
,
i

SCIENTIFIC DATA SYSTEMS

Reference Mantlal

SUMMARY OF BASIC COMMANDS

Command Syntax

*

*

step

step

step

step

DATA constant 1 [,constant 2]", @)

DEF FN letter 1 (letter 2) = expression @)

DELlstep 1 I[~;~p ~~ ... 1) @)
~ step 2J

DIM letter 1 (expression 1 Gexpression 2]) [,letter 2(expression 3[,expression 4J)]". @)

DUMP [step 1 It:::: ~j .. ·1] €V

END @

step FOR variable = expression 1 TO expression 2 [STEP expression 3] @

step 1 GOSUB step 2 @)

** [step 1] GO TO step 2 @)

step 1 IF relational-expression THEN step 2 @

step INPUT[FILE]variable l['variable 2]. " @)

** [step] LET variabl e = expression @

* LIST [step 1 It:::: ~l· ·1] €V

* LOAD {TE,LETYPE } @)
/fll e-name/

*** step

step

step

** [step]

step

step

step

step

step

step

*

step

step

MAT matrix keywords, operators, and del imiters @)

NEXT variable @)

OPEN /file-name/, {INPUT } @
OUTPUT

r expression 1) rr I 1 r expression 2 11
PRIN T t" character-stri ng 1 "Ill ~ It "character-str ing 2" 1 J .. €V

PRINT FILE expression 1 [,expression 2] .. , @)

READ variable 1 ~variable 2J, •. @)

READ FILE expression 1 [,expression 2] ... <§

REM character-string @

RESTORE @

RETURN @)

RUN @

STOP @

WRITE expression 1 [,expression 2] ... @)

*System Directives
**Optionally, Statements or System Directives
***For variations of the matrix statement, see inside back cover.

9

18

21

11

21

20

10

19

8

8

9, 12

7

21

20

12, 13, 14

10

15

7,15

15

9

16

20

9

19

20

20

16

BASIC

REFERENCE MANUAL

for

SOS 940 TIME-SHARING

COMPUTER SYSTEMS

90 11 11 C

August 1968

Pri ce: $1.00

SCIENTIFIC DATA SYSTEMS/701 South Aviation Blvd. lEI Segundo, Cal ifornia 90245

©1967. 1968. Scientific Data Systems. Inc. Printed in US.A

REVISION

This publ ication is a major revision of the SOS BASIC Reference Manual (dated January
1968). A change in the text is indicated by a vertical I ine in the margin of the page.

RELATED PUBLICATIONS

Title

SOS 940 Computer Reference Manual

SOS 940 Time-Sharing System Technical Manual

SOS 940 Terminal User's Guide

NOTICE

Publication No.

900640

90 11 16

90 11 18

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SOS $Oles representative for detai Is.

ii

CONTENTS

l. INTRODUCTION Binary File Input/Output 16

Operating Procedures 1 READ FI LE, WRITE 16

Log In 1 PRINT 16

Error Correction 2
Escape 2
Exit and Continue 2 3. FUNCTIONS AND SUBPROGRAMS 18

Log Out 2
BASIC Arithmetic Components 2 Functions 18

Constants 2 INT 18

Variables 3
RND 18

Expressions 3
DEF 18

BASIC Syntax Notation 4 Subprograms 19

BASIC Notation Variables 5 GOSUB/RETURN 19

BASIC Notation Constant-s 5

4. PROGRAM PREPARATION AND EXECUTION 20
2. BASIC COMMANDS 7

Single Commands in BASIC 7 Program Input from the Teletype 20

PRINT 7 Program Input from Paper Tape 20

LET 7 Program on Fi I e 20

Writing Programs in BASIC 7 Miscellaneous BASIC Commands 20

GO TO 8 REM 20

IF 8 END 20

DATA, READ, and RESTORE 8 RUN 20

INPUT 9 STOP 20

Writing Program Loops 10 LIST 21

FOR/NEXT 10
DEL 21

Use of Subscripts 11 DUMP 21

DIM 11 Sample Session at the Teletype 21

Matrix Operations 12
Input of Matrix Data 12
Output of Matrix Data 12 INDEX 24

Mathematical Operations with Matrixes-- 12
Limitations on Matrix Operators 14

Input/Output Commands 15
OPEN 15 ILLUSTRATION
INPUT FILE 15
PRINT FILE 15 l. Example of BASIC Packed Format 17

iii

1. INTRODUCTION

The BASIC
t

language and compi ler were originally developed
at Dartmouth College for time-sharing computer users with no
previous knowledge of computers, as well as for users with con
siderable programming experience. Thus, BASIC is as useful
to the businessman as it is tothescientistorengineer. A sim
ple, straightforward language, BASIC closely resembles stan
dard mathematical notation. In addition to its powerful arith
metic capabi I ity, it also contains editing features, simple input
and output procedures, and complete language diagnostics.

This manual is intended to serve as a tutorial guide for the
new BASIC user and as a reference source for the experi
enced user. Material is presented in a sequence that will
enable the reader to immediately use the SDS 940 time
sharing computer terminal to write simple programs, to gain
confidence in the system, and then to progress to more dif
ficult programs.

For clarity, severa I typographic conventions have been used
throughout this manual. These are explained below.

1. Underscored copy in an example represents copy pro
duced by the system in control of the computer. Unless
otherwise indicated, copy that is not underscored in an
example must be typed by the user.

2. The @notation appearing after some lines in the ex
amples indicates a carriage return. The carriage re
turn key is labeled RETURN on the Teletype keyboard.
The user must depress the carriage return key after each
command to inform the computer that the current com
mand is terminated and a new one is to begin. The
computer then upspaces the paper automatica Ily.

3. Non-printing control characters are represented in this
manual by an alphabetic character and a superscript c
(e. g., DC). The user depresses the alphabetic key and
the Control (CTRL) key simultaneously to obtain a non
printing character. For editing purposes some control
characters wi II cause a symbol to be printed, but this
symbo I does not appear in the fi na I version of an edi ted
line.

4. Other typographic conventions pertain to the method
used in this manual to define the syntax of BASIC com
mands. These conventions are described in the para
graph titled II Basic Syntax Notation" laterin thischapter.

OPERATING PROCEDURES

The standard procedure for gaining access to an SDS
940 time-sharing computer center from a Teletype ter
minal is described in the SDS 940 Terminal User's Guide,
which also includes information concerning the 940 Ex
ecutive System and the call ing of the various subsystems
available to the terminal user. The following paragraphs
summarize the standard procedures as they apply to BASIC
users.

tThe word II BASIC" isan acronym for II Beginner'sAII-purpose
Symbolic Instruction Code".

LOGIN

To gain access to the computer, the following operating se
quence is performed:

1. If the F D-HD (Fu" Duplex-Half Duplex) switch is pres
ent, turn the switch to FD. This is a toggle switch with
two locking positions. When the Teletype is not con
nected to the computer (sometimes ca lied the Loca I Mode),
this switch must be in the HD position. Whenever the
Teletype is connected to the computer, this switch must
be in the FD position.

2. Press the ORIG (originate) key, located at the lower
right corner of the console directly under the telephone
dial. This key is depressed to obtain a dial tone before
dial ing the computer center.

3. Dial the computer center number. When the computer
accepts your call, the ringing wi II change to a high
pitched tone. There wi II then appear on the teletype
a request that the user log in:

PLEASE LOG IN:

4. The user must then type his account number, password,
and project code (if he has one) in the following format:

PLEASE LOG IN: number password;name;project code

Onl y persons who know the account number, password,
and name may log in under that particular combination.
The following examples illustrate acceptable practice.

PLEASE LOG IN: A 1 PASS;JONES;REPUB @l
PLEASE LOG IN: B4WORD;BROWNi DEMO e
PLEASE LOG IN: C6PWiSMITH e
The optional 1-12 character project code is provided
for installations that have several programmers using
the same account number. The project code is not
checked for validity.

If the user does not type his correct account number,
password, and name within a minute and a half, a mes
sage is transmitted instructing him to call the computer
center for assistance. The computer wi II then discon
nect the user, and the dial and log-in procedure will
have to be repeated.

5. If the account number, password (nonprinting), and
name are accepted by the computer, it wi II print READY,
the date, and the time on one I ine and a dash at the
beginning of the following line.

READY date time

The dash indi cates that the ExecutiVe is ready to accept
a command.

Introduction

6. In response to the dash, the user types

BASIC @>

The Executive will respond with the symbol> at the
beginning of the next line, which means that the BASIC
subsystem is in control and waiting for a command.

ERROR CORRECTION

If the user makes a mistake whi Ie typing and notices it im
mediately, he can correct the error at once. The BASIC
language- wi II accept the following edit characters:

Character Function

The left arrow (located on the letter "0" while
the shift key is depressed) is used to delete the
most recent character typed. If the user notices
that he has just mistyped a letter or a symbol,
he strikes the - key, whi ch tells BASIC to ig
nore the previous character. Striking this key
repeatedly will delete a corresponding number
of characters, but only to the start of the cur
rent line.

For example, the command

PRE - INT A+C- B 9
will appear to BASIC as

PRINT A+B @)

while

PRINT- - - - - - -LET X=V@

wi II appear to BASIC as

LET X=V @)

A command preceded by a step number (see "Writing Pro
grams in BASIC II

) may be deleted by retyping the step num
ber immediately followed by a carriage return. A command
preceded by a step number may be changed by retyping the
step numbei and the neVV commend, folloVI€d by a carriage

return.

ESCAPE

The ESCAPE 0ke/ may be used at almost any time. It
causes the system in control to abort the current operation
and to ask for a new command. Striking the @key before
terminating a command with @) aborts the command. Striking
the I§key during the execution of a program will abort the
program and return control to BASIC. BASIC responds by
printing a > at the beginning of the next line.

EXIT AND CONTINUE

Striking the @ key twi ce in succession causes computer con
trol to return to the Executive. If the user wants to reenter

t In some 940 time-sharing system configurations the AL T
MODE key is used instead of the ESCAPE key. Where@
appears in this manual, Al T MODE may be substituted.

