
Tandem NonStop (TM) and NonStop II (TM) Systems

EXPAND (TM) User's Manual

ABSTRACT: This manual describes the GUARDIAN/EXPAND operating
system for network managers, programmers, and oper
ators.

PRODUCT VERSION: EXPAND COO

OPERATING SYSTEM VERSION: GUARDIAN A06 (NonStop II System)
GUARDIAN E07 (NonStop System)

Throughout this document, all references to the "NonStop II
system" indicate the software that runs on Tandem NonStop II
processors and/or NonStop TXP (TM) processors.

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014-2599

Part No. 82085 COO
December 1983

Printed in U.S.A.

Edition -----

First Edition
Second Edition
Third Edition

DOCUMENT HISTORY

Operating
Part System
Number Version

82085 ADO GUARDIAN AOO/EOO
82085 BOO GUARDIAN AOO/E01
82085 COO GUARDIAN A06/E07

Date -------

April 1981
June 1981
December 1983

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright © 1983 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or servicemarks of Tandem Computers
Incorporated:

AXCESS BINDER CROSSREF DDL
EDIT ENABLE ENCOMPASS ENCORE
ENSCRIBE ENTRY ENTRY520 ENVOY
EXPAND FOX GUARDIAN INSPECT
NonStop 1+ NonStop I I NonStop TXP PATHWAY
SNAX Tandem TAL TGAL
TIL TMF TRANSFER XRAY

INFOSAT is a trademark in which both 'randem and American
Satellite have rights.

DYNABUS
ENF'ORM
EXCHANGE
NonStop
PERUSE
THL
XREF

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

NEW AND CHANGED INFORMATION

This edition of the EXPAND User's Manual contains the following
principal changes:

The new enhanced routing description is added. You may now
declare, through a call to the system procedure SETMODE, a
transmission priority. This transmission priority is used in
combination with the type of transport media available to
provide the most efficient transfer of data withing the
network. The SETMODE function (71) is described in Section 3,
System Procedures. Enhanced routing is described in Section 4.

A brief description of the CSS6100 Communications Management
Interface (CMI) has been added to Section 4.

Two new sections have been added. These are:

Section 5.
Section 6.

Fiber Optic Extension (FOX)
Introduction to INFOSAT

Appendix A, File System Errors, has been removed. The File
System errors are now listed in the GUARDIAN Operating Syst~~
Programming Manual, Volume 2.

Appendix S, Console Messages, is now Appendix A.

Other minor changes resulting from comments submitted by users
of this document have been incorporated into this edition.

111

CONTENTS

PREFACE

SYNTAX CONVENTIONS IN THIS MANUAL
SECTION 1. INTRODUCTION

Definitions
Features of EXPAND
Components of EXPAND

SECTION 2. OPERATOR INTERFACE
Network File Access

System Names
Network File Names
Default System Name
Explicit and Implicit RUN Commands
Running Programs Using the Default

The WHO Command
Subsystem Considerations

BACKUP and RESTORE
COMINT
EDIT
PUP
SYSGEN
SPOOLER

SECTION 3 • PROGRAMMER INTERFACE
System Names and System Numbers
Network File Names (Internal Form)

(CRTPIDs) Process IDs
Timestamp Form
Process-name Form

System Name

Conversion between External and
FNAMECOLLAPSE Procedure
FNAMEEXPAND Procedure
FNAMECOMPARE Procedure

Internal File Names

System Procedures•..
CONVERTPROCESSNAME Procedure
CREATEREMOTENAME Procedure
GETPPDENTRY Procedure .•...
GETREMOTECRTPID Procedure

IX

Xl

1-1
1-1
1-2
1-3

2-1
2-1
2-2
2-2
2-4
2-5
2-6
2-7
2-7
2-8
2-8
2-8
2-9
2-9
2-9

3-1
3-2
3-2
3-5
3-5
3-6
3-7
3-8
3-10
3-14
3-20
3-22
3-23
3-25
3-27

v

Contents

System Procedures (continued)
G:ETSYSTEMNAME Procedure
LOCATESYSTEM Procedure
MONITORNET Procedure
MYSYSTEMNUMBER Procedure
PROCESS INFO Procedure
REMOTEPROCESSORSTATUS Procedure
SETMODE and SETMODENOWAIT Procedures

Programming Considerations•..
Network File Names (External Form)
MYTERM Procedure--Network Considerations
Command Interpreter Startup Message
Remote Process Creation .•.•...

CPU Defaulting
Sending the Startup Message

Saving File Names .•••........
Alternate Key and Partitioned Files

SECTION 4. NETWORK MANAGEMENT

vi

Best-Path Determination
Enhanced Routing

Path Selection
LINESPEED
TRANSDELAY

Transmission Priority
Transport Media•.

NETMON Network Utility
NETMON Command
EXIT Command
Fe Command
BREAK Key
Control-Y

NETMON Commands
ADD Command
BACKUPCPU Command
CPUS Command
DELETE Command
DISPLAY Command
HELP Command
LOGCENTRAL Command
MAPS Command
PATHS Command
PERIOD Command
PHOBE Command
SHOW Command
STATS Command
THRESHOLD Command
Messages••
Syntax Summary

Network Security
Overview ...•..
Global Knowledge of User IDs
RE~mote Passwords
Disc File Security

-...

..

3-28
3-29
3-31
3--32
3-33
3-37
3-39
3-40
3-40
3-41
3-41
3-42
3-43
3-43
3-44
3-44

L~-l

4-1
4-5
4-5
4-5
4-5
4-5
4-5
4-7
4-7
4-8
~~-9

4-9
4-9
4-10
4-11
4--12
4-13
4-15
4-16
4-19
L1-20
L1-22
4-27
4-31
£1- 3 2
4-35
4-36
4-38
4-39
4-42
4--43
4-43
4-43
4-43
4-46

Contents

Network Security (continued)
Default File Security•..•••..•••••••.•.•.......•...
Process Access••..•..••••••.•••••.•...••....•.•.
Programmatic Logon (VERIFYUSER Procedure)•...

Network Management Considerations ..•...•.•...•.••.•......
System Generation (SYSGEN)•.••...•.....••....•..•
Communications Utility Program (CUp) ..•..••....•.......
Peripheral Utility Program (PUp) ...•..•.....•..........
Console Logging Messages •••..•.........•.••...•......•.
EXPAND Line Connection to an X.25 Line•.•...•••
Communications Management Interface ...•.........••.•...
XRAY Program •••

SECTION 5. FIBER OPTIC EXTENSION (FOX)
Introduction to FOX•...
Theory of Operat ion .•............•.......................

Local Bus Un it .. .
Line Handlers•..........•.......................

In t e rprocesso r Bus Man ito r Process
S umm a r y 0 f Key Fe a t u res•...•...•.•........•...•...

Local Bus Unit (LBU) Management•..•......
Message System Protocol Supervision ••......•..•.•....
Diagnostic Support ...•....... ~ ...•...................
Active Inter-Cluster Link Monitoring•......•

Detailed Functional Specifications

SECTION 6. INTRODUCTION TO INFOSAT•...................
Overview ••..••••••.•••••••.•••••••••••••••••••••••••••..•
Satell i tes .. .

Satellite Components •.....•............................
Satellite Frequency Bands•..•...............
Footprint•..•.........•....•..........

The Deducated Earth Station••........................
Shared-Use Earth Stations .•....•..••....•...........•.

Computer Communication Interface Module (CCIM)
INFOSAT Software ••..••••••••••••••••••••..••.••••••.••
The INFOSAT/EXPAND Network•.•......................
Tandem INFOSAT Control System (TICS) ..•..................

APPENDIX A. CONSOLE MESSAGES
Message Form •••

Driver Generated Messages•.....•.•.
Byte Synchronous Controller•.•........•..........
Bit Synchronous Controller

NCP Generated Messages•........••..••.....
Fiber Optic Extension (FOX) Generated Messages ..•......

Status and Reset Codes•.......•.••.••...•.
Network Line-error Diagnosis•.•..........•.•..•...•.

Modem Status Error (140) .•....•.....•..•.•...••..••....
I/O Bus Error (218) ..•....•..••........•..•••••.••.....
Not Ready (248) •......•...••....•..•...•..••••..•••...•

4-47
4-50
4-52
4-54
4-54
4-55
4-56
4-57
4-58
4-59
4-60

5--1
5-1
5-2
5-3
5-4
5-5
5-5
5-5
5-5
5-6
5-6
5-6

6-1
6-1
6-2
6-3
6-5
6-5
6-7
6-9
6-9
6-9
6-12
6-15

A-I
A-I
A-2
A-2
A-3
A-5
A-7
A-I0
A-13
A-13
A-14
A-14

INDEX ••• index-l

VII

Contents

LIST OF FIGURES

figure

1-1 A Network of Systems ..••••.•.•.•..•..•.•.....•..••• 1-3
1-2 Network Containing Only Direct-Connect Line

Handlers e ••••••••••••••••• • ' •• 1--5
1-3 System with Direct Connect and X.25 Line Handlers .. 1-6

2-1 Interactive Network Access •••••••••••••••••••••• Cl •• 2·-2

3-1 Network File Names in I nterna 1 Form 3,-4
3-2 Allocation of 34 Bytes for Network File Name 3-40

4-1 Time Factors Based on Line Speed 4-3
4-2 Graph of Sample Network Interconnections 4-26

5-1 FOX Network Ring••.•.. ~ •..•............. " •. 5-2
5-2 Ring Structure Showing Local Bus Units•...•..... 5-4

6-1 Satellite Components .•.••..••. ~ ••...•.•..•...... " .. 6-4
6-2 The INFOSAT Footprint 6-6
6-3 The INFOSAT Dedicated Earth Station .•.•..•.••.•...•• 6-8
6-4 INFOSAT Hardware and Software•... ~•...• " .. 6-11
6-5 INFOSAT/EXPAND Network 6-12
6 - 6 Sat e 11 i t e Hopp i ng •.......•.....•..•......•....•..•• 6 -14
6-7 The INFOSAT Connection •..•..•..•..••.•.•..•.•••.•.. 6-16

LIST OF TABLES

Table

2-1 Valid and Invalid Network File Names .•....••.....•• 2-4

3-1 Length Restrictions on Network File Names ..••...... 3-4

4-1 Time Factors According to Line Speed ..•...•...•.... 4-3
4-2 Local and Remote Access Codes ...•.....••..••....••• 4-47

viii

PREFACE

This manual describes the GUARDIAN/EXPAND operating system and
applies to both Tandem NonStop Systems and Tandem NonStop II
Systems. It assumes that you have basic knowledge of your
system. The manual is organized into these sections:

Section 1. Introduction to EXPAND.

Section 2. Operator Interface: interactive functions such as
editing remote files, copying files to a remote
system, and running application programs on remote
systems.

Section 3. Programmer Interface: writing application programs
that access remote files.

Section 4. Network Management: security, the NETMON utility
program, and considerations for SYSGEN, CUP, PUP,
CMI, and XRAY.

Section 5. Fiber Optic Extension (FOX): FOX network descrip
tion, theory of operation, and considerations for
use on a NonStop II system.

Section 6. Introduction to INFOSAT: overview, description,
and considerations for use of the computer/satel
lite network capabilities on a NonStop II system.

Appendix A. Network-related console messages and brief
explanation of file system errors for line error
diagnosis.

Index

Each section assumes knowledge of the corresponding topic on a
single system. You should know how to edit a file before
attempting to edit a remote file; you should know how to write
programs for a NonStop system before attempting to write programs
for a network.

lX

Preface

RELATED DOCUMENTATION

This manual is intended to be used in conjunction with other
Tandem documentation--programming manuals, operating manuals, and
so forth.

Additional information about interfacing to an X.25 packet
switching network is in ACCESS, Volume 2: X.25 Access Methods
(X25AM) .

Additional information about performing line traces and obtaining
line statistics is in AXCESS, Volume 1: Introduction and Commun
ications Utility Program (CUp).

Additional information about system generation IS in your System
~anagement Manual.

Of these other manuals containing information applicable to
EXPAND users, some apply only to Tandem NonStop System II
computers, some apply only to original Tandem NonStop System
computers, and some apply to both.

x

Part No. Title

82000
82073

82075
82077
82081

82082
82083
82084
82089
82311
82333

82334
82335
82336

82337

82344

82352

System Description Manual (Tandem NonStop Systems)
GUARDIAN Operating System Command Language and

Utilities Manual
System Operations Manual (Tandem NonStop II Systems)
System Description Manual (Tandem NonStop II Systems)
Transaction Application Language (TAL) Reference

Manual
ENVOY Byte-oriented Protocols Reference Manual
ENSCRIBE Programming Manual
AXCESS Data Communication Programming Manual
System Operations Manual (Tandem NonStop Systems)
Introduction to Tandem Data Communications
AXCESS--Volume 1: Introduction and Communications

Utility Program (CUP)
AXCESS--Volume 2: X.25 Access Methods (X25AM)
AXCESS--Volume 3: Device-specific Access Methods
GUARDIAN Operating System Programming Manual--

Volume I
GUARDIAN Operating System Programming Manual-

Volume 2
Communications Management Interface (CMI) Operator's

Guide
Guide to Software Manuals

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in
the syntax notation in this manual.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets []

Braces {}

Vertical
Bar I

Ellipsis

Percent Sign %

Meaning

Represents keywords and reserved words.

Represents variable entries supplied by the user.

Enclose optional syntax. Items enclosed in
brackets represent a·list of selections from
which to choose one or none.

Enclose required syntax. Items enclosed in
braces represent a list of selections from which
to choose only one.

Separates members of a horizontal list of
selections.

Follows a syntax that can be repeated any number
of times.

Precedes a number in octal notation.

Punctuation and symbols other than described above must be
entered precisely as shown.

xi

SECTION 1

INTRODUCTION

The GUARDIAN/EXPAND operating system.links together as many as
255 geographically distributed Tandem NonStop or NonStop II
computer systems to create a network having the same reliability,
capacity to preserve data base integrity, and potential for
modular expansion as a single system.

DEFINITIONS

Before proceeding further, certain words used In this manual are
defined:

• network

In this manual, a network consists of two or more Tandem
NonStop or NonStop II Systems connected by communication
paths. The paths can be full-duplex phone lines, X.25
virtual circuits, fiber optic circuits, or satellite links.
Each individual system, also called a node, runs under the
GUARDIAN/EXPAND operating system.

• residence of files

A disc file resides on a system if the file is located on a
disc physically connected to that system; a device resides on

a system if it is physically connected to that system; and a
process resides on a system if it is running in a processor
module of that system.

Different partitions of a disc file can reside on different
systems. (See "Alternate Key and Partitioned Files" in
Section 3.

• local, remote, and network files

With respect to any particular system, a local file is a file
that resides on that system; a remote file is a file that
resides on a different system; and a network file describes a

1-1

Introduction

file that can be either local or remote, when it is not
necessary to make that distinction. The concepts of "local"
and "remote" are relative to a particular system.

FEATURES OF EXPAND

Included among EXPAND features are:

• ease of operation and programming. EXPAND causes a network to
appear to the user or programmer very much like a single
system. Methods of accessing geographically remote devices,
disc files and processes are identical to the corresponding
procedures for accessing local files. If you know how to use
the system, then you already know how to use a network of
systems.

• pass-through routing. Systems need not be connected directly
to one another to exchange data; in fact, messages may be
passed through intermediate systems, allowing the number of
communication lines in the network to be minimized.

• multi-line facility. A path can be made up of several lines
where: a line is an actual physical communications wirE~ and a
path is the logical connection between two adjacent nodes in
the EXPAND network. The multi-line facility increases network
performance and reliability in the following manner:

Increased network performance. Allows simultaneous
transmission over all lines within a path; thus increasing
the overall bandwidth of the path.

Increased network reliability. Because multiple lines may
exist in a single path, a single line failure will not
bring down a path. Because lines may be distributed
between mUltiple controllers, a single controller failure
will not bring down a path; however, all controllers in a
path must be in the same controller group--see SYSGEN in
the System Management Manual. In the event of either a
single line or controller failure, the EXPAND error routine
recovers messages in transit and reassigns the new path.

• best-path routing. When mUltiple paths between systems exist,
EXPAND routes data via the best path. If the status of the
currently used best path changes--for example, following the
failure or recovery of a communication line--message traffic
is automatically rerouted along the new best path.

• enhanced routing. EXPAND enhanced routing provides the
optimal transfer of data within a network. You may define a
transmission priority through a SETMODE function call. Then,
once the best-path route is determined, the line handler uses
this priority to order the message transmission on the path.
Highest priority messages are transmitted first.

1-2

Introduction

• modular expandability. Additional systems, up to 255, can be
added to a network without disturbing existing systems.

• upward compatibility of existing application software.
Application programs can be written in such a way that the
network is transparent to them; existing programs require
little or no modification to run on a network.

• X.25 compatibility. Any of the communication links between
systems can be an X.25 public packet-switching network.

• fiber optic compatibility.
network permits rapid data
ring of clusters connected
network can be included as
EXPAND network.

The Fiber Optic Extension (FOX)
transfer between clusters within a
by fiber optic links. The FOX
a portion of a larger GUARDIAN/

• satellite links. This feature provides for long distance
transmission of large amounts of data over satellite channels
instead of terrestrial lines. Satellite (INFOSAT) service can
be provided anywhere within the continental United States of
America.

• DATA EXCHANGED BETWEEN A and C IS "PASSED THROUGH" B .
• IF COMMUNICATION LINK BC SHOULD FAIL. MESSAGE TRAFFIC

BETWEEN A AND C IS AUTOMATICALLY REROUTED
ALONG PATH ABDC.

Figure 1-1. A Network of Systems

COMPONENTS OF EXPAND

EXPAND is an extension of the GUARDIAN operating system. Its
components include the Network Control Process, the End-to-End
Protocol, Network Line Handlers, and a Network Monitor Program.

Network Control Process (NCP) runs in each node of the network.
The NCP functions include:

1-3

Introduction

• establishing intersystem connections

• maintaining network-related system tables, including routing
information

• determining the best path to other systems

• monitoring and logging changes in the status of the network
and its constituent systems.

End-to-End protocol is a Tandem-defined, packet-switched protocol
for the exchange of data between systems. The End-to-End
protocol guarantees data integrity from sender to receiver
regardless of how many intervening systems are involved in the
transfer.

Four types of EXPAND network line handlers (Direct Connect, X.25,
FOX, and Satellite Connect) manage a communication path and
implement the End-to-End protocol.

• The Direct Connect line handler, which acts as an I/O process,
manages one end of a full-duplex phone line between two
systems.

Figure 1-2 shows a network consisting entirely of Direct Connect
line handlers. The path between system A and C is a multi-line
connection. The system not shown could have additional
communication paths to other systems, which would be accessed by
sending packets through system B. Each system has mUltiple line
handlers, but only one NCP.

• the X.25 line handler provides the EXPAND link between systems
connected through an X.25 network. The EXPAND X.25 line
handler manages the X.25 "virtual circuit" running in an X.25
AXCESS process.

Figure 1-3 shows a system that connects to an X.25 network as
well as to another system via EXPAND. Configuring such a system
requires both EXPAND and AXCESS. The X.25 Access Process manages
the physical communication line; the X.25 line handlers each
manage one virtual circuit.

1-4

SYSTEM A

SYSTEM B

SYSTEM C

Introduction

ANOTHER
SYSTEM

Figure 1-2. Network Containing Only Direct-Connect Line Handlers

The establishment of virtual circuits is controlled by the X.25
Access Process. The Communication Utility Program (CUp) provides
the X.25 Access Process with the network address of the virtual
circuits, and associates the virtual circuits with the correct
line handler. Refer to AXCESS, Volume 1: Introduction and
Communications Utilitf Program (CUp), and AXCESS, Volume 2: X.25
Access Methods (X25AM .

• The FOX network uses fiber optic links between clusters. FOX
line handlers communicate directly over this interprocessor
bus extension. Messages not requiring security checking
usually bypass the line handlers and travel directly over the
link from the sending process to the destination process.

1-5

Introduction

EXPAND (T9007) AXCESS (T9008)

VIRTUAL
....... -- CIRCUITS

£.-_~ X25 NETWORK

L-_ ANOTHER
SYSTEM

Figure 1-3. System with Direct-Connect and X.25 Line Handlers

The FOX line handlers also control the routing of packets for
traffic being forwarded. That is, if a FOX cluster receives
messages from a conventional EXPAND line handler that must be
forwarded to another FOX cluster, the messages are passed through
as in a conventional EXPAND environment--packet by packet.

Refer to Section 5 for a description of the Fiber Optic Extension
(FOX) network.

• The Satellite Connect line handler manages one end of a
satellite communications link between two systems. Messages
are transmitted across satellite communication channels.

Section 6 contains information about the INFOSAT computer/
satellite network.

The Network Monitor (NETMON) utility program provides users, at
any system, with the ability to monitor the current state of the
Iletwork in terms of: number of systems connected, number of cpu's
up on each system, line and path status, message traffic, etc.

1-6

SECTION 2

OPERATOR INTERFACE

This section describes the interface .between an interactive user
and a network; it assumes that you are familiar with the command
interpreter and wish to perform similar operations on a remote
system, such as:

• editing a remote file

• running a program on a remote system

• duplicating a set of files from one system to another

with a few exceptions, any operation performed on a system using
the command interpreter can be performed on any system in a
network.

NETWORK FILE ACCESS

Interactive interface to the system consists of using the command
interpreter, FUP, PUP, the Editor, and other subsystems to access
files. Access to a file is via its symbolic file name.

Access to a file in a network is achieved by qualifying a
symbolic file name with the name of a system. For example, the
command

:EDIT \NEWYORK.$SYSTEM.SYSTEM.TEXTFILE

edits the disc file $SYSTEM.SYSTEM.TEXTFILE, located on the
system designated \NEWYORK. Similarly, the command

:RUN \PARIS.MYPROG

runs a program named MYPROG on the default volume and subvolume
of the system designated \PARIS.

Thus, a network file name consists of a local file name preceded
by a system name.

2-1

Operator Interface to EXPAND
Network File Access

REMOTE SYSTEMS

\SATURN \NEPTUNE

\ NEPTUNE SDATA

---~

Figure 2-1. Interactive Network Access

System Names

Each system in a network is known by a system name. A system
name consists of a backslash (\) followed by one to seven
alphanumeric characters. The first character must be alphabetic.
Examples of legal system names are:

\DETROIT
\SYS45
\XYX

A file residing on a system in a network is known by its system
name, followed by the usual file name. Thus the disc file
$MARKET.FRED.SALES, which resides on a disc drive connected to
system \DETROIT, is named:

\DETROIT.$MARKET.FRED.SALES

Network File Names

Other forms of file names are extended to networks in the same
manner.

2-2

Operator Interface to EXPAND
Network File Access

EXAMPLES:

\DETROIT.$TAPE a device name--in this case, a tape drive
residing on the system \DETROIT

\XYZ.$PROC named process

The length restrictions on network file names are:

• Device names, including names of disc volumes, can have no
more than six characters.

• Process names can have no more than four characters.

These restrictions are due to the inclusion of a system number in
the internal form of file names.

A network file name has this form:

I network disc file namel
\system name. network device name

network process name

where

system name

consists of one to seven alphanumeric characters,
beginning with an alphabetic character.

network disc file name

is the same as the usual disc file name, except that the
volume name is a dollar sign ($) followed by no more than
six alphanumeric characterso

network device name

is a dollar sign ($) followed by no more than six
alphanumeric characters.

network process name

is a dollar sign ($) followed by no more than four
alphanumeric characters.

2-3

Operator Interface to EXPAND
Network File Access

EXAMPLES:

Table 2-1 shows examples of valid and invalid network file names.
In each case, the file name in the right-hand column would be
legal for local access, but is too long for remote access. This
does not prevent a system that belongs to a network from having a
process named $SPOOL or a disc drive named $DISCVOL. However,
such file names can only be accessed locally: they cannot be
accessed by any remote process or user.

Table 2-1. Valid and Invalid Network File Names

Type of Name Valid File Name Invalid File Name
--

disc file $SYSTEM.SYSTEM.TAL $DISCVOL.SUB.YOURFILE

device $LP $PRINTER

process $SPL $SPOOL

.-

Default System Name

lJUst as the VOLUME command specifies the default volume and
subvolume names, the SYSTEM command designates a default system.
The default system is implicitly appended to the front of every
file name. The SYSTEM command has the form:

SYSTEM [system name]

where

2-4

system name

designates the default system. Omitting the system name
designates, as the default, the system on which your
command interpreter is running.

Operator Interface to EXPAND
Network File Access

EXAMPLES:

:SYSTEM \DETROIT

makes \DETROIT the default system and causes filenames to be
expanded in the network format.

: SYSTEM

removes any default system specification and causes filenames to
be expanded in the local format.

Assuming that the local system is named \LOCAL and that the
command interpreter is running on the local system then:

:SYSTEM \LOCAL
:STOP $ABCDE

would cause an "ILLEGAL FILE NAME" error, even though process
$ABCDE happens to be running locally, because the SYSTEM \LOCAL
command interprets $ABCDE as a network file name, subject to the
four-character length restriction. However, the commands:

: SYSTEM
:STOP $ABCDE

would correctly interpret $ABCDE as a local process name and the
STOP command would be executed.

