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1. A Metaphor for DAI: The Individual
Distributed artificial intelligence (DAI) refers generally to systems in which decentralized,

cooperative agents work synergistically to perform a task. Within this general description,

however, there is considerable variability in the operational definitions of terms. “Agents” may

refer to arbitrary numbers of more  or less sophisticated computatational entities.

“Decentralized” may refer to the distribution of knowledge, data, control, or computational

resources among different agents. “Cooperative” may refer to a purely discretionary exchange of

a small subset of available information or, at the other extreme, to an inevitable sharing of

most information.

These alternative definitions of terms entail a space of DA1 system models, many of which

bear metaphorical resemblances to biological or social systems, such as neural networks [6, 191,

complex problem-solvers [S, 11, 131, teams [l, 2, 41, con tract nets 13, 201, and

societies [16, 181. None of these models is “correct” or “incorrect.” Rather, they capture

different, complementary kinds of intelligence, with each model supporting different design
objectives and task requirements.

Our DA1 model, previously proposed and discussed in [7, 8, 91, metaphorically resembles a
single intelligent individual. Its design objectives and associated architectural provisions may be
summarized as follows:

.
1. To support adaptation to a dynamic environment, the model provides locally

controlled agents for asynchronous and concurrent perception, action, and cognition.

2. To support performance of multiple complex reasoning tasks, the model provides
task-specific sets of functionally independent reasoning agents.

3. To support a range of reasoning strategies, the model provides dynamic control ofL
! . task-specific reasoning agents.

4. To support concurrent performance of multiple reasoning tasks, the model provides

I interleaving of their respective reasoning agents.

5. To support an orderly and explainable reasoning process, the model provides
dynamic global control of all reasoning agents.
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6. To support coordination of loosely coupled reasoning tasks, the model provides a

globally accesible representation of all knowledge and inferences.

7. To support global coherence, the model provides central determination of control

parameters on all perception, action, and cognition functions.

We have instantiated the single individual model in the Guardian system for patient

monitoring in a surgical intensive care unit (SICU). Although conventional SICU monitoring

practice instantiates the team model of distributed intelligence, our analysis in section 2

suggests that effective SICU monitoring entails the design objectives indicated above. Therefore,

as shown in section 3, our design for Guardian instantiates the single individual model. Section

4 illustrates Guardian’s performance in a typical SICU monitoring scenario. Section 5 discusses

our preliminary conclusions regarding the value of the single individual model for the

Guardian system.

2. Guardian’s Task: Monitoring Patients in the SICU
The sickest surgical patients in the hospital are cared for in the surgical intensive care unit

(SICU). Most of these patients have failure of one or more organ systems--usually lung or
heart. Organ system failure is treated with life-support devices which assume the fundamental
functions of the ailing system until it can heal. For example, the ventilator (see Figure 2-1) is
an artificial breathing machine that augments the patient’s own respiration. Life-support
devices are adjusted based upon frequent patient observations. Some of these observations are
made continually by automatic measuring machines, for example, measurements of air pressures
and air flows in the patient-ventilator system. Some of the observations are made
intermittently. Chest X-rays, for example, are usually taken once or twice a day. The short-
term goal of SICU monitoring is to keep the patient comfortable and progressing toward
therapeutic objectives. The long-term goal is to gradually withdraw life-support devices so that
the patient can function autonomously.

Current SfCU monitoring practice instantiates the team model of distributed intelligence. ’
Lead by the surgeon, different experts on the critical care team cooperate to interpret and
synthesize large amounts of patient data. The surgeon, who performs the operation and is
legally responsible for the patient, has the best grasp of the cause of the patient’s problem, the
surgical management of the disease, and the overall patient care strategy. Nurses, who are
present at the bedside, have continuous access to automatically measured patient data and the



Figure 2- 1: Patient Supported by a Ventilator.

best grasp of minute-to-minute details of the patient’s condition. Other consultants have the
best understanding of particular aspects of the patient’s condition within their specialty. For

. example, respirator therapists have detailed knowedge of the functioning and use of the
respirator. Radiologists are expert at reading chest X-rays. High-quality patient monitoring
requires cooperation among critical care team members to continuously interpret patient dati
and determine therapeutic actions.