2 Operating Procedures/BASIC Arithmetic Components

BASIC without losing his program and if he has not called
any other subsystem since leaving BASIC, he can type
CONTINUE in response to the dash. This wi II return him
to BASIC so that he can resume his work.

LOG OUT

When the user wishes to be disconnected from the computer,
he types two consecutive escapes (to return control to the
Executive) and then types

LOGOUT @)

The computer wi II respond by pri nti ng the amount of com
puter time and hook-up (line) time charged to the user's ac
count since the previous log-in procedure was completed.

BASIC ARITHMETIC COMPONENTS

The arithmetic components of the BASIC language are con
stants, variables and expressions.

CONSTANTS

BASIC accepts any decimal number, positive or negative,
with or without a decimal point, that can be expressed in
eight digits or less. If more than 8 digits are input, the
number will be truncated. The numbers may be expressed as
integers (whole numbers, for example, 1, -7, 130, 256) or
in1TOOting-point form, that is, as numbers with a decimal
point, (for example, 1.5, -10.0, 152.55).

To accommodate numbers that are too large or too small to
be expressed in eight digits, BASIC accepts constants in
scientific notation. Scientific notation consists of a number
(whole number or whole number and fraction), followed by
the letter E, followed by the exponent. The exponent rep
resents the integral power of ten by which the number to the
left of the exponent is to be multiplied. For example, all of
the quantities

2.59 O.259El 25.9E-l 259E-2

express the same number. The largest number that BASIC
will accept is 5.789604E76.

BASIC will output a maximum of eight digits with seven digit
accuracy. The constants will be printed according to the
foflowing rules:

1. A constant will be printed in integer form if it has 6 or
fewer significant digits and no fractional part. If the
number of digits is greater than or equal to 7, the con
stant will be expressed in scientific notation.

2. A constant will be printed in floating-point form if the
number is less than 1000000.0 but not less than 0.1.
Otherwise, the number wi II be expressed in scientific
notation.

The following examples illustrate these rules.

>PRINT 123456 @)
123456

Number has fewer than 6 digits
and no fractional part.

>PRINT 1234567 @)
1.234567E + 06

>PRINT 123.E2 @)
12300

Number has more than 6
digits.

Number has fewer than 6
digits and no fractional part.

>PRINT 123.33412 @) Number is less than 1,000,000.
123.33412

>PRINT 1000021.4
1.0000214E+06

>PRINT .123 @)
.123

>PRINT .0123 @)
.123E-Ol

>PRINT 9. 9E78 @)
.0738375E -74

@) Number is greater than
1,000,000.

Fraction is greater than • 1

Fraction is less than. 1

Number exceeds limit

>PRINT 12345678912@ More than 8 digits were input.
1. 2345679E + 10 The number was rounded to 8

>

digits and printed in sci entific
notation.

VARIABLES

The numerical value of a constant is always the number it
sel f. BASIC also permits the user to use a symbol to repre
sent a number. Such symbols are called variables because
the value of the symbol may be changed. Associated with
each variable is a place in computer memory where the de
fined value of the variable is stored. In BASIC, a variable
may be a single letter or a letter followed by a digit. For
example, some legal variables are

B
C
Al
Z5

and some illegal variables are

1 B {first character is not a letter}
BA (second character is not a digit)
A35 (too many characters)

It is often convenient to keep data in a list. Such a list is
called an array. The individual values in the list are called
array elements." We refer to an array element by using the
name of the array and the position of the element in the
array. For example, we can refer to the fourth element in
array A by writing A(4). In this example, the 4 is called
the subscript.

When the array has only one "dimension", it is often called
a vector or a linear array. However, arrays may also
have two dimensions. A two-dimensional array, often
called a matrix, may be thought of as having columns
and rows. There is always one subscript for each dimen
sion; thus, a two-dimensional array is written as A{X, Y)
where X represents a row number and Y represents a col
umn number.

Note that the name of an array must be only one letter,
while a subscript may be anyevaluatable expression, which
may also include an array el ement. (Expressions are dis
cussed below.)

As a further example of matrix notation, consider the fol
lowing chart, which I ists the expenses for a four-day car
trip:

Row

2

3

4

5

Column

~ Item

Gas, oi I

Tolls

Food

Lodging

Misc.

June 5

21.29

1.32

11. 18

10.05

1.35

2 3 4

June 6 June 7 June 8

20.84 19.42 6.08

.86 .40 .07

12.82 14.39 5.06

12.79 10.35 .00

.90 .44 .10

If we consider the chart to be a two-dimensional array
called P, the amount spent for lodging on June 5 would be
represented by P{4,1). The first subscript always represents
the row number, while the second subscript represents the
column number. Thus, the amount spent for food on June 8
would be represented by P{3,4).

EXPRESSIONS

Arithmetic Expressions

Arithmetic expressions are formed by combining variables
and/or numbers with arithmetic operators, as in mathematical
formulas. There are six arithmetic operators in BASIC:

- Negation

t Exponentiation}
8 Multiplication
/ Division
+ Addition
- Subtraction

a unary operator

binary operators

The following are examples of legal arithmetic expressions:

Expression

F + H
D+A+X
C - A(3)
Q*-5

X/Y
Q t 2
P t R
XlY + 6

Meaning

F plus H
D plus A plus X
C minus the third element of A
Q times minus 5
X divided by Y
Q to the power of 2 (or Q2)
P to the power of R (or pR)
X divided by Y, plus 6

In the last example in the preceding table, the order of
computation is not clear. The expression might have been
interpreted as

X divided by the quantity Y + 6

rather than

the ratio XIV plus 6

BASIC Arithmetic Components 3

To make sure that the computer evaluates the expression the
way the user meant it to be evaluated, there is an estab ...
lished rule of precedence:

Exponentiation is always performed before negation,
which is always calculated before multiplication and
division, which are always calculated before addition
and subtraction. The computer calculates from left to
right if operators of the same precedence (for example,
multiplication and division) appear in the same line.

To alter this order, parentheses must be used. Thus, to
represent

X divided by the quantity Y + 6

we must write

X/(Y + 6)

Otherwise, according to the precedence rules it would be
interpreted as lithe ratio X/Y plus 6" because division is
calculated before addition.

The following are examples of precedence in expressions:

Expression

A+B*C

(A+ B) *C

Z-Y/X+W

(Z - Y)/(X + W)

x t 2+Y

X t -(2+ Y)

Interpretati on

A plus the product B times C.

C times the sum A plus B.

Z minus the ratio Y divided by X,
plus W.

the difference Z minus Y divided by
the sum X plus W.

X to the power of 2, plus Y.

X to the negative power of the sum 2
plus Y.

Mathematical Functions

The mathematical functions available in BASIC are:

SIN(expression) sine of expression in radians

COS(expression) cosine of expression in radians

TAN (express ion) tangent of expression in radians

ATN(expression) arctangent of expression in radians

EXP(expression) natural exponent of expression

ABS(expression) absolute value of expression

LOG (expression) natural log of expression (base e)

SQR(expression} square root of expression

LGT(expression) common log of expression (base 10)

INT(expression} integer part of expression

RND. random number

The expression enclosed in parentheses is called the argument.
It may be any arithmetic expression, for example, SQR(A*B}.
The arithmetic expression also may include a function, for
example, COS(N*X + SIN (T)}. A more complete discussion
of functions is contained in Chapter 3.

4 BASIC Syntax Notation

Relational Expressions

A relational expression consists of two arithmetic expressions
separated by one of the relational operators. The relational
operators available in BASIC are:

Operator

>
>=
<
<=
<>

Relation

equal to
greater than
greater than or equal to
less than
I ess than or equal to
not equal to

In BASIC, a relational expression is either "true" or "false",
depending on whether the answer to the question implied by
the relational expression is "yes" or "no". For example, each
of the following relational expressions impl ies a different
question:

Relational expression

X>5

A<>B

Z<=ytK

Question

Is the value of the variable X
greater than the constant 5?

Are the values of the variables
A and B unequal?

Is the value of the, variable Z
either less than or equal to the
value of the variable Y raised
to the power of K?

If the answer to the question is "yes", the relational expres
sion is "true"; if the answer is "no", the relational expres
sion is "false".

Evaluatable Expressions

An evaluatable expression is an arithmetic expression or a
relational expression for which the values of all variables
contained within the expression are known to BASIC at the
time the command in which the expression appears is exe
cuted. In order for the value of a variable to be known, the
variable must be defined (or "declared"). Variables may be
declared by the execution of the following BASIC commands:

LET
READ and D AT A (used together)
INPUT

These commands are described in Chapter 2.

BASIC SYNTAX NOTATION

The following paragraphs describe the notation used in this
manual to define the syntax of the BASIC language.

1. A "notation variable" is used to represent a variable
element of the BASIC language. A notation variable
consists of lower-case letters, or lower-case letters in
combination ... ,ith di.gits {of which the first character is
a letter}. For exampl e,

variable

denotes the occurrence of a BASIC variable.

2. A "notation constant" denotes the I iteral occurrence of
the characters represented. A notation constant consi sts
either of all capital letters or of a special character or
symbol. For exampl e,

LET variable = expression @)

denotes the I iteral occurrence of the word LET, fol
lowed by a BASIC variable, the literal occurrence of
an equal sign, a BASIC arithmetic expression, and the
I iteral occurrence of a carriage return.

3. The term "syntactical unit" (used in subsequent rules)
is defined iJS a single notation variable or constant, or
as any collection of notation variables, notation con
stants, BASIC language symbols, and reserved words
surrounded by braces or brackets.

4. Braces {} are used to denote a grouping. For example,

LOAD {TE.LETYPE }
/fde-name/

The vertical stacking of syntactical units indicates that
a choice is to be made. The above example indicates
that the word LOAD must be followed by either the
word TELETYPE or a slash character followed by a file
name, followed by a second slash character.

5. Brackets [J denote options. Anything enclosed in
brackets mayor may not appear. For example,

[step 1J GO TO step 2 @)

denotes that the words GO TO mayor may not be
preceded by a step number; however, the words GO
TO must be followed by a step number and a carriage
return.