Explicit and Implicit RUN Commands

To run programs on a network, you must keep in mind that the
program file must reside on the system where the program is to
run. The program file must also be secured for the appropriate
network access; you as a user must have previously acquired
network access rights to any systems on which you wish to run.
Other than that, the explicit and implicit RUN commands work
exactly as they do in a local system. For example, in the
command:

: SYSTEM

the local system is the default. The command

:EDIT

runs the Editor on the local system. The command:

:RUN MYPROG

runs MYPROG, which is stored on the default volume and subvolume,
on the local system.

2-5

Operator Interface to EXPAND
Network File Access

To run a program on the system \DETROIT, you would use the
command:

:RUN \DETROIT.MYPROG

The default volume and subvolume names remain in effect; thus,
the command interpreter runs a program file named MYPROG,
assuming that this file exists on the remote system. Note
however, that the local system remains the default. Thus, if
MYPROG references any files internally, it will try to get them
from \LOCAL.filenames unless another system is explicitly
specified.

Implicit run commands work the same way. Just as the command:

:EDIT

implicitly runs a program whose object file is named
$SYSTEM.SYSTEM.EDIT, the command:

:\DETROIT.EDIT

implicitly runs a program whose object file is
named \DETROIT.$SYSTEM.SYSTEM.EDIT; because this file resides on
system \DETROIT, and because programs run where their program
files are located, the Editor runs on \DETROIT.

Running Programs using the Default System Name

Some more illustrations of the use of the SYSTEM command in
conjunction with RUN and implicit RUN commands may be useful.
The command sequence:

:SYSTEM \XYZ
:EDIT YOURFILE

runs an Editor in system \XYZ. If the default volume and
subvolume are both DEFLT, then the file being edited
is \XYZ.DEFLT.DEFLT.YOURFILE. The command sequence:

:SYSTEM \DETROIT
:RUN MYPROG lIN \XYZ.$MKT.SUB.FNAME, OUT \SYS45.$SPL, CPU 3/

runs \DETROIT.DEFLT.DEFLT.MYPROG in processor 3 of
system \DETROIT. The IN file is a disc file located on
system \XYZ, and the OUT file is a process named $SPL running
on system \SYS45.

2-6

Operator Interface to EXPAND
Network File Access

THE WHO COMMAND

It is possible to forget what the default system is, and run a
program remotely by mistake. You could type EDIT, for example,
meaning to run the Editor in your own system, forgetting that you
had previously issued a SYSTEM \DETROIT command.

The WHO command helps you remember where you are. Its syntax is
simply:

:WHO

The WHO command displays the name of the home terminal (the
terminal on which your command interpreter is running), the name
of the command interpreter, its primary and backup CPUs, and the
current default names.

The WHO command display takes the following form:

HOME TERMINAL: $TERM
COMMAND INTERPRETER: \XYZ.$CI66 PRIMARY CPU: 03 BACKUP CPU: 01
CURRENT VOLUME: $MKT.SUBVOL CURRENT SYSTEM: \DETROIT
USERID: 008,004 USERNAME: ADMIN.BILL SECURITY: AAAA

If the SYSTEM command has not been used to specify a default
system and naming conventions, then the "CURRENT SYSTEM" entry is
omitted. Use the WHO command periodically to make sure you know
where you are; in particular, use the WHO command before
performing non-recoverable operations, such as purging files.

SUBSYSTEM CONSIDERATIONS

With certain exceptions, all Tandem subsystems accept file names
in network form, allowing any operation to be executed on remote
files.

This section lists the exceptional operations that cannot be
performed remotely. Also listed here are special considerations
to be kept in mind when operating subsystems in a network
environment.

The absence of any particular subsystem from this list implies
that all of its operations are valid in the network environment;
a file name can be supplied in network form anywhere that the
subsystem's command syntax allows a file name.

2-7

Operator Interface to EXPAND
Subsystem Considerations

BACKUP and RESTORE

The BACKUP program must be run in the system where the disc files
to be backed up reside. However, the tape file and list file for
BACKUP can be anywhere in the network. Therefore, to back up a
set of files on the system \ REMOTE , use the commands:

:SYSTEM \REMOTE
:BACKUP / OUT \LOCAL.$LP / \LOCAL.$TAPE , $MYVOL.FILES.*

The same restriction applies to RESTORE.

COMINT

The commands RELOAD, XBUSUP, YBUSUP, XBUSDOWN, YBUSDOWN, SETTIME
and TIME can apply only to the local system.

Normally, all LOGON, LOGOFF, and process-creation commands are
sent to the CMON process running in the same system as the
command interpreter. For systems in a network, however,
process-creation commands are sent to the CMON process in the
system where the new process is to run, allowing an installation
to control remote process creation. LOGON and LOGOFF commands
are still sent to the CMON process in the command interpreter's
system.

EDIT

To reduce the amount of text that must be sent over the
communication path, you should run the Editor on the same system
as the text file to be edited. For example, with the Editor and
its text file residing on different systems, the command:

*LIST "XYZ"

causes every line of text to be sent across the communication
path. With the Editor and the text file on the same system, only
the lines containing "XYZ" need be transmitted. If the text file
is larg~, running the Editor in the same system as the text file
causes a noticeable improvement in response time.

2-8

Operator Interface to EXPAND
Subsystem Considerations

PUP

PUP commands can refer only to those devices residing on the
system where PUP is running. Therefore, to list the free disc
space on \REMOTE.$SYSTEM, the commands

:SYSTEM \REMOTE
:PUP LISTFREE $SYSTEM

must be issued: you cannot type

:PUP LISTFREE \REMOTE.$SYSTEM

The CONSOLE command can specify a remote device as the operator
console as in the following example:

#CONSOLE \REMOTE.$LP

SYSGEN

The configuration file, list file, and work file can reside
anywhere on the network. However, if the operating system image
is to be placed directly onto disc (rather than tape, as is
usually done) the disc volume specified must reside on the system
where SYSGEN will run.

SPOOLER

The supervisor, collectors, and print processes belonging to a
particular spooler must all run in the same system.

A spool system can include remote devices.

An application process can direct its output to a remote spooler,
as with this command:

:RUN MYPROG/ OUT \CHICAGO.$SPL /

2-9

SECTION 3

PROGRAMMER INTERFACE

This section describes how to wri~e ~pplication programs that
access remote files. It covers these topics:

• overview of network programming
I

• network file names and conversion between internal and
external file names

• network-related system procedures

• examples and considerations

It is assumed that the reader already knows how to program the
Tandem NonStop or NonStop II System, and is familiar with
concepts such as file names, CRTPIDS, and the use of the file
system and process-control procedures. These subjects are
discussed in your system programming manuals.

Writing a program that accesses remote files on a network is
similar to writing an application that accesses only local files.
A program need not be aware of whether the files it is accessing
are local or remote unless it specifically needs to test for that
condition.

A local program (or application) is understood to be a program
that accesses files only on the system on which it is running. A
network program is a program that has access to files on systems
other than the one on which it is running. As usual, a file can
be a disc file, a peripheral device, or another process.

A local application is written as if the network does not exist.
If your application does not intend to access any remote files
but is going to be run on a system that is part of a network,
there are no special considerations.

3-1

Programmer Interface
System Names and System Numbers

SYSTEM NAMES AND SYSTEM NUMBERS

Each system in a network is assigned a unique name and number~
The system name consists of a backslash (\) followed by one to
seven alphanumeric characters. A system name qualifies a file
name at the external (i.e., operator) level. For example, the
system name \NEWYORK qualifies a file name passed as the IN
parameter to a command interpreter RUN command:

:TGAL/IN \NEWYORK.$SYSTEM.REPORT.TEXTFILE , OUT $LP/

Corresponding to the system name is the system number, an integer
between 0 and 254 inclusive. The system number qualifies an
internal file name.

The application process does not need to know about specific
system names and numbers. The FNAMEEXPAND·and FNAMECOLLAPSE
procedures perform the conversions automatically.

To gain access to a file, a process passes the file's symbolic
file name to the file system OPEN procedure, which returns a file
number that can be passed to other file system procedures.

Remote files are accessed the same way. To specify a particular
system as well as a file, a file name can optionally include a
system number to identify the system. Such a file name is a
network file name. A file name that does not include a system
number is a local file name.

To access a file on its local system, a process can pass the name
of the file in local form (which causes OPEN to assume that the
local system is intended) or in network form, including the
system number of the local system.

To access a file on a remote system, a process must pass a
network file name, with the appropriate system number, to the
OPEN procedure.

NETWORK FILE NAMES (INTERNAL FORM)

A file name in internal form (i.e., a 12-word array suitable for
passing to the OPEN procedure) that is qualified by a system
number is a network file name. Its form is:

3-2

Programmer Interface
Network File Names (Internal Form)

network file name, INT:12,

where

network file name [0].<0:7>

is an ASCII backslash (\) (octal 134).

network file name [0].<8:15>

is a system number (in octal).

network file name [1:3]

is a device name or process ID.

network file name [4:7]

is a subvolume name or #qualifier.

network file name [8:11]

is a disc file name or subqualifier.

NOTE

The device name or process identifier in words [1:3]
does not include the initial dollar sign ($) normally
associated with a device name or process identifier.

Because of the byte taken up by the system number, one less byte
is available for the device name or process identifier.
Therefore, the names of devices that can be accessed remotely
consist of no more than six alphanumeric characters; names of
processes that can be accessed remotely consist of no more than
four alphanumeric characters. These restrictions are summarized
in Table 3-1.

3-3

Programmer Intertace
Network File Names (Internal Form)

Table 3-1. Length Restrictions on Network File Names

Object Type Named Local Name Limit Network Name Limit
--

device (including $ and 7 characters $ and 6 characters
disc volume)

process $ and 5 characters $ and 4 characters

Figure 3-1 shows two examples of network file names in internal
form, assuming that \LA is system number 3.

~--.-------------------

a disc file:

\LA.$SYSTEM.SUBVOL.DISCFILE

o

1

2

3

4

5

6

7

8

9

10

11

1 \ 1 %3
1-------------
1 Sly
1-------------

SiT

E M

s u

B V

OiL

I

D I

S C

F I

L E

a process:

o

1

2

3

4

5

6

7

8

9

10

11

\LA.$PROe

\ 1 ~53 I

-------------- I
P 1 H 1

-------------- I
ole 1

--------------1
cpu 1 pin 1

--------------1
1 1

-------------- 1

1 1
--------------1

1 1
--------------1

1 1
--------------1

1 1
--------------1

1 1
--------------1

1 I

-------------- 1

1 1

Figure 3-1. Network File Names in Internal Form

3-4

Programmer Interface
Network File Names (Internal Form)

PROCESS IDs (CRTPIDs)

A process is uniquely identified by its process identifier. The
network forms of process identifier are shown in the following
paragraphs.

Timestamp Form

For the timestamp form, GUARDIAN assigns the process identifier
when the process is created. The form of this type of process
identifier is:

process id, INT:4,

where

process id [0].<0:1>

is 2.

process id [0].<2:7>

is unused.

process id [0].<8:15>

is the system number if the system is part of a network,
or 0 otherwise.

process id [1:2]

is the low-order 32 bits of the creation timestamp, or a
for a system process.

process id [3].<0:3>

is unused.

process id [3].<4:7>

is the number of the CPU where the process is running.

process id [3].<8:15>

is the pin assigned by GUARDIAN to identify the process
in the CPU.

3-5

Programmer Interface
Network File Names (Internal Form)

Process-Name Form

The form of the process-name form of process identifier is:

process id, INT:4,

where

process id [0].<0:7>

is an ASCII backslash (\) (octal 134).

process id [0].<8:15>

is the system number (in octal).

process id [1:2]

is the process name.

process id [3].<0:3>

is blank-filled.

process id [3].<4:7>

is the CPU number.

process id [3].<8:15>

is the pin.

The process name, in words 1 and 2, can contain no more than four
alphanumeric characters; the first of which must be alphabetic,
and does not include the initial dollar sign ($) normally
associated with a device name or process identifier.

3-6

Programmer Interface--File-Name Conversion

CONVERSION BETWEEN EXTERNAL AND INTERNAL FILE NAMES

Two procedures, FNAMEEXPAND and FNAMECOLLAPSE, perform
internal/external file name conversion. Another procedure,
FNAMECOMPARE, compares names that may be in different forms.

FNAMEEXPAND converts a file name from external form to internal
form, and expands partial file names using the default volume,
subvolume and system. The conversion from external to internal
form of a network file name includes changing the system name to
the system number.

FNAMECOLLAPSE converts a file name from internal form to external
form.

Both procedures convert local names to local names, and network
names to network names.

The FNAMECOMPARE procedure compares two file names within a local
or network environment to determine whether these file names
refer to the same file or device. For example, one name can be a
logical system name or a device number while the other reference
is a symbolic name.

To be used in a TAL program, these procedures must be declared
EXTERNAL. Like other system procedures, the external
declarations can be specified with the compiler command:

?SOURCE $SYSTEM. SYSTEM. EXTDECS (FNAMEEXPAND,FNAMECOLLAPSE,
? FNAMECOMPARE)

3-7

Programmer Interface--File-Name Conversion
FNAMECOLLAPSE Procedure

FNAMECOLLAPSE Procedure

The FNAMECOLLAPSE procedure converts a file name from its
internal to its external form. The system number of a network
file name is converted to the corresponding system name.

The call to the FNAMECOLLAPSE procedure is:

,---
FNAMECOLLAPSE internal name

, external name

where

length, I NT

contains, on return, the number of bytes in the external
name.

internal name, INT:ref:12

is the name to be converted. If this is in local form,
it is converted to external local form; if it is in
network form, it is converted to external network formG

external name, STRING:ref:26 or 34

contains, on return, the external form of the internal
name. If the internal name is a local file name, the
external name contains up to 26 bytes; if a network name
is converted, the external name contains up to 34 bytes~

,--------------------_._-----------------_----1

CONSIDERATIONS. It is the responsibility of the program calling
FNAMECOLLAPSE to pass a valid file name in the internal name.
Invalid file names cause unpredictable results.

If the internal name is in network form and the system number in
the second byte does not correspond to any system in the network,
FNAMECOLLAPSE supplies "???????" as the system name.

EXAMPLES:

rrhis procedure would convert the local internal name:

$SYSTEM SUBVOL MYFILE

]-8

Programmer Interface--File-Name Conversion
FNAMECOLLAPSE Procedure

to $SYSTEM.SUBVOL.MYFILE. Where system number 5 is named \SF,
and we use <%5> to denote octal 5 in the second byte, the
procedure would convert the network internal name:

\<%5>SYSTEMSUBVOL MYFILE

to the external form \SF.$SYSTEM.SUBVOL.MYFILE.

3-9

Programmer Interface--File-Name Conversion
FNAMEEXPAND Procedure

FN~~EEXPAND Procedure

The FNAMEEXPAND procedure expands a partial file name from the
compacted external form to the standard l2-word internal form
used by file system procedures.

The call to the FNAMEEXPAND procedure is:

{
CALL }
length :=

FNAMEEXPAND external file name
, internal file name
, default names }

where

3-10

length, INT,

is the length in bytes of the file name in the external
file name. If an invalid file name is specified, zero is
r.eturned.

external file name, STRING:ref:34

is the file name to be expanded. The file name must be
in the form:

[\system name.]
[$volume name.] [subvolume name.]

disc file name delimiter
$device name delimiter
$logical device number delimiter

where

delimiter

can be any character that would not be valid as
part of an external file name, such as a comma,
blank, or null character.

internal file name, INT:ref:12

is an array of 12 words where FNAMEEXPAND returns the
expanded file name. This cannot be the same array as
the external file name.

Programmer Interface--File-Name Conversion
FNAMEEXPAND Procedure

default names, INT:ref:8

is an array of eight words containing the default volume
and subvolume names to be used in file name expansion,
where:

default names [0:3]

is the default volume name, left-justified in the
field.

default names [4:7]

is the default subvolurne name, left-justified in the
field.

default names [0:7] corresponds directly to word [1:8] of
the command interpreter startup message. See your
GUARDIAN programming manuals for the parameter message
format.

FILE NAME EXPANSION BY FNAMEEXPAND. This procedure returns a
disc file name in this form:

file name [0:3]
file name [4:7]
file name [8:11]

= $defau1t volume name
default subvo1ume name
disc file name

blank fill
blank fill
blank fill

It returns "subvolume name.disc file name" in this form:

file name [0:3]
file name [4:7]
file name [8:11]

$default volume name
subvolume name
disc file name

blank fill
blank fill
blank fill

It returns "$volume name.disc file name" in this form:

f i 1 e name' [0 : 3]
file name [4:7]
file name [8:11]

$volume name
default subvolume name
disc file name

blank fill
blank fill
blank fill

It returns "$volume name.subvolume name.disc file name" in this
form:

file name [0:3]
file name [4:7]
file name [8:11]

= $volume name
= subvolurne name

disc file name

blank fill
blank fill
blank fill

3-11

Programmer Interface--File-Name Conversion
FNAMEEXPAND Procedure

It returns a device name in this form:

file name [0:11] = $device name blank fill

It returns a logical device number in this form:

file name [0:11] = $logical device number blank fill

EXAMPLE:

Using these declarations:

STRING .EXT"NAMES[O:24] := n
.P; ! string pointer.

INT .INFILE[O:ll],
.0UTFILE[O:11],
.DEFAULTS[O:7] := "$VOLI

"SVOLI

FILEA

" ,
" . ,

$SYSTEM.FILEB "

the FNAMEEXPAND procedure expands the external file names into a
usable internal form:

SCAN EXT"NAMES WHILE" " -> @P; ! skip leading blanks.
@P := FNAMEEXPAND(P, INFILE, DEFAULTS) + @P;

on the completion of FNAMEEXPAND, INFILE contains:

n$VOLl SVOLI FILEA "

which is suitable for passing to the file system CREATE, OPEN,
RENAME, and PURGE procedures and to the process-control
NEWPROCESS procedure.

P is incremented by the number of characters in the external file
name.

SCAN P WHILE" n -> @P; ! skip intermediate blanks.
CALL FNAMEEXPAND(P, OUTFILE, DEFAULTS);

On the completion, OUTFILE contains:

"$SYSTEM SVOL1 FILEB "

NETWORK CONSIDERATIONS~ If the external file name includE~s a
system name, FNAMEEXPAND converts the system name to the
appropriate system number.

3-12

Programmer Interface--File-Name Conversion
FNAMEEXPAND Procedure

If the external file name does not include a system name, but a
default system name is part of the DEFAULTS parameter,
FNAMEEXPAND converts the external file name to a network internal
file name having the correct system number.

NETWORK EXAMPLE:

Suppose that system \NEWYORK is assigned system number 4. Then
the external file name \NEWYORK.$DATA.SUB.MYFILE is converted by
FNAMEEXPAND to:

n\<%4>DATA SUB MYFILE "

where <%4> denotes octal 4 in the second byte.

I f the system name does not exist' in, the network, FNAMEEXPAND
supplies 255 as the system number.

3-13

Programmer Interface--File-Name Conversion
FNAMECOMPARE Procedure

FNAMECOMPARE Procedure

The FNAMECOMPARE procedure compares two file n~mes within a local
or network environment to determine whether these file names
refer to the same file or device. For example, one name can be a
logical system name or a device number while the other reference
is a symbolic name. The file names compared must be in the
standard 12-word internal format that is returned by FNAMl~EXPAND.

The call to the FNAMECOMPARE procedure is:

{~~~~us :=} FNAMECOMPARE (file name 1, file name 2)

where

3-14

s tat us, I NT ,

is a value indicating the outcome of the comparison.
Values for status are:

-1 = (CCL), indicating that the file names do not
refer to the same file.

o = (CCE), indicating that the file names refer to
the same file.

+1 = (CCG), indicating that the file names refer to
the same volume name, device name, or process
name on the same system; however, words [4:11]
are not the same:

file name I [4] <> file name 2 [4] FOR 8.

A value less than negative one is the negative of a file
system error code. This indicates that the comparison is
not attempted due to this error condition. That value
returned from the program function determines the
condition code setting.

file name 1, INT:ref:12,

is the first file name for the comparison. Each
file-name array can contain either a local file name
or a network file name. Definitions of file names are
in your GUARDIAN programming manuals.

~,

Programmer Interface--File-Name Conversion
FNAMECOMPARE Procedure

file name 2, INT:ref:12,

is the second file name for the comparison.

CONSIDERATIONS. The arrays containing the file names for
comparison are not modified.

Alphabetic characters within qualified process names are not
upshifted before comparison.

If a logical device number format, such as $0076, is used for one
file name, but not the other, the-device table of the referenced
system is consulted to determine whether the names are
equivalent. This case is the only time the device table is used.
All other comparisons involve only the examination of the two
file names supplied.

Some of the most common negative file system error codes returned
are:

-13 an illegal file name specification for either file name
is made.

-14 the device does not exist. (See note.)

-18 no such system is defined in this network. (See note.)

-22 = a parameter or buffer is out of bounds.

-250 = all paths to the system are down. (See note.)

NOTE

These negative file system error codes indicate that
only one of the file names is passed in logical device
number format (requiring a check of the device table)
and the file name represents a device connected to a
remote network node.

In a network node with a system number = 6, execution of the next
code example returns a status of 0 and the condition code (CCE).
In a non-network system, execution of this code returns a status
of negative one and the condition code (eCL).

INT .FNAMEl[0:11 J,
.FNAME2[0:11 J,
STATUS;

3-15

Programmer Interface--File-Name Conversion
FNAMECOMPARE Procedure

FNAME1 ': =' [" $TERM1" ,9 * [" "]] ;
FNAME2 ':=' [%56006,"TERM1 ",8 * [" II]];
STATUS := FNAMECOMPARE (FNAME1, FNAME2);

"\ ", 6, "'rERMI"

In any system, execution of the next code example returns a
status of +1, and the condition code (CCG).

FNAME1 ':=' ["$SERVR #START UPDATING"];
FNAME2 ':=' ["$SERVR #FINISH UPDATING"];
STATUS := FNAMECOMPARE (FNAME1, FNAME2);

In any system, execution of the next code example returns a
status of zero and condition code (CCE). (The device name $DATAX
is defined as logical device number 13 at SYSGEN time.)

FNAMEI ':=' ["$0013 ", 9 * [" II]];
FNAME2 ':=' ["$DATAXtt, 9 * [II "]];
STATUS := FNAMECOMPARE (FNAMEI, FNAME2);

The FNAMECOMPARE procedure can also verify the specified file
names as in the next code example:

assume all variables and procedures have been
properly defined and initialized elsewhere

also assume LITERAL LEGAL = 0;

IF FNAMEEXPAND (EXTERNALANAME,INTERNALANAME,DEFAULTANN~ES) THEN
BEGIN

3-16

! something reasonable was entered.
IF FNAMECOMPARE (INTERNALANAME,INTERNALANAME) LEGAL THEN

! it may not exist, but looks okay.
BEGIN

END
ELSE

normal processing.

! the format is not legal.
BEGIN

! error processing.

END;
END;

Programmer Interface--File-Name Conversion
FNAMECOMPARE Procedure

EXAMPLE OF OPENING IN AND OUT FILES:

Consider this procedure, which reads a startup message, opens the
IN file, and returns the file number of the IN file (for clarity,
no error-checking is performed following calls to system
procedures):

INT PROC OPENAINFILE~
BEGIN
INT .RECABUF[O:32] := ["$RECEIVE",8 * [" "]],

RECAFNUM,
INAFNUM;

open $RECEIVE, get startup message
CALL OPEN (RECABUF, RECAFNUM);
CALL READ (RECAFNUM, RECABUF,66)
CALL CLOSE (RECAFNUM);

! open the IN file
CALL OPEN (RECABUF[9],INAFNUM);
RETURN INAFNUM:
END;

Any process that calls this procedure can communicate with its IN
file without regard for the physical location of the file. Note
that any existing program that reads its startup message and
opens its IN and OUT files in this manner can handle network file
names without modification or recompilation.

EXAMPLE OF NETWORK USE OF FNAMEEXPAND:

The next example demonstrates that the proper use of FNAMEEXPAND
makes it unnecessary for an application program to be aware of
the physical location of a filee The example procedure is
called GETAFILENAME. It accepts a file name from a terminal and
expands the file name using the defaults. The calling program
passes to GETAFILENAME the file number of the terminal to be
prompted and the current defaults obtained from the startup
message. GETAFILENAME returns the expanded internal file name in
the parameter FILENAME. GETAFILENAME returns the number of bytes
in the external name read from the terminal, or 0 if the terminal
input is not a legal file name.

The procedure keeps prompting the terminal until at least one
nonblank character is input. For clarity, error detection and
recovery are omitted.