The team model of SICU monitoring reflects both organizational and economic
considerations. As medical knowledge has grown, the profession has distributed that knowledge
among increasingly specialized practitioners.  Each of these specialists is exceptionally well
prepared to handle a part of the SICU monitoring task, but none is adequately prepared to
handle the entire task. In addition, physician specialists are too valuable to take responsibility ’
for the routine 80% of SICU monitoring activities.

Nonetheless, the team model of STCU monitoring has serious limitations. Given the
distribution of knowledge and skills among different experts with multiple responsibilities,

, these experts are rarely present in the SICU at precisely the moment their expertise is required.
As a result, the following kinds of problems can occur:
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Scenario 1

It is 3 am. Mr. Stone returned from the operating room 12 hours ago following
an emergency replacement of the major blood vessel in his abdomen, the aorta.
Now his urine-output is 15 cc per hour. Since it has remained constant for
the past 3 hours the nurse has not given that number much attention. He is
covering another patient who is much more unstable and consequently is a much
higher priority. It is now 6 am and the surgeon has returned for morning
rounds. When she reviews the chart, she notices that the urine output has been
15 cc per hour since midnight. Anything less than 60 cc is a significant
problem! She is quite distressed that the nurse had not called her when it
first developed. Now the patient. has a significant chance of developing renal
failure with a 90 percent mortality. If only the nurse had recognized the
abnormal urine output, the crisis could have been completely avoided.

Scenario 2
It is 8 AM, Dr. Payne, the radiologist, is trying to read the chest film on
Mr. Jones, All that the X-ray requisition says is “Post-op chest”. This
provides very little contextual information. Dr. Payne needs to know how high
the filling pressures are to differentiate pulmonary edema from adult
respiratory distress syndrome. Although he is up in the SICU, he does not
have the time to go through the patient chart to find the necessary data. He
is inexperienced with intensive care bedside practice and always has a
difficult time finding the relevant information. Because he does not have a
good background summary on Mr. Jones he cannot give a definitive reading and
therefore has to “hedge”.

In fact, Dr. William Knaus, a noted intensive care researcher, concluded from a study of over
5000 patients in thirteen medical centers that the likelihood of patient survival was related
more to the exchange of information among SICU team members than to other factors, such as
the amount of specialized treatment used [17 J. Thus, the team model appears to be a
suboptimal approach to the distribution of expertise for intensive-care monitoring. Given these
limitations and freedom from the organizational and economic constraints on human critical
care teams, we decided not to replicate the team model in our design for the Guardian system.

-On the other hand, the SICU monitoring task does present the design objectives associated
with the single individual model:

1. -Guardian must adapt to a dynamic environment. It must perceive asynchronously
sensed patient data, reason about the patient’s dynamic condition, and perform
therapeutic actions under appropriate patient conditions. It cannot afford to
interrupt any of these functions while performing the others, but must perform all
of them asynchronously and concurrently.

2. Guardian must perform multiple complex reasoning tasks. It must interpret
perceived patient data, diagnose and explain patient data in terms of the underlying
medical condition, predict the course of the patient’s condition, and dynamically
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replan the patient’s therapy.

3. Guardian must employ a range of reasoning  strategies. It must  USC  contextual
information to focus its search among plausible diagnoses. It must use “quick and

. dirty” reasoning methods when more precise methods exceed the available time. It
must fall back on first principles when faced with problems that fall outside its
clinical knowledge.

4. Guardian must perform multiple tasks concurrently. ‘For example, it must continue
to interpret newly perceived patient data while diagnosing previously perceived signs
and symptoms. In general, it must be prepared to perform variable subsets of its
several tasks, as required by the SICU situation.

5. Guardian must emply an orderly and explainable reasoning process. It must
establish goals and either pursue them to a satisfactory and timely conclusion or
determine that they are no longer worth pursuing. It must produce persuasive
explanations of its reasoning behavior and associated conclusions.