6. Ellipsis marks (••.) denote the occurrence of the im
mediately preceding syntactical unit one or more times
in succession. For example,

expression 1 [,expression 2J ••• @)

denotes that the variable "expression 1" must occur;
however, the variable "expression 2" mayor may not
occur since it is surrounded by brackets. If expression
2 does occur, it may be repeated one or more times
(with a comma preceding each occurrence), each oc
currence may have a unique form, and the last occur
rence must be followed by a carriage return.

7. The character II i II is used as a collective reference
designator when a syntactical unit may appear any
number of times in succession. For example,

express i on i

denotes any of the expressions in the sample given
above for rul e 6.

8. The BASIC language ignores all spaces (blanks) except
those that are within a message of text output. Any
spaces that appear in the description of the commands
or in sample problems have been inserted to improve
readabi I ity.

BASIC NOTATION VARIABLES

The common variables used in this manual to define the syntax
of the BASIC language are described in the following table.

Notation
Variable

constant

variable

element

function

expression

relational
expression

Meaning

a BASIC constant (see "Constants ")

a BASIC variable (see "Variables")

an el ement of an array (see "Variables") iden
tified by its position in the array as in

letter (expression 1 [,expression 2J)

a mathematical function (see "Mathematical
Functions") of the general form

SIN
COS
TAN
ATN
EXP
ABS
LOG
SQR
LGT
INT
RND.

(express ion)

an arithmetic expression (see "Arithmetic Ex
pressions") of the general form

~onstant 1}~ + {onstant 2}] variable 1 - variable 2
element 1 * element 2 •.•
function 1 / function 2

t
a relational expression (see "Relational Ex
pressions") of the general form

expression

>

<
<=
<>

expression 2

BASIC NOTATION CONSTANTS

The notation constants of the BASIC language consist of
command keywords, function identifiers, operators, and
del imiters.

Command Keywords

The command keywords in the BASIC language are

Keywords Use

DATA defines data for a READ command
DEF defines a nonstandard function
DEL deietes a portion of a program

BASIC Syntax Notation 5

Keyword

DIM
DUMP
END
FILE
FN
FOR
GO TO
GOSUB
IF
INPUT
LET
LIST
LOAD
MAT
NEXT
OPEN
OUTPUT
PRINT
READ
REM
RETURN
RUN
STEP
STOP
TELETYPE
THEN
TO

Use

defines the dimensions of an array
designates portion of a program to ~ sav~d
identifi es the end of a program
specifies a system file
used with DEF
part of FOR command
transfers control to a designated step
calls a subprogram
conditional GO TO command
specifies Teletype or input file with OPEN
arithmetic assignment
I ists portion of program
specifies program loading
specifies a matrix operation
terminates FOR command group
opens file for input or output
specifies output file with OPEN command
prints data on Teletype or on file
accepts data from DATA command
inserts documentary comments
terminates subprogram
begins execution
part of FOR command
terminates program execution
designates remote terminal
part of IF command
part of FOR command

Functi on Ident i fi ers

The following function identifiers are a standard part of the
BASIC language.

ABS
LGT

ATN
LOG

COS EXP
RND. SIN

INT
SQR TAN

Other function identifiers may be declared by the program
mer, as described in Chapter 3.

6 BASIC Syntax Notation

Operators

The operafors included in the' BASlC language are the arith
metic and relational operator~. (S~e" Arithmetic Expressions"
and IIRelational Expressions".~

Delimiters

Certain special characters are used as separators and as other
types of del imiters. The BASIC del imiters are:

Character Use

()

II

separates elements of a list

separates elements of a formatted line

encloses array subscripts and controls the
evaluation of expressions

terminates a command

denotes the beginning or the end of a text
character string

Remember that blanks are ignored except in quoted text.
The following example demonstrates the general rul e. (For
the purpose of this discussion, the symbol for a blank is 0).

3505oPRoINTo ll oSAMPLE oTEXT 0"0 B08

.t t) tl 'It tu
ignored
blanks

these blanks are ignored
part of text

The above line is equivalent to

355PRINT"0 SAMPLE oTEXTo" B8

blanks

Note that blanks may be eliminated entirely if the program
mer is not concerned with the readabil ity of the printed
copy. Furthermore, since each BASIC command is limited
to a single line of 80 characters, the completion of a com
plex command may be more important~'its readability.

-. .. _J

SINGLE COMMANDS IN BASIC

The BASIC language allows the remote Teletype terminal to
be used as an extremely powerful desk calculator to evalu
ate compl i cated mathemati cal expressions. Two commands
enable the user to express almost any mathe":Jatical expres-
sion: PRINT and LET. '

PRINT

The PRINT command causes BASIC to print the value of an
expression. The user types the word PRINT and the expres
sion he wishes to eval.uate (followed by a carriage return).
The computer will then issue a I ine feed and print the val ue
of the expression. The format of the PRINT command used
for this operation is

PRINT expression @>

Example:

>PRINT 7.56*8.73 @>
65.9988

Note that underl ined copy is that which is generated by the
computer. Several expressions can be evaluated with one
PRINT command by separating the expression with commas.
The format of the PRINT command used for successive evalu
ation and printing is

PRINT expression 1 L expression 2J ••• @>

Example:

>PRINT 5*6, 7+8+40,45/9 (§
30 55 i

Text can also be printed by enclosing the characters to be
printed in quotation marks according to the format

PRINT "character-string" @>

BASIC will cause the computer to print exactly what appears
between the quotation marks, for example,

>PRINT "THIS MESSAGE INCLUDES BLANKS" @)
THIS MESSAGE INCLUDES BLANKS

the PRINT command can also be used to type text and the
~alues of expressions, for example,

>PRINT IIA == II 5+6 @>
A == 11

More elaborate output formats can be constructed as de
scribed in Chapter 4.

LET

If a variable is used as part of an expression in the PRINT
command, the user must first assign a value to the variable.
The LET command is used in other BASIC systems (notably,
the Dartmouth BASIC compiler) to assign the value of an
expression to a variable. In 940 BASIC, LET is not required
but is accepted to preserve compatibi I ity with these systems.

Th~ forjnat of the replacement (LEn statement, which assigns
the~ue of an expression to a variable, is

variable == expression @>

or

LET variable == expression @>

For example, the command

X == 2+3 @>

assigns the value 5 to the variable Xi the command

Y== 10@)

assigns the value 10 to the variable Y i and the command

A(5) == 9 @>

assigns the value 9 to the fifth element of array A.

Once the variable has a value, it may be used in a PRINT
command, for example,

>A = 5 @>
>PRINT A @>
5

>B == -4 @>
>PRINT B @)
-4

>PRINT IIA + B =11 A + B @)
A+B=l

A replacement statement can be used to change the value
of a variable at any time, for example,

>A = 5 (§
>PRINT "A =" A @)
A == 5

>A = A+ 1 @>
>PRINT "NOW A =" A @>
NOW A =6

WRITING PROGRAMS IN BASIC
The foregoing concerns some of the things BASIC can do
when commands are entered and executed one at a time.
BASIC may also be used as a means for writing and storing
computer programs for future execution.

A program is composed of commands (steps) that are to be
used in solving a problem. For example, consider the fol
lowing steps of a program that calculates the hypotenuse of
a right triangle according to the formula:

HYPOTENUSE == J(side 1)2 + (side 2)2

>100 A == 4 @>
>110B==3 @>
> 120 C = SQR(A t 2 + B t 2) @l
>130 PRINT "A=" A, "B=" B, "C=" C (lit)
>RUN @

BASIC Commands 7

Note that each step has a unique step number (which ~
be any integer in the range 1 through 99999). The prese ce
of the step numbers tells BASIC that these steps are no 0

be immediately executed, but are to make up a program.
When the RUN command is given, telling the computer to
execute the program, the steps are executed one at a time
in ascending numerical sequence by step number. The re
sult printed by the computer would be:

Remember that the = sign in the program means replacement,
not equality. Thus, step 100 means II assign the value 4
to All.

The following program calculates and prints the area and the
volume of a sphere:

>200 P = 3. 14 @)
>300 R = 2 @
>400 A = 4 * P * R t 2@
>500 V = (4/3) * P * R t 3 @)
>600 PRINT R, A, V @
>RUN@

When the RUN command is given, BASIC will print

2 50.24 33.49333

Although BASIC executes commands according to the nu
meri ca I sequence of step numbers, the steps of a BASIC
program need not be prepared in numerical sequence. For
example, the above program could have been prepared as

>200 P = 3. 14 @
>300 A = 4 * P * R t 2 @)
>400 V = (4/3) * P * R t 3@)
>500 PRINT R, A, V @
>250 R = 2 @)
>RUNe

and the results will be identical.

GO TO

As we have seen, BASIC executes the steps of a program in
ascending numerical sequence by step number. However,
in writing programs it is sometimes necessary to change the
normal sequence of execution. This can be accomplished
by using the GO TO command, which has the format

[step 1] GO TO step 2 @l

where

step is the optional step number of the GO TO
command. If step 1 is not specified, BASIC be
gins executing commands (beginning with step 2)
immediately after the carriage return.

step 2 is the step number of the command that is
to be executed next (instead of the command
with the next step number that is numerically
higher than step 1).

Examples:

GO TO 100 @
385 GO TO 215 @)

8 Writing Programs in BASIC

IF

It is often convenient to go tb a ~tep only under certain con
ditions. This type of stateme';t is call ed the IF (or condition
al GO TO) command, which has the format

step 1 IF relational-expression THEN step 2 @)

This command means, IIIf the relational expression is true,
go to step 2 for the next command; otherwise (that is, if the
relational expression is false) go to the next step number in
numerical sequence after step 1". For example, if we want
to say, IIIf X is greater than 5, go to step 100 11, we would
write

70 IF X > 5 THEN 100 @

Some other examples are:

100 IF A = 10 THEN 500 @
500 IF C(5) > 10 THEN 2300 @l
2300 IF 0 < = E THEN 100 @)

The following program solves a quadratic equation of the
form ax2 + bx + c = 0, by using the formulas:

X = -b + V b2
- 4ac

1 2a

>100A=5@)
>200 B = 6 @)
>300 C = 7@
>350 0 = B t 2 - 4 * A * C @)
>400 IF 0 < 0 then 700 @)
>450 Xl = (-B + SQR(D)) / (2 * A)@)
>500 X2 = (-B - SQR(D)) / (2 * A) @)
>550 PRINT Xl, X2 @
>600 GO TO 750 @
>700 PRINT II NO REAL ROOTS" @)
>750 STOP €V
>GO TO 100 @>

Execution of the above program begins immediately after
the carriage return following the second GO TO command.
Note that in the example, the second GO TO command
could have been used to start execution at any step, where
as the RUN command always causes execution to begin with
the lowest-numbered step. Note also that step 400 is a
conditional GO TO command. It tells BASIC to skip the
intervening steps and execute step 700 only if the discrimi
nant (0) is less than zero. If the discriminant is not less
than zero the next command (step 450) is executed after
step 400.

