individual components. In practice, most boards which
have multiple different arrays will also have enough other logic
(large L) that the spread between upper and lower bounds is narrow,
and the upper bound can be used as the failure rate.

7. .Sparing in the Tandem NonStop VLX processor

The NonStop VLX system was introduced in 1986 as the top end of
Tandem's line of fault-tolerant business computers [ELEC86]. The
system consists of from four to sixteen processors which communicate
over a high speed inter-processor bus. Each processor consists of two
processor boards plus one or two memory boards. One of the processor
boards, the Data Path (DP) board has the ALU and 64 Kbyte cache
memory. The second processor board, the Interface (IF) board,
contains interfaces to the other processors and the IO bus as well as
the 120 bit by 8K word control store. The logic on both boards is.
implemented with 2000 gate bipolar gate arrays. The caches and
control store are built from 64Kbit and 16Kbit high speed CMOS static
RAMs. Sparing is used on large arrays on both the DP and IF boards.

The DP board uses sparing for the cache memory. The cache is store
through, which allows intermittent RAM failures to be handled by
refetching the data from main memory. After an error threshold is
exceeded, the microcode decides to invoke the spare. The spare 1is
switched in, and the correct data is faulted in using the soft error
mechanism. The array has 32 data RAMs, 8 parity RAMs (nibble parity)
and one spare. The remaining logic on the board has a failure rate
equivalent to 107 RAMs. Thus, L=107, K=40 and G=1 which gives

FIr = 4.7.

There is a second small array on the DP for scratchpad register
storage. The array has 5 RAMs which are duplicated in order to
provide soft error recovery. This is equivalent to a single RAM with
one spare, where the failure rate of each equivalent RAM is equal to
five times the actual RAM failure rate. For this array, L=21, K=1 and
G=1 which gives a failure FIr = 24,

Bounds on the total DP board failure rate are determined using
equations (10) and (11) for the two spared arrays. The difference
between the bounds amounts to about a 1% error. The analysis predicts
31% fewer failures on the DP board due to sparing.

The IF board uses sparing in the control store. The control store
design is itself unusual in that there are two identical copies which
are accessed beginning on alternate cycles. By spreading each RAM
access over two machine cycles, a faster cycle time can be used, and
performance is improved. This design also tolerates soft errors (with

some performance penalty) by switching to the alternate bank. The
microcode switches in the spare once a soft error threshold has been
exceeded.

The control store is actually four different arrays; an additional
pair of Entry Control Stores (ECSs) addressed by the macroinstruction
holds the first microcode line of each macroinstruction. Each of the
four arrays has 15 RAMs plus a spare, but due to control logic
limitations, the ECS spares cannot be controlled independently of the
main control store. As a result, the configuration is equivalent to
two groups of 31 + spare RAM equivalents, where the failure rate of
each RAM equivalent equals the sum of the ECS RAM failure rate and the
main control store RAM failure rate. Then for the IF board, L=44.4,
K=15 and G=2. From equation (6), FIr = 5.8. The IF board failure
rate improved by 47% due to sparing.

8. Conclusions

In the past, standby redundancy has been considered as a way to
improve availability or expected mission times of fault tolerant
computers. This paper has considered the same type of redundancy as a
way to improve failure rates of static RAM arrays. New analysis
methods were developed to predict the failure rates of such arrays.
Finally, the use of sparing in the NonStop VLX has shown it to be a
viable approach to significantly improving repair rates in a
commercial product. It is expected that many other systems could
similarly benefit from incorporation of static RAM sparing.

9. References

[BOUR69] Bouricius, W.G., W.C. Carter and P.R. Schneider, "Reliability
Modeling Techniques for Self-Repairing Computer Systems", from
Proc. ACM Annual Conference, pp 295-309, 1969.

[DHIL81] Dhillon, B.S. and C. Singh, "Engineering Reliability",
New York, John Wiley & Sons, pp 322-325, 1981.

[ELEC86] "Tandem Makes a Good Thing Better”, Electronics, pp 34-38,
April 14, 1986.