6. Guardian must coordinate loosely coupled reasoning activities. It must reconcile the
results of related reasoning activities to produce an internally consistent patient
model and treatment plan.

7. Guardian must produce globally coherent behavior. It must coordinate its perception
and cognition to focus dynamically on the most critical aspects of the changing
patient situation. It must coordinate its cognition and actions to address the most

L critical aspects of the patient situation in a timely fashion.

Accordingly, we conceive Guardian as a single intelligent individual. Unlike the individual
members of the human critical care team, Guardian must integrate all relevant knowledge and
skills and it must be dedicated to performing the SICU monitoring task vigilantly and
continuously.



3. Guardian:  A DA1 Individual

3.1. System Overview

Figure 3-l: A Generic AIS Architecture.

We begin with the generic architecture for a DA1 individual put forth in [7, 8, 91. The
architecture provides three general categories of function: (a) perception to acquire information
from the environment; (b) action to affect entities in the environment: and (c) cognition to
interpret perceived information, solve problems, make decisions, and plan actions. As illustrated
in Figure $1, the architecture distributes the intelligence underlying these functions among ’
three corresponding categories of agents: (a) multiple locally controlled perception agents; (b)
multiple locally controlled action agents; and (c) a centrally controlled system of diverse
cognitive agents.

.

Although the architecture provides for local control of perception and action agents, the
cognitive system acts as the top-level controller for all of three categories of agents. It allocates
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its own limited resources among competing cognitive agents. It imposes attentional parameters

on perception agents, which they incorporate in their own local control. It imposes task

demands and performance parameters on action agents, which they incorporate in their own

local control. To support interactions among cognitive, perception, and action agents, the model
provides asynchronous communications along the paths indicated in Figure 3-1.

EXPLORER

I B01- COGNITIVE  SYSTEM

I

1 CHAOSNET

DISPLAY  DRIVER  1 AW2: PREPROCESSOR

RPSPIRATOR

Figure 3-2: Guardian System Organization.

-As illustrated in Figure 3-2, the current version of Guardian instantiates the generic
architecture as: (a) a perception system for acquiring patient data; (b) a perception/action
system for managing a user-oriented graphical display; and (c) a cognitive system for: focusing ’
attention on relevant patient data, classifying perceived patient data, diagnosing observed signs
and symptoms, reacting to urgent signs and symptoms, and explaining the structure/function
mechanisms underlying the patient’s condition. We expect future versions of Guardian to
incorporate additional perception/action subsystems. The actual machines specified in Figure
3-1 are incidental to the current implementation.
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.
The following sections describe generic subsystems for cognition, perception, and action and

their instantiations in the current Guardian system

3.2. The Cognitive System
The cognitive system, which is framed within the RR1 architecture [lo, 141, is responsible for

all knowledge-based reasoning required to perform the overall task. In Guardian’s case, it must

interpret, diagnose, predict, and explain the patient’s condition, and plan therapeutic actions. It

must dynamically focus its own limited computational resources on the most important and

urgent of these tasks and it must focus its subordinate perception and action agents on

important patient data and therapeutic actions.

bbdb~ard  : fespkalrul physica!-process

blackboard :

Figure 3-3: Some of Guardian’s Knowledge of the
Anatomy and Physiology of the Human Respiratory System

As illustrated in Figure 3-1, BBl represents all knowledge in a globally accessible knowledge

base. It uses a conceptual network representation [12], which provides predefined architectural
concepts, such as operations, events, perception and action buffers, control plans, strategies,
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facts, cognitive skills, etc. It also provides an editor for building application-specific modules
representing factual knowledge and cognitive skills. For example, Figure 3-3 illustrates some of

Guardian’s knowledge of the anatomy and physiology of the human respiratory system.

Although BBl represents all knowledge declaratively, cognitive skills embody performance

knowledge for particular tasks and may be viewed as agents in the DA1 model. In fact, each

cognitive skill may include a number of knowledge sources, each of which defines the

triggering conditions for one of the operations involved performing in the associated task.