DATA, READ, AND RESTORE

Values can be assigned to variables in several ways. The
assignment (LET) statement is one method. Another method
involves the combined use of the DATAand READ commands.

A II the constants that are tq be assigned to variables through
out the program are written together in DATA commands,
which have the format

step DATA constant 1 [,-constant 2]. . . ®

Examples:

125 DATA 5, 10, 15 @
150 DATA 100,0,4E2,4.2@
345 DATA 1.1,1.7, 34902,33.367E-15 @

Similarly, the READ command has the format

step READ variable 1 [, variable 2] .•. @

Examples:

40 READ D @
50 READ A 1 ,A2 @)
60 READ X(1), X(2), X(3)@

Each time a READ statement appears, the computer automat
ically assigns each constant in the DATA I ist to the corre~
sponding variable in that READ statement. For example, the
commands

100 READ A, B, C @
200 DATA 1, 2, 3 @l

would be equivalent to the commands

100 A = 1 @
150 B = 2 @
200 C = 3 @

Generally a program uses more than one value for a vari
able in order to prevent excessive use of constants and as
signments. For example, consider the program

>10 G = 100e
>20 P = 20 @
>30 D = G * P * .01 @
>40 A = G - D @)
>50 PRINT D,A @
>55 G = 150@
>60 P = 5@J
>70 D = G * P * .01@)
>80 A = G - De
>90 PRINT D,A @

Another way of writing this program using the READ and
DATA commands is

> 10 READ G, P@
> 30 D = G * P * .01 @J
> 40 A = G - D@
> 50 PRINT D,A@
> 60 READ G, P @
> 70 D = G * P * .01@J
> 80 A = G - D@)
> 90 PRINT D, A @)
>100 DATA 100,20, 150,5@

Note that all the data that is to be assigned to G and P is
now located in step 100.

""e ~STORE command has the form

step RESTORE @)

RESTORE instructs the computer to reread DATA values be
ginning with the first DATA statement. Thus, in the example
below, the values for E, F, and G (step 35) are the same as
for A, B, and C because "READ E, F, Gil follows "RESTORE".

Study the following example:

>10 READ A, B, C
>15 PRINT "A="A, "B="B, "C="C
>20 READ D
>25 PRINT "D="D
>30 RESTORE
>35 READ E, F, G
>40 PRINT "E="E, "F="F, "G="G
>45 DATA 1,3
>50 DATA 5,7,9,11,13
>RUN
A=l B=3 C=5
D = 7
E=l F=3 G=5
>

INPUT

There is a third method of assigning values to variables
in a program. This may be done when the program is
executed, contrary to the other methods mentioned. To
use the READ and DATA commands or the LET command,
the user must assign values to all variables when the pro
gram is written. To assign values to variables at execu
tion time the user may use the INPUT command, which
has the format

step INPUT variabl e 1 [, variable 2]. ••

Examples:

400 INPUT A, B, C, D, E @
500 INPUT X, Y, Z 1, Z2 @)

Each time the input command is encountered during exe
cution, the program is halted and a ? is output to the
terminal. At that time, numbers corresponding to the
variable I ist, separated by commas or blanks, must be
typed in, terminating with a carriage return. The values
are automatically assigned to the respective variables and
execution is continued.

Now the sample program given for the READ and DATA com
mands could be written as:

> 10 INPUT G, P @J
>20 D = G * P * .01 @
>30 A = G - D@)
>40 PRINT D,A@
>50 INPUT G, P @)
>60 D = G * P * .01 @J
>70 A = G - D @)
>80 PRINT D,A @)
>RUN @

Writing Programs in BASIC 9

When the RUN command is given, BASIC execut%s e
first INPUT command and waits for the values of af P, and a carriage return. Upon receiving these, ecu
tion continues until the next input command. 0 tput I
wou I d appear as

? 100,20 @)
20 80

? 150,5 (§
7.5 142.5

WRITING PROGRAM LOOPS

Note that the fi rst four steps of the sampl e program for the
INPUT command are exactly I ike the second four steps. This
makes it possibl e to represent the program in the following
way:

>10 READ G, P (§
>20 D = G * P * .01 (§
>30 A = G - D @)
>40 PRINT D, A @)
>50 GO TO 10 @)
>60 DATA 100,20, 150,5 @)
>RUN @)

The computer wi II perform steps 10 through 50 in the normal
fashion, but after completing step 50 it will go back to
step 10 and repeat steps 10 through 50. When the computer
comes to step 50 once more, step 50 sends it back to step 10
again. This process is repeated over and over until all data
defined in the DATA command (or any higher numbered
DATA command) has been used. At this time, the message
"OUT OF DATA 1011 would be typed. This technique (often
called a loop) is perhaps the single most important feature
in programming. The following example shows all the steps
that are necessary to set up a controlled loop to print all
the numbers between 1 and 100.

>101=19
>15 IF I> 100 THEN 60 @)
>20 PRiNT i @>
>45 I = 1+ 1 @
>50 GO TO 15 @
>60 PRINT "FINISHEDII @)
>RUN @)

First, a variable (I) was selected to be the counter. Second,
an initial value (1) was assigned to the counter variable.
Third, the value of the counter variable was tested to see if
it exceeded the upper I imit (I > 100). Fourth, the value of
the counter variable was increased each time the loop was
repeated (I = I + 1).

FOR, ·NEXT

A second (and more concise) method of constructing pro
gram loops is to use the FOR and NEXT commands. The
FOR command, which has the format

step FOR variable = expression 1 TO expression 2 @) .

10 Writing Program Loops

assigns the value of expression 1 to the variable and uses
expression 2 as an upper limit for the value of the variable.
The NEXT command, which has the format

step NEXT variable @)

must appear somewhere after the FOR command. The vari
able must be exactly the same variable given in the FOR
command. The purpose of NEXT is to increment the value
of the variable (by 1) and to compare its incremented value
with the value that expression 2 had when the previous FOR
command was first encountered. If the incremented variable
is less than or equal to that value, BASIC interprets the
NEXT command as, IIGO TO the step after the previous
FOR command ll

• However, if the incremented value of the
variable is greater than the initial value of expression 2
given in the FOR command, BASIC interprets the NEXT
command as, IIGO TO the next step i·n numerical sequence
after the NEXT command".

The FOR loop is always executed at least once, even when
expression 1 is initially greater than expression 2.

Thus, using the FOR and NEXT commands, the program
given above could also be written as:

> 10 F OR I = 1 TO 100 @)
>20 PRINT I@)
>30 NEXT I @)
>40 PRINT IIFINISHED II @)
>RUN @)

Exactly the same looping procedure is followed; however,
it happens automatically by using the FOR command,
where

I is the counter variable
1 is the initial value of I
I > 100 is the test for completion
1 is the increment to be added to I.

In this sample program the "body" of the loop consists of
one step (step 20). The body of the loop may be any num
ber of steps, but it is always terminated by the NEXT com
mand. When the loop is finished, the next step executed is
the step following the NEXT command.

In some program loops it is necessary to increment the
counter variable by a value other than 1. This can be
accomplished by adjusting the value of the counter variable
before the NEXT command is executed.· For example, to
find and print all even numbers in the range 50 through 76,
the following program could be used:

> 1 0 FOR X = 50 TO 76 E>
>20 PRINT X @l
>25 X = X + 2 @
>30 NEXT X@)
>40 PRINT "FINISHED" @)
>RUN @)

A simpl er way of doing this is to use a STEP clause in the
FOR command, as in the format

step FOR variable = expression 1 TO expression 2
[STEP expression 3] @)

where expression 3 is the increment to be added to the vari
able when the NEXT command is executed and where the
keyword STEP is in no way related to the idea of a step num
ber. Thus, the above program can also be written as

> 10 FOR X = 50 TO 76 STEP 2 @
>20 PRINT X @)
>30 NEXT X @
>40 PRINT "FINISHED" @)
>RUN @>

According to the looping procedure

X is the counter variable
50 is the initial value of X
X> 76 is the test for completion
2 is the increment to be added to X

Note that the increment is assumed to be 1 unless a STEP
clause is added to the FOR command.

It is often useful to have loops within loops. These II nested II
loops can be expressed with FOR and NEXT commands. In
the following skeleton examples, the enlarged brackets mark
the body of the loop.

Legal Illegal

[[:~: ~ [FOR X
FOR Y

NEXTY [NEXT X

NEXT X NEXTY

FOR X
[FOR Z

FOR Y FOR Z

[FOR Z [NEXT Z

NEXT Z NEXT Z

[FOR W FOR X

NEXTW [[:~:: NEXT Y

[FOR Z NEXT X

NEXT Z NEXTY

NEXT X NEXT X

USE OF SUBSCRIPTS

The concept of subscripting and arrays becomes extremely
useful in relation to programming loops. Consider the fol
lowing table, which lists the quantity of each type of item
sold by each of five salesmen in one week.

Jones

Item 1 40

Item 2 10

Item 3 35

Salesman

Smith Brown Doe

20

16

47

37

3

29

29

21

16

White

42

8

33

\he pdce of each item is listed in the following table:

Item Price

1 $1.25
2 $4.30
3 $2.50

In the following discussion, the quantities of items in the
first table are regarded as the two-dimensional array Q(I,S}
where I is the item number (row reference) and S is the
salesman(column reference}. The prices of the items are
regarded as the one-dimensional array P(I) where I is the
item number.