3-17

Programmer Interface--File-Name Conversion
FNAMECOMPARE Procedure

INT PROC GET"FI LENAME (TERM"FNUM, DEFAULTS, FILENAME);
INT TERM"FNUM, terminal file number

. DEFAULTS , default volume and subvolume

. FILENAME; internal file name goes here

BEGIN
INT COUNT'" READ ,

.BUF[O:39];
number of characters read from terminal
terminal buffer

STRING .BUFS .- @BUF '«' 1,
.PTR;

string pointer to BUF
miscellaneous pointer

WHILE 1 DO
BEGIN
! Prompt terminal for input until at least
lone character is read
COUNT"'READ : = 0;
WHILE NOT COUNT"READ DO

BEGIN
BUFS ': =' "ENTER FI LE NAME: ";
CALL WRITEREAD (TERM"'FNUM, BUF, 18, 80, COUNT"'READ);
IF <> THEN CALL ABEND;
END;

insert a scan stopper and FNAMEEXPAND delimiter
BUFS[COUNTAREAD] := 0;

! Scan off leading blanks
@PTR := @BUFS;
SCAN PTR WHILE " " -> @PTR;

I f "at least one nonblank character was input, call
FNAMEEXPAND and return; otherwise, loop back to the
beginning.

IF NOT $CARRY THEN
RETURN FNAMEEXPAND (PTR, FILENAME, DEFAULTS);

END; ! outer loop
END; ! proc GET"'FILENAME

On return, FILENAME contains the expanded internal file name
suitable for passing to the OPEN procedure. The physical
location of the file is entirely transparent to the application
program. From its point of view, the sequence of events .
surrounding the call to GETAFILENAME is:

1. Get the defaults from the startup message.

2. Open the terminal and pass the terminal file number, the
defaults, and a 12-word FILENAME array to GETAFILENPJ.1E.

3. Pass the returned FILENAME to the OPEN procedure.

The calling program is unaware of whether the defaults, obtained
from the startup message, are in local or network form.

3-18

Programmer Interface--File-Name Conversion
FNAMECOMPARE Procedure

FNAMEEXPAND returns a network file name in FILENAME if either:

• the external name, read from the terminal, included a system
name, or

• the defaults included a system number.

However, the calling program passes FILENAME directly to OPEN
without caring whether the file is local or remote.

3-19

Programmer Interface--System Procedures

SYSTEM PROCEDURES

The following summary lists the network-related system procedures
by procedure name and function.

Procedure

CONVERTPROCESSNAME

CREATEREMOTENAME

GETPPDENTRY

GETREMOTECRTPID

GETSYSTEMNAME

LOCATESYSTEM

MONITORNET

MYSYSTEMNUMBER

MYTERM

PROCESS INFO

REMOTEPROCESSORSTATUS

SETMODE 71
SETMODENOWAIT 71

3-20

Function

converts a process name from local to
network form.

supplies a process name that is unique
for a specified system in a network.

returns a particular entry in a specific
system's Paired Process Directory (PPD).

returns the CRTPID, also known as the
process ID, of a remote process whose
CPU, PIN and system number are known~

supplies the system name associated with
a system number, and returns the logical
device number of the line handler
controlling the path to a given system.

provides the system number corresponding
to a system name, and returns the
logical device number of the line
handler controlling the path to a given
system.

enables or disables receipt of system
messages concerning the status of
processors in remote systems.

provides a process with its own system
number.

provides a process with the file name of
its " home" term ina 1 .

supplies process status information.

supplies the status of processor modules
in a particular system in a network.

defines the transmission priority for a
particular file. Transmission priority
is used by the line handler to determine
the ordering of messages for transmis
sion on a path.

Procedure

VERI FYUSER

Programmer Interface--System Procedures

Function

verifies, and optionally logs on, a user
(described in Section 4 of this manual
in the discussion of Programmatic
Logon).

Like all other system procedures, these must be declared EXTERNAL
to a TAL program before they can be used. Appropriate EXTERNAL
declarations can be included in a program with the compiler
command:

?SOURCE $SYSTEM.SYSTEM.EXTDECS{ procedure name, ...)

3-21

Programmer Interface--System Procedures
CONVERTPROCESSNAME Procedure

CONVERTPROCESSNAME Procedure

The CONVERTPROCESSNAME procedure converts a process name from
local to network form. The call to CONVERTPROCESSNAME is:

~--.---------------------------

CALL CONVERTPROCESSNAME (process name)

where

process name, INT:ref:3,

is a process name beginning with a dollar sign ($); on
return, this buffer contains the internal network form of
the process name: a backslash (\) in the first byte, the
calling process's system number in the second byte,
followed by the process name.

If the process name does not begin with "$", it is left
unchanged. If it contains more than four characters, the
file system returns an error 20.

EXAMPLE:

An example of the action of CONVERTPROCESSNAME, assuming that
MYSYSTEMNUMBER is 3:

NAME ': =' "$PROC";
CALL CONVERTPROCESSNAME(NAME);

On return from the call, "name" contains:

o I \ I %3 1
1------------------1

I I P I R 1

I---------------~--I
2 I 0 I C I

3-22

Programmer Interface--System Procedures
CREATEREMOTENAME Procedure

CREATEREMOTENAME Procedure

The CREATEREMOTENAME procedure supplies a process name that is
unique for a specified system in a network. The call to
CREATEREMOTENAME is:

CALL CREATEREMOTENAME(name, system number)

where

name, INT:ref:3,

returns a system-generated process name that is unique
for the designated system.

system number, INT:value,

specifies the system for which the process name is to be
created.

CONSIDERATIONS. These condition code settings result from use of
the CREATEREMOTENAME procedure:

< (CCL) indicates that the remote PPD could not be accessed.

= (CCE) indicates that CREATEREMOTENAME was successful.

A third setting, > (CCG), is not returned.

CREATEREMOTENAME creates a process name in local form, consisting
of "$Z" followed by three digits. A typical name would be
"$Z123".

This name can be passed directly to the NEWPROCESS procedure to
create a remote process having that name. It is unnecessary to
append a system number to the process name, since the physical
location of the program file determines where the new process
will run. However, it is legal to append a system number, as
long as the number matches the system number where the process is
to be created.

The creation of a process name does not make an entry in the
remote system's PPD.

3-23

Programmer Interface--System Procedures
CREATEREMOTENAME Procedure

EXAMPLE:

An example of the use of this procedure is:

CALL CREATEREMOTENAME(NAME, SYS"'NUM);
IF < THEN ... ! problems

3-24

Programmer Interface--System Procedures
GETPPDENTRY Procedure

GETPPDENTRY Procedure

The GETPPDENTRY procedure returns a particular entry in a
specific system's Paired Process Directory (PPD). The call to
GETPPDENTRY is:

CALL GETPPDENTRY (entry number, system number, PPD entry)

where

entry number, INT:value,

specifies which PPD entry to return. The first entry
is 0, the second is 1, etc."

system number, INT:value,

specifies the system whose PPD is to be searched for the
desired entry.

PPD entry, INT:ref:9,

returns the nine-word PPD entry specified by the given
entry and system numbers, where:

PPD entry [0:2]

is the process name (in local form).

PPD entry [3]

is the CPU number and PIN of the primary process (CPU
in high eight bits, PIN in low eight bits).

PPD entry [4]

is the CPU number and PIN of the backup process (CPU
in high eight bits, PIN in low eight bits).

PPD entry [5:8]

is the process identifier of the ancestor, if any.

3-25

Programmer Interface--System Procedures
GETPPDENTRY Procedure

CONSIDERATIONS. These condition code settings result from use of
the GETPPDENTRY procedure:

< (CCL) indicates that the PPD in the given system could not
be accessed.

(CCE) indicates that GETPPDENTRY completed successfully.

> (CCG) indicates that there are no more entries in the PPD.

If the entry number is not currently being used, GETPPDENTRY
returns CCE, and sets word 0 of PPD entry to O. To check for
that condition, an application could contain this code:

CALL GETPPDENTRY (ENTRYANUM, SYSANUM, PPDAENTRY);
IF < THEN ... ; ! no more entries
IF = AND PPD~ENTRY THEN ... ! found an entry
ELSE ... ! try the next entry number

GETPPDENTRY is related to LOOKUPPROCESSNAME (described 1n your
GUARDIAN programming manuals) in this manner:

When you have the process name and want the PPD entry, use
LOOKUPPROCESSNAME. When you want to pass the entry number, use
GETPPDENTRY (use system number = MYSYSTEMNUMBER to access the
local PPD).

EXAMPLE:

An application that needs to obtain all entries in the PPD of
system 3 could use this code:

INT ENTRYANUMBER := -1,
SYSTEMANUMBER := 3,
DONE := 0,

.PPDAENTRY[0:8J;

DO
BEGIN
ENTRYANUMBER := ENTRYANUMBER + 1;
CALL GETPPDENTRY (ENTRYANUMBER, SYSTEMANUMBER, PPDAENTRY);
IF = THEN ... ! do something with "PPDAENTRY"
ELSE DONE .- I:
END

UNTIL DONE;

3-26

Programmer Interface--System Procedures
GETREMOTECRTPID Procedure

GETREMOTECRTPID Procedure

The GETREMOTECRTPID procedure returns the CRTPID, also known as
the process identifier, of a process whose CPU, PIN and system
number are known. The call to GETREMOTECRTPID is:

CALL GETREMOTECRTPID(pid, process id, system number)

where

p i d , I NT : val u e ,

is the CPU number and PIN of the process whose process
identifier is to be returned.

process id, INT:ref:4,

is an array of four words where GETREMOTECRTPID returns
the process identifier of pid. If the system number
specifies a remote system, the process identifier is in
network form; if the system number specifies the local
system, the process identifier is in local form. Both
forms of process identifier are described in "Process IDs
(CRTPIDs)", in this section.

CONSIDERATIONS. These condition code settings result from use of
the GETREMOTECRTPID procedure:

< (CCL) indicates that the GETCRTPID failed because no such
process exists, the remote system could not be
accessed, or the process has an inaccessible name
comprising more than four characters.

(CCE) indicates that GETREMOTECRTPID was successful.

A third setting, > (CCG), is not returned.

EXAMPLE:

CALL GETREMOTECRTPID (pid, crtpid, SYSANUM);
IF < THEN •.. problems

3-27

Programmer Interface--System Procedures
GETSYSTEMNAME Procedure

GETSYSTEMNAME Procedure

The GETSYSTEMNAME procedure supplies the system name associated
with a system number. The call to the GETSYSTEMNAME procedure is

------------------------------------.--------------------------

{
CALL } GETSYSTEMNAME (system number, system name
ldev :=

where

ldev, INT,

is returned one of these values:

-1 indicates that all paths to the specified system
are down

o indicates that the system is not defined

+n where n is a positive integer that indicates the
logical device number of the line handler to the
specified system.

system number, INT:value,

is the number of the system whose name is to be returned
in system name, and will be between 0 and 254 inclusive.

system name, INT:ref:4,

contains, on return, the name corresponding to the system
number.

CONSIDERATIONS. If the local system is not part of a network,
then execution of the statement:

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, NAME);

returns all blanks to NAME. (MYSYSTEMNUMBER provides a process
with its own system number).

EXAMPLE:

LDEV := GETSYSTEMNAME (SYSANUM, SYSANAME);
IF LDEV <= 0 THEN ... ! error

3-28

Programmer Interface--Systern Procedures
LOCATESYSTEM Procedure

LOCATESYSTEM Procedure

The LOCATESYSTEM procedure provides the system number
corresponding to a system name, and returns the logical device
number of the line handler controlling the path to a given
system. The call to LOCATESYSTEM is:

{
CALL }
ldev := LOCATESYSTEM (system number

, [system name])

where

ldev, INT,

is returned one of these values:

-1 indicates that all paths to the specified system
are down

o indicates that the system is not defined

+n where n is a positive integer that indicates the
logical device number of the line handler to the
specified system. In the case of multi-line, the
LDEV returned is that of the path.

system number, INT:ref,

is the system number corresponding to the system name if
the system name is provided. If the system name is not
provided, the caller must provide the system number to be
located.

system name, INT:ref:4,

if present, specifies the system to be located, and
causes the corresponding system number to be returned as
the sY$tem number.

3-29

Programmer Interface--System Procedures
LOCATESYSTEM Procedure

EXAMPLES:

! locate \NEWYORK, and return its system number
SYSANAME ':=' \NEWYORK;
LDEV := LOCATESYSTEM (SYSANUM, SYSANAME);
IF LDEV> 0 THEN ... ! success

! locate system 3
SYSANUM := 3;
LDEV := LOCATESYSTEM (SYSANUM);
IF LDEV <= 0 THEN ... ! problems

3-30

Programmer Interface--System Procedures
MONITORNET Procedure

MONITORNET Procedure

The MONITORNET procedure enables or disables receipt of system
messages concerning the status of processors in remote systems.
The call to MONITORNET is:

CALL MONITORNET (enable)

where

enable, INT,

is either 1, to enable receipt of messages, or 0, to
disable receipt of messages.

CONSIDERATIONS. A process that has enabled MONITORNET receives a
system message via $RECEIVE whenever a change in the status of a
remote processor occurs. The format of this message is:

word [0]
word [1].<0:7>
word [1].<8:15>
word [2]
word [3]

= -8
= system number

number of CPUs in the system
= current processor-status bit mask

previous processor-status bit mask

The processor-status bit mask has, in the bit corresponding to
the CPU number, a one to indicate that the processor is up, and a
zero to indicate that the processor is down or does not exist.

MONITORNET provides notification of status changes for remote
processors only. To receive notification of status changes for
local processors, an application process still must call
MONITORCPUS.

EXAMPLE:

CALL MONITORNET (1);

3-31

Programmer Interface--System Procedures
MYSYSTEMNUMBER Procedure

MYSYSTEMNUMBER Procedure

The MYSYSTEMNUMBER procedure provides a process with its own
system number. The call to MYSYSTEMNUMBER is:

-------------------------------------.----------------------------
system number := MYSYSTEMNUMBER

where

system number, INT,

returns the caller's system number.

CONSIDERATIONS. If the caller is running in a system that is not
part of a network, MYSYSTEMNUMBER returns O. Since 0 is a legal
system number, a process which has to determine whether the
system it is running in is part of a network should contain the
code:

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, name);

A return of all blanks in the name indicates that the system is
not part of a network.

]-32

Programmer Interface--System Procedures
PROCESS INFO Procedure

PROCESS INFO Procedure

The PROCESSINFO procedure returns process status information.
The call to the PROCESSINFO procedure is:

{ CALL
: = }

PROCESS INFO (cpu-pin
error , [process id]

, [creator accessor id]
, [process accessor id]
, [priority]
, [program file name
, [home terminal]
, [system number]
, [search mode])

where

error, INT,

is returned one of these values to indicate the outcome
of the call:

o = status for process cpu-pin is returned.

1 = process cpu-pin does not exist. Status for next
higher cpu-pin is returned. process id [3] =
cpu-pin is the process for which status is
returned.

2 process cpu-pin does not exist and no higher
cpu-pin exists.

3 cpu is down.

4 = cpu does not exist.

5 = the system specified by system number could not be
accessed.

99 = parameter error.

cpu-pin, INT:value,

specifies the process whose status is being requested,
where:

cpu-pin.<O:7> 1S the cpu number.

cpu-pin.<8:15> is the pin number.

3-33

Programmer Interface--System Procedures
PROCESSINFO Procedure

3-34

process id, INT:ref:4,

if present, is returned the process identifier of the
process whose status is actually being returned. Note
that this can be different from the process whose status
was requested via cpu,pin (see error).

creator accessor id, INT:ref:l,

if present, returns the creator accessor identifier of
the process identifier (see "Network Security", Section 4
for an explanation of the creator accessor identifier).

process accessor id, INT:ref:l,

if present, returns the process accessor identifier of
the process identifier (see "Network Security", Section 4
for an explanation of the process accessor identifier).

priority, INT,

if present, returns the execution priority of this
process.

program file name, INT:ref:12,

if present, returns the name of the process identifier's
program file.

home terminal, INT:ref:12,

if present, returns the device name of the process
identifier's home terminal. If the home terminal resides
on the local system, home terminal is in local form
(begins with a dollar sign ($); otherwise, home terminal
is in network form (begins with a backslash (\)).

system number, INT:value,

if present, specifies the system (in a network) where
the process for which information is to be returned is
running. If this parameter is omitted, the local system
is assumed.

Programmer Interface--System Procedures
PROCESS INFO Procedure

search mode, INT:value,

if present, is a bit mask that specifies one or more
"search" conditions. If omitted, zero is used.

CONSIDERATIONS. On the call, the parameters to PROCESSINFO
contain the value(s) for the search condition(s) and the bit
fields in search mode specify the conditions being searched for
(1 = condition must be met; 0 = don't care):

search mode.<O>

search mode.<l>

search mode.<2>

indicates that the searched process must
match process identifier for three words.

indicates tha~ the searched process must
match the creator accessor identifier.

indicates that the searched process must
match the process accessor identifier.

search mode.<3> indicates that the searched process must be
equal to or less than priority.

search mode.<4>

search mode.<5>

indicates that the searched process must
match program file name.

indicates that the searched process must
match home terminal.

If multiple search conditions are specified, then all must be
met.

If the system number specifies a remote system, the process
identifier is returned in network form; otherwise, the process
identifier is returned in local form.

If the process's home terminal is remote, home terminal is
returned in network form; if the home terminal is local, home
terminal is in local form.

3-35

Programmer Interface--Systern Procedures
PROCESS INFO Procedure

EXAMPLE:

! return status for all processes run by me at my terminal.
CAID := PROCESSACCESSID;
CALL MYTERM (HOMETERM);
PIN := 0;
MODE := %42000;
WHILE PROCESSINFO (PIN, PlD, CAlD, PAID, PRl, PROG,

HOMETERM" MODE) < 2 DO

3-36

BEGIN

PIN .- PlD [3] + 1;
END;

Programmer Interface--System Procedures
REMOTEPROCESSORSTATUS Procedure

REMOTEPROCESSORSTATUS Procedure

The REMOTEPROCESSORSTATUS procedure supplies the status of
processor modules in a particular system in a network. The call
to REMOTEPROCESSORSTATUS is:

status := REMOTEPROCESSORSTATUS (system number)

where

status, INT(32),

returns the processor status in this format: The
high-order word contains the number of processors in the
remote system. If the remote system is nonexistent or
unavailable, the high-order. word is O.

The low-order word contains a bit mask for processor
availability. If the processor is up, the corresponding
bit is 1; if the processor is down or nonexistent, the
corresponding bit is o.

CONSIDERATIONS. The system number for a particular system whose
name is known can be obtained from the LOCATESYSTEM procedure.

The two words of status can be separated by "equivalencing" INT
variables to the high and low-order words. For example, a TAL
procedure that calls REMOTEPROCESSORSTATUS might contain these
declarations:

INT(32) STATUS;
INT NUMAPROCESSORS = STATUS;
INT BITAMASK = NUMAPROCESSORS + 1;

! high-order word
! low-order word

"Equivalenced" TAL variables are explained fully in the
Transaction Application Language (TAL) Reference Manual.

The bits in the low-order word are ordered from 0 to 15, from
left to right:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-37

Programmer Interface--System Procedures
REMOTEPROCESSORSTATUS Procedure

REMOTEPROCESSORSTATUS can also be used to obtain the status of
local processors, as shown here:

INT(32) MYAPROCESSORASTATUSi
MYAPROCESSORASTATUS := REMOTEPROCESSORSTATUS (MYSYSTEMNUMBER)i

3-38

Programmer Interface--System Procedures
SETMODE and SETMODENOWAIT Procedures

SETMODE Procedure
SETMODENOWAIT Procedure

SETMODE function code 71 (or SETMODENOWAIT function code 71) sets
the priority to be used for the transmission of messages. The
format is:

CALL SETMODE (filenumber
71

, parameter-1
, parameter-2
, last-parameters

CALL SETMODENOWAIT (filenumber

where

71
, parameter-l
, parame.ter-2
, last-parameters

filenumber, INT:value,

the file number returned by the call to OPEN.

7 I, I NT : val u e ,

set transmission priority function code.

parameter-I, INT:value,

o (reserved).

parameter-2.O:7
parameter-2.8:15

= 0 (reserved)
= transmission priority field

the value for the transmission priority field (bits
8:15) may range from 0 through 255. A value of
zero (the default) causes the CPU priority of the
process to be used as the transmission priority.
The value 1 is lowest priority. The value 255 is
highest priority. Once a path is selected, the
line handler processes highest priority messages
first.

3-39

Programmer Interface--System Procedures
SETMODE and SETMODENOWAIT Procedures

last-parameters, INT:ref:2

returns the previous setting of parameter-l and
parameter-2 for this function.

PROGRAMMING CONSIDERATIONS

This section presents considerations relating to network
programming, including:

• network file names (external form)

• MY1'ERM procedure

• command interpreter startup message

• remote process creation

• saving file names

• key-sequenced and partitioned files

Network File Names (External Form)

An application program that handles file names in their external
form needs to allocate 34 bytes to handle a fully qualified
network file name, as shown in Figure 3-2.

\system name . $device or process . subvol .
I I / \ I I I I
1 + 7 + 1 + 1 + 6 + 1 + 8 -I- 1

disc file name
I

+ 8 = 34

Figure 3-2. Allocation of 34 Bytes for Network File Name

An example of a fully qualified network file name in external
form is:

\NEWYORK.$ORDERS.PARTS.INVNTRY

3-40

Programmer Interface--Considerations
MYTERM Procedure--Network Considerations

MYTERM Procedure--Network Considerations

If the home terminal is local, MYTERM returns the name of the
horne terminal in local form: otherwise, MYTERM returns the name
of the horne terminal in network form.

Unlike the command interpreter startup message's IN and OUT
files, the name returned by MYTERM is not affected by any SYSTEM
command which the user may have issued. Therefore the command:

:SYSTEM \SF

has no effect Of1 MYTERM: if the home terminal is local, the horne
terminal name is in local form. However, this command would
cause in IN and OUT files, even if they were local, to be passed
to a process in network form.

Command Interpreter Startup Message

The first task performed by an application process is to open its
$RECEIVE file and read the command interpreter startup message.
This message supplies the application process with the ~ames of
its IN file, its OUT file, and the current defaults. (The
startup message is described in your GUARDIAN programming manuals
in the discussion of the command interpreter.)

IN AND OUT FILES. The names of the IN and OUT files are passed
in local or network form, depending on whether each file is local
or remote.

There is one exception to this rule: the name of a local file is
passed in network form if the local system was explicitly
specified (via the SYSTEM command) as the default system, and the
file name was expanded using the default system. For example,
suppose that the local system is \BUFFALO, and that these
commands are issued:

:SYSTEM \BUFFALO
:RUN MYPROG lIN MYFILE/

Any SYSTEM system name command causes the command interpreter to
expand all partial file names using the default system.
Therefore, MYFILE is expanded by the command interpreter using
the default system \BUFFALO, and the IN file passed to MYPROG is
in network form.

An application process can either ignore or consider the physical
location of its IN and OUT files. If the physical location of a
file is not important, the process simply passes the file name to
the OPEN procedure: if the physical location of the file is
important, the process checks whether the first byte of the file
name is a dollar sign or backslash ($ or \) and acts accordingly.

3-41

Programmer Interface--Considerations
Command Interpreter Startup Message

DEFAULTS. The name of the default system, if one has been
explicitly defined, is passed as part of the default volume name.
For example, following the command interpreter commands:

:VOLUME $VOL.SUBVOL
:SYSTEM \LONDON

assuming that \LONDON corresponds to system number 2, words [1:8]
of the startup message sent to any process created by thE~ command
interpreter contain

\<2>VOL SUBVOL

where <2> denotes octal (not ASCII) 2 In the second byte.

The default system is included in the default volume name only if
a system has been explicitly specified via a SYSTEM system name
command. The command

: SYSTEM

causes the default names to be passed In local form, as does the
complete absence of a SYSTEM command.

Observe that the command:

:SYSTEM \BUFFALO

causes the default names to be passed in network form regardless
of whether \BUFFALO is the local system.

Remote Process Creation

A process is created in a remote system the same way one is
created in the local system: by passing the program file name to
the NEWPROCESS procedure. There is one basic rule: a process's
program file must reside on the system in which the process is to
run.

If you want to create a remote process in a system that does not
possess a copy of the program file, you must copy the program
file to the remote system.

Assuming that the app~opriate program file resides on the remote
system, creating the remote process is accomplished by passing
the program file name to the NEWPROCESS procedure. For example,
this code runs TAL as an unnamed process on system \DETROIT, in
CPU 2 at priority 140:

3-42

Programmer Interface--Considerations
Remote Process Creation

STRING .PROCANAME[0:27] := ["\OETROIT.$SYSTEM.SYSTEM.TAL", 0];
INT .PROGRAMAFILE[0:11],

.PID,
PRI := 140,
CPU := 2,
ERROR;

CALL FNAMEEXPAND (PROCANAME, PROGRAMAFILE, DEFAULTS):
CALL NEWPROCESS (PROGRAMAFILE, PRI, , CPU, PIO, ERROR);
IF ERROR THEN ...

CPU DEFAULTING. The CPU parameter of NEWPROCESS lets you specify
the processor in which the new process is to run. Any remote
processor can be used for process creation.

If the CPU parameter is not specified, the new process runs in a
processor selected from among those processors specified at
SYSGEN time as being available to the network.