Each knowledge source may be viewed as a smaller-grained DAI agent.

The current Guardian system includes these factual knowledge modules and cognitive skills

modules:

0 Bio-Facts contains factual knowledge of the normal and abnormal anatomy and

physiology of the respiratory, circulatory, pulmonary exchange, tissue exchange, and

tissue metablic  systems (see Figure 3-3).

l Cljnical-Facts contains Bayesian belief networks relating common respiratory signs

and symptoms to likely underlying faults and relating likely faults to standard

treatments.

. l Generic-Systems-Facts contains factual knowledge of the normal and abnormal
structure and function of generic flow, diffusion, production, and consumption
system models.

l Classify-Skill contains performance knowledge for classifying input data as

instances of known categories of normal/abnormal parameters and parsing them

into appropriate temporal episodes.

l Assoc-Skill contains performance knowledge for using belief networks to diagnose
observed signs and symptoms.

l ICE-Skill contains performance knowledge for using generic system models to
diagnose and explain the faults underlying observed signs and symptoms in
particular systems.
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0 React-Skill contains performance knowledge for using association networks to

generate standard treatments for commonly diagnosed faults.

l Ba c k lo g-Sk ill contains performance knowledge for managing dynamic imbalances in

input data rates and cognitive load.

As these descriptions su,,Ooest, none of the knowledge modules is specific to Guardian or the

SICU monitoring applic3tion. For example, Bio-Facts and Clinical-Facts could be used in a

variety of medical and biological applications. Generic-Systems-Facts could be used in any

domain involving the designated types of systems. All of the skills modules are domain-

independent.

respiratory-structurrespiratory-structur

continues

Figure 3-4: Integration of Knowledge from Two Modules:
Bio-Facts and Generic-Systems-Facts.

BBl allows the user to construct knowledge modules independently, load them in different

combinations for development purposes, and selectively reuse them in other application
systems. Loading a set of related modules together in BBl integrates them in a seamless
conceptual network, as illustrated in Figure 3-4. Information in the network is available for

’ use in any cognitive operation, regardless of its module of origin. Thus, for example,
operations originally defined in Classify-Skill and ICE-Skill both use information originally
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defined in Bio-Facts.

BB1 iterates a three-step reasoning cycle: (1) the agenda manager identifies cognitive

operations (associated with any known cognitive skill) that are applicable to recent perceptual

inputs or other changes to the knowledge base: (2) from these, the scheduler chooses the

operation that best matches the current control plan specified in the knowledge base; and (3)

the executor executes the chosen operation, making associated changes to the knowledge base.

To perform a task for which it has a known skill, BBl begins by posting a decision to do so

on the control plan (see Figure 3-l). On subsequent cycles, the BBl scheduler chooses control

operations that construct an appropriate task strategy, as well as base-level operations that

perform the task in accordance with the constructed strategy.

BBl allows a system to decide to apply multiple skills to multiple tasks concurrently by

posting corresponding decisions on the control plan. BBl interleaves the operations of
concurrent tasks on successive cycles. For example, applying Classify and Assoc skills

concurrently, Guardian interleaves operations that classify new patient data and operations that
diagnose previously classified patient data. That way, Guardian can respond immediately to
newly observed signs and symptoms even though it has not finished diagnosing previously
observed signs and symptoms.

To focus its attention strategically among concurrent tasks, BBl allows a system to record
higher-level control strategies on the control plan along with its task-specific strategies. For
example, if Guardian were diagnosing a critical sign requiring immediate treatment, it might
decide to focus on Assoc operations and temporarily ignore potential Classify operations except
for those triggered by patient data directly relevant to the ongoing diagnosis.