The following program calculates the total sales in dollars
for each salesman using data from the preceding tables:

> 10 FOR I = 1 TO 3 @)
>20 READ P(I) e
>30 NEXT I e
>40 FOR I = 1 TO 3 @)
>50 FOR S = 1 TO 5 @)
>60 READ Q(I,S} €V
>70 NEXT S @)
>80 NEXT I @)
>90 FOR S = 1 TO 5 @)
>100 T = 0 e
> 110 FOR I = 1 TO 3 @>
>120 T = T + P(I} * Q(I,S} e
>130 NEXT I e
>140 PRINT"TOTAL SALES FOR SALESMAN"S,"$"T @)
>150 NEXT 5 @)
>200 DATA 1.25,4.30,2.50 @>
>210 DATA 40,20,37,29,42 e
>220 DATA 10,16,3,21,8 @)
>230 DATA 35,47,29,16,33 e
>RUN @>

Steps 10 through 30 read in the va I ues of the list P. Steps
40 through 80 read in the values of the table Q. Steps 90
through 150 compute T (the total sales for each of the five
salesmen) and print each answer as it is computed. The
calculation for a single salesman takes place in steps 100
through 130. In steps 90 through 150, the I etter I stands for
the item and the letter S stands for the sal esman.

DIM

BASIC automatically provides 11 locations in memory for
a one-dimensional array, so that the subscript may vary
from 0 to 10. If the user wants to allow for a longer
array, he must specify its subscript range with the DIM
(dimension) command, which has the format

step DIM array 1 [,array 2J ••• @

where each array has the form

I etter (express ion)

Each expression must evaluate as zero or a positive integer
value, which specifies the upper subscript limit of the array
as the value of the expression. (The lower subscript limit
is O).

Use of Subscripts 11

Examples:

Statement 10, below, declares an array of 60 elements.

10 DIM Q(59) §
20 DIM B(A + X),Z(A(X)) <§

Similarly, the subscripts of a two-dimensional array may each
vary from 0 to 10. This allows for 11 x 11 or 121 elements.
If a larger table is desired, the user may use the DIM com
mand wi th each array having the form

letter (expression,expression)

Each expression must evaluate as zero or a positive integer,
which specifies the upper subscript I imit for the correspond
ing dimension of the array.

Examples:

Statement 1, be I ow dec I ares an array of 41 x 51 elements.

1 DIM Y(40, 50) @)
2 DIM X(Y,Z)A(l, 1) @)
3 DIM A(X(1),X(2)) @)
4 DIM L (M + N * N) @)

The effect of a DIM statement on the subscripted variable
whose dimensions are defined is similar to the effect of as
signment statements on the variable that is assigned a value.
The major differences are: (1) The DIM statement changes
more than one value. In fact, all values of all the variables
in a DIM statement are changed. (2) The new value gen
erated by a DIM statement is "no value". Variables that
appear in D 1M statements have no defi ned val ues. They
should not be used until a value is assigned to them subse
quent to their appearance in the DIM statement.

>5 DIM X(4)
>10 X(3) = 3
> 15 PRINT X(3)
>20 DIM X(4)
>30 PRINT X(3)

>RUN
3

111rrrrr..r""lIo. y r-r""'Irro. t""11r","''''nTI'\?r-", \/AnTAnl r 1"\"
UI~Ul:r lI~I:U ')UD')~Kl"'II:.U v J-\KIJ-\DLI:. ')V

MATRIX OPERATIONS

Just as BASIC has a number of predefined standard functions,
there are a number of operations with subscripted variables
or matrixes for which BASIC has provided abbreviated forms.

INPUT OF MATRIX DATA

The MAT READ statement will take values from DATA state
ments to fill the subscripted variables named in the MAT
READ statement. The format of the command is:

step MAT READ array 1 [,array 2] ••• @)

The dimensions of the variables must be specified either in a
previous DIM statement or in the MAT READ statement itself.

10 DIMENSION A(3),B(4)
15 MAT READ A,B
20 DATA 1,2,3, 1,7,8,9

12 Matrix Operations

Statements 10 and 15 could have been replaced with

10 MAT READ A(3), B(4)

The MAT READ statement can be used to dimension an
array or to respecify an array that has previously been
dimensioned.

The MAT READ statement fi lis a two-dimensional subscripted
variable, or matrix, row by row. For example,

10 MAT READ A(I,J)

is equivalent to

10 DIM A(I,J)
11 F OR 11 = 0 TO I
12 FOR J 1 =0 TO J
13 READ A(I1,J 1)
15NEXTJ1
16 NEXT 11

The command MAT INPUT is available and functions simi
larly to the MAT READ command, except that the data
values are taken from the Teletype rather than a DATA
block. The format for the command is

step MAT INPUT array 1 [,array 2] ... §

The user must supply data in the same format that is required
by the INPUT command. The data values must be separated
by commas, blanks, or carriage returns.

OUTPUT OF MATRIX DATA

An array can be output by the command MAT PRINT

step MAT PRINT array 1 [,array 2] ... @l

whichcausesamatrix to be printed row by row in zoned for
mat. If the variables are separated by semicolons rather
than commas, the matrix will be printed in packed format.
(See the PRINT command for a discussion of zoned and packed
formats.) The command

10 MAT PRINT A(3,3),B @

will first print the matrix A and then the matrix B in zoned
format. Alternatively, the matrixes could have been out
put by

10 MAT PRINT A(3,3);B; @)

A vector such as V(N) is considered to be a column vector,
and is printed vertically. In order to print a row vector, it
would have to be dimensioned as V(O,N).

MATHEMATICAL OPERATIONS WITH MATRIXES

RESETTING A MATRIX

All the el ements of an array can be reset to 0 by the
command:

step MAT array = ZER (expression 1 [,expression 2]) @)

The dimension of the array must have been previously defined
or specified in the ZER statement itself. Example:

10 MATC=ZER
15 MAT A = ZER(3)

Statement 10 wi II reset an array named C. Statement 15 wi II
generate an array of zeros (A(O)=0, A(1)=0, A(2)=O, A(3) =0) •

SETTING A MATRIX TO ALL 1s

The CON (constant) command is similar to ZER, except that
it sets a II of th eel ements of th e array to 1. The command
has the form

step MAT array = CON ~expression 1 [,expression 2]8@

It can also be used to specify and dimension (or redimension)
a matrix.

SETTING IDENTITY MATRIX

This command requires a two-dimensional array where the
two dimensions are the same size (square matrix). It also
may deal with a previously dimensioned array, or define
(or redefine) the dimension of the array. The command

step MAT array = IDN [(expression 1,expression 2)]@

defines an array where the diagonal elements (that is, those
el ements whose subscript numbers are the same) are 1, and
all other el ements of the array are O. For exampl e,

10 MAT D = IDN(K,K)

is equivalent to

10 MAT D = ZER(K,K)
11 FOR 1=0 TO K
12 D(I, I) = 1
13 NEXT I

MATRIX ADDITION AND SUBTRACTION

Two arrays may be added or subtracted by the statements

step MAT array 1 = array 2 + array 3 @
step MAT array 1 = array 2 - array 3 @)

The three arrays must have been dimensioned previousl y
and must be of the same dimensions. The statements

10 DIM A(I,J),B(I,J),C(I,J)
100 MAT A = B + C

are equival ent to

10 DIM A(I, J), B(I, J),C (I,J)

100 FOR K = 0 TO I
101 FOR L = 0 TO J
102 A(K, L) = B(K, L) + C (K, L)
103 NEXT L
104 NEXT K

Since the matrix operations are only convenient ~hort forms;
and not operations integrated into BASIC, they cannot be

combined. For example, to add a third array to the differ
ence of two others requires

10 DIM A(L),B(L),C(L),D(L)

50 MAT A = B - C
60 MAT A = A + D

Note: This means that the form MAT A=B-C+D is illegal.

MATRIX MULTIPLICATION

An array can be multiplied byascalarvalueviathe statement

step MAT array 1 = (expression) * array 2 @)

The parentheses around the expression must appear, and the
two arrays must be of the same dimension.

Though there is no command of the form MAT C = A, the
statement

10 MAT C = (1) * A

performs the desired operation.

An array can be multiplied by another array via the statement

step MAT array 1 = array 2 * array 3 @)

In order for this statement to execute properly, the arrays
must be conformabl ei that is, the number of rows of the first
is equal to the number of rows of the second, the number of
columns of the first is equal to the number of columns of the
third, and the number of columns of the second is equal to
the number of rows of the third. The statements

10 DIM A(I,J),B(I,K),C(K,J)

75 MAT A = B * C

are equival ent to

10 DIM A(I,J),B(I,K),C(K,J)

75 MAT A = ZER (I,J)
76 FOR 11 = 0 TO I
77 FOR J 1 = 0 TO J
78 FOR K 1 = 0 TO K
79 A(I1,J1) = A(Il,J1) + B(Il,K1)*C(K1,J1)
80 NEXT K1
81 NEXT J 1
82 NEXT Il

MATRIX TRANSPOSING AND INVERTING

To use the transpose function

step MAT array 1 = TR N(array 2) ®

each array must have as many rows as the other array has
columns. The statements

10 DIM A(I,J),B(J,I)

100 MAT A = TRN(B)

Matrix Operations 13

are equival ent to

110 DIM A(I,J),B(J,I)

100 FOR 11 = 0 TO I
101 FOR J 1 = 0 TO J
102 A(I1,J 1) = B(J 1,11)
103 NEXT J 1
104 NEXT Il

This command will work for vectors as well; thus, the fol
lowing will transform the column vector V into the row
vector W.

10 DIM V(N),W(O,N)
15 MAT W = TRN(V)

The inverse function operates on identically dimensioned
square matrixes. This function produces array 1 which,
when multiplied by array 2, yields the identity array.

step MAT array 1 = INV(array 2) @)

Thus,

10 DIM A(N,N),B(N,N),C(N,N)

100 MAT A = INV(B)
110 MAT C=A*B
120 MAT B = IDN
130 MAT C = C - B

>10 DIM G(0,9)
>20 A=3
>22 PRI NT A
>25 FOR 1= 0 TO 9
>30 G (0, 1) = I
>40 NEXT I
>45 MAT H : ZER(0,9)
>60 MAT H = (1) * G
~70 MAT PRI NT HI
~UN

3
023

>PRI NT HCO,7)
7

>GO TO 70

would yield approximately the same array C as would

10 MAT C = ZER(N, N)

LIMITATIONS ON MATRIX OPERATORS

The expressions that can be formed by using the matrix oper
ators are limited. Some samples are shown below.