SENDING THE STARTUP MESSAGE. After a process is created, it must
be sent a startup message. When formatting the startup message,
the creator must take care to convert the IN and OUT file names
and the default names to network form, so the new process can
reference its files correctly.

EXAMPLES:

Suppose that the creator wishes to designate itself as the new
process's IN file. The creator could contain this code:

! first, get my process ID
CALL GETCRTPID (MYPID, MYPROCESSID):
! convert to network form
CALL CONVERTPROCESSNAME (MYPROCESSID);
! move into startup message
STARTUpAMSG[9] ':=' MYPROCESSID FOR 4;

Note that if the creator is running as a named process, then
CONVERTPROCESSNAME transforms the local name into network form.
If the creator is running as an unnamed process, then its CRTPID
already specifies the system number (in the second byte) and
CONVERTPROCESSNAME leaves the CRTPID unaltered.

The code in the next example could be used to specify the
creator's own OUT file as the new process's OUT file. Assume
that OUTFILE contains the creator's OUT file name as obtained
from its startup message.

3-43

Programmer Interface--Considerations
Remote Process Creation

STRING .OUTFILES := @OUTFILE '«' 1;

IF OUTFILES = "$" THEN! change it to network form,
! using my system number

BEGIN
OUTF I LES [7] '=:' OUTF I LES [6] FOR 7;
OUTFILE := "\" '«' 8 + MYSYSTEMNUMBER;
END;

If the first byte of OUTFILE contained a backs lash (\) character
(indicating a network file name), or neither a dollar sign ($)
nor a backslash (indicating the CRTPID of an unnamed process),
then OUTFILE would be left unchanged.

Similar code could ensure that the default names are passed
correctly.

Other cases--for example, the new process's OUT file being
specified as a process in some other system--must be handled on
an individual basis. Keep in mind that the new process will
assume that file names in local form are local files. If this
would cause incorrect results, then the creator must modify the
startup message before sending it.

Saving File Names

Programs that save network file names should save the file names
in external form. File names in external form should be
converted to internal form immediately before opening the file.
The reason is that conversion from system name to system number
depends on the current state of the communication path to the
remote system: if the path is down, the system name is converted
to system number 255, an illegal value that causes OPEN to fail.

Alternate-Key and Partitioned Files

An alternate-key file can be made to reside on a different system
than the primary file by listing the alternate-key file's
location in network form in the alternate key params array when
the primary file is c~eated, and passing the file name in network
form to the CREATE procedure to create the alternate-key file.
Passing a local file name to CREATE causes an alternate-key file
to be created on the same system as the primary file, not on the
default system.

3-44

Programmer Interface--Considerations
Alternate-Key and Partitioned Files

Any file, including an alternate-key file, can be partitioned
across system boundaries. To create a partitioned file having
partitions on different systems, follow the same procedure used
to create a partitioned file, as described in the ENSCRIBE
Programming Manual. The partition params array is used in the
same way. However, instead of supplying the $volume on which a
partition is to reside, you must supply

\system number volume name

where the "$" is omitted from the volume name. Supplying a
$volume name without a system number causes the partition to be
created on the same system as the primary partition, not on the
default system.

3-45

SECTION 4

NETWORK MANAGEMENT

This section presents information relevant to the management of a
network. Topics included are:

• best-path determination

• enhanced routing

• Network Monitor (NETMON) utility program

• network security

• items to consider when using SYSGEN, CUP, PUP, CMI, and XRAY

BEST-PATH DETERMINATION

Intersystem messages are always sent via the best path between
the two systems. The determination of the "best" path is made by
assigning time factors based on line speed to the communication
lines, and computing the sum of the time factors along each
possible path.

The multi-line facility allows all lines in a path to be used
simultaneously. The effective bandwidth will be the sum of the
bandwidths of all lines in the path: that is, multiple packet
messages are distributed over multiple lines.

If a line fails, the NCP updates its NETMAPS to reflect the
decrease in path bandwidth. Reactivation of the line updates the
NETMAPS to reflect the increase in bandwidth. If a controller
fails, the NCP updates its NETMAPS to reflect the decrease in
bandwidth for all lines connected to the failed controller.

4-1

Network Management--Best-Path Determination

Each line has a configured line time factor (SYSGEN LINESPEED),
as shown in Table 4-1. The line handlers for the neighbor paths
establish the time factor value during path initialization and
whenever a line failure or activation occurs. For routing
purposes, the neighbor NCPs agree to use the slower line speed
(larger value). The following equation shows how the time factor
for a multi-line path is determined:

path TF = TF conversion factor

TF conv fact TF conv fact TF conv fact
------------- + ------------- + ••• + ---------------

linel TF line2 TF

For example, the time factor for a multi~line path consisting of
three lines with each line's speed configured for 4800 bps (bits
per second) and time factor of 47 is:

path TF = 224000

224000 224000 224000
-------- + -------- + --------

47 47 47

= 224000

4765 + 4765 + 4765

= 224000 15.7 = 16

14295

This results in converting the time factors to line speeds,
adding the line speeds together to get a path speed, and then
dividing the time factor conversion factor by the path speed to
get the path time factor (number of seconds required to transmit
224000 bits).

4-2

Network Management--Best-Path Determination

Table 4-1. Time Factors According to Line Speed

Line Speed

2400 bps
4800 bps
9600 bps
19200 bps
50000 bps
56000 bps
224000 bps

Time
Factor

93
47
23
12

5
4
1

The time factor represents the number of seconds it takes to
transmit 224000 bits of data across a given line. For example,
it takes 47 seconds to transmit 224000 bits across a 4800-bps
line.

Consider this network:

B

c

A @19.2K @ 19.2K

o

E

Figure 4-1. Time Factors Based on Line Speed

In Figure 4-1, a message from node A to node D {without
multi-line} would be sent via the path A -> B -> C -> D. The
total of the time factors along this path {23 + 4 + 12 = 39} is
less than the total of the time factors along any other path.
However, if a multi-line connection is made between node A and
node E, by adding two 4800-bps lines, its time factor = 16.

4-3

Network Management--Best-path Determination

Thus, with multi-line, a message from node A to node D takes the
path A -> E -> D. The total time factor along this path is
(16 + 12 = 28).

Each line's time factor is specified via SYSGEN. It is not
necessary to use the values given in the table. If you want to
force message traffic to travel over a slow path (for whatever
reason), you can configure a small time factor for the line.

For the best-path routing scheme to work, each node must know
about the current status of the network. The Network Control
Process in each node maintains routing tables that enable
messages to be routed correctly. Changes in the status of the
network are propagated throughout the network by the exchange of
messages between the NCPs in neighboring systems.

Suppose, in the example above, that the communication line
between Band C fails:

System C informs D of the failure; then D informs E, and E
informs A and B.

Meanwhile, B informs A and E, A informs E, and E informs A
and D.

Each system updates its routing tables as it becomes aware of the
change in network status, allowing all message traffic to be
routed correctly. The same scheme of informing one's neighbor is
used when a communication line becomes available or a new system
is added to the network.

In the case of multi-line, the general network routing procedure
remains the same with one exception. A line ready or not ready
condition causes an update to the NETMAPS to reflect the change
in the path time factor; however, a line down does not
necessarily mean that the path is down (time factor of
infinity). In fact, the new best path may indeed be the same as
the original path.

The method of informing all nodes about routing changes is
implemented in such a way that no system ever becomes confused
about where to send a message; packets are always routed
correctly regardless of any sequence of catastprophes.

4-4

Network Management--Enhanced Routing

ENHANCED ROUTING

EXPAND enhanced routing permits the network user to declare a
transmission priority that is used in combination with the best
available transmission path for optimal transfer of data over the
best-path route selected.

Path Selection

The transmission modifiers LINESPEED and TRANS DELAY are available
for defining EXPAND lines during system generation (SYSGEN):

LINESPEED. The LINESPEED modifier replaces the RSIZE modifier
(RSIZE continues to be required--specification of LINESPEED
overrides the RSIZE declaration). The value specified in the
LINESPEED modifier sets the bandwidth (baud rate) of the
communication line.

TRANSDELAY. The TRANSDELAY modifier set the amount of delay time
expected during message transmission.

Transmission Priority

You specify a file's transmission priority by issuing a SETMODE
file management request (see Section 3, System Procedures).
EXPAND attempts to provide this priority by queuing the messages
for transmission in the appropriate sequence.

The line handler uses the transmission priority to determine the
ordering of messages for transmission on a path. That is, the
line handler selects the highest priority message to present for
transmission.

Transport Media

Each network node contains a Network Control Program (NCP) which
exchanges information with each neighbor node regarding available
routing alternatives.

Once you define (through SYSGEN) the bandwidth, the transmission
delay, and the logical path grouping of lines (see the System
Management Manual), the NCP reduces this data into a Network
Routing Table (NRT) that resides in each processor at the node.
For each destination system in the network, the NRT contains the
logical device number (LDEV) of the "best-path" line handler
based on bandwidth.

The GUARDIAN operating system uses the NRT to select the
appropriate LDEV for message transmission to other nodes.

4-5

Network Management--Enhanced Routing

The line handler uses the transmission size--the message size at
a given bandwidth (LINESPEED)--together with the amount of delay
before the message can be dispatched (the amount of previously
queued data at a given bandwidth), and the transmission delay
(TRANSDELAY) value to select the best line for data transmission
within a multi-line path.

4-6

Network Management--NETMON Network Utility

NETMON Network Utility

The network monitor program NETMON lets one system within a
network act as a center for monitoring the network. The NETMON
program provides:

• logging of changes in network status

• logging of changes in processor status at remote systems

• a display of changes in processor status at remote systems

• a display of network traffic

The command to run NETMON is:

NETMON [/{run parameter}, ... 1 .] [command]

where run parameter takes the form: IN command file, OUT list
file, or NAME [$process name].

IN command file

specifies a disc file, terminal, or process where NETMON
reads commands. NETMON re~ds 132-byte records from the
command file until it encounters the end-of-file. Only
one command is permitted per record. If this option is
omitted, the home terminal is used.

OUT list file

specifies an existing disc file, terminal, or process
where NETMON directs its listing output. If the command
file is a terminal, the list file must be the same
terminal. If this option is omitted, the home terminal
is used.

NAME [$process name]

specifies a symbolic name to be assigned to the new
process. This option is necessary if the BACKUPCPU
command is issued. If the $process name is omitted,
the operating system generates a name for the new
process. If this option is omitted, the process is
unnamed.

4-7

Network Managernent--NETMON Network Utility
NETMON Command

command

is one or more NETMON commands .separated by semicolons~
If a command is included, NETMON executes the command,
then terminates. If the DISPLAY command is embedded in
the command string, the DISPLAY command is terminated by
the BREAK key. Any subsequent commands in the string are
then executed before NETMON terminates.

EXAMPLES:

In this example, NETMON starts and prompts for commands:

:NETMON
NETWORK MONITOR - T9007E02 - (OlJULY81)
>

In the next example, NETMON starts, executes a command to display
the processor status of the systems in the network, sends the
data to the printer $LP, and terminates:

:NETMON lOUT $LP/ CPUS
NETWORK MONITOR - T9007E02 - (OlJULY8l)

In the next example, NETMON starts and displays the network
traffic and processor status for selected systems:

:NETMON /NAME/ BACKUPCPU3;ADD ALL;DISPLAY
NETWORK MONITOR - T9007E02 - (OlJULY81)

NETMON then clears the screen and begins the display. The
display continues until the BREAK key is pressed~

EXIT Command

The EXIT command terminates NETMON. Then, the command
interpreter prompt appears. Control-Y also terminates NETMON.

4-8

Network Management--NETMON Network Utility
FC Command

FC (Fix Command)

The FC command lets you edit or repeat a command line. When this
command executes, it displays the previous command line and
prompts with a period. FC accepts three subcommands:

I inserts one or more characters

R replaces one or more characters

D deletes one or more characters.

FC again displays the command line after the line is edited, and
prompts for another subcommand. FC terminates when it receives
only a carriage return. The "COMINT" (command interpreter)
section of the Operating System Command Language and Utilities
Manual describes the FC command in detail.

EXAMPLE:

:NETMM
FILE ERROR 11
:fc
:NETMM

iO
:NETMOM

rN
:NETMON

(The I command inserts the 0 before the M)

(The R command replaces the M with an N)

(A carriage return terminates the FC command)
NETWORK MONITOR - T9007D05 - (OlOCT80)
>

BREAK Key

When the BREAK key is pressed, the currently executing command
aborts. The BREAK key also is the only way to terminate the
DISPLAY command. If no command is executing, the command
interpreter resumes control. The command interpreter's PAUSE
command lets NETMON resume.

Control-Y

Control-Y terminates NETMON, then the command interpreter prompt
appears. The EXIT command also terminates NETMON.

4-9

Network Management--NETMON Commands

NETMON Commands

This subsection describes the conunands that let you operatE~
NETMON. These conunands are sununarized below and then described
in detail.

ADD

BACKUPCPU

CPUS

DELETE

DISPLAY

EXIT

FC

HELP

LOGCENTRAL

PATHS

MAPS

PERIOD

PROBE

SHOW

STATS

THRESHOLD
'I.

4-10

adds one or more systems in the network to the
display list.

specifies the processor where the NETMON backup
process is run.

displays the status of the processors for all
systems known by the specified system.

deletes one or more systems in the network from
the display list.

shows the network traffic and processor status of
the selected systems. Note that the only way to
terminate Display mode is by using the BREAK key.

terminates the NETMON program.

(fix conunand) edits and reexecutes a conunand
line.

provides command syntax for all NETMON commands.

starts or stops central logging at the local
system. Note that only the System Manager
designated SUPER. SUPER may use this command.

displays the status of a selected path along with
the status of lines within the path.

displays the status of the network as seen from
the selected system.

sets the sample interval time in seconds.

displays the current paths from remote systems to
the selected system.

displays the systems selected with the ADD
commandQ

displays detailed statistics for the selected
system.

determines when to blink the rate of packets line
in the display shown with the DISPLAY command.

Network Management--NETMON Commands
ADD Command

ADD Command

The ADD command adds one or more systems to the list of systems
to be displayed. The form of this command is:

ADD
{

ALL }
system [, system, ...]

where

ALL

specifies the first 16 systems in the network because
only 16 systems fit on a screen for a display.

system

is specified either as a system name (e.g., \DALLAS) or
a system number (e.g., 3).

EXAMPLE:

ADD \OALLAS,3,\WASH

4-11

Network Management--NETMON Commands
BACKUPCPU Command

BACKUPCPU Command

The BACKUPCPU command specifies the processor where the NETMON
backup process is run. This command is useful when a terminal is
constantly displaying network information; it is not useful when
using NETMON interactively. Moreover, the NAME option must be
included when NETMON is started. The form of the command is:

•• _______ "'" __ .. _, ________ 0 _____ '

BACKUPCPU [cpu]

where

cpu

specifies the processor in which to run the backup NETMON
process. If this parameter is omitted, any existing
backup NETMON process will be stopped.

EXAMPLE:

BACKUPCPU 3

4-12

Network Management--NETMON Commands
CPUS Command

CPUS Command

The CPUS command displays the status of the processors in all the
systems that are known by the specified system. The NCP revision
level also is displayed for each system. The form of the command
is:

CPUS [system]

where

system

is specified either as a system name (e.g., \DALLAS) or a
system number (e.g., 3). If this option is omitted, the
local system is assumed.

The form of the display is:

SYSTEM
sss system
sss(system)
sss system

where

sss system

O<--CPU STATES-->l5
nnnn,nnnn,nnnn,nnnn
nnnn,nnnn,nnnn,nnnn
nnnn,nnnn,nnnn,nnnn

NCP LVL
x

x

is the number and name of one of the systems known to the
selected system. The selected system's name is enclosed
in parentheses.

nnnn,nnnn,nnnn,nnnn

is the status of each processor in a system. 1 indicates
the processor is active; 0 indicates it is inactive. A
period represents a nonexistent processor. NOT CONNECTED
means a known system is not attached to the network
currently.

4-13

Network Management--NETMON Commands
CPUS Command

x

is the level of the network control process (NCP). The
NCP level for the selected system is shown as a dash.
This number is used by Tandem personnel.

EXAMPLE:

In this example, system 3, the selected system, has 12 processors
that are all active. The system name \TS is enclosed in
parentheses and the NCP level is a dash. System 11 has four
processors, one of which is inactive. System 5 currently is not
attached to the network.

>CPUS 3

NETCPUS AT \TS (003) #PATHS=06

SYSTEM O<--CPU STATES-->15
2 \CUPRTNO 1111, , ,
3(\TS) 1111,1111,1111,
4 \DALLAS Ill., , ,
5 \CHICAGO NOT CONNECTED
6 \NEWYORK Ill., .•.. , , ...•
7 \ QA 1111 , , ,
8 \ LA 11 . . , , ,
9 \CORP 1111,1111, ,

10 \MFG 1111,11 .. , ,
11 \TORONTO 1110, , ,

4-14

TIME: 4 SEP 1980, 9:34:43

NCP LVL
1

1

3
1
1
2
1
4

Network Management--NETMON Commands
DELETE Command

DELETE Command

The DELETE command removes one or more systems from the list of
systems to be displayed. The form of this command is:

DELETE
{

ALL }
system [,system, ...]

where

ALL

specifies all the systems that are currently selected.

system

is specified either as a system name (e.g., \DALLAS) or a
system number (e.g., 3).

EXAMPLE:

DELETE ALL

4-15

Network Management--NETMON Commands
DISPLAY Command

DISPLAY Command

The DISPLAY command starts the display mode of NETMON. This
command is designed to function on a page-mode terminal; the
display is unreadable on other devices. The display shows
network traffic together with processor status for the systems
specified via the ADD command. The initial values of the display
are not shown until the first sample period has passed (see
PERIOD command). The form of the DISPLAY command is:

E,_LAY ________ J
There are no options to specify.

NOTE

To stop display mode, press the BREAK key. This IS

the only means of exiting NETMON display mode.

Traffic data and processor status can be displayed for up to 16
systems. The format of this display is:

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)

\systemx(sss)
tttt(pppp)

avg uuuu(qqqq)
ssssssssssssssss ssssssssssssssss ssssssssssssssss

where

4-16

\systemx(sss)

is the name (and number) of a system selected for status
and traffic monitoring (see ADD command).

tttt

is the rate of packet transmission by the system during
the sample period. This value is calculated from the
number of packets transmitted during the sample period,
adjusted to represent a packets-per-minute rate of
transmission.

--~

Network Management--NETMON Commands
DISPLAY Command

This value blinks off and on whenever the difference
between the current traffic rate and the weighted average
traffic rate (see uuuu(qqqq), below} reaches the threshold
percentage (see THRESHOLD command).

pppp

is the rate of packet transmission for pass-through
traffic during the sample period. This value is
calculated from the number of packets transmitted during
the sample period, adjusted to represent a packets-per
minute rate of transmission.

uuuu(qqqq)

represents the weighted averages for the network traffic
rate. The weighted average. is calculated from the
preceding rate times a multiplier, plus the current rate,
divided by an averaging divisor. uuuu is the weighted
average traffic rate for the system during the sample
period. (qqqq) is the weighted average traffic rate for
pass-through traffic.

ssssssssssssssss

is the last reported processor status for the system.
Each of the 16 positions shows a 1, 0, or hyphen. A
1 represents an active processor; a ° represents an
inactive processor; a hyphen represents a nonexistent
processor. This line blinks off and on whenever a change
in processor status is detected.

EXAMPLE:

This example of the network status display is abbreviated. The
actual display would show four systems across and two systems
down. In this example, \DALLAS is not currently connected to the
network. Thus, it returns no statistics.

4-17

Network Management--NETMON Commands
DISPLAY Command

>DISPLAY

NETWORK STATUS DISPLAY AT \TS (003)

4-18

\SAA (OOO)
2049(0000)

avg 1215(0000)
11--------------

\TS (003)
559(0004)

avg 385(0003)
111111----------

\SAB (001)
34(0000)

avg 22(0000)
0011------------

\DALLAS (004)

000-------------

T I ME : 2 8 AP R 1 98 1 , 16 : 3 9 : 2 3

\CUPRTNO (002)
639(0062)

avg 474(0057)
11111-----------

\QA (007)
1990(0661)

avg 1008(0293)
111-------------

Network Managernent--NETMON Commands
HELP Command

HELP Command

The HELP command lists the syntax or provides a brief description
of the NETMON commands. The form of the command is:

HELP
[

ALL J
command

where

ALL

displays the syntax and describes all NETMON commands.
This is the default.

command

specifies the command for which the syntax and
description is displayed.

EXAMPLES:

>HELP

ADD < system list>
BACKUPCPU [cpu #]
CPUS <system >
DELETE < system list>
DISPLAY
EXIT
FC
HELP [< command name > I ALL]
LOGCENTRAL [ON I OFF]
MAPS [< system >]
PATHS [< system>], [PATH < pathnum >]
PERIOD [< sample interval >]
PROBE [< from system >], [PERIOD < interval >],

[SYSTEM < to system >]
SHOW
STATS [< system >]
THRESHOLD [< threshold >]

>HELP MAPS

MAPS [< system >]
Displays NETMAPS for selected system. Default local system.

4-19

Network Management--NETMON Commands
LOGCENTRAL Command

LOGCENTRAL Command

The LOGCENTRAL command either starts or stops central logging of
network messages on the local system. The form of this command
is:

LOGCENTRAL

where

OFF

ON

stops central logging at the local system.

starts central logging at the local system. If you
specify neither ON nor OFF, the name of the system
performing the central logging is displayed.

NOTE

Only the System Manager designated SUPER. SUPER is
permitted to execute this command.

The network can create a lot of logging information if either a
path or a system fails. Because the operator console usually is
a slow printer, logging this information can tie up allocation of
system resources at the receiving operator process. Disabling
log messages at the local system, through PUP CONSOLE,
ENABLE/DISABLE, reduces the amount of unnecessary traffic queued
up at the operator process.

When central logging starts or stops or when the status of any
network processor changes, a message is logged on all of the
systems in the network. For example:

34 { ... } NET: LOGGING AT SYS sss

indicates that central logging was initiated

35 { ... } NET: LOCAL LOGGING RESUMED

indicates that central logging was terminated

4-20

Network Managernent--NETMON Commands
LOGCENTRAL Command

48 { ... } NET: SYS sss CPU STATUS ssssssssssssssss

indicates a change in processor status, where:

{ . . . } indicates the position for the date and
time.

sss is the system number.

ssssssssssssssss is the last reported processor status for
the specified system.

CONSIDERATIONS. If LOGCENTRAL is on, the NCP sends log messages
to the logcentral system; however, no logging occurs to the local
operator process (disc-resident operator log). On the other
hand, if the path to the logcentral system is down, the messages
are logged to the local operator process.

4-21

Network Management--NETMON Commands
MAPS Command

MAPS Command

The MAPS command displays the status of the network as seen from
the selected system. This command provides the ability to look
at the network from any system even though NETMON is running
elsewhere. The form of the command is:

MAPS [system] l
where

system

is either a system name or a system. number. If this
option is omitted, the local system is assumed.

This command displays as many as six paths per line on dE~vices
with fewer than 132 columns and as many as ten paths per line on
devices with 132 or more columns. If the selected system has
more paths than will fit on one line of the output device, the
additional paths are shown on the next line and a blank line is
inserted between systems. The form of the display is:

NETWORK MONITOR - T9007D05 - (OlOCT80)

NETMAPS AT <system>(sss) #PATHS=<nn> TIME: <date>,<time>

SYSTEM
sss <systema> ttttt(dd)
sss <systemb> ttttt(dd)
sss <systemc> ttttt(dd)

PATHS
<pn>
<pn>
<pn>

4-22

NEIGHBOR
. (sss)
<system> (sss)
<system> (sss)

TIME (DISTANCE) BY PATH
ttttt(dd)* ttttt(dd)
ttttt(dd)* ttttt(dd)
ttttt(dd) ttttt(dd)*.

LDEV
xx
xx
xx

STATUS
NOT READY (err)
READY (cpu,pin)
READY (cpu, pin)

ttttt(dd)
ttttt(dd)
ttttt(dd)

--).

Network Management--NETMON Commands
MAPS Command

where

system (sss)

nn

is the name (and number) of the system specified In the
MAPS command.

is the number of communication lines radiating from the
selected system. This number indicates the number of
rows and columns under TIME (DISTANCE) BY PATH and the
number of paths listed at the bottom of the display.

date, time

is the date and time at which the display was made.

sss <systema>

is the number and name of one in a list of systems in the
network.

ttttt(dd)

is the time(ttttt) and distance (dd) between systems in
the network and the selected system. Each row and column
represents a path that corresponds to the paths listed at
the bottom of the display. For example, the third column
in the first row represents the time and distance required
to reach systema through path 3. An asterisk (*) shows
that systema is connected to the selected system through
this path; a plus sign (+) indicates that a connect
request is outstanding, but the connection has not yet
been established. A system that cannot be reached through
a path is indicated by 32767(--).

ttttt represents the sum of the line-speed time factors
that are specified for system generation. The smaller
numbers represent faster lines.

dd represents the number of node-to-node paths traveled
to reach systema through a particular end--to-end path.