BBl has an independent communication interface to mediate data exchange between the
cognitive system and various perception/action agents [15]. As illustrated in Figure 3-1, theL
communication interface continuously monitors physical input ports from all perception agents.
It sorts input data into appropriate logical input buffers in the global knowledge base. The ,-
agenda manager uses data in input buffers, along with other internally generated events, to
trigger cognitive operations. In the current version of Guardian (Figure 3-2), the
communication interface relays input data from the Mediator and the Display Driver to
various logical input buffers. Conversely, BBl operations can place descriptions of intended
actions in logical output buffers, from which the communication interface retrieves them and
sends them to physical output ports for appropriate action agents. In the current version of
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Guardian, the communications interface relays aCtiOnS  from logical Output  buffers to the

Mediator and the Display Driver. Thus, the communication interface shields the cognitive

sys tern from both the details of device-specific communication prOtOco!s  and, more

importantly, from I/O interference in its own performance. It similarly shields

perception/action agents from the details of BBl data structures and from interference in their
own performance. Although the communication interface can run as a background process on

the BBl machine, we run it on a separate machine to get the overall processing speed required

by Guardian.

3.3. Percept ion/Act ion Systems
Perception/action systems perform computations for selective perception and controlled

action execution under top-level control instructions from the cognitive system. In both cases,

intervening agents mediate the exchange of data between the cognitive system (via the

communications interface) and peripheral sensor/effecter agents (see Figure 3-l).

In the case of perception, preprocessors monitor peripheral sensors, translate and filter data
according to instructions from the cognitive system, and send the results to the cognitive
system. The current version of Guardian has a single preprocessor, the Mediator, which
manages patient data from multiple sensors on the respirator. (For development purposes, we

.replace the actual respirator and patient with a simulation.) Guardian’s Backlog skill sends new
filters to the Mediator to modify input data rates in response to changes in Guardian’s
cognitive load, its focus of attention, and sensed data rates. Thus, perceptual agents enable a
system to attend selectively to available data so as to monitor the environment as closely as
p.ossible,  avoid perceptual overload, and minimize interference with other cognitive activities.

in the case of action, drivers receive action descriptions from the cognitive system and
control action execution on peripheral effecters. The current version of Guardian has a singles
driver, the Display Driver, which controls a graphical display of Guardian’s changing
interpretation of the patient’s condition. The Display Driver also receives input from the user-
and relays that to the cognitive system. Thus, action agents enable a system to control ’
execution of complex action programs, while minimizing interference with cognitive activities.
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4. Guardian’s Performance on a Typical SICU Scenario

4.1. Monitoring a Stable Ventilator-Assisted Patient

. RESPIRATOR

Figure 4- 1: Stable Ventilator-Assisted Patient.

The scenario begins with a stable ventilator-assisted patient. (As shown in Figure 3-2, we
simulate the patient and ventilator for development purposes.) As illustrated in Figure 4-1, the
ventilator delivers a prescribed volume of air to the patient’s two lungs on each breath. Two
important measured parameters are the peak pressure applied by the ventilator and the tidal

volume of air actually received by the patient on each breath. In the normal situation, these
two parameters vary normally about the prescribed values.

As illustrated in Figure 4-2, Guardian’s Mediator asynchronously receives every sensed data
point for peak pressure and tidal volume. The Mediator applies “threshold filters” specified by
Backlog and relays only data points that differ from their predecessors by the specified
percentage. These data points are marked by vertical bars in Figure 4-2. The communications
interface receives relayed data points and inserts them into appropriate logical input buffers, as
illustrated [n Figure 4-3, where they are available to Guardian’s cognitive skills. Thus,
Guardian’s sensors, perceptual preprocessor, and communications interface function in parallel
to provide selective perception of asynchronously occurring patient data.

Each new input data point triggers a Classify operation. When executed, these operations
. assign data points to value categories and to old or new temporal episodes of those value

categories. Given its definition of threshold filters, Guardian interpolates between perceived
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.

Figur;! 4-3: Input Buffers and Associated Filters Managed by Backlog

data points of a given value category to model continuous temporal episodes (see Figure 4-4).
Thus, Guardian incrementally builds a history of asynchronously perceived patient data.