Incorrect Correct

10 MAT C = A 10 MAT C = (l)*A

15 MAT C = A+B+D 15 MAT C = A+B
16 MAT C =C+D

30 MAT C = ZER+A 30 MAT C = ZER
31 MAT C =C+A

40 MAT PRINT TRN(A) 40 MAT B = TRN(A)
41 MAT PRINT B

All array variables become undefined when a transfer is
made from the command to the execution mode of BASIC.
The scalar variables, however, retain whatever value they
acquired the last time the program was executed. Study the
sample program shown below. Notice that the statement
.. GO TO 70" represents a transfer from the command to the
execution mode.

5 6 7 8 9

UNDEFINED SUBSCRIPTED VARIABLE 70
>PRINT H(0,7)
UNDEFINED SUBSCRIPTED VARIABLE
>PR I NT G (0 , 8)
UNDEFINED SUBSCRIPTED VARIABLE
>GO TO 22
3

MATRICES NOT SAME SIZE 60
>GO TO 10
3
0 2 3 4 5 6 7 8 9

14 Matrix Operations

INPUT/OUTPUT COMMANDS

A II data permanent Iy stored at the computer i nsta lIat ion is
kept in fi les on a large disc memory system. Each user has
h is own fi les and fi Ie directory (for further description of
fi les see the SDS 940 Terminal Userls Guide).

OPEN

Often the va lues to be assigned to program variables are lo
cated in a permanent file. To read a permanent file, it must
be in the userls file directory and it must be opened using
the OPEN command. Simi larly, program output may be writ
ten on a fi Ie ratherthan on the Teletype. Again, the file must
appear in the userls fi Ie directory and must be opened using
the OPEN command. The OPEN command has the format

1
INPUT I step OPEN/file-name/, OUTPUT @

where fi Ie-name is the name of a fi Ie in the userls fi Ie directory.

Examples:

10 OPEN/DATA1/,INPUT @
20 OPEN/XYZ/, INPUT @
30 OPEN/MASTER/, OUTPUT §
40 OPEN/Fl/, OUTPUT §

The OPEN command resets the fi leis location counter to its
begi nni ng so that the first va lue subsequent Iy input from or
output to the file will be the first value of the file. A file
cannot be open for input and output simultaneously. A user
can have a maximum of two files opened at the same time.
However, one of the files must be opened for input, while
the second file is opened for output. It is not possible to
have two files open for input (or output) at the same time.

If a user has one file open for input (or output), and opens a
second file for input (output), the first file is automatically
closed. When a file is closed, it is no longer avai lable to the
program for ei ther input or output unti I it is opened again.

It is important to remember that a disc file must be named in
a userls file directory before it is used in a BASIC program.

INPUT FILE

Once the file is opened for input, the user may read it by
using the INPUT FILE command, wh ich has the format

step INPUT FILE variable 1 ['variable 2] ••• @)

Each time the INPUT FILE command is encountered during
execution, the next value appearing on the file most re
cently opened for input is read and assigned to the next
variable in the list of variables.

Examples:

50 INPUT FILE X §
60 INPUT FILE A 1, B, Z @)

Only legal BASIC numbers can be read from a file. The
numbers in the data file can be separated by commas (same
format as the DATA statement) or they can be separated by
spaces. The only non-numeric characters allowed are:
~omma, space, E (for exponential notation), plus sign, minus

sign, and carriage return. A carriage return ends a I ine. A
line containing nothing but a space (or spaces) and a car
riage return is incorrect and cannot be read.

The following technique can be used to open a file for input
(output) which had been opened for output (input).

5 OPEN / A/, INPUT @ Opens / A/ for input

10 INPUT FILE X, Y, Z @) Inputs data from / A/

15 OPEN /B/, INPUT @ Closes /A/, Opens /B/
for input

20 INPUT FILE Q, R, S @) Inputs data from /B/

25 OPEN /C/, INPUT @) Closes /B/, Opens /C/
(a dummy) for input

30 OPEN /B/, OUTPUT@)B now available for output

35 PRINT FILE G, H, I, J e Outputs data to file /B/

PRINT FILE

Once the fi I e is opened for output, the user may write on
it using the PRINT FILE command, which has the format

step PRINT FILE expression 1 ,expression 2 .•.

Each time the PRINT FILE command is encountered during
execution, the value of each expression appearing in the list
of expressions is appended to the file most recently opened
for output in the same order as given in the expression list.

Examples:

70 PRINT FILE X, Y @)
80 PRINT FILE X + Z/lOO, I @)

The INPUT FILE command describes the format that the num
bers output by the PRINT FILE command must have. In ad
dition, the PRINT FILE command can be used to output text
on a file. The text must be enclosed by quotation marks in
the same manner as the PRINT command. However, these
fi I es cannot be read by the INPUT FILE command.

The following small programs illustrate one method of util
izing data files. Briefly, the first program creates a master
file consisting of an employee number, hourly rate, and the
number of hours worked for each company employee.

The second program reads the master file, calculates and
prints the weekly salary for each employee (time and a half
for overtime), and calculates total payroll.

The third program reads the master file and calculates com
pany overtime.

>110 OPEN/MASTER/, OUTPUT @)
> 11 1 IN PU T E, R, H @)
> 112 PRINT FILE E, R, H @)
> 113 IF E > 0 THEN 111 @)
>114 END @)

Note that the above program will input values for E, R, and
H and output these values to the opened file until a value
of zero is input for E. When the user inputs a zero for E, it
indicates that all the data has been input.

Input/Output Commands 15

>209 S = 0 @)
>210 OPEN/MASTER/, INPUT 8
>211 INPUT FILE E, R, H @
>212 IF E = 0 THEN 220 @
>213 IF H > 40 THE N 218 §
>214 P = R * H @)
>215 PRINT E, P @)
>216 S = S + P @
>217 GO TO 2118
>218 P = 40 * R + (H-40) * R * 1.5 8
>219 GO TO 215 @
>220 PRINT IITOTAl PAYROlllI

, S 8
>221 END@)

>309 S = O@)
>310 OPEN/MASTER/,INPUT @)
>311 INPUT FILE E, R, H 8
>312 IF E = 0 THEN 3168
>313 IF H < 40 THEN 311 @
>314 S = S + (H-40) @
>315 GO TO 311 @)
>316 PRINT IICOMPANY OVERTIMP', S @)
>317 END@)

BINARY FILE INPUT jOUTPUT

The data files handled by the INPUT FILE and PRINT FILE
commands are symbolically coded decimal files. Another
type of file, called a binary file, is available. The num
bers are not coded in decimal, but are in binary form which
requires less space. Binary files are useful if a program
creates large amounts of data that are to be input to another
program.

READ, FILE, AND WRITE

The format for the read and write commands is:

step WRITE expression 1[,expression 2J ... @
step READ FILE expression 1 Lexpression 2J ••. @

The I ist of expressions to be input (output) must be separated
by commas. The I ist must end w.ith a carriage return (semi
colons or commas cannot be used).

Files created by the WRITE command can only be read by
the READ FILE command.

A fi I e must be opened before it can be processed by the
WRITE or READ FILE commands. The same rul es that
govern the opening of symbolic files apply to binary files
as well.

PRINT

The PRINT command may be used simply and directly, as
previously described, or it may be used in conjunction with
output format options for the programmer who wants formatted
output. For this purpose, there are three format types:
zoned, packed, and compressed.

16 Input/Output Commands

Zoned Format

The Teletype line is divided by BASIC into five zones of fif
teen spaces each, which allows for the printing of up to five
items per I ine. A comma is a signal to BASIC to move to the
next print zone, or to the first print zone of the next I ine if
it has just filled the fifth print zone. The termination of a
PRINT statement signals a new line (unless a comma is the
last symbol). Each number occupies one zone, whereas text
occupi es an integer number of zones; that is, if text occu-
pi es part of a zone, the rest of the zone is fi II ed with blanks.
If text runs through the fifth zone, part of it may be lost.

Packed Format

The user may specify that output is to be printed in packed
format by separating the expressions with the semicolon
instead of the comma. Whereas the comma causes BASIC
to move to the next zone to print the next item, the semi
colon causes BASIC to move to the beginning of the next
multiple of three characters to print the next answer. The
termination of a PRINT statement signals a new line (unless
a semicolon is the last symbol). Thus, with packed output,
the user can print eleven three-digit numbers per I ine, eight
six-digit numbers per I ine, or six nine-digit numbers per
I ine. A more extensive demonstration of packed format is
shown in Figure 1 below.

Compressed Format

If two parts of text are separated only by the usual quotes,
they will be printed without spaces. Similarly, if text is
followed by an expression without a comma or semicolon,
the value will be printed immediately following the text (a
blank replaces the pi us si gn for non-negative numbers).