4-23

Network Management--NETMON Commands
MAPS Command

pn

is the number of a path corresponding to a column under
TIME (DISTANCE).

system (sss)

xx

IS the name and number of the system directly connected
to the selected system.

is the logical device number of the line handler. In the
case of multi-line, it is the logical device number of
the path.

(err)

is the file system error for a path that is not ready.
This error usually is 66 for a device downed by the
operator, 140 for modern loss, or 248 for a nonresponding
remote system. In the case of a multiline path, if all
lines are down, the error number will be for the fastest
line in the path. For a more detailed description of the
error, use the PATHS command.

(cpu,pin)

is the processor and process identification number of the
current primary process of the line handler.

EXAMPLE:

This example shows the MAPS command issued for system 3, which is
system \TS. This system has five paths radiating from it. The
row filled with 32767{--} indicates that system 5 is not avail
able. (A column filled with 32767{--) would indicate a path that
is not available.} By looking at the time and distance column
for a particular path, the presence of an asterisk indicates
which systems are currently connected through that path.

4-24

>MAPS 3

Network Management--NETMON Commands
MAPS Command

NETWORK MONITOR - T9007D05 - (010CT80>

NETMAPS AT \TS (003) #PATHS=05 TIME:4 SEP 1980, 9:38:59

SYSTEM
2 \CUPRTNO 10(02) 5(01)* 51(03) 99(03)
4 \DALLAS 28(02)* 33(03) 74(04) 122(05)
5 \CHICAGO 32767(--) 32767(--) 32767(--) 32767(--)
6 \NEWYORK 41(03)* 52(02) 87(05) 135(05)
7 \QA 33(03) 33(03) 23(01)* 117(03)
8 \LA 104(04) 104(04) 140(04) 94(02)*
9 \CORP 5(01)* 10(02) 51(03) 99(04)

10 \PARIS 98(02)* 103(03) 144(04) 192(05)
11 \TORONTO 28(02)* 33(03) 74(04) 122(05)
14 \LONDON 57(03) 57(03)· 93(03) 47(01)*
16 \SNMATEO 18(02)* 23(03) 64(04) 112(04)

PATHS NEIGHBOR LDEV STATUS
1 \CORP (009) 22 READY (07,007)
2 \CUPRTNO (002) 15 READY (06,006)
3 \QA (007) 18 READY (05,010)
4 \ LONDON (014) 20 READY (04,009)
5 (000) 14 NOT READY (248)

The first column, path 1, has six asterisks: one next to
neighboring system 9 and one each next to systems 4, 6, 10, 11,
and 16. Because systems 4, 10, 11, and 16 are only two hops away
from the selected system, we assume that all are connected to
system 9. System 6 can be connected to any of these systems.

The second column, path 2, has one asterisk next to neighboring
system 2. However, systems 6 and 9 are only two hops away from
the selected system; we assume that these systems are connected
to system 2.

Figure 4-2 shows that systems 2, 6, 9, and 16 are interconnected;
we can reach any of these systems through either path. The best
path from the selected system to system 6 is path 1. Although
the number of hops is greater by going through path 1, the travel
time is less~

The third column, path 3, has only one asterisk to indicate the
neighboring system 7. Because no other system is two hops from
the selected system through this path, we assume that system 7 is
not a through system--that is, we cannot go through it to get to
any other system. Any communication from system 3 over this path
to any system other than system 7 bounces back to system 3.

The fourth column, path 4, has only two asterisks, one next to
the neighboring system 14 and one next to system 8. Because

4-25

Network Management--NETMON Commands
MAPS Command

system 8 is only two hops away from the selected system, we
assume that system 8 is connected to system 14. Any
communication from system 3 over this path to any system other
than 8 or 14 bounces back to system 3.

The elipses in the fifth column indicate that information has
been omitted from this example so that the example would fit on
this page.

From this information emerges a possible graph of this network,
shown in Figure 4-2. This picture of the network shows the
numbers used in SYSGEN to represent the line-speed time factors
of the cornmunicat ion lines between systems. Adding thesle numbers
along a path gives the result found in the sample MAPS display
above.

4-26

0- (23)

\DALLA~

I~
@

10

\PARIS

\ TS . (23) 0 ,QA
3 --~~

'--~47)

~
LONDON

14
~7)

~\LA

\SN MATEO

\ NEW YORK

Figure 4-2. Graph of Sample Network Interconnections

PATHS Command

Network Management--NETMON Commands
PATHS Command

The PATHS command displays the status of a selected path and
status of the lines comprising the path. The form of the command
is:

PATHS system]
, [PATH pathnum

where

system

is a specific system name (e.g., \DALLAS) or system
number (e.g., 3). Status information for all paths in
the system will be shown. If this parameter is omitted,
paths for the default system are displayed.

PATH pathnum

selects a specific path and displays its status.
Omission of this parameter causes all paths to be
displayed for the local system.

This command displays the status of paths, and the lines
comprising each path, relative to a selected system. If no
system is specified, NETMON displays the status of paths relative
to the default system. The form of the display is:

NETWORK MONITOR - T9007E02 - (OIJUL81)

PATHS AT system (sss) # PATHS = nn TIME: date, time

PATH NEIGHBOR LDEV TF PID LINE LDEV STATUS

pathnum systema sss pathdev tt cpu-pin
lineno linedev status
lineno linedev status

4-27

Network Management--NETMON Commands
PATHS Command

where

4-28

system (sss)

nn

is the name or number of the system specified in the
PATHS command. The local system is used as the default
if no parameters are supplied with the command.

is the number of internodal connections radiating from
the selected system. This number indicates the number of
entries listed for the PATH column.

date, time

is the date and time at which the display was requested.

pathnum

is the path number for the particular entry displayed.

systema sss

is the name/number of the immediately adjacent system in
this path

pathdev

tt

is the logical device number of the path.

is the time factor for the path (depends on the number of
lines per path and the configured line speeds).

cpu-pin

is the number of the processor module where the net line
handler is executing and the number of the process in
that processor.

--;,.

lineno

Network Management--NETMON Commands
PATHS Command

is the line number in a particular path. It can be one
of several lines in the same path for multi-line.

linedev

is the logical device number of the line.

status

shows the status of the line in the form of a brief
description and file system error number. For example,
an error 66 indicates that a line downed by the operator
caused a not ready condition.

The following example shows a network composed of three paths,
two of which contain multiple lines. Because the PATHS command's
optional parameters are omitted, all paths for the local default
system, \TS (003), are displayed.

>PATHS

PATHS AT \TS (003) # PATHS = 4 TIME: 15 MAR 1981 10:33

PATH NEIGHBOR LDEV TF PID LINE LDEV STATUS

1 \MANGO (001) 10 35 (00,040)
1 11 NOT READY(140)
2 12 READY
3 13 READY

2 \SIBERIA(Oll) 20 5 (06,022)
1 21 READY

3 \MFG (032) 30 -- ---
I 31 NOT READY(248)
2 32 NOT READY(066)

4••. (000) 0 -- ---

~

4-29

Network Management--NETMON Commands
PATHS Command

where

4-30

\TS (003)

is the name and number of the system selected, in this
example the default system.

PATHS = 4

is the number of paths connected through this system

PATH 1

connects to neighbor system name/number \MANGO (001) and
is accessed through logical device address LDEV 10. The
time factor, dependent on the number of lines, is TF 35.
The processid PID is COO, 040). This path is composed of
three lines that are accessed through logical device
addresses LDEV 11, 12 and 13. Line 1, LDEV 11, is not
ready--file system error 140; lines 2 and 3, LDEV 12 and
13 are ready.

PATH 2

connects to system name/number \SIBERIA (all), is ready,
and its status characteristics are similar to those of
PATH 1.

PATH 3

connects to system name/number \MFG (032) and is accessed
through LDEV 30. This path is not ready, as indicated by
the null entry in the processid and factor TF --; both
line 1 and 2, LDEV 31 and 32, show a not ready status-
file system error 248 and 066 respectively.

PATH 4

this line was not brought up since the last system cold
load, thus it shows null entries for all fields.

PERIOD Command

Network Management--NETMON Commands
PERIOD Command

The PERIOD command sets the sample-interval time (in seconds)
used by the DISPLAY command. The form of the command is:

PERIOD [sample]

where

sample

is the number of seconds over which the sample is taken.
The range for sample is 10 through 600. If this option
is omitted, the current sample. period is displayed.
Where no sample period has been specified, NETMON assumes
60 seconds.

CONSIDERATIONS. The sample-interval time occurs only after the
completion of the last DISPLAY command and before the next
request for node statistics is sent. In essence, the
sample-interval is only a minimum time; it can be much longer.

4-31

Network Management--NETMON Commands
PROBE Command

PROBE Command

The PROBE command displays the current paths from one or all of
the remote systems to the selected system. The form of the
command is:

PROBE systeml]
, [PERIOD interval]
, [SYSTEM system2]

where

systeml

is either a system name or a system number from which the
probe is made. If this option is omitted, the local
system is assumed.

interval

is the number of seconds to wait between probes. The
range for interval is 1 through 600. The probes continue
until the BREAK key is pressed. If this option is
omitted, the probe is performed once.

system2

is either a system name or a system number to which the
probe is made. If this option is omitted, all systems in
the network are probed.

The format of the display is:

4-32

Network Management--NETMON Commands
PROBE Command

NETPROBES AT \<system> (sss) TIME: date, time

sss \systema - \system - \system -
sss \systemb - \system - \system -

- \system - * (ttttt)
- \system - * (ttttt)

sss \systemn - \system - \system - ... - \system - * (ttttt)

where

system (sss)

is the name and number of the system selected in the
PROBE command.

time: date, time

is the date and time that the PROBE was requested.

\system - \system

is the list of systems through which the probe is made.

*
is the system selected in the PROBE command.

ttttt

is the round-trip time for the probe in hundredths of a
second ("tics").

EXAMPLES:

The first example shows that system 20 (whose name is \FRANKFT)
is only two hops away from \LONDON (system 18).

>PROBE \LONDON, SYSTEM 20
NETPROBES AT \LONDON (018) TIME: 24 FEB 1981, 12:38:25

20 \FRANKFT - \SCHULNG - * (00020)

4-33

Network Management--NETMON Commands
PROBE Command

The next example shows that only two systems, 2 and 7, are
connected directly to the local system, which is \TS (003).
Moreover, all systems except 7 are connected to system 3 through
system 2.

>PROBE
NETPROBES AT \TS (003) TIME: 24 FEB 1981, 12:43:52

PROBE TO \SAA ** FAILED 250 **
2 \CUPRTNO - * (00007)
4 \DALLAS - \NEWYORK - \CHICAGO - \MFG - \CUPRTNO - * (00053)
5 \CHICAGO - \MFG - \CORP - \CUPRTNO - * (00028)
6 \NEWYORK - \CHICAGO - \MFG - \CORP - \CUPRTNO - * (00039)
7 \QA - * (00005)
9 \CORP - \CUPRTNO - * (00010)

10 \MFG - \CORP - \CUPRTNO - * (00009)

4-34

SHOW Command

Network Management--NETMON Commands
SHOW Command

The SHOW command displays the systems selected with the ADD
command. The form of the command is simply:

SHOW

with no options.

4-35

Network Management--NETMON Commands
STATS Command

STATS Command

The STATS command displays detailed statistics that reprE!Sent the
communication occurring between the specified system and all the
systems in the network. The form of the command is:

STATS [system]

where

system

is either a system name or a system number. If this
option is omitted, the local system. is assumed.

The format of the display is:

NETWORK STATISTICS AT \system (sss)

SYSTEM
sss \systema
sss \systemb
sss \systemc

where

system

LINKS(PKTS) SENT
nnnnn(ppppp)
nnnnn(ppppp)
nnnnn(ppppp)

LINKS(PKTS) RCVD
mmrnmm(qqqqq)
mmmmm(qqqqq)
mmmmm(qqqqq)

is the system selected in the STATS command.

4-36

sss

1S the system number.

\systema

is one of the systems that communicates with the selected
system.

Network Management--NETMON Commands
STATS Command

nnnnn

is the total number of link requests issued by this
system since the last cold-load; wraps around.

(ppppp)

is the total number of packets sent from this system
excluding pass-through packets since the last cold-load~
wraps around.

mmrnmm

is the total number of link requests received by this
system since the last cold-load; wraps aroundo

(qqqqq)

is the total number of packets received by this system
since the last cold-load; wraps around.

EXAMPLE:

This example shows that only systems 2, 7, and 9 are
communicating with the specified system, \TS (003). Moreover,
the network traffic for system 3 passes through system 2.

>STATS 3

SYSTEM
2 \CUPRTNO
4 \DALLAS
5 \CHICAGO
6 \NEWYORK
7 \QA
9 \CORP'

10 \MFG
13 \HWR2
14 \HWR
15 \HWRI

NETWORK STATISTICS AT \TS (003)

LINKS(PKTS) SENT
469(01133)

0(00000)
0(00000)
0(00000)

47(00110)
6(00165)
0(00000)
0(00000)
0(00000)
0(00000)

LINKS(PKTS) RCVD
102(01132)

0(00000)
0(00000)
0(00000)
8(00110)

54(00114)
0(00000)
0(00000)
0(00000)
0(00000)

4-37

Network Management--NETMON Commands
THRESHOLD Command

THRESHOLD Command

The THRESHOLD command determines when to blink the rate of
packets line in the display shown with the DISPLAY command. 11he
THRESHOLD command checks the rate of packets in each sample
period. When the difference between the previous rate of packets
and the current rate reaches the specified percentage, the rate
of packets line blinks for one sample period. The form of the
command is:

THRESHOLD [percentage]

where

4-38

percentage

is the percentage difference to be met to start blinking
the rate of packets line. If this option is omitted, the
current threshold value is displayed. If no threshold is
specified, NETMON assumes 50 percent.

------------------------------------.--------------------------

Network Management--NETMON Commands
Messages

Messages

BACKUP PROCESS ALREADY EXISTS IN CPU nn
attempted to issue a second BACKUP command

BACKUP PROCESS CREATED IN CPU nn
successful completion of the BACKUP command

CENTRAL LOGGING INITIATED
self-explanatory

CENTRAL LOGGING TERMINATED
self-explanatory

COMMA EXPECTED
self-explanatory

CURRENT CENTRAL LOGGING SYSTEM IS: system (nnn)
response to LOGCENTRAL command without parameters

ILLEGAL CPU NUMBER
backup processor number must be between 0 and 15

ILLEGAL PARAMETER
attempt to use the HELP command for an unknown command

ILLEGAL SYSTEM NUMBER nnn
system numbers must be within the range defined with system
generation (SYSGEN)

INVALID SYSTEM NAME
system name is unknown, name is too long, backslash is
missing, or name has special characters (e.g., an ampersand)

INVALID SYSTEM NUMBER
system numbers must be within the range defined with system
generation (SYSGEN)

MUST BE A NAMED PROCESS TO RUN NONSTOP
the NAME option in the RUN command must be specified

NCP ERROR nnn
unable to communicate with the Network Control Process (NCP)
because error nnn occured while fetching data for the MAPS
command.

NETMON BACKUP TAKEOVER
occurs when running NonStop

NETTRACE RCVD WAS BAD
improperly formatted trace message received from a remote
system

4-39

Network Management--NETMON Commands
Messages

NO CENTRAL LOGGING SYSTEM CURRENTLY ACTIVE
response to LOGCENTRAL command without parameters

NOMEM FOR NCpAREAD
unable to obtain space for a MAPS message

NOM EM FOR NCpAWRITEREAD
unable to obtain space for a PROBE message

NO SYSTEMS AVAILABLE
no paths exist to other systems in the network; STATS
command cannot retrieve information

NO SYSTEMS AVAILABLE FOR PROBING
no paths exist to other systems in the network; PROBE
command cannot retrieve information

NO SYSTEMS SELECTED
systems are designated with the ADD command

NO SYSTEMS SELECTED FOR DISPLAY
systems are designated with the ADD command

PERIOD MUST BE BETWEEN 10 & 600 SECONDS
self-explanatory

PROBE TO system ** FAILED nnn **
file error nnn prevents the PROBE command from completing

SYSTEM IS NOT CURRENTLY AVAILABLE
system specified in the MAPS, PROBE, or STATS command is
unavailable

SYN'r AX ERROR
self-explanatory

THIS IS THE CENTRAL LOGGING SYSTEM
response to LOGCENTRAL command without parameters

THRESHOLD IS nnn%
response to THRESHOLD command without parameters

THRESHOLD MUST BE BETWEEN 1 AND 100 PERCENT
self-explanatory

TOO MANY PARAMETERS
self-explanatory

TOO MANY SYSTEMS REQUESTED, LIMIT IS 16
attempt to add more systems than can fit on a screen for a
display

UNABLE TO CREATE BACKUP PROCESS IN CPU nn
occurs when running NonStop

4-40

UNKNOWN COMMAND
self-explanatory

U~KNOWN KEYWORD
self-explanatory

Network Management--NETMON Commands
Messages

4-41

Network Management--NETMON Commands
Syntax Summary

Syntax Summary

ADD {~~~tem [, system, ••• J}
BACKUPCPU cpu

CPUS system

DELETE {~~~tem [,system, .•• J}
DISPLAY

EXIT

FC

HELP [~~~andJ
LOGCENTRAL [g~FJ

MAPS [system]

PATHS [system
, [PATH pa t hnurn

PERIOD [sample]

PROBE systeml

SHOW

, [PERIOD interval]
, [SYSTEM system2]

STATS [system]

THRESHOLD [percentage

/~ -42

Network Management--Network Security

NETWORK SECURITY

This section discusses network security. The reader should
already be familiar with one-system security as described in the
GUARDIAN Operating System Programming Manual, Volume 2.

Overview

Security in a network is more restrictive than security on a
single system. The security philosophy of the system--that the
machine serves a community of cooperating, intelligent
users--does not extend to a network, in which nothing about the
remote-user community can be controlled or assumed.

Therefore, while the security system on one system allows any
operation that is not specifically prohibited, the security on a
network prohibits any operation that is not specifically allowed.
Prior cooperation between system managers at each node is
required before a user at one system can access another.

A user at system X wishing to access a file (disc file, device,
or process) residing on system Y must satisfy each of these three
requirements:

• the user at system X must also be a user at system Y

• the user must have matching REMOTEPASSWORDS set up at both
system X and system Y

• the user at X must have sufficient capability to access a disc
file at Y.

Each of these three security levels is discussed below.

Global Knowledge of User IDs

Each system user is known to the machine by a user name, such as
ADMIN.BILL, and a user identifier, such as 8,4.

A user has access to files on a remote system only if that user's
name and 1D are known to the remote system.

Thus if ADMI~.BILL, whose user ID is 3,46, wishes to access a
file on a remote system, the remote system must also have a user
named ADMIN.BILL whose user 1D is 3,46.

Remote Passwords

Once the user identifiers of network users have been added to
each node, a system of remote passwords is used to specify
whether remote access is permitted.

4-43

Network Management--Network Security
Remote Passwords

Each us~r ID has associated with it a set of remote passwords.
One, specified with the command:

:REMOTEPASSWORD \this system name, remote password

designates the password required for a remote user to access this
system. The others, specified by:

:REMOTEPASSWORD \remote system name, access password

define passwords used in your subsequent attempts to access
remote systems; such an attempt is successful if the
remote-access password you associate with the remote system
matches the remote-owner password previously specified by the
remote user.

Each type of password consists of as many. as eight nonblank
characters. Control characters are allowed, and lowercase
characters are not upshifted.

Consider two systems in a network, named \A and \B. On each
system, a user named ADMIN.BILL with user ID 3,46 has been
defined.

At system \A, a user types the commands:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \A, shazam

"shazam" is ADMIN.BILL's remote-owner password. From now on, a
user logged onto a remote system as ADMIN. BILL must specify
"shazam" as his remote-access password to access system \A. For
example, a system \B user enters:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \A, shazam

This user now has remote access to \A as ADMIN.BILL, and can now
perform operations such as creating processes and accessing
certain disc files. However, when \B can access \A but \A cannot
access \B, the ability to create processes on \A is not useful.
The process is liable to want to access the home terminal, which
is an attempt to access \B from \A, which is not permitted. Once
passwords for both directions of access are established,
everything works.

A remote password, once defined, remains in effect until modified
by a subsequent REMOTEPASSWORD command. ADMIN.BILL can log off
and then log on again without having to respecify his remote
passwords.

4-44

Network Management--Network Security
Remote Passwords

ADMIN.BILL, logged on at system \B, does not have quite the same
status on \A as the ADMIN.BILL on \A. ADMIN. BILL on \B is a
remote accessor of \A; consequently, he cannot access disc files
on \A that specify "local access only". The next section
explains disc file security.

Moreover, ADMIN.BILL on \A still has no access to system \B. For
ADMIN.BILL to gain access to \B, a remote-owner password must be
defined for ADMIN.BILL at \B, and matched by a remote-access
password at \A. For example, at \B:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \B, aardvark

and at \A:

:LOGON ADMIN.BILL
:REMOTEPASSWORD \B, aardvark

Now ADMIN.BILL at \A can access \B.

These considerations apply to remote passwords:

• As in the example above, the absence of a remote-owner
password prevents remote access as that user. Thus, if
MARKET.SUE does not supply a remote-owner password, no remote
user with the same user ID can access MARKET.SUE's system.

• The command:

:REMOTEPASSWORD \<system name>

removes any previously designated password (either for the
local system or a remote one). The command:

:REMOTEPASSWORD

removes all remote passwords.

• A remote-access password can be issued before the
corresponding remote-owner password. Remote access becomes
legal as soon as both remote passwords have been defined
(provided that they match).

• A remote password can be specified for a remote system even
though that system is not currently known or connected to
the user's system. After the remote system is placed in the
network and the remote user specifies the correct remote
password, access to the remote system may begin.

4-45

Network Management--Network Security
Remote Passwords

• Remote passwords are independent of the regular passwords
defined for each user. In the example above, ADMIN. BILL at
either system could issue the command:

:PASSWORD <local password>

to prevent unauthorized individuals from logging on as
ADMIN.BILL on that system.

Disc File Security

For each disc file, the user specifies the access level required
to read, write, execute and purge the file. Access levels are
set in one of two ways:

• by using the FUP SECURE command; for example,

:FUP SECURE MYFILE, "AGO-"

• by using SETMODE function 1, "set disc-file security"; bit
fields in the first parameter 1 specify the read-, write-,
execute-, and purge-access via numbers.

Access levels "A", "G", "0", and "_" imply local access only:

A any local user can have access
G members of the file owner's group
a owner only

super-ID only

Classes of network users liN", "e", and "U" are defined thus:

• A network user (N) is any accessor on any system.

• A community (C) is an "extended group" including any accessor,
anywhere on the network, whose group id matches the owner's
group ide Thus, user 8,4 on system \NEWYORK and user 8,17 on
system \DETROIT are members of the same community.

• A user class (U) is an "extended owner"; it includes any
accessor throughout the network whose user ID matches that of
the owner. Thus, user 8,4 on \NEWYORK and user 8,4 on
\DETROIT are members of the same user class.

A disc file can have any of these levels specified for read-,
write--, execute-, and purge-access, using the numeric value with
the SETMODE procedure or the corresponding letter in the FUP
SECURE command. The levels are summarized in Table 4-2.

4-46

Network Managernent--Network Security
Disc File Security

Table 4-2. Local and Remote Access Codes

Numeric
Value Letter

(SETMODE) (FUP) Meaning

0 A any local accessor
1 G any local group member
2 0 owner only

4 N any network accessor, local or remote
5 C any member of owner's community
6 U any member of owner's user class
7 - local super-ID

Except for the super-ID, the numeric values for network access
are found by adding 4 to the corresponding local access levels.

Note that SUPER.SUPER has no special authority to access remote
files; no user, including SUPER.SUPER, can access a remote disc
file having "A" security.

Default File Security

Users can specify their own default file security, which is
automatically assigned to any files that they create.

Default file security is set with the DEFAULT command of the
command interpreter. For example, the commands:

:LOGON ADMIN.BILL
:DEFAULT $SYSTEM.MYFILES, "NAOO"
:LOGON ADMIN.BILL

cause any disc files created by ADMIN.BILL to automatically have
file security "NAOO". Note that until his next LOGON command,
the user's old default disc file security remains in effect.

EXAMPLES:

The combination of user IDs, remote passwords, and disc file
security lets users tailor network security to their specific
needs. These examples demonstrate some possible ways to
implement network security.

4-47

Network Management--Network Security
Default File Security

Example 1 (Local and Remote Users): Accessors of a file are
classified as either "local" or remote" with respect to that
file. A local user is one who is logged on to the system on
which the file resides; a remote user is one logged on to a
different system.

A remote accessor of a system can become a local accessor by
simply running a command interpreter in the remote systenl, and
logging on. For example, if ADMIN.BILL on \A has specified the
proper remote password to gain access to system \B, he can issue
the commands:

:WAKEUP OFF
:\B.COMINT
:LOGON ADMIN.BILL

He is now logged on as the local ADMIN. BILL on system \B. Thus,
he can access disc files on \B owned by ADMIN.BILL havin9
security "0". This remote session is terminated with a control-Y
or LOGOFF. In the case of a control-Y, the command interpreter
then asks "Are you sure you want to stop your command interpreter
on \B7" Reply YES to awaken the local command interpretE!r. In
the case of a LOGOFF, the command interpreter simply responds
with "Exiting from CIon system \B."