[FLAN86] Flannagan, S. et al, "Two 64K CMOS SRAMs with 13ns Access
Time", ISSCC Digest of Technical Papers, pp 208-209, Feb, 1986.

[GOYA86] Goyal, A., et al, "The System Availability Estimator", Proc.
16th Fault Tolerant Computing Symposium, pp 84-89, July, 1986.

[GRAY85] "Why Do Computers Stop and What Can We Do About It?", Tandem
Technical Report TR85.7, Cupertino, CA, 1985.

[GROS81] Grosspietsch, K.E., J. Kaiser and E. Nett, "A Dynamic

Stand-by System for Random Access Memories", Proc. 11th Fault
Tolerant Computing Symposium, pp 268-270, June, 1981.

10

[HARD81] Hardee, K. and R. Sud, "A Fault-Tolerant 30 ns/375mw 16Kxl
NMOS Static RAM", IEEE Journal of Solid-State Circuits, pp 435-443,
Oct. 1981. :

[NG80] NG, Y., and A. Avizienis, "A Unified Reliability Model for
Fault-Tolerant Computers", from IEEE Trans Computers, pp 1002-1011,
Nov., 1980.

11

SPARE

SELECT
WRITE DATA
\
K:1
¥ ¥ v
RAM RAM RAM SPARE
1 2 e 0 K RAM

X:K+1
Decoder

Parity
Check

READ DATA

Figure 1. Block diagram of RAM sparing.

EFFECTIVE RAM FAILURE RATE IMPROVEMENT
FOR SPARED DATA RAMS
WITH 64 DATA RAMS (+ PARITY + SPARES)

100 7 e
I b o= 8 Groups of 9
j‘ RAMSs + Spr
14
RAM FAIL !ll/h ’Wi -o= 4 Groups of 17
RATE 0 ;ﬂ, / / i RAMs + Spr
IMPROVE i -=2- 2 Groups of 33
RATIO i '{ﬂﬁﬂig RAMs + Spr
Lt Lsuo” Wi o
g_df.ﬁ.:é_‘,é -0- 1 Group of 65
D-Tmﬂﬂn RAMSs + Spr
il il
1 10 100 1000

FAIL RATE OF OTHER LOGIC IN
RAM-EQUIVALENTS

Figure 2a. FIr versus L for 64 data RAMs plus parity
in 1,2,4 or 8 spared groups.

EFFECTIVE RAM FAILURE RATE IMPROVEMENT
FOR SPARED DATA RAMS
WITH 32 DATA RAMS (+ PARITY + SPARES)

1000
-o- 8 Groups of 5
i RAMs + Spr
|
RAMEAL 100 : [Groups of 9
RATE 2 ‘:*Q:Li RAMSs + Spr
IMPROVE o o AL -3- 2 Groups of 17
RATIO I T 2 =AM
10 it "'»J'Q‘ |- l{®] S+Spr
see o -o- 1 Group of 33
ek A Sp
o LU T

1 10 100 1000

FAIL RATE OF OTHER LOGIC IN
RAM-EQUIVALENTS

Figure 2b., FIr versus L for 32 data RAMs plus parity
in 1,2,4 or 8 spared groups.

EFFECTIVE RAM FAILURE RATE IMPROVEMENT
FOR SPARED DATA RAMS
WITH 16 DATA RAMS (+ PARITY + SPARES)

1000
i -»- 8 Groups of 3
el RAMs + Spr
Ll
rRAM AL 190 i?:‘é: 3 | -o- 4 Groupsof5
RATE 174 D':'; RAMs + Spr
IMPROVE Vb ! -3- 2 Groups of 9
RATIO 10 % Slip#] RAMs + Spr
: oo AP0
= S -0- 1 Group of 17
m=a1120e~] RAMS + Spr
 LLI
1 10 100 1000
FAIL RATE OF OTHER LOGICIN
RAM-EQUIVALENTS

Figure 2c. FIr versus L for 16 data RAMs plus parity
in 1,2,4 or 8 spared groups.