Examples:

Zoned Format

> 1 FOR X = 1 TO 3 8
>2 PRINT IIX=II X, IIX2=1I Xt2, @
>3 NEXT X @
>4 END §
>RUN @>
X = 1 X2 = 1 X = 2 X2 = 4
X2=9

Packed Format

>2 PRINT "X=II X; "X2=" Xt2; §
>RUN @>
X = 1 X2 = 1 X = 2 X2 = 4 X = 3 X2 = 9

Compressed Format

>2 PRINT "X="XIIX2="Xt2 8
>RUN @
X= lX2= 1
X=2X2=4
X=3X2=9

Printing a Blank Line

A blank line may be output by

step PRINT @)

X = 3

>100 FOR X = 100 TO 125 @)
>110 PRINT Xi@)
> 120 NEXT X.@)
>130 END@)
>RUN €V

1 00 101 102 1 03 1 04 105 106 1 07 1 08 109 11 0
111 11 2 11 3 11 4 1 15 11 6 117 11 8 119 120 1 21
122 123 124 125

>100 FOR X = 100000 TO 100025 @)
>110 PRINT Xi@
>120 NEXT X @
>130 END €V
>RUN €V

100000 100001 100002 100003 100004 100005 100006 100007
1 00008 1 00009 1 0001 0 1 00011 1 0001 2 1 00013 1 0001 4 1 00015
100016 100017 100018 100019 100020 100021 100022 100023
100024 100025

>100 FOR X = 1000000 TO 1000013@)
>110 PRINT Xi @)
>120 NEXT X @
>130 END@)
>RUN@)

1.E+06 1.000001E+06 1.000002E+06 1.000003E+06 1.000004E+06
1.000005E+06 1.000OO6E+06 1.000007E+06 1.000008E+06 1.000009E+06
1.00001E+06 1.000011E+06 1.000012E+06 1.000013E+06

>

Figure 1. Example of BASIC Packed Format

Input/Output Commands 17

3. FUNCTIONS AND SUBPROGRAMS

FUNCTIONS

The standard functions that BASIC provides are listed under
"Mathematical Functions" in Chapter 1. The manner in
which they are used is very simple. To compute y= ~
the programmer would write

Y :.:= SQR (1 + X t 2) @)

The expression enclosed in parentheses is called the argu
ment. The other standard functions are used in the san:i'e
way; that is, the function name is followed by the argument
enclosed by parentheses, as shown by the format

function-name (expression)

Examples:

LOG(Y)
SIN(X t 2)
ABS(X + Y + Z)

Two additional functions that are in the BASIC repertory
but which have not been described are INT and RND.

INT

The INT (integer) function is used to determine the integer
part of a number that might not be a whol e number. Thus
INT (7.8) is equal to 7. As with the other functions, the
argument of INT may be any expression. INT always op
erates by truncating the fractional part, whether the num
ber is positive or negative.

One use of INT is to round numbers to the nearest integer.
IfthevalueofX, for example, is positive, it maybe rounded
by using the statement INT(X + .5). If the value of X is neg
ative, however, the statement INT(X-.5) must be used be
cause a number I ike -7.8, rounded, is -8 not -7. INT can be
used to round to any number of decimal places. For positive
vaiues of X, for exampie, the STaTement INT(lOO*X+.5)/lOO
wi II round X to two decimal places.

RND.

The RND. function is a pseudo-random number generator.
When called, it will produce a number between zero and
one. For exampl e, the command

PRINT RND.@)

would cause BASIC to print

.502793

When the function is called repeatedly, it will produce a
sequence of pseudo-random numbers. For exampl e, the
command

PRINT RND., RND., RND. @)

would cause BASIC to print

.502793 .2311643 .3898417

18 Functions and Subprograms

RND may be called with a meaningless argument, as in
PRINT RND(X), but must be followed by either an argument
or a period.

The same sequence of pseudo-random numbers will occur in
every program that uses the RND function. This feature is
useful for debugging programs.

DEF

The DEF command permits the user to define an abbreviation
so he will not have to repeat an arithmetic expression each
time he uses it in his program. The name of an abbreviated
expression must be three letters, the first two of which are
FN. Thus the user may define up to 26 abbreviations. DEF
commands have the format

step DEF FN letter 1 (letter 2) =expression @)

where

letter 1 is the third letter of the user-defined
abbrev i at ion,

letter 2 denotes an unsubscripted variable that is
initially set to the value of the argument used in
the call for the user-defined function, and

expression may be any expression that can fit into
one line. It may not i ncl ude another user-defi ned
function, but may include standard functions (I ike
SIN and SQR) and may involve other variables
besides the one denoting the argument of the func
tion. However, the variables used in the expression
must not be subscripted.

Examples:

25 DEF FNF(Z) = (Z*3.14159265/180) @)
40 DEF FNL(X) = LOG (X) / LOG (10) @

Thus, step 25 defines FNF as the function "sine of Z de
grees" and step 40 defines FNL as the function "Iog-to-the
base-ten of X".

The DEF command must occur before it is used in the pro
gram. In a program containing FNF as defined above, the
variable Z takes on a new val ue each time the function
FNF is called.

As another exampl e:

60 DEF FNX(X) = SQR (X*X + Y*Y) €V
may be used to set up an expression for the square root of
the sum of the squares of X and Y. To use FNX, one might
write the following:

>10 Y = 30 e
>20 S 1 = FNX(40) @)

In thi s case, S 1 is set to the val ue 50 as the result of
step 20.

The safest practice is to avoid using, elsewhere in a program,
the same variable that was used in a DEF command to define
an expression.

When a statement containing an abbreviated expression is
executed, the result is equivalent to what would have oc
curred had the expression been written out in full and had
the argument variable been redefined. For example,

> 10 DE F F N F (X) = X + 1
>20 X = 5
>30 Y = 8
>40 Y = FNF(Y)

is identi cal in effect to

>20 X = 5
>30 Y = 8
>35 X = Y
>40 Y = X + 1

where lines 35 and 40, here, are identical in effect to line
40 in the former program.

Each program, when run, would leave X = 8 and Y = 9.

It should be noted that one does not need DEF unl ess the
abbreviated expression must appear at two or more locations
in the program. Thus,

>10 DEF FNF(Z) = SIN(Z*P) @l
>20 P = 3.14159265/180@l
>30 FOR X = 0 TO 908
>40 PRINT X, FNF(X)@
>50 NEXT X @
>60 END@)

might be more efficiently written as

>20 P = 3.14159265/180@
>30 FOR X = 0 TO 90 @
>40 PRINT X, SIN(X*P) ®
>50 NEXT X@
>60 END@)

to compute a table of values of the sine function in degrees.

SUBPROGRAMS

The use of DEF is limited to those cases where the value of
the expression can be computed within a single BASIC state
ment. Often much more compl icated functions, or perhaps
even sections of a program that are not functions, must be
calculated at several places within the program. For this,
the GOSUB command may be useful.

GOSUB/RETURN

The GOSUB command has the format

step 1 GOSUB step 2

Example:

200 GOSUB 400 @

The effect of the GOSUB command is exactly the same as a
GOTO command except that BASIC notes where the GOSUB
command is in the program.

the RETURN statement complements the GOSUB statement.

step RETURN 8

As soon as a RETURN command is encountered, the computer
automatically goes back to the command immediately fol
lowing the most recently executed GOSUB command. As a
skeleton exampl e, the following program wi II input N num
bers. The subroutine starting at 200 will sort the numbers
into ascending sequence and return to the main program.
The mai n program wi II then output the sorted array.

10 INPUT N
II DIM ACN).BCN)
12 I F N: 0 TH EN I 00
I 5 FOR I : 1 TON
20 INPUT ACI)
25 NEXT I
30 GOSUB 200
35 FOR I: I TO N
40 PRINT ACI);
45 NEXT I
50 GO TO 10
100 STOP
200 FOR J: 1 TO N
205 X:A(J)
210 FOR I:J TO N
215 IF A(I) > X THEN 225
216 T:X
220 X:A (l)
221 A (l): T
225 NEXT I
230 A (J):X
235 NEXT J
240 R ETUR N

The foil owing program wi II cal culate the factorial of any num
ber X that is input. Note that the subroutine is recursive.

>10 I NPUT X
>20 I F X < 1 THE N I 0
>30 X:INT(X)
>40 MAT F:CON (X)
>50 MAT F : (-1)*F
>60 F(O):1
>70 FO):1
>80 GO SUB 110
>90 PRINT X;F(X)
>100 GO TO 10
>110 IF F(X) >-1 THEN 180
>120 X:X-I
>130 GO SUB 110
>160 X:X+l
>110 F(X):F(X-l).X
>180 RETURN
>

RUN
? 1

1
? 2
2

1 3
3

1 4

" 1 5
5

? 6

?

2

6

24

120

720

Subprograms 19

4. PROGRAM PREPARAl'lON AND EXECUTION / . ,
r· <""

PROGRAM INPUT FROM THE TELETYPE

There are several methods for preparing a BASIC program
for execution. The first method is to type the program di
rect�y into BASIC. This is usually the procedure used for
small and medium sized programs. For exampl e:

-BASIC@)
> 100 PRINT "THIS IS A SORTING PROGRAM" €V
> 110 INPUT N €V

PROGRAM INPUT FROM PAPER TAPE

It is often convenient as well as economical to type longer
programs on paper tape while off line. To do this, the
Teletype is placed in (1) LOCAL MODE, (2) HALF DU
PLEX MODE, and (3) PAPER TAPE PUNCH ON. The
statements are typed just as though the user were connected
to the computer, with one exception. Followi ng each line,
the user must type a carriage return and a I ine feed. When
connected to the computer, the user types only a carriage
return and the computer performs the line feed.

If the user has punched his program on a paper tape, he
can enter the text into BASIC with the following procedure:

-BASIC €V
>LOAD TELETYPE 0Y

After th is, BASIC is waiting for the program; when the user
turns on the paper tape reader, the program reads in.

BASIC is unable to distinguish typed characters from those
that are read from the paper tape reader. Therefore, an
al ternate way of entering a paper tape is to turn on the
paper tape reader without using the LOAD command:

-BASIC
(turn on reader)
> 100 PRINT "THIS IS A SORTING PROGRAM"
>110 INPUT N

PROGRAM ON FILE
If the program to be run has been previously prepared and is
now located in a file on the disc, the user may type the
command LOAD to bring his program into memory. The for
mat of the LOAD command is

LOAD@

In response, BAS IC types

FROM: lfile-name/ @l

Examples:

LOAD @
FROM: /PROG/@

20 Program Preparation and Execution

. ..-----r- .
MISCEllA(OUS BASIC ~DMMANOS
~

An important part of any computer program is the description
of what it does, and what data should be supplied. One way
of documenting a program is to supply remarks along with the
program itself. BASIC provides this capability with the REM
(remark) command. For example, consider the difficulty of
identifying the program for the following equation

L,x.
I

Mean =rq- SD = 2 2
2:(x.) - (2:x.)

I __ I_

N
N-1

if it were not labeled with REM statement 100.