While classifying newly perceived input data, Guardian continues to perceive new data and
monitor its input data rates. If new data of a given type arrive too quickly, they will overflow
the input buffer and Guardian will build an incomplete patient history. If new data arrive too
slowly, Guardian will build the patient history at an unecessarily low precision. In an effort to
perceive sensed data at the maximum rate Guardian can handle, Backlog monitors activity in
all input buffers and adjusts the filter thresholds used by the Mediator as necessary. The right
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JENTILATOR-MEASUREMENT/T IENTILATOR-MEASUREMENT/P

NORMAL

6001
Figure 4-4: History of Patient Data Constructed by Classify

side of Figure 4-3 indicates a filter threshold for each input buffer, as established by Backlog.

C l a s s i f v  oatient  d a t a
>

M a n a g e  p e r c e p t u a l  b a c k l o g
>

A s s o c i a t i v e l y  d i a g n o s e  h i g h  p e a k  p r e s s u r e

A s s o c i a t i v e l y  d i a g n o s e  l o w  t i d a l  v o l u m e

Diaanose  siclnf  f r o m  f i r s t - p r i n c i p l e s  m o d e l

T I M E

Figure 4-5: Illustrative Control Plan

Guardian .performs  the Classify task and the Backlog task concurrently. As illustrated in

Figure 4-5, it makes separate control decisions for each task and additional control decisions

for allocating computational resources between them. Guardian interleaves component

operations for the two tasks on successive BBl reasoning cycles according to these control

strategies.
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4.2. Diagnosing and Explaining Time-Varying Signs and SYWtOrns

After a period of monitoring a stable patient, Guardian notices that something has gone

wrong. Classify notices abnormally high value; for the parameter peak pressure (see the right

side of Figure 4-4), triggering both ASSOC and ICE. TO diagnose this sign quickly, however,

Guardian makes a control decision to apply ASSOC’S highly efficient (but less explicit and less

complete) associative reasoning, in favor of ICE’S computationally expensive model-based

reasoning.

lungs
. RESPIRATORI

.
Figure 4-6: Increased Peak Pressure Caused by One-Sided Intubation

Assoc diagnoses “one-sided in tubation.” As illustrated in Figure 4-6, when the respirator tube

slips into one of the patient’s bronchi, the ventilator delivers the prescribed volume of air to

only one lung, causing peak pressure to rise.

Because SICU monitoring is a dynamic situation, Guardian must continue to monitor new

patient data and keep the patient model up to date while it performs its diagnosis. In fact, it

must-be prepared to revise its diagnosis in light of new patient data. Accordingly, as illustrated

in Figure 4-5, Guardian decides to perform Classify and Assoc tasks concurrently. It so

happens that, while Assoc is diagnosing .“one-sided intubation,” Classify records a new sign, low
tidal volume. This new sign triggers both Assoc and ICE and, again, Guardian prefers the more

efficient Assoc method.

Taking into account the new sign, Assoc revises its diagnosis in favor of “kinked tube.” As

illustrated in Figure 4-7, a kinked tube prevents the ventilator from delivering air past the
point of the kink. As a result, peak pressure rises dramatically and tidal volume drops to zero.



lungs
RESPIRATOR

ri
.

Figure 4-7: Increased Peak Pressure and Decreased Tidal Volume
Caused by a Kinked Tube

4.3. Falling Back on First Principles

B&pods  of the sign NEG-HIGH-PATENT-VENTUTOR-TV--

CE Dlsolau

Incrour

DOO?USa
. . . . . . . . . . . .. . . . . . . . . . . . .

I
. . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . .

ah&

cd

Lack

a

Figure 4-8: ICE Hypothesizes Plausible Problems underlying the Decrease in Tidal Volume

Having hypothesized “kinked tube” with a stable, high probability, Guardian now learns
.