EFFECTIVE BOARD FAILURE RATE IMPROVEMENT
FOR SPARED DATA RAMS
WITH 64 DATA RAMS (+ PARITY + SPARES)

4 T
3.5 8= -e- 8 Groups of 9
ol I RAMSs + Spr
i
BOARD FAIL 3 o-5]] \ -0~ 4 Groups of 17
RATE L RAMSs + Spr
MPROVE ™ &-al al l\é -=- 2 Groups of 33
RATIO 5 |1 | P RAMs + Spr
il
5 ﬂ T -o- 1 Group of 65
1 ﬁ ! RAMSs + Spr
1 h’.’.‘u

1 10 100 1000

FAIL RATE OF OTHERLOGIC IN
RAM-EQUIVALENTS

Figure 3a. FIb versus L for 64 data RAMs plus parity
in 1,2,4 or 8 spared groups.

EFFECTIVE BOARD FAILURE RATE IMPROVEMENT
FOR SPARED DATA RAMS
WITH 32 DATA RAMS (+ PARITY + SPARES)

35
.\g m -2- 8 Groups of 5
3 ‘ RAMs + Spr
r)\o\
BOARD FAIL 5 s | [Tl o~ 4 Groups of 9
RATE : I | \e RAMs + Spr
MPROVE ‘aujgll_o - 2 Groups of 17
RATIO GO-nJ. &l "\L\i\ | RAMs + Spr
NN Il
15 “ o \§4 -0- 1 GrOUp Of 33
CXla
E N RAMs + Spr
1 Pl

1 10 100 1000

FAIL RATE OF OTHERLOGIC N
RAM-EQUIVALENTS

Figure 3b. FIb versus L for 32 data RAMs plus parity
in 1,2,4 or 8 spared groups.

Appendix A - BASIC Program to Compute Failure Rates

Following is a simple BASIC program which can be used to compute
failure rates on boards with spared RAMs.

The program computes an exact solution for the failure rate if the
board contains a single spared array composed of one or more spared
groups. It computes an upper bound on the failure rate if the board
contains more than one array. The upper bound is usually a good
enough approximation unless there is almost nothing else on the board
other than the RAMs. When in doubt, the lower bound can be easily
computed by rerunning the program and inputting the upper bound at the

request for "Non-RAM fail rate in FPM".
A recent version of the program will normally reside on

\TSB.S$SENGR01.RAM, SPARES

secured for NETDUP access.

4 print ""

5 Print "RAM SPARE MTBF PROGRAM - R. Horst, 1/7/87"
6 print ""

7 print "Type control-Y to exit"

9 print ""

10 input "Non-RAM fail rate in FPM",Yl
15 input "Number of arrays on this board",NA

20 Ytot=Yl
25 Yold=Yl
30 For i= 1 to NA

35 Print ""

40 Print "For array";i;":" :

45 input "RAM fail rate in FPM",Yr
50 L = Yl/Yr

55 input "# of groups of Spared RAMs",g
60 input "RAMs per group excluding spare”,k

65 print "L=";L

70 a= k

75 b= -L-1-2*k

80 c= (1-g)*(K+1)

85 FI = (=b + (b*b -4 * a * c)**.,5)/(2 * a)

130 print "Array";i;" RAM fail rate imrovement=", FI

140 FIb= (k*g + L)/(L + (k+1)*g/FI) 1Board fail rate improvement
150 Yarr =Yr*G*(K+1)/FI

160 print "Array";i;"Failure rate ", Yarr;"FPM"

180 Ytot=Ytot+Yarr

190 Yold=Yold+g*K*Yr .

200 next i

205 Print ""

207 Print "Total RAM failure rate",Ytot-Y1l;"FPM"

210 Print "****** Board Fail Rate ",Ytot;"FPM **X*xxxd

220 print "Improvement in board MTBF due to sparing = ",Yold/Ytot

500 print " "
510 goto 9

Distributed by
//’|TANDEMCOMPUTERS
Corporate Information Center
19333 Vallco Parkway MS3-07
Cupertino, CA 95014-2599