System \B can prevent a remote user from becoming a local user in
a number of ways. One method is to specify "A" as the "execute"
security for $SYSTEM.SYSTEM.COMINT, preventing anyone in any
remote system from running the program file.

Another way to prevent ADMIN. BILL, on \A, from logging on to \B
is to simply give ADMIN.BILL at \B a local password that is
unknown to ADMIN.BILL at \A.

Example 2: Suppose that there are so many systems in the network
that nobody wants to type all the required REMOTEPASSWORD
commands, but it is important to deny network access to certain
users.

At each node, establish a user called NET.ACCESS, and issue the
following commands:

:LOGON NET.ACCESS
:PASSWORD local password
:REMOTEPASSWORD \system 1, global password
:REMOTEPASSWORD \system 2, global password

:REMOTEPASSWORD \system n, global password

4-48

Network Management--Network Security
Default File Security

The global password is the same for all systems and is known only
to the system managers; the local password is different for each
system and is given to those users who are allowed to access the
network.

Only those users who know the local password can log on as
NET.ACCESS. The command:

:LOGON NET.ACCESS, local password

allows them to access remote files.

Example 3 (Sub-Networks): In a large network, it may be
desirable to allow users to access some nodes, but not others.
For example, you might want to allow users on system \SANFRAN to
be able to access systems \LA, \SEATTLE, and \CUPRTNO, but
not \NEWYORK and \CHICAGO.

In this case, the idea used in Example
access to any number of subnets, where
as any collection of individual nodes.
established at each node of the subnet,
such as the one in Example 2 is used to
log on as NET.WEST.

1 can be extended to allow
a subnet is defined simply

A user named NET.WEST is
and a password scheme
allow certain users to

Subnets implemented in this manner can be allowed to overlap or
include one another. For example, \CHICAGO might be accessible
from \NEWYORK, by logging on as NET. EAST, and from \PHOENIX, by
logging on as NET.MIDWEST. Similarly, each node in the entire
network might have a user NET.GLOBAL, who is allowed to access
every other node.

Example 4 (Defining the Capabilities of SUPER.SUPER): On a
single system, SUPER. SUPER is allowed access to any file. On a
network, the user can define whether the powers of the super-ID
are local, global, or somewhere in between.

To make SUPER.SUPER a local super-ID only, do not issue a
REMOTEPASSWORD command for SUPER. SUPER at any node. This
prevents a remote super-ID from accessing the node's files.

To make SUPE.R.SUPER a global super-ID, issue, at each node,
REMOTEPASSWORD commands as in Example 2, so that SUPER.SUPER can
access files on remote systems, and give every SUPER. SUPER the
same password. Now, if a disc file has security "A", "G", "0" or
"-", a remote super-ID can still gain access to the file by
running a command interpreter in the system containing the disc
file, and logging on as the local SUPER. SUPER.

4-49

Network Management--Network Security
Default File Security

To make SUPER. SUPER an in-between super-ID, issue, at each
node,REMOTEPASSWORD commands as in Example 2, so that SUPER.SUPER
can access files on remote systems. Additionally, issue each
SUPER. SUPER a distinct password. Then, any disc file can be
protected from remote access by giving it "A", "G", "0", or "-"
security; a remote SUPER. SUPER cannot log on as the local one,
since the local super-ID's password is unknown.

Process Access

Several security considerations relate to remote processes:

• With respect to a given system, each process in the network is
either "local" or "remote", according to these rules:

A process is remote if it is running in a remote system.

A process is remote if its creator is in a remote system.

A process is remote if its creator is remote.

According to the second and third rules, even a process
running in a particular system can be remote with respect to
that system. These rules prevent a user from remotely running
a process that creates another process that accesses a file
whose security specifies "local access only".

• A remote process cannot suspend or activate a local process.
A remote process cannot stop a local process, unless the local
process's stop mode is 0 ("anyone can stop me").

• A remote process can not put a local process into DEBUG.

It is possible for a process that is remote with respect to the
system in which it's running to become local. For instance,
Example 1, above, characterized users as either local or remote
on the basis of where they are logged on. The example
also showed how a user in system \A could become local with
respect to \B by running a command interpreter at \B and logging
on.

consider the command interpreter in \B~ Its creator is the
user's command interpreter in \A; thus, the command interpreter
in \B is remote with respect to \B. But the user's LOGON command
causes that command interpreter to become local with respect
to \B. Thus, if you allow the possibility of a process somehow
making itself local with respect to the system in which it's
running, the concept of local and remote users becomes equivalent
to the concept of local and remote processes: a user is local
(remote) with respect to a given system if his command
interpreter is local (remote) with respect to that system.

4-50

Network Management--Network Security
Process Access

A process that makes itself local with respect to the system in
which it is running is said to "programmatically log on" to that
system.

4-51

Network Management--Network Security
Programmatic Logon (VERIFYUSER Procedure)

Programmatic Logon (VERIFYUSER Procedure)

Programmatic logon is accomplished by calling the VERIFYUSER
procedure, which verifies a user's password and optionally allows
a process to programmatically log on (i.e., make the user's ID
its own, and become local with respect to the system in ~lhich it
is running).

The call to VERIFYUSER is:

CALL VERIFYUSER user name or id
, logon

default
def aul t length)

where

4-52

user name or id, INT:ref:12,

is an array containing either the name or user ID of the
user to be verified or logged on, where either:

user name or id [0:3] group name, blank-filled
user name or id [4:7] = user name, b~ank-filled
user name or id [8:11] = password, blank-filled

or,

user name or id [0] .<0:7> = ~1roup ID
user name or id [0].<8:15> user ID
user name or id [1 : 7] = zeros (ASCII nulls)
user name or id [8:11] password, blank-filled

logon, INT:value,

if present, verifies the user and, if its value is
nonzero, logs on; if it is zero, is does not log on. If
this option is omitted, a value of 0 is understoodu

--~

Network Management--Network Security
Programmatic Logon (VERIFYUSER Procedure)

default, INT:ref:18,

if present, is returned information regarding the user
specified in user name or ID:

default
default
default
default
default
default
default

[0:3] = group name, blank-filled
[4:7] = user name, blank-filled
[8].<0:7> = group ID
[8].<8:15> = user ID
[9:12] = default volume, blank-filled
[13:16] = default subvolume, blank-filled
[17] = default file security,

default [17].<4:6>
default [17].<7:9>
default [17].<10:12>
default [17].<13:15>

default length, INT,

as follows:

read
= write

execute
purge

(0
(1
(2
(7

"A"
"G"
"0"

= "_")

4 = "N")
5 "C")
6 "U")

is the length, in bytes, of the default array. This
number should always be specified as 36; in the future,
new fields can be added to default, requiring default
length to become larger.

These condition code settings are effected by the VERIFYUSER
procedure:

< (CCL) indicates that a buffer is out of bounds or an I/O
error occurred on the user-ID file.

(CCE) indicates a successful verification and/or logon.

> (CCG) indicates that there is no such user, or the password
is bad.

CONSIDERATIONS. After a successful logon using this procedure, a
process is considered to be local with respect to the system in
which it is running.

A process that passes a bad password to VERIFYUSER for the third
time is suspended for 60 seconds.

4-53

Network Management--Network Security
Programmatic Logon (VERIFYUSER Procedure)

EXAMPLE:

USER := 3 '«~I 8 + 17;
USER [1] ': =' a & USER [1] FOR 6;
USER[8] ':=' PASSWORD FOR 8;

user ID 3,17
all zeros

LOGON := 1; ! log this user on
CALL VERIFYUSER(USER, LOGON, DEFAULT, 36);
IF < THEN buffer or I/O error
ELSE IF > THEN ... no such user, or bad password
ELSE successful

NETWORK MANAGEMENT CONSIDERATIONS

To develop and manipulate an EXPAND network it is necessary to
use several Tandem-supplied programs and subsystems. These
programs include: SYSGEN, CUP, PUP, CMI, and XRAY. The following
discussion gives a brief description of each program and points
out any special considerations for their use.

System Generation (SYSGEN)

The System Generation (SYSGEN) program generates an Operating
System for a given hardware/software configuration. Network
management considerations for running SYSGEN for an EXPAND
network include:

• Maximum system number (max systems). This network global
SYSGEN parameter specifies the maximum number of systems in
the network and establishes an upper bounds on the system
numbers that will be recognized. Peculiar results occur if
the value of max systems is not agreed to by all systems in a
network.

Consider the example of a network composed of \SYSTEMA (90)
and \SYSTEMB (10). If \SYSTEMA is assigned a max systems
value of 100 and \SYSTEMB is assigned a max systems value
of 10, then \SYSTEMB will never recognize a connect message
sent from \SYSTEMA because the max systems value for \SYSTEMA
does not fall within the bounds specified for \SYSTEMS.

Thus, even though connected properly in all other respects,
the two systems will never be able to communicate. To resolve
the problem, change the max systems value to be compatible in
one or both systems and run another SYSGEN in each modified
system .

• Establishing an EXPAND link using an X.25 line. As mentioned
in Section I of this manual, it is possible to connect two
systems via EXPAND using an X.25 network. To accomplish this
you must perform the following three steps. First, SYSGEN an
X.25 line with the correct subtype to connect to the specific
vendor X.25 network (such as Telenet, Tymnet, Datapac, or

4-54

Network Management--Network Security
Network Management Considerations

Transpac). Next, SYSGEN an EXPAND line (type NET A X25) as a
separate LDEV. After the system is running, use CUP to ADD
the EXPAND line as a subdevice to the X.25 line and to specify
the various line parameters (see AXCESS, Volume 1: Intro
duction and Communications Utility program)_.

• Line time factor. The LINESPEED parameter contains the value
of the line time factor (recommended values are given in the
SYSGEN section of the GUARDIAN System Mana9.el!len~._~~nua!).
However, any value may be selected. In fact, the network
manager may cause the NCP to select a new "best path" by
assigning an LINESPEED value small enough where a particular
path is always selected.

• All lines in a multiline path must be in the same controller
group and run in the same cpu. If lines are distributed
across mUltiple controllers to increase reliability,
performance could be reduced by a controller ownership switch
to the backup cpu. An ownership switch results if the
following conditions are true: a non-EXPAND line (such as
AM3270) connected to this controller group fails with an error
in the range 210-226. Failure of a line in an EXPAND
multi-line path, however, does not cause an ownership switch.

Communications Utility Program (CUP)

The Communications Utility Program (CUp) allows access to data
communication lines in the EXPAND network environment.
Operations performed by CUP include:

• initiate line traces via the TRACE command

• modify communication line or subdevice characteristics via the
ALTER command

• list the SYSGEN configured communication line handlers via the
LISTLH command

• add communication subdevices to an existing line handler via
the ADD command

• list attributes of a particular line, subdevice, or group of
subdevices via the SHOW command

• display line and subdevice statistics via the STATS command;
optionally resets the statistics

• display a previously generated TRACE output file via the DUMP
command

• display syst~m-related network information via the SHOW
command

4-55

Network Management--Network Security
Network Management Considerations

The CUP TRACE facility now allows the Network Control Process
(NCP) as well as the line handler to be traced~ The NCP supplies
CUP with the following information:

• NCP messages sent and received on a network path

• Action and state changes caused by the receipt or transmission
of a message, or an event (internal or external) on both an
internodal path and end-to-end path.

The CUP STATS command displays statistical information for the
default line; default established through CUP LINE command. Line
statistics are useful in determining optimal values for
configuration parameters:

• "NO BUFFER" indicates the number of times the L2 dedicated
buffer was full. This is not an error, but a warning that
next frame will be discarded if the buffer is not emptied.
the count is > 10% of the number of I-frames received, the
size of the L2 dedicated buffer should b~ increased.

the
If

• "BUFFER USAGE" maintains a count of line handler usage of
rOPOOL. If the value for BUFFER USAGE approaches the SYSGEN
value specified for the processor, the configured size should
be increased.

The CONNECT and CLEAR commands establish and terminate connection
to an X.25-type device. For a detailed description of how to use
CUP, refer to AXCESS, Volume 1: Introduction and Communications
Utility Program (CUp).

Peripheral Utility Program (PUp)

The Peripheral Utility Program (PUp) performs various functions
related to the peripheral devices connected to the system. Those
functions related to the EXPAND network include:

• the DOWN command removes a line/path from service. If is
specified, any current activity on the line is aborted.
If! is not specified, the line is removed from service only
if there is no current activity on the line.

• the UP command places a downed line/path back into service.
For NET A X25 lines,connection to the network must have been
made previously through CUP.

• the LISTDEV command displays configuration characteristics for
a given line/path.

PUP is described in the System Operations Manual.

4-56

Network Management--Network Security
Network Management Considerations

Console Logging Messages

Two commands (CUP ALTER MSGON/MSGOFF and PUP CONSOLE
ENABLE/DISABLE) work together to determine the manner in which
network-related console messages are handled:

• the CUP ALTER MSGON/MSGOFF command may selectively
enable/disable network messages (43, 46, 48, and 49);
messages (44, 45 and 47) are always enabled. In the event
that these messages are disabled, the NCP discontinues sending
them to the operator process. This results in no message
logging to the disc-resident operator log and a reduction of
traffic queued to the operator process. Remote logging,
however, overrides the CUP ALTER disable. In this case, the
NCP simply sends all messages to the system designated as the
LOGCENTRAL system.

• the PUP CONSOLE ENABLE/DISABLE command enables/disables the
printing of the messages on the local system's console. A
preliminary scan by the NCP checks whether the CUP ALTER
command has enabled/disabled the messages. If enabled through
CUP, they are sent to the operator process where the PUP
CONSOLE enable/disable message list is checked to determine
whether to print or not print the message at the console.
However, if disabled by CUP, the messages are never sent to
the operator process, thus nullifying the effect of the PUP
CONSOLE enable/disable.

4-57

Network Management--Network Security
Network Management Considerations

EXPAND Line Connection to an X.25 Line

The following example shows how to bring up an EXPAND line
connection to an X.25 line (It is assumed that the X.25 line
($X25LIN) and the EXPAND line ($EXPLIN) have previously been
defined through execution of the SYSGEN program.):

PUP DOWN ! $X25LIN

CUP

> LINE $X25LIN

> ALTER NETADDR 311041500091

! NETADDR is the X25 network address for this line

> ADD #NETLIN, PROTOCOL NET, TYPE (63,0),' RECSIZE 256,
LHLDEV 25, NEXTSYS 3, ADDR 311041500091, PORT 77

RECSIZE is the EXPAND packet size in bytes
LHLDEV is the logical device number for $EXPLIN
NEXTSYS is the system number of the EXPAND node connected

by $EXPLIN
AD DR is the X25 network address of the EXPAND subdevice on

the other end of this virtual circuit
PORT is the X25 port number on the line specified by

NETADDR

> EXIT

PUP UP $X25LIN
PUP UP $EXPLIN

CUP

> LINE $X25LIN

> CONNECT #NETLIN

causes the EXPAND line handler to ask the X25 AXCESS method

to place a callout to the address in subdevice #NETLIN

> EXIT

4-58

Network Management--Network Security
Network Management Considerations

Communications Management Interface (CMI)

CMI is used to describe and control characteristics of both
6100CSS Communication Subsystems and non-6100CSS subsystems.
Detailed information about CMI is given in the Communications
Management Interface (CMI) Operator's Guide.

There are three EXPAND object types that can be defined and
manipulated through CMI. These are:

PATH
LINE
PROCESS

a multi-line communication path
a single communication line
the EXPAND CAP process

Various CMI commands permit descriptive and operational control
over these object types. The descriptive commands include:

ALTER PATH
ALTER LINE
ALTER PROCESS

INFO PATH
INFO LINE
INFO PROCESS

The operation commands include:

ABORT PATH
ABORT LINE
CONTROL LINE
START PATH
START LINE
STATUS PATH

STATUS LINE
STOP PATH
STOP LINE
TRACE PATH
TRACE LINE

Refer to Appendix H of the Communications Mana<]ement .Interface
(CMI) Operator's Guide for a detailed descriptlon of CMI charac
teristics.

4-59

Network Management--Network Security
Network Management Considerations

XRAY Program

XRAY is a tool for monitoring the performance of a Tandem system.
XRAY monitors:

• cpu use

• line use

• NCP or line handler process use of system resources

For detailed information on how to use XRAY, refer to the XRAY
User's Manual.

4-60

SECTION 5

FIBER OPTIC EXTENSION (FOX)

NOTE

This product is available only on the Tandem NonStop II
system. It cannot be used on the Tandem NonStop system.

INTRODUCTION TO FOX

Tandem NonStop II systems are limited to 16 processors per
system. Further expansion is possible only by accessing other
Tandem systems across a network. Using conventional line speeds
such as those available under EXPAND, sending a message between
systems in a network is noticeably slower than sending a message
between two processors within the same system because the message
must be received and retransmitted by each intervening system.
Even if there are no intervening systems, messages are slowed by
line handler intervention. The Fiber Optic Extension (FOX) net
work was developed to allow much faster transfers of information
between systems.

In the FOX network, a system is called a cluster. The FOX net
work is always a ring of systems. Each cluster is a NonStop II
system of up to 16 processors. Up to 14 clusters can be included
in the ring. Each cluster can communicate with other clusters in
the ring. Each cluster can be located up to 1000 meters (1 kilo
meter) from the next cluster. Further, FOX clusters can be a
part of a larger GUARDIAN/EXPAND network containing a mixture of
other forms of communication links.

The FOX network, using fiber optic lines between clusters, can
attain speeds up to 1 million bytes per second. Furthermore,
messages usually pass directly from the sending processor to the
bus and always pass through only the controllers of intervening
systems (avoiding the line handlers).

5-1

Introduction to FOX

Once FOX is installed, there is no external change apparent to
the user. Externally, FOX appears as a high-speed connection
between any two clusters on the FOX ring. The user interface to
the FOX network is based on the user interface to EXPAND. To
programmers, a cluster in a FOX ring looks like any other system
in an EXPAND network, and is referenced in the same way.

Messages between systems are sent over the FOX network, if it is
available, and can be sent over previously established EXPAND
lines if FOX is not available. Availability is determined by
whether both systems have been designated as FOX clusters, and
whether a FOX link exists between the two.

THEORY OF OPERATION

A FOX ring of clusters is illustrated in Figure 5-1. Note that
communication between two clusters is possible over either the
X bus path or the Y bus path. These paths are extensions of the
X and Y interprocessor buses of each cluster-. Because the clus
ters are laid out in a ring pattern, communication is also pos
sible in two directions. As a result, four paths are available.
Communication between two clusters can occur over any of the four
available paths between them. Each different path is tried until
communication is successful. The first direction tried is that
defined as the preferred direction in the SYSGEN configuration.

Figure 5-1. FOX Network Ring

5-2

Theory of Operation

The FOX network continues to operate even if three of the four
paths fail. In fact, communication is usually not interrupted
even if the ring is broken to add another FOX cluster. Proces
sors can still be replaced or added online because there is no
change to the X and Y bus structure.

If a transmission via the preferred path between two clusters
fails, the next preferred path of the remaining three paths is
automatically tried. For example, if a message is to be sent
from cluster 1 to cluster 3, the shortest path is via cluster 2
(See Figure 5-1).

If cluster 2 is removed from service but the Serial Link Board
(SLB) of its local bus unit is not powered off, messages can
still be routed through it. If the SLB of the local bus unit is
powered off, messages can still be sent around the ring in the
other direction.

Local Bus Unit

The local bus unit both controls the local interprocessor bus and
sends and receives packets over the ring network. Configuration
of local bus units is illustrated in Figure 5-2. A ring can nave
from 2 to 14 clusters. Each cluster must have a unique cluster
number in the range of 1 through 14. Cluster number 15 is re~
served for special functions. Cluster number 0 is used to send
a message from one processor to another processor within the same
cluster.

There are actually four optical fiber cable connections between
each pair of adjacent clusters in the FOX network; one pair (for
outgoing and incoming lines) for each of the two buses. Each
cable terminates at a controller which consists of a set of three
FOX circuit boards for each bus. These boards are the Serial
Link Board (SLB), the Control Processor Board (CPB), and the
Interprocessor Bus Control (IPC). The controller which is made
up of these three boards is known as the Local Bus Unit (LBU).

The basic FOX network is made up of local bus units intercon
nected In a ring. Every cluster has a local bus unit for each
bus.

5-3

Theory of Operation

Serial Links

Bus (Local IPB) 01 02

~
Local Local

1J~ Bus Bus
Unit Unit

15 15

03 04

"
Local Local

M Bus Bus
Unit U.nit

15 15

Figure 5-2. Ring Structure Showing Local Bus Units

As long as the ring is not broken, a packet can be sent in either
direction and be assured of reaching its destination. In most
cases, however, one direction is shorter than the other. The
sending processor determines the direction defined at instal
lation as the preferred path and passes the routing information
to the local bus unit when sending data. A response to the
message is usually returned via the same path as it was sent.
If a message is not acknowledged as delivered, all four message
paths are tried, in sequence, until the message is delivered or
until all paths are shut off because of too many RESEND el~rors.

Local bus units are controlled by the GUARDIAN interprocessor bus
monitor process. The interprocessor bus monitor process is con
trolled by eMI commands. The interprocessor bus monitor process
is described later in the section. The eMI commands are describ
ed in Appendix K of the Communicat ions Management Interfa~:~_~~MI ~
9perator's Guide.

Line Handlers

Conventional EXPAND line handlers communicate over low-speed
telephone lines; FOX line handlers communicate directly over the
interprocessor bus extension. Messages not requiring security
checking usually bypass the line handlers, traveling directly
over the interprocessor bus extension from the sending process to
the destination process.

5-4

Theory of Operation

The FOX line handler plays a role in many ways analogous to that
of the conventional EXPAND line handler. The FOX line handler
interfaces with the Network Control Program to establish and
manage the connection of clusters in the same manner as it does
in EXPAND. Also, the line handler handles the routing of packets
for traffic that is being forwarded~ thus, if a FOX cluster
receives messages from a conventional EXPAND line handler that
must be forwarded to another FOX cluster, the messages are passed
through on a packet-by-packet basis as in conventional EXPAND.

Information on the configuration of FOX line handlers appears in
the System Management Manual.

INTERPROCESSOR BUS MONITOR PROCESS

The GUARDIAN interprocessor bus monitor process for NonStop II
systems controls the state of the Local Bus Unit (LBU). It also
controls the downloading of the Loadable Control Store (LCS) with
the correct firmware for the LBU.

The interprocessor bus monitor process must be defined at system
generation as a dummy I/O device. It can be assigned any name.
For ease of reference in this document, it is always referred to
as $IPB.

Systems using the FOX network must specify one $IPB process at
system generation. Both FOX and $IPB must be generated into the
system, as described in the SYSGEN sections of the System Manage
ment Manual. $IPB is controlled by CMI commands, as described in
Appendix K of the Communications Management Interface (CMI)
Operator's Guide. ----

$IPB can be run on NonStop II processors without FOX. However,
most features of $IPB are available only when FOX is installed.

Summary of Key Features

LOCAL BUS UNIT (LBU) MANAGEMENT. When the LBU is installed, $IPB
monitors the Local Bus Unit, using a special function packet
interface to poll for controller status and error data. $IPB is
responsible for correct loading of firmware into the Loadable
Control Store.

MESSAGE SYSTEM PROTOCOL SUPERVISION. $IPB controls the state of
individual physical links (X/Y, left/ right) to remote clusters
and individual buses to all processors. Certain error status
data generated by message system operations is passed to $IPB by
the monitor process of the processor which encountered the error.

5-5

$IPB Process

DIAGNOSTIC SUPPORT. The EPROM resident self-test on the FOX
controller and a downloadable Extended Self Test are executed as
a step of the procedure by which the LBU is downloaded with
operational code. Error statistics and status can be displayed
by using CMI commands described in Appendix K of the Communica
tions Management Interface (CMI) 9pera~?rrs Guide.

ACTIVE INTER-CLUSTER LINK MONITORING. $IPB establishes
communication with its counterparts in other clusters on a FOX
ring using a low-level handshaking protocol that coexists with,
and is independent of, the inter-cluster bus protocol used by the
message system. This enables $IPB to continually test the state
of the FOX ring and to collect status information for diagnostic
and maintenance purposes. This information can be retrieved by
use of CMI commands described in Appendix K of the Communications
Mangagemen tIn ter face (CM~}_,_Op'~~a tC?!:"_'_~_Gu ide.

Detailed Functional Specifications

LOCAL BUS UNIT MANAGEMENT. The $IPB process is responsible for
controlling the state of the LBU. When a primary $IPB process is
initialized, it determines the state of the X and Y bus control
lers by requesting LBU status. Persistent failure to obtain a
response to the status request is recognized as an indication
that the FOX network has not been installed, or that an error
condition exists.

If $IPB gets answers to its status requests, then $IPB can bring
the controllers to the appropriate state. This can require load
ing the operational firmware into the controller if it is not
already running the correct version. The user can specify
through SYSGEN whether the controller is to be started or stopped
initially, and whether the firmware is to be replaced if the
executing firmware is not identical to the firmware indicated in
the microcode file.