(presumably from the nurse) that, in fact, there is no kink in the respirator tube. Without
additional relevant patient data, Assoc cannot suggest alternative diagnoses. However, ICE can
apply its knowledge of potential faults in generic flow systems, along with its knowledge of the
anatomy and physiology of the respiratory system, to hypothesize plausible problems underlying
the observed patient data.
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As illustrated in Figure 4-5, Guardian decides to perform the ICE task concurrently with

other tasks. Classify continues to integrate new input data into the patient model and Backlog

continues to monitor input data rates. In addition, Backlog notices the decision to perform an

ICE task, anticipates ICE’s high demand for computational resources, and instructs the

Mediator to increase its filtering threshold to conserve resources. Figure 4-8 illustrates ICE’s

hypotheses regarding the observed decrease in tidal volume.

5. Preliniinary Conclusions
We have shown how our design of Guardian instantiates the single individual model. In the

scenario presented above, Guardian exploits all seven of the design objectives discussed above:

1. To adapt to a dyanamic environment, Guardian exploits locally controlled agents to

achieve asynchronous and concurrent: (a) perception, to learn about the patient’s

changing condition; (b) cognition, to interpret patient data, build a dynamic model

of the patient, and decide what actions to take; and (c) action, to inform critical

care staff of its observations, reasoning, and conclusions.

2. To perform loosely coupled reasoning tasks, Guardian exploits sets of functionally

independent reasoning agents for the following tasks: focus of attention, data

. classification, associative diagnosis, and model-based diagnosis and explanation.

3. To exploit a range of reasoning strategies, Guardian dynamically controls its

application of task-specific reasoning agents in accordance with the changing

situation. For example, it typically relies upon the more efficient Assoc method of

diagnosis, but falls back on the model-based ICE method when its clinical

knowledge fails.

4. To concurrently perform multiple reasoning tasks, Guardian constructs control plans a
for each of them and interleaves their respective operations. For example, it almost
always interleaves Classify and Backlog tasks with whatever other tasks it may be
performing.

5. To insure an orderly and explainable reasoning process, Guardian constructs higher-
level control plans to allocate computational resources among the reasoning agents
involved in different concurrent reasoning tasks. For example, under time stress,
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6. To coordinate

19

locate most of its resources to diagnosis and action planning.

oosely coupled reasoning tasks, Guardian places all intermediate

reasoning results in a globally accessible knowledge base. For example, both Assoc

. and ICE are triggered by any perceived data classified as abnormal.

7. To achieve global coherence of system behavior, Guardian imposes centrally

determined control parameters on perception and action agents, as well as on its

many cognition agents. For example, Backlog adjusts the Mediator’s perceptual

filters whenever input buffers overflow or underflow and whenever Guardian

undertakes or completes a computation-intensive reasoning task.

In addition to the scenario presented in this paper, Guardian exploits these capabilities to

handle several other SICU scenarios involving other respiratory and circulatory problems.

To expand the set of problems Guardian can handle, we must increase its range of perceptual
inputs, its repertoire of facts and skills, and its capabilities for therapeutic and communications
actions. We expect these developments to increase Guardian’s dependence on our model of the
DA1 individual. The more complex and variable the environment, the more essential it is that
Guardian perceive, reason about, and act upon that environment asynchronously and

. concurrently so as to adapt to it in a timely fashion. The broader the set of problems
Guardian must handle, the more different skills it must have and the more flexibly it must
determine its strategic approach to a given problem. The more knowledge and skills Guardian
has, the more important it is to apply variable subsets of those skills concurrently in order to
exploit them fully and respond promptly to synchronous  events. The more tasks Guardian
performs, the more carefully it must control its reasoning to insure coherence and
explainability and the more information it must provide’in a globally accessible form. Finally,
the more demands and opportunities Guardian has for perception, cognition, and action, the
more effectively it must coordinate all three of these functions in order to insure global
coherence.

Perhaps the most important distinguishing feature of the DA1 individual is its emphasis on
central coordination of a hierarchy of locally controlled agents. The architecture we have
adopted for Guardian is designed to provide a foundation for central coordination. However,

efforts to extend Guardian will provide essential empirical evidence regarding the adequacy of
the architecture and the achievability of its design objectives for significant tasks.
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