>100 REM MEAN AND STANDARD DEVIATION@)
>100 S = 0 @l
>120 Q = 0 @l
> 125 INPUT N 0Y
> 130 FOR I = 1 TO N @)
> 140 INPUT A (I) @l
> 150 S = 5 + A(I) 0Y
> 160 Q = Q + A(O * A(O §
> 170 NEXT I @l
>180 PRINT "MEAN=" SiN @)
>190 D = SQR(((Q-(S * S) I N)) I (N-1)) 0Y
>200 PRINT "SD=" D @)
>210 END @)

END

An END command indicates the termination point of a pro
gram. When the END command is encountered, it causes
BASIC to stop executing the program and to await further
commands. t

RUN

The user types RUN to begin execution. The program always
begins with the smallest step number and executes according
to ascending step numbers. To begin execution in the
middle of the program, the user can use the GO TO com
mand as a direct command.

STOP

The STOP command is used to stop program execution.
When the program execution halts at the STOP command,
the user may examine relevant variables. He may then, if
he so desires, issue a command GO TO s, where s is the
step number following the STOP command. The GO TO
command vii II then cause execution to continue at step
number s.

tA progr<lm will always stop execution and will return control to I
BASIC when it has executed the last executable statement.

LIST

To list all or some of the steps of a program, the user types
a LIS T command, wh i ch has the format

[{
[-step 2]))]

LIS T step 1 ~ step 2] ...

Examples:

Statement

LIST @)
LIST 100 @)
LIST 100-500 @)

LIST 100, 200, 300 @)

DEL

Meaning

I ist entire program
I ist step 100
I ist steps 100 through

500
list steps 100,200,

and 300

To del ete one or more steps of a program, the user types a
DEL command, which has the format

DEL [step 1
ALL)

{
[-step 2] }
[, step 2] ...

Examples:

Statement

DEL ALL @)
DEL 100 @)
DEL 100-500 @)

DEL 100, 200, 300 @)

Meaning

del ete enti re program
del ete step 100
del ete steps 100 through

500
del ete steps 100, 200,

and 300

To delete one step, the user may simply type the step num
ber followed by a carriage return, for exampl e,

>125 @)

DUMP

To save a program on a permanent fi I e, the user types a
DUMP command, which has the format

E\amples:

Statement

DUMP @)
DUMP 100-210 @

DUMP 100, 200, 221 @

Meaning

dump entire program
dump steps 100 through

210
dump steps 100, 200,

and 221

In response to the DUMP command, BASIC wi II print

ON:

on the I ine following the DUMP command. The user then
types the name of the file on which he wishes to dump the
desired portion of the program. The appropriate file name
must appear between slashes, as follows:

/fi I e-name/ @)

In response to the user's designation of the file, BASIC de
termines whether the file name currently exists in the user's
file directory. If the name does exist, BASIC will print

OLD FILE

on the following line; however, if the name does not exist,
BASIC will add the nametotheuser'sfiledirectory and print

NEW FILE

on the following line.

Examples:

>DUMP @
ON:/SAVE/ @)
illD FILE

>DUMP 100-120 @)
ON:/PGM/@
NEW FILE

>DUMP 100, 200, 221 @)
ON:/Pl/ @)
OLD FILE

The user must type a carriage return, after BASIC responds
with NEW FILE or OLD FILE, to confirm that he wishes the
dump to occur. If the user does not want the dump to occur,
he responds with ESCAPE and the DUMP command wi II be
aborted.

SAMPLE SESSION AT THE TELETYPE

The following is a demonstration of a sample session at the
Teletype using BASIC. The user writes a program that will
calculate the area and circumference of a circle. He saves
this program on a fil e named /CIRC LE/. He also uses a
previously written program, named /FC/ that wi" convert
any farenheit temperature to centigrade.

Sample Session At The Teletype 21

SOS 940 TIME SHARING SERVICES 2.1

PLEASE LOG IN: A7;100;BET

READY 6/20 11144

-BASIC

> 10 PRI NT
>15 PRINT "RADIUS:
MISSING" 15
>15 PRINT "RADIUS:";
>20 INNPUT R
N ILLEGAL 20
>20 INPUT R
>25 P : 3. 1 4 15926
>30 C:2*P* E"R
>35 A:C*R
>40 PR I NT"CIRCUM:"R, "AR EA:" A
>50 GO TO 20
>22 IF R:O THEN 60
>60 STOP
>

50 GO TO 10
>RUN

RADI US:? 2
CIRCUM: 2

RADIUS:? @)

AREA: 25.13274

User typed his password immediately after typing A7
and before typing the semi -colon.

Prints a blank line
User forgot terminal II

BASIC did not recognize the command

Shift 0 used to delete the E (shift 0 prints-)

User replaces original statement 50

Error in circumference

>40 PRI NT"CIRCUM:"C, "AREA:"A Error in the PRINT statement
>RUN

RADI US:? 2
CIRCUM: 12.56637 AREA: 25.13274

RADIUS:? 4
CIRCUM: 25.13274 AREA: 100.53096

RA 01 US:1 0 Program terminates when R=O

>LIST User lists corrected version of program

10 PR 1 NT
15 PRINT "RADIUS:";
20 INPUT R
22 IF R:O THEN 60
25 P:3.1415926
30 C:2*P*R
35 A:C*R
40 PRINT"CIRCUM:"C,"AREA:"A
50 GO TO 10
60 STOP

>DUMP
ON: ICIRCLEI

NEW FILE

22 Sample Session At The Teletype

User saves the program

>LOAD
fOR OPiI lFe I

>RUN

DO YOU NEED DIRECTIONS FOR USIHG THIS PROGRAM?
TYPE A 1 FOR YES AHD A 2 FOR NO.
? 1
THE PRO~AM WILL ASK YOU TO INPUT A VALUE OF TEMPERATURE
IN FARENHEIT. IT WILL THEN OUTPUT THE EQUIVALENT TEMP-
ERATURE IN CENTI~ADE. THIS SEQUENCE WILL BE REPEATED
UNTIL A VALUE OF 7777 IS INPUT. THE VALUE OF 7777
WI LL TER I'll NATE THE PROCfiAM.

FAR ENHEI T=? 0
CENTIGRADE=-17.777777

FAR ENHEI T=? 212
CENTI GRADE= 100

FAR ENHEI T=? 7777

>LIST User wi shed to see the program

10 PRINT
20 PRINT "DO YOU NEED DIRECTIONS FOR USING THIS PROGRAM?"
25 PRI NT "TYPE A 1 FOR YES AND A 2 FOR NO."
30 INPUT A
35 IF A=2 THEN 70
40 PRINT "THE PROGRAM WILL ASK YOU TO INPUT A VALUE OF TEMPERATURE"
45 PRINT "IN FARENHEIT. IT WILL THEN OUTPUT THE EQUIVALENT TEPlP-"
50 PRI NT "ERATUR E IN CENTI ~ADE. THIS SEQUENCE WI LL BE REPEATED"
60 PRINT "UNTIL A VALUE OF 7171 IS INPUT. THE VALUE OF 7711"
65 PRINT "WILL TERMINATE THE PROGRAM."
10 PRI NT
72 PRINT "FARENHEIT:";
15 INPUT F
11 IF F=1111 THEN 100
80 C:5/9* (F-32)
85 PRI NT "CENTI GRADE="C
90 GO TO 10
100 STOP

-LOGOUT

TIME USED 0:0:46 IN 0132117

Sample Session At The Teletype 23

A
arithmetic

components, 2, 3
express ions, 3, 4, 5
operators, 3

arrays, 3

B
blanks

c

in commands, 6
in messages, 5,7

commands
input/output, 15
miscellaneous, 16, 17
single, 7

constants
arithmetic, 2
syntactical, 5

CONTINUE, 2
correction, error, 2,21

o
DATA command, 8
DEF (define function) command, 18
DEL (delete) command, 21
DIM (dimension) command, 11
DUMP command, 21

E
el ements of arrays, 3
END command, 20
error corrections, 2
ESC (escape) key, 2
evaluatable expressions, 4
execution of programs, 20
exit from BASIC, 2
expressions, 3,4,5

F
files

input from, 15
output to, 15
programs on, 20
reading from, 15
writi ng on, 15

FOR command, 10
format, Teletype output, 15, 16
functions, 4, 18

24 Index

INDEX

G
GO TO command, 8
GOSUB command, 19

identifiers, 6
IF command, 8
INPUT command, 9
INPUT FILE command, 15
input

of data, 8
of information from files, 15
of programs from paper tape, 20
of programs from the Tel etype, 20

INT (integer) function, 18

K
keywords, 5

L
LE T command, 7
LIS T command, 21
LOAD command, 20
log-in procedure, 1
log-out procedure, 2

M
matrix operations, 12, 13, 14

N
NEXT command, 10
notation, BASIC syntax, 4
notation constants, BASIC, 5
notation variables, BASIC, 5

o
OPE N command, 15
operating procedures, 1,20
operators, 6
output

p

formats, 16
of data, 7

paper tape, program input from, 20
PRINT command, 7, 16
PRINT FILE command, 16

print formats
compressed, 16
packed, 16
zoned, 16

program
execution, 20
input from paper tape, 20
input from the Teletype, 20
loops, 10
preparation, 20
termination, 20

Programs
BASIC, 7
on files, 20

R
READ command, 8
READ FILE command, 16
relational expressions, 4
REM command, 20
RES TORE command, 9
RET (carraige return) key,
RETURN command, 19
RND. (pseudo-random number) function, 18
RU N command, 20

s
sing I e commands, 7
STEP clause, 10
step numbers, 8
S TOP command, 20
subprograms, 19
subscripts, 11

T
THEN clause, 8

v
variables, arithmetic, 3
variables, syntactical, 5

w
WRITE command, 16
writing

on files, 15
on the Teletype, 7, 15
program loops, 10
programs in BAS IC, 7

Index 25

SUMMARY OF BASIC COMMANDS

Matrix Command Syntax

step MAT {~~~BT) array 1 [,array 2J .•. @)
PRINT

step MAT array = {2~N} [(expression 1 [,expression 2J)] @)

step MAT array = IDN [(expression 1,expression 2)J @

step MAT array 1 ~ array 2{~) array 3 @J

step MA T array 1 = (express ion) * array 2 @

step MAT array 1 ={J~~} (array 2) @

12

12, 13

13

13

13

13, 14

50S 701 South Aviation Blvd./EI Segundo, California 90245

	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	xBack