Once initialization is complete, $IPB will maintain the status of
the controller by periodically querying its status using special
function packets. The state of the controller can be modified
through use of the CMI commands START, STOP, and ABORT. 'rhe name
of the operational firmware file to be used can be changed with
the ALTER command.

$IPB is responsible for correct recovery from power failures that
cause loss of the operational firmware.

Each time the FOX boards are powered on, or the reset button is
pressed, the LBU runs a self-test diagnostic on the boards. When
a START command is issued, $IPB checks the hardware ID of the LBU

5-6

$IPB Process

and downloads an appropriate operational loader module (LOADER).
LOADER downloads the extended self-test module (EXTSELFTST).
Then LOADER downloads the standard firmware module (STANDARD)
which handles normal FOX traffic.

INTER-CLUSTER PROTOCOL SUPERVISION. $IPB receives error
information generated by the GUARDIAN message system during the
transfer of messages between clusters. This includes the
shutting down of paths as a result of send timeouts and resend
(WACK) timeouts. This information is also reported by the
message system to the operator device and disc log as usual.
$IPB must receive this information to support the diagnostic
process and to maintain current status information on all paths.

ACTIVE INTER-CLUSTER LINK MONITORING. $IPB continually monitors
the state of all paths to every system in the ring with an active
$IPB. This is accomplished throug~ use of a low-level handshaking
protocol that uses special unsequenced packets. A class
identifier in the packet allows the packets used by $IPB and the
packets used by FOX line handlers to coexist without interference
or confusion. $IPB can establish and maintain handshaking
continuity independent of EXPAND logical connections between the
systems. Also the status information exchanged through
handshaking packets permits every $IPB to have a comprehensive
view of the state of the FOX ring. This aid is important to
systems diagnosis and maintenance.

FOX controllers exchange "I'm alive" messages with their
neighbors that include the cluster number of the sending
controller. This allows $IPB to determine the cluster numbers of
its operational neighbors. These FOX "I'm alive" messages are
not to be confused with the "I'm alive" messages exchanged
between system processors.

In addition, the controllers also send "My host is alive"
messages. These messages contain the cluster number and CPU
number of the last special function packet requesting status
information from the LBU. If such a packet is not received
within a time interval of approximately 30 seconds, the
controller assumes that its host is dead. When this occurs, the
controller enters a state in which the "My host is alive"
messages are allowed to pass through; these messages include the
cluster and CPU being received from the LBU in the opposite
direction. Thus, every controller retains the identity of the
CPU containing the next adjacent system with an "alive" $IPB in
it. This data is available to $IPB in the status reply packet
that it receives from the LBU.

Operator commands for $IPB are provided through the CMI product,
which is described in Appendix K of the Communications Management
Interface (CMI) Operator's Guide.

S-7

SECTION 6

INTRODUCTION TO INFOSAT

NOTE

This product is available only on the Tandem NonStop II
system. It cannot be used on the Tandem NonStop system.

This section introduces INFOSAT, Tandem's joint venture with
American Satellite Company (ASC). INFOSAT is a fully integrated,
computer/satellite network. You'll find information here about
how satellites and earth stations work, and about the benefits of
transmitting and receiving over satellite lines. In addition,
this section describes many of the different components that make
up the satellite, the earth station, and the Tandem NonStop II
interface.

If you need to learn more about INFOSAT after reading this
section, see Appendix L of the Communications Management
Interface (CMI) Operator's Guide. It explains how to use eMI to
access INFOSAT. The System Mana~ement Manual tells you how to
configure an INFOSAT subnetwork lnto your EXPAND network.
Finally, if you need to run on-line diagnostic functions on your
INFOSAT system, read the Guide to the CM! Diagnostic Facility.

OVERVIEW

INFOSAT allows the EXPAND network to run on satellite channels
instead of terrestrial lines as the communications medium. If
you need to transfer data over long distances, an INFOSAT system
provides the following benefits:

• Price/performance - Satellite channels can add a large amount
of transmission capacity and significantly reduce the cost of
long distance communications.

6-1

Introduction to INFOSAT

• Reliability - INFOSAT is fault tolerant; that is, there are two
parallel "sides," or paths to the satellite. Hence, if a
failure should occur, the data rate will degrade to only 56
kbps (from 112 kbps).

• Low error rate - The average error rate for INFOSAT is better
than for terrestrial lines. This reduces the occurrence of
retransmissions and results in better response time and
throughput.

• Responsibility/Serviceability - There is a single source of
responsibility and maintenance for all elements in the
communications links. By integrating the earth station with a
Tandem NonStop II computer, you can constantly monitor and
diagnose the entire system. Many INFOSAT components are
equipped with Field Replaceable Units (FRUs). If a FRU fails,
a Tandem representative needs only theFRU number in order to
replace the entire module.

• Availability - INFOSAT service can be provided anywhere in the
continental U.S., whereas terrestrial high-speed digital
circuits may have long service lead times or may not be
available at all in some areas.

SATELLITES

A communications satellite is a relay station which receives,
amplifies, and retransmits data signals from stations on earth
(called, appropriately, earth stations).

Early satellites moved around the earth and could echo signals
only as they passed over the serviced area. Earth stations
needed to track these early satellites as they passed across the
sky.

Today's communications satellites appear to be in a stationary
orbit from the ground, providing 24-hour availability. This
means that an antenna on an earth station can point toward a
satellite without moving. How does this stationary orbit work?

The satellite must be the geosynchronous type, that is, it must
travel at the same speed as the earth's rotation in a "geo
stationary" orbit. To maintain a geostationary orbit, the
satellite orbits in ~ fixed position approximately 22,300 miles
above the equator. At this position, the satellite rotates
around the earth in exactly 24 hours. Since 1963, all communica
tions satellites have been of the geosynchronous type.

6-2

Introduction to INFOSAT

Satellite Components

The satellite consists of the following components:

• Transponders, which receive, amplify, change the frequency of
and retransmit signals from earth stations.

• Solar panels, storage batteries and power conditioners, which
generate and store the power for the satellite.

• position control thrusters, which adjust the satellite orbital
position and altitude.

• A command and telemetry subsystem, which transmit data about
the satellite to the earth station and receive commands from
the earth station.

• An antenna, which receives and transmits signals.

Figure 6-1 illustrates how the components of the satellite work
together. The solar panels generate power and pass it to the
storage batteries and power conditioner. The power is then
distributed to the transponders (receivers, frequency translators
and transmitters), and the command/telemetry subsystem.

Meanwhile, signals received at the antenna are transmitted
through the antenna subsystem to the receiver portion of the
transponder. There, the signals are amplified and passed to the
frequency translator where the frequency is changed from 6GHz to
4GHz (1 gigahertz (GHz) means 1000 million cycles per second).
The signals then continue through the transmitter, where they are
further amplified. Finally, the signals are returned to the
antenna for broadcast. In essence, the satellite echoes back to
earth the same data stream it receives, after amplifying it and
changing its carrier frequency.

6-3

Introduction to INFOSAT

~--------------------------------.------------'-----------------------~

SOLAR PANELS

STORAGE
BATTERIES

RECEIVER
FREQUENCY

TRANSLATOR

SOLAR PANELS

COMMAND
'-----lAND TELEMETRY

SUBSYSTEM

TRANSMITTER]
POSITI(~N
CONTROL

SUBSYSTEM

ANTENNA
SUBSYSTEM

ANTENNA

THRUSTERS

~--.--~
Figure 6-1. Satellite Components

6-4

Introduction to INFOSAT

Satellite Frequency Bands

Satellites operate in one or both of two frequency bands-
Ku-band or C-band. The main difference between the two is that
Ku-band operates at 14GHz for its uplink, 12 GHz for its
downlink, while C-band operates at 6GHz for the uplink and 4GHz
for the downlink. INFOSAT uses C-band for a number of reasons.

• C-band is not as susceptible to attenuation (weakening of the
signal) during rainstorms.

• Components are simpler, less expensive, more reliable and more
available for C-band.

• Antennas are less expensive because uniform surface tolerances
are not as critical.

One drawback of C-band is that it is more subject to radio
frequency (RF) congestion in metropolitan areas. INFOSAT
addresses this problem by providing large, shared-use earth
stations for customers who need it.

Footprint

Satellites broadcast signals over an area called a "footprint"
(see Figure 6-2); the larger the footprint, the weaker the
signal. There are several ways to compensate for weak signals,
including larger earth station antennas, more powerful trans
mission amplifiers, or more sophisticated error correction
techniques.

The satellite determines the shape of the footprint, concen
trating the signal where it is needed, instead of broadcasting
over too wide an area. INFOSAT's footprint covers the conti
nental United States. Figure 6-2 illustrates the INFOSAT
footprint. Note that areas located on the fringe of the foot
print (southern Texas and Florida, Northern Maine and portions of
some states bordering Canada) will receive a weaker signal than
those toward the center and may therefore require a slightly
larger earth station antenna to capture the signals.

6-5

Introduction to INFOSAT

r----.------------------------.-.

Figure 6-2. The INFOSAT Footprint

6-6

Introduction to INFOSAT

THE DEDICATED EARTH STATION

INFOSAT uses a dedicated, on-site earth station consisting of the
following components:

• A 5-meter Cassegranian antenna (Cassegranian is a type of
antenna which has easily accessible components for fast
maintenance and repair).

• A feed horn located in the center of the dish.

• A four-port Ortho Mode Junction (OMJ). The INFOSAT earth
station supports two separate, parallel signal paths. Each
path can transmit and receive independently, thus providing for
fault-tolerant operation and continuous availability. The
signal paths are divided by the OMJ, mounted at the back of the
feed horn. In all INFOSAT documentation, the paths are
referred to as "horizontal" (#H) and "vertical" (#V), relating
to their polarization of transmission from the earth station.
Each path transmits signals through its own 56 kbps channel
(for an aggregate bandwidth of 112 kbps for the earth station).

• Two radio frequency (RF) subassemblies mounted at the back of
the antenna. The RF subassemblies house field replaceable
units (FRUs) for easy maintenance and quick repair.

• Two intermediate frequency (IF) subassemblies mounted near the
base of the antenna. The IF subassemblies also house FRUs.

• A power/cabling junction box.

Figure 6-3 illustrates how all of the earth station components
fit together.

6-7

Introduction to INFOSAT

r-------------------------------'-------------,

RF SUBASSEMBLY

POWER/CABLING
JUNCTION BOX

IF SUBASSEMBLY

----_. __ ._---,

Figure 6-3. The INFOSAT Dedicated Earth Station

6-8

Introduction to INFOSAT

SHARED-USE EARTH STATIONS

If your facility is in a large, metropolitan area, it may not be
feasible to install a dedicated earth station. Because of space
limitations, RF congestion, or buildings or mountains that block
signals, you may need a shared-use earth station. Currently,
Tandem has use of ASC shared-use earth stations in New York,
Chicago, Dallas, Los Angeles and San Francisco.

If you configure INFOSAT with a shared-use earth station, it is
connected through two multiplexers (one for each of the parallel
signal paths) to an ASC microwave dish station. The connection
to ASC could be through terrestrial lines or microwave beams.
Your broadcasts are transmitted via microwave to the shared-use
earth station where the signals are converted for satellite
transmission.

Computer Communication Interface Module (CCIM)

The dedicated earth station is connected to the Tandem NonStop II
computer through a Tandem CCIM. The CCIM is located inside a
building, not more than 1500 feet from the earth station. It
also consists of two parallel sides (#H and #V). The CCIM
contains several major components, including the Earth Station
Controller (ESC), modulators, and demodulators. The ESC
communicates with 6204 bit-synchronous controllers and on to the
computer. Additionally, each CCIM contains the Diagnostic
Monitoring System (DMS) which collects data from the modulators
and demodulators and from outdoor data collectors. The CCIM
houses FRUs for easy maintenance and quick repair.

INFOSAT SOFTWARE

The software required to complete the INFOSAT picture includes:

• The EXPAND product, including the Network Control Process and
Line Handler

• The Satellite Link Manager (SLM)

• Diagnostic Programs

• The Tandem INFOSAT Control System (TICS)

You should be familiar with EXPAND and the Network Control
Process. If you are not, go back and read Sections 1 through 4
of this manual.

The SLM provides for operational control of the INFOSAT earth
station via the Communications Management Interface (eMI). The
SLM process is responsible for all communications between the
Tandem NonStop II computer and the earth station (except for

6-9

Introduction to INFOSAT

EXPAND data communications). Through eMI, the SLM performs all
of the functions necessary to run and maintain an earth station.
These functions include, but are not limited to:

• Control the earth station.

- Download the ESC

- Issue commands to the ESC (ENABLE, DISABLE, tuning)

- Set error threshold values for the ESC

• Monitor the operation of the earth station.

- retrieve status and statistics

• Run diagnostics on the earth station.

Appendix L of the Communications Ma~agement Interface (CMI)
Operator's Guide describes the CMI commands you use for INFOSAT.
The Guide to the CMI Diagnostic Facility provides information
that will help you run on-line diagnostIc tests and other
functions to determine the exact point of failure if any
component in your INFOSAT system fails to operate properly.

TICS is described later in this section.

Figure 6-4 shows the hardware and software relationship (minus
TICS) from the satellite, through the earth station to the ESC
and the Tandem NonStop II computer.

6-10

Introduction to INFOSAT

EARTH STATION ~ /" _____ ~_TEL_LlT_E ""\
#H r - (

--~----~I~--~ ~ ______ I ______ ~

~C><~ RF
SECTION

OUT IN
DATA DATA

IF
SECTION

DMS DMS
OUT IN

DATA DATA

1><
----------------~ ~~~----~--~~ ~

DMS
OUT IN

DATA DATA
DMS

OUT IN
DATA DATA ,

ESC
#H ~><~

CONTROLLER t t t t t t ~ CONTROLLER t t t t t t
PORT PORT

I I
6204 BIT SYNC 6204 BIT SYNC

I I
TNSII TNSII

- -"""''-----'L-.-II

SLM I-
-....",

#v

RF
SECTION

IF
SECTION

ESC
#V

TNSII

--....,.
EXPAND~+-------~

...!:.t!..." ~PA~ LH ~PA~ LH

Figure 6-4. INFOSAT Hardware and Software

6-11

Introduction to INFOSAT

THE INFOSAT/EXPAND NETWORK

The basic INFOSAT configuration consists of two or more Tandem
NonStop II systems with dedicated earth stations and transponder
space on an orbiting satellite. This configuration fulfills the
requirements for an integrated computer/satellite network that is
fault-tolerant and continuously available.

An INFOSAT node can be included as a part of a larger EXPAND
network. In this case, all nodes with the network are directly
connected. Figure 6-5 illustrates this type of network
configuration.

6-12

/
/

/

EXPAND ~l INFOSAT
NETWORK - -....... -....

/'

/ '"
/ "-

/ \
/ \
I \
I \
\ I
\ I
\ jl

" / " / " /'
........ _---/

Figure 6-5. INFOSAT/EXPAND Network

Introduction to INFOSAT

Remember that the EXPAND network can support up to 255 nodes.
With INFOSAT, each dedicated earth station can receive signals
from up to seven other INFOSAT nodes. Conceivably then, all 255
nodes in an EXPAND network could be INFOSAT nodes, each able to
receive signals from seven other INFOSAT nodes. If two nodes not
directly connected to each other need to communicate, they can do
so through standard EXPAND terrestrial lines, or they can pass
data through a third INFOSAT node to which both are connected.

Figure 6-6 illustrates this type of connection. The "A" nodes on
the left are all directly connected to each other and to node
"Bl" on the right. The "B" nodes on the right are all directly
connected to each other and to node "AI" on the left. If node A5
needs to communicate with node B5, two "hops" are necessary; one
satellite hop from node A5 to node Bl and a second hop from node
Bl to node B5.

6-13

Introduction to INFOSAT

----------------------------------.-----------------------------

ls 85 ~
~

A6

Zs 86

A4 A7

~
84

A3 ~ 81
A5

A1

~k ~ B7
A2

~ ~
83

82

Figure 6-6. Satellite Hopping

6-14

Introduction to INFOSAT

TANDEM INFOSAT CONTROL SYSTEM (TICS)

Satellites are a broadcast medium. This means that anyone with
an earth station and a parabolic dish can receive the broadcast.
Therefore, the FCC has established stringent requirements on
earth station broadcast parameters. Two requirements are of
particular interest: First, all parameters must be established
by FCC-licensed personnel and second, any earth station
broadcasting out of tolerance must be shut down in a reasonable
amount of time.

INFOSAT is constantly monitored by ASC's Network Operation
Control Center (NOCC). Due to FCC regulations, it is necessary
for the NOCC to have access to your Tandem NonStop II System.
Note that the NOCC does not have access to your data base!

The NOCC can access your system through Tandem-operated software
called the Tandem INFOSAT Control System (TICS). TICS provides a
central control point for INFOSAT. operation, and coordinates
INFOSAT earth stations. TICS is an application program which
allows FCC-licensed Tandem personnel to perform various opera
tions on any INFOSAT earth station. TICS maintains a dial-up
connection with all INFOSAT sites. In essence, TICS acts as an
intermediary through which the NOCC monitors the performance of
your system and insures that FCC regulations are adhered tOe

The dial-in/dial-out capabilities of TICS perform the following
functions:

• Handle asynchronous terminal dial-in ports for communications
from NOCC, ASC, or a Tandem field engineer

• Authenticate the caller

• Turn on or turn off the transmitter

• Set transmit frequencies

• Set transmit power levels

• Establish station IDs

• Read an INFOSAT station's status and monitor data

• Execute diagnostics (limited)

• Maintain a telephone directory for customer dial-in ports

• Dial out to a customer upon command, authenticate the
connection, and transfer commands and responses.

• Log actions for each INFOSAT system

6-15

Introduction to INFOSAT

Remember that the earth station can be taken down and brought up
only by FCC-licensed personnel via TICS. Therefore, you must
dial into TICS before taking any action which requires you to
bring up or shut down a side of the earth station, or any action
that requires a change in frequency or power levels.

Figure 6-7 shows how TICS and NOCC fit into the INFOSAT product,
and completes the INFOSAT picture.

TICS CPU ESC

~----~ ... , \.::--- .

NON·PRIV PRIV 1/0 PROCESSES

Figure 6-7. The INFOSAT Connection

6-16

APPENDIX A

CONSOLE MESSAGES

This appendix contains a summary of the network-related messages
that the communications I/O process and Network Control Process
(NCP) send to the operator console·. This appendix also provides
a brief explanation of how to interpret the file system error
indication for a modem status error (140), I/O bus error (218),
and not ready (248).

MESSAGE FORM

The general form of a console message is:

[msg no.] [timestamp FROM sender system no. sender cpu pin]
message

where

msg no.

is a system message number; generated by the system as
opposed to being generated by an application.

timestamp

is of the form: hour:minute day month year

FROM sender system no. sender cpu pin

indicates the system number in the network, processor
module, and processid in which the message originated.

A-I

Console Messages

message

is a message generated either by an application or the
system.

NOTE

For the following message descriptions, entries for
msg no., timestamp, FROM sender system no., sender
cpu, and pin are represented by { •.. } rather than
repeating them for each console message. The ldev
and %ccu entries indicate the logical device number
and controller/unit number of the device causing
the message.

Driver Generated Messages

The communications driver sends five network-related messages
(04, and 06 through 09) to the operator console:

04 { ... } LDEV ldev [%ccu] ERROR dev status paraml param2 BEL

A-2

Message 04 indicates that an error occurred on the reported
device and the retry was unsuccessful. The entry for dev
status contains the status returned by the device controller;
param2 contains the file system error number.

BYTE SYNCHRONOUS CONTROLLERe The format of the dev status
for the Byte Synchronous controller IS:

WRITE UNIT READ UNIT

.<0> = Power On .<0> Power On
$<1> Channel Underrun .<1> Device Overrun
.<2> Channel Abort .<2> Channel Abort
.<3> Channel Parity Error .<3> unused
.<4> Auto Poll Term. .<4> = BCC Error
.<5> Data Set Rdy Term. .<5> = VRC Error
.<6> Modem Loss .<6> Modem Loss
.<7> Byte Cnt Term. .<7> Byte Cnt Term.

Modem Loss. If Modem Loss is detected, dev status.<6> =: 1,
or (on a Write Unit) if dev status.<5> = 1, bits.<8:15>
have the following meanings:

WRITE UNIT

.<8> = Data Set Rdy

.<9> = Modem Loss Sense

.<10>= Data Carrier Detect

.<11>= Clear To Send

.<12>= DSR Intrpt

.<13>= Ctrl Carrier Enable

.<14>= Request To Send

.<15>= Data Terminal Rdy

Console Messages
Driver Generated Messages

READ UNIT

.<8>

.<9>

.<10>=

.<11>=

.<12>=

.<13>=

.<14>=

.<15>=

Data Set Rdy
Modem Loss Sense
Data Carrier Detect
Clear To Send
DSR Intrpt
Ctr1 Carrier Enable
Request To Send
Data Terminal Rdy

No Modem Loss. If no Modem Loss is detected, dev
status.<6> = 0, or (on a Write Unit) if dev status.<5> 0,
bits.<8:15> have the following meanings:

WRITE UNIT

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>
0<15>

state count

READ UNIT

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>

.<15>

ETB/ETX sensed
SOH/STX sensed

state count

BIT SYNCHRONOUS CONTROLLER. The format of the dev status for
the Bit Synchronous controller is:

WRITE UNIT

.<0> =

.<1>

.<2> -

.<3>

.<4> =

.<5> =

.<6>

.<7>

Power On
Channel Underrun
Channel Abort
Channel Parity Error
Modem Loss
o
Transmit Underrun
No Encryption

AUTOPOLL OPERATION

.<0> = 0

.<1> Channel Underrun

.<2> = Channel Abort

.<3> Channel Parity Error

.<4> = Modem Loss

.<5> = Autopoll Terminated

.<6> Transmit Underrun

.<7> = 0

READ UNIT

.<0>

.<1>

.<2>

.<3>

.<4>

.<5>

.<6>

.<7>

o
Channel Underrun
Channel Abort
o

= Modem Loss
Read Byte Overrun
Receiver Overrun
No Encryption

MODEM CONTROL OPERATION

.<0> 0

.<1> 0

.<2> = 0

.<3> 0

.<4> 0

.<5> = 0

.<6> = DSR Data Set Rdy

.<7> = 0
Intrpt

A-3

Console Messages
Driver Generated Messages

Modem Loss. If Modem Loss is detected, dev status.<4> =1,
bits.<8:15> indicate the modem status for the write and
read units, and the autopoll and modem control operations:

.<8>

.<9> =

.<10>=

.<11>=

.<12>=

.<13>=

.<14>=

.<15>=

DSR* Data Set Rdy (invert)
CD* Carrier Detect (invert)
CTS* Clear To Send (invert)
Transmit Overrun
RS-422
Maintenance mode
RTS Request To Send
DTR Data Terminal Rdy

No Modem Loss. If no Modem Loss is detected, dev
status.<4> = 0, bits.<8:15> have the following meanings:

WRITE UNIT

.<8>

.<9>

.<10>

.<11>

.<12>

.<13>

.<14>

.<15>

Ending State
Count

AUTOPOLL OPERATION

.<8> = 0

.<9> = 0

.<10>= 0

.<11>= 0

.<12>= 0

.<13>= 0

.<14>= End of Poll-List

.<15>= End of Poll

READ UNIT

.<8>

.<9>

.<10>=

.<11>=

.<12>=

.<13>=

.<14>=

.<15>=

Receiver Error
ABC.<O>, Assembled Bit Cnt
ABC.<l>
ABC.<2>
Receiver Overrun Error
Abort/Go-Ahead char detect
Receiver End-of-Message
o

MODEM CONTROL OPERATION

.<8> = DSR* Data Set Rdy (invert)

.<9> = CD* Carrier Detect (invert)

.<10>= CTS* C1r To Send (invert)

.<11>= Transmit Overrun
• < 12 > = RS -- 4 2 2
.<13>= Maintenance mode
.<14>= RTS Request To Send
.<15>= DTR Data Terminal Rdy

06 { ... } LDEV ldev [%ccu] UP

Message 06 indicates that the device has been placed online
following a PUP UP command.

07 { ... } LDEV ldev [%ccu] DOWN (BEL)

A-4

Message 07 indicates that the device has been placed offline
following a PUP DOWN command.

Console Messages
Driver Generated Messages

08 { ..• } LDEV ldev %ccu

09 { •.. } LDEV ldev [%ccu

STAT1

STAT2

st1-f1

st2-f1

st1-f2 st1-f3

st2-f2 st2-f3

Messages 08 and 09 report device statistical information.
These statistics are reported if a line's error count exceeds
its designated threshold value, or after a line is closed
with a nonzero statistic value. The statistics message
fields have the following meanings:

st1-f1 number of messages sent
st1-f2 number of messages received
st1-f3 number of NAKS received
st2-fl = number of BCC errors
st2-f2 number of format errors
st2-f3 = number of retries

NCP Generated Messages

The Network Control Process (NCP) sends twelve network-related
messages (33 through 35, 43 through 49, 91 and 92) to the
operator console:

NOTE

Message numbers 43, 46, 48 and 49 may be enabled or
disabled by use of the CUP ALTER command.

33 { ... } LDEV Idev NET: LINE QUALITY ###

This message indicates that the line handler has reported a
change in line quality (greater than or equal to five
percent) to the NCP.

34 { ... } NET: LOGGING AT SYS ###

Message 34 indicates the system, other than the local system,
that the NCP sends the console log messages. See NETMON
LOGCENTRAL command.

35 { ... } NET: LOCAL LOGGING RESUMED

This message indicates that the NCP now sends the console log
messages to the local system. See NETMON LOGCENTRAL command.

A-5

Console Messages
NCP Generated Messages

43 { ... } LDEV ldev NET: CONNECTION LOST TO SYS ### (xxx) (BEL)

This message occurs for three reasons:

xxx =

xxx =

I The NCP has found all paths to system ### are
unavailable.

4 An end-to-end protocol error reported by the
line handler. The NCP attempts reconnect
through the same path; if unsuccessful, a
reconnect through an alternate path is
attempted.

xxx = 999 Recovery from soft failure; related to path
timing.

44 { ... } LDEV ldev NET: LINE READY
X25:

Message 44 indicates that the line handler is ready to accept
network requests. For the Direct Connect line handler, line
ready occurs after both line handlers (local and remote) have
exchanged reset sequences. For the X.25 interface, line
ready occurs after the line handler is informed of the
establishment of a virtual circuit or learns of the circuit
by querying the X.25 AXCESS process.

45 { ... } LDEV ldev NET: LINE NOT READY, ERROR ### (BEL)
X25:

Message 45 indicates existence of an error that the line
handler cannot resolve through the normal retry mechanism.
The line handler will not accept subsequent network requests,
thus causing the NCP to attempt a reconnect through an
alternate path. The error entry contains a file system error
number that describes the condition that caused the message.

46 { ... J LDEV ldev NET: CONNECTED TO SYS ###

This message indicates a successful connect exchange with the
NCP at remote system ###

47 { ... } LDEV ldev NET: LVL 4 TIMEOUT TO SYS ### (BEL)

A-6

This message indicates that the line handler failed to
receive an end-to-end response within the configured timeout
and retry values

Console Messages
NCP Generated Messages

48 { ... } NET: SYS ### CPU STATUS pppppppppppppppp (BEL)

Message 48 indicates a change in processor status at system
has occurred. The p entry indicates the up/down (1/0)
state of the processors in the system; leftmost number is
processor 0 and rightmost is processor 15.

49 { ... } LDEV ldev NET: ### NOT RESPONDING (BEL)

Message 49 indicates that the NCP at the receiving system has
not received a status message from the NCP at system ### for
three time periods. The NCP looks for an alternate path.

91 { ... } LDEV ldev NET: DEVICE SUBTYPE INVALID

This message occurs during system initialization time if ldev
subtype is not equal to 0, 1, 'or 2. EXPAND will not run
until the SYSGEN LDEV subtype is corrected.

92 { ... } LDEV ldev NET: TOO MANY LINES GEN'D FOR THIS PATH

Message 92 occurs during system initialization time if ldev
subtype is specified as one of the following: more than 1
path ldev, more than 1 path/line, or more than 8 line ldevs.
EXPAND will not run until the SYSGEN configuration is
corrected.

Fiber Optic Extension (FOX) Generated Messages

The following console messages support bus and path controls:

135 { ... } path BUS SHUT DOWN TO CLUSTER cc, PROCESSOR pp

The indicated path has been taken out of service because too
many errors have occurred in a ten-minute interval.

136 { ... } path BUS ERRORS TO CLUSTER cc, PROCESSOR pp
#ttttt #wwwww

On the indicated path, messages to the cluster and processor
indicated have encountered ttttt SEND instruction timeouts
and/or wwwww WACK (waiting for acknowledgement) timeouts.

137 { ... } X BUS ERRORS FROM CLUSTER cc, PROCESSOR pp
#ccccc #rrrrr

On the X bus, messages from the indicated cluster and
processor have caused ccccc checksum errors and rrrrr
routing errors.

A-7

Console Messages
FOX Generated Messages

138 f ••• } Y BUS ERRORS FROM CLUSTER cc, PROCESSOR pp
#ccccc #rrrrr

On the Y bus, messages from the indicated cluster and
processor have caused ccccc checksum errors and rrrrr
routing errors.

139 f ••• } BUS SEQ ERRORS FROM CLUSTER cc, PROCESSOR pp
#sssss #uuuuu

Messages from the indicated cluster and processor have
caused sssss sequence errors and uuuuu unexpected packet
interrupts.

140 [... } CAN'T ALLOCATE RECEIVER'S LCB FOR CLUSTER cc,
PROCESS ID pp,ppp

This message occurs when allocation fails for the LCB for the
receiver of a message from the indicated cluster and process.

The following console messages support LBU status control:

166 [... } LDEV $nn LBU x NO RESPONSE TO STATUS POLL

Special function packets responding to status requests are
not being received from the LBU. If the LBU was powered off,
this is normal; otherwise it indicates a failure of the LBU.
The LBU CPB LED display should be checked.

167 { ... } LDEV $nn LBU x RESET HAS OCCURRED

The controller entered the LCS UNLOADED state while it was in
the normal operational state. This is normal if power is
lost and then returned. Automatic reload of LCS will occur.

168 { ... } LDEV $nn LBU x STANDARD MICROCODE LOADED

A-8

The LCS loading procedure has completed. The controller is
now operational.

Console Messages
FOX Generated Messages

169 f ••• } LDEV
FLAGS

$nn LBU x LOAD FAILED - FILE fff,
%nnnnnn, STATUS %000, RESET %rrr, MCERR mmrn

An attempt to load the controller failed. If file access
errors occurred on the microcode file, fff is the file system
error code. If the firmware was loaded and a status packet
was received, nnnnnn and 000 are the FLAGS and STATUS CODE
fields of the status packet. The RESET CODE rrr is the
reason supplied by the boot PROM reset reason code if
applicable. The LBU flags are described under "STATUS LBU"
in Appendix K of the CMI Operator's Guide. See Status and
Reset Codes, below, for status and reset code definition.
The code in MCERR is returned by the standard microcode
utility procedures. An MCERR not equal to zero indicates a
mismatch between the hardware part number and revision level,
and the data in the microcode file.

170 f ••• } LDEV $nn LBU x WCS LOAD FOUND ACCEPTABLE

Upon initialization, the $IPB process found that the
controller already contained the correct version of the
operational firmware. The controller was not reloaded.

171 f ••• } LDEV
FLAGS

$nn LBU x CONTROLLER FAILED - RESET %rrr,
%nnnnnn, STATUS %000

The controller entered the error state. nnnnnn and 000 and
rrr have the same meanings as described above. See Status
and Reset Codes, below, for status and reset code definition.

172 f ••• l LDEV $nn LBU x EXCESSIVE ERRORS OCCURRING

Internal error counters maintained by the controller are
being incremented at a rate faster than a preset threshold.
The LBU STATUS display of CMI should be examined to determine
the cause; use "CMI STATUS LBU UNDER $IPB, DETAIL".

173 f ••• l LDEV $nn PATH TO CLUSTER cc MAY HAVE FAILED -
CHECK SUBNET STATUS

A discrepancy between sent and received handshake packets was
detected. Use CMI to examine the SUBNET status and determine
the specific details. One or more of the four redundant
paths to or from the specified cluster may have failed.

174 { ... } LDEV $nn IPB MONITOR FAILURE SYNDROME aaaaa bbbbb

The IPB monitor process has detected a condition that
prevents further processing. Any subsequent requests to the
IPBMON process will be rejected with file system error 66.
The syndrome fields should be examined to ascertain the
reason for the failure.

The following codes are assigned:

A-9

Console Messages
FOX Generated Messages

00001 00000

00002 00000

00003 00000

The special function packet interface to the
operating system could not be initialized.
(Occurs when SIPB is on a non-FOX system.)

The IPB monitor was generated with a number
of units not equal to one.

Memory could not be locked for the monitor
process special function packet interface.

All of the above conditions can occur only immediately after
the loading of the processor containing the IPB monitor
process.

STATUS AND RESET CODES

possible STATUS CODE indications in the LBU STATUS display are:

%000 SELFTEST PASSED - READY TO LOAD

%000 SELFTEST PASSED - SLB NOT READY

96 a 0 1 LOAD I NG

%002 LOADED - READY TO EXECUTE

%003 EXECUTING

%004 EXECUTING DIAGNOSTIC

%265 EXT SELFTEST FAILED - SLB PARITY DETECTOR

%266 EXT SELFTEST FAILED - SLB STATUS REGISTER 2

%267 EXT SELFTEST FAILED - SLB NOVRAM

%270 EXT SELFTEST FAILED - SLB LOOPBACK

%271 EXT SELFTEST FAILED - SLB INITIALIZATION

%272 EXT SELFTEST FAILED - CPB/SLB INTERFACE

%273 EXT SELFTEST FAILED - IPC NOVRAM

%274 EXT SELFTEST FAILED - IPC BUFFER MEMORY

%275 EXT SELFTEST FAILED - IPC INTERVAL TIMER

%276 EXT SELFTEST FAILED - CPB NOVRAM

%277 EXT SELFTEST FAILED - CPB PRIORITY ENCODER

%357 SELFTEST FAILED - IPC FUSE

A-lO

Status and Reset Codes

possible RESET CODE indications and meanings are:

%000 RESET BY PON OR PANEL RESET SWITCH

The LBU was reset due to the CPB or IPC power cycling or by
the CPB panel reset switch being pressed.

%020 RESET DUE TO IPC OUTQ PARITY ERROR

An IPC OUTQ parity error occurred during normal operations.
Most likely cause is a faulty IPC OUTQ memory.

%021 RESET DUE TO CPB/SLB SBUS STATUS PARITY ERROR

A parity error was detected while reading SLB status. Most
likely cause 1S a faulty SLB.

%022 RESET DUE TO CPB/SLB SBUS ADDRESS PARITY ERROR

A parity error was detected on the SADDR bus. Most likely
cause is a faulty CPB.

%023 RESET DUE TO SLB NOT READY

The SLB went to the not ready state during normal operations.
Most likely cause is that the SLB power is off.

%024 RESET DUE TO CPB PRIORITY ENCODER ERROR

The most likely cause is a faulty CPB.

%025 RESET DUE TO INTERMITTENT CLUSTER ID

The last read cluster ID does not match a previously read
value. Most likely cause is a faulty CPB, the backplane
cluster ID jumpers, or the backplane. (Any of these faults
may also cause the physical state to be NO RESPONSE. The
cluster 10 read by the CPB microprocessor may be displayed in
the CPB LED display by setting switch 7 on the CPB while the
LBU is in the unloaded (STOPPED) state.)

%026 RESET DUE TO CPB STUCK PARITY ERROR

A buffer memory or SLB parity error indication persisted
following a command to clear parity errors. Most likely
cause is a faulty CPB.

%027 RESET DUE TO INVALID CLUSTER ID

The cluster ID read during the operational microcode
initialization was 0 or 15. See status code %025.

A-II

Status and Reset Codes
Reset Codes

%070 INTERNAL CONSISTENCY CHECK FAILED - IPC IQSTAT SETTING

The IPC IQSTAT for a destination does not agree with the
destination queue packet count. Most likely cause is a
faulty IPC or invalid control structure data in CPB fast
memory.

%071 INTERNAL CONSISTENCY CHECK FAILED - CONTROL STRUCTURE

The local cluster destination stopped flag has been reset.
Most likely cause is invalid control structure data in CPB
fast memory.

%072 INTERNAL CONSISTENCY CHECK FAILED - CONTROL STRUCTURE

The packets pending flag for a destination does not agree
with the destination queue packet count. Most likely cause
is invalid control structure data in CPB fast memory.

%073 INTERNAL CONSISTENCY CHECK FAILED - OUTGOING FRAME

An outgoing data frame was addressed to cluster 0 or 15.
Most likely cause is invalid control structure data in CPB
fast memory or a failure of the CPB priority encoder.

%074 INTERNAL CONSISTENCY CHECK FAILED - CONTROL STRUCTURE

A constant value stored in CPB fast memory has changed.

%075 INTERNAL CONSISTENCY CHECK FAILED - CONTROL STRUCTURE

The head/tail pointers for a destination queue do not agree
with the destination queue packet count. Most likely cause
is invalid control structure data in CPB fast memory.

%076 INTERNAL CONSISTENCY CHECK FAILED - CONTROL STRUCTURE

Start/stop status of a destination does not agree with the
destination queue packet count. Most likely cause is invalid
control structure data in CPB fast memory.

%077 INTERNAL CONSISTENCY CHECK FAILED - OUTGOING FRAME

An outgoing data frame was formatted as a control-only frame.
Most likely cause is invalid control structure data in CPB
fast memory.

%370 RESET BY HOST WHILE IN UNLOADED STATE

A-12

The IPB Monitor issued a reset command while the LBU was in
the unloaded state. Most likely cause is an operator-issued
STOP or ABORT command.

Status and Reset Codes

%371 RESET BY HOST WHILE IN LOADING STATE

The IPB Monitor issued a reset command while the LBU was in
the loading state. Most likely cause is a download error
(the download failed to complete successfully).

%372 RESET BY HOST WHILE IN LOADED STATE

The IPB Monitor issued a reset command while the LBU was in
the loaded state. Most likely cause is a download error (the
download failed to complete successfully) or the SLB was not
ready.

%373 RESET BY HOST WHILE IN OPERATIONAL STATE

The IPB Monitor issued a reset command while the LBU was in
the operational state. Most likely cause is an operator
issued STOP or ABORT command.

%374 RESET BY HOST WHILE IN DIAGNOSTIC STATE

The IPB Monitor issued a reset command while the LBU was in
the diagnostic state. Most likely cause is that the diag
nostic status indicated a fault in the LBU or the diagnostic
failed to respond to a status request in the allowed time.

NETWORK LINE-ERROR DIAGNOSIS

The following discussion provides a brief explanation of how to
interpret the file system error indication for a modem status
error (140), I/O bus error (218), and not ready (248). It is
intended to aid in the diagnosis of line problems within the
network.

Modem Status Error (140)

The Network Line Handler reports modem errors for these reasons:

• Data Set Ready (DSR) not detected within 30 seconds.

• DSR lost.

• Carrier Detect (CD) lost.

• Clear to Send (CTS) lost.

Any of the above conditions cause a modem status error indicated
by a file system error (140) or console message (04). In the
case of the console message, interpretation of the dev status
bits depends on whether a byte synchronous or bit synchronous
controller is being used.

A-13

Console Messages
Network Line-Error Diagnosis

For the Byte Synchronous controller, dey status.<13:15> indicate
the reason for the modern status error.

dey status.<13> Carrier Detect

dey status.<14> Clear to Send

dey status.<15> Data Set Ready

For the Bit Synchronous controller, dey status.<8:10> indicate
the reason for the modern status error.

dey status.<8> = DSR*, Data Set Ready (invert)

dey status.<9> = CD*, Carrier Detect (invert)

dey status.<lO> CTS*, Clear To Send (invert)

I/O Bus Error (218)

The Network Line Handler reports 218 errors when a write
interrupt does not occur within the level-2 time period. This
error may indicate a controller problem but also occurs if the
modern is not generating transmit-clock pulses.

Not Ready (248)

The Network Line Handler reports error 248 when unable to
establish level-2 communications or when all level-2 retries have
been exhausted. possible reasons for this error are:

• the other system is down. If an alternate path exists, the
state of the other system can be determined by issuing a NETMON
MAPS command.

• incorrect NEXTSYS parameters. This error occurs only on the
initial connection but should not occur after that.

• garbled or no data in/out. By performing successive CUP STATS
commands (one-minute interval) and observing the U-FRAMg
counts, it can be determined whether data is being transmitted
and received. The BCC error count indicates the presence of
garbled receive data.

A-14

Console Messages
Network Line-error Diagnosis

If the CUP STATS commands do not indicate both send and receive
data, place the local modern in analog loopback and observe the
U-FRAME counts again. If both send and receive counts are
incrementing, the local controller and modern are okay. If both
systems check out, check the lines by first using the modern
self-test, then observe the U-FRAME counts with the remote
modem in digital loopback. If all tests indicate data is being
transmitted and received, then a trace at both ends of the line
should indicate the cause of the not ready condition.

A-15

ADD command 4-10, 4-11, 4-42
Alternate key files 3-44
AXCESS 1-4, 1-5, 4-55

BACKUP 2-8

INDEX

BACKUPCPU command 4-10, 4-12, 4-42
Best path 1-2, 4-1/4
BREAK key 4-9, 4-16

CCIM (Computer Communication Interface
Module) 6-9

CMI considerations, network manager 4-59
COMINT 2-8
Command Interpreter startup message 3-40/41
Communications Management Interface

(CMI) 4-59
Communications Utility Program (CUP) 1-4, 4-55
Community (of users) 4-46
Components of EXPAND 1-3
Computer Communication Interface Module

(CCIM) 6-9
Console logging messages

General messages A-I
Network manager 4-57

Control-Y 4-9
Conversion, file name 3-7
CONVERTPROCESSNAME procedure 3-20, 3-22
CPUS command 4-10, 4-13, 4-42
CREATEREMOTENAME procedure 3-20, 3-23
CRTPIDs 3-5
CUP considerations, network manager 4-55

Dedicated earth station, INFOSAT 6-7
Default file security 4-47
Default system name 2-4
Definitions

File residence 1-1
Local file 1-1

index-l

Index

Definitions (continued)
Network 1-1
Network file 1-1
Remote file 1-1

DELETE command 4-10, 4-15, 4-42
Diagnostic Support, FOX 5-6
Direct connect line handler 1-4
Disc file security

SETMODE 4-46
DISPLAY command 4-10, 4-16, 4-42

Earth Station Controller (ESC), INFOSAT 6-9
Earth station, INFOSAT

Dedicated 6-7
Shared-use 6-9

EDIT 2-8
End-to-end protocol 1-3
Enhanced routing 1-2, 4-1, 4-5

Path selection 4-5
Transmission priority 3-20, 4-5
Transport media 4-5

Error messages
Driver generated A-2
FOX generated A-7
NCP generated A-5
Status and reset codes A-10

ESC (Earth Station Controller), INFOSAT 6-9
EXIT command 4-8, 4-10, 4-42
EXPAND line connection to an X.25 line 4-57
EXPAND/INFOSAT network 6-12

FC command 4-9, 4-10, 4-42
Features of EXPAND

Best path routing 1-2
Multi-line facility 1-2
Pass-through routing 1-2
Upward compatibility 1-3
X.25 compatibility 1-3

Fiber Optic Extension (FOX) 5-1
File access 2-1
File definitions

Local 1-1
Network 1-1
Remote 1-1
Residence 1-1

File names
External 3-40
Internal 3-2
Network 2-2, 3-2, 3-40
Saving 3-40, 3-44

FNAMECOLLAPSE procedure 3-8
FNAMECOMPARE procedure 3-14
FNAMEEXPAND procedure 3-10

index-2

Footprint, INFOSAT 6-5
FOX

Diagnostic support 5-6
Functional specifications 5-6
Inter-cluster link monitoring 5-6
Inter-cluster protocol supervision 5-7
Interprocessor Bus Monitor Process 5-5
Introduction 5-1
LBU (Local Bus Unit) 5-3
Theory of operation 5-2

FOX (Fiber Optic Extension) 5-1
Frequency bands, satellite, INFOSAT 6-5

GETPPDENTRY procedure 3-20, 3-25
GETREMOTECRTPID procedure 3-20, 3-27
GETSYSTEMNAME procedure 3-20, 3-28

HELP command 4-10, 4-19, 4-42

INFOSAT
Computer Communication Interface Module

(CCIM) 6-9
Dedicated earth station 6-7
Earth Station Controller (ESC) 6-9
EXPAND network 6-12
Footprint 6-6
Hardware 6-11
Introduction 6-1
Overview 6-1
Satellite components 6-3
Satellite frequency bands 6-5
Satellites 6-2
Shared-use earth station 6-9
Software 6-9

INFOSAT/EXPAND network 6-12
Interprocessor Bus Monitor Process, FOX 5-5

LBU (Local Bus Unit), FOX 5-3
Line error diagnosis A-13
Line handler

Direct Connect 1-4
FOX 5-4
X.25 1-4

LINESPEED 4-2, 4-5/6, 4-55
Local Bus Unit (LBU), FOX 5-3
LOCATESYSTEM procedure 3-20, 3-29
LOGCENTRAL command 4-10, 4-20, 4-42
Logon, programmatic 4-52

MAPS command 4-10, 4-22, 4-42
Messages

Console
NETMON

A-I
4-39

Index

index-3

Index

MONITORNET procedure 3-31
MYSYSTEMNUMBER procedure 3-32
MYTERM procedure, network considerations 3-41

NCP (Network Control Process) 1-3, 4-5
NETMON

ADD command 4-10, 4-11, 4-42
BACKUPCPU command 4-10, 4-12, 4-42
Break 4-9, 4-16
Control-Y 4-9
CPUS command 4-10, 4-13, 4-42
DELETE command 4-10, 4-15, 4-42
DISPLAY command 4-10, 4-16, 4-42
EXIT command 4-8, 4-10, 4-42
FC command 4-9, 4-·-10, 4-42
HELP command 4--10,4-19,4-42
LOGCENTRAL command 4-10, 4-20, 4-42
MAPS command 4-10, 4-22, 4-42
Messages 4-39
PATHS command 4-10, 4-27, 4-42
PERIOD command 4-10, 4-31, 4-42
PROBE command 4-10, 4-32, 4-42
Program 1-5, 4-7
SHOW command 4-10, 4-35, 4-42
STATS command 4-10, 4-36, 4-42
Syntax summary, commands 4-42
THRESHOLD command 4-10, 4-38, 4-42
Usage 1-6

Network (users) 4-46
Network Control Process 1-3, 4-5
Network definition 1-1
Network file names 2-2
Network security 4-43

Partitioned files 3-44
Passwords, remote 4-43
Path selection

Enhanced routing 4-5
PATHS command 4-10, 4-27, 4-42
PERIOD command 4-10, 4-31, 4-42
PROBE command 4-10, 4-32, 4-42
Procedures, network 3-20/44
Process access 4-50
Process creation, remote 3-42
Process 10, network 3-5
PROCESSINFO procedure 3-20, 3-33
Programmatic logon 4-52
Programming, network considerations 3-40
PUP considerations

Network manager 4-56
Operator 2-9

Remote passwords 4-43
Remote process creation 3-42

index-4

REMOTEPASSWORD Command 4-43
REMOTEPROCESSORSTATUS procedure 3-37
RESTORE 2-8
Routing

Best-path 1-2, 4-1
Changes, path 4-4
Enhanced 1-2, 4-1, 4-5

RUN command 2-5

Satellite, INFOSAT 6-2
Security overview 4-43
Security, default disc file 4-47
Security, disc file 4-46
Sending the startup message 3-43
SETMODE

Function 1 (disc file security) 4-46
Function 71 (transmission priority) 3-39

SETMODENOWAIT
Function 71 (transmission priority) 3-39

Shared-use earth station, INFOSAT 6-9
SHOW command 4-10, 4-35, 4-42
SPOOLER considerations, operator 2-9
STATS command 4-10, 4-36, 4-42
Syntax summary, NETMON 4-42
SYSGEN considerations

Network manager 4-54
Operator 2-9

System name 2-2, 3-2
System number 3-2

Tandem INFOSAT Control System (TICS) 6-15
Theory of operation, FOX 5-2
THRESHOLD command 4-10, 4-38, 4-42
TICS (Tandem INFOSAT Control System) 6-15
Time (Weight) factors 4-2/4
TRANSDELAY 4-5/6
Transmission priority

Enhanced routing 3-20, 4-5
Transport media

Enhanced routing 4-5

User class 4-46
User IDs 4-43
Utility programs 4-54

VERIFYUSER procedure 4-52

Weight (Time) factors 4-2/4
WHO command 2-7

X.25 compatibility 1-3
X.25 line handler 1-4
X.25 line, EXPAND connection 1-3, 1-4, 4-58
XRAY considerations, network management 4-60

Index

index-5

YOUR COMMENTS PLEASE

Tandem NonStopTM & NonStop DTM Systems
EXPAND™ User's Manual

82085 COO

Tandem welcomes your comments on the quality and usefulness of its publications. Does this publication serve
your needs? If not, how could we improve it? If you have specific comments, please give the page numbers with
your suggestions.

This comment sheet is not intended as an order form. Please order Tandem publications from your local
Sales office.

FROM:

Name ___ . ___________ .. _ ___ . Date

Company ______ . ___ ... ______ .

Address

City/State Zip

III111

FIRST CLA~SUS~~R~~~O~8~P~~P~~} CA: U.SA J
POSTAGE WILL BE PAID BY ADDRESSEE

Tandem Computers Incorporated
19333 Valko Parkway
Cupertino, CA 95014-9990

Attn: Manager-Software Publications

TAPF

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

